WorldWideScience

Sample records for correlating molecular phylogeny

  1. The first molecular phylogeny of Strepsiptera (Insecta reveals an early burst of molecular evolution correlated with the transition to endoparasitism.

    Directory of Open Access Journals (Sweden)

    Dino P McMahon

    Full Text Available A comprehensive model of evolution requires an understanding of the relationship between selection at the molecular and phenotypic level. We investigate this in Strepsiptera, an order of endoparasitic insects whose evolutionary biology is poorly studied. We present the first molecular phylogeny of Strepsiptera, and use this as a framework to investigate the association between parasitism and molecular evolution. We find evidence of a significant burst in the rate of molecular evolution in the early history of Strepsiptera. The evolution of morphological traits linked to parasitism is significantly correlated with the pattern in molecular rate. The correlated burst in genotypic-phenotypic evolution precedes the main phase of strepsipteran diversification, which is characterised by the return to a low and even molecular rate, and a period of relative morphological stability. These findings suggest that the transition to endoparasitism led to relaxation of selective constraint in the strepsipteran genome. Our results indicate that a parasitic lifestyle can affect the rate of molecular evolution, although other causal life-history traits correlated with parasitism may also play an important role.

  2. Correlating molecular phylogeny with venom apparatus occurrence in Panamic auger snails (Terebridae.

    Directory of Open Access Journals (Sweden)

    Mandë Holford

    Full Text Available Central to the discovery of neuroactive compounds produced by predatory marine snails of the superfamily Conoidea (cone snails, terebrids, and turrids is identifying those species with a venom apparatus. Previous analyses of western Pacific terebrid specimens has shown that some Terebridae groups have secondarily lost their venom apparatus. In order to efficiently characterize terebrid toxins, it is essential to devise a key for identifying which species have a venom apparatus. The findings presented here integrate molecular phylogeny and the evolution of character traits to infer the presence or absence of the venom apparatus in the Terebridae. Using a combined dataset of 156 western and 33 eastern Pacific terebrid samples, a phylogenetic tree was constructed based on analyses of 16S, COI and 12S mitochondrial genes. The 33 eastern Pacific specimens analyzed represent four different species: Acus strigatus, Terebra argyosia, T. ornata, and T. cf. formosa. Anatomical analysis was congruent with molecular characters, confirming that species included in the clade Acus do not have a venom apparatus, while those in the clade Terebra do. Discovery of the association between terebrid molecular phylogeny and the occurrence of a venom apparatus provides a useful tool for effectively identifying the terebrid lineages that may be investigated for novel pharmacological active neurotoxins, enhancing conservation of this important resource, while providing supplementary information towards understanding terebrid evolutionary diversification.

  3. Correlating molecular phylogeny with venom apparatus occurrence in Panamic auger snails (Terebridae).

    Science.gov (United States)

    Holford, Mandë; Puillandre, Nicolas; Modica, Maria Vittoria; Watkins, Maren; Collin, Rachel; Bermingham, Eldredge; Olivera, Baldomero M

    2009-11-05

    Central to the discovery of neuroactive compounds produced by predatory marine snails of the superfamily Conoidea (cone snails, terebrids, and turrids) is identifying those species with a venom apparatus. Previous analyses of western Pacific terebrid specimens has shown that some Terebridae groups have secondarily lost their venom apparatus. In order to efficiently characterize terebrid toxins, it is essential to devise a key for identifying which species have a venom apparatus. The findings presented here integrate molecular phylogeny and the evolution of character traits to infer the presence or absence of the venom apparatus in the Terebridae. Using a combined dataset of 156 western and 33 eastern Pacific terebrid samples, a phylogenetic tree was constructed based on analyses of 16S, COI and 12S mitochondrial genes. The 33 eastern Pacific specimens analyzed represent four different species: Acus strigatus, Terebra argyosia, T. ornata, and T. cf. formosa. Anatomical analysis was congruent with molecular characters, confirming that species included in the clade Acus do not have a venom apparatus, while those in the clade Terebra do. Discovery of the association between terebrid molecular phylogeny and the occurrence of a venom apparatus provides a useful tool for effectively identifying the terebrid lineages that may be investigated for novel pharmacological active neurotoxins, enhancing conservation of this important resource, while providing supplementary information towards understanding terebrid evolutionary diversification.

  4. Molecular phylogeny of Arthrotardigrada (Tardigrada).

    Science.gov (United States)

    Jørgensen, Aslak; Faurby, Søren; Hansen, Jesper G; Møbjerg, Nadja; Kristensen, Reinhardt M

    2010-03-01

    Tardigrades are microscopic ecdysozoans with a worldwide distribution covering marine, limnic and terrestrial habitats. They are regarded as a neglected phylum with regard to studies of their phylogeny. During the last decade molecular data have been included in the investigation of tardigrades. However, the marine arthrotardigrades are still poorly sampled due to their relative rarity, difficult identification and minute size even for tardigrades. In the present study, we have sampled various arthrotardigrades and sequenced the 18S and partial 28S ribosomal subunits. The phylogenetic analyses based on Bayesian inference and maximum parsimony inferred Heterotardigrada (Arthrotardigrada+Echiniscoidea) and Eutardigrada to be monophyletic. Arthrotardigrada was inferred to be paraphyletic as the monophyletic Echiniscoidea is included within the arthrotardigrades. The phylogenetic positions of Stygarctidae and Batillipedidae are poorly resolved with low branch support. The Halechiniscidae is inferred to be polyphyletic as the currently recognized Styraconyxinae is not part of the family. Archechiniscus is the sister-group to the Halechiniscidae and Orzeliscus is placed as one of the basal halechiniscids. The phylogeny of the included eutardigrade taxa resembles the current molecular phylogenies. The genetic diversity within Arthrotardigrada is much larger (18S 15.1-26.5%, 28S 7.2-20.7%) than within Eutardigrada (18S 1.0-12.6%, 28S 1.3-8.2%). This can be explained by higher substitution rates in the arthrotardigrades or by a much younger evolutionary age of the sampled eutardigrades.

  5. Evolution, phylogeny, and molecular epidemiology of Chlamydia.

    Science.gov (United States)

    Nunes, Alexandra; Gomes, João P

    2014-04-01

    The Chlamydiaceae are a family of obligate intracellular bacteria characterized by a unique biphasic developmental cycle. It encompasses the single genus Chlamydia, which involves nine species that affect a wide range of vertebral hosts, causing infections with serious impact on human health (mainly due to Chlamydia trachomatis infections) and on farming and veterinary industries. It is believed that Chlamydiales originated ∼700mya, whereas C. trachomatis likely split from the other Chlamydiaceae during the last 6mya. This corresponds to the emergence of modern human lineages, with the first descriptions of chlamydial infections as ancient as four millennia. Chlamydiaceae have undergone a massive genome reduction, on behalf of the deletional bias "use it or lose it", stabilizing at 1-1.2Mb and keeping a striking genome synteny. Their phylogeny reveals species segregation according to biological properties, with huge differences in terms of host range, tissue tropism, and disease outcomes. Genome differences rely on the occurrence of mutations in the >700 orthologous genes, as well as on events of recombination, gene loss, inversion, and paralogous expansion, affecting both a hypervariable region named the plasticity zone, and genes essentially encoding polymorphic and transmembrane head membrane proteins, type III secretion effectors and some metabolic pathways. Procedures for molecular typing are still not consensual but have allowed the knowledge of molecular epidemiology patterns for some species as well as the identification of outbreaks and emergence of successful clones for C. trachomatis. This manuscript intends to provide a comprehensive review on the evolution, phylogeny, and molecular epidemiology of Chlamydia.

  6. Molecular phylogeny and evolution of the cone snails (Gastropoda, Conoidea).

    Science.gov (United States)

    Puillandre, N; Bouchet, P; Duda, T F; Kauferstein, S; Kohn, A J; Olivera, B M; Watkins, M; Meyer, C

    2014-09-01

    We present a large-scale molecular phylogeny that includes 320 of the 761 recognized valid species of the cone snails (Conus), one of the most diverse groups of marine molluscs, based on three mitochondrial genes (COI, 16S rDNA and 12S rDNA). This is the first phylogeny of the taxon to employ concatenated sequences of several genes, and it includes more than twice as many species as the last published molecular phylogeny of the entire group nearly a decade ago. Most of the numerous molecular phylogenies published during the last 15years are limited to rather small fractions of its species diversity. Bayesian and maximum likelihood analyses are mostly congruent and confirm the presence of three previously reported highly divergent lineages among cone snails, and one identified here using molecular data. About 85% of the species cluster in the single Large Major Clade; the others are divided between the Small Major Clade (∼12%), the Conus californicus lineage (one species), and a newly defined clade (∼3%). We also define several subclades within the Large and Small major clades, but most of their relationships remain poorly supported. To illustrate the usefulness of molecular phylogenies in addressing specific evolutionary questions, we analyse the evolution of the diet, the biogeography and the toxins of cone snails. All cone snails whose feeding biology is known inject venom into large prey animals and swallow them whole. Predation on polychaete worms is inferred as the ancestral state, and diet shifts to molluscs and fishes occurred rarely. The ancestor of cone snails probably originated from the Indo-Pacific; rather few colonisations of other biogeographic provinces have probably occurred. A new classification of the Conidae, based on the molecular phylogeny, is published in an accompanying paper. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. A Molecular Phylogeny of Living Primates

    Science.gov (United States)

    Perelman, Polina; Johnson, Warren E.; Roos, Christian; Seuánez, Hector N.; Horvath, Julie E.; Moreira, Miguel A. M.; Kessing, Bailey; Pontius, Joan; Roelke, Melody; Rumpler, Yves; Schneider, Maria Paula C.; Silva, Artur; O'Brien, Stephen J.; Pecon-Slattery, Jill

    2011-01-01

    Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (∼8 Mb) from 186 primates representing 61 (∼90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species. PMID:21436896

  8. Molecular phylogeny of Eriocaulon (Eriocaulaceae)

    DEFF Research Database (Denmark)

    Ito, Yu; Tanaka, Norio; Barfod, Anders

    Eriocaulon is a genus of about 400 species of monocotyledonous flowering plants in the family Eriocaulaceae. The genus is widely distributed in the world, with the centers of diversity in tropical regions, such as tropical Asia and tropical Africa. A previous molecular phylogeny implied an Africa...

  9. A novel molecular marker for the study of Neotropical cichlid phylogeny.

    Science.gov (United States)

    Fabrin, T M C; Gasques, L S; Prioli, S M A P; Prioli, A J

    2015-12-22

    The use of molecular markers has contributed to phylogeny and to the reconstruction of species' evolutionary history. Each region of the genome has different evolution rates, which may or may not identify phylogenetic signal at different levels. Therefore, it is important to assess new molecular markers that can be used for phylogenetic reconstruction. Regions that may be associated with species characteristics and are subject to selective pressure, such as opsin genes, which encode proteins related to the visual system and are widely expressed by Cichlidae family members, are interesting. Our aim was to identify a new nuclear molecular marker that could establish the phylogeny of Neotropical cichlids and is potentially correlated with the visual system. We used Bayesian inference and maximum likelihood analysis to support the use of the nuclear opsin LWS gene in the phylogeny of eight Neotropical cichlid species. Their use concatenated to the mitochondrial gene COI was also tested. The LWS gene fragment comprised the exon 2-4 region, including the introns. The LWS gene provided good support for both analyses up to the genus level, distinguishing the studied species, and when concatenated to the COI gene, there was a good support up to the species level. Another benefit of utilizing this region, is that some polymorphisms are associated with changes in spectral properties of the LWS opsin protein, which constitutes the visual pigment that absorbs red light. Thus, utilization of this gene as a molecular marker to study the phylogeny of Neotropical cichlids is promising.

  10. Molecular phylogeny of Ranunculaceae based on internal ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... phylogenetic analysis of 92 species of Ranunculaceae, Paeoniaceae and Berberidaceae ... Ranunculaceae have complex chemical compositions, ..... Ro KE, Keener CS, McPheron BA (1997) Molecular Phylogenetic Study.

  11. Extinction can be estimated from moderately sized molecular phylogenies.

    Science.gov (United States)

    Beaulieu, Jeremy M; O'Meara, Brian C

    2015-04-01

    Hundreds of studies have been dedicated to estimating speciation and extinction from phylogenies of extant species. Although it has long been known that estimates of extinction rates using trees of extant organisms are often uncertain, an influential paper by Rabosky (2010) suggested that when birth rates vary continuously across the tree, estimates of the extinction fraction (i.e., extinction rate/speciation rate) will appear strongly bimodal, with a peak suggesting no extinction and a peak implying speciation and extinction rates are approaching equality. On the basis of these results, and the realistic nature of this form of rate variation, it is now generally assumed by many practitioners that extinction cannot be understood from molecular phylogenies alone. Here, we reevaluated and extended the analyses of Rabosky (2010) and come to the opposite conclusion-namely, that it is possible to estimate extinction from molecular phylogenies, even with model violations due to heritable variation in diversification rate. Note that while it may be tempting to interpret our study as advocating the application of simple birth-death models, our goal here is to show how a particular model violation does not necessitate the abandonment of an entire field: use prudent caution, but do not abandon all hope. © 2015 The Author(s).

  12. A composite molecular phylogeny of living lemuroid primates.

    Science.gov (United States)

    DelPero, Massimiliano; Pozzi, Luca; Masters, Judith C

    2006-01-01

    Lemuroid phylogeny is a source of lively debate among primatologists. Reconstructions based on morphological, physiological, behavioural and molecular data have yielded a diverse array of tree topologies with few nodes in common. In the last decade, molecular phylogenetic studies have grown in popularity, and a wide range of sequences has been brought to bear on the problem, but consensus has remained elusive. We present an analysis based on a composite molecular data set of approx. 6,400 bp assembled from the National Center for Biotechnology Information (NCBI) database, including both mitochondrial and nuclear genes, and diverse analytical methods. Our analysis consolidates some of the nodes that were insecure in previous reconstructions, but is still equivocal on the placement of some taxa. We conducted a similar analysis of a composite data set of approx. 3,600 bp to investigate the controversial relationships within the family Lemuridae. Here our analysis was more successful; only the position of Eulemur coronatus remained uncertain.

  13. Molecular phylogeny and taxonomy of the genus Pythium.

    Science.gov (United States)

    Lévesque, C André; de Cock, Arthur W A M

    2004-12-01

    The phylogeny of 116 species and varieties of Pythium was studied using parsimony and phenetic analysis of the ITS region of the nuclear ribosomal DNA. The D1, D2 and D3 regions of the adjacent large subunit nuclear ribosomal DNA of half the Pythium strains were also sequenced and gave a phylogeny congruent with the ITS data. All the 40 presently available ex-type strains were included in this study, as well as 20 sequences of recently described species from GenBank. Species for which no ex-type strains were available were represented by either authentic strains (6), strains used in the 1981 monograph of the genus by van der Plaats-Niterink (33), or strains selected on morphological criteria (17). Parsimony analysis generated two major clades representing the Pythium species with filamentous or globose sporangia. A small clade of species with contiguous sporangia was found in between the two main clades. A total number of 11 smaller clades was recognized, which often correlated with host-type or substrate and in several cases with a subset of morphological characters. Many characters used in species descriptions, such as antheridium position, did not correlate with phylogeny. A comparison of the ex-type and representative strains with all ITS sequences of Pythium in GenBank revealed limited infraspecific variation with the exception of P. rostratum, P. irregulare, P. heterothallicum, and P. ultimum. The total number of species examined was 116 (including 60 ex-type strains). Twenty-six species had ITS sequences identical or nearly identical to formerly described species, suggesting possible conspecificity. The importance of comparing ITS sequences of putative new species to the now available ITS database in order to avoid unwarranted new species names being introduced.

  14. A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences.

    Directory of Open Access Journals (Sweden)

    Nan Song

    Full Text Available Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha,Cicadomorpha,Heteroptera, and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes demonstrated that rapidly evolving and saturated sites should be removed from the analyses.

  15. Molecular Phylogeny of the Bamboo Sharks (Chiloscyllium spp.

    Directory of Open Access Journals (Sweden)

    Noor Haslina Masstor

    2014-01-01

    Full Text Available Chiloscyllium, commonly called bamboo shark, can be found inhabiting the waters of the Indo-West Pacific around East Asian countries such as Malaysia, Myanmar, Thailand, Singapore, and Indonesia. The International Union for Conservation of Nature (IUCN Red List has categorized them as nearly threatened sharks out of their declining population status due to overexploitation. A molecular study was carried out to portray the systematic relationships within Chiloscyllium species using 12S rRNA and cytochrome b gene sequences. Maximum parsimony and Bayesian were used to reconstruct their phylogeny trees. A total of 381 bp sequences’ lengths were successfully aligned in the 12S rRNA region, with 41 bp sites being parsimony-informative. In the cytochrome b region, a total of 1120 bp sites were aligned, with 352 parsimony-informative characters. All analyses yield phylogeny trees on which C. indicum has close relationships with C. plagiosum. C. punctatum is sister taxon to both C. indicum and C. plagiosum while C. griseum and C. hasseltii formed their own clade as sister taxa. These Chiloscyllium classifications can be supported by some morphological characters (lateral dermal ridges on the body, coloring patterns, and appearance of hypobranchials and basibranchial plate that can clearly be used to differentiate each species.

  16. Pericentric satellite DNA and molecular phylogeny in Acomys (Rodentia).

    Science.gov (United States)

    Kunze, B; Traut, W; Garagna, S; Weichenhan, D; Redi, C A; Winking, H

    1999-01-01

    Satellite DNAs (stDNAs) of four Acomys species (spiny-mice), A. cahirinus, A. cineraceus, A. dimidiatus and A. russatus, belong to closely related sequence families. Monomer sizes range from 338 to 364 bp. Between-species sequence identity was from 81.0% to 97.2%. The molecular phylogeny of the sequences helps to clarify the taxonomy of this 'difficult' group. The A. dimidiatus genome contains about 60000 repeats. According to the restriction patterns, repeats are arranged in tandem. The stDNA maps to the centromeric heterochromatin of most autosomes, both acrocentric and metacentric, but appears to be absent in the centromeric region of Y chromosomes. A well-conserved centromere protein B (CENP-B) box is present in the stDNA of A. russatus while it is degenerated in the other species.

  17. Arthropod phylogeny based on eight molecular loci and morphology

    Science.gov (United States)

    Giribet, G.; Edgecombe, G. D.; Wheeler, W. C.

    2001-01-01

    The interrelationships of major clades within the Arthropoda remain one of the most contentious issues in systematics, which has traditionally been the domain of morphologists. A growing body of DNA sequences and other types of molecular data has revitalized study of arthropod phylogeny and has inspired new considerations of character evolution. Novel hypotheses such as a crustacean-hexapod affinity were based on analyses of single or few genes and limited taxon sampling, but have received recent support from mitochondrial gene order, and eye and brain ultrastructure and neurogenesis. Here we assess relationships within Arthropoda based on a synthesis of all well sampled molecular loci together with a comprehensive data set of morphological, developmental, ultrastructural and gene-order characters. The molecular data include sequences of three nuclear ribosomal genes, three nuclear protein-coding genes, and two mitochondrial genes (one protein coding, one ribosomal). We devised new optimization procedures and constructed a parallel computer cluster with 256 central processing units to analyse molecular data on a scale not previously possible. The optimal 'total evidence' cladogram supports the crustacean-hexapod clade, recognizes pycnogonids as sister to other euarthropods, and indicates monophyly of Myriapoda and Mandibulata.

  18. Integrating fossils with molecular phylogenies improves inference of trait evolution.

    Science.gov (United States)

    Slater, Graham J; Harmon, Luke J; Alfaro, Michael E

    2012-12-01

    Comparative biologists often attempt to draw inferences about tempo and mode in evolution by comparing the fit of evolutionary models to phylogenetic comparative data consisting of a molecular phylogeny with branch lengths and trait measurements from extant taxa. These kinds of approaches ignore historical evidence for evolutionary pattern and process contained in the fossil record. In this article, we show through simulation that incorporation of fossil information dramatically improves our ability to distinguish among models of quantitative trait evolution using comparative data. We further suggest a novel Bayesian approach that allows fossil information to be integrated even when explicit phylogenetic hypotheses are lacking for extinct representatives of extant clades. By applying this approach to a comparative dataset comprising body sizes for caniform carnivorans, we show that incorporation of fossil information not only improves ancestral state estimates relative to those derived from extant taxa alone, but also results in preference of a model of evolution with trend toward large body size over alternative models such as Brownian motion or Ornstein-Uhlenbeck processes. Our approach highlights the importance of considering fossil information when making macroevolutionary inference, and provides a way to integrate the kind of sparse fossil information that is available to most evolutionary biologists. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  19. Molecular phylogeny, biogeography, and habitat preference evolution of marsupials.

    Science.gov (United States)

    Mitchell, Kieren J; Pratt, Renae C; Watson, Laura N; Gibb, Gillian C; Llamas, Bastien; Kasper, Marta; Edson, Janette; Hopwood, Blair; Male, Dean; Armstrong, Kyle N; Meyer, Matthias; Hofreiter, Michael; Austin, Jeremy; Donnellan, Stephen C; Lee, Michael S Y; Phillips, Matthew J; Cooper, Alan

    2014-09-01

    Marsupials exhibit great diversity in ecology and morphology. However, compared with their sister group, the placental mammals, our understanding of many aspects of marsupial evolution remains limited. We use 101 mitochondrial genomes and data from 26 nuclear loci to reconstruct a dated phylogeny including 97% of extant genera and 58% of modern marsupial species. This tree allows us to analyze the evolution of habitat preference and geographic distributions of marsupial species through time. We found a pattern of mesic-adapted lineages evolving to use more arid and open habitats, which is broadly consistent with regional climate and environmental change. However, contrary to the general trend, several lineages subsequently appear to have reverted from drier to more mesic habitats. Biogeographic reconstructions suggest that current views on the connectivity between Australia and New Guinea/Wallacea during the Miocene and Pliocene need to be revised. The antiquity of several endemic New Guinean clades strongly suggests a substantially older period of connection stretching back to the Middle Miocene and implies that New Guinea was colonized by multiple clades almost immediately after its principal formation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Improvement of molecular phylogenetic inference and the phylogeny of Bilateria.

    Science.gov (United States)

    Lartillot, Nicolas; Philippe, Hervé

    2008-04-27

    Inferring the relationships among Bilateria has been an active and controversial research area since Haeckel. The lack of a sufficient number of phylogenetically reliable characters was the main limitation of traditional phylogenies based on morphology. With the advent of molecular data, this problem has been replaced by another one, statistical inconsistency, which stems from an erroneous interpretation of convergences induced by multiple changes. The analysis of alignments rich in both genes and species, combined with a probabilistic method (maximum likelihood or Bayesian) using sophisticated models of sequence evolution, should alleviate these two major limitations. We applied this approach to a dataset of 94 genes and 79 species using CAT, a previously developed model accounting for site-specific amino acid replacement patterns. The resulting tree is in good agreement with current knowledge: the monophyly of most major groups (e.g. Chordata, Arthropoda, Lophotrochozoa, Ecdysozoa, Protostomia) was recovered with high support. Two results are surprising and are discussed in an evo-devo framework: the sister-group relationship of Platyhelminthes and Annelida to the exclusion of Mollusca, contradicting the Neotrochozoa hypothesis, and, with a lower statistical support, the paraphyly of Deuterostomia. These results, in particular the status of deuterostomes, need further confirmation, both through increased taxonomic sampling, and future improvements of probabilistic models.

  1. Molecular phylogeny of elasmobranchs inferred from mitochondrial and nuclear markers.

    Science.gov (United States)

    Pavan-Kumar, A; Gireesh-Babu, P; Babu, P P Suresh; Jaiswar, A K; Hari Krishna, V; Prasasd, K Pani; Chaudhari, Aparna; Raje, S G; Chakraborty, S K; Krishna, Gopal; Lakra, W S

    2014-01-01

    The elasmobranchs (sharks, rays and skates) being the extant survivors of one of the earliest offshoots of the vertebrate evolutionary tree are good model organisms to study the primitive vertebrate conditions. They play a significant role in maintaining the ecological balance and have high economic value. Due to over-exploitation and illegal fishing worldwide, the elasmobranch stocks are being decimated at an alarming rate. Appropriate management measures are necessary for restoring depleted elasmobranch stocks. One approach for restoring stocks is implementation of conservation measures and these measures can be formulated effectively by knowing the evolutionary relationship among the elasmobranchs. In this study, a total of 30 species were chosen for molecular phylogeny studies using mitochondrial cytochrome c oxidase subunit I, 12S ribosomal RNA gene and nuclear Internal Transcribed Spacer 2. Among different genes, the combined dataset of COI and 12S rRNA resulted in a well resolved tree topology with significant bootstrap/posterior probabilities values. The results supported the reciprocal monophyly of sharks and batoids. Within Galeomorphii, Heterodontiformes (bullhead sharks) formed as a sister group to Lamniformes (mackerel sharks): Orectolobiformes (carpet sharks) and to Carcharhiniformes (ground sharks). Within batoids, the Myliobatiformes formed a monophyly group while Pristiformes (sawfishes) and Rhinobatiformes (guitar fishes) formed a sister group to all other batoids.

  2. Molecular phylogeny and evolution of the genus Neoerysiphe (Erysiphaceae, Ascomycota).

    Science.gov (United States)

    Takamatsu, Susumu; Havrylenko, Maria; Wolcan, Silvia M; Matsuda, Sanae; Niinomi, Seiko

    2008-06-01

    The genus Neoerysiphe belongs to the tribe Golovinomyceteae of the Erysiphaceae together with the genera Arthrocladiella and Golovinomyces. This is a relatively small genus, comprising only six species, and having ca 300 species from six plant families as hosts. To investigate the molecular phylogeny and evolution of the genus, we determined the nucleotide sequences of the rDNA ITS regions and the divergent domains D1 and D2 of the 28S rDNA. The 30 ITS sequences from Neoerysiphe are divided into three monophyletic groups that are represented by their host families. Groups 1 and 3 consist of N. galeopsidis from Lamiaceae and N. galii from Rubiaceae, respectively, and the genetic diversity within each group is extremely low. Group 2 is represented by N. cumminsiana from Asteraceae. This group also includes Oidium baccharidis, O. maquii, and Oidium spp. from Galinsoga (Asteraceae) and Aloysia (Verbenaceae), and is further divided into four subgroups. N. galeopsidis is distributed worldwide, but is especially common in western Eurasia from Central Asia to Europe. N. galii is also common in western Eurasia. In contrast, the specimens of group 2 were all collected in the New World, except for one specimen that was collected in Japan; this may indicate a close relationship of group 2 with the New World. Molecular clock calibration demonstrated that Neoerysiphe split from other genera of the Erysiphaceae ca 35-45M years ago (Mya), and that the three groups of Neoerysiphe diverged between 10 and 15Mya, in the Miocene. Aloysia citriodora is a new host for the Erysiphaceae and the fungus on this plant is described as O. aloysiae sp. nov.

  3. Molecular phylogeny and biogeography of the weevil subfamily Platypodinae reveals evolutionarily conserved range patterns.

    Science.gov (United States)

    Jordal, Bjarte H

    2015-11-01

    Platypodinae is a peculiar weevil subfamily of species that cultivate fungi in tunnels excavated in dead wood. Their geographical distribution is generally restricted, with genera confined to a single continent or large island, which provides a useful system for biogeographical research. This study establishes the first detailed molecular phylogeny of the group, with the aim of testing hypotheses on classification, diversification, and biogeography. A phylogeny was reconstructed based on 3648 nucleotides from COI, EF-1α, CAD, ArgK, and 28S. Tree topology was well resolved and indicated a strong correlation with geography, more so than predicted by previous morphology-based classifications. Tesserocerini was paraphyletic, with Notoplatypus as the sister group to a clade consisting of three main lineages of Tesserocerini and the recently evolved Platypodini. Austroplatypus formed the sister group to all remaining Platypodini and hence confirmed its separate status from Platypus. The Indo-Australian genera of Platypodini were strikingly paraphyletic, suggesting that the taxonomy of this tribe needs careful revision. Ancestral-area reconstructions in Lagrange and S-DIVA were ambiguous for nodes roughly older than 80 Ma. More recent events were firmly assessed and involved post-Gondwanan long-distance dispersal. The Neotropics was colonized three times, all from the Afrotropical region, with the latest event less than 25 Ma that included the ancestor of all Neotropical Platypodini. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota).

    Science.gov (United States)

    James, Timothy Y; Letcher, Peter M; Longcore, Joyce E; Mozley-Standridge, Sharon E; Porter, David; Powell, Martha J; Griffith, Gareth W; Vilgalys, Rytas

    2006-01-01

    Chytridiomycota (chytrids) is the only phylum of true Fungi that reproduces with motile spores (zoospores). Chytrids currently are classified into five orders based on habitat, zoospore characters and life cycles. In this paper we estimate the phylogeny of the chytrids with DNA sequences from the ribosomal RNA operon (18S+5.8S+28S subunits). To our surprise the morphologically reduced parasites Olpidium and Rozella comprise two entirely new, and separate, lineages on the fungal tree. Olpidium brassicae groups among the Zygomycota, and Rozella spp. are the earliest branch to diverge in the fungal kingdom. The phylogeny also suggests that Chytridiomycota is not monophyletic and there are four major lineages of chytrids: Rozella spp., Olpidium brassicae, the Blastocladiales and a "core chytrid clade" containing the remaining orders and families and the majority of flagellated fungi. Within the core chytrid group 11 subclades can be identified, each of which correlates well with zoospore ultrastructure or morphology. We provide a synopsis of each clade and its morphological circumscription. The Blastocladiales appears to be the sister taxon of most nonflagellated fungi. Based on molecular phylogenetic and ultrastructural characters this order is elevated to a phylum, the Blastocladiomycota.

  5. Emerging trends in molecular systematics and molecular phylogeny of mayflies (Insecta: Ephemeroptera

    Directory of Open Access Journals (Sweden)

    K.G. Sivaramakrishnan

    2011-08-01

    Full Text Available Current trends are reviewed in the molecular systematics and phylogeny of the Ephemeroptera (mayflies, an ancient monophyletic lineage of pterygote insects. Theories of mayfly origins are analyzed, followed by a discussion of higher classification schemes in light of recent developments in molecular systematics. Ephemeroptera evolution is a classic example of ancient rapid radiation, presenting challenges for phylogenetic analysis. The utility of combined studies of morphological and molecular data is substantiated with examples and the role of molecular systematics in unraveling the taxonomy of cryptic species complexes is highlighted. The importance of DNA barcoding in mayfly taxonomy is discussed in the light of recent progress, and future contributions of genetics to the study of taxonomy, ecology and evolution in mayflies are discussed.

  6. Extinction during evolutionary radiations: reconciling the fossil record with molecular phylogenies.

    Science.gov (United States)

    Quental, Tiago B; Marshall, Charles R

    2009-12-01

    Recent application of time-varying birth-death models to molecular phylogenies suggests that a decreasing diversification rate can only be observed if there was a decreasing speciation rate coupled with extremely low or no extinction. However, from a paleontological perspective, zero extinction rates during evolutionary radiations seem unlikely. Here, with a more comprehensive set of computer simulations, we show that substantial extinction can occur without erasing the signal of decreasing diversification rate in a molecular phylogeny. We also find, in agreement with the previous work, that a decrease in diversification rate cannot be observed in a molecular phylogeny with an increasing extinction rate alone. Further, we find that the ability to observe decreasing diversification rates in molecular phylogenies is controlled (in part) by the ratio of the initial speciation rate (Lambda) to the extinction rate (Mu) at equilibrium (the LiMe ratio), and not by their absolute values. Here we show in principle, how estimates of initial speciation rates may be calculated using both the fossil record and the shape of lineage through time plots derived from molecular phylogenies. This is important because the fossil record provides more reliable estimates of equilibrium extinction rates than initial speciation rates.

  7. A large phylogeny of turtles (Testudines) using molecular data

    NARCIS (Netherlands)

    Guillon, J.-M.; Guéry, L.; Hulin, V.; Girondot, M.

    2012-01-01

    Turtles (Testudines) form a monophyletic group with a highly distinctive body plan. The taxonomy and phylogeny of turtles are still under discussion, at least for some clades. Whereas in most previous studies, only a few species or genera were considered, we here use an extensive compilation of DNA

  8. When can decreasing diversification rates be detected with molecular phylogenies and the fossil record?

    Science.gov (United States)

    Liow, Lee Hsiang; Quental, Tiago B; Marshall, Charles R

    2010-12-01

    Traditionally, patterns and processes of diversification could only be inferred from the fossil record. However, there are an increasing number of tools that enable diversification dynamics to be inferred from molecular phylogenies. The application of these tools to new data sets has renewed interest in the question of the prevalence of diversity-dependent diversification. However, there is growing recognition that the absence of extinct species in molecular phylogenies may prevent accurate inferences about the underlying diversification dynamics. On the other hand, even though the fossil record provides direct data on extinct species, its incompleteness can also mask true diversification processes. Here, using computer-generated diversity-dependent phylogenies, we mimicked molecular phylogenies by eliminating extinct lineages. We also simulated the fossil record by converting the temporal axis into discrete intervals and imposing a variety of preservation processes on the lineages. Given the lack of reliable phylogenies for many fossil marine taxa, we also stripped away phylogenetic information from the computer-generated phylogenies. For the simulated molecular phylogenies, we examined the efficacy of the standard metric (the γ statistic) for identifying decreasing rates of diversification. We find that the underlying decreasing rate of diversification is detected only when the rate of change in the diversification rate is high, and if the molecular phylogeny happens to capture the diversification process as the equilibrium diversity is first reached or shortly thereafter. In contrast, estimating rates of diversification from the simulated fossil record captures the expected zero rate of diversification after equilibrium is reached under a wide range of preservation scenarios. The ability to detect the initial decreasing rate of diversification is lost as the temporal resolution of the fossil record drops and with a decreased quality of preservation. When the

  9. Trait Associations across Evolutionary Time within a Drosophila Phylogeny: Correlated Selection or Genetic Constraint?

    Science.gov (United States)

    Kellermann, Vanessa; Overgaard, Johannes; Loeschcke, Volker; Kristensen, Torsten Nygaard; Hoffmann, Ary A.

    2013-01-01

    Traits do not evolve independently. To understand how trait changes under selection might constrain adaptive changes, phenotypic and genetic correlations are typically considered within species, but these capture constraints across a few generations rather than evolutionary time. For longer-term constraints, comparisons are needed across species but associations may arise because of correlated selection pressures rather than genetic interactions. Implementing a unique approach, we use known patterns of selection to separate likely trait correlations arising due to correlated selection from those reflecting genetic constraints. We examined the evolution of stress resistance in >90 Drosophila species adapted to a range of environments, while controlling for phylogeny. Initially we examined the role of climate and phylogeny in shaping the evolution of starvation and body size, two traits previously not examined in this context. Following correction for phylogeny only a weak relationship between climate and starvation resistance was detected, while all of the variation in the relationship between body size and climate could be attributed to phylogeny. Species were divided into three environmental groups (hot and dry, hot and wet, cold) with the expectation that, if genetic correlations underpin trait correlations, these would persist irrespective of the environment, whereas selection-driven evolution should produce correlations dependent on the environment. We found positive associations between most traits in hot and dry environments coupled with high trait means. In contrast few trait correlations were observed in hot/wet and cold environments. These results suggest trait associations are primarily driven by correlated selection rather than genetic interactions, highlighting that such interactions are unlikely to limit evolution of stress resistance. PMID:24015206

  10. Some Histories of Molecular Evolution: Amniote Phylogeny, Vertebrate Eye Lens Evolution, and the Prion Gene

    NARCIS (Netherlands)

    Rheede, T. van

    2004-01-01

    In this thesis, the principles of molecular evolution and phylogeny are introduced in Chapter 1, while the subsequent chapters deal with the three topics mentioned in the title. Part I: Birds, reptiles and mammals are Amniota, organisms that have an amnion during their embryonal development. Even th

  11. Artificial neural networks can learn to estimate extinction rates from molecular phylogenies

    NARCIS (Netherlands)

    Bokma, Folmer

    2006-01-01

    Molecular phylogenies typically consist of only extant species, yet they allow inference of past rates of extinction, because. recently originated species are less likely to be extinct than ancient species. Despite the simple structure of the assumed underlying speciation-extinction process,

  12. Artificial neural networks can learn to estimate extinction rates from molecular phylogenies

    NARCIS (Netherlands)

    Bokma, Folmer

    2006-01-01

    Molecular phylogenies typically consist of only extant species, yet they allow inference of past rates of extinction, because. recently originated species are less likely to be extinct than ancient species. Despite the simple structure of the assumed underlying speciation-extinction process, paramet

  13. Molecular phylogeny of the Oriental butterfly genus Arhopala (Lycaenidae, Theclinae) inferred from mitochondrial and nuclear genes

    NARCIS (Netherlands)

    Megens, H.J.W.C.; Nes, Van W.J.; Moorsel, van C.H.M.; Pierce, N.E.; Jong, de R.

    2004-01-01

    We present a phylogeny for a selection of species of the butterfly genus Arhopala Boisduval, 1832 based on molecular characters. We sequenced 1778 bases of the mitochondrial genes Cytochrome Oxidase 1 and 2 including tRNALeu, and a 393-bp fragment of the nuclear wingless gene for a total of 42 speci

  14. Some Histories of Molecular Evolution: Amniote Phylogeny, Vertebrate Eye Lens Evolution, and the Prion Gene

    NARCIS (Netherlands)

    Rheede, T. van

    2004-01-01

    In this thesis, the principles of molecular evolution and phylogeny are introduced in Chapter 1, while the subsequent chapters deal with the three topics mentioned in the title. Part I: Birds, reptiles and mammals are Amniota, organisms that have an amnion during their embryonal development. Even

  15. Molecular phylogeny and character evolution in terete-stemmed Andean opuntias (Cactaceae-Opuntioideae).

    Science.gov (United States)

    Ritz, C M; Reiker, J; Charles, G; Hoxey, P; Hunt, D; Lowry, M; Stuppy, W; Taylor, N

    2012-11-01

    The cacti of tribe Tephrocacteae (Cactaceae-Opuntioideae) are adapted to diverse climatic conditions over a wide area of the southern Andes and adjacent lowlands. They exhibit a range of life forms from geophytes and cushion-plants to dwarf shrubs, shrubs or small trees. To confirm or challenge previous morphology-based classifications and molecular phylogenies, we sampled DNA sequences from the chloroplast trnK/matK region and the nuclear low copy gene phyC and compared the resulting phylogenies with previous data gathered from nuclear ribosomal DNA sequences. The here presented chloroplast and nuclear low copy gene phylogenies were mutually congruent and broadly coincident with the classification based on gross morphology and seed micro-morphology and anatomy. Reconstruction of hypothetical ancestral character states suggested that geophytes and cushion-forming species probably evolved several times from dwarf shrubby precursors. We also traced an increase of embryo size at the expense of the nucellus-derived storage tissue during the evolution of the Tephrocacteae, which is thought to be an evolutionary advantage because nutrients are then more rapidly accessible for the germinating embryo. In contrast to these highly concordant phylogenies, nuclear ribosomal DNA data sampled by a previous study yielded conflicting phylogenetic signals. Secondary structure predictions of ribosomal transcribed spacers suggested that this phylogeny is strongly influenced by the inclusion of paralogous sequence probably arisen by genome duplication during the evolution of this plant group.

  16. Molecular phylogeny of the burying beetles (Coleoptera: Silphidae: Nicrophorinae).

    Science.gov (United States)

    Sikes, Derek S; Venables, Chandra

    2013-12-01

    Burying beetles (Silphidae: Nicrophorus) are well-known for their monopolization of small vertebrate carcasses in subterranean crypts and complex biparental care behaviors. They have been the focus of intense behavioral, ecological, and conservation research since the 1980s yet no thorough phylogenetic estimate for the group exists. Herein, we infer relationships, test past hypotheses of relationships, and test biogeographic scenarios among 55 of the subfamily Nicrophorinae's currently valid and extant 72 species. Two mitochondrial genes, COI and COII, and two nuclear genes, the D2 region of 28S, and the protein coding gene CAD, provided 3,971 nucleotides for 58 nicrophorine and 5 outgroup specimens. Ten partitions, with each modeled by GTR+I+G, were used for a 100 M generation MrBayes analysis and maximum likelihood bootstrapping with Garli. The inferred Bayesian phylogeny was mostly well-resolved with only three weak branches of biogeographic relevance. The common ancestor of the subfamily and of the genus Nicrophorus was reconstructed as Old World with four separate transitions to the New World and four reverse colonizations of the Old World from the New. Divergence dating from analysis with BEAST indicate the genus Nicrophorus originated in the Cretaceous, 127-99 Ma. Most prior, pre-cladistic hypotheses of relationships were strongly rejected while most modern hypotheses were largely congruent with monophyletic groups in our estimated phylogeny. Our results reject a recent hypothesis that Nicrophorus morio Gebler, 1817 (NEW STATUS as valid species) is a subspecies of N. germanicus (L., 1758). Two subgenera of Nicrophorus are recognized: NecroxenusSemenov-Tian-Shanskij, 1933, and NicrophorusFabricius, 1775.

  17. A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage.

    Science.gov (United States)

    Kuntner, Matjaž; Arnedo, Miquel A; Trontelj, Peter; Lokovšek, Tjaša; Agnarsson, Ingi

    2013-12-01

    The pantropical orb web spider family Nephilidae is known for the most extreme sexual size dimorphism among terrestrial animals. Numerous studies have made Nephilidae, particularly Nephila, a model lineage in evolutionary research. However, a poorly understood phylogeny of this lineage, relying only on morphology, has prevented thorough evolutionary syntheses of nephilid biology. We here use three nuclear and five mitochondrial genes for 28 out of 40 nephilid species to provide a more robust nephilid phylogeny and infer clade ages in a fossil-calibrated Bayesian framework. We complement the molecular analyses with total evidence analysis including morphology. All analyses find strong support for nephilid monophyly and exclusivity and the monophyly of the genera Herennia and Clitaetra. The inferred phylogenetic structure within Nephilidae is novel and conflicts with morphological phylogeny and traditional taxonomy. Nephilengys species fall into two clades, one with Australasian species (true Nephilengys) as sister to Herennia, and another with Afrotropical species (Nephilingis Kuntner new genus) as sister to a clade containing Clitaetra plus most currently described Nephila. Surprisingly, Nephila is also diphyletic, with true Nephila containing N. pilipes+N. constricta, and the second clade with all other species sister to Clitaetra; this "Nephila" clade is further split into an Australasian clade that also contains the South American N. sexpunctata and the Eurasian N. clavata, and an African clade that also contains the Panamerican N. clavipes. An approximately unbiased test constraining the monophyly of Nephilengys, Nephila, and Nephilinae (Nephila, Nephilengys, Herennia), respectively, rejected Nephilengys monophyly, but not that of Nephila and Nephilinae. Further data are therefore necessary to robustly test these two new, but inconclusive findings, and also to further test the precise placement of Nephilidae within the Araneoidea. For divergence date estimation

  18. A comprehensive molecular phylogeny for the hornbills (Aves: Bucerotidae).

    Science.gov (United States)

    Gonzalez, Juan-Carlos T; Sheldon, Ben C; Collar, Nigel J; Tobias, Joseph A

    2013-05-01

    The hornbills comprise a group of morphologically and behaviorally distinct Palaeotropical bird species that feature prominently in studies of ecology and conservation biology. Although the monophyly of hornbills is well established, previous phylogenetic hypotheses were based solely on mtDNA and limited sampling of species diversity. We used parsimony, maximum likelihood and Bayesian methods to reconstruct relationships among all 61 extant hornbill species, based on nuclear and mtDNA gene sequences extracted largely from historical samples. The resulting phylogenetic trees closely match vocal variation across the family but conflict with current taxonomic treatments. In particular, they highlight a new arrangement for the six major clades of hornbills and reveal that three groups traditionally treated as genera (Tockus, Aceros, Penelopides) are non-monophyletic. In addition, two other genera (Anthracoceros, Ocyceros) were non-monophyletic in the mtDNA gene tree. Our findings resolve some longstanding problems in hornbill systematics, including the placement of 'Penelopides exharatus' (embedded in Aceros) and 'Tockus hartlaubi' (sister to Tropicranus albocristatus). We also confirm that an Asiatic lineage (Berenicornis) is sister to a trio of Afrotropical genera (Tropicranus [including 'Tockus hartlaubi'], Ceratogymna, Bycanistes). We present a summary phylogeny as a robust basis for further studies of hornbill ecology, evolution and historical biogeography.

  19. Molecular phylogeny and evolution of Scomber (Teleostei: Scombridae) based on mitochondrial and nuclear DNA sequences

    Institute of Scientific and Technical Information of China (English)

    CHENG Jiao; GAO Tianxiang; MIAO Zhenqing; YANAGIMOTO Takashi

    2011-01-01

    A molecular phylogenetic analysis of the genus Scomber was conducted based on mitochondrial (COI, Cyt b and control region) and nuclear (5S rDNA) DNA sequence data in multigene perspective. A variety of phylogenetic analytic methods were used to clarify the current taxonomic classification and to assess phylogenetic relationships and the evolutionary history of this genus. The present study produced a well-resolved phylogeny that strongly supported the monophyly of Scomber. We confirmed that S. japonicus and S. colias were genetically distinct. Although morphologically and ecologically similar to S. colias, the molecular data showed that S. japonicus has a greater molecular affinity with S. australasicus, which conflicts with the traditional taxonomy. This phyiogenetic pattern was corroborated by the mtDNA data, but incompletely by the nuclear DNA data. Phylogenetic concordance between the mitochondrial and nuclear DNA regions for the basal nodes supports an Atlantic origin for Scomber. The present-day geographic ranges of the species were compared with the resultant molecular phylogeny derived from partition Bayesian analyses of the combined data sets to evaluate possible dispersal routes of the genus. The present-day geographic distribution of Scomber species might be best ascribed to multiple dispersal events. In addition, our results suggest that phylogenies derived from multiple genes and long sequences exhibited improved phylogenetic resolution, from which we conclude that the phylogenetic reconstruction is a reliable representation of the evolutionary history of Scomber.

  20. Genera of euophryine jumping spiders (Araneae: Salticidae), with a combined molecular-morphological phylogeny.

    Science.gov (United States)

    Zhang, Junxia; Maddison, Wayne P

    2015-03-27

    Morphological traits of euophryine jumping spiders were studied to clarify generic limits in the Euophryinae and to permit phylogenetic classification of genera lacking molecular data. One hundred and eight genera are recognized within the subfamily. Euophryine generic groups and the delimitation of some genera are reviewed in detail. In order to explore the effect of adding formal morphological data to previous molecular phylogenetic studies, and to find morphological synapomorphies, eighty-two morphological characters were scored for 203 euophryine species and seven outgroup species. The morphological dataset does not perform as well as the molecular dataset (genes 28S, Actin 5C; 16S-ND1, COI) in resolving the phylogeny of Euophryinae, probably because of frequent convergence and reversal. The formal morphological data were mapped on the phylogeny in order to seek synapomorphies, in hopes of extending the phylogeny to include taxa for which molecular data are not available. Because of homoplasy, few globally-applicable morphological synapomorphies for euophryine clades were found. However, synapomorphies that are unique locally in subclades still help to delimit euophryine generic groups and genera. The following synonyms of euophryine genera are proposed: Maeotella with Anasaitis; Dinattus with Corythalia; Paradecta with Compsodecta; Cobanus, Chloridusa and Wallaba with Sidusa; Tariona with Mopiopia; Nebridia with Amphidraus; Asaphobelis and Siloca with Coryphasia; Ocnotelus with Semnolius; Palpelius with Pristobaeus; Junxattus with Laufeia; Donoessus with Colyttus; Nicylla, Pselcis and Thianitara with Thiania. The new genus Saphrys is erected for misplaced species from southern South America.

  1. Molecular phylogeny and evidence for an adaptive radiation of geophagine cichlids from South America (Perciformes: Labroidei).

    Science.gov (United States)

    López-Fernández, Hernán; Honeycutt, Rodney L; Winemiller, Kirk O

    2005-01-01

    Nucleotide sequences from the mitochondrial ND4 gene and the nuclear RAG2 gene were used to derive the most extensive molecular phylogeny to date for the Neotropical cichlid subfamily Geophaginae. Previous hypotheses of relationships were tested in light of these new data and a synthesis of all existing molecular information was provided. Novel phylogenetic findings included support for : (1) a 'Big Clade' containing the genera Geophagus sensu lato, Gymnogeophagus, Mikrogeophagus, Biotodoma, Crenicara, and Dicrossus; (2) a clade including the genera Satanoperca, Apistogramma, Apistogrammoides, and Taeniacara; and (3) corroboration for Kullander's clade Acarichthyini. ND4 demonstrated saturation effects at the third code position and lineage-specific rate heterogeneity, both of which influenced phylogeny reconstruction when only equal weighted parsimony was employed. Both branch lengths and internal branch tests revealed extremely short basal nodes that add support to the idea that geophagine cichlids have experienced an adaptive radiation sensu Schluter that involved ecomorphological specializations and life history diversification.

  2. Molecular biological analysis of genotyping and phylogeny of severe acute respiratory syndrome associated coronavirus

    Institute of Scientific and Technical Information of China (English)

    王志刚; 李兰娟; 罗芸; 张俊彦; 王敏雅; 程苏云; 张严峻; 王晓萌; 卢亦愚; 吴南屏; 梅玲玲; 王赞信

    2004-01-01

    Background SARS-CoV is the causative agent of severe acute respiratory syndrome (SARS) which has been associated with outbreaks of SARS in Guangdong, Hong Kong and Beijing of China, and other regions worldwide. SARS-CoV from human has shown some variations but its origin is still unknown. The genotyping and phylogeny of SARS-CoV were analyzed and reported in this paper. Methods Full or partial genomes of 44 SARS-CoV strains were collected from GenBank. The genotype, single nucleotide polymorphism and phylogeny of these SARS-CoV strains were analyzed by molecular biological, bioinformatic and epidemiological methods. Conclusion The results mentioned above suggest that SARS-CoV is responding to host immunological pressures and experiencing variation which provide clues, information and evidence of molecular biology for the clinical pathology, vaccine developing and epidemic investigation.

  3. Detecting shifts in diversity limits from molecular phylogenies: what can we know?

    Science.gov (United States)

    McInnes, Lynsey; Orme, C David L; Purvis, A

    2011-11-01

    Large complete species-level molecular phylogenies can provide the most direct information about the macroevolutionary history of clades having poor fossil records. However, extinction will ultimately erode evidence of pulses of rapid speciation in the deep past. Assessment of how well, and for how long, phylogenies retain the signature of such pulses has hitherto been based on a--probably untenable--model of ongoing diversity-independent diversification. Here, we develop two new tests for changes in diversification 'rules' and evaluate their power to detect sudden increases in equilibrium diversity in clades simulated with diversity-dependent speciation and extinction rates. Pulses of diversification are only detected easily if they occurred recently and if the rate of species turnover at equilibrium is low; rates reported for fossil mammals suggest that the power to detect a doubling of species diversity falls to 50 per cent after less than 50 Myr even with a perfect phylogeny of extant species. Extinction does eventually draw a veil over past dynamics, suggesting that some questions are beyond the limits of inference, but sudden clade-wide pulses of speciation can be detected after many millions of years, even when overall diversity is constrained. Applying our methods to existing phylogenies of mammals and angiosperms identifies intervals of elevated diversification in each.

  4. Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom.

    Science.gov (United States)

    Bourlat, Sarah J; Nielsen, Claus; Economou, Andrew D; Telford, Maximilian J

    2008-10-01

    The new animal phylogeny inferred from ribosomal genes some years ago has prompted a number of radical rearrangements of the traditional, morphology based metazoan tree. The two main bilaterian clades, Deuterostomia and Protostomia, find strong support, but the protostomes consist of two sister groups, Ecdysozoa and Lophotrochozoa, not seen in morphology based trees. Although widely accepted, not all recent molecular phylogenetic analyses have supported the tripartite structure of the new animal phylogeny. Furthermore, even if the small ribosomal subunit (SSU) based phylogeny is correct, there is a frustrating lack of resolution of relationships between the phyla that make up the three clades of this tree. To address this issue, we have assembled a dataset including a large number of aligned sequence positions as well as a broad sampling of metazoan phyla. Our dataset consists of sequence data from ribosomal and mitochondrial genes combined with new data from protein coding genes (5139 amino acid and 3524 nucleotide positions in total) from 37 representative taxa sampled across the Metazoa. Our data show strong support for the basic structure of the new animal phylogeny as well as for the Mandibulata including Myriapoda. We also provide some resolution within the Lophotrochozoa, where we confirm support for a monophyletic clade of Echiura, Sipuncula and Annelida and surprising evidence of a close relationship between Brachiopoda and Nemertea.

  5. First data on molecular phylogeny of the genus Protoparmeliopsis M. Choisy (Lecanoraceae, Ascomycota

    Directory of Open Access Journals (Sweden)

    Sergij Y. Kondratyuk

    2014-04-01

    Full Text Available Results on molecular phylogeny of lichen-forming fungi of the genus Protoparmeliopsis based on nrDNA ITS1/ITS2 and 28S LSU and mtDNA 12S SSU as well as on combined data set are provided. The position of this genus in the phylogenetic tree of the family Lecanoraceae is discussed. The genus Protoparmeliopsis found to be polyphyletic similarly to the genera Rhizoplaca, Lecanora and Protoparmelia.

  6. Molecular phylogeny of Toxoplasmatinae: comparison between inferences based on mitochondrial and apicoplast genetic sequences

    Directory of Open Access Journals (Sweden)

    Michelle Klein Sercundes

    2016-03-01

    Full Text Available Abstract Phylogenies within Toxoplasmatinae have been widely investigated with different molecular markers. Here, we studied molecular phylogenies of the Toxoplasmatinae subfamily based on apicoplast and mitochondrial genes. Partial sequences of apicoplast genes coding for caseinolytic protease (clpC and beta subunit of RNA polymerase (rpoB, and mitochondrial gene coding for cytochrome B (cytB were analyzed. Laboratory-adapted strains of the closely related parasites Sarcocystis falcatula and Sarcocystis neurona were investigated, along with Neospora caninum, Neospora hughesi, Toxoplasma gondii (strains RH, CTG and PTG, Besnoitia akodoni, Hammondia hammondiand two genetically divergent lineages of Hammondia heydorni. The molecular analysis based on organellar genes did not clearly differentiate between N. caninum and N. hughesi, but the two lineages of H. heydorni were confirmed. Slight differences between the strains of S. falcatula and S. neurona were encountered in all markers. In conclusion, congruent phylogenies were inferred from the three different genes and they might be used for screening undescribed sarcocystid parasites in order to ascertain their phylogenetic relationships with organisms of the family Sarcocystidae. The evolutionary studies based on organelar genes confirm that the genusHammondia is paraphyletic. The primers used for amplification of clpC and rpoB were able to amplify genetic sequences of organisms of the genus Sarcocystisand organisms of the subfamily Toxoplasmatinae as well.

  7. Shark tales: a molecular species-level phylogeny of sharks (Selachimorpha, Chondrichthyes).

    Science.gov (United States)

    Vélez-Zuazo, Ximena; Agnarsson, Ingi

    2011-02-01

    Sharks are a diverse and ecologically important group, including some of the ocean's largest predatory animals. Sharks are also commercially important, with many species suffering overexploitation and facing extinction. However, despite a long evolutionary history, commercial, and conservation importance, phylogenetic relationships within the sharks are poorly understood. To date, most studies have either focused on smaller clades within sharks, or sampled taxa sparsely across the group. A more detailed species-level phylogeny will offer further insights into shark taxonomy, provide a tool for comparative analyses, as well as facilitating phylogenetic estimates of conservation priorities. We used four mitochondrial and one nuclear gene to investigate the phylogenetic relationships of 229 species (all eight Orders and 31 families) of sharks, more than quadrupling the number of taxon sampled in any prior study. The resulting Bayesian phylogenetic hypothesis agrees with prior studies on the major relationships of the sharks phylogeny; however, on those relationships that have proven more controversial, it differs in several aspects from the most recent molecular studies. The phylogeny supports the division of sharks into two major groups, the Galeomorphii and Squalimorphii, rejecting the hypnosqualean hypothesis that places batoids within sharks. Within the squalimorphs the orders Hexanchiformes, Squatiniformes, Squaliformes, and Pristiophoriformes are broadly monophyletic, with minor exceptions apparently due to missing data. Similarly, within Galeomorphs, the orders Heterodontiformes, Lamniformes, Carcharhiniformes, and Orectolobiformes are broadly monophyletic, with a couple of species 'misplaced'. In contrast, many of the currently recognized shark families are not monophyletic according to our results. Our phylogeny offers some of the first clarification of the relationships among families of the order Squaliformes, a group that has thus far received relatively

  8. Molecular Infectious Disease Epidemiology: Survival Analysis and Algorithms Linking Phylogenies to Transmission Trees.

    Science.gov (United States)

    Kenah, Eben; Britton, Tom; Halloran, M Elizabeth; Longini, Ira M

    2016-04-01

    Recent work has attempted to use whole-genome sequence data from pathogens to reconstruct the transmission trees linking infectors and infectees in outbreaks. However, transmission trees from one outbreak do not generalize to future outbreaks. Reconstruction of transmission trees is most useful to public health if it leads to generalizable scientific insights about disease transmission. In a survival analysis framework, estimation of transmission parameters is based on sums or averages over the possible transmission trees. A phylogeny can increase the precision of these estimates by providing partial information about who infected whom. The leaves of the phylogeny represent sampled pathogens, which have known hosts. The interior nodes represent common ancestors of sampled pathogens, which have unknown hosts. Starting from assumptions about disease biology and epidemiologic study design, we prove that there is a one-to-one correspondence between the possible assignments of interior node hosts and the transmission trees simultaneously consistent with the phylogeny and the epidemiologic data on person, place, and time. We develop algorithms to enumerate these transmission trees and show these can be used to calculate likelihoods that incorporate both epidemiologic data and a phylogeny. A simulation study confirms that this leads to more efficient estimates of hazard ratios for infectiousness and baseline hazards of infectious contact, and we use these methods to analyze data from a foot-and-mouth disease virus outbreak in the United Kingdom in 2001. These results demonstrate the importance of data on individuals who escape infection, which is often overlooked. The combination of survival analysis and algorithms linking phylogenies to transmission trees is a rigorous but flexible statistical foundation for molecular infectious disease epidemiology.

  9. Molecular and morphological evidence on the phylogeny of the Elephantidae.

    OpenAIRE

    Thomas, M G; Hagelberg, E; Jone, H B; Yang, Z.; Lister, A M

    2000-01-01

    The African and Asian elephants and the mammoth diverged ca. 4-6 million years ago and their phylogenetic relationship has been controversial. Morphological studies have suggested a mammoth Asian elephant relationship, while molecular studies have produced conflicting results. We obtained cytochrome b sequences of up to 545 base pairs from five mammoths, 14 Asian and eight African elephants. A high degree of polymorphism is detected within species. With a dugong sequence used as the outgroup,...

  10. Molecular clock fork phylogenies: closed form analytic maximum likelihood solutions.

    Science.gov (United States)

    Chor, Benny; Snir, Sagi

    2004-12-01

    Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. Because no general analytic solution is known, numeric techniques such as hill climbing or expectation maximization (EM) are used in order to find optimal parameters for a given tree. So far, analytic solutions were derived only for the simplest model-three-taxa, two-state characters, under a molecular clock. Quoting Ziheng Yang, who initiated the analytic approach,"this seems to be the simplest case, but has many of the conceptual and statistical complexities involved in phylogenetic estimation."In this work, we give general analytic solutions for a family of trees with four-taxa, two-state characters, under a molecular clock. The change from three to four taxa incurs a major increase in the complexity of the underlying algebraic system, and requires novel techniques and approaches. We start by presenting the general maximum likelihood problem on phylogenetic trees as a constrained optimization problem, and the resulting system of polynomial equations. In full generality, it is infeasible to solve this system, therefore specialized tools for the molecular clock case are developed. Four-taxa rooted trees have two topologies-the fork (two subtrees with two leaves each) and the comb (one subtree with three leaves, the other with a single leaf). We combine the ultrametric properties of molecular clock fork trees with the Hadamard conjugation to derive a number of topology dependent identities. Employing these identities, we substantially simplify the system of polynomial equations for the fork. We finally employ symbolic algebra software to obtain closed formanalytic solutions (expressed parametrically in the input data). In general, four-taxa trees can have multiple ML points. In contrast, we can now prove that each fork topology has a unique(local and global) ML point.

  11. Apical groove type and molecular phylogeny suggests reclassification of Cochlodinium geminatum as Polykrikos geminatum.

    Directory of Open Access Journals (Sweden)

    Dajun Qiu

    Full Text Available Traditionally Cocholodinium and Gymnodinium sensu lato clade are distinguished based on the cingulum turn number, which has been increasingly recognized to be inadequate for Gymnodiniales genus classification. This has been improved by the combination of the apical groove characteristics and molecular phylogeny, which has led to the erection of several new genera (Takayama, Akashiwo, Karenia, and Karlodinium. Taking the apical groove characteristics and molecular phylogeny combined approach, we reexamined the historically taxonomically uncertain species Cochlodinium geminatum that formed massive blooms in Pearl River Estuary, China, in recent years. Samples were collected from a bloom in 2011 for morphological, characteristic pigment, and molecular analyses. We found that the cingulum in this species wraps around the cell body about 1.2 turns on average but can appear under the light microscopy to be >1.5 turns after the cells have been preserved. The shape of its apical groove, however, was stably an open-ended anticlockwise loop of kidney bean shape, similar to that of Polykrikos. Furthermore, the molecular phylogenetic analysis using 18S rRNA-ITS-28S rRNA gene cistron we obtained in this study also consistently placed this species closest to Polykrikos within the Gymnodinium sensu stricto clade and set it far separated from the clade of Cochlodinium. These results suggest that this species should be transferred to Polykrikos as Polykrikos geminatum. Our results reiterate the need to use the combination of apical groove morphology and molecular phylogeny for the classification of species within the genus of Cochlodinium and other Gymnodiniales lineages.

  12. Biogeography, host specificity, and molecular phylogeny of the basidiomycetous yeast Phaffia rhodozyma and its sexual form, Xanthophyllomyces dendrorhous.

    Science.gov (United States)

    Libkind, Diego; Ruffini, Alejandra; van Broock, Maria; Alves, Leonor; Sampaio, José Paulo

    2007-02-01

    Phaffia rhodozyma (sexual form, Xanthophyllomyces dendrorhous) is a basidiomycetous yeast that has been found in tree exudates in the Northern Hemisphere at high altitudes and latitudes. This yeast produces astaxanthin, a carotenoid pigment with biotechnological importance because it is used in aquaculture for fish pigmentation. We isolated X. dendrorhous from the Southern Hemisphere (Patagonia, Argentina), where it was associated with fruiting bodies of Cyttaria hariotii, an ascomycetous parasite of Nothofagus trees. We compared internal transcribed spacer (ITS)-based phylogenies of P. rhodozyma and its tree host (Betulaceae, Corneaceae, Fagaceae, and Nothofagaceae) and found them to be generally concordant, suggesting that different yeast lineages colonize different trees and providing an explanation for the phylogenetic distance observed between the type strains of P. rhodozyma and X. dendrorhous. We hypothesize that the association of Xanthophyllomyces with Cyttaria derives from a previous association of the yeast with Nothofagus, and the sister relationship between Nothofagaceae and Betulaceae plus Fagaceae correlates with the phylogeny of X. dendrorhous strains originating from these three plant families. The two most basal strains of X. dendrorhous are those isolated from Cornus, an ancestral genus in the phylogenetic analysis of the host trees. Thus, we question previous conclusions that P. rhodozyma and X. dendrorhous represent different species since the polymorphisms detected in the ITS and intergenic spacer sequences can be attributed to intraspecific variation associated with host specificity. Our study provides a deeper understanding of Phaffia biogeography, ecology, and molecular phylogeny. Such knowledge is essential for the comprehension of many aspects of the biology of this organism and will facilitate the study of astaxanthin production within an evolutionary and ecological framework.

  13. Molecular phylogeny and evolution of symbiosis in a clade of Indopacific nudibranchs.

    Science.gov (United States)

    Moore, Elizabeth J; Gosliner, Terrence M

    2011-01-01

    Previous efforts at understanding the evolution of the genus Phyllodesmium, based on morphological analyses, have been plagued by poorly supported phylogenies (Ortiz and Gosliner, 2008; Moore and Gosliner, 2009, in press). It has been suggested (Moore and Gosliner, 2009) that a molecular phylogeny might provide more insight into this history than can be easily discovered using morphological data. In this study, 658bp of the cytochrome c oxidase subunit I gene (CO1), 441bp of the mitochondrial large ribosomal subunit (16S) gene, and 328bp of a protein-coding nuclear gene (histone 3) were sequenced for 18 species of Phyllodesmium and six outgroup species. A total of 464 parsimony informative sites were used for parsimony, maximum likelihood, and Bayesian inference of phylogeny analyses. All three analyses produced similar topologies, with the exception of a single difference within the parsimony analysis. Bootstrap values and posterior probabilities provided strong support at many shallow nodes, and the monophyly of Phyllodesmium was supported in every case. Three distinct clades of Phyllodesmium are evident in this analysis. One of these represents the majority of asymbiotic taxa. Phyllodesmium poindimiei, an asymbiotic species, is clearly a member of a symbiotic clade and appears to have secondarily lost its symbiotic relationship with zooxanthellae. There was moderate support confirming similar topological trends seen in earlier morphological phylogenies, including the hypothesis that symbiotic species associating with zooxanthellae have evolved more recently than non-symbiotic species. Despite the inclusion of a presumably conservative nuclear locus, some deep nodes are still unresolved or are not well supported. Future inclusion of additional taxa and more slowly evolving loci will likely improve resolution of these deeper nodes. The subsequent phylogeny supports previous hypotheses by Rudman (1991), Kempf (1991) and Burghardt et al. (2008b) that evolution of

  14. Delta-like 1 homolog in Capra hircus: molecular characteristics, expression pattern and phylogeny.

    Science.gov (United States)

    Hu, Jiangtao; Zhao, Wei; Zhan, Siyuan; Xiao, Ping; Zhou, Jingxuan; Wang, Linjie; Li, Li; Zhang, Hongping; Niu, Lili; Zhong, Tao

    2016-06-01

    To research the molecular characteristics, expression pattern and phylogeny of the Delta-like 1 homolog gene (Dlk1) in goats. Dlk1 transcripts were identified in the Jianyang Da'er goats by reverse-transcription polymerase chain reaction (RT-PCR). Phylogenetic trees were constructed by Bayesian inference and neighbor-joining methods. Quantitative real-time PCR (qPCR), western blotting and in situ hybridization were performed to analyze the expression pattern of Dlk1. Five alternatively transcripts were identified in different tissues and designated as Dlk1-AS1, 2, 3, 4 and 5. Compared with the normal transcript Dlk1-AS1, Dlk1-AS4 and Dlk1-AS5 retained the identical open reading frame (ORF) and encoded proteins with truncated epidermal-growth-factor like repeats of 121 and 83 amino acids, respectively. Using the Bayesian inference method, the consensus phylogenetic tree indicated that caprine Dlk1 had a closer relationship with bovine Dlk1 than with Dlk1 from pigs, humans and mice. qPCR revealed high expression levels of Dlk1 in the kidney (P < 0.01). However, mRNA and protein levels presented an inconsistent correlation, possibly because of post-transcriptional regulation. RNA in situ hybridization indicated that Dlk1 mRNA was localized in the interlobular bile duct and alongside the hepatocyte nuclei, in the epithelial cells of proximal and distal convoluted tubules and in the connective region between the mesothelium and myocardium in the heart. The Dlk1 gene in goats produces alternatively spliced transcripts, with specific expression and cellular localization patterns. These findings would lay the foundation for further study.

  15. Phylogeny, Seed Trait, and Ecological Correlates of Seed Germination at the Community Level in a Degraded Sandy Grassland

    Directory of Open Access Journals (Sweden)

    Zhengning Wang

    2016-10-01

    Full Text Available Seed germination strongly affects plant population growth and persistence, and it can be dramatically influenced by phylogeny, seed traits, and ecological factors. In this study, we examined the relationships among seed mass, seed shape, and germination percentage (GP, and assessed the extent to which phylogeny, seed traits (seed mass, shape, and color and ecological factors (ecotype, life form, adult longevity, dispersal type, and onset of flowering influence GP at the community level. All analyses were conducted on the log-transformed values of seed mass and arcsine square root-transformed values of GP. We found that seed mass and GP were significantly negatively correlated, whereas seed shape and GP were significantly positively correlated. The three major factors contributing to differences in GP were phylogeny, dispersal type, and seed shape (explained 5.8%, 4.9% and 3.1% of the interspecific variations independently, respectively, but GP also influenced by seed mass and onset of flowering. Thus, GP was constrained not only by phylogeny but also by seed traits and ecological factors. These results indicated that GP is shaped by short-term selective pressures, and long-term phylogenetic constrains. We suggest that correlates of phylogeny, seed traits, and ecology should be taken into account in comparative studies on seed germination strategies.

  16. Phylogeny and molecular fingerprinting of green sulfur bacteria.

    Science.gov (United States)

    Overmann, J; Tuschak, C

    1997-05-01

    The 16S rDNA sequences of nine strains of green sulfur bacteria (Chlorobiaceae) were determined and compared to the four known sequences of Chlorobiaceae and to sequences representative for all eubacterial phyla. The sequences of the Chlorobiaceae strains were consistent with the secondary structure model proposed earlier for Chlorobium vibrioforme strain 6030. Similarity values > 90.1% and Knuc values ternary fission is a morphological trait of phylogenetic significance, gas vesicle formation occurs also in distantly related species. Pigment composition is not an indicator of phylogenetic relatedness since very closely related species contain different bacteriochlorophylls and carotenoids. Two different molecular fingerprinting techniques for the rapid differentiation of Chlorobiaceae species were investigated. The 16S rDNA fragments of several species could not be separated by denaturing gradient gel electrophoresis. In contrast, all strains investigated during the present work gave distinct banding patterns when dispersed repetitive DNA sequences were used as targets in PCR. The latter technique is, therefore, well suited for the rapid screening of isolated pure cultures of green sulfur bacteria.

  17. Leaf carbon assimilation and molecular phylogeny in Cattleya species (Orchidaceae).

    Science.gov (United States)

    Andrade-Souza, V; Almeida, A-A F; Corrêa, R X; Costa, M A; Mielke, M S; Gomes, F P

    2009-08-11

    We examined leaf CO(2) assimilation and how it varied among species within the orchid genus Cattleya. Measurements of CO(2) assimilation and maximum quantum yield of PS II (Fv/Fm) were made for mature leaves of nine species using a portable system for photosynthesis measurement and a portable fluorometer. Leaf area was measured with an area meter, and the specific leaf mass was determined. DNA of nine Cattleya species and two species of Hadrolaelia was extracted using the CTAB protocol. Each sample was amplified and sequenced using primers for the trnL gene. The phylogenetic analyses, using neighbor-joining and maximum parsimony methods, retrieved a group that included Cattleya and Hadrolaelia species, in which the unifoliate species were separated from the bifoliates. The topologies of the two cladograms showed some similarities. However, C. guttata (bifoliate) was placed in the unifoliate clade in the neighbor-joining tree, while C. warneri (unifoliate) was not placed in this clade in the maximum parsimony tree. Most Cattleya species keep the leaf stomata closed from 6 am to 4 pm. We suggest that C. elongata, C. tigrina and C. tenuis have C(3)-crassulacean acid metabolism since they open their stomata around 12 am. The Fv/Fm values remained relatively constant during the measurements of CO(2) assimilation. The same was observed for the specific leaf mass values, although great variations were found in the leaf area values. When the species were grouped using molecular data in the neighbor-joining analysis, no relation was observed with CO(2) assimilation.

  18. Rapid and recent diversification patterns in Anseriformes birds: Inferred from molecular phylogeny and diversification analyses.

    Science.gov (United States)

    Sun, Zhonglou; Pan, Tao; Hu, Chaochao; Sun, Lu; Ding, Hengwu; Wang, Hui; Zhang, Chenling; Jin, Hong; Chang, Qing; Kan, Xianzhao; Zhang, Baowei

    2017-01-01

    The Anseriformes is a well-known and widely distributed bird order, with more than 150 species in the world. This paper aims to revise the classification, determine the phylogenetic relationships and diversification patterns in Anseriformes by exploring the Cyt b, ND2, COI genes and the complete mitochondrial genomes (mito-genomes). Molecular phylogeny and genetic distance analyses suggest that the Dendrocygna species should be considered as an independent family, Dendrocygnidae, rather than a member of Anatidae. Molecular timescale analyses suggests that the ancestral diversification occurred during the Early Eocene Climatic Optimum (58 ~ 50 Ma). Furthermore, diversification analyses showed that, after a long period of constant diversification, the median initial speciation rate was accelerated three times, and finally increased to approximately 0.3 sp/My. In the present study, both molecular phylogeny and diversification analyses results support that Anseriformes birds underwent rapid and recent diversification in their evolutionary history, especially in modern ducks, which show extreme diversification during the Plio-Pleistocene (~ 5.3 Ma). Therefore, our study support that the Plio-Pleistocene climate fluctuations are likely to have played a significant role in promoting the recent diversification for Anseriformes.

  19. Molecular phylogeny of the Neotropical fish genus Tetragonopterus (Teleostei: Characiformes: Characidae).

    Science.gov (United States)

    Melo, Bruno F; Benine, Ricardo C; Silva, Gabriel S C; Avelino, Gleisy S; Oliveira, Claudio

    2016-01-01

    Tetragonopterinae encompasses characid species of the genus Tetragonopterus, which are widely distributed throughout east of the Andes in South America. While taxonomy has recently clarified the species diversity and molecular evidence strongly supports the monophyly of Tetragonopterus, no interspecific relationship studies are currently available. Here we used a large molecular dataset composed of two mitochondrial and three nuclear loci containing an extensive taxon sampling within the family Characidae and included eleven species of Tetragonopterus to generate the first time-calibrated phylogeny for Tetragonopterinae. Our results support monophyly of the subfamily represented solely by Tetragonopterus and corroborate previous molecular hypothesis of close relationship with Exodon plus Roeboexodon and the subfamily Characinae. Internally, we found Moenkhausia georgiae as sister species to all remaining species followed by T. rarus, being both species endemic to the Guiana Shield drainages. Species-level relationships are first hypothesized and putative morphological apomorphies are discussed as support to monophyletic clades. Our time-calibrated phylogeny suggested an origin of the genus during the Late Oligocene-Early Miocene. We hypothesized that the Andean geological activity followed by transformations in the Amazonian hydrographic scenario during the Miocene may have promoted most of the lineage diversification within the Tetragonopterus.

  20. Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium.

    Science.gov (United States)

    Pochon, Xavier; Montoya-Burgos, Juan I; Stadelmann, Benoit; Pawlowski, Jan

    2006-01-01

    Symbiotic dinoflagellates belonging to the genus Symbiodinium are found in association with a wide variety of shallow-water invertebrates and protists dwelling in tropical and subtropical coral-reef ecosystems. Molecular phylogeny of Symbiodinium, initially inferred using nuclear ribosomal genes, was recently confirmed by studies of chloroplastic and mitochondrial genes, but with limited taxon sampling and low resolution. Here, we present the first complete view of Symbiodinium phylogeny based on concatenated partial sequences of chloroplast 23S-rDNA (cp23S) and nuclear 28S-rDNA (nr28S) genes, including all known Symbiodinium lineages. Our data produced a well resolved phylogenetic tree and provide a strong statistical support for the eight distinctive clades (A-H) that form the major taxa of Symbiodinium. The relative-rate tests did not show particularly high differences between lineages and both analysed markers. However, maximum likelihood ratio tests rejected a global molecular clock. Therefore, we applied a relaxed molecular clock method to infer the divergence times of all extant lineages of Symbiodinium, calibrating its phylogenetic tree with the fossil record of soritid foraminifera. Our analysis suggests that Symbiodinium originated in early Eocene, and that the majority of extant lineages diversified since mid-Miocene, about 15 million years ago.

  1. A molecular phylogeny of bivalve mollusks: ancient radiations and divergences as revealed by mitochondrial genes.

    Directory of Open Access Journals (Sweden)

    Federico Plazzi

    Full Text Available BACKGROUND: Bivalves are very ancient and successful conchiferan mollusks (both in terms of species number and geographical distribution. Despite their importance in marine biota, their deep phylogenetic relationships were scarcely investigated from a molecular perspective, whereas much valuable work has been done on taxonomy, as well as phylogeny, of lower taxa. METHODOLOGY/PRINCIPAL FINDINGS: Here we present a class-level bivalve phylogeny with a broad sample of 122 ingroup taxa, using four mitochondrial markers (MT-RNR1, MT-RNR2, MT-CO1, MT-CYB. Rigorous techniques have been exploited to set up the dataset, analyze phylogenetic signal, and infer a single final tree. In this study, we show the basal position of Opponobranchia to all Autobranchia, as well as of Palaeoheterodonta to the remaining Autobranchia, which we here propose to call Amarsipobranchia. Anomalodesmata were retrieved as monophyletic and basal to (Heterodonta + Pteriomorphia. CONCLUSIONS/SIGNIFICANCE: Bivalve morphological characters were traced onto the phylogenetic trees obtained from the molecular analysis; our analysis suggests that eulamellibranch gills and heterodont hinge are ancestral characters for all Autobranchia. This conclusion would entail a re-evaluation of bivalve symplesiomorphies.

  2. Taxonomic revision and molecular phylogeny of Gymnocorymbus Eigenmann, 1908 (Teleostei, Characiformes, Characidae).

    Science.gov (United States)

    Benine, Ricardo C; Melo, Bruno F; Castro, Ricardo M C; Oliveira, Claudio

    2015-05-07

    Characidae, one of the most diverse families of Characiformes and one of the largest clades of fishes in the world, has a complex taxonomic background, with one issue being the placement of various genera, including Gymnocorymbus. Herein, we generate the first molecular phylogeny for the genus using three nuclear and two mitochondrial loci and review the systematics of Gymnocorymbus. This genus includes the black tetra, a well-known and popular species among aquarists. Molecular phylogeny strongly supports the monophyly of Gymnocorymbus, with this hypothesis corroborated by the presence of three morphological synapomorphies. Of the six previously known nominal species of Gymnocorymbus, three are considered valid herein: Gymnocorymbus bondi from the Río Orinoco basin, Gymnocorymbus ternetzi from the Rio Paraguay basin, and Gymnocorymbus thayeri from the Corantijn and Amazon basin and rivers of northeastern Brazil. A fourth species, Gymnocorymbus flaviolimai sp. n., is described from the Rio Madeira, Amazon basin. Lectotypes are designated for G. ternetzi and G. thayeri. Our results support previous hypotheses of the alignment of Gymnocorymbus close to the subfamily Stethaprioninae and also support the sister relationship between G. ternetzi and G. thayeri, and of that clade as sister to G. bondi.

  3. Molecular phylogeny and biogeography of the widely distributed Amanita species, A. muscaria and A. pantherina.

    Science.gov (United States)

    Oda, Takashi; Tanaka, Chihiro; Tsuda, Mitsuya

    2004-08-01

    The molecular phylogeny and biogeography of two widely distributed Amanita species, A. muscaria and A. pantherina, were studied based on specimens from diverse localities. Analyses of both a partial sequence of the ITS region of nuclear DNA and a partial sequence of the beta-tubulin gene were able to resolve specimens of each species. Analyses revealed a greater divergence of the beta-tubulin region than the ITS region. Based on molecular phylogeny of the combination of the ITS and beta-tubulin regions, A. muscaria could be separated into at least three groups (Eurasian, Eurasian subalpine, and North American), and A. pantherina could be separated into at least two groups (North American and Eurasian). We hypothesize that the speciation of A. muscaria occurred in Eurasia with subsequent migration to North America via land bridges. However, it is impossible to determine whether A. pantherina moved from Eurasia to North America or vice versa. For both A. muscaria and A. pantherina, the intracontinental relationships of both Eurasia and North America were closer than the relationships between eastern Asia and eastern North America.

  4. Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea).

    Science.gov (United States)

    Tkach, Vasyl V; Kudlai, Olena; Kostadinova, Aneta

    2016-03-01

    The Echinostomatoidea is a large, cosmopolitan group of digeneans currently including nine families and 105 genera, the vast majority parasitic, as adults, in birds with relatively few taxa parasitising mammals, reptiles and, exceptionally, fish. Despite the complex structure, diverse content and substantial species richness of the group, almost no attempt has been made to elucidate its phylogenetic relationships at the suprageneric level based on molecules due to the lack of data. Herein, we evaluate the consistency of the present morphology-based classification system of the Echinostomatoidea with the phylogenetic relationships of its members based on partial sequences of the nuclear lsrRNA gene for a broad diversity of taxa (80 species, representing eight families and 40 genera), including representatives of five subfamilies of the Echinostomatidae, which currently exhibits the most complex taxonomic structure within the superfamily. This first comprehensive phylogeny for the Echinostomatoidea challenged the current systematic framework based on comparative morphology. A morphology-based evaluation of this new molecular framework resulted in a number of systematic and nomenclatural changes consistent with the phylogenetic estimates of the generic and suprageneric boundaries and a new phylogeny-based classification of the Echinostomatoidea. In the current systematic treatment: (i) the rank of two family level lineages, the former Himasthlinae and Echinochasminae, is elevated to full family status; (ii) Caballerotrema is distinguished at the family level; (iii) the content and diagnosis of the Echinostomatidae (sensu stricto) (s. str.) are revised to reflect its phylogeny, resulting in the abolition of the Nephrostominae and Chaunocephalinae as synonyms of the Echinostomatidae (s. str.); (iv) Artyfechinostomum, Cathaemasia, Rhopalias and Ribeiroia are re-allocated within the Echinostomatidae (s. str.), resulting in the abolition of the Cathaemasiidae, Rhopaliidae

  5. Taxonomy, phylogeny and molecular epidemiology of Echinococcus multilocularis: From fundamental knowledge to health ecology.

    Science.gov (United States)

    Knapp, Jenny; Gottstein, Bruno; Saarma, Urmas; Millon, Laurence

    2015-10-30

    Alveolar echinococcosis, caused by the tapeworm Echinococcus multilocularis, is one of the most severe parasitic diseases in humans and represents one of the 17 neglected diseases prioritised by the World Health Organisation (WHO) in 2012. Considering the major medical and veterinary importance of this parasite, the phylogeny of the genus Echinococcus is of considerable importance; yet, despite numerous efforts with both mitochondrial and nuclear data, it has remained unresolved. The genus is clearly complex, and this is one of the reasons for the incomplete understanding of its taxonomy. Although taxonomic studies have recognised E. multilocularis as a separate entity from the Echinococcus granulosus complex and other members of the genus, it would be premature to draw firm conclusions about the taxonomy of the genus before the phylogeny of the whole genus is fully resolved. The recent sequencing of E. multilocularis and E. granulosus genomes opens new possibilities for performing in-depth phylogenetic analyses. In addition, whole genome data provide the possibility of inferring phylogenies based on a large number of functional genes, i.e. genes that trace the evolutionary history of adaptation in E. multilocularis and other members of the genus. Moreover, genomic data open new avenues for studying the molecular epidemiology of E. multilocularis: genotyping studies with larger panels of genetic markers allow the genetic diversity and spatial dynamics of parasites to be evaluated with greater precision. There is an urgent need for international coordination of genotyping of E. multilocularis isolates from animals and human patients. This could be fundamental for a better understanding of the transmission of alveolar echinococcosis and for designing efficient healthcare strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Molecular phylogeny and biogeography of Picea (Pinaceae): implications for phylogeographical studies using cytoplasmic haplotypes.

    Science.gov (United States)

    Ran, Jin-Hua; Wei, Xiao-Xin; Wang, Xiao-Quan

    2006-11-01

    The center of diversity is not necessarily the place of origin, as has been established by many plant molecular phylogenies. Picea is a complicated but very important genus in coniferous forests of the Northern Hemisphere, with a high species diversity in Asia. Its phylogeny and biogeography were investigated here using sequence analysis of the paternally inherited chloroplast trnC-trnD and trnT-trnF regions and the maternally inherited mitochondrial nad5 intron 1. We found that the North American P. breweriana and P. sitchensis were basal to the other spruces that were further divided into three clades in the cpDNA phylogeny, and that the New World species harbored four of five mitotypes detected, including two ancestral ones and three endemics. These results, combined with biogeographic analyses using DIVA and MacClade and fossil evidence, suggest that Picea originated in North America, and that its present distribution could stem from two times of dispersal from North America to Asia by the Beringian land bridge, and then from Asia to Europe. Most of the northeastern Asian species and the European P. abies could arise from a recent radiation given the very low interspecific genetic differentiation and pure mitotype of them. Considering that the ancestral mtDNA polymorphism can be preserved in many descendant species, even distantly related ones, we suggest that more species, at least the closely related ones, should be sampled in the phylogeographical study using cytoplasmic haplotypes if possible. In addition, we also discussed the evolution and phylogenetic utility of morphological characters in Picea.

  7. Molecular phylogeny of black flies (Diptera: Simuliidae) from Thailand, using ITS2 rDNA.

    Science.gov (United States)

    Thanwisai, Aunchalee; Kuvangkadilok, Chaliow; Baimai, Visut

    2006-01-01

    The sequences of the second internal transcribed spacer (ITS2) of ribosomal DNA (rDNA) were determined for 40 black fly species from Thailand, belonging to 4 subgenera of the genus Simulium, namely Gomphostilbia (12 species), Nevermannia (5 species), Montisimulium (1 species), Simulium sensu stricto (21 species), and an unknown subgenus with one species (Simulium baimaii). The length of the ITS2 ranged from 247 to 308 bp. All black fly species had high AT content, ranging from 71 to 83.8%. Intraindividual variation (clonal variation) occurred in 13 species, ranging from 0.3 to 1.1%. Large intrapopulation and interpopulation heterogeneities exist in S. feuerboni from the same and different locations in Doi Inthanon National Park, northern Thailand. Phylogenetic relationships among 40 black fly species were examined using PAUP (version 4.0b10) and MrBAYS (version 3.0B4). The topology of the trees revealed two major monophyletic clades. The subgenus Simulium and Simulium baimaii were placed in the first monophyletic clade, whereas the subgenera Nevermannia + Montisimulium were placed as the sister group to the subgenus Gomphostilbia in the second monophyletic clade. Our results suggest that S. baimaii belongs to the malyschevi-group or variegatum-group in the subgenus Simulium. The molecular phylogeny generally agrees with existing morphology-based phylogenies.

  8. Molecular phylogeny of four homeobox genes from the purple sea star Pisaster ochraceus.

    Science.gov (United States)

    Matassi, Giorgio; Imai, Janice Hitomi; Di Gregorio, Anna

    2015-11-01

    Homeobox genes cloned from the purple sea star Pisaster ochraceus (Phylum Echinodermata/Class Asteroidea) were used along with related sequences available from members of other representative animal phyla to generate molecular phylogenies for Distal-less/Dlx, Hox5, Hox7, and Hox9/10 homeobox genes. Phylogenetic relationships were inferred based on the predicted 60 amino acid homeodomain, using amino acid (AA) and nucleotide (NT) models as well as the recently developed codon substitution models of sequence evolution. The resulting phylogenetic trees were mostly congruent with the consensus species-tree, grouping these newly identified genes with those isolated from other Asteroidea. This analysis also allowed a preliminary comparison of the performance of codon models with that of NT and AA evolutionary models in the inference of homeobox phylogeny. We found that, overall, the NT models displayed low reliability in recovering major clades at the Superphylum/Phylum level, and that codon models were slightly more dependable than AA models. Remarkably, in the majority of cases, codon substitution models seemed to outperform both AA and NT models at both the Class level and homeobox paralogy-group level of classification.

  9. A MOLECULAR PHYLOGENY OF ACROCHAETE AND OTHER ENDOPHYTIC GREEN ALGAE (ULVALES, CHLOROPHYTA)(1).

    Science.gov (United States)

    Rinkel, Barbara E; Hayes, Paul; Gueidan, Cécile; Brodie, Juliet

    2012-08-01

    A molecular phylogeny was reconstructed from a culture collection of >150 isolates of epi-endophytic and endophytic green algae, based on nucleotide sequences of the plastid tufA and nuclear ITS2 loci. The cultures were isolated from a variety of algal hosts, notably the red algae Chondrus crispus, Mastocarpus stellatus, and Osmundea species, and the brown algae Chorda filum and Fucus serratus. The phylogeny revealed that in the Ulvales the majority of isolates fell into Acrochaete (Ulvellaceae), Ulva (Ulvaceae), Bolbocoleon (Bolbocoleaceae), and at least two unknown genera provisionally assigned to the Kornmanniaceae. Acrochaete was monophyletic. The genus was also more specious than previously described with 12 species, including up to six new species awaiting formal description. Isolates identified as Acrochaete repens, the type species of the genus, were polyphyletic. The remainder of the isolates were placed in the Ulotrichales. The results confirm that the endophytic habit supports a broad diversity of algal taxa and suggest that blade formation is a relatively recent innovation within the green algae.

  10. Molecular phylogeny of tribe Rhipsalideae (Cactaceae) and taxonomic implications for Schlumbergera and Hatiora.

    Science.gov (United States)

    Calvente, Alice; Zappi, Daniela C; Forest, Félix; Lohmann, Lúcia G

    2011-03-01

    Tribe Rhipsalideae is composed of unusual epiphytic or lithophytic cacti that inhabit humid tropical and subtropical forests. Members of this tribe present a reduced vegetative body, a specialized adventitious root system, usually spineless areoles and flowers and fruits reduced in size. Despite the debate surrounding the classification of Rhipsalideae, no studies have ever attempted to reconstruct phylogenetic relationships among its members or to test the monophyly of its genera using DNA sequence data; all classifications formerly proposed for this tribe have only employed morphological data. In this study, we reconstruct the phylogeny of Rhipsalideae using plastid (trnQ-rps16, rpl32-trnL, psbA-trnH) and nuclear (ITS) markers to evaluate the classifications previously proposed for the group. We also examine morphological features traditionally used to delimit genera within Rhipsalideae in light of the resulting phylogenetic trees. In total new sequences for 35 species of Rhipsalideae were produced (out of 55; 63%). The molecular phylogeny obtained comprises four main clades supporting the recognition of genera Lepismium, Rhipsalis, Hatiora and Schlumbergera. The evidence gathered indicate that a broader genus Schlumbergera, including Hatiora subg. Rhipsalidopsis, should be recognized. Consistent morphological characters rather than homoplastic features are used in order to establish a more coherent and practical classification for the group. Nomenclatural changes and a key for the identification of the genera currently included in Rhipsalideae are provided.

  11. Phylogeny, systematics and biogeography of the genus panolis (lepidoptera: noctuidae based on morphological and molecular evidence.

    Directory of Open Access Journals (Sweden)

    Houshuai Wang

    Full Text Available The genus Panolis is a small group of noctuid moths with six recognized species distributed from Europe to East Asia, and best known for containing the widespread Palearctic pest species P. flammea, the pine beauty moth. However, a reliable classification and robust phylogenetic framework for this group of potentially economic importance are currently lacking. Here, we use morphological and molecular data (mitochondrial genes cytochrome c oxidase subunit I and 16S ribosomal RNA, nuclear gene elongation factor-1 alpha to reconstruct the phylogeny of this genus, with a comprehensive systematic revision of all recognized species and a new one, P. ningshan sp. nov. The analysis results of maximum parsimony, maximum likelihood and Bayesian inferring methods for the combined morphological and molecular data sets are highly congruent, resulting in a robust phylogeny and identification of two clear species groups, i.e., the P. flammea species group and the P. exquisita species group. We also estimate the divergence times of Panolis moths using two conventional mutation rates for the arthropod mitochondrial COI gene with a comparison of two molecular clock models, as well as reconstruct their ancestral areas. Our results suggest that 1 Panolis is a young clade, originating from the Oriental region in China in the Late Miocene (6-10Mya, with an ancestral species in the P. flammea group extending northward to the Palearctic region some 3-6 Mya; 2 there is a clear possibility for a representative of the Palearctic clade to become established as an invasive species in the Nearctic taiga.

  12. Approximate Bayesian Computation of diversification rates from molecular phylogenies : introducing a new efficient summary statistic, the nLTT

    NARCIS (Netherlands)

    Janzen, Thijs; Hoehna, Sebastian; Etienne, Rampal S.

    2015-01-01

    Molecular phylogenies form a potential source of information on rates of diversification, and the mechanisms that underlie diversification patterns. Diversification models have become increasingly complex over the past decade, and we have reached a point where the computation of the analytical likel

  13. Making the most of mitochondrial genomes--markers for phylogeny, molecular ecology and barcodes in Schistosoma (Platyhelminthes: Digenea).

    Science.gov (United States)

    Zarowiecki, M Z; Huyse, T; Littlewood, D T J

    2007-10-01

    An increasing number of complete sequences of mitochondrial (mt) genomes provides the opportunity to optimise the choice of molecular markers for phylogenetic and ecological studies. This is particularly the case where mt genomes from closely related taxa have been sequenced; e.g., within Schistosoma. These blood flukes include species that are the causative agents of schistosomiasis, where there has been a need to optimise markers for species and strain recognition. For many phylogenetic and population genetic studies, the choice of nucleotide sequences depends primarily on suitable PCR primers. Complete mt genomes allow individual gene or other mt markers to be assessed relative to one another for potential information content, prior to broad-scale sampling. We assess the phylogenetic utility of individual genes and identify regions that contain the greatest interspecific variation for molecular ecological and diagnostic markers. We show that variable characters are not randomly distributed along the genome and there is a positive correlation between polymorphism and divergence. The mt genomes of African and Asian schistosomes were compared with the available intraspecific dataset of Schistosoma mansoni through sliding window analyses, in order to assess whether the observed polymorphism was at a level predicted from interspecific comparisons. We found a positive correlation except for the two genes (cox1 and nad1) adjoining the putative control region in S. mansoni. The genes nad1, nad4, nad5, cox1 and cox3 resolved phylogenies that were consistent with a benchmark phylogeny and in general, longer genes performed better in phylogenetic reconstruction. Considering the information content of entire mt genome sequences, partial cox1 would not be the ideal marker for either species identification (barcoding) or population studies with Schistosoma species. Instead, we suggest the use of cox3 and nad5 for both phylogenetic and population studies. Five primer pairs

  14. Molecular phylogeny and biogeography of the Hawaiian craneflies Dicranomyia (Diptera: Limoniidae.

    Directory of Open Access Journals (Sweden)

    Kari Roesch Goodman

    Full Text Available The Hawaiian Diptera offer an opportunity to compare patterns of diversification across large and small endemic radiations with varying species richness and levels of single island endemism. The craneflies (Limoniidae: Dicranomyia represent a small radiation of 13 described species that have diversified within the Hawaiian Islands. We used Bayesian and maximum likelihood approaches to generate a molecular phylogeny of the Hawaiian Dicranomyia using a combination of nuclear and mitochondrial loci, estimated divergence times and reconstructed ancestral ranges. Divergence time estimation and ancestral range reconstruction suggest that the colonization that led to most of the diversity within the craneflies arrived prior to the formation of Kauai and demonstrates that the two major clades within that radiation contrast sharply in their patterns of diversification.

  15. LASER: A Maximum Likelihood Toolkit for Detecting Temporal Shifts in Diversification Rates From Molecular Phylogenies

    Directory of Open Access Journals (Sweden)

    Daniel L. Rabosky

    2006-01-01

    Full Text Available Rates of species origination and extinction can vary over time during evolutionary radiations, and it is possible to reconstruct the history of diversification using molecular phylogenies of extant taxa only. Maximum likelihood methods provide a useful framework for inferring temporal variation in diversification rates. LASER is a package for the R programming environment that implements maximum likelihood methods based on the birth-death process to test whether diversification rates have changed over time. LASER contrasts the likelihood of phylogenetic data under models where diversification rates have changed over time to alternative models where rates have remained constant over time. Major strengths of the package include the ability to detect temporal increases in diversification rates and the inference of diversification parameters under multiple rate-variable models of diversification. The program and associated documentation are freely available from the R package archive at http://cran.r-project.org.

  16. Molecular phylogeny of Ascotricha, including two new marine algae-associated species.

    Science.gov (United States)

    Cheng, Xiaoli; Li, Wei; Cai, Lei

    2015-01-01

    Phylogenetic analyses based on a broad taxonomic sampling of Ascotricha were conducted using the sequences of nuc rDNA region encompassing the internal transcribed spacers 1 and 2, along with the 5.8S rDNA (ITS), partial nuc 18S rDNA (18S) and partial β-tubulin gene (TUB2). Hypoxyloid Xylariaceae and xylarioid Xylariaceae were inferred as two distinct lineages in the Xylariaceae in the combined ITS-TUB2 phylogeny. Within xylarioid Xylariaceae species of Ascotricha form a monophyletic group. Two new marine algae-associated fungi, Ascotricha longipila and A. parvispora, are described on the basis of morphological and molecular characters and the combination, A. sinuosa, is proposed. A synopsis of the morphological characters and a dichotomous key to Ascotricha species are provided. © 2015 by The Mycological Society of America.

  17. Molecular phylogeny of the arthrostylidioid bamboos (Poaceae: Bambusoideae: Bambuseae: Arthrostylidiinae) and new genus Didymogonyx.

    Science.gov (United States)

    Tyrrell, Christopher D; Santos-Gonçalves, Ana Paula; Londoño, Ximena; Clark, Lynn G

    2012-10-01

    We present the first multi-locus chloroplast phylogeny of Arthrostylidiinae, a subtribe of neotropical woody bamboos. The morphological diversity of Arthrostylidiinae makes its taxonomy difficult and prior molecular analyses of bamboos have lacked breadth of sampling within the subtribe, leaving internal relationships uncertain. We sampled 51 taxa, chosen to span the range of taxonomic diversity and morphology, and analyzed a combined chloroplast DNA dataset with six chloroplast regions: ndhF, trnD-trnT, trnC-rpoB, rps16-trnQ, trnT-trnL, and rpl16. A consensus of maximum parsimony and Bayesian inference analyses reveals monophyly of the Arthrostylidiinae and four moderately supported lineages within it. Six previously recognized genera were monophyletic, three polyphyletic, and two monotypic; Rhipidocladum sect. Didymogonyx is here raised to generic status. When mapped onto our topology, many of the morphological characters show homoplasy. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Molecular phylogeny of moth-specialized spider sub-family Cyrtarachninae, which includes bolas spiders.

    Science.gov (United States)

    Tanikawa, Akio; Shinkai, Akira; Miyashita, Tadashi

    2014-11-01

    The evolutionary process of the unique web architectures of spiders of the sub-family Cyrtarachninae, which includes the triangular web weaver, bolas spider, and webless spider, is thought to be derived from reduction of orbicular 'spanning-thread webs' resembling ordinal orb webs. A molecular phylogenetic analysis was conducted to explore this hypothesis using orbicular web spiders Cyrtarachne, Paraplectana, Poecilopachys, triangular web spider Pasilobus, bolas spiders Ordgarius and Mastophora, and webless spider Celaenia. The phylogeny inferred from partial sequences of mt-COI, nuclear 18S-rRNA and 28S-rRNA showed that the common ancestor of these spiders diverged into two clades: a spanning-thread web clade and a bolas or webless clade. This finding suggests that the triangular web evolved by reduction of an orbicular spanning web, but that bolas spiders evolved in the early stage, which does not support the gradual web reduction hypothesis.

  19. Molecular phylogenies support homoplasy of multiple morphological characters used in the taxonomy of Heteroscleromorpha (Porifera: Demospongiae).

    Science.gov (United States)

    Morrow, Christine C; Redmond, Niamh E; Picton, Bernard E; Thacker, Robert W; Collins, Allen G; Maggs, Christine A; Sigwart, Julia D; Allcock, A Louise

    2013-09-01

    Sponge classification has long been based mainly on morphocladistic analyses but is now being greatly challenged by more than 12 years of accumulated analyses of molecular data analyses. The current study used phylogenetic hypotheses based on sequence data from 18S rRNA, 28S rRNA, and the CO1 barcoding fragment, combined with morphology to justify the resurrection of the order Axinellida Lévi, 1953. Axinellida occupies a key position in different morphologically derived topologies. The abandonment of Axinellida and the establishment of Halichondrida Vosmaer, 1887 sensu lato to contain Halichondriidae Gray, 1867, Axinellidae Carter, 1875, Bubaridae Topsent, 1894, Heteroxyidae Dendy, 1905, and a new family Dictyonellidae van Soest et al., 1990 was based on the conclusion that an axially condensed skeleton evolved independently in separate lineages in preference to the less parsimonious assumption that asters (star-shaped spicules), acanthostyles (club-shaped spicules with spines), and sigmata (C-shaped spicules) each evolved more than once. Our new molecular trees are congruent and contrast with the earlier, morphologically based, trees. The results show that axially condensed skeletons, asters, acanthostyles, and sigmata are all homoplasious characters. The unrecognized homoplasious nature of these characters explains much of the incongruence between molecular-based and morphology-based phylogenies. We use the molecular trees presented here as a basis for re-interpreting the morphological characters within Heteroscleromorpha. The implications for the classification of Heteroscleromorpha are discussed and a new order Biemnida ord. nov. is erected.

  20. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae.

    Directory of Open Access Journals (Sweden)

    Pasi Sihvonen

    Full Text Available BACKGROUND: The moth family Geometridae (inchworms or loopers, with approximately 23,000 described species, is the second most diverse family of the Lepidoptera. Apart from a few recent attempts based on morphology and molecular studies, the phylogeny of these moths has remained largely uninvestigated. METHODOLOGY/PRINCIPAL FINDINGS: We performed a rigorous and extensive molecular analysis of eight genes to examine the geometrid affinities in a global context, including a search for its potential sister-taxa. Our maximum likelihood analyses included 164 taxa distributed worldwide, of which 150 belong to the Geometridae. The selected taxa represent all previously recognized subfamilies and nearly 90% of recognized tribes, and originate from all over world. We found the Geometridae to be monophyletic with the Sematuridae+Epicopeiidae clade potentially being its sister-taxon. We found all previously recognized subfamilies to be monophyletic, with a few taxa misplaced, except the Oenochrominae+Desmobathrinae complex that is a polyphyletic assemblage of taxa and the Orthostixinae, which was positioned within the Ennominae. The Sterrhinae and Larentiinae were found to be sister to the remaining taxa, followed by Archiearinae, the polyphyletic assemblage of Oenochrominae+Desmobathrinae moths, Geometrinae and Ennominae. CONCLUSIONS/SIGNIFICANCE: Our study provides the first comprehensive phylogeny of the Geometridae in a global context. Our results generally agree with the other, more restricted studies, suggesting that the general phylogenetic patterns of the Geometridae are now well-established. Generally the subfamilies, many tribes, and assemblages of tribes were well supported but their interrelationships were often weakly supported by our data. The Eumeleini were particularly difficult to place in the current system, and several tribes were found to be para- or polyphyletic.

  1. Molecular phylogeny of the entomopathogenic fungi of the genus Cordyceps (Ascomycota:Clavicipitaceae) and its evolutionary implications

    Institute of Scientific and Technical Information of China (English)

    Li-Hua TIAN; Bo HU; Hui ZHOU; Wei-Ming ZHANG; Liang-Hu QU; Yue-Qin CHEN

    2010-01-01

    Cordyceps is an endoparasite ascomycetous genus containing approximately 450 species with a diversity of insect hosts,traditionally included in the family Clavicipitaceae of Ascomycota.Establishing the relationships among species with a varied range of morphologies and hosts is of importance to our understanding of the phylogeny and co-evolution of parasites and hosts in entomopathogenic ascomycetes.To this end,we used a combination of molecular index and morphological characters from 40 representative species to carry out comprehensive molecular phylogenetic analyses.Based on the phylogenetic tree,we used the program DISCRETE for inferring the rates of evolution and finding ancestral states of morphological character.The phylogenetic analyses revealed two important points.(i) Types of perithecia attached to stroma reflected an evolutionary trend in Cordyceps.The vertically immersed perithecia form was the ancestral state,superficial and obliquely immersed perithecia were derived characters,obliquely immersed was irreversible.Species with obliquely immersed perithecia were in a closely related group and were the derived group.(ii) A strong correlation between fungal relatedness and the microhabitat supported the hypothesis that the host jumps through commingling in soil microhabitats.Based on the results of these analyses,host switching explains the diversity of entomopathogenic fungi of the genus Cordyceps.

  2. Molecular phylogeny and timing of diversification in Alpine Rhithrogena (Ephemeroptera: Heptageniidae).

    Science.gov (United States)

    Vuataz, Laurent; Rutschmann, Sereina; Monaghan, Michael T; Sartori, Michel

    2016-09-21

    Larvae of the Holarctic mayfly genus Rhithrogena Eaton, 1881 (Ephemeroptera, Heptageniidae) are a diverse and abundant member of stream and river communities and are routinely used as bio-indicators of water quality. Rhithrogena is well diversified in the European Alps, with a number of locally endemic species, and several cryptic species have been recently detected. While several informal species groups are morphologically well defined, a lack of reliable characters for species identification considerably hampers their study. Their relationships, origin, timing of speciation and mechanisms promoting their diversification in the Alps are unknown. Here we present a species-level phylogeny of Rhithrogena in Europe using two mitochondrial and three nuclear gene regions. To improve sampling in a genus with many cryptic species, individuals were selected for analysis according to a recent DNA-based taxonomy rather than traditional nomenclature. A coalescent-based species tree and a reconstruction based on a supermatrix approach supported five of the species groups as monophyletic. A molecular clock, mapped on the most resolved phylogeny and calibrated using published mitochondrial evolution rates for insects, suggested an origin of Alpine Rhithrogena in the Oligocene/Miocene boundary. A diversification analysis that included simulation of missing species indicated a constant speciation rate over time, rather than any pronounced periods of rapid speciation. Ancestral state reconstructions provided evidence for downstream diversification in at least two species groups. Our species-level analyses of five gene regions provide clearer definitions of species groups within European Rhithrogena. A constant speciation rate over time suggests that the paleoclimatic fluctuations, including the Pleistocene glaciations, did not significantly influence the tempo of diversification of Alpine species. A downstream diversification trend in the hybrida and alpestris species groups

  3. Comprehensive Molecular Phylogeny of the Sub-Family Dipterocarpoideae (Dipterocarpaceae) Based on Chloroplast DNA Sequences

    National Research Council Canada - National Science Library

    Gamage, Dayananda Thawalama; Silva, Morley P. de; Inomata, Nobuyuki; Yamazaki, Tsuneyuki; Szmidt, Alfred E

    2006-01-01

    .... Although several previous studies addressed the phylogeny of the Dipterocarpaceae family, relationships among many of its genera from the Dipterocarpoideae sub-family are still not well understood...

  4. Hidden Mediterranean diversity: assessing species taxa by molecular phylogeny within the opilionid family Trogulidae (Arachnida, Opiliones).

    Science.gov (United States)

    Schönhofer, Axel L; Martens, Jochen

    2010-01-01

    This is the first comprehensive study to evaluate the relationships between the western palearctic harvestman families Dicranolasmatidae, Trogulidae and Nemastomatidae with focus on the phylogeny and systematics of Trogulidae, using combined sequence data of the nuclear 28S rRNA and the mitochondrial cytochrome b gene. Bayesian analysis and Maximum parsimony do not reliably resolve Dicranolasma as distinct family but place it on a similar phylogenetic level as several lineages of Trogulidae. Nemastomatidae and Trogulidae turned out to be monophyletic, as did genera Anelasmocephalus and Trogulus within the Trogulidae. The genera Calathocratus, Platybessobius and Trogulocratus each appeared para or polyphyletic, respectively and are synonymized with Calathocratus. The monotypic genus Kofiniotis is well supported. We show molecular data to be in general concordance with taxa characterized by morphology. Molecular data are especially useful to calibrate morphological characters for systematic purposes within homogeneous taxa. In the majority of closely related valid species we show the lowest level of genetic distance to be not lower than 5%. By this threshold in terms of traditionally accepted species the estimated number of species turns out to be 1.5-2.4 times higher than previously believed. With respect to European fauna cryptic diversity in Trogulidae is obviously extraordinarily high and hitherto largely underestimated.

  5. Molecular epidemiology and phylogeny of Nipah virus infection: A mini review.

    Science.gov (United States)

    Angeletti, Silvia; Lo Presti, Alessandra; Cella, Eleonora; Ciccozzi, Massimo

    2016-07-01

    Nipah virus (NiV) is a member of the genus Henipavirus of the family Paramyxoviridae, characterized by high pathogenicity and endemic in South Asia. It is classified as a Biosafety Level-4 (BSL-4) agent. The case-fatality varies from 40% to 70% depending on the severity of the disease and on the availability of adequate healthcare facilities. At present no antiviral drugs are available for NiV disease and the treatment is just supportive. Phylogenetic and evolutionary analyses can be used to help in understanding the epidemiology and the temporal origin of this virus. This review provides an overview of evolutionary studies performed on Nipah viruses circulating in different countries. Thirty phylogenetic studies have been published from 2000 to 2015 years, searching on pub-med using the key words 'Nipah virus AND phylogeny' and twenty-eight molecular epidemiological studies from 2006 to 2015 have been performed, typing the key words 'Nipah virus AND molecular epidemiology'. Overall data from the published study demonstrated as phylogenetic and evolutionary analysis represent promising tools to evidence NiV epidemics, to study their origin and evolution and finally to act with effective preventive measure.

  6. Molecular phylogeny of the filaria genus Onchocerca with special emphasis on Afrotropical human and bovine parasites.

    Science.gov (United States)

    Krueger, A; Fischer, P; Morales-Hojas, R

    2007-01-01

    Filarial parasites of the genus Onchocerca are found in a broad spectrum of ungulate hosts. One species, O. volvulus, is a human parasite that can cause severe disease (onchocerciasis or 'river blindness'). The phylogenetic relationships and the bionomics of many of the nearly 30 known species remain dubious. Here, the phylogeny of 11 species representing most major lineages of the genus is investigated by analysing DNA sequences from three mitochondrial genes (ND5, 12S and 16S rRNA) and portions of the intergenic spacer of the nuclear 5s rRNA. Special emphasis is given to a clade containing a yet unassigned specimen from Uganda (O. sp. 'Siisa'), which appears to be intermediate between O. volvulus and O. ochengi. While the latter can be differentiated by the O-150 tandem repeat commonly used for molecular diagnostics, O. volvulus and O. sp.'Siisa' cannot be differentiated by this marker. In addition, a worm specimen from an African bushbuck appears to be closely related to the bovine O. dukei and represents the basal taxon of the human/bovine clade. At the base of the genus, our data suggest O. flexuosa (red deer), O. ramachandrini (warthog) and O. armillata (cow) to be the representatives of ancient lineages. The results provide better insight into the evolution and zoogeography of Onchocerca. They also have epidemiological and taxonomic implications by providing a framework for more accurate molecular diagnosis of filarial larvae in vectors.

  7. Molecular phylogeny and phylogeography of genus Pseudois (Bovidae, Cetartiodactyla): New insights into the contrasting phylogeographic structure.

    Science.gov (United States)

    Tan, Shuai; Wang, Zhihong; Jiang, Lichun; Peng, Rui; Zhang, Tao; Peng, Quekun; Zou, Fangdong

    2017-09-01

    Blue sheep, Pseudois nayaur, is endemic to the Tibetan Plateau and the surrounding mountains, which are the highest-elevation areas in the world. Classical morphological taxonomy suggests that there are two subspecies in genus Pseudois (Bovidae, Artiodactyla), namely Pseudois nayaur nayaur and Pseudois nayaur szechuanensis. However, the validity and geographic characteristics of these subspecies have never been carefully discussed and analyzed. This may be partially because previous studies have mainly focused on the vague taxonomic status of Pseudois schaeferi (dwarf blue sheep). Thus, there is an urgent need to investigate the evolutionary relationship and taxonomy system of this genus. This study enriches a previous dataset by providing a large number of new samples, based on a total of 225 samples covering almost the entire distribution of blue sheep. Molecular data from cytochrome b and the mitochondrial control region sequences were used to reconstruct the phylogeny of this species. The phylogenetic inferences show that vicariance plays an important role in diversification within this genus. In terms of molecular dating results and biogeographic analyses, the striking biogeographic pattern coincides significantly with major geophysical events. Although the results raise doubt about the present recognized distribution range of blue sheep, they have corroborated the validity of the identified subspecies in genus Pseudois. Meanwhile, these results demonstrate that the two geographically distinct populations, the Helan Mountains and Pamir Plateau populations, have been significantly differentiated from the identified subspecies, a finding that challenges the conventional taxonomy of blue sheep.

  8. Molecular phylogeny and phylogeography of the Cuban cave-fishes of the genus Lucifuga: evidence for cryptic allopatric diversity.

    Science.gov (United States)

    García-Machado, Erik; Hernández, Damir; García-Debrás, Alfredo; Chevalier-Monteagudo, Pedro; Metcalfe, Cushla; Bernatchez, Louis; Casane, Didier

    2011-11-01

    Underground environments are increasingly recognized as reservoirs of faunal diversity. Extreme environmental conditions and limited dispersal ability of underground organisms have been acknowledged as important factors promoting divergence between species and conspecific populations. However, in many instances, there is no correlation between genetic divergence and morphological differentiation. Lucifuga Poey is a stygobiotic fish genus that lives in Cuban and Bahamian caves. In Cuba, it offers a unique opportunity to study the influence of habitat fragmentation on the genetic divergence of stygobiotic species and populations. The genus includes four species and one morphological variant that have contrasting geographical distributions. In this study, we first performed a molecular phylogenetic analysis of the Lucifuga Cuban species using mitochondrial and nuclear markers. The mitochondrial phylogeny revealed three deeply divergent clades that were supported by nuclear and morphological characters. Within two of these main clades, we identified five lineages that are candidate cryptic species and a taxonomical synonymy between Lucifuga subterranea and Lucifuga teresinarum. Secondly, phylogeographic analysis using a fragment of the cytochrome b gene was performed for Lucifuga dentata, the most widely distributed species. We found strong geographical organization of the haplotype clades at different geographic scales that can be explained by episodes of dispersal and population expansion followed by population fragmentation and restricted gene flow. At a larger temporal scale, these processes could also explain the diversification and the distribution of the different species.

  9. Molecular phylogeny of the families Pleuronectidae and Poecilopsettidae (PISCES, Pleuronectiformes) from Korea, with a Proposal for a new classification

    Science.gov (United States)

    Ji, Hwan-Sung; Kim, Jin-Koo; Kim, Byung-Jik

    2016-03-01

    A new classification of the Korean pleuronectids was proposed based on a molecular phylogeny using specimens collected from Korea (including some Japanese specimens) between 2008 and 2013. A molecular phylogeny based on partial sequences of the two mitochondrial DNA regions (COI and 16S rRNA) supported the reciprocal monophyly of the three genera, Cleisthenes, Pleuronectes and Pseudopleuronectes. We also found that the genus Poecilopsetta is clearly distinct from Pleuronectidae at the family level. Therefore, the previous classification of the Korean pleuronectids should be changed as follows; two families (Pleuronectidae and Poecilopsettidae), 18 genera, and 26 species. Further research is required to resolve the taxonomic uncertainty of the five species in the genus Limanda, which clustered into two clades in our analysis.

  10. Molecular Phylogeny of the Astrophorida (Porifera, Demospongiaep) Reveals an Unexpected High Level of Spicule Homoplasy

    Science.gov (United States)

    Cárdenas, Paco; Xavier, Joana R.; Reveillaud, Julie; Schander, Christoffer; Rapp, Hans Tore

    2011-01-01

    Background The Astrophorida (Porifera, Demospongiaep) is geographically and bathymetrically widely distributed. Systema Porifera currently includes five families in this order: Ancorinidae, Calthropellidae, Geodiidae, Pachastrellidae and Thrombidae. To date, molecular phylogenetic studies including Astrophorida species are scarce and offer limited sampling. Phylogenetic relationships within this order are therefore for the most part unknown and hypotheses based on morphology largely untested. Astrophorida taxa have very diverse spicule sets that make them a model of choice to investigate spicule evolution. Methodology/Principal Findings With a sampling of 153 specimens (9 families, 29 genera, 89 species) covering the deep- and shallow-waters worldwide, this work presents the first comprehensive molecular phylogeny of the Astrophorida, using a cytochrome c oxidase subunit I (COI) gene partial sequence and the 5′ end terminal part of the 28S rDNA gene (C1-D2 domains). The resulting tree suggested that i) the Astrophorida included some lithistid families and some Alectonidae species, ii) the sub-orders Euastrophorida and Streptosclerophorida were both polyphyletic, iii) the Geodiidae, the Ancorinidae and the Pachastrellidae were not monophyletic, iv) the Calthropellidae was part of the Geodiidae clade (Calthropella at least), and finally that v) many genera were polyphyletic (Ecionemia, Erylus, Poecillastra, Penares, Rhabdastrella, Stelletta and Vulcanella). Conclusion The Astrophorida is a larger order than previously considered, comprising ca. 820 species. Based on these results, we propose new classifications for the Astrophorida using both the classical rank-based nomenclature (i.e., Linnaean classification) and the phylogenetic nomenclature following the PhyloCode, independent of taxonomic rank. A key to the Astrophorida families, sub-families and genera incertae sedis is also included. Incongruences between our molecular tree and the current classification can

  11. A multilocus molecular phylogeny of the endemic North American camel spider family Eremobatidae (Arachnida: Solifugae).

    Science.gov (United States)

    Cushing, Paula E; Graham, Matthew R; Prendini, Lorenzo; Brookhart, Jack O

    2015-11-01

    Camel spiders (Solifugae) are a diverse but poorly studied order of arachnids. No robust phylogenetic analysis has ever been carried out for the order or for any family within the Solifugae. We present a molecular phylogenetic analysis of the endemic North American family Eremobatidae Kraepelin, 1899, the first such analysis of a family of Solifugae. We use a multi-locus exemplar approach using DNA sequences from partial nuclear (28S rDNA and Histone H3) and mitochondrial (16S rRNA and Cytochrome c Oxidase I) gene loci for 81 ingroup exemplars representing all genera of Eremobatidae and most species groups within the genera Eremobates Banks, 1900, Eremochelis Roewer, 1934, and Hemerotrecha Banks, 1903. Maximum Likelihood and two Bayesian analyses consistently recovered the monophyly of Eremobatidae, Eremorhax Roewer, 1934 and Eremothera Muma, 1951 along with a group comprising all subfamily Eremobatinae Kraepelin, 1901 exemplars except Horribates bantai Muma, 1989 and a group comprising all Eremocosta Roewer, 1934 exemplars except Eremocosta acuitalpanensis (Vasquez and Gavin, 2000). The subfamily Therobatinae Muma, 1951 and the genera Chanbria Muma, 1951, Hemerotrecha, Eremochelis, and Eremobates were polyphyletic or paraphyletic. Only the banksi group of Hemerotrecha was monophyletic; the other species groups recognized within Eremobates, Eremochelis, and Hemerotrecha were paraphyletic or polyphyletic. We found no support for the monophyly of the subfamily Therobatinae. A time-calibrated phylogeny dated the most recent common ancestor of extant eremobatids to the late Eocene to early Miocene, with a mean estimate in the late Oligocene (32.2 Ma).

  12. Molecular phylogeny and taxonomy of Lagenidium-like oomycetes pathogenic to mammals.

    Science.gov (United States)

    Spies, Christoffel F J; Grooters, Amy M; Lévesque, C André; Rintoul, Tara L; Redhead, Scott A; Glockling, Sally L; Chen, Chi-Yu; de Cock, Arthur W A M

    2016-08-01

    Over the past twenty years, infections caused by previously unrecognised oomycete pathogens with morphological and molecular similarities to known Lagenidium species have been observed with increasing frequency, primarily in dogs but also in cats and humans. Three of these pathogens were formally described as Lagenidium giganteum forma caninum, Lagenidium deciduum, and Paralagenidium karlingii in advance of published phylogenetic verification. Due to the complex nature of Lagenidium taxonomy alongside recent reports of mammalian pathogenic species, these taxa needed to be verified with due consideration of the available data for Lagenidium and its allied genera. This study does so through morphologic characterisation of the mammalian pathogenic species, and phylogenetic analyses. The six-gene phylogeny generally supports the most recent comprehensive classification of Lagenidium with a well-supported Lagenidium clade that includes the mammalian pathogens L. giganteum f. caninum and L. deciduum, and well-supported clades for which the names Myzocytiopsis and Salilagenidium can be applied. The genus Paralagenidium is phylogenetically unrelated to any of the main clades within the class Peronosporomycetes. Close relationships between pathogens of mammals and those of insects or nematodes were revealed. Further characterisation of Lagenidium-like taxa is needed to establish the risk of mammalian infection by pathogens of insects and nematodes. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  13. Molecular phylogeny of the spoonbills (Aves: Threskiornithidae) based on mitochondrial DNA

    Science.gov (United States)

    Chesser, R. Terry; Yeung, Carol K.L.; Yao, Cheng-Te; Tian, Xiu-Hua; Li, Shou-Hsien

    2010-01-01

    Spoonbills (genus Platalea) are a small group of wading birds, generally considered to constitute the subfamily Plataleinae (Aves: Threskiornithidae). We reconstructed phylogenetic relationships among the six species of spoonbills using variation in sequences of the mitochondrial genes ND2 and cytochrome b (total 1796 bp). Topologies of phylogenetic trees reconstructed using maximum likelihood, maximum parsimony, and Bayesian analyses were virtually identical and supported monophyly of the spoonbills. Most relationships within Platalea received strong support: P. minor and P. regia were closely related sister species, P. leucorodia was sister to the minor-regia clade, and P. alba was sister to the minor-regia-leucorodia clade. Relationships of P. flavipes and P. ajaja were less well resolved: these species either formed a clade that was sister to the four-species clade, or were successive sisters to this clade. This phylogeny is consistent with ideas of relatedness derived from spoonbill morphology. Our limited sampling of the Threskiornithinae (ibises), the putative sister group to the spoonbills, indicated that this group is paraphyletic, in agreement with previous molecular data; this suggests that separation of the Threskiornithidae into subfamilies Plataleinae and Threskiornithinae may not be warranted.

  14. Molecular phylogenies reveal host-specific divergence of Ophiocordyceps unilateralis sensu lato following its host ants.

    Science.gov (United States)

    Kobmoo, N; Mongkolsamrit, S; Tasanathai, K; Thanakitpipattana, D; Luangsa-Ard, J J

    2012-06-01

    Ophiocordyceps unilateralis (Hypocreales, Ascomycetes) is an entomopathogenic fungus specific to formicine ants (Formicinae, Hymenoptera). Previous works have shown that the carpenter ant Camponotus leonardi acts as the principal host with occasional infections of ants from the genus Polyrhachis (sister genus of Camponotus). Observations were made on the permanent plots of Mo Singto, Khao Yai National Park of Thailand according to which O. unilateralis was found to occur predominantly on three host species: C. leonardi, C. saundersi and P. furcata. Molecular phylogenies of the elongation factor 1-α and β-Tubulin genes indicate a separation of O. unilateralis samples into three clades, reflecting specificity to each of the three different ant species. Samples collected from P. furcata and from C. leonardi were found to form sister groups with samples from C. saundersi forming an outgroup to the latter. Additional samples collected from unidentified ant species of Camponotus and Polyrhachis were positioned as outgroups to those samples on identified species. These results demonstrate that O. unilateralis is clearly not a single phylogenetic species and comprises at least three species that are specific to different host ant species. These cryptic species may arise through recent events of speciation driven by their specificity to host ant species.

  15. Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny.

    Science.gov (United States)

    Thornhill, Andrew H; Ho, Simon Y W; Külheim, Carsten; Crisp, Michael D

    2015-12-01

    The angiosperm family Myrtaceae has extant and fossil taxa from all southern continents and is assumed to be of Gondwanan origin. Many modern groups contain sister taxa that have disjunct transoceanic distributions, which can be interpreted as a result of either vicariance or long-distance dispersal and establishment (LDDE). Further, some Myrtaceae groups occur on Pacific islands with enigmatic geological histories. We tested hypotheses of vicariance and LDDE by estimating divergence times using a relaxed molecular clock calibrated with 12 fossils. In total, 88 genera and 202 species were sampled, representing both subfamilies and all tribes of Myrtaceae. We reconstructed the family as Gondwanan in origin. Of the 22 geographically disjunct sister groups in our study, up to six are potentially explained as the product of vicariance, three resulting from overland dispersal via new land connections, and 13 due to LDDE events. Nine of the 13 hypothesized LDDE events occurred in fleshy-fruited taxa. Our results indicate that most of the transoceanic distribution patterns in Myrtaceae have occurred since the Miocene due to LDDE, whereas inferred vicariance events all occurred before the Late Eocene. There are many instances of sister relationships between species-poor and species-rich groups in Myrtaceae, and at least three occurrences of geographically isolated taxa on long branches of the phylogeny (Arillastrum, Myrtus, and Tepualia), whose modern-day distributions are difficult to explain without additional fossil or geological evidence.

  16. Turning points in the evolution of peroxidase-catalase superfamily: molecular phylogeny of hybrid heme peroxidases.

    Science.gov (United States)

    Zámocký, Marcel; Gasselhuber, Bernhard; Furtmüller, Paul G; Obinger, Christian

    2014-12-01

    Heme peroxidases and catalases are key enzymes of hydrogen peroxide metabolism and signaling. Here, the reconstruction of the molecular evolution of the peroxidase-catalase superfamily (annotated in pfam as PF00141) based on experimentally verified as well as numerous newly available genomic sequences is presented. The robust phylogenetic tree of this large enzyme superfamily was obtained from 490 full-length protein sequences. Besides already well-known families of heme b peroxidases arranged in three main structural classes, completely new (hybrid type) peroxidase families are described being located at the border of these classes as well as forming (so far missing) links between them. Hybrid-type A peroxidases represent a minor eukaryotic subfamily from Excavates, Stramenopiles and Rhizaria sharing enzymatic and structural features of ascorbate and cytochrome c peroxidases. Hybrid-type B peroxidases are shown to be spread exclusively among various fungi and evolved in parallel with peroxidases in land plants. In some ascomycetous hybrid-type B peroxidases, the peroxidase domain is fused to a carbohydrate binding (WSC) domain. Both here described hybrid-type peroxidase families represent important turning points in the complex evolution of the whole peroxidase-catalase superfamily. We present and discuss their phylogeny, sequence signatures and putative biological function.

  17. Molecular phylogeny and revised classification of the haplotilapiine cichlid fishes formerly referred to as "Tilapia".

    Science.gov (United States)

    Dunz, Andreas R; Schliewen, Ulrich K

    2013-07-01

    African cichlids formerly referred to as "Tilapia" represent a paraphyletic species assemblage belonging to the so called haplotilapiine lineage which gave rise to the spectacular East African cichlid radiations (EARs) as well as to globally important aquaculture species. We present a comprehensive molecular phylogeny of representative haplotilapiine cichlids, combining in one data set four mitochondrial and five nuclear loci for 76 species, and compare it with phylogenetic information of a second data set of 378 mitochondrial ND2 haplotypes representing almost all important "Tilapia" or Tilapia-related lineages as well as most EAR lineages. The monophyly of haplotilapiines is supported, as is the nested sister group relationship of Etia and mouthbrooding tilapiines with the remaining haplotilapiines. The latter are consistently placed in eight monophyletic clades over all datasets and analyses, but several dichotomous phylogenetic relationships appear compromised by cytonuclear discordant phylogenetic signal. Based on these results as well as on extensive morphological evidence we propose a novel generic and suprageneric classification including a (re-)diagnosis of 20 haplotilapiine cichlid genera and nine tribes. New tribes are provided for the former subgenera Coptodon Gervais, 1853, HeterotilapiaRegan, 1920 and PelmatolapiaThys van den Audenaerde, 1969, in addition for "Tilapia" joka, Tilapia sensu stricto and Chilochromis, Etia, Steatocranus sensu stricto, the mouthbrooding tilapiines and for a clade of West African tilapiines.

  18. Comparative mitochondrial genomics among Spirometra (Cestoda: Diphyllobothriidae) and the molecular phylogeny of related tapeworms.

    Science.gov (United States)

    Zhang, Xi; Duan, Jiang Yang; Shi, Ya Li; Jiang, Peng; Zeng, De Jun; Wang, Zhong Quan; Cui, Jing

    2017-06-09

    The larva of Spirometra erinaceieuropaei can parasitize humans, causing a serious parasitic zoonosis known as sparganosis. Although it is medically important, our knowledge about the phylogenetic position of S. erinaceieuropaei and its evolutionary history is fragmentary. In this study, complete mitochondrial (mt) genomes of 4 geographically distinct isolates of S. erinaceieuropaei spargana collected from 4 frog hosts (Hylarana guentheri, Rana nigromaculata, R. rugulosa, R. temporaria) were characterized using an Illumina sequencing platform. In addition, all available mt genomes of Cestoda in GenBank were included to reconstruct the phylogeny and to explore the evolutionary history of these tapeworms. The genome features of S. erinaceieuropaei contained 12 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes and 2 non-coding regions. Nucleotide sequences of mtDNA from different frog hosts were similar. Three genes, cox1, cytb and nad4, had high levels of nucleotide diversity. Phylogenetic analyses supported the sibling relationship between Bothriocephalidae and Diphyllobothriidae. Molecular dating analysis indicated that the divergence between Diphyllobothrium and Diplogonoporus started in the late Miocene. The mt genomes of S. erinaceieuropaei will serve as a useful dataset for studying the genetics and systematics of the species of Spirometra genus in particular and diphyllobothriid tapeworms in general. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Molecular phylogeny and node time estimation of bioluminescent Lantern Sharks (Elasmobranchii: Etmopteridae).

    Science.gov (United States)

    Straube, Nicolas; Iglésias, Samuel P; Sellos, Daniel Y; Kriwet, Jürgen; Schliewen, Ulrich K

    2010-09-01

    Deep-sea Lantern Sharks (Etmopteridae) represent the most speciose family within Dogfish Sharks (Squaliformes). We compiled an extensive DNA dataset to estimate the first molecular phylogeny of the family and to provide node age estimates for the origin and diversification for this enigmatic group. Phylogenetic inferences yielded consistent and well supported hypotheses based on 4685bp of both nuclear (RAG1) and mitochondrial genes (COI, 12S-partial 16S, tRNAVal and tRNAPhe). The monophyletic family Etmopteridae originated in the early Paleocene around the C/T boundary, and split further into four morphologically distinct lineages supporting three of the four extant genera. The exception is Etmopterus which is paraphyletic with respect to Miroscyllium. Subsequent rapid radiation within Etmopterus in the Oligocene/early Miocene was accompanied by divergent evolution of bioluminescent flank markings which morphologically characterize the four lineages. Higher squaliform interrelationships could not be satisfactorily identified, but convergent evolution of bioluminescence in Dalatiidae and Etmopteridae is supported.

  20. Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems.

    Science.gov (United States)

    Imazaki, Iori; Kadota, Ikuo

    2015-09-01

    Plant tissues are a known habitat for two types of Fusarium species: plant pathogens and endophytes. Here, we investigated the molecular phylogeny and diversity of endophytic fusaria, because endophytes are not as well studied as pathogens. A total of 543 Fusarium isolates were obtained from the inside of tomato stems cultivated in soils mainly obtained from agricultural fields. We then determined partial nucleotide sequences of the translation elongation factor-1 alpha (EF-1α) genes of the isolates. Among the isolates from tomato, 24 EF-1α gene sequence types (EFST) were found: nine were classified as being from the Fusarium oxysporum species complex and its sister taxa (FOSC, 332 isolates), seven from the F. fujikuroi species complex (FFSC, 75 isolates) and eight from the F. solani species complex (FSSC, 136 isolates). To determine more characteristic details of the tomato isolates, we isolated 180 fusaria directly from soils and found 95% of them were nested within the FOSC (82 isolates; five EFSTs), FFSC (21 isolates; six FESTs) and FSSC (68 isolates; 11 EFSTs). These results suggested that the dominant Fusarium endophytes within tomato stems were members of the same three species complexes, which were also the dominant fusaria in the soils. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae).

    Science.gov (United States)

    Wang, Nian; McAllister, Hugh A; Bartlett, Paul R; Buggs, Richard J A

    2016-05-01

    Betula L. (birch) is a genus of approx. 60 species, subspecies or varieties with a wide distribution in the northern hemisphere, of ecological and economic importance. A new classification of Betula has recently been proposed based on morphological characters. This classification differs somewhat from previously published molecular phylogenies, which may be due to factors such as convergent evolution, hybridization, incomplete taxon sampling or misidentification of samples. While chromosome counts have been made for many species, few have had their genome size measured. The aim of this study is to produce a new phylogenetic and genome size analysis of the genus. Internal transcribed spacer (ITS) regions of nuclear ribosomal DNA were sequenced for 76 Betula samples verified by taxonomic experts, representing approx. 60 taxa, of which approx. 24 taxa have not been included in previous phylogenetic analyses. A further 49 samples from other collections were also sequenced, and 108 ITS sequences were downloaded from GenBank. Phylogenetic trees were built for these sequences. The genome sizes of 103 accessions representing nearly all described species were estimated using flow cytometry. As expected for a gene tree of a genus where hybridization and allopolyploidy occur, the ITS tree shows clustering, but not resolved monophyly, for the morphological subgenera recently proposed. Most sections show some clustering, but species of the dwarf section Apterocaryon are unusually scattered. Betula corylifolia (subgenus Nipponobetula) unexpectedly clusters with species of subgenus Aspera Unexpected placements are also found for B. maximowicziana, B. bomiensis, B. nigra and B. grossa Biogeographical disjunctions were found within Betula between Europe and North America, and also disjunctions between North-east and South-west Asia. The 2C-values for Betula ranged from 0·88 to 5·33 pg, and polyploids are scattered widely throughout the ITS phylogeny. Species with large genomes

  2. A molecular phylogeny of the Australian huntsman spiders (Sparassidae, Deleninae): implications for taxonomy and social behaviour.

    Science.gov (United States)

    Agnarsson, Ingi; Rayor, Linda S

    2013-12-01

    Huntsman spiders (Sparassidae) are a diverse group with a worldwide distribution, yet are poorly known both taxonomically and phylogenetically. They are particularly diverse in Australia where an endemic lineage, Deleninae, has diversified to form nearly 100 species. One unusual species, Delena cancerides, has been believed to be the sole group-living sparassid. Unlike all of the other subsocial and social spiders which are capture-web based or live in silken tunnels, D. cancerides are non-web building spiders that live in large matrilineal colonies of a single adult female and her offspring from multiple clutches of under the bark of dead trees. Here we report the discovery of two additional prolonged subsocial sparassid species, currently in Eodelena but here formally proposed as a synonomy of Delena (new synonoymy), Delena (Eodelena) lapidicola and D. (E.) melanochelis. We briefly describe their social demographics, behavior, and habitat use. In order to understand the evolutionary relationships among these species, and thus origin of sociality and other traits in this group, we also offer the first molecular phylogeny of Deleninae and relatives. We employ model based phylogenetic analyses on two mtDNA and three nuDNA loci using maximum likelihood and Bayesian methods, including both 'classical' concatenation approach as well as coalescent-based analysis of species trees from gene trees. Our results support the hypothesis that the delenine huntsman spiders are a monophyletic Australian radiation, approximately 23 million year old, and indicate that the current ten genera should be merged to six genera in four clades. Our findings are inconsistent with some relatively recent changes in the taxonomy of Deleninae. The three known group-living delenine species are related and likely represent a single origin of sociality with a single reversal to solitary life-styles. Our results provide strong support for the classical Isopeda, but not for the recent splitting of

  3. Molecular phylogeny and biogeography of the Qinghai-Tibet Plateau endemic Nannoglottis (Asteraceae).

    Science.gov (United States)

    Liu, Jian-Quan; Gao, Tian-Gang; Chen, Zhi-Duan; Lu, An-Ming

    2002-06-01

    unusual biogeographic link of Nannoglottis. The 23-32-million-year divergence time between Nannoglottis and the other Astereae estimated by DNA sequences predated the formation of the plateau. This estimation is further favored by the fossil record of the Asteraceae and the possible time of origin of the Astereae. Nannoglottis seems to have reached the Qinghai-Tibet area in the Oligocene-Eocene and then re-diversified with the uplift of the plateau. The molecular infragenetic phylogeny of the genus identifies two distinct clades, which reject the earlier infrageneric classification based on the arrangement of the involucral bracts and the length of the ligules, but agree well with the habits and ecological preferences of its current species. The "alpine shrub" vs. "coniferous forest" divergence within Nannoglottis was estimated at about 3.4 million years ago when the plateau began its first large-scale uplifting and the coniferous vegetation began to appear. Most of the current species at the "coniferous forest" clade of the genus are estimated to have originated from 1.02 to 1.94 million years ago, when the second and third uprisings of the plateau occurred, the climate oscillated and the habitats were strongly changed. The assumed evolution, speciation diversity, and radiation of Nannoglottis based on molecular phylogeny and divergence times agree well with the known geological and paleobotanical histories of the Qinghai-Tibet Plateau. (c) 2002 Elsevier Science (USA).

  4. Family matters: The first molecular phylogeny of the Onchidorididae Gray, 1827 (Mollusca, Gastropoda, Nudibranchia).

    Science.gov (United States)

    Hallas, Joshua M; Gosliner, Terrence M

    2015-07-01

    Recent investigations into the evolution of the Onchidorididae using morphological based methods have resulted in low support for relationships among genera. This study aims to determine if molecular data corroborates recent morphological interpretations of the evolution of Onchidorididae. Five genetic markers: 16S, 18S, 28S, cytochrome c oxidase 1 (COI) and histone 3 (H3), were sequenced from 32 species comprising Onchidorididae and five other families, three from Phanerobranchia and two from Cryptobranchia. Phylogenies were estimated using maximum likelihood, and Bayesian inference analyses; with both yielding similar topologies. Molecular analyses resulted in high support for the monophyly of the suctorian clade and the placement of the genera within Onchidorididae. However, the Onchidorididae forms a paraphyletic grouping due to the recovery of the Goniodorididae and the Akiodorididae nested within family. In addition, the placement of Corambe as the most derived member of Onchidorididae is contradicted by the present study. Rather it is sister to a large clade that includes Acanthodoris and the species traditionally placed in Onchidoris and Adalaria, now defined as Onchidorididae. We have chosen to maintain Corambidae as a distinct taxon (including Corambe and Loy), sister to Onchidorididae. We also maintain Goniodorididae, Akiodorididae and Calycidoridae (including Calycidoris and Diaphorodoris), which along with the Onchidorididae and Corambidae comprise the suctorian superfamily Onchidoridoidea. Ancestral character reconstruction also suggests that the formation of a gill pocket, a character that currently defines the Cryptobranchia, may have evolved multiple times from an ancestor that lacked the ability to retract its gills into a fully formed gill pocket. The diversity of gill morphology displayed by the Onchidoridoidea will help give new insight into the evolution of this complex character within the Nudibranchia.

  5. Integrative taxonomy and molecular phylogeny of genus Aplysina (Demospongiae: Verongida from Mexican Pacific.

    Directory of Open Access Journals (Sweden)

    José Antonio Cruz-Barraza

    Full Text Available Integrative taxonomy provides a major approximation to species delimitation based on integration of different perspectives (e.g. morphology, biochemistry and DNA sequences. The aim of this study was to assess the relationships and boundaries among Eastern Pacific Aplysina species using morphological, biochemical and molecular data. For this, a collection of sponges of the genus Aplysina from the Mexican Pacific was studied on the basis of their morphological, chemical (chitin composition, and molecular markers (mitochondrial COI and nuclear ribosomal rDNA: ITS1-5.8-ITS2. Three morphological species were identified, two of which are new to science. A. clathrata sp. nov. is a yellow to yellow-reddish or -brownish sponge, characterized by external clathrate-like morphology; A. revillagigedi sp. nov. is a lemon yellow to green, cushion-shaped sometimes lobate sponge, characterized by conspicuous oscules, which are slightly elevated and usually linearly distributed on rims; and A. gerardogreeni a known species distributed along the Mexican Pacific coast. Chitin was identified as the main structural component within skeletons of the three species using FTIR, confirming that it is shared among Verongida sponges. Morphological differences were confirmed by DNA sequences from nuclear ITS1-5.8-ITS2. Mitochondrial COI sequences showed extremely low but diagnostic variability for Aplysina revillagigedi sp. nov., thus our results corroborate that COI has limited power for DNA-barcoding of sponges and should be complemented with other markers (e.g. rDNA. Phylogenetic analyses of Aplysina sequences from the Eastern Pacific and Caribbean, resolved two allopatric and reciprocally monophyletic groups for each region. Eastern Pacific species were grouped in general accordance with the taxonomic hypothesis based on morphological characters. An identification key of Eastern Pacific Aplysina species is presented. Our results constitute one of the first approximations

  6. Morphology, molecular phylogeny and azaspiracid profile of Azadinium poporum (Dinophyceae) from the Gulf of Mexico.

    Science.gov (United States)

    Luo, Zhaohe; Krock, Bernd; Mertens, Kenneth Neil; Price, Andrea Michelle; Turner, Robert Eugene; Rabalais, Nancy N; Gu, Haifeng

    2016-05-01

    Azadinium poporum produces a variety of azaspiracids and consists of several ribotypes, but information on its biogeography is limited. A strain of A. poporum (GM29) was incubated from a Gulf of Mexico sediment sample. Strain GM29 was characterized by a plate pattern of po, cp, x, 4', 3a, 6″, 6C, 5S, 6‴, 2⁗, a distinct ventral pore at the junction of po and the first two apical plates, and a lack of an antapical spine, thus fitting the original description of A. poporum. The genus Azadinium has not been reported in waters of the United States of America before this study. Molecular phylogeny, based on large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences, reveals that strain GM29 is nested within the well-resolved A. poporum complex, but forms a sister clade either to ribotype B (ITS) or ribotype C (LSU). It is, therefore, designated as a new ribotype, termed as ribotype D. LSU and ITS sequences similarity among different ribotypes of A. poporum ranges from 95.4% to 98.2%, and from 97.1% to 99.2% respectively, suggesting that the LSU fragment is a better candidate for molecular discrimination. Azaspiracid profiles were analyzed using LC-MS/MS and demonstrate that strain GM29 produces predominantly AZA-2 with an amount of 45fg/cell. The results suggest that A. poporum has a wide distribution and highlights the risk potential of azaspiracid intoxication in the United States.

  7. Molecular phylogeny and morphological revision of Myotis bats (Chiroptera: Vespertilionidae) from Taiwan and adjacent China.

    Science.gov (United States)

    Ruedi, Manuel; Csorba, Gábor; Lin, Liang-Kong; Chou, Cheng-Han

    2015-02-20

    In taxonomic accounts, three species of Myotis have been traditionally reported to occur on the island of Taiwan: Watase's bat (M. formosus watasei Kishida), the Formosan broad-muzzled bat (M. muricola latirostris Kishida) and the Formosan mouse-eared bat (M. adversus taiwanensis Linde). The discovery in 1997 of an unknown taxon not fitting to the description of any of these species encouraged us to re-examine more thoroughly the systematics and phylogeny of Myotis bats inhabiting Taiwan. We used a combination of morphologic and molecular methods to aid the identification of the different taxa from this island and reconstruct their phylogenetic relationships. Multivariate analyses based on 17 craniodental characters of 105 specimens caught across Taiwan and further external characters allowed us to discriminate eight taxa of Myotinae co-occurring on this island. A subset of 80 specimens were further sequenced for the cytochrome b gene (1140 bp) and subjected to phylogenetic reconstructions including representative species from adjacent China and from all main lineages of the worldwide Myotis radiation. These molecular reconstructions showed that the Myotinae from Taiwan are phylogenetically diverse and are issued from several independent clades. The genetic results were completely congruent with the phenetic groupings based on craniodental and external morphology, as each of the eight Taiwanese taxa proved to be reciprocally monophyletic. Two unnamed taxa that did not fit into any of the known species were described as species new to science. Furthermore the taxon latirostris usually associated to the Asian M. muricola, was phylogenetically and morphologically distant from any other known Myotis and was assigned here to the fossil (Miocene) genus Submyotodon. Submyotodon latirostris, M. secundus sp. n. and M. soror sp. n. are endemic species from Taiwan, whereas the other five Myotis are more widespread and also found in the mainland. An identification key is

  8. Traditional taxonomic groupings mask evolutionary history: a molecular phylogeny and new classification of the chromodorid nudibranchs.

    Science.gov (United States)

    Johnson, Rebecca Fay; Gosliner, Terrence M

    2012-01-01

    Chromodorid nudibranchs (16 genera, 300+ species) are beautiful, brightly colored sea slugs found primarily in tropical coral reef habitats and subtropical coastal waters. The chromodorids are the most speciose family of opisthobranchs and one of the most diverse heterobranch clades. Chromodorids have the potential to be a model group with which to study diversification, color pattern evolution, are important source organisms in natural products chemistry and represent a stunning and widely compelling example of marine biodiversity. Here, we present the most complete molecular phylogeny of the chromodorid nudibranchs to date, with a broad sample of 244 specimens (142 new), representing 157 (106 new) chromodorid species, four actinocylcid species and four additional dorid species utilizing two mitochondrial markers (16s and COI). We confirmed the monophyly of the Chromodorididae and its sister group relationship with the Actinocyclidae. We were also able to, for the first time, test generic monophyly by including more than one member of all 14 of the non-monotypic chromodorid genera. Every one of these 14 traditional chromodorid genera are either non-monophyletic, or render another genus paraphyletic. Additionally, both the monotypic genera Verconia and Diversidoris are nested within clades. Based on data shown here, there are three individual species and five clades limited to the eastern Pacific and Atlantic Oceans (or just one of these ocean regions), while the majority of chromodorid clades and species are strictly Indo-Pacific in distribution. We present a new classification of the chromodorid nudibranchs. We use molecular data to untangle evolutionary relationships and retain a historical connection to traditional systematics by using generic names attached to type species as clade names.

  9. Traditional taxonomic groupings mask evolutionary history: a molecular phylogeny and new classification of the chromodorid nudibranchs.

    Directory of Open Access Journals (Sweden)

    Rebecca Fay Johnson

    Full Text Available Chromodorid nudibranchs (16 genera, 300+ species are beautiful, brightly colored sea slugs found primarily in tropical coral reef habitats and subtropical coastal waters. The chromodorids are the most speciose family of opisthobranchs and one of the most diverse heterobranch clades. Chromodorids have the potential to be a model group with which to study diversification, color pattern evolution, are important source organisms in natural products chemistry and represent a stunning and widely compelling example of marine biodiversity. Here, we present the most complete molecular phylogeny of the chromodorid nudibranchs to date, with a broad sample of 244 specimens (142 new, representing 157 (106 new chromodorid species, four actinocylcid species and four additional dorid species utilizing two mitochondrial markers (16s and COI. We confirmed the monophyly of the Chromodorididae and its sister group relationship with the Actinocyclidae. We were also able to, for the first time, test generic monophyly by including more than one member of all 14 of the non-monotypic chromodorid genera. Every one of these 14 traditional chromodorid genera are either non-monophyletic, or render another genus paraphyletic. Additionally, both the monotypic genera Verconia and Diversidoris are nested within clades. Based on data shown here, there are three individual species and five clades limited to the eastern Pacific and Atlantic Oceans (or just one of these ocean regions, while the majority of chromodorid clades and species are strictly Indo-Pacific in distribution. We present a new classification of the chromodorid nudibranchs. We use molecular data to untangle evolutionary relationships and retain a historical connection to traditional systematics by using generic names attached to type species as clade names.

  10. Sandokanid phylogeny based on eight molecular markers--the evolution of a southeast Asian endemic family of Laniatores (Arachnida, Opiliones).

    Science.gov (United States)

    Sharma, Prashant; Giribet, Gonzalo

    2009-08-01

    Little is known about the familial and generic level phylogeny of Laniatores, the most diverse suborder of Opiliones. We investigated the internal phylogeny of the family Sandokanidae (formerly Oncopodidae), the putative sister group of the other families of the highly diverse infraorder Grassatores (Opiliones: Laniatores), on the basis of sequence data from eight molecular loci: 18S rRNA, 28S rRNA, 12S rRNA, 16S rRNA, cytochrome c oxidase subunit I (COI), histones H3, H4, and U2 snRNA. Exemplars of all recognized sandokanid genera, as well as a putative new genus from Thailand, were included. Data analyses were based on a direct optimization approach using parsimony, as well as maximum likelihood and Bayesian approaches on static alignments. The results obtained include the monophyly of Sandokanidae and its stability under a variety of parameter sets and methods. The internal phylogeny is relatively robust to parameter choice and demonstrates the monophyly of nearly all described genera, corroborating previous morphological observations. However, conflict among data sets exists with respect to the monophyly of the largest genus Gnomulus. Morphological character evolution, particularly of characters used to define genera, such as tarsal count and male genitalia, is reexamined and the performance of the eight molecular markers in phylogenetic estimation is evaluated.

  11. Molecular phylogeny of the subfamily Stevardiinae Gill, 1858 (Characiformes: Characidae): classification and the evolution of reproductive traits.

    Science.gov (United States)

    Thomaz, Andréa T; Arcila, Dahiana; Ortí, Guillermo; Malabarba, Luiz R

    2015-07-21

    The subfamily Stevardiinae is a diverse and widely distributed clade of freshwater fishes from South and Central America, commonly known as "tetras" (Characidae). The group was named "clade A" when first proposed as a monophyletic unit of Characidae and later designated as a subfamily. Stevardiinae includes 48 genera and around 310 valid species with many species presenting inseminating reproductive strategy. No global hypothesis of relationships is available for this group and currently many genera are listed as incertae sedis or are suspected to be non-monophyletic. We present a molecular phylogeny with the largest number of stevardiine species analyzed so far, including 355 samples representing 153 putative species distributed in 32 genera, to test the group's monophyly and internal relationships. The phylogeny was inferred using DNA sequence data from seven gene fragments (mtDNA: 12S, 16S and COI; nuclear: RAG1, RAG2, MYH6 and PTR). The results support the Stevardiinae as a monophyletic group and a detailed hypothesis of the internal relationships for this subfamily. A revised classification based on the molecular phylogeny is proposed that includes seven tribes and also defines monophyletic genera, including a resurrected genus Eretmobrycon, and new definitions for Diapoma, Hemibrycon, Bryconamericus sensu stricto, and Knodus sensu stricto, placing some small genera as junior synonyms. Inseminating species are distributed in several clades suggesting that reproductive strategy is evolutionarily labile in this group of fishes.

  12. A multilocus molecular phylogeny for the avian genus Liocichla (Passeriformes:Leiothrichidae:Liocichla)

    Institute of Scientific and Technical Information of China (English)

    Herman LMays Jr; BaileYD McKay; Dieter Thomas Tietze; ChengTe Yao; LindseYN Miller; Kathleen N Moreland; Fumin Lei

    2015-01-01

    Background: Historically the babblers have been assigned to the family Timaliidae but several recent studies have attempted to rest the taxonomy of this diverse passerine assemblage on a more ifrm evolutionary footing. The result has been a major rearrangement of the group. A well‑supported and comprehensive phylogeny for this widespread avian group is an important part of testing evolutionary and biogeographic hypotheses, especially in Asia where the babblers are a key component of many forest ecosystems. However, the genus Liocichla is poorly represented in these prior studies of babbler systematics. Methods: We used a multilocus molecular genetic approach to generate a phylogenetic hypothesis for all ifve cur‑rently recognized species in the avian genus Liocichla. Multilocus DNA sequence data was used to construct individ‑ual gene trees using maximum likelihood and species trees were estimated from gene trees using Bayesian analyses. Divergence dates were obtained using a molecular clock approach. Results: Molecular data estimate a probable window of time for the origin for the Liocichla from the mid to late Miocene, between 5.55 and 12.87 Ma. Despite plumage similarities between the insular Taiwan endemic, L. steerii, and the continental L. bugunorum and L. omeiensis, molecular data suggest that L. steerii is the sister taxon to all continen‑tal Liocichla. The continental Liocichla are comprised of two lineages;a lineage containing L. omeiensis and L. buguno-rum and a lineage comprised of L. phoenicea and L. ripponi. The comparatively early divergence of L. steerii within the Liocichla may be illusory due to extinct and therefore unsampled lineages. L. ripponi and L. phoenicea are parapatric with a Pleistocene split (0.07–1.88 Ma) occurring between an Eastern Himalayan L. phoenicea and a Northern Indo‑china distributed L. ripponi. L. bugunorum and L. omeiensis underwent a similar split between the Eastern Himalaya (L. bugunorum) and Central China (L

  13. A multilocus molecular phylogeny forthe avian genusLiocichla (Passeriformes:Leiothrichidae:Liocichla)

    Institute of Scientific and Technical Information of China (English)

    Herman L Mays Jr; Bailey D McKay; Dieter Thomas Tietze; ChengTe Yao; Lindsey N Miller; Kathleen N Moreland; Fumin Lei

    2015-01-01

    Background: Historically the babblers have been assigned to the family Timaliidae but several recent studies have attempted to rest the taxonomy of this diverse passerine assemblage on a more ifrm evolutionary footing. The result has been a major rearrangement of the group. A well‑supported and comprehensive phylogeny for this widespread avian group is an important part of testing evolutionary and biogeographic hypotheses, especially in Asia where the babblers are a key component of many forest ecosystems. However, the genusLiocichla is poorly represented in these prior studies of babbler systematics. Methods: We used a multilocus molecular genetic approach to generate a phylogenetic hypothesis for all ifve cur‑rently recognized species in the avian genusLiocichla. Multilocus DNA sequence data was used to construct individ‑ual gene trees using maximum likelihood and species trees were estimated from gene trees using Bayesian analyses. Divergence dates were obtained using a molecular clock approach. Results: Molecular data estimate a probable window of time for the origin for theLiocichla from the mid to late Miocene, between 5.55 and 12.87 Ma. Despite plumage similarities between the insular Taiwan endemic,L. steerii, and the continentalL. bugunorum andL. omeiensis, molecular data suggest thatL. steerii is the sister taxon to all continen‑talLiocichla. The continentalLiocichla are comprised of two lineages; a lineage containingL. omeiensis andL. buguno-rum and a lineage comprised ofL. phoenicea andL. ripponi. The comparatively early divergence ofL. steerii within the Liocichla may be illusory due to extinct and therefore unsampled lineages.L. ripponi andL. phoenicea are parapatric with a Pleistocene split (0.07–1.88 Ma) occurring between an Eastern HimalayanL. phoenicea and a Northern Indo‑china distributedL. ripponi.L. bugunorum andL. omeiensis underwent a similar split between the Eastern Himalaya (L. bugunorum) and Central China (L. omeiensis

  14. Molecular phylogeny of Pompilinae (Hymenoptera: Pompilidae): Evidence for rapid diversification and host shifts in spider wasps.

    Science.gov (United States)

    Rodriguez, Juanita; Pitts, James P; Florez, Jaime A; Bond, Jason E; von Dohlen, Carol D

    2016-01-01

    Pompilinae is one of the largest subfamilies of spider wasps (Pompilidae). Most pompilines are generalist spider predators at the family level, but some taxa exhibit ecological specificity (i.e., to spider-host guild). Here we present the first molecular phylogenetic analysis of Pompilinae, toward the aim of evaluating the monophyly of tribes and genera. We further test whether changes in the rate of diversification are associated with host-guild shifts. Molecular data were collected from five nuclear loci (28S, EF1-F2, LWRh, Wg, Pol2) for 76 taxa in 39 genera. Data were analyzed using maximum likelihood (ML) and Bayesian inference (BI). The phylogenetic results were compared with previous hypotheses of subfamilial and tribal classification, as well as generic relationships in the subfamily. The classification of Pompilus and Agenioideus is also discussed. A Bayesian relaxed molecular clock analysis was used to examine divergence times. Diversification rate-shift tests accounted for taxon-sampling bias using ML and BI approaches. Ancestral host family and host guild were reconstructed using MP and ML methods. Ancestral host guild for all Pompilinae, for the ancestor at the node where a diversification rate-shift was detected, and two more nodes back in time was inferred using BI. In the resulting phylogenies, Aporini was the only previously proposed monophyletic tribe. Several genera (e.g., Pompilus, Microphadnus and Schistonyx) are also not monophyletic. Dating analyses produced a well-supported chronogram consistent with topologies from BI and ML results. The BI ancestral host-use reconstruction inferred the use of spiders belonging to the guild "other hunters" (frequenting the ground and vegetation) as the ancestral state for Pompilinae. This guild had the highest probability for the ML reconstruction and was equivocal for the MP reconstruction; various switching events to other guilds occurred throughout the evolution of the group. The diversification of

  15. Molecular Phylogeny and Biogeography of the Amphidromous Fish Genus Dormitator Gill 1861 (Teleostei: Eleotridae).

    Science.gov (United States)

    Galván-Quesada, Sesángari; Doadrio, Ignacio; Alda, Fernando; Perdices, Anabel; Reina, Ruth Gisela; García Varela, Martín; Hernández, Natividad; Campos Mendoza, Antonio; Bermingham, Eldredge; Domínguez-Domínguez, Omar

    2016-01-01

    Species of the genus Dormitator, also known as sleepers, are representatives of the amphidromous freshwater fish fauna that inhabit the tropical and subtropical coastal environments of the Americas and Western Africa. Because of the distribution of this genus, it could be hypothesized that the evolutionary patterns in this genus, including a pair of geminate species across the Central American Isthmus, could be explained by vicariance following the break-up of Gondwana. However, the evolutionary history of this group has not been evaluated. We constructed a time-scaled molecular phylogeny of Dormitator using mitochondrial (Cytochrome b) and nuclear (Rhodopsin and β-actin) DNA sequence data to infer and date the cladogenetic events that drove the diversification of the genus and to relate them to the biogeographical history of Central America. Two divergent lineages of Dormitator were recovered: one that included all of the Pacific samples and another that included all of the eastern and western Atlantic samples. In contrast to the Pacific lineage, which showed no phylogeographic structure, the Atlantic lineage was geographically structured into four clades: Cameroon, Gulf of Mexico, West Cuba and Caribbean, showing evidence of potential cryptic species. The separation of the Pacific and Atlantic lineages was estimated to have occurred ~1 million years ago (Mya), whereas the four Atlantic clades showed mean times of divergence between 0.2 and 0.4 Mya. The splitting times of Dormitator between ocean basins are similar to those estimated for other geminate species pairs with shoreline estuarine preferences, which may indicate that the common evolutionary histories of the different clades are the result of isolation events associated with the closure of the Central American Isthmus and the subsequent climatic and oceanographic changes.

  16. Molecular phylogeny and evolution of the Trypanorhyncha Diesing, 1863 (Platyhelminthes: Cestoda).

    Science.gov (United States)

    Palm, Harry W; Waeschenbach, Andrea; Olson, Peter D; Littlewood, D Timothy J

    2009-08-01

    . This likely enabled a radiation into the deep sea environment. Implications of the molecular phylogeny for the classification and evolutionary developments within the order are discussed.

  17. Molecular phylogeny and biogeography of lac insects (Hemiptera: Kerriidae) inferred from nuclear and mitochondrial gene sequences.

    Science.gov (United States)

    Chen, Hang; Chen, Xiaoming; Feng, Ying; Yang, Hui; He, Rui; Zhang, Wenfeng; Yang, Zixiang

    2013-10-01

    Lac insects are commercial scale insects with high economic value. The combined molecular phylogeny of 20 lac insect populations was generated using elongation factor 1 alpha, mitochondrial cytochrome c oxidase subunit I and the small subunit ribosomal RNA gene loci. The 20 populations of lac insects clustered into four distinct clades supported by high bootstrap values in maximum parsimony, maximum likelihood and Bayesian analyses. Clade A at the base of the dendrogram comprises Kerria ruralis and two populations of Kerria lacca and is the branch with most primitive species. Clade B includes K. lacca, Kerria sindica and the three populations P, V and Z from India. They clustered with high bootstrap support and have evolved later than those in Clade A. The three unidentified populations P, V and Z exhibited a close relationship with K. lacca and are the same species. In Clade C, three populations of Kerria yunnanensis (Ym, Yj and Yl), population Ys from Thailand and population H from India clustered as a group, in which population H clustered with Ym with 100 % bootstrap in all three analysis methods. In Clade D, Kerria chinensis, Kerria pusana and three populations of K. yunnanensis clustered together with strong support, and are located in the upper branches of the dendrogram and are recently evolved taxa. The majority of populations from the Indian subcontinent clade are more closely related to outgroup taxa from the primitive family Pseudococcidae, as compared to the Eurasian populations. Phylogenetic analysis reveals that the Indian subcontinent is the centre of original of lac insects which have translocated to the Eurasian Continent. Based on the theory of continental drift and existing fossil records, it is suggested that lac insect evolved from ancient scale insects during the late Cretaceous period when the Indian subcontinent drifted towards the Eurasian Continent. Changes in the global environment have impacted on the distribution and evolution of lac

  18. Molecular phylogeny restores the supra-generic subdivision of homoscleromorph sponges (Porifera, Homoscleromorpha.

    Directory of Open Access Journals (Sweden)

    Eve Gazave

    Full Text Available BACKGROUND: Homoscleromorpha is the fourth major sponge lineage, recently recognized to be distinct from the Demospongiae. It contains <100 described species of exclusively marine sponges that have been traditionally subdivided into 7 genera based on morphological characters. Because some of the morphological features of the homoscleromorphs are shared with eumetazoans and are absent in other sponges, the phylogenetic position of the group has been investigated in several recent studies. However, the phylogenetic relationships within the group remain unexplored by modern methods. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe the first molecular phylogeny of Homoscleromorpha based on nuclear (18S and 28S rDNA and complete mitochondrial DNA sequence data that focuses on inter-generic relationships. Our results revealed two robust clades within this group, one containing the spiculate species (genera Plakina, Plakortis, Plakinastrella and Corticium and the other containing aspiculate species (genera Oscarella and Pseudocorticium, thus rejecting a close relationship between Pseudocorticium and Corticium. Among the spiculate species, we found affinities between the Plakortis and Plakinastrella genera, and between the Plakina and Corticium. The validity of these clades is furthermore supported by specific morphological characters, notably the type of spicules. Furthermore, the monophyly of the Corticium genus is supported while the monophyly of Plakina is not. CONCLUSIONS/SIGNIFICANCE: As the result of our study we propose to restore the pre-1995 subdivision of Homoscleromorpha into two families: Plakinidae Schulze, 1880 for spiculate species and Oscarellidae Lendenfeld, 1887 for aspiculate species that had been rejected after the description of the genus Pseudocorticium. We also note that the two families of homoscleromorphs exhibit evolutionary stable, but have drastically distinct mitochondrial genome organizations that differ in gene content

  19. Molecular phylogeny of the antiangiogenic and neurotrophic serpin, pigment epithelium derived factor in vertebrates

    Science.gov (United States)

    Xu, Xuming; Zhang, Samuel Shao-Min; Barnstable, Colin J; Tombran-Tink, Joyce

    2006-01-01

    Background Pigment epithelium derived factor (PEDF), a member of the serpin family, regulates cell proliferation, promotes survival of neurons, and blocks growth of new blood vessels in mammals. Defining the molecular phylogeny of PEDF by bioinformatic analysis is one approach to understanding the link between its gene structure and its function in these biological processes. Results From a comprehensive search of available DNA databases we identified a single PEDF gene in all vertebrate species examined. These included four mammalian and six non-mammalian vertebrate species in which PEDF had not previously been described. A five gene cluster around PEDF was found in an approximate 100 kb region in mammals, birds, and amphibians. In ray-finned fish these genes are scattered over three chromosomes although only one PEDF gene was consistently found. The PEDF gene is absent in invertebrates including Drosophila melanogaster (D. melanogaster), Caenorhabditis elegans (C. elegans), and sea squirt (C. intestinalis). The PEDF gene is transcribed in all vertebrate phyla, suggesting it is biologically active throughout vertebrate evolution. The multiple actions of PEDF are likely conserved in evolution since it has the same gene structure across phyla, although the size of the gene ranges from 48.3 kb in X. tropicalis to 2.9 kb in fugu, with human PEDF at a size of 15.6 kb. A strong similarity in the proximal 200 bp of the PEDF promoter in mammals suggests the existence of a possible regulatory region across phyla. Using a non-synonymous/synonymous substitution rate ratio we show that mammalian and fish PEDFs have similar ratios of vertebrates and our studies suggest that the regulation and biological actions of this gene are preserved across vertebrates. This comprehensive analysis of the PEDF gene across phyla provides new information that will aid further characterization of common functional motifs of this serpin in biological processes. PMID:17020603

  20. Molecular phylogeny of the antiangiogenic and neurotrophic serpin, pigment epithelium derived factor in vertebrates

    Directory of Open Access Journals (Sweden)

    Barnstable Colin J

    2006-10-01

    Full Text Available Abstract Background Pigment epithelium derived factor (PEDF, a member of the serpin family, regulates cell proliferation, promotes survival of neurons, and blocks growth of new blood vessels in mammals. Defining the molecular phylogeny of PEDF by bioinformatic analysis is one approach to understanding the link between its gene structure and its function in these biological processes. Results From a comprehensive search of available DNA databases we identified a single PEDF gene in all vertebrate species examined. These included four mammalian and six non-mammalian vertebrate species in which PEDF had not previously been described. A five gene cluster around PEDF was found in an approximate 100 kb region in mammals, birds, and amphibians. In ray-finned fish these genes are scattered over three chromosomes although only one PEDF gene was consistently found. The PEDF gene is absent in invertebrates including Drosophila melanogaster (D. melanogaster, Caenorhabditis elegans (C. elegans, and sea squirt (C. intestinalis. The PEDF gene is transcribed in all vertebrate phyla, suggesting it is biologically active throughout vertebrate evolution. The multiple actions of PEDF are likely conserved in evolution since it has the same gene structure across phyla, although the size of the gene ranges from 48.3 kb in X. tropicalis to 2.9 kb in fugu, with human PEDF at a size of 15.6 kb. A strong similarity in the proximal 200 bp of the PEDF promoter in mammals suggests the existence of a possible regulatory region across phyla. Using a non-synonymous/synonymous substitution rate ratio we show that mammalian and fish PEDFs have similar ratios of Conclusion The PEDF gene first appears in vertebrates and our studies suggest that the regulation and biological actions of this gene are preserved across vertebrates. This comprehensive analysis of the PEDF gene across phyla provides new information that will aid further characterization of common functional motifs of

  1. Identifying possible sister groups of Cryptocercidae+Isoptera: a combined molecular and morphological phylogeny of Dictyoptera.

    Science.gov (United States)

    Djernæs, Marie; Klass, Klaus-Dieter; Eggleton, Paul

    2015-03-01

    Termites (Isoptera) offer an alternative model for the development of eusociality which is not dependent on a high degree of relatedness as found between sisters in hymenopterans (bees, wasps, ants). Recent phylogenetic studies have established that termites belong within the cockroaches as sister to the subsocial Cryptocercidae. Cryptocercidae shares several important traits with termites, thus we need to understand the phylogenetic position of Cryptocercidae+Isoptera to determine how these traits evolved. However, placement of Cryptocercidae+Isoptera is still uncertain. We used both molecular (12S, 16S, COII, 18S, 28S, H3) and morphological characters to reconstruct the phylogeny of Dictyoptera. We included all previously suggested sister groups of Cryptocercidae+Isoptera as well as taxa which might represent additional major cockroach lineages. We used Bayes factors to test different sister groups for Cryptocercidae+Isoptera and assessed character support for the consensus tree based on morphological characters and COII amino acid data. We used the molecular data and fossil calibration to estimate divergence times. We found the most likely sister groups of Cryptocercidae+Isoptera to be Tryonicidae, Anaplecta or Tryonicidae+Anaplecta. Anaplecta has never previously been suggested as sister group or even close to Cryptocercidae+Isoptera, but was formerly placed in Blaberoidea as sister to the remaining taxa. Topological tests firmly supported our new placement of Anaplecta. We discuss the morphological characters (e.g. retractable genitalic hook) that have contributed to the previous placement of Anaplecta in Blaberoidea as well as the factors that might have contributed to a parallel development of genitalic features in Anaplecta and Blaberoidea. Cryptocercidae+Isoptera is placed in a clade with Tryonicidae, Anaplecta and possibly Lamproblattidae. Based on this, we suggest that wood-feeding, and the resultant need to conserve nitrogen, may have been an important

  2. Where and When did High Andean Relief Emerge?: Insights From Molecular Phylogenies of Andean Biota

    Science.gov (United States)

    Sempere, T.; Picard, D.; Plantard, O.

    2006-05-01

    Emergence of mountains along the Andean margin created new ecosystems and thus triggered a variety of adaptive biotic radiations, to the point that the Andes are to-day one of the world's major biodiversity hotspots. The rising Andes came to serve as a rain barrier: cloud forests developed along their eastern side due to orographic concentration of the westward-moving Amazonian moisture, and environments became drier in the west, with highland steppes extending above ~2-3 km. Relevant biologic data concerning Andean taxa adapted to these environments might therefore shed some light on the issue of Andean orogeny and surface uplift. Phylogeography (the analysis of phylogenetic trees in terms of biogeographic distributions) and phylochronology (the use of phylogenetic trees as molecular clocks) can be employed to reconstruct syn- orogenic radiations and estimate their timing, respectively. We use published molecular phylogenies that inform on the evolution of a variety of Andean animal and plant taxa, and therefore provide indirect means to assess and approximately date the acquisition of altitude. Phylogeographic analyses of 6 phylogenetic trees concerning unrelated Andean biota coincide in having their basal clades established in areas within the Central Andean Orocline (CAO), 5 of them clearly pointing to southern Peru and/or western Bolivia as the region of origin of the corresponding high-Andean taxa. A histogram of 9 phylochronologic estimates, based on trees concerning unrelated taxa (independently constructed and calibrated), suggests that the 2.0-2.5 km critical altitude was acquired during the 23-17 Ma or 26-16 Ma intervals (depending on the threshold used), confirming some geomorphic and geologic estimates (but conflicting with others). Although more data are needed, these results suggest that it was within the CAO and approximately during the early Miocene that the Andes acquired altitudes sufficient to trigger radiations of cold-adapted taxa, i.e. >~2 km

  3. Molecular phylogeny of the Bothriocephalidea (Cestoda): molecular data challenge morphological classification.

    Science.gov (United States)

    Brabec, Jan; Waeschenbach, Andrea; Scholz, Tomáš; Littlewood, D Timothy J; Kuchta, Roman

    2015-10-01

    In this study, the relationships of the cestode order Bothriocephalidea, parasites of marine and freshwater bony fish, were assessed using multi-gene molecular phylogenetic analyses. The dataset included 59 species, covering approximately 70% of currently recognised genera, a sample of bothriocephalidean biodiversity gathered through an intense 15year effort. The order as currently circumscribed, while monophyletic, includes three non-monophyletic and one monophyletic families. Bothriocephalidae is monophyletic and forms the most derived lineage of the order, comprised of a single freshwater and several marine clades. Biogeographic patterns within the freshwater clade are indicative of past radiations having occurred in Africa and North America. The earliest diverging lineages of the order comprise a paraphyletic Triaenophoridae. The Echinophallidae, consisting nearly exclusively of parasites of pelagic fish, was also resolved as paraphyletic with respect to the Bothriocephalidae. Philobythoides sp., the only representative included from the Philobythiidae, a unique family of parasites of bathypelagic fish, was sister to the genus Eubothrium, the latter constituting one of the lineages of the paraphyletic Triaenophoridae. Due to the weak statistical support for most of the basal nodes of the Triaenophoridae and Echinophallidae, as well as the lack of obvious morphological synapomorphies shared by taxa belonging to the statistically well-supported lineages, the current family-level classification, although mostly non-monophyletic, is provisionally retained, with the exception of the family Philobythiidae, which is recognised as a synonym of the Triaenophoridae. In addition, Schyzocotyle is resurrected to accommodate the invasive Asian fish tapeworm, Schyzocotyle acheilognathi (Yamaguti, 1934) n. comb. (syn. Bothriocephalus acheilognathi Yamaguti, 1934), which is of veterinary importance, and Schyzocotyle nayarensis (Malhotra, 1983) n. comb. (syn. Ptychobothrium

  4. Multigene Molecular Phylogeny and Biogeographic Diversification of the Earth Tongue Fungi in the Genera Cudonia and Spathularia (Rhytismatales, Ascomycota)

    Science.gov (United States)

    Ge, Zai-Wei; Yang, Zhu L.; Pfister, Donald H.; Carbone, Matteo; Bau, Tolgor; Smith, Matthew E.

    2014-01-01

    The family Cudoniaceae (Rhytismatales, Ascomycota) was erected to accommodate the “earth tongue fungi” in the genera Cudonia and Spathularia. There have been no recent taxonomic studies of these genera, and the evolutionary relationships within and among these fungi are largely unknown. Here we explore the molecular phylogenetic relationships within Cudonia and Spathularia using maximum likelihood and Bayesian inference analyses based on 111 collections from across the Northern Hemisphere. Phylogenies based on the combined data from ITS, nrLSU, rpb2 and tef-1α sequences support the monophyly of three main clades, the /flavida, /velutipes, and /cudonia clades. The genus Cudonia and the family Cudoniaceae are supported as monophyletic groups, while the genus Spathularia is not monophyletic. Although Cudoniaceae is monophyletic, our analyses agree with previous studies that this family is nested within the Rhytismataceae. Our phylogenetic analyses circumscribes 32 species-level clades, including the putative recognition of 23 undescribed phylogenetic species. Our molecular phylogeny also revealed an unexpectedly high species diversity of Cudonia and Spathularia in eastern Asia, with 16 (out of 21) species-level clades of Cudonia and 8 (out of 11) species-level clades of Spathularia. We estimate that the divergence time of the Cudoniaceae was in the Paleogene approximately 28 Million years ago (Mya) and that the ancestral area for this group of fungi was in Eastern Asia based on the current data. We hypothesize that the large-scale geological and climatic events in Oligocene (e.g. the global cooling and the uplift of the Tibetan plateau) may have triggered evolutionary radiations in this group of fungi in East Asia. This work provides a foundation for future studies on the phylogeny, diversity, and evolution of Cudonia and Spathularia and highlights the need for more molecular studies on collections from Europe and North America. PMID:25084276

  5. Phylogeny of Eutardigrada: new molecular data and their morphological support lead to the identification of new evolutionary lineages.

    Science.gov (United States)

    Bertolani, Roberto; Guidetti, Roberto; Marchioro, Trevor; Altiero, Tiziana; Rebecchi, Lorena; Cesari, Michele

    2014-07-01

    An extensive study of the phylogeny of Eutardigrada, the largest class of Tardigrada, has been performed analyzing one hundred and forty sequences (eighty of which newly obtained) representative of one hundred and twenty-nine specimens belonging to all families (except Necopinatidae) of this class. The molecular (18S and 28S rRNA) results were compared with new and previous morphological data, allowing us to find new phylogenetic relationships, to identify new phylogenetic lineages, to erect new taxa for some lineages, and to find several morphological synapomorphies supporting the identified clusters. The class Eutardigrada has been confirmed and, within it, the orders Apochela and Parachela, the superfamilies Macrobiotoidea, Hypsibioidea, Isohypsibioidea, and Eohypsibioidea, and all the families and subfamilies considered, although with emended diagnoses in several cases. In addition, new taxa have been erected: the new subfamily Pilatobiinae (Hypsibiidae) with the new genus Pilatobius, as well as an upgrading of Diphascon and Adropion to genus level, previously considered subgenera of Diphascon. Our results demonstrate that while molecular analysis is an important tool for understanding phylogeny, an integrative and comparative approach using both molecular and morphological data is necessary to better elucidate evolutionary relationships.

  6. Molecular Phylogeny and Systematic Revision of the Pleurocarpus Moss Genus Plagiothecium

    DEFF Research Database (Denmark)

    Wynns, Justin Thomas

    . The relationships between Plagiothecium and other similar pleurocarps are also speculative. In this study, DNA sequence data were used for reconstructing the phylogeny of the genus. Based on the results of a preliminary survey of 16 DNA regions, three regions were chosen for genetic markers: plastid trn...

  7. A molecular phylogeny of Asian barbets: speciation and extinction in the tropics.

    Science.gov (United States)

    den Tex, Robert-Jan; Leonard, Jennifer A

    2013-07-01

    We reconstruct the phylogeny of all recognized species of the tropical forest associated Asian barbets based on mitochondrial and nuclear sequence data and test for the monophyly of species and genera. Tropical regions are well known for their extraordinarily high levels of biodiversity, but we still have a poor understanding of how this richness was generated and maintained through evolutionary time. Multiple theoretical frameworks have been developed to explain this diversity, including the Pleistocene pump hypothesis and the museum hypothesis. We use our phylogeny of the Asian barbets to test these hypotheses. Our data do not find an increase in speciation in the Pleistocene as predicted by the Pleistocene pump hypothesis. We do find evidence of extinctions, which apparently contradicts the museum hypothesis. However, the extinctions are only in a part of the phylogeny that is distributed mainly across Sundaland (the Malay peninsula and the islands off southeast Asia). The theory of island biogeography predicts a higher rate of extinction on islands than on mainland areas. The data from the part of the phylogeny primarily distributed on the mainland best fit a pure birth model of speciation, and thus supports the museum hypothesis.

  8. Molecular Phylogeny Of Microbes In The Deep-Sea Sediments From Tropical West Pacific Warm Pool

    Science.gov (United States)

    Wang, F.; Xiao, X.; Wang, P.

    2005-12-01

    The presence and phylogeny of bacteria and archaea in five deep-sea sediment samples collected from west Pacific Warm Pool area (WP-0, WP-1, WP-2, WP-3, WP-4), and in five sediment layers (1cm-, 3cm-, 6cm-, 10cm-, 12cm- layer) of the 12-cm sediment core of WP-0 were checked and compared. The microbial diversity in the five deep-sea sediments were similar as revealed by denaturing gradient gel electrophoresis, and all of them contained members of non-thermophilic marine group I crenarchaeota as the predominant archaeal group. The composition of methylotrophs including methanotrophs, sulfate reducing bacteria in the WP-0 sediment core were further investigated by molecular marker based analysis of mxaF, pmoA, dsrAB, specific anoxic methane oxidation archaeal and sulfate reducing bacterial 16S rRNA genes. From MxaF amino acid sequence analysis, it was demonstrated that microbes belonging to α - Proteobacteria most related to Hyphomicrobium and Methylobacterium were dominant aerobic methylotrophs in this deep-sea sediment; and small percentage of type II methanotrophs affiliating closest to Methylocystis and Methylosinus were also detected in this environment. mxaF quantitative PCR results showed that in the west Pacific WP sediment there existed around 3× 10 4-5 methylotrophs per gram sediment, 10-100 times more than that in samples collected from several other deep-sea Pacific sediment sample, but about 10 times less than that present in samples collected from rice and flower garden soil. Diverse groups of novel archaea (named as WPA), not belonging to any known archaeal lineages were checked out. They could be placed in the euryarchaeota kingdom, separated into two distinct groups, the main group was peripherally related with methanogens, the other group related with Thermoplasma. Possible sulfate reducing bacterial related with Desulfotomaculum, Desulfacinum, Desulfomonile and Desulfanuticus were also detected in our study. The vertical distributions of WPA

  9. Ecological correlates of sociality in Pemphigus aphids, with a partial phylogeny of the genus

    Directory of Open Access Journals (Sweden)

    Whitfield John A

    2007-10-01

    Full Text Available Abstract Background Because the systems of social organisation in the various species of Pemphigus aphids span the continuum from asociality through to advanced sociality (typified by the possession of morphologically specialised soldiers, the genus is an ideal model clade in which to study the influence of ecology on the origins of eusociality. We made detailed study of the ecology of three gall-dwelling species that show clear differences in their levels of social behaviour. To elucidate evolutionary relationships and to attempt to estimate the number of origins of sociality, we also created a phylogeny based on sequences spanning the mitochondrial genes Cytochrome Oxidase I and II for nine species of Pemphigus. Results P. spyrothecae, a highly social species with aggressive morphologically-specialised soldiers, has the longest galling phase, unsynchronised development of a large number of individuals in a densely-populated gall, and an extended period over which alates emerge. P. populi, a species with no soldiers, has the shortest galling phase, synchronised development of a small number of individuals in a sparsely-populated gall, and an extremely brief emergence period. The ecology of P. bursarius, which has behavioural soldiers that are not morphologically specialised, is intermediate between these two extremes. The galls of P. spyrothecae and P. bursarius form small openings during the course of the season and predation-related mortality is relatively high in these two species. Conversely, predation does not occur during the galling phase of P. populi, which has no soldiers but makes an entirely-sealed gall. The phylogeny allowed us to infer one likely point of origin of basic social defence and two independent origins of enhanced defence. Based on current knowledge of behaviour, the phylogeny also suggests that the defence trait may have been lost at least once. Conclusion The life-history strategy of P. spyrothecae appears to be geared

  10. Molecular characterization and phylogeny of four new species of the genus Trichonympha (Parabasalia, Trichonymphea) from lower termite hindguts.

    Science.gov (United States)

    Boscaro, Vittorio; James, Erick R; Fiorito, Rebecca; Hehenberger, Elisabeth; Karnkowska, Anna; Del Campo, Javier; Kolisko, Martin; Irwin, Nicholas A T; Mathur, Varsha; Scheffrahn, Rudolf H; Keeling, Patrick J

    2017-09-01

    Members of the genus Trichonympha are among the most well-known, recognizable and widely distributed parabasalian symbionts of lower termites and the wood-eating cockroach species of the genus Cryptocercus. Nevertheless, the species diversity of this genus is largely unknown. Molecular data have shown that the superficial morphological similarities traditionally used to identify species are inadequate, and have challenged the view that the same species of the genus Trichonympha can occur in many different host species. Ambiguities in the literature, uncertainty in identification of both symbiont and host, and incomplete samplings are limiting our understanding of the systematics, ecology and evolution of this taxon. Here we describe four closely related novel species of the genus Trichonympha collected from South American and Australian lower termites: Trichonympha hueyi sp. nov. from Rugitermes laticollis, Trichonympha deweyi sp. nov. from Glyptotermes brevicornis, Trichonympha louiei sp. nov. from Calcaritermes temnocephalus and Trichonympha webbyae sp. nov. from Rugitermes bicolor. We provide molecular barcodes to identify both the symbionts and their hosts, and infer the phylogeny of the genus Trichonympha based on small subunit rRNA gene sequences. The analysis confirms the considerable divergence of symbionts of members of the genus Cryptocercus, and shows that the two clades of the genus Trichonympha harboured by termites reflect only in part the phylogeny of their hosts.

  11. Molecular phylogeny of the carnivora (mammalia): assessing the impact of increased sampling on resolving enigmatic relationships.

    Science.gov (United States)

    Flynn, John J; Finarelli, John A; Zehr, Sarah; Hsu, Johnny; Nedbal, Michael A

    2005-04-01

    This study analyzed 76 species of Carnivora using a concatenated sequence of 6243 bp from six genes (nuclear TR-i-I, TBG, and IRBP; mitochondrial ND2, CYTB, and 12S rRNA), representing the most comprehensive sampling yet undertaken for reconstructing the phylogeny of this clade. Maximum parsimony and Bayesian methods were remarkably congruent in topologies observed and in nodal support measures. We recovered all of the higher level carnivoran clades that had been robustly supported in previous analyses (by analyses of morphological and molecular data), including the monophyly of Caniformia, Feliformia, Arctoidea, Pinnipedia, Musteloidea, Procyonidae + Mustelidae sensu stricto, and a clade of (Hyaenidae + (Herpestidae + Malagasy carnivorans)). All of the traditional "families," with the exception of Viverridae and Mustelidae, were robustly supported as monophyletic groups. We further have determined the relative positions of the major lineages within the Caniformia, which previous studies could not resolve, including the first robust support for the phylogenetic position of marine carnivorans (Pinnipedia) within the Arctoidea (as the sister-group to musteloids [sensu lato], with ursids as their sister group). Within the pinnipeds, Odobenidae (walrus) was more closely allied with otariids (sea lions/fur seals) than with phocids ("true" seals). In addition, we recovered a monophyletic clade of skunks and stink badgers (Mephitidae) and resolved the topology of musteloid interrelationships as: Ailurus (Mephitidae (Procyonidae, Mustelidae [sensu stricto])). This pattern of interrelationships of living caniforms suggests a novel inference that large body size may have been the primitive condition for Arctoidea, with secondary size reduction evolving later in some musteloids. Within Mustelidae, Bayesian analyses are unambiguous in supporting otter monophyly (Lutrinae), and in both MP and Bayesian analyses Martes is paraphyletic with respect to Gulo and Eira, as has been

  12. Molecular phylogeny of Acer monspessulanum L. subspecies from Iran inferred using the ITS region of nuclear ribosomal DNA

    Directory of Open Access Journals (Sweden)

    HANIF KHADEMI

    2016-04-01

    Full Text Available Abstract. Khademi H, Mehregan I, Assadi M, Nejadsatari T, Zarre S. 2015. Molecular phylogeny of Acer monspessulanum L. subspecies from Iran inferred using the ITS region of nuclear ribosomal DNA. Biodiversitas 17: 16-23. This study was carried out on the Acer monspessulanum complex growing wild in Iran. Internal transcribed spacer (ITS sequences for 75 samples representing five different subspecies of Acer monspessulanum were analyzed. Beside this, 86 previously published ITS sequences from GenBank were used to test the monophyly of the complex worldwide. Phylogenetic analyses were conducted using Bayesian inference and maximum parsimony. The results indicate that most samples of A. monspessulanum species from Iran were part of a monophyletic clade with 8 samples of A. ibericum from Georgia, A. hyrcanum from Iran and one of A. sempervirens from Greece (PP= 1; BS= 79%. Our results indicate that use of morphological characteristics coupled with molecular data will be most effective.

  13. Molecular Phylogeny and Biogeographic History of the Armored Neotropical Catfish Subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae (Siluriformes: Loricariidae)

    Science.gov (United States)

    Roxo, Fábio F.; Albert, James S.; Silva, Gabriel S. C.; Zawadzki, Cláudio H.; Foresti, Fausto; Oliveira, Claudio

    2014-01-01

    The main objectives of this study are estimate a species-dense, time-calibrated molecular phylogeny of Hypoptopomatinae, Neoplecostominae, and Otothyrinae, which together comprise a group of armoured catfishes that is widely distributed across South America, to place the origin of major clades in time and space, and to demonstrate the role of river capture on patterns of diversification in these taxa. We used maximum likelihood and Bayesian methods to estimate a time-calibrated phylogeny of 115 loricariid species, using three mitochondrial and one nuclear genes to generate a matrix of 4,500 base pairs, and used parametric biogeographic analyses to estimate ancestral geographic ranges and to infer the effects of river capture events on the geographic distributions of these taxa. Our analysis recovered Hypoptopomatinae, Neoplecostominae, and Otothyrinae as monophyletic with strong statistical support, and Neoplecostominae as more closely related to Otothyrinae than to Hypoptopomatinae. Our time-calibrated phylogeny and ancestral-area estimations indicate an origin of Hypoptopomatinae, Neoplecostominae, and Otothyrinae during the Lower Eocene in the Atlantic Coastal Drainages, from which it is possible to infer several dispersal events to adjacent river basins during the Neogene. In conclusion we infer a strong influence of river capture in: (1) the accumulation of modern clade species-richness values; (2) the formation of the modern basin-wide species assemblages, and (3) the presence of many low-diversity, early-branching lineages restricted to the Atlantic Coastal Drainages. We further infer the importance of headwater stream capture and marine transgressions in shaping patterns in the distributions of Hypoptopomatinae, Neoplecostominae and Otothyrinae throughout South America. PMID:25148406

  14. Molecular phylogeny of the harvestmen genus Sabacon (Arachnida: Opiliones: Dyspnoi) reveals multiple Eocene-Oligocene intercontinental dispersal events in the Holarctic.

    Science.gov (United States)

    Schönhofer, Axel L; McCormack, Maureen; Tsurusaki, Nobuo; Martens, Jochen; Hedin, Marshal

    2013-01-01

    We investigated the phylogeny and biogeographic history of the Holarctic harvestmen genus Sabacon, which shows an intercontinental disjunct distribution and is presumed to be a relatively old taxon. Molecular phylogenetic relationships of Sabacon were estimated using multiple gene regions and Bayesian inference for a comprehensive Sabacon sample. Molecular clock analyses, using relaxed clock models implemented in BEAST, are applied to date divergence events. Biogeographic scenarios utilizing S-DIVA and Lagrange C++ are reconstructed over sets of Bayesian trees, allowing for the incorporation of phylogenetic uncertainty and quantification of alternative reconstructions over time. Four primary well-supported subclades are recovered within Sabacon: (1) restricted to western North America; (2) eastern North American S. mitchelli and sampled Japanese taxa; (3) a second western North American group and taxa from Nepal and China; and (4) eastern North American S. cavicolens with sampled European Sabacon species. Three of four regional faunas (wNA, eNA, East Asia) are thereby non-monophyletic, and three clades include intercontinental disjuncts. Molecular clock analyses and biogeographic reconstructions support nearly simultaneous intercontinental dispersal coincident with the Eocene-Oligocene transition. We hypothesize that biogeographic exchange in the mid-Tertiary is likely correlated with the onset of global cooling, allowing cryophilic Sabacon taxa to disperse within and among continents. Morphological variation supports the divergent genetic clades observed in Sabacon, and suggests that a taxonomic revision (e.g., splitting Sabacon into multiple genera) may be warranted.

  15. Phylogeny and molecular evolution of the Acc1 gene within the StH genome species in Triticeae (Poaceae).

    Science.gov (United States)

    Fan, Xing; Sha, Li-Na; Wang, Xiao-Li; Zhang, Hai-Qin; Kang, Hou-Yang; Wang, Yi; Zhou, Yong-Hong

    2013-10-15

    To estimate the phylogeny and molecular evolution of a single-copy gene encoding plastid acetyl-CoA carboxylase (Acc1) within the StH genome species, two Acc1 homoeologous sequences were isolated from nearly all the sampled StH genome species and were analyzed with those from 35 diploid taxa representing 19 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) the StH genome species from the same areas or neighboring geographic regions are closely related to each other; (2) the Acc1 gene sequences of the StH genome species from North America and Eurasia are evolutionarily distinct; (3) Dasypyrum has contributed to the nuclear genome of Elymus repens and Elymus mutabilis; (4) the StH genome polyploids have higher levels of sequence diversity in the H genome homoeolog than the St genome homoeolog; and (5) the Acc1 sequence may evolve faster in the polyploid species than in the diploids. Our result provides some insight on evolutionary dynamics of duplicate Acc1 gene, the polyploidy speciation and phylogeny of the StH genome species. © 2013 Elsevier B.V. All rights reserved.

  16. [Molecular phylogeny of gastrotricha based on 18S rRNA genes comparison: rejection of hypothesis of relatedness with nematodes].

    Science.gov (United States)

    Petrov, N B; Pegova, A N; Manylov, O G; Vladychenskaia, N S; Miuge, N S; Aleshin, V V

    2007-01-01

    Gastrotrichs are meiobenthic free-living aquatic worms whose phylogenetic and intra-group relationships remain unclear despite some attempts to resolve them on the base of morphology or molecules. In this study we analysed complete sequences of the 18S rRNA gene of 15 taxa (8 new and 7 published) to test numerous hypotheses on gastrotrich phylogeny and to verify whether controversial interrelationships from previous molecular data could be due to the short region available for analysis and the poor taxa sampling. Data were analysed using both maximum likelihood and Bayesian inference. Results obtained suggest that gastrotrichs, together with Gnathostomulida, Plathelminthes, Syndermata (Rotifera + Acanthocephala), Nemertea and Lophotrochozoa, comprise a clade Spiralia. Statistical tests reject phylogenetic hypotheses regarding Gastrotricha as close relatives of Nematoda and other Ecdysozoa or placing them at the base of bilaterian tree close to acoels and nemertodermatides. Within Gastrotricha, Chaetonotida and Macrodasyida comprise two well supported clades. Our analysis confirmed the monophyly of the Chaetonotidae and Xenotrichulidae within Chaetonida as well as Turbanellidae and Thaumastodermatidae within Macrodasyida. Mesodasys is a sister group of the Turbanellidae, and Lepidodasyidae appears to be a polyphyletic group as Cephalodasys forms a separate lineage at the base of macrodasyids, whereas Lepidodasys groups with Neodasys between Thaumastodermatidae and Turbanellidae. To infer a more reliable Gastrotricha phylogeny many species and additional genes should be involved in future analyses.

  17. The evolution of the Proteocephalidea (Platyhelminthes, Eucestoda) based on an enlarged molecular phylogeny, with comments on their uterine development.

    Science.gov (United States)

    de Chambrier, Alain; Zehnder, Marc; Vaucher, Claude; Mariaux, Jean

    2004-03-01

    We present a molecular phylogeny of the Proteocephalidea based on 28S rDNA sequence data that is a follow-up to the paper by Zehnder & Mariaux (1999). Twenty-three new sequences, including three outgroups are added in our new data-set. The Gangesiinae Mola, 1929 and the Acanthotaeniinae Freze, 1963 appear to be the most primitive clades. They are followed by a robust clade comprising the Palaearctic Proteocephalinae Mola, 1929 from freshwater fishes. The structure of the more derived clades, comprising most Neotropical and Nearctic species, is less resolved. At the nomenclatural level, we erect a new genus, Glanitaenia n. g. for G. osculata (Goeze, 1782) n. comb., previously Proteocephalus osculatus, and define an aggregate for the Palaearctic Proteocephalus Weinland, 1858. After a re-examination of all of the studied taxa, we identify two types of uterine development and show the importance of this character for the systematics of the order. Our phylogeny does not support the classical view of a Neotropical origin for the Proteocephalidea but rather favours an Old World origin of the group either in saurians or Palaearctic Siluriformes.

  18. Are characiform fishes Gondwanan in origin? Insights from a time-scaled molecular phylogeny of the Citharinoidei (Ostariophysi: Characiformes).

    Science.gov (United States)

    Arroyave, Jairo; Denton, John S S; Stiassny, Melanie L J

    2013-01-01

    Fishes of the order Characiformes are a diverse and economically important teleost clade whose extant members are found exclusively in African and Neotropical freshwaters. Although their transatlantic distribution has been primarily attributed to the Early Cretaceous fragmentation of western Gondwana, vicariance has not been tested with temporal information beyond that contained in their fragmentary fossil record and a recent time-scaled phylogeny focused on the African family Alestidae. Because members of the suborder Citharinoidei constitute the sister lineage to the entire remaining Afro-Neotropical characiform radiation, we inferred a time-calibrated molecular phylogeny of citharinoids using a popular Bayesian approach to molecular dating in order to assess the adequacy of current vicariance hypotheses and shed light on the early biogeographic history of characiform fishes. Given that the only comprehensive phylogenetic treatment of the Citharinoidei has been a morphology-based analysis published over three decades ago, the present study also provided an opportunity to further investigate citharinoid relationships and update the evolutionary framework that has laid the foundations for the current classification of the group. The inferred chronogram is robust to changes in calibration priors and suggests that the origins of citharinoids date back to the Turonian (ca 90 Ma) of the Late Cretaceous. Most modern citharinoid genera, however, appear to have originated and diversified much more recently, mainly during the Miocene. By reconciling molecular-clock- with fossil-based estimates for the origins of the Characiformes, our results provide further support for the hypothesis that attributes the disjunct distribution of the order to the opening of the South Atlantic Ocean. The striking overlap in tempo of diversification and biogeographic patterns between citharinoids and the African-endemic family Alestidae suggests that their evolutionary histories could have

  19. Are characiform fishes Gondwanan in origin? Insights from a time-scaled molecular phylogeny of the Citharinoidei (Ostariophysi: Characiformes.

    Directory of Open Access Journals (Sweden)

    Jairo Arroyave

    Full Text Available Fishes of the order Characiformes are a diverse and economically important teleost clade whose extant members are found exclusively in African and Neotropical freshwaters. Although their transatlantic distribution has been primarily attributed to the Early Cretaceous fragmentation of western Gondwana, vicariance has not been tested with temporal information beyond that contained in their fragmentary fossil record and a recent time-scaled phylogeny focused on the African family Alestidae. Because members of the suborder Citharinoidei constitute the sister lineage to the entire remaining Afro-Neotropical characiform radiation, we inferred a time-calibrated molecular phylogeny of citharinoids using a popular Bayesian approach to molecular dating in order to assess the adequacy of current vicariance hypotheses and shed light on the early biogeographic history of characiform fishes. Given that the only comprehensive phylogenetic treatment of the Citharinoidei has been a morphology-based analysis published over three decades ago, the present study also provided an opportunity to further investigate citharinoid relationships and update the evolutionary framework that has laid the foundations for the current classification of the group. The inferred chronogram is robust to changes in calibration priors and suggests that the origins of citharinoids date back to the Turonian (ca 90 Ma of the Late Cretaceous. Most modern citharinoid genera, however, appear to have originated and diversified much more recently, mainly during the Miocene. By reconciling molecular-clock- with fossil-based estimates for the origins of the Characiformes, our results provide further support for the hypothesis that attributes the disjunct distribution of the order to the opening of the South Atlantic Ocean. The striking overlap in tempo of diversification and biogeographic patterns between citharinoids and the African-endemic family Alestidae suggests that their evolutionary

  20. Dogs, cats, and kin: a molecular species-level phylogeny of Carnivora.

    Science.gov (United States)

    Agnarsson, Ingi; Kuntner, Matjaz; May-Collado, Laura J

    2010-03-01

    Phylogenies underpin comparative biology as high-utility tools to test evolutionary and biogeographic hypotheses, inform on conservation strategies, and reveal the age and evolutionary histories of traits and lineages. As tools, most powerful are those phylogenies that contain all, or nearly all, of the taxa of a given group. Despite their obvious utility, such phylogenies, other than summary 'supertrees', are currently lacking for most mammalian orders, including the order Carnivora. Carnivora consists of about 270 extant species including most of the world's large terrestrial predators (e.g., the big cats, wolves, bears), as well as many of man's favorite wild (panda, cheetah, tiger) and domesticated animals (dog, cat). Distributed globally, carnivores are highly diverse ecologically, having occupied all major habitat types on the planet and being diverse in traits such as sociality, communication, body/brain size, and foraging ecology. Thus, numerous studies continue to address comparative questions within the order, highlighting the need for a detailed species-level phylogeny. Here we present a phylogeny of Carnivora that increases taxon sampling density from 28% in the most detailed primary-data study to date, to 82% containing 243 taxa (222 extant species, 17 subspecies). In addition to extant species, we sampled four extinct species: American cheetah, saber-toothed cat, cave bear and the giant short-faced bear. Bayesian analysis of cytochrome b sequences data-mined from GenBank results in a phylogenetic hypothesis that is largely congruent with prior studies based on fewer taxa but more characters. We find support for the monophyly of Carnivora, its major division into Caniformia and Feliformia, and for all but one family within the order. The only exception is the placement of the kinkajou outside Procyonidae, however, prior studies have already cast doubt on its family placement. In contrast, at the subfamily and genus level, our results indicate numerous

  1. A multilocus molecular phylogeny of combtooth blennies (Percomorpha: Blennioidei: Blenniidae): multiple invasions of intertidal habitats.

    Science.gov (United States)

    Hundt, Peter J; Iglésias, Samuel P; Hoey, Andrew S; Simons, Andrew M

    2014-01-01

    The combtooth blennies (f. Blenniidae) is a diverse family of primarily marine fishes with approximately 387 species that inhabit subtidal, intertidal, supralittoral habitats in tropical and warm temperate regions throughout the world. The Blenniidae has typically been divided into six groups based on morphological characters: Blenniini, Nemophini, Omobranchini, Phenablenniini, Parablenniini, and Salariini. There is, however, considerable debate over the validity of these groups and their relationships. Since little is known about the relationships in this group, other aspects of their evolutionary history, such as habitat evolution and remain unexplored. Herein, we use Bayesian and maximum likelihood analyses of four nuclear loci (ENC1, myh6, ptr, and tbr1) from 102 species, representing 41 genera, to resolve the phylogeny of the Blenniidae, determine the validity of the previously recognized groupings, and explore the evolution of habitat association using ancestral state reconstruction. Bayesian and maximum likelihood analyses of the resulting 3100bp of DNA sequence produced nearly identical topologies, and identified many well-supported clades. Of these clades, Nemophini was the only traditionally recognized group strongly supported as monophyletic. This highly resolved and thoroughly sampled blenniid phylogeny provides strong evidence that the traditional rank-based classification does not adequately delimit monophyletic groups with the Blenniidae. This phylogeny redefines the taxonomy of the group and supports the use of 13 unranked clades for the classification of blenniids. Ancestral state reconstructions identified four independent invasions of intertidal habitats within the Blenniidae, and subsequent invasions into supralittoral and freshwater habitats from these groups. The independent invasions of intertidal habitats are likely to have played an important role in the evolutionary history of blennies. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. A multilocus molecular phylogeny of combtooth blennies (Percomorpha: Blennioidei: Blenniidae): Multiple invasions of intertidal habitats

    KAUST Repository

    Hundt, Peter J.

    2014-01-01

    The combtooth blennies (f. Blenniidae) is a diverse family of primarily marine fishes with approximately 387 species that inhabit subtidal, intertidal, supralittoral habitats in tropical and warm temperate regions throughout the world. The Blenniidae has typically been divided into six groups based on morphological characters: Blenniini, Nemophini, Omobranchini, Phenablenniini, Parablenniini, and Salariini. There is, however, considerable debate over the validity of these groups and their relationships. Since little is known about the relationships in this group, other aspects of their evolutionary history, such as habitat evolution and remain unexplored. Herein, we use Bayesian and maximum likelihood analyses of four nuclear loci (ENC1, myh6, ptr, and tbr1) from 102 species, representing 41 genera, to resolve the phylogeny of the Blenniidae, determine the validity of the previously recognized groupings, and explore the evolution of habitat association using ancestral state reconstruction. Bayesian and maximum likelihood analyses of the resulting 3100. bp of DNA sequence produced nearly identical topologies, and identified many well-supported clades. Of these clades, Nemophini was the only traditionally recognized group strongly supported as monophyletic. This highly resolved and thoroughly sampled blenniid phylogeny provides strong evidence that the traditional rank-based classification does not adequately delimit monophyletic groups with the Blenniidae. This phylogeny redefines the taxonomy of the group and supports the use of 13 unranked clades for the classification of blenniids. Ancestral state reconstructions identified four independent invasions of intertidal habitats within the Blenniidae, and subsequent invasions into supralittoral and freshwater habitats from these groups. The independent invasions of intertidal habitats are likely to have played an important role in the evolutionary history of blennies. © 2013 Elsevier Inc.

  3. Molecular phylogeny of Salmo of the western Balkans, based upon multiple nuclear loci.

    Science.gov (United States)

    Pustovrh, Gašper; Snoj, Aleš; Bajec, Simona Sušnik

    2014-02-03

    Classification of species within the genus Salmo is still a matter of discussion due to their high level of diversity and to the low power of resolution of mitochondrial (mt)DNA-based phylogeny analyses that have been traditionally used in evolutionary studies of the genus. We apply a new marker system based on nuclear (n)DNA loci to present a novel view of the phylogeny of Salmo representatives and we compare it with the mtDNA-based phylogeny. Twenty-two nDNA loci were sequenced for 76 individuals of the brown trout complex: Salmo trutta (Danubian, Atlantic, Adriatic, Mediterranean and Duero mtDNA lineages), Salmo marmoratus (marble trout), Salmo obtusirostris (softmouth trout), and Salmo ohridanus (Ohrid belvica or belushka). Sequences were phylogenetically analyzed using maximum-likelihood and Bayesian Inference methods. The divergence time of the major clades was estimated using the program BEAST. The existence of five genetic units i.e. S. salar, S. ohridanus, S. obtusirostris, S. marmoratus and the S. trutta complex, including its major phylogenetic lineages was confirmed. Contrary to previous observations, S. obtusirostris was found to be sister to the S. trutta complex and the S. marmoratus clade rather than to the S. ohridanus clade. Reticulate evolution of S. obtusirostris was confirmed and a time for its pre-glacial origin suggested. S. marmoratus was found to be a separate species as S. trutta and S. obtusirostris. Relationships among lineages within the S. trutta complex were weakly supported and remain largely unresolved. Nuclear DNA-based results showed a fairly good match with the phylogeny of Salmo inferred from mtDNA analyses. The comparison of nDNA and mtDNA data revealed at least four cases of mitochondrial-nuclear DNA discordance observed that were all confined to the Adriatic basin of the Western Balkans. Together with the well-known extensive morphological and genetic variability of Balkan trouts, this observation highlights an interesting

  4. A molecular phylogeny of Dorylus army ants provides evidence for multiple evolutionary transitions in foraging niche

    DEFF Research Database (Denmark)

    Kronauer, Daniel J C; Schöning, Caspar; Vilhelmsen, Lars

    2007-01-01

    BACKGROUND: Army ants are the prime arthropod predators in tropical forests, with huge colonies and an evolutionary derived nomadic life style. Five of the six recognized subgenera of Old World Dorylus army ants forage in the soil, whereas some species of the sixth subgenus (Anomma) forage...... in the leaf-litter and some as conspicuous swarm raiders on the forest floor and in the lower vegetation (the infamous driver ants). Here we use a combination of nuclear and mitochondrial DNA sequences to reconstruct the phylogeny of the Dorylus s.l. army ants and to infer the evolutionary transitions...

  5. Molecular Phylogenies of Blastocystis Isolates from Different Hosts: Implications for Genetic Diversity, Identification of Species, and Zoonosis

    Science.gov (United States)

    Noël, Christophe; Dufernez, Fabienne; Gerbod, Delphine; Edgcomb, Virginia P.; Delgado-Viscogliosi, Pilar; Ho, Lip-Chuen; Singh, Mulkit; Wintjens, René; Sogin, Mitchell L.; Capron, Monique; Pierce, Raymond; Zenner, Lionel; Viscogliosi, Eric

    2005-01-01

    Small-subunit (SSU) rRNA gene sequences were obtained by PCR from 12 Blastocystis isolates from humans, rats, and reptiles for which elongation factor 1α (EF-1α) gene sequences are already available. These new sequences were analyzed by the Bayesian method in a broad phylogeny including, for the first time, all Blastocystis sequences available in the databases. Phylogenetic trees identified seven well-resolved groups plus several discrete lineages that could represent newly defined clades. Comparative analysis of SSU rRNA- and EF-1α-based trees obtained by maximum-likelihood methods from a restricted sampling (13 isolates) revealed overall agreement between the two phylogenies. In spite of their morphological similarity, sequence divergence among Blastocystis isolates reflected considerable genetic diversity that could be correlated with the existence of potentially ≥12 different species within the genus. Based on this analysis and previous PCR-based genotype classification data, six of these major groups might consist of Blastocystis isolates from both humans and other animal hosts, confirming the low host specificity of Blastocystis. Our results also strongly suggest the existence of numerous zoonotic isolates with frequent animal-to-human and human-to-animal transmissions and of a large potential reservoir in animals for infections in humans. PMID:15634993

  6. Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach; the effect of data partitioning on resolving phylogenies in a Bayesian framework.

    Science.gov (United States)

    Strugnell, Jan; Norman, Mark; Jackson, Jennifer; Drummond, Alexei J; Cooper, Alan

    2005-11-01

    The resolution of higher level phylogeny of the coleoid cephalopods (octopuses, squids, and cuttlefishes) has been hindered by homoplasy among morphological characters in conjunction with a very poor fossil record. Initial molecular studies, based primarily on small fragments of single mitochondrial genes, have produced little resolution of the deep relationships amongst coleoid cephalopod families. The present study investigated this issue using 3415 base pairs (bp) from three nuclear genes (octopine dehydrogenase, pax-6, and rhodopsin) and three mitochondrial genes (12S rDNA, 16S rDNA, and cytochrome oxidase I) from a total of 35 species (including representatives of each of the higher level taxa). Bayesian analyses were conducted on mitochondrial and nuclear genes separately and also all six genes together. Separate analyses were conducted with the data partitioned by gene, codon/rDNA, gene+codon/rDNA or not partitioned at all. In the majority of analyses partitioning the data by gene+codon was the appropriate model with partitioning by codon the second most selected model. In some instances the topology varied according to the model used. Relatively high posterior probabilities and high levels of congruence were present between the topologies resulting from the analysis of all Octopodiform (octopuses and vampire "squid") taxa for all six genes, and independently for the datasets of mitochondrial and nuclear genes. In contrast, the highest levels of resolution within the Decapodiformes (squids and cuttlefishes) resulted from analysis of nuclear genes alone. Different higher level Decapodiform topologies were obtained through the analysis of only the 1st+2nd codon positions of nuclear genes and of all three codon positions. It is notable that there is strong evidence of saturation among the 3rd codon positions within the Decapodiformes and this may contribute spurious signal. The results suggest that the Decapodiformes may have radiated earlier and/or had faster

  7. A comprehensive species-level molecular phylogeny of the New World blackbirds (Icteridae).

    Science.gov (United States)

    Powell, Alexis F L A; Barker, F Keith; Lanyon, Scott M; Burns, Kevin J; Klicka, John; Lovette, Irby J

    2014-02-01

    The New World blackbirds (Icteridae) are among the best known songbirds, serving as a model clade in comparative studies of morphological, ecological, and behavioral trait evolution. Despite wide interest in the group, as yet no analysis of blackbird relationships has achieved comprehensive species-level sampling or found robust support for most intergeneric relationships. Using mitochondrial gene sequences from all ∼108 currently recognized species and six additional distinct lineages, together with strategic sampling of four nuclear loci and whole mitochondrial genomes, we were able to resolve most relationships with high confidence. Our phylogeny is consistent with the strongly-supported results of past studies, but it also contains many novel inferences of relationship, including unexpected placement of some newly-sampled taxa, resolution of relationships among major clades within Icteridae, and resolution of genus-level relationships within the largest of those clades, the grackles and allies. We suggest taxonomic revisions based on our results, including restoration of Cacicus melanicterus to the monotypic Cassiculus, merging the monotypic Ocyalus and Clypicterus into Cacicus, restoration of Dives atroviolaceus to the monotypic Ptiloxena, and naming Curaeus forbesi to a new genus, Anumara. Our hypothesis of blackbird phylogeny provides a foundation for ongoing and future evolutionary analyses of the group.

  8. A Molecular Phylogeny of the Lichen Genus Lecidella Focusing on Species from Mainland China.

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    Full Text Available The phylogeny of Lecidella species is studied, based on a 7-locus data set using ML and Bayesian analyses. Phylogenetic relationships among 43 individuals representing 11 Lecidella species, mainly from mainland China, were included in the analyses and phenotypical characters studied and mapped onto the phylogeny. The Lecidella species fall into three major clades, which are proposed here as three informal groups-Lecidella stigmatea group, L. elaeochroma group and L. enteroleucella group, each of them strongly supported. Our phylogenetic analyses support traditional species delimitation based on morphological and chemical traits in most but not all cases. Individuals considered as belonging to the same species based on phenotypic characters were found to be paraphyletic, indicating that cryptic species might be hidden under these names (e.g. L. carpathica and L. effugiens. Potentially undescribed species were found within the phenotypically circumscribed species L. elaeochroma and L. stigmatea. Additional sampling across a broader taxonomic and geographic scale will be crucial to fully resolving the taxonomy in this cosmopolitan genus.

  9. Molecular phylogeny of oligotrich genera Omegastrombidium and Novistrombidium (Protozoa, Ciliophora) for the systematical relationships within Family Strombidiidae

    Science.gov (United States)

    Zhang, Qianqian; Yi, Zhenzhen; Xu, Dapeng; Al-Rasheid, Khaled A. S.; Gong, Jun; Song, Weibo

    2010-07-01

    The phylogeny of the oligotrich ciliates is currently a hot debate despite the availability of both morphological and molecular data. In the present paper, further small subunit rRNA (SS rRNA) genes were analyzed from the Genera Omegastrombidium and Novistrombidium, as well as from Strombidium, and combined with three new SS rRNA sequences from Strombidium basimorphum, S. sulcatum population QD-1, and Novistrombidium testaceum population GD. The phylogenetic positions of these organisms were inferred using Bayesian inference, Maximum Likelihood, and Maximum Parsimony methods. The main results are: (1) the SS rRNA gene sequence analyses match the recent findings about the molecular evolution of oligotrichs, indicating that the family Strombidiidae is paraphyletic; (2) the Genus Omegastrombidium is separated from the Genus Strombidium, as shown in recent cladistic analyses; (3) morphospecies in Genus Novistrombidium, based on similarity of somatic ciliature, are separated from each other in all topological trees, indicating that this genus could be a paraphyletic group; (4) the molecular data indicate a possibility of paraphyly for the genus Strombidium; and (5) the similarities of the SS rRNA gene of specimens identified as S. sulcatum and S. inclinatum are 99.8%-100%. However, present knowledge on the oligotrichs sensu stricto is still insufficient and further studies based on both molecular and other technologies are required.

  10. Phylogeny and biogeography of Triportheidae (Teleostei: Characiformes) based on molecular data.

    Science.gov (United States)

    Mariguela, T C; Roxo, F F; Foresti, F; Oliveira, C

    2016-03-01

    Triportheidae represents a relatively small family of characiform fishes with highly modified morphology. The relationship among characiform families is still unclear, and a phylogenetic analysis for the family including a representative number of Triportheus species has never been performed. Here, we inferred a phylogeny for 19 of the 22 species recognized for this family and two possible new Triportheus species using two mitochondrial and three nuclear genes. Our results show that (1) Triportheidae is monophyletic and a sister group of the clade consisting of the families Bryconidae and Gasteropelecidae; (2) Triportheus is monophyletic, but some species need to be reviewed and described; (3) all genera in Triportheidae, except for Agoniates originated in the period between Early Oligocene and Early Miocene; and (4) speciation in Triportheidae coincides with important geological events in South America, reinforcing the importance of time-calibrated trees to study fish evolution. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Molecular phylogeny and biogeography of the spider ants, genus Leptomyrmex Mayr (Hymenoptera: Formicidae).

    Science.gov (United States)

    Lucky, Andrea

    2011-05-01

    This study provides the first phylogenetic reconstruction of the ant genus Leptomyrmex Mayr, a prominent endemic component of rain forest and wet sclerophyll forest in Australia, New Guinea and New Caledonia. Five genes are used to reconstruct phylogeny and estimate of ages of diversification in order to test congruence of the history of nuclear and mitochondrial genes: three protein-coding nuclear genes: arginine kinase (argK, 897 bp), long wavelength rhodopsin (LW Rh, 546 bp) and wingless (Wg, 409 bp), as well as the large subunit ribosomal gene 28S (482 bp) and the mitochondrial gene cytochrome oxidase I (COI, 658 bp). Four different partitioning schemes were tested for optimal resolving power; results show that partitioning by gene, translational pattern and codon position were uniformly favoured over less complex partitions. Nuclear markers showed relatively minor sequence divergence and provided strongly supported topology; phylogeny based solely on mtDNA produced somewhat conflicting topology but offered little power to resolve species complexes. Monophyly of the genus Leptomyrmex was recovered, as was the sister-group relationship of 'micro-' and 'macro-'Leptomyrmex species. Divergence dating analyses estimate that Leptomyrmex arose in the Eocene (stem age ∼ 44 million years ago (ma)), and that the 'macro-' species diverged from the 'micro-' species in the early Oligocene (∼ 31 ma). Diversification of the crown group 'macro-' and 'micro-'Leptomyrmex occurred in the Miocene (∼ 15 ma and 7.9 ma, respectively). New Guinean and New Caledonian lineages appear to have diverged from Australian lineages only recently (∼ 4.7 ma and 10.3 ma, respectively), and the latter clade is inferred to have reached New Caledonia from Australia via long distance dispersal. These results challenge previous hypotheses of Leptomyrmex classification and assumptions about their historical dispersal, but are in agreement with the current knowledge of the geological history of

  12. Phylogeny, Seed Trait, and Ecological Correlates of Seed Germination at the Community Level in a Degraded Sandy Grassland

    OpenAIRE

    Wang, Zhengning; Wang, Lixin; Liu, Zhimin; Li, Yanjuan; Liu, Qingqing; Liu, Bo

    2016-01-01

    Seed germination strongly affects plant population growth and persistence, and it can be dramatically influenced by phylogeny, seed traits, and ecological factors. In this study, we examined the relationships among seed mass, seed shape, and germination percentage (GP), and assessed the extent to which phylogeny, seed traits (seed mass, shape, and color) and ecological factors (ecotype, life form, adult longevity, dispersal type, and onset of flowering) influence GP at the community level. Al...

  13. A nuclear DNA based phylogeny of endemic sand dune ants of the genus Mycetophylax (Emery, 1913): how morphology is reflected in molecular data.

    Science.gov (United States)

    Cardoso, Danon Clemes; Cristiano, Maykon Passos; Heinze, Jürgen; Tavares, Mara Garcia

    2014-01-01

    Molecular methods have substantially advanced our knowledge about ant systematics in the past few years. Here, we infer the molecular phylogeny of sand dune ants of the genus Mycetophylax, Emery 1913 (Formicidae: Myrmicinae: Attini) using 730 base pairs of DNA sequences of the two nuclear genes longwave rhodopsin and wingless. Our analyses indicate that Mycetophylax is monophyletic, as suggested by its morphological characters. M. morschi, previously considered a species of Cyphomyrmex due to a scrobe-like impressed area on the head, forms a well-supported cluster with the two other species of Mycetophylax, M. conformis and M. simplex. Our analysis yields the first comprehensive phylogeny of Mycetophylax based on molecular data and includes specimens from localities within a wide distributional range as well as all species belonging to the genus following the recent taxonomic revision.

  14. Exploring tree-habitat associations in a Chinese subtropical forest plot using a molecular phylogeny generated from DNA barcode loci.

    Directory of Open Access Journals (Sweden)

    Nancai Pei

    Full Text Available Elucidating the ecological mechanisms underlying community assembly in subtropical forests remains a central challenge for ecologists. The assembly of species into communities can be due to interspecific differences in habitat associations, and there is increasing evidence that these associations may have an underlying phylogenetic structure in contemporary terrestrial communities. In other words, by examining the degree to which closely related species prefer similar habitats and the degree to which they co-occur, ecologists are able to infer the mechanisms underlying community assembly. Here we implement this approach in a diverse subtropical tree community in China using a long-term forest dynamics plot and a molecular phylogeny generated from three DNA barcode loci. We find that there is phylogenetic signal in plant-habitat associations (i.e. closely related species tend to prefer similar habitats and that patterns of co-occurrence within habitats are typically non-random with respect to phylogeny. In particular, we found phylogenetic clustering in valley and low-slope habitats in this forest, indicating a filtering of lineages plays a dominant role in structuring communities in these habitats and we found evidence of phylogenetic overdispersion in high-slope, ridge-top and high-gully habitats, indicating that distantly related species tended to co-occur in these high elevation habitats and that lineage filtering is less important in structuring these communities. Thus we infer that non-neutral niche-based processes acting upon evolutionarily conserved habitat preferences explain the assembly of local scale communities in the forest studied.

  15. Molecular phylogeny of the Afroedura nivaria (Reptilia: Gekkonidae) species complex in South Africa provides insight on cryptic speciation.

    Science.gov (United States)

    Makhubo, Buyisile G; Tolley, Krystal A; Bates, Michael F

    2015-01-01

    The Afroedura nivaria species complex (A. nivaria, A. karroica, A. amatolica, A. tembulica and A. halli) is a morphologically conservative group of medium-sized flat geckos endemic to South Africa and Lesotho. Species are allopatric, as are some populations within species that are separated by large expanses of unsuitable habitat. Because of this isolation of populations we hypothesised that several cryptic species may be present. To investigate this hypothesis we constructed a molecular phylogeny using multiple markers, and included representatives of other Afroedura species. Bayesian inference and maximum likelihood analyses (439bp 16S, 593bp ND4, 948bp RAG1) strongly supported the genetic distinctiveness of the five described species. However, the A. nivaria species complex as currently described is not monophyletic, as A. karroica was positioned outside a clade containing all other Afroedura species, and A. pondolia (which was presumed to belong to a different species complex) was recovered within the A. nivaria complex. Several distinct clades within A. halli and A. nivaria were also recovered, and the narrowly-distributed A. amatolica consisted of two highly divergent clades. We also conducted a multivariate analysis using 19 morphological characters to investigate whether the clades recovered by the phylogeny were distinct in terms of head, body and limb shape. The analysis showed some variation between clades in terms of locomotor apparatus (forelimbs and feet), head and body dimensions, but overall the morphological differences were minor. This morphological conservatism in the A. nivaria complex may be a result of adaptation to similar microhabitats. Exclusive of A. karroica, the results suggest that there are at least nine species in this complex, of which four are cryptic and undescribed. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Exploring Tree-Habitat Associations in a Chinese Subtropical Forest Plot Using a Molecular Phylogeny Generated from DNA Barcode Loci

    Science.gov (United States)

    Erickson, David L.; Swenson, Nathan G.; Kress, W. John; Ye, Wan-Hui; Ge, Xue-Jun

    2011-01-01

    Elucidating the ecological mechanisms underlying community assembly in subtropical forests remains a central challenge for ecologists. The assembly of species into communities can be due to interspecific differences in habitat associations, and there is increasing evidence that these associations may have an underlying phylogenetic structure in contemporary terrestrial communities. In other words, by examining the degree to which closely related species prefer similar habitats and the degree to which they co-occur, ecologists are able to infer the mechanisms underlying community assembly. Here we implement this approach in a diverse subtropical tree community in China using a long-term forest dynamics plot and a molecular phylogeny generated from three DNA barcode loci. We find that there is phylogenetic signal in plant-habitat associations (i.e. closely related species tend to prefer similar habitats) and that patterns of co-occurrence within habitats are typically non-random with respect to phylogeny. In particular, we found phylogenetic clustering in valley and low-slope habitats in this forest, indicating a filtering of lineages plays a dominant role in structuring communities in these habitats and we found evidence of phylogenetic overdispersion in high-slope, ridge-top and high-gully habitats, indicating that distantly related species tended to co-occur in these high elevation habitats and that lineage filtering is less important in structuring these communities. Thus we infer that non-neutral niche-based processes acting upon evolutionarily conserved habitat preferences explain the assembly of local scale communities in the forest studied. PMID:21701680

  17. Molecular phylogeny of Burkholderia pseudomallei from a remote region of Papua New Guinea.

    Directory of Open Access Journals (Sweden)

    Anthony Baker

    Full Text Available BACKGROUND: The island of New Guinea is located midway between the world's two major melioidosis endemic regions of Australia and Southeast Asia. Previous studies in Papua New Guinea have demonstrated autochthonous melioidosis in Balimo, Western province. In contrast to other regions of endemicity, isolates recovered from both environmental and clinical sources demonstrate narrow genetic diversity over large spatial and temporal scales. METHODOLOGY/PRINCIPAL FINDINGS: We employed molecular typing techniques to determine the phylogenetic relationships of these isolates to each other and to others worldwide to aid in understanding the origins of the Papua New Guinean isolates. Multi-locus sequence typing of the 39 isolates resolved three unique sequence types. Phylogenetic reconstruction and Structure analysis determined that all isolates were genetically closer to those from Australia than those from Southeast Asia. Gene cluster analysis however, identified a Yersinia-like fimbrial gene cluster predominantly found among Burkholderia pseudomallei derived from Southeast Asia. Higher resolution VNTR typing and phylogenetic reconstruction of the Balimo isolates resolved 24 genotypes with long branch lengths. These findings are congruent with long term persistence in the region and a high level of environmental stability. CONCLUSIONS/SIGNIFICANCE: Given that anthropogenic influence has been hypothesized as a mechanism for the dispersal of B. pseudomallei, these findings correlate with limited movement of the indigenous people in the region. The palaeogeographical and anthropogenic history of Australasia and the results from this study indicate that New Guinea is an important region for the further study of B. pseudomallei origins and dissemination.

  18. Molecular phylogeny of Cyclophyllidea (Cestoda: Eucestoda): an in-silico analysis based on mtCOI gene.

    Science.gov (United States)

    Sharma, Sunil; Lyngdoh, Damanbha; Roy, Bishnupada; Tandon, Veena

    2016-09-01

    Order Cyclophyllidea (of cestode platyhelminths) has a rich diversity of parasites and includes many families and species that are known to cause serious medical condition in humans and domestic and wild animals. Despite various attempts to resolve phylogenetic relationships at the inter-family level, uncertainty remains. In order to add resolution to the existing phylogeny of the order, we generated partial mtCO1 sequences for some commonly occurring cyclophyllidean cestodes and combined them with available sequences from GenBank. Phylogeny was inferred taking a total 83 representative species spanning 8 families using Bayesian analysis. The phylogenetic tree revealed Dilepididae as the most basal taxon and showed early divergence in the phylogenetic tree. Paruterinidae, Taeniidae and Anoplocephalidae showed non-monophyletic assemblage; our result suggests that the family Paruterinidae may represent a polyphyletic group. The diverse family Taeniidae appeared in two separate clades; while one of them included all the members of the genus Echinococcus and also Versteria, the representatives of the genera Taenia and Hydatigera clubbed in the other clade. A close affinity of Dipylidiidae with Taenia and Hydatigera was seen, whereas existence of a close relationship between Mesocestoididae and Echinococcus (of Taeniidae) is also demonstrated. The crown group comprised the families Anoplocephalidae, Davaineidae, Hymenolepididae and Mesocestoididae, and also all species of the genus Echinococcus and Versteria mustelae; monophyly of these families (excepting Anolplocephalidae) and the genus Echinococcus as well as its sister-taxon relation with V. mustelae is also confirmed. Furthermore, non-monophyly of Anoplocephalidae is suggested to be correlated with divergence in the host selection.

  19. Tracking adaptive evolution in the structure, function and molecular phylogeny of haemoglobin in non-Antarctic notothenioid fish species

    Science.gov (United States)

    Verde, Cinzia; Parisi, Elio; di Prisco, Guido

    2006-04-01

    With the notable exception of Antarctic icefishes, haemoglobin (Hb) is present in all vertebrates. In polar fish, Hb evolution has included adaptations with implications at the biochemical, physiological and molecular levels. Cold adaptation has been shown to be also linked to small changes in primary structure and post-translational modifications in proteins, including hydrophobic remodelling and increased flexibility. A wealth of knowledge is available on the oxygen-transport system of fish inhabiting Antarctic waters, but very little is known on the structure and function of Hb of non-Antarctic notothenioid fishes. The comparison of the biochemical and physiological adaptations between cold-adapted and non-cold-adapted species is a powerful tool to understand whether (and to what extent) extreme environments require specific adaptations or simply select for phenotypically different life styles. This study focuses on structure, function and molecular phylogeny of Hb in Antarctic and non-Antarctic notothenioid fishes. The rationale is to use the primary structure of Hb as tool of choice to gain insight into the pathways of the evolution history of α and β globins of notothenioids and also as a basis for reconstructing the phylogenetic relationships among Antarctic and non-Antarctic species.

  20. Molecular cloning, sequence analysis and phylogeny of first caudata g-type lysozyme in axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Yu, Haining; Gao, Jiuxiang; Lu, Yiling; Guang, Huijuan; Cai, Shasha; Zhang, Songyan; Wang, Yipeng

    2013-11-01

    Lysozymes are key proteins that play important roles in innate immune defense in many animal phyla by breaking down the bacterial cell-walls. In this study, we report the molecular cloning, sequence analysis and phylogeny of the first caudate amphibian g-lysozyme: a full-length spleen cDNA library from axolotl (Ambystoma mexicanum). A goose-type (g-lysozyme) EST was identified and the full-length cDNA was obtained using RACE-PCR. The axolotl g-lysozyme sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 184 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein are 21523.0 Da and 4.37, respectively. Expression of g-lysozyme mRNA is predominantly found in skin, with lower levels in spleen, liver, muscle, and lung. Phylogenetic analysis revealed that caudate amphibian g-lysozyme had distinct evolution pattern for being juxtaposed with not only anura amphibian, but also with the fish, bird and mammal. Although the first complete cDNA sequence for caudate amphibian g-lysozyme is reported in the present study, clones encoding axolotl's other functional immune molecules in the full-length cDNA library will have to be further sequenced to gain insight into the fundamental aspects of antibacterial mechanisms in caudate.

  1. Molecular phylogeny of Atractus (Serpentes, Dipsadidae), with emphasis on Ecuadorian species and the description of three new taxa

    Science.gov (United States)

    Arteaga, Alejandro; Mebert, Konrad; Valencia, Jorge H.; Cisneros-Heredia, Diego F.; Peñafiel, Nicolás; Reyes-Puig, Carolina; Vieira-Fernandes, José L.; Guayasamin, Juan M.

    2017-01-01

    Abstract We present a molecular phylogeny of snake genus Atractus, with an improved taxon sampling that includes 30 of the 140 species currently recognized. The phylogenetic tree supports the existence of at least three new species in the Pacific lowlands and adjacent Andean slopes of the Ecuadorian Andes, which we describe here. A unique combination of molecular, meristic and color pattern characters support the validity of the new species. With the newly acquired data, we propose and define the Atractus iridescens species group, as well as redefine the Atractus roulei species group. The species Atractus iridescens is reported for the first time in Ecuador, whereas Atractus bocourti and Atractus medusa are removed from the herpetofauna of this country. We provide the first photographic vouchers of live specimens for Atractus multicinctus, Atractus paucidens and Atractus touzeti, along with photographs of 19 other Ecuadorian Atractus species. The current status of Atractus occidentalis and Atractus paucidens is maintained based on the discovery of new material referable to these species. With these changes, the species number reported in Ecuador increases to 27, a number that is likely to increase as material not examined in this work becomes available and included in systematic studies. PMID:28769604

  2. A preliminary phylogeny of the 'didymocarpoid Gesneriaceae' based on three molecular data sets: Incongruence with available tribal classifications.

    Science.gov (United States)

    Möller, Michael; Pfosser, Martin; Jang, Chang-Gee; Mayer, Veronika; Clark, Alexandra; Hollingsworth, Michelle L; Barfuss, Michael H J; Wang, Yin-Zheng; Kiehn, Michael; Weber, Anton

    2009-05-01

    The 'didymocarpoid Gesneriaceae' (traditional subfam. Cyrtandroideae excluding Epithemateae) are the largest group of Old World Gesneriaceae, comprising 85 genera and 1800 species. We attempt to resolve their hitherto poorly understood generic relationships using three molecular markers on 145 species, of which 128 belong to didymocarpoid Gesneriaceae. Our analyses demonstrate that consistent topological relationships can be retrieved from data sets with missing data using subsamples and different combinations of gene sequences. We show that all available classifications in Old World Gesneriaceae are artificial and do not reflect natural relationships. At the base of the didymocarpoids are grades of clades comprising isolated genera and small groups from Asia and Europe. These are followed by a clade comprising the African and Madagascan genera. The remaining clades represent the advanced Asiatic and Malesian genera. They include a major group with mostly twisted capsules. The much larger group of remaining genera comprises exclusively genera with straight capsules and the huge genus Cyrtandra with indehiscent fruits. Several genera such as Briggsia, Henckelia, and Chirita are not monophyletic; Chirita is even distributed throughout five clades. This degree of incongruence between molecular phylogenies, traditional classifications, and generic delimitations indicates the problems with classifications based on, sometimes a single, morphological characters.

  3. Spiraling into History: A Molecular Phylogeny and Investigation of Biogeographic Origins and Floral Evolution for the Genus Costus.

    Science.gov (United States)

    Salzman, Shayla; Driscoll, Heather E; Renner, Tanya; André, Thiago; Shen, Stacy; Specht, Chelsea D

    2015-02-01

    Rapid radiations are notoriously difficult to resolve, yet understanding phylogenetic patterns in such lineages can be useful for investigating evolutionary processes associated with bursts of speciation and morphological diversification. Here we present an expansive molecular phylogeny of Costus L. (Costaceae Nakai) with a focus on the Neotropical species within the clade, sampling 47 of the known 51 Neotropical species and including five molecular markers for phylogenetic analysis (ITS, ETS, rps16, trnL-F, and CaM). We use the phylogenetic results to investigate shifts in pollination syndrome, with the intention of addressing potential mechanisms leading to the rapid radiation documented for this clade. Our ancestral reconstruction of pollination syndrome presents the first evidence in this genus of an evolutionary toggle in pollination morphologies, demonstrating both the multiple independent evolutions of ornithophily (bird pollination) as well as reversals to melittophily (bee pollination). We show that the ornithophilous morphology has evolved at least eight times independently with four potential reversals to melittophilous morphology, and confirm prior work showing that neither pollination syndrome defines a monophyletic lineage. Based on the current distribution for the Neotropical and African species, we reconstruct the ancestral distribution of the Neotropical clade as the Pacific Coast of Mexico and Central America. Our results indicate an historic dispersal of a bee-pollinated taxon from Africa to the Pacific Coast of Mexico/Central America, with subsequent diversification leading to the evolution of a bird-pollinated floral morphology in multiple derived lineages.

  4. Molecular phylogeny of Atractus (Serpentes, Dipsadidae), with emphasis on Ecuadorian species and the description of three new taxa.

    Science.gov (United States)

    Arteaga, Alejandro; Mebert, Konrad; Valencia, Jorge H; Cisneros-Heredia, Diego F; Peñafiel, Nicolás; Reyes-Puig, Carolina; Vieira-Fernandes, José L; Guayasamin, Juan M

    2017-01-01

    We present a molecular phylogeny of snake genus Atractus, with an improved taxon sampling that includes 30 of the 140 species currently recognized. The phylogenetic tree supports the existence of at least three new species in the Pacific lowlands and adjacent Andean slopes of the Ecuadorian Andes, which we describe here. A unique combination of molecular, meristic and color pattern characters support the validity of the new species. With the newly acquired data, we propose and define the Atractus iridescens species group, as well as redefine the Atractus roulei species group. The species Atractus iridescens is reported for the first time in Ecuador, whereas Atractus bocourti and Atractus medusa are removed from the herpetofauna of this country. We provide the first photographic vouchers of live specimens for Atractus multicinctus, Atractus paucidens and Atractus touzeti, along with photographs of 19 other Ecuadorian Atractus species. The current status of Atractus occidentalis and Atractus paucidens is maintained based on the discovery of new material referable to these species. With these changes, the species number reported in Ecuador increases to 27, a number that is likely to increase as material not examined in this work becomes available and included in systematic studies.

  5. Molecular phylogeny of the specialized schizothoracine fishes (Teleostei:Cyprinidae),with their implications for the uplift of the Qinghai-Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    HE Dekui; CHEN Yifeng; CHEN Yiyu; CHEN Ziming

    2004-01-01

    Molecular phylogeny of three genera containing nine species and subspecies of the specialized schizothoracine fishes are investigated based on the complete nucleotide sequence of mitochondrial cytochrome b gene. Meantime relationships between the main cladogenetic events of the specialized schizothoracine fishes and the stepwise uplift of the Qinghai-Tibetan Plateau are also conducted using the molecular clock, which is calibrated by geological isolated events between the upper reaches of the Yellow River and the Qinghai Lake. Results indicated that the specialized schizothoracine fishes are not a monophyly. Five species and subspecies of Ptychobarbus form a monophyly. But three species of Gymnodiptychus do not form a monophyly. Gd. integrigymnatus is a sister taxon of the highly specialized schizothoracine fishes while Gd. pachycheilus has a close relation with Gd. dybowskii, and both of them are as a sister group of Diptychus maculatus. The specialized schizothoracines fishes might have originated during the Miocene (about 10 MaBP), and then the divergence of three genera happened during late Miocene (about 8 MaBP). Their main specialization occurred during the late Pliocene and Pleistocene (3.54-0.42 MaBP). The main cladogenetic events of the specialized schizothoracine fishes are mostly correlated with the geological tectonic events and intensive climate shift happened at 8, 3.6, 2.5 and 1.7 MaBP of the late Cenozoic. Molecular clock data do not support the hypothesis that the Qinghai-Tibetan Plateau uplifted to near present or even higher elevations during the Oligocene or Miocene, and neither in agreement with the view that the plateau uplifting reached only to an altitude of 2000 m during the late Pliocene (about 2.6 MaBP).

  6. Molecular phylogeny of tribe Theeae (Theaceae s.s. and its implications for generic delimitation.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Tribe Theeae, which includes some economically important and widely grown plants, such as beverage tea and a number of woody ornamentals, is the largest member of the Theaceae family. Using five genomic regions (chloroplast: atpI-H, matK, psbA5'R-ALS-11F, rbcL; nuclear: LEAFY and 30 species representing four of the five genera in this tribe (Apterosperma, Camellia, Polyspora, and Pyrenaria s.l., we investigated the phylogeny of Theeae and assessed the delimitation of genera in the tribe. Our results showed that Polyspora was monophyletic and the sister of the three other genera of Theeae investigated, Camellia was paraphyletic and Pyrenaria was polyphyletic. The inconsistent phylogenetic placement of some species of Theeae between the nuclear and chloroplast trees suggested widespread hybridization between Camellia and Pyrenaria, Polyspora and Parapyrenaria. These results indicate that hybridization, rather than morphological homoplasy, has confused the current classification of Theeae. In addition, the phylogenetic placement and possible allies of Laplacea are also discussed.

  7. Molecular phylogeny and character evolution of the chthamaloid barnacles (Cirripedia: Thoracica).

    Science.gov (United States)

    Pérez-Losada, Marcos; Høeg, Jens T; Crandall, Keith A; Achituv, Yair

    2012-10-01

    The Chthamaloidea (Balanomorpha) present the most plesiomorphic characters in shell plates and cirri, mouthparts, and oral cone within the acorn barnacles (Thoracica: Sessilia). Due to their importance in understanding both the origin and diversification of the Balanomorpha, the evolution of the Chthamaloidea has been debated since Darwin's seminal monographs. Theories of morphological and ontogenetic evolution suggest that the group could have evolved multiple times from pedunculated relatives and that shell plate number diminished gradually (8→6→4) from an ancestral state with eight wall plates surrounded by whorls of small imbricating plates; but this hypothesis has never been subjected to a rigorous phylogenetic test. Here we used multilocus sequence data and extensive taxon sampling to build a comprehensive phylogeny of the Chthamaloidea as a basis for understanding their morphological evolution. Our maximum likelihood and Bayesian analyses separate the Catophragmidae (eight shell plates and imbricating plates) from the Chthamalidae (8-4 shell plates and no imbricating plates), but do no support a gradual reduction in shell plates (8→6→4). This suggests that evolution at the base of the Balanomorpha involved a considerable amount of homoplasy. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Molecular diversity and phylogeny of rhizobia associated with Lablab purpureus (Linn.) grown in Southern China.

    Science.gov (United States)

    Chang, Yue Li; Wang, En Tao; Sui, Xin Hua; Zhang, Xiao Xia; Chen, Wen Xin

    2011-06-01

    As an introduced plant, Lablab purpureus serves as a vegetable, herbal medicine, forage and green manure in China. In order to investigate the diversity of rhizobia associated with this plant, a total of 49 rhizobial strains isolated from ten provinces of Southern China were analyzed in the present study with restriction fragment length polymorphism and/or sequence analyses of housekeeping genes (16S rRNA, IGS, atpD, glnII and recA) and symbiotic genes (nifH and nodC). The results defined the L. purpureus rhizobia as 24 IGS-types within 15 rrs-IGS clusters or genomic species belonging to Bradyrhizobium, Rhizobium, Ensifer (synonym of Sinorhizobium) and Mesorhizobium. Bradyrhizobium spp. (81.6%) were the most abundant isolates, half of which were B. elkanii. Most of these rhizobia induced nodules on L. purpureus, but symbiotic genes were only amplified from the Bradyrhizobium and Rhizobium leguminosarum strains. The nodC and nifH phylogenetic trees defined five lineages corresponding to B. yuanmingense, B. japonicum, B. elkanii, B. jicamae and R. leguminosarum. The coherence of housekeeping and symbiotic gene phylogenies demonstrated that the symbiotic genes of the Lablab rhizobia were maintained mainly through vertical transfer. However, a putative lateral transfer of symbiotic genes was found in the B. liaoningense strain. The results in the present study clearly revealed that L. purpureus was a promiscuous host that formed nodules with diverse rhizobia, mainly Bradyrhizobium species, harboring different symbiotic genes.

  9. Evolution of stamen number in Ptychospermatinae (Arecaceae): insights from a new molecular phylogeny of the subtribe.

    Science.gov (United States)

    Alapetite, Elodie; Baker, William J; Nadot, Sophie

    2014-07-01

    The palm subtribe Ptychospermatinae (Arecaceae: Arecoideae) is naturally distributed in the South West Pacific area and contains 12 genera and around 60 species, including numerous popular ornamentals. Like many palms, Ptychospermatinae flowers are small, trimerous, unisexual and always grouped into inflorescences of various sizes. However they exhibit a wide diversity in stamen number (a few to several dozen or even hundreds) that is poorly understood from an evolutionary point of view. Although advances have been made in elucidating phylogenetic relationships within Ptychospermatinae, some relationships among and within genera still remain to be clarified. Here we used a combination of five nuclear markers (nrITS2, the conserved nuclear intron BRSC10 and three low copy genes, PRK, RPB2 and AGAMOUS) and three chloroplast markers (matK, ndhA and rps15-ycf1) to propose a new phylogenetic hypothesis for the subtribe. The combination of all these markers improved the resolution and robustness of phylogenetic relationships within the subtribe, allowing us to identify four major clades. This phylogenetic framework was used to examine the evolution of stamen number in the clade. The optimization of stamen number on the phylogeny highlighted the high level of interspecific variability, showing that the character is highly labile and raising questions about the evolutionary and functional significance of this lability.

  10. Phylogeny of Tetillidae (Porifera, Demospongiae, Spirophorida) based on three molecular markers.

    Science.gov (United States)

    Szitenberg, Amir; Becking, Leontine E; Vargas, Sergio; Fernandez, Júlio C C; Santodomingo, Nadiezhda; Wörheide, Gert; Ilan, Micha; Kelly, Michelle; Huchon, Dorothée

    2013-05-01

    Tetillidae are spherical to elliptical cosmopolitan demosponges. The family comprises eight genera: namely, Acanthotetilla Burton, 1959, Amphitethya Lendenfeld, 1907, CinachyraSollas, 1886, CinachyrellaWilson, 1925, Craniella Schmidt, 1870, Fangophilina Schmidt, 1880, Paratetilla Dendy, 1905, and Tetilla Schmidt, 1868. These genera are characterized by few conflicting morphological characters, resulting in an ambiguity of phylogenetic relationships. The phylogeny of tetillid genera was investigated using the cox1, 18S rRNA and 28S rRNA (C1-D2 domains) genes in 88 specimens (8 genera, 28 species). Five clades were identified: (i) Cinachyrella, Paratetilla and Amphitethya species, (ii) Cinachyrella levantinensis, (iii) Tetilla, (iv) Craniella, Cinachyra and Fangophilina and (v) Acanthotetilla. Consequently, the phylogenetic analysis supports the monophyly of Tetilla, a genus lacking any known morphological synapomorphy. Acanthotetilla is also recovered. In contrast, within the first clade, species of the genera Paratetilla and Amphitethya were nested within Cinachyrella. Similarly, within the fourth clade, species of the genera Cinachyra and Fangophilina were nested within Craniella. As previously postulated by taxonomists, the loss of ectodermal specialization (i.e., a cortex) has occurred several times independently. Nevertheless, the presence or absence of a cortex and its features carry a phylogenetic signal. Surprisingly, the common view that assumes close relationships among sponges with porocalices (i.e., surface depressions) is refuted.

  11. Molecular phylogeny of Orthetrum dragonflies reveals cryptic species of Orthetrum pruinosum.

    Science.gov (United States)

    Yong, Hoi Sen; Lim, Phaik-Eem; Tan, Ji; Ng, Yong Foo; Eamsobhana, Praphathip; Suana, I Wayan

    2014-07-03

    Dragonflies of the genus Orthetrum are members of the suborder Anisoptera, family Libellulidae. There are species pairs whose members are not easily separated from each other by morphological characters. In the present study, the DNA nucleotide sequences of mitochondrial and nuclear genes were employed to elucidate the phylogeny and systematics of Orthetrum dragonflies. Phylogenetic analyses could not resolve the various subfamilies of the family Libellulidae unequivocally. The nuclear 28S rRNA gene is highly conserved and could not resolve congeneric species of Orthetrum. Individual mitochondrial genes (COI, COII, and 16S rRNA) and combination of these genes as well as the nuclear ITS1&2 genes clearly differentiate morphologically similar species, such as the reddish species pairs O. chrysis and O. testaceum, and the bluish-coloured species O. glaucum and O. luzonicum. This study also reveals distinct genetic lineages between O. pruinosum schneideri (occurring in Malaysia) and O. pruinosum neglectum (occurring north of Peninsular Malaysia from India to Japan), indicating these taxa are cryptic species.

  12. A preliminary molecular phylogeny of planthoppers (Hemiptera: Fulgoroidea based on nuclear and mitochondrial DNA sequences.

    Directory of Open Access Journals (Sweden)

    Nan Song

    Full Text Available The planthopper superfamily Fulgoroidea (Insecta: Hemiptera is one of the most dominant groups of phytophagous insects. It comprises about 20 families, containing a total of 9000 species worldwide. Despite several recent studies, the phylogeny of Fulgoroidea is not yet satisfactorily resolved and the phylogenetic positions of several key families, especially Cixiidae, Delphacidae, Tettigometridae, Nogodinidae, Acanaloniidae and Issidae, are contentious. Here, we expand upon recent phylogenetic work using additional nuclear (18S and 28S and novel mitochondrial (16S and cytb markers. Maximum likelihood and Bayesian analyses yielded robust phylogenetic trees. In these topologies, a group containing Cixiidae and Delphacidae is recovered as the sister group to the remaining taxa. Tettigometridae is placed in a more nested position and is grouped with Caliscelidae. Sister relationships are found between Flatidae and Ricaniidae, and between Dictyopharidae and Fulgoridae. Nogodinidae and Issidae are confirmed to be non-monophyletic families. For major nodes of interest, divergence date estimates are generally older than those from the fossil record.

  13. Molecular correlations and solvation in simple fluids.

    Science.gov (United States)

    Barbosa, Marco A A; Widom, B

    2010-06-01

    We study the molecular correlations in a lattice model of a solution of a low-solubility solute, with emphasis on how the thermodynamics is reflected in the correlation functions. The model is treated in the Bethe-Guggenheim approximation, which is exact on a Bethe lattice (Cayley tree). The solution properties are obtained in the limit of infinite dilution of the solute. With h(11)(r), h(12)(r), and h(22)(r) the three pair correlation functions as functions of the separation r (subscripts 1 and 2 referring to solvent and solute, respectively), we find for r > or = 2 lattice steps that h(22)(r)/h(12)(r) is identical with h(12)(r)/h(11)(r). This illustrates a general theorem that holds in the asymptotic limit of infinite r. The three correlation functions share a common exponential decay length (correlation length), but when the solubility of the solute is low the amplitude of the decay of h(22)(r) is much greater than that of h(12)(r), which in turn is much greater than that of h(11)(r). As a consequence the amplitude of the decay of h(22)(r) is enormously greater than that of h(11)(r). The effective solute-solute attraction then remains discernible at distances at which the solvent molecules are essentially no longer correlated, as found in similar circumstances in an earlier model. The second osmotic virial coefficient is large and negative, as expected. We find that the solvent-mediated part W(r) of the potential of mean force between solutes, evaluated at contact, r = 1, is related in this model to the Gibbs free energy of solvation at fixed pressure, DeltaG(p)(*), by (Z/2)W(1) + DeltaG(p)(*) is identical with pv(0), where Z is the coordination number of the lattice, p is the pressure, and v(0) is the volume of the cell associated with each lattice site. A large, positive DeltaG(p)(*) associated with the low solubility is thus reflected in a strong attraction (large negative W at contact), which is the major contributor to the second osmotic virial coefficient

  14. Molecular phylogeny of grunts (Teleostei, Haemulidae, with an emphasis on the ecology, evolution, and speciation history of New World species

    Directory of Open Access Journals (Sweden)

    Tavera José

    2012-04-01

    Full Text Available Abstract Background The fish family Haemulidae is divided in two subfamilies, Haemulinae and Plectorhynchinae (sweetlips, including approximately 17 genera and 145 species. The family has a broad geographic distribution that encompasses contrasting ecological habitats resulting in a unique potential for evolutionary hypotheses testing. In the present work we have examined the phylogenetic relationships of the family using selected representatives of additional Percomorpha based on Bayesian and Maximum likelihood methods by means of three mitochondrial genes. We also developed a phylogenetic hypothesis of the New World species based on five molecular markers (three mitochondrial and two nuclear as a framework to evaluate the evolutionary history, the ecological diversification and speciation patterns of this group. Results Mitochondrial genes and different reconstruction methods consistently recovered a monophyletic Haemulidae with the Sillaginidae as its sister clade (although with low support values. Previous studies proposed different relationships that were not recovered in this analysis. We also present a robust molecular phylogeny of Haemulinae based on the combined data of two nuclear and three mitochondrial genes. All topologies support the monophyly of both sub-families (Haemulinae, Plectorhinchinae. The genus Pomadasys was shown to be polyphyletic and Haemulon, Anisotremus, and Plectorhinchus were found to be paraphyletic. Four of seven presumed geminate pairs were indeed found to be sister species, however our data did not support a contemporaneous divergence. Analyses also revealed that differential use of habitat might have played an important role in the speciation dynamics of this group of fishes, in particular among New World species where extensive sample coverage was available. Conclusions This study provides a new hypothesis for the sister clade of Hamulidae and a robust phylogeny of the latter. The presence of para- and

  15. Molecular phylogeny of an Indian population of Kleinstyla dorsicirrata (Foissner, 1982) Foissner et al., 2002. comb. nov. (Hypotrichia, Oxytrichidae): an oxytrichid with incomplete dorsal kinety fragmentation.

    Science.gov (United States)

    Singh, Jasbir; Kamra, Komal

    2014-01-01

    Kleinstyla dorsicirrata (Foissner, 1982) Foissner et al., 2002. comb. nov. (basionym: Gastrostyla dorsicirrata) is a slightly flexible oxytrichid, measuring about 88-115 × 27-46 μm in life and possesses cortical granules. Kleinstyla dorsicirrata is the only oxytrichid known so far with incompletely fragmented dorsal kinety. Morphological and morphogenetic data recognise K. dorsicirrata as nonstylonychine oxytrichid. Molecular phylogeny of an Indian population was inferred using 18S rRNA gene sequences and was examined with respect to oxytrichids exhibiting variation in dorsal kinety fragmentation. Kleinstyla dorsicirrata clusters with Oxytricha lanceolata; this proximity is quite significant as both show deviation from typical oxytrichid fragmentation of dorsal kinety. Molecular phylogeny of Indian population confirms its nonstylonychine oxytrichid status. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  16. Vector correlations in rotationally inelastic molecular collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lemeshko, Mikhail

    2011-04-13

    The thesis presents an analytic model that describes scalar and vector properties of molecular collisions, both field-free and in fields. The model is based on the sudden approximation and treats molecular scattering as the Fraunhofer diffraction of matter waves from the hard-core part of the interaction potential. The theory has no fitting parameters and is inherently quantum, rendering fully state- and energy-resolved scattering amplitudes and all the quantities that unfold from them in analytic form. This allows to obtain complex polarization moments inherent to quantum stereodynamics, and to account for interference and other non-classical effects. The simplicity and analyticity of the model paves a way to understanding the origin of the features observed in experiment and exact computations, such as the angular oscillations in the state-to-state differential cross sections and the polarization moments, the rotational-state dependent variation of the integral cross sections, and change of these quantities as a function of the applied field. The theory was applied to study the k - k{sup '} vector correlation (differential cross section) for the following collision systems: Ar-NO(X{sup 2}{pi}) and Ne-OCS(X{sup 1}{sigma}) in an electrostatic field, Na{sup +}-N{sub 2}(X{sup 1}{sigma}) in a laser field, and He-CaH({sup 2}{sigma}), He-O{sub 2}(X{sup 3}{sigma}), and He-OH(X{sup 2}{pi}) in a magnetic field. The model was able to reproduce the behavior of the differential cross sections and their variation with field strength. Combining the Fraunhofer model with the quantum theory of vector correlations made it possible to study three- and four-vector properties. The model results for the k-k{sup '}-j{sup '} vector correlation in Ar-NO(X{sup 2}{pi}) and He-NO(X{sup 2}{pi}) scattering were found to be in good agreement with experiment and exact computations. This allowed to demonstrate that the stereodynamics of such collisions is contained solely in the

  17. Teaching the Process of Molecular Phylogeny and Systematics: A Multi-Part Inquiry-Based Exercise

    Science.gov (United States)

    Lents, Nathan H.; Cifuentes, Oscar E.; Carpi, Anthony

    2010-01-01

    Three approaches to molecular phylogenetics are demonstrated to biology students as they explore molecular data from "Homo sapiens" and four related primates. By analyzing DNA sequences, protein sequences, and chromosomal maps, students are repeatedly challenged to develop hypotheses regarding the ancestry of the five species. Although…

  18. Teaching the Process of Molecular Phylogeny and Systematics: A Multi-Part Inquiry-Based Exercise

    Science.gov (United States)

    Lents, Nathan H.; Cifuentes, Oscar E.; Carpi, Anthony

    2010-01-01

    Three approaches to molecular phylogenetics are demonstrated to biology students as they explore molecular data from "Homo sapiens" and four related primates. By analyzing DNA sequences, protein sequences, and chromosomal maps, students are repeatedly challenged to develop hypotheses regarding the ancestry of the five species. Although…

  19. Implications of molecular characters for the phylogeny of the Microbotryaceae (Basidiomycota: Urediniomycetes

    Directory of Open Access Journals (Sweden)

    Oberwinkler Franz

    2006-04-01

    Full Text Available Abstract Background Anther smuts of the basidiomycetous genus Microbotryum on Caryophyllaceae are important model organisms for many biological disciplines. Members of Microbotryum are most commonly found parasitizing the anthers of host plants in the family Caryophyllaceae, however they can also be found on the anthers of members of the Dipsacaceae, Lamiaceae, Lentibulariaceae, and Portulacaceae. Additionally, some members of Microbotryum can be found infecting other organs of mainly Polygonaceae hosts. Based on ITS nrDNA sequences of members of almost all genera in Microbotryaceae, this study aims to resolve the phylogeny of the anther smuts and their relationship to the other members of the family of plant parasites. A multiple analysis strategy was used to correct for the effects of different equally possible ITS sequence alignments on the phylogenetic outcome, which appears to have been neglected in previous studies. Results The genera of Microbotryaceae were not clearly resolved, but alignment-independent moderate bootstrap support was achieved for a clade containing the majority of the Microbotryum species. The anther parasites appeared in two different well-supported lineages whose interrelationship remained unresolved. Whereas bootstrap support values for some clades were highly vulnerable to alignment conditions, other clades were more robustly supported. The differences in support between the different alignments were much larger than between the phylogenetic optimality criteria applied (maximum parsimony and maximum likelihood. Conclusion The study confirmed, based on a larger dataset than previous work, that the anther smuts on Caryophyllaceae are monophyletic and that there exists a native North American group that diverged from the European clade before the radiation of the European species. Also a second group of anther smuts was revealed, containing parasites on Dipsacaceae, Lamiaceae, and Lentibulariaceae. At least the majority

  20. A molecular phylogeny of Dorylus army ants provides evidence for multiple evolutionary transitions in foraging niche

    Directory of Open Access Journals (Sweden)

    Vilhelmsen Lars B

    2007-04-01

    Full Text Available Abstract Background Army ants are the prime arthropod predators in tropical forests, with huge colonies and an evolutionary derived nomadic life style. Five of the six recognized subgenera of Old World Dorylus army ants forage in the soil, whereas some species of the sixth subgenus (Anomma forage in the leaf-litter and some as conspicuous swarm raiders on the forest floor and in the lower vegetation (the infamous driver ants. Here we use a combination of nuclear and mitochondrial DNA sequences to reconstruct the phylogeny of the Dorylus s.l. army ants and to infer the evolutionary transitions in foraging niche and associated morphological adaptations. Results Underground foraging is basal and gave rise to leaf-litter foraging. Leaf-litter foraging in turn gave rise to two derived conditions: true surface foraging (the driver ants and a reversal to subterranean foraging (a clade with most of the extant Dorylus s.s. species. This means that neither the subgenus Anomma nor Dorylus s.s. is monophyletic, and that one of the Dorylus s.s. lineages adopted subterranean foraging secondarily. We show that this latter group evolved a series of morphological adaptations to underground foraging that are remarkably convergent to the basal state. Conclusion The evolutionary transitions in foraging niche were more complex than previously thought, but our comparative analysis of worker morphology lends strong support to the contention that particular foraging niches have selected for very specific worker morphologies. The surprising reversal to underground foraging is therefore a striking example of convergent morphological evolution.

  1. Molecular phylogeny, biogeography, and an e-monograph of the papaya family (Caricaceae) as an example of taxonomy in the electronic age

    OpenAIRE

    Antunes Carvalho, Fernanda

    2014-01-01

    This dissertation addresses an issue of key importance to the field of systematics, namely how to foster taxonomic work and the dissemination of knowledge about species by taking full advantage of electronic data and bioinformatic tools. I tested and applied modern systematic tools to produce an electronic monograph of a family of flowering plants, Caricaceae. In addition to a taxonomic revision, a molecular phylogeny of the family that includes representatives of all biological species clari...

  2. Molecular phylogeny of the bivalve superfamily Galeommatoidea (Heterodonta, Veneroida reveals dynamic evolution of symbiotic lifestyle and interphylum host switching

    Directory of Open Access Journals (Sweden)

    Goto Ryutaro

    2012-09-01

    Full Text Available Abstract Background Galeommatoidea is a superfamily of bivalves that exhibits remarkably diverse lifestyles. Many members of this group live attached to the body surface or inside the burrows of other marine invertebrates, including crustaceans, holothurians, echinoids, cnidarians, sipunculans and echiurans. These symbiotic species exhibit high host specificity, commensal interactions with hosts, and extreme morphological and behavioral adaptations to symbiotic life. Host specialization to various animal groups has likely played an important role in the evolution and diversification of this bivalve group. However, the evolutionary pathway that led to their ecological diversity is not well understood, in part because of their reduced and/or highly modified morphologies that have confounded traditional taxonomy. This study elucidates the taxonomy of the Galeommatoidea and their evolutionary history of symbiotic lifestyle based on a molecular phylogenic analysis of 33 galeommatoidean and five putative galeommatoidean species belonging to 27 genera and three families using two nuclear ribosomal genes (18S and 28S ribosomal DNA and a nuclear (histone H3 and mitochondrial (cytochrome oxidase subunit I protein-coding genes. Results Molecular phylogeny recovered six well-supported major clades within Galeommatoidea. Symbiotic species were found in all major clades, whereas free-living species were grouped into two major clades. Species symbiotic with crustaceans, holothurians, sipunculans, and echiurans were each found in multiple major clades, suggesting that host specialization to these animal groups occurred repeatedly in Galeommatoidea. Conclusions Our results suggest that the evolutionary history of host association in Galeommatoidea has been remarkably dynamic, involving frequent host switches between different animal phyla. Such an unusual pattern of dynamic host switching is considered to have resulted from their commensalistic lifestyle, in

  3. Molecular phylogeny of the Astrophorida (Porifera, Demospongiae(p reveals an unexpected high level of spicule homoplasy.

    Directory of Open Access Journals (Sweden)

    Paco Cárdenas

    Full Text Available BACKGROUND: The Astrophorida (Porifera, Demospongiae(p is geographically and bathymetrically widely distributed. Systema Porifera currently includes five families in this order: Ancorinidae, Calthropellidae, Geodiidae, Pachastrellidae and Thrombidae. To date, molecular phylogenetic studies including Astrophorida species are scarce and offer limited sampling. Phylogenetic relationships within this order are therefore for the most part unknown and hypotheses based on morphology largely untested. Astrophorida taxa have very diverse spicule sets that make them a model of choice to investigate spicule evolution. METHODOLOGY/PRINCIPAL FINDINGS: With a sampling of 153 specimens (9 families, 29 genera, 89 species covering the deep- and shallow-waters worldwide, this work presents the first comprehensive molecular phylogeny of the Astrophorida, using a cytochrome c oxidase subunit I (COI gene partial sequence and the 5' end terminal part of the 28S rDNA gene (C1-D2 domains. The resulting tree suggested that i the Astrophorida included some lithistid families and some Alectonidae species, ii the sub-orders Euastrophorida and Streptosclerophorida were both polyphyletic, iii the Geodiidae, the Ancorinidae and the Pachastrellidae were not monophyletic, iv the Calthropellidae was part of the Geodiidae clade (Calthropella at least, and finally that v many genera were polyphyletic (Ecionemia, Erylus, Poecillastra, Penares, Rhabdastrella, Stelletta and Vulcanella. CONCLUSION: The Astrophorida is a larger order than previously considered, comprising ca. 820 species. Based on these results, we propose new classifications for the Astrophorida using both the classical rank-based nomenclature (i.e., Linnaean classification and the phylogenetic nomenclature following the PhyloCode, independent of taxonomic rank. A key to the Astrophorida families, sub-families and genera incertae sedis is also included. Incongruences between our molecular tree and the current

  4. Substantial incongruence among the morphology, taxonomy, and molecular phylogeny of the land snails Aegista, Landouria, Trishoplita, and Pseudobuliminus (Pulmonata: Bradybaenidae) occurring in East Asia.

    Science.gov (United States)

    Hirano, Takahiro; Kameda, Yuichi; Kimura, Kazuki; Chiba, Satoshi

    2014-01-01

    Analyses of molecular phylogeny have revealed that phenotypically identified taxa do not reflect phylogenetic relationships. Such taxa often are not evolutionary significant and are misleading in describing and evaluating biological diversity. Herein, we investigated the molecular phylogeny of the East Asian bradybaenid land snail genera Aegista, Landouria, Trishoplita, and Pseudobuliminus to test whether morphology and current taxonomy reflect phylogenetic relationships. Our results document extensive parallel evolution and substantial incongruence between taxonomy and molecular phylogeny. Species with an elongated turret shell evolved independently five times, and hair-like ornamentation of the shell was independently gained or lost in a number of lineages. Although genital anatomy reveals phylogenetic conservatism to some extent, love dart and dart-related organs were lost independently at least three times in these genera. Accordingly, classification of these genera based on morphological traits did not reflect phylogenetic relationships, and, overall, these genera except for a few species should be tentatively assigned to a single genus as Aegista. The present findings suggest that radical revision is required for the taxonomy of bradybaenid land snails. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Morphology and Molecular Phylogeny of Raillietina spp. (Cestoda: Cyclophyllidea: Davaineidae) from Domestic Chickens in Thailand

    OpenAIRE

    Butboonchoo, Preeyaporn; Wongsawad, Chalobol; Rojanapaibul, Amnat; Chai, Jong-Yil

    2016-01-01

    Raillietina species are prevalent in domestic chickens (Gallus gallus domesticus) in Phayao province, northern Thailand. Their infection may cause disease and death, which affects the public health and economic situation in chicken farms. The identification of Raillietina has been based on morphology and molecular analysis. In this study, morphological observations using light (LM) and scanning electron microscopies (SEM) coupled with molecular analysis of the internal transcribed spacer 2 (I...

  6. Complete genome sequence and molecular phylogeny of a newfound hantavirus harbored by the Doucet's musk shrew (Crocidura douceti) in Guinea.

    Science.gov (United States)

    Gu, Se Hun; Nicolas, Violaine; Lalis, Aude; Sathirapongsasuti, Nuankanya; Yanagihara, Richard

    2013-12-01

    Elucidation of the molecular phylogeny of shrew-borne hantaviruses in sub-Saharan Africa has been hampered by the lack of full-length viral genomes. In this report, we present the complete genome analysis of a newfound hantavirus, designated Bowé virus, detected in ethanol-fixed intercostal muscle of a Doucet's musk shrew (Crocidura douceti), captured in southwestern Guinea in February 2012. Full-length amino acid sequence comparison of the S-, M- and L-segment gene products revealed that Bowé virus differed by 24.1-53.4%, 17.0-59.9% and 14.6-39.7%, respectively, from all other representative rodent-, shrew- and mole-borne hantaviruses. Phylogenetic analysis, using maximum-likelihood and Bayesian methods, under the GTR+I+Γ model of evolution, showed that Bowé virus shared a common ancestry with Tanganya virus, a hantavirus detected in the Therese's shrew (Crocidura theresae) in Guinea. Whole genome analysis of many more hantaviruses from sub-Saharan Africa are needed to better clarify how the radiation of African shrews might have contributed to the phylogeography of hantaviruses.

  7. Diversity and Phylogeny of Gymnodiniales (Dinophyceae) from the NW Mediterranean Sea Revealed by a Morphological and Molecular Approach.

    Science.gov (United States)

    Reñé, Albert; Camp, Jordi; Garcés, Esther

    2015-05-01

    The diversity and phylogeny of dinoflagellates belonging to the Gymnodiniales were studied during a 3-year period at several coastal stations along the Catalan coast (NW Mediterranean) by combining analyses of their morphological features with rDNA sequencing. This approach resulted in the detection of 59 different morphospecies, 13 of which were observed for the first time in the Mediterranean Sea. Fifteen of the detected species were HAB producers; four represented novel detections on the Catalan coast and two in the Mediterranean Sea. Partial rDNA sequences were obtained for 50 different morphospecies, including novel LSU rDNA sequences for 27 species, highlighting the current scarcity of molecular information for this group of dinoflagellates. The combination of morphology and genetics allowed the first determinations of the phylogenetic position of several genera, i.e., Torodinium and many Gyrodinium and Warnowiacean species. The results also suggested that among the specimens belonging to the genera Gymnodinium, Apicoporus, and Cochlodinium were those representing as yet undescribed species. Furthermore, the phylogenetic data suggested taxonomic incongruences for some species, i.e., Gyrodinium undulans and Gymnodinium agaricoides. Although a species complex related to G. spirale was detected, the partial LSU rDNA sequences lacked sufficient resolution to discriminate between various other Gyrodinium morphospecies.

  8. Molecular phylogeny of the nettle family (Urticaceae) inferred from multiple loci of three genomes and extensive generic sampling.

    Science.gov (United States)

    Wu, Zeng-Yuan; Monro, Alex K; Milne, Richard I; Wang, Hong; Yi, Ting-Shuang; Liu, Jie; Li, De-Zhu

    2013-12-01

    Urticaceae is one of the larger Angiosperm families, but relationships within it remain poorly known. This study presents the first densely sampled molecular phylogeny of Urticaceae, using maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) to analyze the DNA sequence data from two nuclear (ITS and 18S), four chloroplast (matK, rbcL, rpll4-rps8-infA-rpl36, trnL-trnF) and one mitochondrial (matR) loci. We sampled 169 accessions representing 122 species, representing 47 of the 54 recognized genera within Urticaceae, including four of the six sometimes separated as Cecropiaceae. Major results included: (1) Urticaceae including Cecropiaceae was monophyletic; (2) Cecropiaceae was biphyletic, with both lineages nested within Urticaceae; (3) Urticaceae can be divided into four well-supported clades; (4) previously erected tribes or subfamilies were broadly supported, with some additions and alterations; (5) the monophyly of many genera was supported, whereas Boehmeria, Pellionia, Pouzolzia and Urera were clearly polyphyletic, while Urtica and Pilea each had a small genus nested within them; (6) relationships between genera were clarified, mostly with substantial support. These results clarify that some morphological characters have been overstated and others understated in previous classifications of the family, and provide a strong foundation for future studies on biogeography, character evolution, and circumscription of difficult genera.

  9. New Eocene Coleoid (Cephalopoda Diversity from Statolith Remains: Taxonomic Assignation, Fossil Record Analysis, and New Data for Calibrating Molecular Phylogenies.

    Directory of Open Access Journals (Sweden)

    Pascal Neige

    Full Text Available New coleoid cephalopods are described from statolith remains from the Middle Eocene (Middle Lutetian of the Paris Basin. Fifteen fossil statoliths are identified and assigned to the Sepiidae (Sepia boletzkyi sp. nov.,? Sepia pira sp. nov., Loliginidae (Loligo clarkei sp. nov., and Ommastrephidae (genus indet. families. The sediments containing these fossils indicate permanent aquatic settings in the infralittoral domain. These sediments range in age from 46 Mya to 43 Mya. Analysis of the fossil record of statoliths (from findings described here, together with a review of previously published data indicates marked biases in our knowledge. Fossil statoliths are known from as far back as the Early Jurassic (199.3 to 190.8 Mya but surprisingly, to the best of our knowledge, no record occurs in the Cretaceous. This is a "knowledge bias" and clearly calls for further studies. Finally, we attempt to compare findings described here with fossils previously used to constrain divergence and/or diversification ages of some coleoid subclades in molecular phylogenies. This comparison clearly indicates that the new records detailed here will challenge some estimated divergence times of coleoid cephalopod subclades.

  10. A new genus of leafhopper subtribe Paraboloponina (Hemiptera: Cicadellidae) with molecular phylogeny of related genera.

    Science.gov (United States)

    Meshram, Naresh M; Shashank, Pathour R; Sinha, Twinkle

    2017-01-01

    A new leafhopper genus Chandra and species Chandra dehradunensis gen. nov., sp. nov. are described, illustrated from India and placed in the subtribe Paraboloponina (Cidadellidae: Deltocephalinae: Drabescini). This genus is closely associated with the genus Parabolopona Webb but differs in shape of the head, placement of antennae, male genitalia and molecular analysis using Histone H3 and COI genes confirmed the difference. The taxonomic and phylogenetic position of Chandra is discussed using morphological characters and preliminary molecular evidence of the new genus and related genus Parabolopona.

  11. A New Morphological Phylogeny of the Ophiuroidea (Echinodermata Accords with Molecular Evidence and Renders Microfossils Accessible for Cladistics.

    Directory of Open Access Journals (Sweden)

    Ben Thuy

    Full Text Available Ophiuroid systematics is currently in a state of upheaval, with recent molecular estimates fundamentally clashing with traditional, morphology-based classifications. Here, we attempt a long overdue recast of a morphological phylogeny estimate of the Ophiuroidea taking into account latest insights on microstructural features of the arm skeleton. Our final estimate is based on a total of 45 ingroup taxa, including 41 recent species covering the full range of extant ophiuroid higher taxon diversity and 4 fossil species known from exceptionally preserved material, and the Lower Carboniferous Aganaster gregarius as the outgroup. A total of 130 characters were scored directly on specimens. The tree resulting from the Bayesian inference analysis of the full data matrix is reasonably well resolved and well supported, and refutes all previous classifications, with most traditional families discredited as poly- or paraphyletic. In contrast, our tree agrees remarkably well with the latest molecular estimate, thus paving the way towards an integrated new classification of the Ophiuroidea. Among the characters which were qualitatively found to accord best with our tree topology, we selected a list of potential synapomorphies for future formal clade definitions. Furthermore, an analysis with 13 of the ingroup taxa reduced to the lateral arm plate characters produced a tree which was essentially similar to the full dataset tree. This suggests that dissociated lateral arm plates can be analysed in combination with fully known taxa and thus effectively unlocks the extensive record of fossil lateral arm plates for phylogenetic estimates. Finally, the age and position within our tree implies that the ophiuroid crown-group had started to diversify by the Early Triassic.

  12. New molecular data shed light on the global phylogeny and species limits of the Rhipicephalus sanguineus complex.

    Science.gov (United States)

    Hekimoğlu, Olcay; Sağlam, İsmail K; Özer, Nurdan; Estrada-Peña, Agustin

    2016-07-01

    The Rhipicephalus sanguineus complex is a group of closely related tick species distributed all around the world. In this study, using mitochondrial 16S ribosomal DNA, new specimens of R sanguineus sensu lato from Turkey and Rhipicephalus camicasi from Kenya, were evaluated together with available sequences of this complex in GenBank. Our objectives were to delimit the complex, re-evaluate its global phylogeny and develop a reconstruction of its biogeographic history. Given Turkey's geographical location and its neighboring status within Africa, Asia and Europe, molecular information of R. sanguineus s.l. species from this region could have important implications both on a regional and global scale. Phylogenetic trees obtained with three methods (Bayesian, Maximum Likelihood and Maximum Parsimony) were highly similar and consensus trees gave the same branching patterns and similar node support values. A total of four different clades with up to 9 Operational Taxonomic Units formed strong monophyletic groups. Biogeographic reconstructions demonstrated the importance of populations in Middle East (Turkey) in the spread of the group from Europe to Africa and Asia. Data supported previous conclusions on the existence of two species of R. sanguineus s.l. in South America and the strong molecular similarity between R. camicasi and the so-called tropical lineage of R. sanguineus s.l. These results point to the need of a re-evaluation of most specimens designated as R. sanguineus s.l. in East Europe, Middle East, Africa and Asia after an adequate re-description of this taxon. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Applications of Multiple Nuclear Genes to the Molecular Phylogeny, Population Genetics and Hybrid Identification in the Mangrove Genus Rhizophora.

    Directory of Open Access Journals (Sweden)

    Yongmei Chen

    Full Text Available The genus Rhizophora is one of the most important components of mangrove forests. It is an ideal system for studying biogeography, molecular evolution, population genetics, hybridization and conservation genetics of mangroves. However, there are no sufficient molecular markers to address these topics. Here, we developed 77 pairs of nuclear gene primers, which showed successful PCR amplifications across all five Rhizophora species and sequencing in R. apiculata. Here, we present three tentative applications using a subset of the developed nuclear genes to (I reconstruct the phylogeny, (II examine the genetic structure and (III identify natural hybridization in Rhizophora. Phylogenetic analyses support the hypothesis that Rhizophora had disappeared in the Atlantic-East Pacific (AEP region and was re-colonized from the IWP region approximately 12.7 Mya. Population genetics analyses in four natural populations of R. apiculata in Hainan, China, revealed extremely low genetic diversity, strong population differentiation and extensive admixture, suggesting that the Pleistocene glaciations, particularly the last glacial maximum, greatly influenced the population dynamics of R. apiculata in Hainan. We also verified the hybrid status of a morphologically intermediate individual between R. apiculata and R. stylosa in Hainan. Based on the sequences of five nuclear genes and one chloroplast intergenic spacer, this individual is likely to be an F1 hybrid, with R. stylosa as its maternal parent. The nuclear gene markers developed in this study should be of great value for characterizing the hybridization and introgression patterns in other cases of this genus and testing the role of natural selection using population genomics approaches.

  14. The colonization of land by animals: molecular phylogeny and divergence times among arthropods

    Directory of Open Access Journals (Sweden)

    Lyons-Weiler Maureen

    2004-01-01

    Full Text Available Abstract Background The earliest fossil evidence of terrestrial animal activity is from the Ordovician, ~450 million years ago (Ma. However, there are earlier animal fossils, and most molecular clocks suggest a deep origin of animal phyla in the Precambrian, leaving open the possibility that animals colonized land much earlier than the Ordovician. To further investigate the time of colonization of land by animals, we sequenced two nuclear genes, glyceraldehyde-3-phosphate dehydrogenase and enolase, in representative arthropods and conducted phylogenetic and molecular clock analyses of those and other available DNA and protein sequence data. To assess the robustness of animal molecular clocks, we estimated the deuterostome-arthropod divergence using the arthropod fossil record for calibration and tunicate instead of vertebrate sequences to represent Deuterostomia. Nine nuclear and 15 mitochondrial genes were used in phylogenetic analyses and 61 genes were used in molecular clock analyses. Results Significant support was found for the unconventional pairing of myriapods (millipedes and centipedes with chelicerates (spiders, scorpions, horseshoe crabs, etc. using nuclear and mitochondrial genes. Our estimated time for the divergence of millipedes (Diplopoda and centipedes (Chilopoda was 442 ± 50 Ma, and the divergence of insects and crustaceans was estimated as 666 ± 58 Ma. Our results also agree with previous studies suggesting a deep divergence (~1100 – 900 Ma for arthropods and deuterostomes, considerably predating the Cambrian Explosion seen in the animal fossil record. Conclusions The consistent support for a close relationship between myriapods and chelicerates, using mitochondrial and nuclear genes and different methods of analysis, suggests that this unexpected result is not an artefact of analysis. We propose the name Myriochelata for this group of animals, which includes many that immobilize prey with venom. Our molecular clock

  15. Molecular phylogeny of Babesia poelea from brown boobies (Sula leucogaster) from Johnston Atoll, Central Pacific

    Science.gov (United States)

    Yabsley, Michael J.; Work, Thierry M.; Rameyer, Robert A.

    2006-01-01

    The phylogenetic relationship of avian Babesia with other piroplasms remains unclear, mainly because of a lack of objective criteria such as molecular phylogenetics. In this study, our objective was to sequence the entire 18S, ITS-1, 5.8S, and ITS-2 regions of the rRNA gene and partial ß-tubulin gene of B. poelea, first described from brown boobies (Sula leucogaster) from the central Pacific, and compare them to those of other piroplasms. Phylogenetic analyses of the entire 18S rRNA gene sequence revealed that B. poelea belonged to the clade of piroplasms previously detected in humans, domestic dogs, and wild ungulates in the western United States. The entire ITS-1, 5.8S, ITS-2, and partial ß-tubulin gene sequence shared conserved regions with previously described Babesia and Theileria species. The intron of the ß-tubulin gene was 45 bp. This is the first molecular characterization of an avian piroplasm.

  16. Molecular phylogeny of Babesia poelea from brown boobies (Sula leucogaster) from Johnston Atoll, Central Pacific

    Science.gov (United States)

    Yabsley, Michael J.; Work, Thierry M.; Rameyer, Robert A.

    2006-01-01

    The phylogenetic relationship of avian Babesia with other piroplasms remains unclear, mainly because of a lack of objective criteria such as molecular phylogenetics. In this study, our objective was to sequence the entire 18S, ITS-1, 5.8S, and ITS-2 regions of the rRNA gene and partial β-tubulin gene of B. poelea, first described from brown boobies (Sula leucogaster) from the central Pacific, and compare them to those of other piroplasms. Phylogenetic analyses of the entire 18S rRNA gene sequence revealed that B. poelea belonged to the clade of piroplasms previously detected in humans, domestic dogs, and wild ungulates in the western United States. The entire ITS-1, 5.8S, ITS-2, and partial β-tubulin gene sequence shared conserved regions with previously described Babesia and Theileria species. The intron of the β-tubulin gene was 45 bp. This is the first molecular characterization of an avian piroplasm.

  17. Data supporting a molecular phylogeny of the hyper-diverse genus Brueelia

    OpenAIRE

    Bush, Sarah E.; Jason D. Weckstein; Gustafsson, Daniel R.; Julie Allen; Emily DiBlasi; Shreve, Scott M.; Rachel Boldt; Skeen, Heather R.; Johnson, Kevin P.

    2015-01-01

    Data is presented in support of a phylogenetic reconstruction of one of the largest, and most poorly understood, groups of lice: the Brueelia-complex (Bush et al., 2015 [1]). Presented data include the voucher information and molecular data (GenBank accession numbers) of 333 ingroup taxa within the Brueelia-complex and 30 outgroup taxa selected from across the order Phthiraptera. Also included are phylogenetic reconstructions based on Bayesian inference analyses of combined COI and EF-1α sequ...

  18. Molecular phylogeny of pearl oysters and their relatives (Mollusca, Bivalvia, Pterioidea

    Directory of Open Access Journals (Sweden)

    Tëmkin Ilya

    2010-11-01

    Full Text Available Abstract Background The superfamily Pterioidea is a morphologically and ecologically diverse lineage of epifaunal marine bivalves distributed throughout the tropical and subtropical continental shelf regions. This group includes commercially important pearl culture species and model organisms used for medical studies of biomineralization. Recent morphological treatment of selected pterioideans and molecular phylogenetic analyses of higher-level relationships in Bivalvia have challenged the traditional view that pterioidean families are monophyletic. This issue is examined here in light of molecular data sets composed of DNA sequences for nuclear and mitochondrial loci, and a published character data set of anatomical and shell morphological characters. Results The present study is the first comprehensive species-level analysis of the Pterioidea to produce a well-resolved, robust phylogenetic hypothesis for nearly all extant taxa. The data were analyzed for potential biases due to taxon and character sampling, and idiosyncracies of different molecular evolutionary processes. The congruence and contribution of different partitions were quantified, and the sensitivity of clade stability to alignment parameters was explored. Conclusions Four primary conclusions were reached: (1 the results strongly supported the monophyly of the Pterioidea; (2 none of the previously defined families (except for the monotypic Pulvinitidae were monophyletic; (3 the arrangement of the genera was novel and unanticipated, however strongly supported and robust to changes in alignment parameters; and (4 optimizing key morphological characters onto topologies derived from the analysis of molecular data revealed many instances of homoplasy and uncovered synapomorphies for major nodes. Additionally, a complete species-level sampling of the genus Pinctada provided further insights into the on-going controversy regarding the taxonomic identity of major pearl culture species.

  19. Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici

    Science.gov (United States)

    Nirmaladevi, D.; Venkataramana, M.; Srivastava, Rakesh K.; Uppalapati, S. R.; Gupta, Vijai Kumar; Yli-Mattila, T.; Clement Tsui, K. M.; Srinivas, C.; Niranjana, S. R.; Chandra, Nayaka S.

    2016-01-01

    The present study aimed at the molecular characterization of pathogenic and non pathogenic F. oxysporum f. sp. lycopersici strains isolated from tomato. The causal agent isolated from symptomatic plants and soil samples was identified based on morphological and molecular analyses. Pathogenicity testing of 69 strains on five susceptible tomato varieties showed 45% of the strains were highly virulent and 30% were moderately virulent. Molecular analysis based on the fingerprints obtained through ISSR indicated the presence of wide genetic diversity among the strains. Phylogenetic analysis based on ITS sequences showed the presence of at least four evolutionary lineages of the pathogen. The clustering of F. oxysporum with non pathogenic isolates and with the members of other formae speciales indicated polyphyletic origin of F. oxysporum f. sp. lycopersici. Further analysis revealed intraspecies variability and nucleotide insertions or deletions in the ITS region among the strains in the study and the observed variations were found to be clade specific. The high genetic diversity in the pathogen population demands for development of effective resistance breeding programs in tomato. Among the pathogenic strains tested, toxigenic strains harbored the Fum1 gene clearly indicating that the strains infecting tomato crops have the potential to produce Fumonisin. PMID:26883288

  20. Morphology and Molecular Phylogeny of Raillietina spp. (Cestoda: Cyclophyllidea: Davaineidae) from Domestic Chickens in Thailand.

    Science.gov (United States)

    Butboonchoo, Preeyaporn; Wongsawad, Chalobol; Rojanapaibul, Amnat; Chai, Jong-Yil

    2016-12-01

    Raillietina species are prevalent in domestic chickens (Gallus gallus domesticus) in Phayao province, northern Thailand. Their infection may cause disease and death, which affects the public health and economic situation in chicken farms. The identification of Raillietina has been based on morphology and molecular analysis. In this study, morphological observations using light (LM) and scanning electron microscopies (SEM) coupled with molecular analysis of the internal transcribed spacer 2 (ITS2) region and the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene were employed for precise identification and phylogenetic relationship studies of Raillietina spp. Four Raillietina species, including R. echinobothrida, R. tetragona, R. cesticillus, and Raillietina sp., were recovered in domestic chickens from 4 districts in Phayao province, Thailand. LM and SEM observations revealed differences in the morphology of the scolex, position of the genital pore, number of eggs per egg capsule, and rostellar opening surface structures in all 4 species. Phylogenetic relationships were found among the phylogenetic trees obtained by the maximum likelihood and distance-based neighbor-joining methods. ITS2 and ND1 sequence data recorded from Raillietina sp. appeared to be monophyletic. The query sequences of R. echinobothrida, R. tetragona, R. cesticillus, and Raillietina sp. were separated according to the different morphological characters. This study confirmed that morphological studies combined with molecular analyses can differentiate related species within the genus Raillietina in Thailand.

  1. Larval anatomy of the pterobranch Cephalodiscus gracilis supports secondarily derived sessility concordant with molecular phylogenies

    Science.gov (United States)

    Stach, Thomas

    2013-12-01

    Pterobranchs have been interpreted as "missing links" combining primitive invertebrate features with advanced vertebrate-like characteristics. The first detailed morphological description of an ontogenetic stage of a pterobranch, based on digital 3D-reconstruction at electron microscopic resolution, reveals a triploblastic animal with monociliated epithelia, an extensive coelomic cavity, a through gut with an asymmetrically developed gill slit but no signs of planktonic specializations, such as ciliated bands. Therefore, this crawling larva supports the hypothesis proposed in previous molecular phylogenetic studies that pterobranchs could be derived within enteropneusts rather than being "missing links".

  2. Data supporting a molecular phylogeny of the hyper-diverse genus Brueelia.

    Science.gov (United States)

    Bush, Sarah E; Weckstein, Jason D; Gustafsson, Daniel R; Allen, Julie; DiBlasi, Emily; Shreve, Scott M; Boldt, Rachel; Skeen, Heather R; Johnson, Kevin P

    2015-12-01

    Data is presented in support of a phylogenetic reconstruction of one of the largest, and most poorly understood, groups of lice: the Brueelia-complex (Bush et al., 2015[1]). Presented data include the voucher information and molecular data (GenBank accession numbers) of 333 ingroup taxa within the Brueelia-complex and 30 outgroup taxa selected from across the order Phthiraptera. Also included are phylogenetic reconstructions based on Bayesian inference analyses of combined COI and EF-1α sequences for Brueelia-complex species and outgroup taxa.

  3. Data supporting a molecular phylogeny of the hyper-diverse genus Brueelia

    Directory of Open Access Journals (Sweden)

    Sarah E. Bush

    2015-12-01

    Full Text Available Data is presented in support of a phylogenetic reconstruction of one of the largest, and most poorly understood, groups of lice: the Brueelia-complex (Bush et al., 2015 [1]. Presented data include the voucher information and molecular data (GenBank accession numbers of 333 ingroup taxa within the Brueelia-complex and 30 outgroup taxa selected from across the order Phthiraptera. Also included are phylogenetic reconstructions based on Bayesian inference analyses of combined COI and EF-1α sequences for Brueelia-complex species and outgroup taxa.

  4. Molecular phylogeny of echiuran worms (Phylum: Annelida reveals evolutionary pattern of feeding mode and sexual dimorphism.

    Directory of Open Access Journals (Sweden)

    Ryutaro Goto

    Full Text Available The Echiura, or spoon worms, are a group of marine worms, most of which live in burrows in soft sediments. This annelid-like animal group was once considered as a separate phylum because of the absence of segmentation, although recent molecular analyses have placed it within the annelids. In this study, we elucidate the interfamily relationships of echiuran worms and their evolutionary pattern of feeding mode and sexual dimorphism, by performing molecular phylogenetic analyses using four genes (18S, 28S, H3, and COI of representatives of all extant echiuran families. Our results suggest that Echiura is monophyletic and comprises two unexpected groups: [Echiuridae+Urechidae+Thalassematidae] and [Bonelliidae+Ikedidae]. This grouping agrees with the presence/absence of marked sexual dimorphism involving dwarf males and the paired/non-paired configuration of the gonoducts (genital sacs. Furthermore, the data supports the sister group relationship of Echiuridae and Urechidae. These two families share the character of having anal chaetae rings around the posterior trunk as a synapomorphy. The analyses also suggest that deposit feeding is a basal feeding mode in echiurans and that filter feeding originated once in the common ancestor of Urechidae. Overall, our results contradict the currently accepted order-level classification, especially in that Echiuroinea is polyphyletic, and provide novel insights into the evolution of echiuran worms.

  5. Molecular Phylogeny of Mobilid and Sessilid Ciliates Symbiotic in Eastern Pacific Limpets (Mollusca: Patellogastropoda).

    Science.gov (United States)

    Irwin, Nicholas A T; Lynn, Denis H

    2015-01-01

    The phylogenetic relationships of the ciliate subclass Peritrichia, composed of the orders Mobilida and Sessilida, have recently come under debate as morphological and molecular analyses have struck contrasting conclusions as to the monophyly of the group. We provide additional molecular data to assess the monophyly of the Peritrichia by sequencing the small subunit ribosomal RNA genes of two symbiotic peritrichs, Urceolaria korschelti and Scyphidia ubiquita, found inhabiting the mantle cavity of limpets. Although phylogenetic analyses indicated a nonmonophyletic Peritrichia, approximately unbiased tests revealed that the monophyletic hypothesis could not be rejected. With regard to the Mobilida, our analysis showed divergence within the family Trichodinidae related to host taxa-a molluscan clade and a fish clade. For the Sessilida, the family Scyphidiidae was sister to the Astylozoidae. In our sampling of U. korschelti and S. ubiquita, both species showed significant genetic divergence among geographically isolated, yet morphologically indistinguishable populations. We hypothesize that cryptic speciation has produced these morphologically identical species and argue that more extensive genomic analyses are required to fully assess the monophyly, biogeography, and ultimately biodiversity of the peritrichs.

  6. Molecular phylogeny and systematics of the highly polymorphic Rumex bucephalophorus complex (Polygonaceae).

    Science.gov (United States)

    Talavera, M; Balao, F; Casimiro-Soriguer, R; Ortiz, M Á; Terrab, A; Arista, M; Ortiz, P L; Stuessy, T F; Talavera, S

    2011-12-01

    Rumex bucephalophorus is a very polymorphic species that has been subjected to various taxonomic studies in which diverse infraspecific taxa have been recognised on the basis of diaspore traits. In this study we used molecular markers (ITS and AFLP) to explore this remarkable diversity, to test previous hypotheses of classification, and attempt to explain biogeographic patterns. Results show that R. bucephalophorus forms a monophyletic group in which diversification began around 4.2 Mya, at the end of Messinian Salinity Crisis. The two molecular markers clearly show a deep divergence separating subsp. bucephalophorus from all other subspecific taxa, among which subsp. canariensis also constitutes a separate and well distinguishable unit. In contrast, subspecies hispanicus and subsp. gallicus constitute a monophyletic group in which three subgroups can be recognised: subsp. hispanicus, subsp. gallicus var. gallicus and subsp. gallicus var. subaegeus. However, these three subgroups are not clearly distinguished genetically or morphologically, so that in formal classification it would be preferable to treat them at the varietal level.

  7. Molecular phylogeny of land and freshwater planarians (Tricladida, Platyhelminthes): from freshwater to land and back.

    Science.gov (United States)

    Alvarez-Presas, Marta; Baguñà, Jaume; Riutort, Marta

    2008-05-01

    The suborder Tricladida (phylum Platyhelminthes) comprises the well-known free-living flatworms, taxonomically grouped into three infraorders according to their ecology: Maricola (marine planarians), Paludicola (freshwater planarians), and Terricola (land planarians). Molecular analyses have demonstrated that the Paludicola are paraphyletic, the Terricola being the sister group of one of the three paludicolan families, the Dugesiidae. However, neither 18S rDNA nor COI based trees have been able to resolve the relationships among species of Terricola and Dugesiidae, particularly the monophyly of Terricola. Here, we present new molecular data including sequences of nuclear genes (18S rDNA, 28S rDNA) and a mitochondrial gene (COI) of a wider sample of dugesiid and terricolan species. The new sequences have been analyzed, together with those previously obtained, in independent and concatenated analyses using maximum likelihood and bayesian methods. The results show that, although some parts of the trees remain poorly resolved, they support a monophyletic origin for Terricola followed by a likely return of some species to freshwater habitats. Relationships within the monophyletic group of Dugesiidae are clearly resolved, and relationships among some terricolan subfamilies are also clearly established and point to the need for a thorough revision of Terricola taxonomy.

  8. Molecular phylogeny of Blaberidae (Dictyoptera, Blattodea with implications for taxonomy and evolutionary studies

    Directory of Open Access Journals (Sweden)

    Frédéric Legendre

    2017-03-01

    Full Text Available In the present “tree-thinking” period, relying on accurate phylogenetic hypotheses is of paramount importance for biologists interested in an evolutionary perspective. In the Blaberidae cockroaches, a well-defined monophyletic family comprising several model species, no such phylogenetic tree is available despite several earlier contributions. Here, using six molecular markers (12S, 16S, 18S, 28S, COI and COII, we investigate the relationships of Blaberidae and compare our results with the traditional morphology-based classification. This resulted in a broad spectrum of situations, from congruent and well-supported hypotheses (e.g., the monophyly of Blaberidae, Oxyhaloinae and (Geoscapheiinae + Panesthiinae to incongruent and weakly supported results (e.g., polyphyly of Perisphaerinae. We emphasize that interesting and contrasted situations lie between the two extremities of this spectrum, especially concerning the genera Thanatophyllum Grandcolas, 1991, Phoetalia Stål, 1874, Laxta Walker, 1868 and Pronauphoeta Shelford, 1909. We also discuss the phylogenetic position of two incertae sedis genera (Eustegasta Gerstaecker, 1883 and Gynopeltis Gerstaecker, 1869. We conclude that in-depth signal analyses should be performed to better understand molecular evolution and its consequence on tree reconstruction for this group. As for phylogenetic relationships per se, new markers should be searched for, especially to decipher deeper relationships in Blaberidae.

  9. Molecular phylogeny and taxonomic revision of the sportive lemurs (Lepilemur, Primates

    Directory of Open Access Journals (Sweden)

    Langer Christoph

    2006-02-01

    Full Text Available Abstract Background The number of species within the Malagasy genus Lepilemur and their phylogenetic relationships is disputed and controversial. In order to establish their evolutionary relationships, a comparative cytogenetic and molecular study was performed. We sequenced the complete mitochondrial cytochrome b gene (1140 bp from 68 individuals representing all eight sportive lemur species and most major populations, and compared the results with those obtained from cytogenetic studies derived from 99 specimens. Results Interspecific genetic variation, diagnostic characters and significantly supported phylogenetic relationships were obtained from the mitochondrial sequence data and are in agreement with cytogenetic information. The results confirm the distinctiveness of Lepilemur ankaranensis, L. dorsalis, L. edwardsi, L. leucopus, L. microdon, L. mustelinus, L. ruficaudatus and L. septentrionalis on species level. Additionally, within L. ruficaudatus large genetic differences were observed among different geographic populations. L. dorsalis from Sahamalaza Peninsula and from the Ambanja/Nosy Be region are paraphyletic, with the latter forming a sister group to L. ankaranensis. Conclusion Our results support the classification of the eight major sportive lemur taxa as independent species. Moreover, our data indicate further cryptic speciation events within L. ruficaudatus and L. dorsalis. Based on molecular data we propose to recognize the sportive lemur populations from north of the Tsiribihina River, south of the Betsiboka River, and from the Sahamalaza Peninsula, as distinct species.

  10. Molecular phylogeny and phylogeography of the Australian freshwater fish genus Galaxiella, with an emphasis on dwarf galaxias (G. pusilla.

    Directory of Open Access Journals (Sweden)

    Peter J Unmack

    Full Text Available The freshwater fauna of Southern Australia is primarily restricted to the southwestern and southeastern corners of the continent, and is separated by a large, arid region that is inhospitable to this biota. This geographic phenomenon has attracted considerable interest from biogeographers looking to explain evolutionary diversification in this region. Here, we employed phylogenetic and phylogeographic approaches to evaluate the effect of this barrier on a group of four galaxiid fish species (Galaxiella endemic to temperate Southern Australia. We also tested if continental shelf width has influenced connectivity among populations during low sea levels when rivers, now isolated, could have been connected. We addressed these questions by sampling each species across its range using multiple molecular markers (mitochondrial cytochrome b sequences, nuclear S7 intron sequences, and 49 allozyme loci. These data also allowed us to assess species boundaries, to refine phylogenetic affinities, and to estimate species ages. Interestingly, we found compelling evidence for cryptic species in G. pusilla, manifesting as allopatric eastern and western taxa. Our combined phylogeny and dating analysis point to an origin for the genus dating to the early Cenozoic, with three of the four species originating during the Oligocene-Miocene. Each Galaxiella species showed high levels of genetic divergences between all but the most proximate populations. Despite extensive drainage connections during recent low sea levels in southeastern Australia, populations of both species within G. pusilla maintained high levels of genetic structure. All populations experienced Late Pleistocene-Holocene population growth, possibly in response to the relaxation of arid conditions after the last glacial maximum. High levels of genetic divergence and the discovery of new cryptic species have important implications for the conservation of this already threatened group of freshwater

  11. Molecular phylogeny and phylogeography of the Australian freshwater fish genus Galaxiella, with an emphasis on dwarf galaxias (G. pusilla).

    Science.gov (United States)

    Unmack, Peter J; Bagley, Justin C; Adams, Mark; Hammer, Michael P; Johnson, Jerald B

    2012-01-01

    The freshwater fauna of Southern Australia is primarily restricted to the southwestern and southeastern corners of the continent, and is separated by a large, arid region that is inhospitable to this biota. This geographic phenomenon has attracted considerable interest from biogeographers looking to explain evolutionary diversification in this region. Here, we employed phylogenetic and phylogeographic approaches to evaluate the effect of this barrier on a group of four galaxiid fish species (Galaxiella) endemic to temperate Southern Australia. We also tested if continental shelf width has influenced connectivity among populations during low sea levels when rivers, now isolated, could have been connected. We addressed these questions by sampling each species across its range using multiple molecular markers (mitochondrial cytochrome b sequences, nuclear S7 intron sequences, and 49 allozyme loci). These data also allowed us to assess species boundaries, to refine phylogenetic affinities, and to estimate species ages. Interestingly, we found compelling evidence for cryptic species in G. pusilla, manifesting as allopatric eastern and western taxa. Our combined phylogeny and dating analysis point to an origin for the genus dating to the early Cenozoic, with three of the four species originating during the Oligocene-Miocene. Each Galaxiella species showed high levels of genetic divergences between all but the most proximate populations. Despite extensive drainage connections during recent low sea levels in southeastern Australia, populations of both species within G. pusilla maintained high levels of genetic structure. All populations experienced Late Pleistocene-Holocene population growth, possibly in response to the relaxation of arid conditions after the last glacial maximum. High levels of genetic divergence and the discovery of new cryptic species have important implications for the conservation of this already threatened group of freshwater species.

  12. Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (hydrophiinae): evidence from seven genes for rapid evolutionary radiations.

    Science.gov (United States)

    Sanders, K L; Lee, M S Y; Leys, R; Foster, R; Keogh, J Scott

    2008-05-01

    One of the most prolific radiations of venomous snakes, the Australo-Melanesian Hydrophiinae includes approximately 100 species of Australasian terrestrial elapids plus all approximately 60 species of viviparous sea snakes. Here, we estimate hydrophiine relationships based on a large data set comprising 5800 bp drawn from seven genes (mitochondrial: ND4, cytb, 12S, 16S; nuclear: rag1, cmos, myh). These data were analysed using parsimony, likelihood and Bayesian methods to better resolve hydrophiine phylogeny and provide a timescale for the terrestrial and marine radiations. Among oviparous forms, Cacophis, Furina and Demansia are basal to other Australian elapids (core oxyuranines). The Melanesian Toxicocalamus and Aspidomorphus group with Demansia, indicating multiple dispersal events between New Guinea and Australia. Oxyuranus and Pseudonaja form a robust clade. The small burrowing taxa form two separate clades, one consisting of Vermicella and Neelaps calanotus, and the other including Simoselaps, Brachyurophis and Neelaps bimaculatus. The viviparous terrestrial elapids form three separate groups: Acanthophis, the Rhinoplocephalus group and the Notechis-Hemiaspis group. True sea snakes (Hydrophiini) are robustly united with the Notechis-Hemiaspis group. Many of the retrieved groupings are consistent with previous molecular and morphological analyses, but the polyphyly of the viviparous and burrowing groups, and of Neelaps, are novel results. Bayesian relaxed clock analyses indicate very recent divergences: the approximately 160 species of the core Australian radiation (including sea snakes) arose within the last 10 Myr, with most inter-generic splits dating to between 10 and 6 Ma. The Hydrophis sea snake lineage is an exceptionally rapid radiation, with > 40 species evolving within the last 5 Myr.

  13. In the shadow of Darwin: Anton de Bary's origin of myxomycetology and a molecular phylogeny of the plasmodial slime molds.

    Science.gov (United States)

    Hoppe, T; Kutschera, U

    2010-06-01

    In his Origin of Species (John Murray, London, 1859), Charles Darwin described the theory of descent with modification by means of natural selection and postulated that all life may have evolved from one or a few simple kinds of organisms. However, Darwin's concept of evolutionary change is entirely based on observations of populations of animals and plants. He briefly mentioned 'lower algae', but ignored amoebae, bacteria and other micro-organisms. In 1859, Anton de Bary, the founder of mycology and plant pathology, published a seminal paper on the biology and taxonomy of the plasmodial slime molds (myxomycetes). These heterotrophic protists are known primarily as a large composite mass, the plasmodium, in which single nuclei are suspended in a common 'naked' cytoplasm that is surrounded by a plasma membrane. Here we summarize the contents of de Bary's 1859 publication and highlight the significance of this scientific classic with respect to the establishment of the kingdom Protoctista (protists such as amoebae), the development of the protoplasmic theory of the cell, the introduction of the concept of symbiosis and the rejection of the dogma of spontaneous generation. We describe the life cycle of the myxomycetes, present new observations on the myxamoebae and propose a higher-order phylogeny based on elongation factor-1 alpha gene sequences. Our results document the congruence between the morphology-based taxonomy of the myxomycetes and molecular data. In addition, we show that free-living amoebae, common protists in the soil, are among the closest living relatives of the myxomycetes and conclude that de Bary's 'Amoeba-hypothesis' on the evolutionary origin of the plasmodial slime molds may have been correct.

  14. First molecular phylogeny of the circumtropical bivalve family Pinnidae (Mollusca, Bivalvia): evidence for high levels of cryptic species diversity.

    Science.gov (United States)

    Lemer, Sarah; Buge, Barbara; Bemis, Amanda; Giribet, Gonzalo

    2014-06-01

    The family Pinnidae Leach, 1819, includes approximately 50 species of large subtidal and coastal marine bivalves. These commercially important species occur in tropical and temperate waters around the world and are most frequently found in seagrass meadows. The taxonomy of the family has been revised a number of times since the early 20th Century, the most recent revision recognizing 55 species distributed in three genera: Pinna, Atrina and Streptopinna, the latter being monotypic. However, to date no phylogenetic analysis of the family has been conducted using morphological or molecular data. The present study analyzed 306 pinnid specimens from around the world, comprising the three described genera and ca. 25 morphospecies. We sequenced the mitochondrial genes 16S rRNA and cytochrome c oxidase subunit I, and the nuclear ribosomal genes 18S rRNA and 28S rRNA. Phylogenetic analysis of the data revealed monophyly of the genus Atrina but also that the genus Streptopinna is nested within Pinna. Based on the strong support for this relationship we propose a new status for Streptopinna Martens, 1880 and treat it as a subgenus (status nov.) of Pinna Linnaeus, 1758. The phylogeny and the species delimitation analyses suggest the presence of cryptic species in many morphospecies displaying a wide Indo-Pacific distribution, including Pinna muricata, Atrina assimilis, A. exusta and P. (Streptopinna) saccata but also in the Atlantic species A. rigida. Altogether our results highlight the challenges associated with morphological identifications in Pinnidae due to the presence of both phenotypic plasticity and morphological stasis and reveal that many pinnid species are not as widely distributed as previously thought.

  15. A new parrot taxon from the Yucatán Peninsula, Mexico—its position within genus Amazona based on morphology and molecular phylogeny

    Directory of Open Access Journals (Sweden)

    Tony Silva

    2017-06-01

    Full Text Available Parrots (Psittaciformes are a diverse group of birds which need urgent protection. However, many taxa from this order have an unresolved status, which makes their conservation difficult. One species-rich parrot genus is Amazona, which is widely distributed in the New World. Here we describe a new Amazona form, which is endemic to the Yucatán Peninsula. This parrot is clearly separable from other Amazona species in eleven morphometric characters as well as call and behavior. The clear differences in these features imply that the parrot most likely represents a new species. In contrast to this, the phylogenetic tree based on mitochondrial markers shows that this parrot groups with strong support within A. albifrons from Central America, which would suggest that it is a subspecies of A. albifrons. However, taken together tree topology tests and morphometric analyses, we can conclude that the new parrot represents a recently evolving species, whose taxonomic status should be further confirmed. This lineage diverged from its closest relative about 120,000 years ago and was subjected to accelerated morphological and behavioral changes like some other representatives of the genus Amazona. Our phylogenies, which are so far the most comprehensive for Amazona taxa enabled us to consider the most feasible scenarios about parrot colonization of the Greater and Lesser Antilles and Central America from South America mainland. The molecular dating of these migrations and diversification rate were correlated with climatic and geological events in the last five million years, giving an interesting insight into Amazon parrot phylogeography and their evolution in general.

  16. Molecular phylogeny and barcoding of Caulerpa (Bryopsidales based on the tufA, rbcL, 18S rDNA and ITS rDNA genes.

    Directory of Open Access Journals (Sweden)

    Mudassar Anisoddin Kazi

    Full Text Available The biodiversity assessment of different taxa of the genus Caulerpa is of interest from the context of morphological plasticity, invasive potential of some species and biotechnological and pharmacological applications. The present study investigated the identification and molecular phylogeny of different species of Caulerpa occurring along the Indian coast inferred from tufA, rbcL, 18S rDNA and ITS rDNA nucleotide sequences. Molecular data confirmed the identification of 10 distinct Caulerpa species: C. veravalensis, C. verticillata, C. racemosa, C. microphysa, C. taxifolia, C. sertularioides, C. scalpelliformis, C. serrulata, C. peltata and C. mexicana. All datasets significantly supported the sister relationship between C. veravalensis and C. racemosa var. cylindracea. It was also concluded from the results that the specimen identified previously as C. microphysa and C. lentillifera could not be considered as separate species. The molecular data revealed the presence of multiple lineages for C. racemosa which can be resolved into separate species. All four markers were used to ascertain their utility for DNA barcoding. The tufA gene proved a better marker with monophyletic association as the main criteria for identification at the species level. The results also support the use of 18S rDNA insertion sequences to delineate the Caulerpa species through character-based barcoding. The ITS rDNA (5.8S-ITS2 phylogenetic analysis also served as another supporting tool. Further, more sequences from additional Caulerpa specimens will need to be analysed in order to support the role of these two markers (ITS rDNA and 18S insertion sequence in identification of Caulerpa species. The present study revealed the phylogeny of Caulerpa as complete as possible using the currently available data, which is the first comprehensive report illustrating the molecular phylogeny and barcoding of the genus Caulerpa from Indian waters.

  17. Molecular phylogeny and barcoding of Caulerpa (Bryopsidales) based on the tufA, rbcL, 18S rDNA and ITS rDNA genes.

    Science.gov (United States)

    Kazi, Mudassar Anisoddin; Reddy, C R K; Jha, Bhavanath

    2013-01-01

    The biodiversity assessment of different taxa of the genus Caulerpa is of interest from the context of morphological plasticity, invasive potential of some species and biotechnological and pharmacological applications. The present study investigated the identification and molecular phylogeny of different species of Caulerpa occurring along the Indian coast inferred from tufA, rbcL, 18S rDNA and ITS rDNA nucleotide sequences. Molecular data confirmed the identification of 10 distinct Caulerpa species: C. veravalensis, C. verticillata, C. racemosa, C. microphysa, C. taxifolia, C. sertularioides, C. scalpelliformis, C. serrulata, C. peltata and C. mexicana. All datasets significantly supported the sister relationship between C. veravalensis and C. racemosa var. cylindracea. It was also concluded from the results that the specimen identified previously as C. microphysa and C. lentillifera could not be considered as separate species. The molecular data revealed the presence of multiple lineages for C. racemosa which can be resolved into separate species. All four markers were used to ascertain their utility for DNA barcoding. The tufA gene proved a better marker with monophyletic association as the main criteria for identification at the species level. The results also support the use of 18S rDNA insertion sequences to delineate the Caulerpa species through character-based barcoding. The ITS rDNA (5.8S-ITS2) phylogenetic analysis also served as another supporting tool. Further, more sequences from additional Caulerpa specimens will need to be analysed in order to support the role of these two markers (ITS rDNA and 18S insertion sequence) in identification of Caulerpa species. The present study revealed the phylogeny of Caulerpa as complete as possible using the currently available data, which is the first comprehensive report illustrating the molecular phylogeny and barcoding of the genus Caulerpa from Indian waters.

  18. Molecular phylogeny of bark and ambrosia beetles reveals multiple origins of fungus farming during periods of global warming

    Directory of Open Access Journals (Sweden)

    Jordal Bjarte H

    2012-08-01

    Full Text Available Abstract Background Fungus farming is an unusual life style in insects that has evolved many times in the wood boring weevils named ‘ambrosia beetles’. Multiple occurrences of this behaviour allow for a detailed comparison of the different origins of fungus farming through time, its directionality, and possible ancestral states. We tested these hypotheses with a phylogeny representing the largest data set to date, nearly 4 kb of nucleotides from COI, EF-1α, CAD, ArgK, 28S, and 200 scolytine taxa. Results Phylogenetic analyses using Bayesian or parsimony approaches placed the root of Scolytinae close to the tribe Scolytini and Microborus, but otherwise indicated low resolution at older nodes. More recent clades were well resolved, including ten origins of fungus farming. There were no subsequent reversals to bark or phloem feeding in the fungus farming clades. The oldest origin of fungus farming was estimated near 50 Ma, long after the origin of Scolytinae (100-120 Ma. Younger origins included the species rich Xyleborini, dated to 21 Ma. Sister group comparisons and test of independence between traits indicated that neither gregarious larval feeding nor regular inbreeding by sibling mating was strongly correlated with the origin of fungus farming. Conclusion Origins of fungus farming corresponded mainly with two periods of global warming in the Cenozoic era, which were characterised by broadly distributed tropical forests. Hence, it seems likely that warm climates and expanding tropical angiosperm forests played critical roles in the successful radiation of diverse fungus farming groups. However, further investigation will likely reveal additional biological factors that promote fungus farming.

  19. Molecular phylogeny of centrohelid heliozoa, a novel lineage of bikont eukaryotes that arose by ciliary loss.

    Science.gov (United States)

    Cavalier-Smith, Thomas; Chao, Ema E-Y

    2003-04-01

    Recent molecular and cellular evidence indicates that eukaryotes comprise three major lineages: the probably ancestrally uniciliate protozoan phylum Amoebozoa; the ancestrally posteriorly uniciliate opisthokont clade (animals, Choanozoa, and fungi); and a very diverse ancestrally biciliate clade, the bikonts-plants, chromalveolates, and excavate and rhizarian Protozoa. As Heliozoa are the only eukaryote phylum not yet placed on molecular sequence trees, we have sequenced the 18S rRNA genes of three centrohelid heliozoa, Raphidiophrys ambigua, Heterophrys marina, and Chlamydaster sterni, to investigate their phylogenetic position. Phylogenetic analysis by distance and maximum likelihood methods allowing for intersite rate variation and invariable sites confirms that centrohelid heliozoa are a robust clade that does not fall within any other phyla. In particular, they are decisively very distant from the heterokont pedinellid chromists, at one time thought to be related to heliozoa, and lack the unique heterokont signature sequence. They also appear not to be specifically related to either Amoebozoa or Radiolaria, with which they have sometimes been classified, so it is desirable to retain Heliozoa as a separate protozoan phylum. Even though centrohelids have no cilia or centrioles, the centrohelid clade branches among the bikont eukaryotes, but there is no strong bootstrap support for any particular position. Distance trees usually place centrohelids as sisters to haptophytes, whereas parsimony puts them as sisters to red algae, but there is no reason to think that either position is correct; both have very low bootstrap support. Quartet puzzling places them with fairly low support as sisters to the apusozoan zooflagellate Ancyromonas. As Ancyromonas is the only other eukaryote that shares the character combination of flat plate-like mitochondrial cristae and kinetocyst-type extrusomes with centrohelids, this position is biologically plausible, but because of weak

  20. Molecular identification, phylogeny and geographic distribution of Brazilian mangrove oysters (Crassostrea).

    Science.gov (United States)

    de Melo, Aline Grasielle Costa; Varela, Eduardo Sousa; Beasley, Colin Robert; Schneider, Horacio; Sampaio, Iracilda; Gaffney, Patrick Michael; Reece, Kimberly S; Tagliaro, Claudia Helena

    2010-07-01

    Oysters (Ostreidae) manifest a high degree of phenotypic plasticity, whereby morphology is of limited value for species identification and taxonomy. By using molecular data, the aim was to genetically characterize the species of Crassostrea occurring along the Brazilian coast, and phylogenetically relate these to other Crassostrea from different parts of the world. Sequencing of the partial cytochrome oxidase c subunit I gene (COI), revealed a total of three species of Crassostrea at 16 locations along the Brazilian coast. C. gasar was found from Curuçá (Pará state) to Santos (São Paulo state), and C. rhizophorae from Fortim (Ceará state) to Florianópolis (Santa Catarina state), although small individuals of the latter species were also found at Ajuruteua beach (municipality of Bragança, Pará state). An unidentified Crassostrea species was found only on Canela Island, Bragança. Crassostrea gasar and C. rhizophorae grouped with C. virginica, thereby forming a monophyletic Atlantic group, whereas Crassostrea sp. from Canela Island was shown to be more similar to Indo-Pacific oysters, and either arrived in the Atlantic Ocean before the convergence of the Isthmus of Panama or was accidentally brought to Brazil by ship.

  1. Molecular identification, phylogeny and geographic distribution of Brazilian mangrove oysters (Crassostrea

    Directory of Open Access Journals (Sweden)

    Aline Grasielle Costa de Melo

    2010-01-01

    Full Text Available Oysters (Ostreidae manifest a high degree of phenotypic plasticity, whereby morphology is of limited value for species identification and taxonomy. By using molecular data, the aim was to genetically characterize the species of Crassostrea occurring along the Brazilian coast, and phylogenetically relate these to other Crassostrea from different parts of the world. Sequencing of the partial cytochrome oxidase c subunit I gene (COI, revealed a total of three species of Crassostrea at 16 locations along the Brazilian coast. C. gasar was found from Curuçá (Pará state to Santos (São Paulo state, and C. rhizophorae from Fortim (Ceará state to Florianópolis (Santa Catarina state, although small individuals of the latter species were also found at Ajuruteua beach (municipality of Bragança, Pará state. An unidentified Crassostrea species was found only on Canela Island, Bragança. Crassostrea gasar and C. rhizophorae grouped with C. virginica, thereby forming a monophyletic Atlantic group, whereas Crassostrea sp. from Canela Island was shown to be more similar to Indo-Pacific oysters, and either arrived in the Atlantic Ocean before the convergence of the Isthmus of Panama or was accidentally brought to Brazil by ship.

  2. A recent shark radiation: molecular phylogeny, biogeography and speciation of wobbegong sharks (family: Orectolobidae).

    Science.gov (United States)

    Corrigan, Shannon; Beheregaray, Luciano B

    2009-07-01

    The elasmobranch fish are an ancient, evolutionarily successful, but under-researched vertebrate group, particularly in regard to their recent evolutionary history. Their lineage has survived four mass extinction events and most present day taxa are thought to be derived from Mesozoic forms. Here we present a molecular phylogenetic analysis of the family Orectolobidae that provides evidence for recent events of diversification in this shark group. Species interrelationships in Orectolobidae were reconstructed based on four mitochondrial and nuclear genes. In line with previous morphological work, our results do not support current taxonomic arrangements in Orectolobidae and indicate that a taxonomic revision of the family is warranted. We propose that the onset of diversification of orectolobid sharks is of Miocene age and occurred within the Indo-Australian region. Surprisingly, we also find evidence for a recent ( approximately last 2 million years) and rapid radiation of wobbegong sharks. Allopatric speciation followed by range expansion seems like the general most likely explanation to account for wobbegong relationships and distributions. We suggest that the evolution of this shark group was mostly influenced by two temporal scenarios of diversification. The oldest relates to major geological changes in the Indo-West Pacific associated with the Miocene collision of the Indo-Australian and Eurasian plates. The most recent scenario was influenced by changes in oceanography and the emergence of biogeographic barriers related to Pleistocene glacial cycles in Australian waters.

  3. Molecular Phylogeny of the Cliff Ferns (Woodsiaceae: Polypodiales) with a Proposed Infrageneric Classification.

    Science.gov (United States)

    Shao, Yizhen; Wei, Ran; Zhang, Xianchun; Xiang, Qiaoping

    2015-01-01

    The cliff fern family Woodsiaceae has experienced frequent taxonomic changes at the familial and generic ranks since its establishment. The bulk of its species were placed in Woodsia, while Cheilanthopsis, Hymenocystis, Physematium, and Protowoodsia are segregates recognized by some authors. Phylogenetic relationships among the genera of Woodsiaceae remain unclear because of the extreme morphological diversity and inadequate taxon sampling in phylogenetic studies to date. In this study, we carry out comprehensive phylogenetic analyses of Woodsiaceae using molecular evidence from four chloroplast DNA markers (atpA, matK, rbcL and trnL-F) and covering over half the currently recognized species. Our results show three main clades in Woodsiaceae corresponding to Physematium (clade I), Cheilanthopsis-Protowoodsia (clade II) and Woodsia s.s. (clade III). In the interest of preserving monophyly and taxonomic stability, a broadly defined Woodsia including the other segregates is proposed, which is characterized by the distinctive indument and inferior indusia. Therefore, we present a new subgeneric classification of the redefined Woodsia based on phylogenetic and ancestral state reconstructions to better reflect the morphological variation, geographic distribution pattern, and evolutionary history of the genus. Our analyses of the cytological character evolution support multiple aneuploidy events that have resulted in the reduction of chromosome base number from 41 to 33, 37, 38, 39 and 40 during the evolutionary history of the cliff ferns.

  4. Molecular Phylogeny of the Cliff Ferns (Woodsiaceae: Polypodiales with a Proposed Infrageneric Classification.

    Directory of Open Access Journals (Sweden)

    Yizhen Shao

    Full Text Available The cliff fern family Woodsiaceae has experienced frequent taxonomic changes at the familial and generic ranks since its establishment. The bulk of its species were placed in Woodsia, while Cheilanthopsis, Hymenocystis, Physematium, and Protowoodsia are segregates recognized by some authors. Phylogenetic relationships among the genera of Woodsiaceae remain unclear because of the extreme morphological diversity and inadequate taxon sampling in phylogenetic studies to date. In this study, we carry out comprehensive phylogenetic analyses of Woodsiaceae using molecular evidence from four chloroplast DNA markers (atpA, matK, rbcL and trnL-F and covering over half the currently recognized species. Our results show three main clades in Woodsiaceae corresponding to Physematium (clade I, Cheilanthopsis-Protowoodsia (clade II and Woodsia s.s. (clade III. In the interest of preserving monophyly and taxonomic stability, a broadly defined Woodsia including the other segregates is proposed, which is characterized by the distinctive indument and inferior indusia. Therefore, we present a new subgeneric classification of the redefined Woodsia based on phylogenetic and ancestral state reconstructions to better reflect the morphological variation, geographic distribution pattern, and evolutionary history of the genus. Our analyses of the cytological character evolution support multiple aneuploidy events that have resulted in the reduction of chromosome base number from 41 to 33, 37, 38, 39 and 40 during the evolutionary history of the cliff ferns.

  5. Molecular phylogeny and host specificity of the larval Eustrongylides (Nematoda: Dioctophmidae) from freshwater fish in China.

    Science.gov (United States)

    Xiong, Fan; Li, Wen X; Wu, Shan G; Zou, Hong; Wang, Gui T

    2013-02-01

    The nematodes Eustrongylides spp. collected from different fish species in China were examined for their intra- and interspecific evolutionary variations using the molecular markers mitochondrial cytochrome oxidase c subunit 1 (COI) gene and internal transcribed spacer (ITS) rDNA regions. The phylogenetic analysis indicated that Eustrongylides species are divided into 3 well-supported clades. The ITS divergence between the clades suggested that clades 2 and 3 might represent the same species, whereas clade 1 represent another cryptic species. The host specificity of these nematodes was analyzed according to prevalence data, host range, and phylogenetic information. Clade 1 was found in 4 fish species, i.e., Odontobutis obscurus, Silurus asotus, Culter mongolicus, and Acanthogobius flavimanus, but was predominant in the 2 perciform species, O. obscurus and A. flavimanus. Clade 2 was found in 3 fish species, Monopterus albus, Channa argus, and Channa asiatica, but was predominant in M. albus, reported to feed primarily on oligochaetes, the first intermediate host of Eustrongylides sp. Clade 3 was found in 9 species, but its low prevalence suggests accidental infection in all species. Although the larval nematode presented low host specificity, it exhibited some host preference.

  6. Molecular phylogeny of Pamphagidae (Acridoidea, Orthoptera) from China based on mitochondrial cytochrome oxidase Ⅱ sequences

    Institute of Scientific and Technical Information of China (English)

    Dao-Chuan Zhang; Hong-Yan Han; Hong Yin; Xin-Jiang Li; Zhan Yin; Xiang-Chu Yin

    2011-01-01

    Phylogenetic relationships of Pamphagidae were examined using cytochrome oxidase subunit Ⅱ (COII) mtDNA sequences (684 bp). Twenty-seven species of Acridoidea from 20 genera were sequenced to obtain mtDNA data, along with four species from the GenBank nucleotide database. The purpose of this study was analyzing the phylogenetic relationships among subfamilies within Pamphagidae and interpreting the phylogenetic position of this family within the Acridoidea superfamily. Phylogenetic trees were reconstructed using neighbor-joining (NJ), maximum parsimony (MP) and Bayesian inference (BI) methods. The 684 bp analyzed fragment included 126 parsimony informative sites. Sequences diverged 1.0%-l1.1% between genera within subfamilies, and 8.8%-12.3% between subfamilies. Amino acid sequence diverged 0-6.1% between genera within subfamilies, and 0.4%-7.5% between subfamilies. Our phylogenetic trees revealed the monophyly of Pamphagidae and three distinct major groups within this family. Moreover, several well supported and stable clades were found in Pamphagidae. The global clustering results were similar to that obtained through classical morphological classification: Prionotropisinae, Thrinchinae and Pamphaginae were monophyletic groups. However, the current genus Filchnerella (Prionotropisinae) was not a monophyletic group and the genus Asiotmethis (Prionotropisinae) was a sister group of the genus Thrinchus (Thrinchinae). Further molecular and morphological studies are required to clarify the phylogenetic relationships of the genera Filchnerella and Asiotmethis.

  7. Molecular identification, phylogeny and geographic distribution of Brazilian mangrove oysters (Crassostrea)

    Science.gov (United States)

    2010-01-01

    Oysters (Ostreidae) manifest a high degree of phenotypic plasticity, whereby morphology is of limited value for species identification and taxonomy. By using molecular data, the aim was to genetically characterize the species of Crassostrea occurring along the Brazilian coast, and phylogenetically relate these to other Crassostrea from different parts of the world. Sequencing of the partial cytochrome oxidase c subunit I gene (COI), revealed a total of three species of Crassostrea at 16 locations along the Brazilian coast. C. gasar was found from Curuçá (Pará state) to Santos (São Paulo state), and C. rhizophorae from Fortim (Ceará state) to Florianópolis (Santa Catarina state), although small individuals of the latter species were also found at Ajuruteua beach (municipality of Bragança, Pará state). An unidentified Crassostrea species was found only on Canela Island, Bragança. Crassostrea gasar and C. rhizophorae grouped with C. virginica, thereby forming a monophyletic Atlantic group, whereas Crassostrea sp. from Canela Island was shown to be more similar to Indo-Pacific oysters, and either arrived in the Atlantic Ocean before the convergence of the Isthmus of Panama or was accidentally brought to Brazil by ship. PMID:21637433

  8. Molecular phylogeny of anoplocephalid tapeworms (Cestoda: Anoplocephalidae) infecting humans and non-human primates.

    Science.gov (United States)

    Doležalová, Jana; Vallo, Peter; Petrželková, Klára J; Foitová, Ivona; Nurcahyo, Wisnu; Mudakikwa, Antoine; Hashimoto, Chie; Jirků, Milan; Lukeš, Julius; Scholz, Tomáš; Modrý, David

    2015-09-01

    Anoplocephalid tapeworms of the genus Bertiella Stiles and Hassall, 1902 and Anoplocephala Blanchard, 1848, found in the Asian, African and American non-human primates are presumed to sporadic ape-to-man transmissions. Variable nuclear (5.8S-ITS2; 28S rRNA) and mitochondrial genes (cox1; nad1) of isolates of anoplocephalids originating from different primates (Callicebus oenanthe, Gorilla beringei, Gorilla gorilla, Pan troglodytes and Pongo abelii) and humans from various regions (South America, Africa, South-East Asia) were sequenced. In most analyses, Bertiella formed a monophyletic group within the subfamily Anoplocephalinae, however, the 28S rRNA sequence-based analysis indicated paraphyletic relationship between Bertiella from primates and Australian marsupials and rodents, which should thus be regarded as different taxa. Moreover, isolate determined as Anoplocephala cf. gorillae from mountain gorilla clustered within the Bertiella clade from primates. This either indicates that A. gorillae deserves to be included into the genus Bertiella, or, that an unknown Bertiella species infects also mountain gorillas. The analyses allowed the genetic differentiation of the isolates, albeit with no obvious geographical or host-related patterns. The unexpected genetic diversity of the isolates studied suggests the existence of several Bertiella species in primates and human and calls for revision of the whole group, based both on molecular and morphological data.

  9. Phylogeny of benthic Phyllodocidae (Polychaeta) based on morphological and molecular data.

    Science.gov (United States)

    Eklöf, Jenny; Pleijel, Fredrik; Sundberg, Per

    2007-10-01

    A combined molecular (18S rDNA, 28S rDNA, 16S rDNA and COI) and morphological analysis of the benthic phyllodocids is presented for the first time. Nineteen phyllodocids and two outgroup taxa are assessed using parsimony, maximum likelihood and Bayesian analyses. We demonstrate high degrees in homoplasy in the traditionally used morphological phyllodocid characters, and show that all the three current subfamilies Phyllodocinae, Eteoninae and Notophyllinae are non-monophyletic. The genera Eulalia, Eumida, Protomystides, Pseudomystides, Pterocirrus and Sige form a well-supported group, as does Mystides and Nereiphylla. Another clade with strong support includes Eteone and Paranaitis, although with Eteone nested within a paraphyletic Paranaitis. The relationship between these two taxa indicate that the unusual arrangement of modified cirri on the first segments in Eteone is due to a fusion of segment 1 and 2 where the cirri of segment 1 have been reduced. Eulalia is non-monophyletic and should be split, minimally into two groups. Our results are ambiguous regarding the ancestral phyllodocid condition of absence-presence of median antenna or nuchal papilla and uniramous or biramous parapodia, but shows that the absence of cirri on segment 3 (previously an apomorphy, for e.g., Mystides, Pseudomystides and Hesionura) is maximally homoplastic.

  10. Molecular phylogeny and evolution of alcohol dehydrogenase (Adh genes in legumes

    Directory of Open Access Journals (Sweden)

    Ochiai Toshinori

    2005-04-01

    Full Text Available Abstract Background Nuclear genes determine the vast range of phenotypes that are responsible for the adaptive abilities of organisms in nature. Nevertheless, the evolutionary processes that generate the structures and functions of nuclear genes are only now be coming understood. The aim of our study is to isolate the alcohol dehydrogenase (Adh genes in two distantly related legumes, and use these sequences to examine the molecular evolutionary history of this nuclear gene. Results We isolated the expressed Adh genes from two species of legumes, Sophora flavescens Ait. and Wisteria floribunda DC., by a RT-PCR based approach and found a new Adh locus in addition to homologues of the Adh genes found previously in legumes. To examine the evolution of these genes, we compared the species and gene trees and found gene duplication of the Adh loci in the legumes occurred as an ancient event. Conclusion This is the first report revealing that some legume species have at least two Adh gene loci belonging to separate clades. Phylogenetic analyses suggest that these genes resulted from relatively ancient duplication events.

  11. Molecular phylogeny and evolution of alcohol dehydrogenase (Adh) genes in legumes

    Science.gov (United States)

    Fukuda, Tatsuya; Yokoyama, Jun; Nakamura, Toru; Song, In-Ja; Ito, Takuro; Ochiai, Toshinori; Kanno, Akira; Kameya, Toshiaki; Maki, Masayuki

    2005-01-01

    Background Nuclear genes determine the vast range of phenotypes that are responsible for the adaptive abilities of organisms in nature. Nevertheless, the evolutionary processes that generate the structures and functions of nuclear genes are only now be coming understood. The aim of our study is to isolate the alcohol dehydrogenase (Adh) genes in two distantly related legumes, and use these sequences to examine the molecular evolutionary history of this nuclear gene. Results We isolated the expressed Adh genes from two species of legumes, Sophora flavescens Ait. and Wisteria floribunda DC., by a RT-PCR based approach and found a new Adh locus in addition to homologues of the Adh genes found previously in legumes. To examine the evolution of these genes, we compared the species and gene trees and found gene duplication of the Adh loci in the legumes occurred as an ancient event. Conclusion This is the first report revealing that some legume species have at least two Adh gene loci belonging to separate clades. Phylogenetic analyses suggest that these genes resulted from relatively ancient duplication events. PMID:15836788

  12. Molecular phylogeny of Glossodoris (Ehrenberg, 1831) nudibranchs and related genera reveals cryptic and pseudocryptic species complexes

    KAUST Repository

    Matsuda, Shayle B.

    2017-03-01

    Chromodorid nudibranchs (Chromodorididae) are brightly coloured sea slugs that live in some of the most biodiverse and threatened coral reefs on the planet. However, the evolutionary relationships within this family have not been well understood, especially in the genus Glossodoris. Members of Glossodoris have experienced large-scale taxonomic instability over the last century and have been the subject of repeated taxonomic changes, in part due to morphological characters being the sole traditional taxonomic sources of data. Changing concepts of traditional generic boundaries based on morphology also have contributed to this instability. Despite recent advances in molecular systematics, many aspects of chromodorid taxonomy remain poorly understood, particularly at the traditional species and generic levels. In this study, 77 individuals comprising 32 previously defined species were used to build the most robust phylogenetic tree of Glossodoris and related genera using mitochondrial genes cytochrome c oxidase subunit I and 16S, and the nuclear gene 28S. Bayesian inference, maximum likelihood, and maximum parsimony analyses verify the most recent hypothesized evolutionary relationships within Glossodoris. Additionally, a pseudocryptic and cryptic species complex within Glossodoris cincta and a pseudocryptic complex within Glossodoris pallida emerged, and three new species of Doriprismatica are identified.

  13. Molecular phylogeny and morphometric analyses reveal deep divergence between Amazonia and Atlantic Forest species of Dendrophryniscus.

    Science.gov (United States)

    Fouquet, Antoine; Recoder, Renato; Teixeira, Mauro; Cassimiro, José; Amaro, Renata Cecília; Camacho, Agustín; Damasceno, Roberta; Carnaval, Ana Carolina; Moritz, Craig; Rodrigues, Miguel Trefaut

    2012-03-01

    Dendrophryniscus is an early diverging clade of bufonids represented by few small-bodied species distributed in Amazonia and the Atlantic Forest. We used mitochondrial (414 bp of 12S, 575 bp of 16S genes) and nuclear DNA (785 bp of RAG-1) to investigate phylogenetic relationships and the timing of diversification within the genus. These molecular data were gathered from 23 specimens from 19 populations, including eight out of the 10 nominal species of the genus as well as Rhinella boulengeri. Analyses also included sequences of representatives of 18 other bufonid genera that were publically available. We also examined morphological characters to analyze differences within Dendrophryniscus. We found deep genetic divergence between an Amazonian and an Atlantic Forest clade, dating back to Eocene. Morphological data corroborate this distinction. We thus propose to assign the Amazonian species to a new genus, Amazonella. The species currently named R. boulengeri, which has been previously assigned to the genus Rhamphophryne, is shown to be closely related to Dendrophryniscus species. Our findings illustrate cryptic trends in bufonid morphological evolution, and point to a deep history of persistence and diversification within the Amazonian and Atlantic rainforests. We discuss our results in light of available paleoecological data and the biogeographic patterns observed in other similarly distributed groups.

  14. A phylogenetic circumscription of Polytrichastrum (Polytrichaceae): Reassessment of sporophyte morphology supports molecular phylogeny.

    Science.gov (United States)

    Bell, Neil E; Hyvönen, Jaakko

    2010-04-01

    Mosses arguably possess the most structurally complex sporangia of any extant land plants, a consequence of being the monosporangiophyte lineage most strongly adapted to terrestrial environments. Morphological and functional variation in the mechanisms that regulate spore release in one of the major classes of mosses, the Polytrichopsida, is largely unexplored, while recent research indicates that the most distinctive structure, the peristome, has evolved independently in the Polytrichopsida and in other mosses. The genus Polytrichastrum was separated from Polytrichum on the basis of such sporangial characters, although the critical features had until recently only been examined using light microscopy, and strong evidence from molecular data indicated that Polytrichastrum as currently circumscribed is polyphyletic. Here we use Bayesian ancestral character state reconstruction in conjunction with extensive scanning electron micrographic studies to elucidate probable morphology at ancestral nodes and define natural taxa. As well as clarifying the structure, evolution, and aspects of development of the peristome-epiphragm complex in this highly prominent group of mosses, the results provide a basis for a revised phylogenetic taxonomy in which the species of Polytrichastrum sect. Aporotheca are recognized once more within Polytrichum.

  15. Molecular phylogeny of rodents, with special emphasis on murids: evidence from nuclear gene LCAT.

    Science.gov (United States)

    Robinson, M; Catzeflis, F; Briolay, J; Mouchiroud, D

    1997-12-01

    Phylogenetic relationships among 19 extant species of rodents, with special emphasis on rats, mice, and allied Muroidea, were studied using sequences of the nuclear protein-coding gene LCAT (lecithin:cholesterol acyltransferase), an enzyme of cholesterol metabolism. Analysis of 705 base pairs from the exonic regions of LCAT confirmed known groupings in and around Muroidea. Strong support was found for the families Sciuridae (squirrel and marmot) and Gliridae (dormice) and for suprafamilial taxa Muroidea and Caviomorpha (guinea pig and allies). Within Muroidea, the first branching leads to the fossorial mole rats Spalacinae and bamboo rats Rhizomyinae. The other Muroidea appear as a polytomy from which are issued Gerbillinae (gerbils), Murinae (rats and mice), Sigmodontinae (New World cricetids), Cricetinae (hamsters), and Arvicolinae (voles). Evidence from LCAT sequences agrees with that from a number of previous molecular and morphological studies, both concerning branching orders inside Muroidea and the bush-like radiation of rodent suprafamilial taxa (caviomorphs, sciurids, glirids, muroids), thus suggesting that this nuclear gene is an appropriate candidate for addressing questions of rodents relationships.

  16. Molecular systematics, phylogeny and ecology of anisakid nematodes of the genus Anisakis Dujardin, 1845: an update

    Directory of Open Access Journals (Sweden)

    Mattiucci S.

    2006-06-01

    Full Text Available Advances in the taxonomy and ecological aspects concerning geographical distribution and hosts of the so far genetically recognised nine taxa of the nematodes belonging to genus Anisakis (i.e. A. pegreffii, A. simplex s.s., A. simplex C, A. typica, A. ziphidarum, Anisakis sp., A. physeteris, A. brevispiculata and A. paggiae are here summarized. Genetic differentiation and phylogenetic relationships inferred from allozyme (20 enzyme-loci and mitochondrial (sequences of cox-2 gene markers, are revised and compared. The two genetic analyses are congruent in depicting their phylogenetic relationships. Two main clusters are showed to exist in the obtained trees, one encompassing the species A. pegreffii, A. simplex s.s., A. simplex C, A. typica, A. ziphidarum and Anisakis sp.; while, the second including A. physeteris, A. brevispiculata and A. paggiae. The existence of two clades is also supported by their morphological differentiation in adult and larval morphology. Comparison of phylogenetic relationships among Anisakis spp. with those currently available for their cetacean definitive hosts suggests parallelism between host and parasite phylogenetic tree topologies. Preliminary data for reconstruction of a possible co-evolutionary scenario between cetacean hosts and their Anisakis endoparasites suggests that cospeciation and host-switching events may have accompanied the evolution of this group of parasites. Finally, genetic/molecular markers for the identification of the so far genetically recognized taxa of Anisakis at any life-stage and both sexes were given also in relation to human anisakiosis is discussed.

  17. Molecular Phylogeny and Zoogeography of the Capoeta damascina Species Complex (Pisces: Teleostei: Cyprinidae.

    Directory of Open Access Journals (Sweden)

    Nisreen Alwan

    Full Text Available Capoeta damascina was earlier considered by many authors as one of the most common freshwater fish species found throughout the Levant, Mesopotamia, Turkey, and Iran. However, owing to a high variation in morphological characters among and within its various populations, 17 nominal species were described, several of which were regarded as valid by subsequent revising authors. Capoeta damascina proved to be a complex of closely related species, which had been poorly studied. The current study aims at defining C. damascina and the C. damascina species complex. It investigates phylogenetic relationships among the various members of the C. damascina complex, based on mitochondrial and nuclear DNA sequences. Phylogenetic relationships were projected against paleogeographical events to interpret the geographic distribution of the taxa under consideration in relation to the area's geological history. Samples were obtained from throughout the geographic range and were subjected to genetic analyses, using two molecular markers targeting the mitochondrial cytochrome oxidase I (n = 103 and the two adjacent divergence regions (D1-D2 of the nuclear 28S rRNA genes (n = 65. Six closely related species were recognized within the C. damascina complex, constituting two main lineages: A western lineage represented by C. caelestis, C. damascina, and C. umbla and an eastern lineage represented by C. buhsei, C. coadi, and C. saadii. The results indicate that speciation of these taxa is rather a recent event. Dispersal occurred during the Pleistocene, resulting in present-day distribution patterns. A coherent picture of the phylogenetic relationships and evolutionary history of the C. damascina species complex is drawn, explaining the current patterns of distribution as a result of paleogeographic events and ecological adaptations.

  18. Systematics and molecular phylogeny of the family oscarellidae (homoscleromorpha with description of two new oscarella species.

    Directory of Open Access Journals (Sweden)

    Eve Gazave

    Full Text Available The family Oscarellidae is one of the two families in the class Homoscleromorpha (phylum Porifera and is characterized by the absence of a skeleton and the presence of a specific mitochondrial gene, tatC. This family currently encompasses sponges in two genera: Oscarella with 17 described species and Pseudocorticium with one described species. Although sponges in this group are relatively well-studied, phylogenetic relationships among members of Oscarellidae and the validity of genus Pseudocorticium remain open questions. Here we present a phylogenetic analysis of Oscarellidae using four markers (18S rDNA, 28S rDNA, atp6, tatC, and argue that it should become a mono-generic family, with Pseudocorticium being synonymized with Oscarella, and with the transfer of Pseudocorticium jarrei to Oscarella jarrei. We show that the genus Oscarella can be subdivided into four clades, each of which is supported by either a small number of morphological characters or by molecular synapomorphies. In addition, we describe two new species of Oscarella from Norwegian fjords: O. bergenensis sp. nov. and O. nicolae sp. nov., and we compare their morphology, anatomy, and cytology with other species in this genus. Internal anatomical characters are similar in both species, but details of external morphology and particularly of cytological characters provide diagnostic features. Our study also confirms that O. lobularis and O. tuberculata are two distinct polychromic sibling species. This study highlights the difficulties of species identification in skeleton-less sponges and, more generally, in groups where morphological characters are scarce. Adopting a multi-marker approach is thus highly suitable for these groups.

  19. Multilocus molecular phylogeny of the suckermouth armored catfishes (Siluriformes: Loricariidae) with a focus on subfamily Hypostominae.

    Science.gov (United States)

    Lujan, Nathan K; Armbruster, Jonathan W; Lovejoy, Nathan R; López-Fernández, Hernán

    2015-01-01

    The Neotropical catfish family Loricariidae is the fifth most species-rich vertebrate family on Earth, with over 800 valid species. The Hypostominae is its most species-rich, geographically widespread, and ecomorphologically diverse subfamily. Here, we provide a comprehensive molecular phylogenetic reappraisal of genus-level relationships in the Hypostominae based on our sequencing and analysis of two mitochondrial and three nuclear loci (4293bp total). Our most striking large-scale systematic discovery was that the tribe Hypostomini, which has traditionally been recognized as sister to tribe Ancistrini based on morphological data, was nested within Ancistrini. This required recognition of seven additional tribe-level clades: the Chaetostoma Clade, the Pseudancistrus Clade, the Lithoxus Clade, the 'Pseudancistrus' Clade, the Acanthicus Clade, the Hemiancistrus Clade, and the Peckoltia Clade. Results of our analysis, which included type- and non-type species for every valid genus in Hypostominae, support the reevaluation and restriction of several historically problematic genera, including Baryancistrus, Cordylancistrus, Hemiancistrus, and Peckoltia. Much of the deep lineage diversity in Hypostominae is restricted to Guiana Shield and northern Andean drainages, with three tribe-level clades still largely restricted to the Guiana Shield. Of the six geographically widespread clades, a paraphyletic assemblage of three contain lineages restricted to drainages west of the Andes Mountains, suggesting that early diversification of the Hypostominae predated the late Miocene surge in Andean uplift. Our results also highlight examples of trophic ecological diversification and convergence in the Loricariidae, including support for three independent origins of highly similar and globally unique morphological specializations for eating wood. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Molecular Phylogeny, Recent Radiation and Evolution of Gross Morphology of the Rhubarb genus Rheum (Polygonaceae) Inferred from Chloroplast DNA trnL-F Sequences

    Science.gov (United States)

    WANG, AILAN; YANG, MEIHUA; LIU, JIANQUAN

    2005-01-01

    • Background and Aims Rheum, a highly diversified genus with about 60 species, is mainly confined to the mountainous and desert regions of the Qinghai–Tibetan plateau and adjacent areas. This genus represents a good example of the extensive diversification of the temperate genera in the Qinghai–Tibetan plateau, in which the forces to drive diversification remain unknown. To date, the infrageneric classification of Rheum has been mainly based on morphological characters. However, it may have been subject to convergent evolution under habitat pressure, and the systematic position of some sections are unclear, especially Sect. Globulosa, which has globular inflorescences, and Sect. Nobilia, which has semi-translucent bracts. Recent palynological research has found substantial contradictions between exine patterns and the current classification of Rheum. Two specific objectives of this research were (1) to evaluate possible relationships of some ambiguous sections with a unique morphology, and (2) to examine possible occurrence of the radiative speciation with low genetic divergence across the total genus and the correlation between the extensive diversification time of Rheum and past geographical events, especially the recent large-scale uplifts of the Qinghai–Tibetan Plateau. • Methods The chloroplast DNA trnL-F region of 29 individuals representing 26 species of Rheum, belonging to seven out of eight sections, was sequenced and compared. The phylogenetic relationships were further constructed based on the sequences obtained. • Key Results Despite the highly diversified morphology, the genetic variation in this DNA fragment is relatively low. The molecular phylogeny is highly inconsistent with gross morphology, pollen exine patterns and traditional classifications, except for identifying all samples of Sect. Palmata, three species of Sect. Spiciformia and a few species of Sect. Rheum as corresponding monophyletic groups. The monotypic Sect. Globulosa

  1. Serine protease isoforms in Gloydius intermedius venom: Full sequences, molecular phylogeny and evolutionary implications.

    Science.gov (United States)

    Yang, Zhang-Min; Yu, Hui; Liu, Zhen-Zhen; Pei, Jian-Zhu; Yang, Yu-E; Yan, Su-Xian; Zhang, Cui; Zhao, Wen-Long; Wang, Zhe-Zhi; Wang, Ying-Ming; Tsai, Inn-Ho

    2017-07-05

    Nine distinct venom serine proteases (vSPs) of Gloydius intermedius were studied by transcriptomic, sub-proteomic and phylogenetic analyses. Their complete amino acid sequences were deduced after Expression Sequence Tag (EST) analyses followed by cDNA cloning and sequencing. These vSPs appear to be paralogs and contain the catalytic triads and 1-4 potential N-glycosylation sites. Their relative expression levels evaluated by qPCR were grossly consistent with their EST hit-numbers. The major vSPs were purified by HPLC and their N-terminal sequences matched well to the deduced sequences, while fragments of the minor vSPs were detected by LC-MS/MS identification. Specific amidolytic activities of the fractions from HPLC and anion exchange separation were assayed using four chromogenic substrates, respectively. Molecular phylogenetic tree based on the sequences of these vSPs and their orthologs revealed six major clusters, one of them covered four lineages of plasminogen activator like vSPs. N-glycosylation patterns and variations for the vSPs are discussed. The high sequence similarities between G. intermedius vSPs and their respective orthologs from American pitvipers suggest that most of the isoforms evolved before Asian pitvipers migrated to the New World. Our results also indicate that the neurotoxic venoms contain more kallikrein-like vSPs and hypotensive components than the hemorrhagic venoms. Full sequences and expression levels of nine paralogous serine proteases (designated as GiSPs) of Gloydius intermedius venom have been studied. A kallikrein-like enzyme is most abundant and four isoforms homologous to venom plasminogen-activators are also expressed in this venom. Taken together, the present and previous data demonstrate that the neurotoxic G. intermedius venoms contain more hypotensive vSPs relative to other hemorrhagic pitviper venoms and the pitviper vSPs are highly versatile and diverse. Their structure-function relationships remain to be explored and

  2. The molecular phylogeny of the type-species of Oodinium Chatton, 1912 (Dinoflagellata: Oodiniaceae), a highly divergent parasitic dinoflagellate with non-dinokaryotic characters

    DEFF Research Database (Denmark)

    Gómez, Fernando; Skovgaard, Alf

    2015-01-01

    that are responsible of important damages in fish aquaculture. Species of Oodinium Chatton, 1912 have unique characteristics such as the possession of both non-dinokaryotic and dinokaryotic nuclei within the life-cycle, and the absence of the transversal (cingulum) and longitudinal (sulcus) surface grooves...... in the parasitic stage. We provide the first molecular data for the genus Oodinium from specimens of O. pouchetii infecting the chordate Oikopleura sp. (Tunicata: Appendicularia) off the coasts of Brazil. Although O. pouchetii lacks dinokaryotic characters in the parasitic stage, the SSU rDNA phylogeny revealed...

  3. Molecular phylogeny and historical biogeography of the Indonesian freshwater fish Rasbora lateristriata species complex (Actinopterygii: Cyprinidae): Cryptic species and west-to-east divergences.

    Science.gov (United States)

    Kusuma, Wahyu Endra; Ratmuangkhwang, Sahat; Kumazawa, Yoshinori

    2016-12-01

    Rasbora lateristriata is a primary freshwater fish described from Java Island of Indonesia but its taxonomy, phylogeny, and distributional boundary have not been fully studied. Rasbora baliensis was described as a species endemic to Balinese lakes but its taxonomic status has been controversial in relation to R. lateristriata. Here, we collected Rasbora fishes from various freshwater localities of Java Island, as well as five neighboring islands to conduct molecular and morphological analyses on their phylogenetic relationships. Both molecular analyses using two mitochondrial and two nuclear gene sequences and morphological analyses featuring the body color pattern consistently support that the currently recognized R. lateristriata forms a species complex including at least four major lineages that possibly represent different species. In one of the major lineages, Balinese individuals cluster with those from East Javanese, Lombok and Sumbawa localities, calling for taxonomic revision on R. baliensis. The other three major lineages occur in distinct regions of central, west-central, and western Java and they can be clearly distinguished by the combination of pigmentation patterns in the basicaudal blotch and the supra anal pigment. Our molecular phylogeny suggests west-to-east divergences of the R. lateristriata species complex in Java Island from the late Miocene to Plio-Pleistocene before it finally crossed Wallace's Line, colonizing Lombok and Sumbawa Islands very recently. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Genetic diversity, molecular phylogeny and selection evidence of the silkworm mitochondria implicated by complete resequencing of 41 genomes

    Directory of Open Access Journals (Sweden)

    Tellier Laurent C

    2010-03-01

    Full Text Available Abstract Background Mitochondria are a valuable resource for studying the evolutionary process and deducing phylogeny. A few mitochondria genomes have been sequenced, but a comprehensive picture of the domestication event for silkworm mitochondria remains to be established. In this study, we integrate the extant data, and perform a whole genome resequencing of Japanese wild silkworm to obtain breakthrough results in silkworm mitochondrial (mt population, and finally use these to deduce a more comprehensive phylogeny of the Bombycidae. Results We identified 347 single nucleotide polymorphisms (SNPs in the mt genome, but found no past recombination event to have occurred in the silkworm progenitor. A phylogeny inferred from these whole genome SNPs resulted in a well-classified tree, confirming that the domesticated silkworm, Bombyx mori, most recently diverged from the Chinese wild silkworm, rather than from the Japanese wild silkworm. We showed that the population sizes of the domesticated and Chinese wild silkworms both experience neither expansion nor contraction. We also discovered that one mt gene, named cytochrome b, shows a strong signal of positive selection in the domesticated clade. This gene is related to energy metabolism, and may have played an important role during silkworm domestication. Conclusions We present a comparative analysis on 41 mt genomes of B. mori and B. mandarina from China and Japan. With these, we obtain a much clearer picture of the evolution history of the silkworm. The data and analyses presented here aid our understanding of the silkworm in general, and provide a crucial insight into silkworm phylogeny.

  5. Phylomineralogy of the coralline red algae: correlation of skeletal mineralogy with molecular phylogeny.

    Science.gov (United States)

    Smith, A M; Sutherland, J E; Kregting, L; Farr, T J; Winter, D J

    2012-09-01

    The coralline algae in the orders Corallinales and Sporolithales (subclass Corallinophycidae), with their high degree of mineralogical variability, pose a challenge to projections regarding mineralogy and response to ocean acidification. Here we relate skeletal carbonate mineralogy to a well-established phylogenetic framework and draw inferences about the effects of future changes in sea-water chemistry on these calcified red algae. A collection of 191 coralline algal specimens from New Zealand, representing 13 genera and 28 species, included members of three families: Corallinaceae, Hapalidiaceae, and Sporolithaceae. While most skeletal specimens were entirely calcitic (range: 73-100 wt.% calcite, mean 97 wt.% calcite, std dev=5, n=172), a considerable number contained at least some aragonite. Mg in calcite ranged from 10.5 to 16.4 wt.% MgCO(3), with a mean of 13.1 wt.% MgCO(3) (std dev=1.1, n=172). The genera Mesophyllum and Lithophyllum were especially variable. Growth habit, too, was related to mineralogy: geniculate coralline algae do not generally contain any aragonite. Mg content varied among coralline families: the Corallinaceae had the highest Mg content, followed by the Sporolithaceae and the Hapalidiaceae. Despite the significant differences among families, variation and overlap prevent the use of carbonate mineralogy as a taxonomic character in the coralline algae. Latitude (as a proxy for water temperature) had only a slight relationship to Mg content in coralline algae, contrary to trends observed in other biomineralising taxa. Temperate magnesium calcites, like those produced by coralline algae, are particularly vulnerable to ocean acidification. Changes in biomineralisation or species distribution may occur over the next few decades, particularly to species producing high-Mg calcite, as pH and CO(2) dynamics change in coastal temperate oceans.

  6. Dioxin sensitivity-related two critical amino acids of arylhydrocarbon receptor may not correlate with the taxonomy or phylogeny in avian species.

    Science.gov (United States)

    Fujisawa, Nozomi; Kawai, Yusuke K; Nakayama, Shouta M M; Ikenaka, Yoshinori; Yamamoto, Hideaki; Ishizuka, Mayumi

    2013-12-30

    There are two arylhydrocarbon receptor (AhR) isoforms in birds, AhR1 and AhR2. The varying sensitivity of AhR is reported to be related to two critical amino acids at positions 325 and 381 in the AhR1 ligand-binding domain. In this study, seven avian species whose in vivo dioxin sensitivity was known, and 13 species with no data regarding their in vivo dioxin sensitivity were examined. The two critical amino acids in the ligand-binding domain were investigated in avian species, and the results were compared with the taxonomy or phylogenetic trees for the bird AhR proteins. We found that the two critical amino acids did not correlate with the taxonomy or phylogeny of these proteins, suggesting that dioxin sensitivity was independent of taxonomy.

  7. Molecular photoionization studies of nucleobases and correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Poliakoff, Erwin D. [Louisiana State Univ., Baton Rouge, LA (United States)

    2015-03-11

    We proposed molecular photoionization studies in order to probe correlated events in fundamental scattering phenomena. In particular, we suggested that joint theoretical-experimental studies would provide a window into the microscopic aspects that are of central importance in AMO and chemical physics generally, and would generate useful data for wide array of important DOE topics, such as ultrafast dynamics, high harmonic generation, and probes of nonadiabatic processes. The unifying theme is that correlations between electron scattering dynamics and molecular geometry highlight inherently molecular aspects of the photoelectron behavior.

  8. Molecular phylogenies, chromosomes and dispersion in Brazilian akodontines (Rodentia, Sigmodontinae Filogenia molecular, cromossomos e dispersão em akodontinos do Brasil (Rodentia, Sigmodontinae

    Directory of Open Access Journals (Sweden)

    Maria Claudene Barros

    2009-12-01

    Full Text Available A new molecular phylogeny for akodontine rodents from Brazil was proposed. The phylogenetic tree was enriched with the area of occurrence and with information on the karyotype of the samples. Based on this enriched tree, and with a described methodology, hypotheses were proposed on the karyotype and area of occurrence of the ancestors of each Clade. Thus it was possible to discuss hypotheses on chromosome evolution of the group, and on dispersion events from the "area of original differentiation" of akodontines in the Andes. Chromosome evolution started with high diploid numbers (2n=52 and showed a tendency to reduction (until 2n=14 in more recent clades. Independent side-branches of the tree showed 2n reduction and in one case the 2n increased. At least four dispersion events from the Andes down to South-eastern Brazil were proposed. The results should suggest the direction of new studies on comparative karyology.Uma nova filogenia molecular para roedores akodontinos do Brasil é proposta. A árvore filogenética foi enriquecida com a área de ocorrência e com informações sobre o cariótipo das amostras. Baseado nisto, e com a metodologia descrita, foram propostas hipóteses sobre as características do cariótipo e sobre a área de ocorrência dos ancestrais de cada clado. Assim, foi possível discutir hipóteses sobre evolução cromossômica do grupo, e sobre eventos de dispersão a partir da área de diferenciação original dos akodontinos nos Andes. A evolução cromossômica começou com números diplóides altos (2n=52 e mostrou uma tendência a redução (até 2n=14 em clados mais recentes. Ramos independentes da árvore mostraram redução do 2n e num caso aumentou o numero diplóide. Foram propostos pelo menos quatro eventos de dispersão dos Andes até o Brasil Sul-Oriental. Os resultados indicam a direção de novos estudos em cariologia comparada.

  9. Molecular phylogeny of 21 tropical bamboo species reconstructed by integrating non-coding internal transcribed spacer (ITS1 and 2) sequences and their consensus secondary structure.

    Science.gov (United States)

    Ghosh, Jayadri Sekhar; Bhattacharya, Samik; Pal, Amita

    2017-06-01

    The unavailability of the reproductive structure and unpredictability of vegetative characters for the identification and phylogenetic study of bamboo prompted the application of molecular techniques for greater resolution and consensus. We first employed internal transcribed spacer (ITS1, 5.8S rRNA and ITS2) sequences to construct the phylogenetic tree of 21 tropical bamboo species. While the sequence alone could grossly reconstruct the traditional phylogeny amongst the 21-tropical species studied, some anomalies were encountered that prompted a further refinement of the phylogenetic analyses. Therefore, we integrated the secondary structure of the ITS sequences to derive individual sequence-structure matrix to gain more resolution on the phylogenetic reconstruction. The results showed that ITS sequence-structure is the reliable alternative to the conventional phenotypic method for the identification of bamboo species. The best-fit topology obtained by the sequence-structure based phylogeny over the sole sequence based one underscores closer clustering of all the studied Bambusa species (Sub-tribe Bambusinae), while Melocanna baccifera, which belongs to Sub-Tribe Melocanneae, disjointedly clustered as an out-group within the consensus phylogenetic tree. In this study, we demonstrated the dependability of the combined (ITS sequence+structure-based) approach over the only sequence-based analysis for phylogenetic relationship assessment of bamboo.

  10. Correlation of morphological and molecular parameters for colon cancer

    Science.gov (United States)

    Yuan, Shuai; Roney, Celeste A.; Li, Qian; Jiang, James; Cable, Alex; Summers, Ronald M.; Chen, Yu

    2010-02-01

    Colorectal cancer (CRC) is the second leading cause of cancer death in the United States. There is great interest in studying the relationship among microstructures and molecular processes of colorectal cancer during its progression at early stages. In this study, we use our multi-modality optical system that could obtain co-registered optical coherence tomography (OCT) and fluorescence molecular imaging (FMI) images simultaneously to study CRC. The overexpressed carbohydrate α-L-fucose on the surfaces of polyps facilitates the bond of adenomatous polyps with UEA-1 and is used as biomarker. Tissue scattering coefficient derived from OCT axial scan is used as quantitative value of structural information. Both structural images from OCT and molecular images show spatial heterogeneity of tumors. Correlations between those values are analyzed and demonstrate that scattering coefficients are positively correlated with FMI signals in conjugated. In UEA-1 conjugated samples (8 polyps and 8 control regions), the correlation coefficient is ranged from 0.45 to 0.99. These findings indicate that the microstructure of polyps is changed gradually during cancer progression and the change is well correlated with certain molecular process. Our study demonstrated that multi-parametric imaging is able to simultaneously detect morphology and molecular information and it can enable spatially and temporally correlated studies of structure-function relationships during tumor progression.

  11. Genomic organization and molecular phylogenies of the beta (β keratin multigene family in the chicken (Gallus gallus and zebra finch (Taeniopygia guttata: implications for feather evolution

    Directory of Open Access Journals (Sweden)

    Sawyer Roger H

    2010-05-01

    Full Text Available Abstract Background The epidermal appendages of reptiles and birds are constructed of beta (β keratins. The molecular phylogeny of these keratins is important to understanding the evolutionary origin of these appendages, especially feathers. Knowing that the crocodilian β-keratin genes are closely related to those of birds, the published genomes of the chicken and zebra finch provide an opportunity not only to compare the genomic organization of their β-keratins, but to study their molecular evolution in archosaurians. Results The subfamilies (claw, feather, feather-like, and scale of β-keratin genes are clustered in the same 5' to 3' order on microchromosome 25 in chicken and zebra finch, although the number of claw and feather genes differs between the species. Molecular phylogenies show that the monophyletic scale genes are the basal group within birds and that the monophyletic avian claw genes form the basal group to all feather and feather-like genes. Both species have a number of feather clades on microchromosome 27 that form monophyletic groups. An additional monophyletic cluster of feather genes exist on macrochromosome 2 for each species. Expression sequence tag analysis for the chicken demonstrates that all feather β-keratin clades are expressed. Conclusions Similarity in the overall genomic organization of β-keratins in Galliformes and Passeriformes suggests similar organization in all Neognathae birds, and perhaps in the ancestral lineages leading to modern birds, such as the paravian Anchiornis huxleyi. Phylogenetic analyses demonstrate that evolution of archosaurian epidermal appendages in the lineage leading to birds was accompanied by duplication and divergence of an ancestral β-keratin gene cluster. As morphological diversification of epidermal appendages occurred and the β-keratin multigene family expanded, novel β-keratin genes were selected for novel functions within appendages such as feathers.

  12. Further studies on Boreonectes Angus, 2010, with a molecular phylogeny of the Palaearctic species of the genus

    Directory of Open Access Journals (Sweden)

    Robert B. Angus

    2017-03-01

    Full Text Available Karyotypes are given for Boreonectes emmerichi (Falkenström, 1936 from its type locality at Kangding, China, and for B. alpestris (Dutton & Angus, 2007 from the St Gotthard and San Bernardino passes in the Swiss Alps. A phylogeny based on sequence data from a combination of mitochondrial and nuclear genes recovered western Palaearctic species of Boreonectes as monophyletic with strong support. Boreonectes emmerichi was placed as sister to the north American forms of B. griseostriatus (De Geer, 1774, although with low support. The diversity of Palaearctic species of the B. griseostriatus species group is discussed.

  13. Molecular phylogeny of Vipera Laurenti, 1768 and the related genera Macrovipera (Reuss, 1927) and Daboia (Gray, 1842), with comments about neurotoxic Vipera aspis aspis populations.

    Science.gov (United States)

    Garrigues, Thomas; Dauga, Catherine; Ferquel, Elisabeth; Choumet, Valérie; Failloux, Anna-Bella

    2005-04-01

    We used mtDNA sequences (cytochrome b and NADH dehydrogenase subunit 2) to reconstruct molecular phylogenies of Vipera sensu lato, Vipera sensu stricto, and Vipera aspis. Three major clades were identified within the Vipera s.l. group: (1) the European vipers, (2) the oriental vipers, consisting of Montivipera (Vipera 2) plus Macrovipera lebetina, and (3) a group of Asian and North African vipers consisting of Daboia russelii, V. palaestinae, and Macrovipera mauritanica. We also distinguished three clades within the monophyletic European Vipera group: V. ammodytes, V. aspis, and V. latastei, and Pelias with monophyly of Vipera 1 uncertain. Within V. aspis, the specimens collected in France formed the sister group of an Italian clade. The "neurotoxic" French population of V. aspis, which has a specific venom profile, separated from other French V. aspis early in the history of this group.

  14. Molecular phylogeny of Nyctaginaceae: taxonomy, biogeography, and characters associated with a radiation of xerophytic genera in North America.

    Science.gov (United States)

    Douglas, Norman A; Manos, Paul S

    2007-05-01

    The four o'clock family (Nyctaginaceae) has a number of genera with unusual morphological and ecological characters, several of which appear to have a "tendency" to evolve repeatedly in Nyctaginaceae. Despite this, the Nyctaginaceae have attracted little attention from botanists. To produce a phylogeny for the Nyctaginaceae, we sampled 51 species representing 25 genera (of 28-31) for three chloroplast loci (ndhF, rps16, rpl16, and nrITS) and included all genera from North America. Parsimony, likelihood, and Bayesian methods were used to reconstruct the phylogeny for the family. The family is neotropical in origin. A radiation of woody taxa unites Pisonia and Pisoniella with the difficult tropical genera Neea and Guapira, which also form a clade, though neither appears to be monophyletic. This group is sister to a clade containing Bougainvillea, Belemia, and Phaeoptilum. A dramatic radiation of genera occurred in the deserts of North America. The tribe Nyctagineae and its subtribes are paraphyletic, due to over-reliance on a few homoplasious characters, i.e., pollen morphology and involucre presence. Two notable characters associated with the desert radiation are cleistogamy and edaphic endemism on gypsum soils. We discuss evolutionary trends in these traits in light of available data about self-incompatibility and gypsum tolerance in Nyctaginaceae.

  15. A comprehensive molecular phylogeny of dalytyphloplanida (platyhelminthes: rhabdocoela) reveals multiple escapes from the marine environment and origins of symbiotic relationships.

    Science.gov (United States)

    Van Steenkiste, Niels; Tessens, Bart; Willems, Wim; Backeljau, Thierry; Jondelius, Ulf; Artois, Tom

    2013-01-01

    In this study we elaborate the phylogeny of Dalytyphloplanida based on complete 18S rDNA (156 sequences) and partial 28S rDNA (125 sequences), using a Maximum Likelihood and a Bayesian Inference approach, in order to investigate the origin of a limnic or limnoterrestrial and of a symbiotic lifestyle in this large group of rhabditophoran flatworms. The results of our phylogenetic analyses and ancestral state reconstructions indicate that dalytyphloplanids have their origin in the marine environment and that there was one highly successful invasion of the freshwater environment, leading to a large radiation of limnic and limnoterrestrial dalytyphloplanids. This monophyletic freshwater clade, Limnotyphloplanida, comprises the taxa Dalyelliidae, Temnocephalida, and most Typhloplanidae. Temnocephalida can be considered ectosymbiotic Dalyelliidae as they are embedded within this group. Secondary returns to brackish water and marine environments occurred relatively frequently in several dalyeliid and typhloplanid taxa. Our phylogenies also show that, apart from the Limnotyphloplanida, there have been only few independent invasions of the limnic environment, and apparently these were not followed by spectacular speciation events. The distinct phylogenetic positions of the symbiotic taxa also suggest multiple origins of commensal and parasitic life strategies within Dalytyphloplanida. The previously established higher-level dalytyphloplanid clades are confirmed in our topologies, but many of the traditional families are not monophyletic. Alternative hypothesis testing constraining the monophyly of these families in the topologies and using the approximately unbiased test, also statistically rejects their monophyly.

  16. A comprehensive molecular phylogeny of dalytyphloplanida (platyhelminthes: rhabdocoela reveals multiple escapes from the marine environment and origins of symbiotic relationships.

    Directory of Open Access Journals (Sweden)

    Niels Van Steenkiste

    Full Text Available In this study we elaborate the phylogeny of Dalytyphloplanida based on complete 18S rDNA (156 sequences and partial 28S rDNA (125 sequences, using a Maximum Likelihood and a Bayesian Inference approach, in order to investigate the origin of a limnic or limnoterrestrial and of a symbiotic lifestyle in this large group of rhabditophoran flatworms. The results of our phylogenetic analyses and ancestral state reconstructions indicate that dalytyphloplanids have their origin in the marine environment and that there was one highly successful invasion of the freshwater environment, leading to a large radiation of limnic and limnoterrestrial dalytyphloplanids. This monophyletic freshwater clade, Limnotyphloplanida, comprises the taxa Dalyelliidae, Temnocephalida, and most Typhloplanidae. Temnocephalida can be considered ectosymbiotic Dalyelliidae as they are embedded within this group. Secondary returns to brackish water and marine environments occurred relatively frequently in several dalyeliid and typhloplanid taxa. Our phylogenies also show that, apart from the Limnotyphloplanida, there have been only few independent invasions of the limnic environment, and apparently these were not followed by spectacular speciation events. The distinct phylogenetic positions of the symbiotic taxa also suggest multiple origins of commensal and parasitic life strategies within Dalytyphloplanida. The previously established higher-level dalytyphloplanid clades are confirmed in our topologies, but many of the traditional families are not monophyletic. Alternative hypothesis testing constraining the monophyly of these families in the topologies and using the approximately unbiased test, also statistically rejects their monophyly.

  17. Molecular Phylogeny of the Lactuca Alliance (Cichorieae Subtribe Lactucinae, Asteraceae) with Focus on Their Chinese Centre of Diversity Detects Potential Events of Reticulation and Chloroplast Capture

    Science.gov (United States)

    Wang, Ze-Huan; Peng, Hua; Kilian, Norbert

    2013-01-01

    The first comprehensive molecular phylogenetic reconstruction of the Cichorieae subtribe Lactucinae is provided. Sequences for two datasets, one of the nuclear rDNA ITS region, the other of five concatenated non-coding chloroplast DNA markers including the petD region and the psbA-trnH, 5′trnL(UAA)-trnF, rpl32-trnL(UAG) and trnQ(UUG)-5′rps16 spacers, were, with few exceptions, newly generated for 130 samples of 78 species. The sampling spans the entire subtribe Lactucinae while focusing on its Chinese centre of diversity; more than 3/4 of the Chinese Lactucinae species are represented. The nuclear and plastid phylogenies inferred from the two independent datasets show various hard topological incongruences. They concern the internal topology of major lineages, in one case the placement of taxa in major lineages, the relationships between major lineages and even the circumscription of the subtribe, indicating potential events of ancient as well as of more recent reticulation and chloroplast capture in the evolution of the subtribe. The core of the subtribe is clearly monophyletic, consisting of the six lineages, Cicerbita, Cicerbita II, Lactuca, Melanoseris, Notoseris and Paraprenanthes. The Faberia lineage and the monospecific Prenanthes purpurea lineage are part of a monophyletic subtribe Lactucinae only in the nuclear or plastid phylogeny, respectively. Morphological and karyological support for their placement is considered. In the light of the molecular phylogenetic reconstruction and of additional morphological data, the conflicting taxonomies of the Chinese Lactuca alliance are discussed and it is concluded that the major lineages revealed are best treated at generic rank. An improved species level taxonomy of the Chinese Lactucinae is outlined; new synonymies and some new combinations are provided. PMID:24376566

  18. Molecular phylogeny and divergence time of Trachypithecus: with implications for the taxonomy of T.phayrei%Molecular phylogeny and divergence time of Trachypithecus:with implications for the taxonomy of T.phayrei

    Institute of Scientific and Technical Information of China (English)

    Kai HE; Naiqing HU; Joseph D.ORKIN; Daw Thida NYEIN; Chi MA; Wen XIAO; Pengfei FAN; Xuelong JIANG

    2012-01-01

    The genus Trachypithecus is the most diverse langur taxon,distributed in southwestern China,south and southeastern Asia.In this study,we include 16 recognized Trachypithecus species to reconstruct the phylogeny with particular concern to the taxonomy of the three subspecies of T.phayrei using multiple genes.Our results support a sister-relationship between T.p.phayrei and T.p.shanicus.However,the mitochondrial CYT B gene supported T.p.crepuscula as a distinct species,but the nuclear PRM1 gene suggested a closer relationship between T.p.crepuscula and T.p.phayrei.The incongruence between nuclear and mitochondrial genes suggests that hybridization may have occurred,a fact that would benefit from re-examination using multiple unlinked nuclear genes.

  19. Redescription and molecular phylogeny of the type species for two main metopid genera, Metopus es (Müller, 1776) Lauterborn, 1916 and Brachonella contorta (Levander, 1894) Jankowski, 1964 (Metopida, Ciliophora), based on broad geographic sampling.

    Science.gov (United States)

    Bourland, William; Rotterova, Johana; Čepička, Ivan

    2017-06-01

    Metopid ciliates occupy terrestrial, freshwater, and marine habitats worldwide, playing important roles as predominant consumers of bacteria, flagellates, algae, and diatoms in hypoxic environments. Metopus and Brachonella are the most species-rich metopid genera, however most of their species have not been studied by modern methods Here, we report the morphologic, morphometric and molecular characterization, and phylogeny of Metopus es and Brachonella contorta, both types of their respective genera, collected in a broad global sampling effort. Five strains of M. es and three strains of B. contorta were studied in detail, providing the first correlation of morphology, morphometrics, and 18S rRNA gene sequencing for both. We submitted 29 new 18S rRNA gene sequences to GenBank. Phylogenetic analyses yielded trees of similar topology. A strongly supported Metopus es clade is sister to the Brachonella contorta clade. Our analysis shows genus Metopus is not monophyletic. The monophyly of Brachonella cannot yet be determined due to lack of sequences for other species of this genus in molecular databases. Both species appear to have a global distribution. Metopus es was not found in Africa, probably reflecting low sampling effort. Strains of both species showed low 18S rRNA gene sequence divergence despite wide geographic separation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Cryptic species and species pairs in lichens: A discussion on the relationship between molecular phylogenies and morphological characters

    Directory of Open Access Journals (Sweden)

    Pérez-Ortega, Sergio

    2009-12-01

    Full Text Available As with most disciplines in biology, molecular genetics has revolutionized our understanding of lichenized fungi. Nowhere has this been more true than in systematics, especially in the delimitation of species. In many cases, molecular research has verified long-standing hypotheses, but in others, results appear to conflict with existing morphological species concepts. This work reports on recent progress regarding two main issues: (i cryptic species, i.e., two or more independent lineages exhibiting similar morphology; and (ii species pairs, two species with similar morphology but exhibiting different reproductive modes. Both concepts have in common a lack of correlation between phylogenetic and morphological data, at least for characters normally used in lichen systematics. We review the available literature on cryptic species and species pairs, focusing especially on the family Parmeliaceae (Lecanoromycetes, Ascomycota. Molecular data have repeatedly demonstrated the existence of cryptic species in lichenized fungi, although taxonomists have often been slow to recognize the resulting taxa. However, careful observation of fine-scale morphological, ecological and/or geographical features tends to provide support for the recognition of these species. In the case of species pairs, by contrast, few if any of the pairs studied to date have been confirmed to consist of independent lineages. Differences in reproductive mode alone appear not to be a sufficient reason to recognise new species.

    Como en otras disciplinas, el impacto producido por la filogenia molecular en el conocimiento de los hongos liquenizados ha producido avances y cambios conceptuales importantes. Esto ha sido especialmente cierto en la sistemática y ha afectado de una manera muy notable en aspectos relacionados con la delimitación de las especies. En muchos casos los datos moleculares han verificado las hipótesis tradicionalmente aceptadas en relación con la definici

  1. Molecular phylogeny of the tribe Torini Karaman, 1971 (Actinopterygii: Cypriniformes) from the Middle East and North Africa.

    Science.gov (United States)

    Borkenhagen, Kai

    2017-02-22

    Freshwater fishes of the cyprinid tribe Torini are widespread in Africa the Middle East and Indomalaya. The relationships of Middle-Eastern Torini are analysed based on mitochondrial markers (Cyt b, ND4) of the majority of relevant species. I present a larely well resolved phylogeny, which confirms the validity of the morphologically defined genera Arabibarbus, Carasobarbus, Mesopotamichthys and Pterocapoeta. The Torini originated in Indomalaya and colonised Africa via the Middle East. Morocco was colonised two times independently, first from sub-Saharan Africa and secondly along the southern margin of the Mediterranean Sea. The Tigris-Euphrates system is an important crossroad for the colonisation of the Jordan River, the Orontes River and the watercourses of the Arabian Peninsula by freshwater fishes. The Jordan lost its connection to the Euphrates earlier than the Orontes. The Arabian Peninsula was colonised from the Tigris-Euphrates system in at least two independent events.

  2. Chemical Composition of the Essential Oil from Aerial Parts of Javanian Pimpinella pruatjan Molk. and Its Molecular Phylogeny

    Directory of Open Access Journals (Sweden)

    Agustina D. R. Nurcahyanti

    2016-07-01

    Full Text Available The species-rich and diverse genus Pimpinella is mainly distributed in Europe and Asia; a few species occur in Africa. Yet, the Javanian Pimpinella, P. pruatjan, which has been used as an aphrodisiac in Indonesian traditional medicine, was studied for the first time in the context of chemical composition, as well as phylogeny analysis and antimicrobial activity. We examined the chemical composition of the essential oil (EO from aerial parts of P. pruatjan by gas liquid chromatography-mass spectrometry (GLC-MS. The main component of EO was (Z-γ-bisabolene. Several oxygenated monoterpenes, oxygenated sesquiterpenes, and sesquiterpenes were also detected. The genetic relationship of Pimpinella pruatjan Molk. to other Pimpinella species was reconstructed using nucleotide sequences of the nuclear DNA marker ITS (Internal Transcribed Spacer. P. pruatjan clusters as a sister group to the African Pimpinella species. The EO did not exhibit an apparent antimicrobial activity.

  3. A molecular phylogeny of the heterokont algae based on analyses of choroplast-encoded rbcL sequence data

    DEFF Research Database (Denmark)

    Daugbjerg, Niels; Andersen, Robert A.

    1997-01-01

    Nearly complete ribulose-1,5-bisphosphate carboxylase/ oxygenase (rbcL)sequences from 27 taxa of heterokont algae were determined and combined with rbcL sequences obtained from GenBank for four other heterokont algae and three red algae. The phylogeny of the morphologically diverse haterokont algae...... was inferred from an unambiguously aligned data matrix using the red algae as the root, Significantly higher levels of mutational saturation in third codon positions were found when plotting the pair-wise substitutions with and without corrections for multiple substitutions at the same site for first...... of heterokont algae. The Eustigmatophyceae were the most basal group, and the Dictyochophyceae branched off as the second most basal group. The branching pattern for the other classes was well supported in terms of bootstrap values in the weightedparsimony analysis but was weakly supported in the maximum...

  4. A molecular phylogeny of the heterokont algae based on analyses of choroplast-encoded rbcL sequence data

    DEFF Research Database (Denmark)

    Daugbjerg, Niels; Andersen, Robert A.

    1997-01-01

    Nearly complete ribulose-1,5-bisphosphate carboxylase/ oxygenase (rbcL)sequences from 27 taxa of heterokont algae were determined and combined with rbcL sequences obtained from GenBank for four other heterokont algae and three red algae. The phylogeny of the morphologically diverse haterokont algae...... was inferred from an unambiguously aligned data matrix using the red algae as the root, Significantly higher levels of mutational saturation in third codon positions were found when plotting the pair-wise substitutions with and without corrections for multiple substitutions at the same site for first...... of heterokont algae. The Eustigmatophyceae were the most basal group, and the Dictyochophyceae branched off as the second most basal group. The branching pattern for the other classes was well supported in terms of bootstrap values in the weightedparsimony analysis but was weakly supported in the maximum...

  5. Phylogeny and Evolution of Lepidoptera.

    Science.gov (United States)

    Mitter, Charles; Davis, Donald R; Cummings, Michael P

    2017-01-31

    Until recently, deep-level phylogeny in Lepidoptera, the largest single radiation of plant-feeding insects, was very poorly understood. Over the past two decades, building on a preceding era of morphological cladistic studies, molecular data have yielded robust initial estimates of relationships both within and among the ∼43 superfamilies, with unsolved problems now yielding to much larger data sets from high-throughput sequencing. Here we summarize progress on lepidopteran phylogeny since 1975, emphasizing the superfamily level, and discuss some resulting advances in our understanding of lepidopteran evolution.

  6. Molecular phylogeny of Urosomoida agilis, and new combinations: Hemiurosomoida longa gen. nov., comb. nov., and Heterourosomoida lanceolata gen. nov., comb. nov. (Ciliophora, Hypotricha).

    Science.gov (United States)

    Singh, Jasbir; Kamra, Komal

    2015-02-01

    For years, systematics of three species, Urosomoida agilis (Engelmann, 1862) Hemberger in Foissner, 1982, Urosomoida longa (Gelei and Szabados, 1950) Foissner et al., 1991 and Oxytricha lanceolata Shibuya, 1930, has remained unresolved due to lack of adequate molecular data. Though, it is known since several years that the three species are not very closely related. In the present paper, 18S rRNA gene sequences for two key species, U. agilis and U. longa, and their morphology and morphometry have been analyzed. Molecular phylogeny inferred from maximum likelihood, neighbour joining and maximum parsimony methods has adequately removed ambiguity over their systematics. In phylogenetic trees, U. agilis clustered consistently with non-stylonychine oxytrichids. Both Urosomoida longa and Oxytricha lanceolata clustered consistently away from U. agilis and O. granulifera, the type species of the genera Urosomoida and Oxytricha, respectively. As a result of the current molecular phylogenetic investigation and based on previously inferred morphological and morphogenetic data it is proposed to remove Urosomoida longa and Oxytricha lanceolata from Urosomoida and incertae sedis in Oxytricha, respectively, and establish two new generic combinations, Hemiurosomoida longa gen. nov., comb. nov. and Heterourosomoida lanceolata gen. nov., comb. nov. for them.

  7. Molecular phylogeny of the genus Taenia (Cestoda: Taeniidae): proposals for the resurrection of Hydatigera Lamarck, 1816 and the creation of a new genus Versteria.

    Science.gov (United States)

    Nakao, Minoru; Lavikainen, Antti; Iwaki, Takashi; Haukisalmi, Voitto; Konyaev, Sergey; Oku, Yuzaburo; Okamoto, Munehiro; Ito, Akira

    2013-05-01

    The cestode family Taeniidae generally consists of two valid genera, Taenia and Echinococcus. The genus Echinococcus is monophyletic due to a remarkable similarity in morphology, features of development and genetic makeup. By contrast, Taenia is a highly diverse group formerly made up of different genera. Recent molecular phylogenetic analyses strongly suggest the paraphyly of Taenia. To clarify the genetic relationships among the representative members of Taenia, molecular phylogenies were constructed using nuclear and mitochondrial genes. The nuclear phylogenetic trees of 18S ribosomal DNA and concatenated exon regions of protein-coding genes (phosphoenolpyruvate carboxykinase and DNA polymerase delta) demonstrated that both Taenia mustelae and a clade formed by Taenia parva, Taenia krepkogorski and Taenia taeniaeformis are only distantly related to the other members of Taenia. Similar topologies were recovered in mitochondrial genomic analyses using 12 complete protein-coding genes. A sister relationship between T. mustelae and Echinococcus spp. was supported, especially in protein-coding gene trees inferred from both nuclear and mitochondrial data sets. Based on these results, we propose the resurrection of Hydatigera Lamarck, 1816 for T. parva, T. krepkogorski and T. taeniaeformis and the creation of a new genus, Versteria, for T. mustelae. Due to obvious morphological and ecological similarities, Taenia brachyacantha is also included in Versteria gen. nov., although molecular evidence is not available. Taenia taeniaeformis has been historically regarded as a single species but the present data clearly demonstrate that it consists of two cryptic species.

  8. Acoustic structure of male loud-calls support molecular phylogeny of Sumatran and Javanese leaf monkeys (genus Presbytis

    Directory of Open Access Journals (Sweden)

    Meyer Dirk

    2012-02-01

    Full Text Available Abstract Background The degree to which loud-calls in nonhuman primates can be used as a reliable taxonomic tool is the subject of ongoing debate. A recent study on crested gibbons showed that these species can be well distinguished by their songs; even at the population level the authors found reliable differences. Although there are some further studies on geographic and phylogenetic differences in loud-calls of nonhuman primate species, it is unclear to what extent loud-calls of other species have a similar close relation between acoustic structure, phylogenetic relatedness and geographic distance. We therefore conducted a field survey in 19 locations on Sumatra, Java and the Mentawai islands to record male loud-calls of wild surilis (Presbytis, a genus of Asian leaf monkeys (Colobinae with disputed taxanomy, and compared the structure of their loud-calls with a molecular genetic analysis. Results The acoustic analysis of 100 surili male loud-calls from 68 wild animals confirms the differentiation of P.potenziani, P.comata, P.thomasi and P.melalophos. In a more detailed acoustic analysis of subspecies of P.melalophos, a further separation of the southern P.m.mitrata confirms the proposed paraphyly of this group. In concordance with their geographic distribution we found the highest correlation between call structure and genetic similarity, and lesser significant correlations between call structure and geographic distance, and genetic similarity and geographic distance. Conclusions In this study we show, that as in crested gibbons, the acoustic structure of surili loud-calls is a reliable tool to distinguish between species and to verify phylogenetic relatedness and migration backgrounds of respective taxa. Since vocal production in other nonhuman primates show similar constraints, it is likely that an acoustic analysis of call structure can help to clarify taxonomic and phylogenetic relationships.

  9. Molecular/clinical correlations in females with fragile X

    Energy Technology Data Exchange (ETDEWEB)

    Sobesky, W.E.; Riddle, J.; Hagerman, R.J. [Children`s Hospital, Denver, CO (United States)] [and others

    1996-08-09

    Females who are affected by fragile X syndrome (FXS) can have significant physical, neuropsychological and emotional involvement. This study was designed to explore the relationships between these three domains and to learn how the degree of involvement in each of these phenotypic areas relates to molecular parameters including CGG repeat length and activation ratio (the proportion of normal FMR1 alleles on the active X chromosome). Three groups of females were studied: 35 women who grew up in a fragile X family but do not carry an FMR1 mutation, 92 women with a premutation, and 29 women with a full mutation. Correlations between neurocognitive, physical and emotional traits were calculated for each of the three groups. Within the full mutation group significant correlations were seen between schizotypal traits and full scale IQ. The Lie scale was significantly correlated with the physical findings index. The activation ratio correlated significantly with the measure of executive function (r = .50, P = .01). There was a trend toward correlations of activation ratio with the physical index score, outer ear prominence and IQ. CGG repeat number significantly correlated only with the physical index (r = .44, P = .0 1). Thus, activation ratio may be the more pertinent molecular parameter in full mutation women in determining the degree of cognitive and physical phenotypic involvement. 29 refs., 2 tabs.

  10. Summary of Laurasiatheria (Mammalia) Phylogeny

    Institute of Scientific and Technical Information of China (English)

    Jingyang HU; Yaping ZHANG; Li YU

    2012-01-01

    Laurasiatheria is one of the richest and most diverse superorders of placental mammals.Because this group had a rapid evolutionary radiation,the phylogenetic relationships among the six orders of Laurasiatheria remain a subject of heated debate and several issues related to its phylogeny remain open.Reconstructing the true phylogenetic relationships of Laurasiatheria is a significant case study in evolutionary biology due to the diversity of this suborder and such research will have significant implications for biodiversity conservation.We review the higher-level (inter-ordinal) phylogenies of Laurasiatheria based on previous cytogenetic,morphological and molecular data,and discuss the controversies of its phylogenetic relationship.This review aims to outline future researches on Laurasiatheria phylogeny and adaptive evolution.

  11. Molecular Phylogeny Analysis of Allium Sativum in Alliaceae%大蒜在葱科的分子分类地位研究

    Institute of Scientific and Technical Information of China (English)

    侯进慧; 李同祥; 蔡文佳

    2014-01-01

    通过扩增获得18S rRNA和叶绿体16S rRNA基因序列,测序并提交GenBank ,登录号分别是JF719285和JF719286.利用大蒜和GenBank相关序列构建系统发育树,进行分子演化分析.结果表明:大蒜18S rRNA 基因与球序韭、韭菜、茖葱等葱科植物序列相似度高;叶绿体16S rRNA基因与龙舌兰科和薯蓣科的物种序列相似度高.大蒜与葱科植物在18S rRNA序列上具有较高的同源性.18S rRNA序列在植物演化方面的区分度比16S rRNA高.%In the paper ,molecular phylogeny of Allium sativum were discussded with the analysis of rRNA gene .18S rRNA gene and chloroplast 16S rRNA gene sequences were amplified .The two rRNA genes were submitted to Genbank and the accession numbers were JF719285 and JF719286 .Gene sequences of Allium sativum was analyzed with related species in GenBank .The results showed that :Allium sativum 18S rRNA gene has a high homology with many species within Alliaceae ,such as Allium thunbergii ,Allium tuberosum and Allium victorialis .Allium sativum and Alliaceae plants has a high similarity in 18S rDNA . The discrimination accusation of 18Sr RNA sequences in plant phylogeny analysis is better than that of 16S rRNA .

  12. A molecular phylogeny for yponomeutoidea (insecta, Lepidoptera, ditrysia and its implications for classification, biogeography and the evolution of host plant use.

    Directory of Open Access Journals (Sweden)

    Jae-Cheon Sohn

    suggesting parallel phylogenesis. Our analyses suggest that previous characterizations of yponomeutoids as predominantly Holarctic were based on insufficient sampling. CONCLUSIONS/SIGNIFICANCE: We provide the first robust molecular phylogeny for Yponomeutoidea, together with a revised classification and new insights into their life history evolution and biogeography.

  13. Grazers, shredders and filtering carnivores--the evolution of feeding ecology in Drusinae (Trichoptera: Limnephilidae): insights from a molecular phylogeny.

    Science.gov (United States)

    Pauls, Steffen U; Graf, Wolfram; Haase, Peter; Lumbsch, H Thorsten; Waringer, Johann

    2008-02-01

    We examined the phylogenetic relationships between species and genera within the caddisfly subfamily Drusinae (Trichoptera: Limnephilidae) using sequence data from two mitochondrial loci (cytochrome oxidase 1, large subunit rRNA) and one nuclear gene (wingless). Sequence data were analysed for 28 species from five genera from the subfamily. We analysed individual and combined data sets using a Bayesian Markov Chain Monte Carlo and a maximum parsimony approach and compared the performance of each partition for resolving phylogenetic relationships at this level. In terms of resolution and phylogenetic utility wingless outperformed the two mitochondrial gene partitions. Using both Shimodaira-Hasegawa and expected likelihood weights tests we tested several hypotheses of relationships previously inferred based on adult morphological characters. The data did not support the generic concept, or many previously proposed species groupings, based on adult morphology. In contrast, the molecular data correlated with the morphology and feeding ecology of larvae. Using Bayesian ancestral character state reconstructions we inferred the evolution of feeding ecology and relevant larval morphological characters. Our analyses showed that within the subfamily Drusinae two derived feeding types evolved. One of these--grazing epilithic algae--is otherwise unusual in the Limnephilidae and may have promoted the high degree of diversity in the Drusinae.

  14. Explicit inclusion of electronic correlation effects in molecular dynamics

    Science.gov (United States)

    Julien, Jean-Pierre; Kress, Joel D.; Zhu, Jian-Xin

    2017-07-01

    We design a quantum molecular dynamics method for strongly correlated electron metals. The strong electronic correlation effects are treated within a real-space version of the Gutzwiller variational approximation (GA), which is suitable for the inhomogeneity inherent in the process of quantum molecular dynamics (MD) simulations. We also propose an efficient algorithm based on the second-moment approximation to the electronic density of states for the search of the optimal variation parameters, from which the renormalized interatomic MD potentials are fully determined. By considering a minimal one-correlated-orbital Anderson model with parameterized spatial dependence of tight-binding hopping integrals, this fast GA-MD method is benchmarked with that using exact diagonalization to solve the GA variational parameters. The efficiency and accuracy are illustrated. We have demonstrated the effect of temperature coupled with electronic correlation on structural properties simulated with MD. This method will open up an unprecedented opportunity enabling large-scale quantum MD simulations of strongly correlated electronic materials.

  15. Phylogeny mandalas for illustrating the Tree of Life.

    Science.gov (United States)

    Hasegawa, Masami

    2016-11-02

    A circular phylogeny with photos or drawings of species is named a phylogeny mandala. This is one of the ways for illustrating the Tree of Life, and is suitable to show visually how the biodiversity has developed in the course of evolution as clarified by the molecular phylogenetics. To demonstrate the recent progress of molecular phylogenetics, six phylogeny mandalas for various taxonomic groups of life were presented; i.e., (1) Eukaryota, (2) Metazoa, (3) Hexapoda, (4) Tetrapoda, (5) Eutheria, and (6) Primates.

  16. Molecular characterization, phylogeny analysis and pathogenicity of a Muscovy duck adenovirus strain isolated in China in 2014

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinheng [College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642 (China); Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 (China); South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642 (China); Zhong, Yangjin; Zhou, Zhenhai; Liu, Yang [College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642 (China); Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 (China); Zhang, Huanmin [USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823 (United States); Chen, Feng [College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642 (China); Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 (China); Chen, Weiguo [College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642 (China); Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 (China); South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642 (China); Xie, Qingmei, E-mail: qmx@scau.edu.cn [College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642 (China); Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 (China); South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642 (China)

    2016-06-15

    This study aimed to characterize a novel adenovirus (AdV) isolated from diseased Muscovy ducks in China. After the AdV was successfully propagated in duck embryo fibroblasts, the morphological and physicochemical properties of the virions were studied by electron microscopy and different tests. The results of the analyses were in conformity with AdV properties. The full genome sequence was determined and analyzed. The new isolate (named CH-GD-12-2014) shared over 91% sequence identity with duck AdV-2 representing the species Duck aviadenovirus B. The most important distinguishing feature between the two DAdV strains was the presence of a second fiber gene in the Chinese isolate. Phylogeny reconstruction confirmed the affiliation of the virus with goose and duck AdVs in the genus Aviadenovirus. Experimental infection resulted in embryo death, and intramuscular inoculation provoked morbidity and mortality among ducks and chickens. - Highlights: • A duck adenovirus type 3 was isolated and the complete genome of DAdV-3 was obtained. • Physicochemical properties and electron microscopy were researched. • Pathogenicity of duck adenovirus type 3 was researched.

  17. Molecular phylogeny and biogeography of the Cuban genus Girardinus Poey, 1854 and relationships within the tribe Girardinini (Actinopterygii, Poeciliidae).

    Science.gov (United States)

    Doadrio, Ignacio; Perea, Silvia; Alcaraz, Lourdes; Hernandez, Natividad

    2009-01-01

    Phylogenetic relationships among members of the freshwater fish tribe Girardinini were inferred to test existing colonization and diversification hypotheses for this group in the Caribbean. The genetic material examined was mitochondrial (cytochrome b, 1140 bp) and nuclear (RAG-1 and beta-actin, 2450 bp) DNA from 161 specimens representing 44 ingroup and three outgroup taxa. Our mtDNA and combined data matrix (mtDNA+nuclear DNA) results rendered a well-supported phylogeny for the tribe Girardinini and suggest the need to review the group's current taxonomy. From the data presented here, it may be inferred that the Girardinini diverged from other poeciliid fishes approximately 62 Mya ago in the Palaeocene period. This estimate, however, conflicts with the hypothesis that today's vertebrate fauna is the result of the more recent colonization of the Antillean islands during the Early Oligocene (35-33 Mya ago). The isolation of western, central and eastern Cuba during the Miocene and that of the Juventud Island and Guanahacabibes Peninsula during the Pliocene, are the main geologic events that could have promoted speciation in this group.

  18. Molecular Kohn-Sham exchange-correlation potential from the correlated ab initio electron density

    Science.gov (United States)

    Gritsenko, Oleg V.; van Leeuwen, Robert; Baerends, Evert Jan

    1995-09-01

    The molecular Kohn-Sham (KS) exchange-correlation potential vxc has been constructed for LiH from the correlated ab initio density ρ by means of the simple iterative procedure developed by van Leeuwen and Baerends [Phys. Rev. A 49, 2421 (1994)]. The corresponding KS energy characteristics, such as the kinetic energy of noninteracting particles Ts, kinetic part of the exchange-correlation energy Tc, and energy of the highest occupied molecular orbital ɛN, have been obtained with reasonable accuracy. A relation between the form of vxc and the electronic structure of LiH has been discussed. Test calculations for the two-electron H2 molecule have shown the efficiency of the procedure.

  19. Molecular Subtypes of Uterine Leiomyosarcoma and Correlation with Clinical Outcome

    Directory of Open Access Journals (Sweden)

    Joyce N. Barlin

    2015-02-01

    Full Text Available The molecular etiology of uterine leiomyosarcoma (ULMS is poorly understood, which accounts for the wide disparity in outcomes among women with this disease. We examined and compared the molecular profiles of ULMS and normal myometrium (NL to identify clinically relevant molecular subtypes. Discovery cases included 29 NL and 23 ULMS specimens. RNA was hybridized to Affymetrix U133A 2.0 transcription microarrays. Differentially expressed genes and pathways were identified using standard methods. Fourteen NL and 44 ULMS independent archival samples were used for external validation. Molecular subgroups were correlated with clinical outcome. Pathway analyses of differentially expressed genes between ULMS and NL samples identified overrepresentation of cell cycle regulation, DNA repair, and genomic integrity. External validation confirmed differential expression in 31 genes (P < 4.4 × 10−4, Bonferroni corrected, with 84% of the overexpressed genes, including CDC7, CDC20, GTSE1, CCNA2, CCNB1, and CCNB2, participating in cell cycle regulation. Unsupervised clustering of ULMS identified two clades that were reproducibly associated with progression-free (median, 4.0 vs 26.0 months; P = .02; HR, 0.33 and overall (median, 18.2 vs 77.2 months; P = .04; HR, 0.33 survival. Cell cycle genes play a key role in ULMS sarcomagenesis, providing opportunities for therapeutic targeting. Reproducible molecular subtypes associated with clinical outcome may permit individualized adjuvant treatment after clinical trial validation.

  20. Cloning, molecular characterization, and phylogeny of two evolutionary distinct glutamine synthetase isoforms in the green microalga Haematococcus pluvialis (Chlorophyceae)

    NARCIS (Netherlands)

    Reinecke, Diana L.; Zarka, Aliza; Leu, Stefan; Boussiba, Sammy

    2016-01-01

    Haematococcus pluvialis (Chlorophyta) is a widely used microalga of great economic potential, yet its molecular genetics and evolution are largely unknown. We present new detailed molecular and phylogenetic analysis of two glutamine synthetase (GS) enzymes and genes (gln) under the Astaxanthin-induc

  1. MOLECULAR PHYLOGENY, ULTRASTRUCTURE, AND TAXONOMIC REVISION OF CHLOROGONIUM (CHLOROPHYTA): EMENDATION OF CHLOROGONIUM AND DESCRIPTION OF GUNGNIR GEN. NOV. AND RUSALKA GEN. NOV.(1).

    Science.gov (United States)

    Nakada, Takashi; Nozaki, Hisayoshi; Pröschold, Thomas

    2008-06-01

    We examined the molecular phylogeny and ultrastructure of Chlorogonium and related species to establish the natural taxonomy at the generic level. Phylogenetic analyses of 18S rRNA and RUBISCO LSU (rbcL) gene sequences revealed two separate clades of Chlorogonium from which Chlorogonium (Cg.) fusiforme Matv. was robustly separated. One clade comprised Cg. neglectum Pascher and Cg. kasakii Nozaki, whereas the other clade included the type species Cg. euchlorum (Ehrenb.) Ehrenb., Cg. elongatum (P. A. Dang.) Francé, and Cg. capillatum Nozaki, M. Watanabe et Aizawa. On the basis of unique ultrastructural characteristics, we described Gungnir Nakada gen. nov. comprising three species: G. neglectum (Pascher) Nakada comb. nov., G. mantoniae (H. Ettl) Nakada comb. nov., and G. kasakii (Nozaki) Nakada comb. nov. We also emended Chlorogonium as a monophyletic genus composed of Cg. euchlorum, Cg. elongatum, and Cg. capillatum. Because Cg. fusiforme was distinguished from the redefined Chlorogonium and Gungnir by the structure of its starch plate, which is associated with pyrenoids, we reclassified this species as Rusalka fusiformis (Matv.) Nakada gen. et comb. nov.

  2. Molecular phylogeny of the genus Chondracanthus (Rhodophyta), focusing on the resurrection of C. okamurae and the description of C. cincinnus sp. nov.

    Science.gov (United States)

    Yang, Mi Yeon; Kim, Myung Sook

    2016-09-01

    Determining the taxonomic status of the red algal genus Chondracanthus based on morphological characters is challenging due to the similarity and high degree of plasticity of the thallus. Since the taxonomic history of several Chondracanthus species remains unclear, we analyzed the plastid rbcL and mitochondrial COI genes of the specimens from Korea and Japan, in combination with morphological observations, to examine their phylogenetic relationships. Our results confirmed the distinction of C. okamurae, which is separated from C. intermedius, and identified a novel species, C. cincinnus sp. nov. Three species ( C. okamurae, C. intermedius and C. cincinnus) formed a monophyletic clade with C. tenellus. C. okamurae is distinguished by linear, narrow, cylindrical to compressed, slightly recurved axes, and a high-intertidal to subtidal distribution. It was collected from Korea and Japan, while C. intermedius was identified from Japan only. A new species, Chondracanthus cincinnus sp. nov., is characterized by linear, compressed, strongly recurved axes, and a low-intertidal to subtidal distiribution. Based on the molecular phylogeny using rbcL and COI data, we herein resurrect C. okamurae as a distinct species and identify C. cincinnus as a new species.

  3. The molecular phylogeny of the type-species of Oodinium Chatton, 1912 (Dinoflagellata: Oodiniaceae), a highly divergent parasitic dinoflagellate with non-dinokaryotic characters.

    Science.gov (United States)

    Gómez, Fernando; Skovgaard, Alf

    2015-02-01

    Oodinium pouchetii (Lemmermann, 1899) Chatton, 1912, the first described parasitic dinoflagellate, is the type of the Oodiniaceae Chatton, 1920. In the taxonomical schemes, this family of metazoan parasites includes Amyloodinium Brown & Hovasse, 1946 and Piscinoodinium Lom, 1981 that are responsible of important damages in fish aquaculture. Species of Oodinium Chatton, 1912 have unique characteristics such as the possession of both non-dinokaryotic and dinokaryotic nuclei within the life-cycle, and the absence of the transversal (cingulum) and longitudinal (sulcus) surface grooves in the parasitic stage. We provide the first molecular data for the genus Oodinium from specimens of O. pouchetii infecting the chordate Oikopleura sp. (Tunicata: Appendicularia) off the coasts of Brazil. Although O. pouchetii lacks dinokaryotic characters in the parasitic stage, the SSU rDNA phylogeny revealed that it forms a distinct fast-evolved clade that branches among the dinokaryotic dinoflagellates. However, there is no clear relationship with other dinoflagellates. Hence, the taxonomic affinity of the family Oodiniaceae is unclear at the moment.

  4. The molecular phylogeny of Rebutia (Cactaceae) and its allies demonstrates the influence of paleogeography on the evolution of South American mountain cacti.

    Science.gov (United States)

    Ritz, Christiane M; Martins, Ludwig; Mecklenburg, Rainer; Goremykin, Vadim; Hellwig, Frank H

    2007-08-01

    The tropical Andes harbor a major part of the world's plant biodiversity. The montane cacti of the tribes Browningieae, Cereeae, and Trichocereeae underwent extensive radiation and thus are well suited as a model group to study the diversification of Andean plants. We reconstructed their phylogeny employing three noncoding chloroplast regions and explained it in the context of the geological history of South America. We found that the clade of cephalia-bearing cacti with naked pericarpels is centered in northeastern Brazil, whereas almost all other clades comprise Andean species. The spatial split between the clades was probably caused by the Andean uplift and the concurrent formation of intracontinental marine basins in the Tertiary. The phylogenetic reconstructions based on parsimony and Bayesian approaches do not reflect the traditional delimitation of the tribes and of the large genera. Our results suggest that Rebutia s.l. and Echinopsis s.l. are not monophyletic and that Sulcorebutia, Weingartia, and Cintia should be united into one genus. Even though this "Weingartia-complex" and the genus Gymnocalycium are similar in size and morphological diversity, Gymnocalycium has a very high molecular divergence suggesting a comparably older radiation.

  5. Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa.

    Science.gov (United States)

    Chen, Wei-Jen; Bonillo, Céline; Lecointre, Guillaume

    2003-02-01

    Although much progress has been made recently in teleostean phylogeny, relationships among the main lineages of the higher teleosts (Acanthomorpha), containing more than 60% of all fish species, remain poorly defined. This study represents the most extensive taxonomic sampling effort to date to collect new molecular characters for phylogenetic analysis of acanthomorph fishes. We compiled and analyzed three independent data sets, including: (i) mitochondrial ribosomal fragments from 12S and 16s (814bp for 97 taxa); (ii) nuclear ribosomal 28S sequences (847bp for 74 taxa); and (iii) a nuclear protein-coding gene, rhodopsin (759bp for 86 taxa). Detailed analyses were conducted on each data set separately and the principle of taxonomic congruence without consensus trees was used to assess confidence in the results as follows. Repeatability of clades from separate analyses was considered the primary criterion to establish reliability, rather than bootstrap proportions from a single combined (total evidence) data matrix. The new and reliable clades emerging from this study of the acanthomorph radiation were: Gadiformes (cods) with Zeioids (dories); Beloniformes (needlefishes) with Atheriniformes (silversides); blenioids (blennies) with Gobiesocoidei (clingfishes); Channoidei (snakeheads) with Anabantoidei (climbing gouramies); Mastacembeloidei (spiny eels) with Synbranchioidei (swamp-eels); the last two pairs of taxa grouping together, Syngnathoidei (aulostomids, macroramphosids) with Dactylopteridae (flying gurnards); Scombroidei (mackerels) plus Stromatoidei plus Chiasmodontidae; Ammodytidae (sand lances) with Cheimarrhichthyidae (torrentfish); Zoarcoidei (eelpouts) with Cottoidei; Percidae (perches) with Notothenioidei (Antarctic fishes); and a clade grouping Carangidae (jacks), Echeneidae (remoras), Sphyraenidae (barracudas), Menidae (moonfish), Polynemidae (threadfins), Centropomidae (snooks), and Pleuronectiformes (flatfishes).

  6. A molecular-dated phylogeny and biogeography of the monotypic legume genus Haplormosia, a missing African branch of the otherwise American-Australian Brongniartieae clade.

    Science.gov (United States)

    Cardoso, Domingos; Harris, David J; Wieringa, Jan J; São-Mateus, Wallace M B; Batalha-Filho, Henrique; Torke, Benjamin M; Prenner, Gerhard; Queiroz, Luciano Paganucci de

    2017-02-01

    A comprehensively sampled reassessment of the molecular phylogeny of the genistoid legumes questions the traditional placement of Haplormosia, an African monotypic genus traditionally classified within tribe Sophoreae close to the Asian-American geographically disjunct genus Ormosia. Plastid matK sequences placed Haplormosia as sister to the American-Australian tribe Brongniartieae. Despite a superficial resemblance between Haplormosia and Ormosia, a re-examination of the morphology of Haplormosia corroborates the new phylogenetic result. The reciprocally monophyletic deep divergence of the Haplormosia stem lineage from the remaining Brongniartieae is dated to ca. 52Mya, thus supporting a signature of an old single long-distance dispersal during the early Eocene. Conversely, we estimated a relatively recent long-distance dispersal rooted in the Early Miocene for the Australian Brongniartieae clade emerging from within a grade of American Brongniartieae. The Bayesian ancestral area reconstruction revealed the coming and going of neotropical ancestors during the diversification history of the Brongniartieae legumes in Africa and all over the Americas and Australia. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Total Correlation Function Integrals and Isothermal Compressibilities from Molecular Simulations

    DEFF Research Database (Denmark)

    Wedberg, Rasmus; Peters, Günther H.j.; Abildskov, Jens

    2008-01-01

    Generation of thermodynamic data, here compressed liquid density and isothermal compressibility data, using molecular dynamics simulations is investigated. Five normal alkane systems are simulated at three different state points. We compare two main approaches to isothermal compressibilities: (1...... in approximately the same amount of time. This suggests that computation of total correlation function integrals is a route to isothermal compressibility, as accurate and fast as well-established benchmark techniques. A crucial step is the integration of the radial distribution function. To obtain sensible results...

  8. In Situ Correlated Molecular Imaging of Chemically Communicating Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Paul W. [Univ. of Notre Dame, IN (United States); Shrout, J. D. [Univ. of Notre Dame, IN (United States); Sweedler, J. V. [Univ. of Illinois, Urbana-Champaign, IL (United States); Farrand, S. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-01-25

    This document constitutes the final technical report for DE-SC0006642, In Situ Correlated Molecular Imaging of Chemically Communicating Microbial Communities, a project carried out collaboratively by investigators at Notre Dame and UIUC. The work carried out under DOE support in this project produced advances in two areas: development of new highly sophisticated correlated imaging approaches and the application of these new tools to the growth and differentiation of microbial communities under a variety of environmental conditions. A significant effort involved the creation of technical enhancements and sampling approaches to allow us to advance heterocorrelated mass spectrometry imaging (MSI) and correlated Raman microscopy (CRM) from bacterial cultures and biofilms. We then exploited these measurement advances in heterocorrelated MS/CRM imaging to determine relationship of signaling molecules and excreted signaling molecules produced by P. aeruginosa to conditions relevant to the rhizosphere. In particular, we: (1) developed a laboratory testbed mimic for the rhizosphere to enable microbial growth on slides under controlled conditions; (2) integrated specific measurements of (a) rhamnolipids, (b) quinolone/quinolones, and (c) phenazines specific to P. aeruginosa; and (3) utilized the imaging tools to probe how messenger secretion, quorum sensing and swarming behavior are correlated with behavior.

  9. Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities?

    Science.gov (United States)

    Crisp, Mike; Cook, Lyn; Steane, Dorothy

    2004-10-29

    The Australian fossil record shows that from ca. 25 Myr ago, the aseasonal-wet biome (rainforest and wet heath) gave way to the unique Australian sclerophyll biomes dominated by eucalypts, acacias and casuarinas. This transition coincided with tectonic isolation of Australia, leading to cooler, drier, more seasonal climates. From 3 Myr ago, aridification caused rapid opening of the central Australian arid zone. Molecular phylogenies with dated nodes have provided new perspectives on how these events could have affected the evolution of the Australian flora. During the Mid-Cenozoic (25-10 Myr ago) period of climatic change, there were rapid radiations in sclerophyll taxa, such as Banksia, eucalypts, pea-flowered legumes and Allocasuarina. At the same time, taxa restricted to the aseasonal-wet biome (Nothofagus, Podocarpaceae and Araucariaceae) did not radiate or were depleted by extinction. During the Pliocene aridification, two Eremean biome taxa (Lepidium and Chenopodiaceae) radiated rapidly after dispersing into Australia from overseas. It is clear that the biomes have different histories. Lineages in the aseasonal-wet biome are species poor, with sister taxa that are species rich, either outside Australia or in the sclerophyll biomes. In conjunction with the fossil record, this indicates depletion of the Australian aseasonal-wet biome from the Mid-Cenozoic. In the sclerophyll biomes, there have been multiple exchanges between the southwest and southeast, rather than single large endemic radiations after a vicariance event. There is need for rigorous molecular phylogenetic studies so that additional questions can be addressed, such as how interactions between biomes may have driven the speciation process during radiations. New studies should include the hitherto neglected monsoonal tropics.

  10. Reconciling classical and molecular phylogenies in the stichotrichines (Ciliophora, Spirotrichea), including new sequences from some rare species

    NARCIS (Netherlands)

    Foissner, W.; Moon-van der Staay, S.Y.; Staay, G.W.M. van der; Hackstein, J.H.P.; Krautgartner, W.D.; Berger, H.

    2004-01-01

    We performed a comparative morphological and molecular study on oxytrichid and urostylid stichotrichs (= part of the former hypotrichs). Included are new small subunit (18S) ribosomal RNA (rRNA) gene sequences from five rare oxytrichids (Gonostomum namibiense, Cyrtohymena citrina, Hemiurosoma terric

  11. Novel approach to improve molecular imaging research: Correlation between macroscopic and molecular pathological findings in patients

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Ingrid, E-mail: i.boehm@uni-bonn.de [Department of Diagnostic Radiology, ZARF Project, Center for Molecular Imaging Research MBMB, Philipps University of Marburg, Baldingerstrasse, 35039 Marburg (Germany)

    2011-09-15

    Purpose: Currently, clinical research approaches are sparse in molecular imaging studies. Moreover, possible links between imaging features and pathological laboratory parameters are unknown, so far. Therefore, the goal was to find a possible relationship between imaging features and peripheral blood cell apoptosis, and thereby to present a novel way to complement molecular imaging research. Materials and methods: The investigation has been done in systemic lupus erythematosus (SLE), a prototype of an autoimmune disease characterized by multiorgan involvement, autoantibody production, and disturbed apoptosis. Retrospectively, radiological findings have been compared to both autoantibody findings and percentage apoptotic blood cells. Results: Two SLE groups could be identified: patients with normal (annexin V binding < 20%), and with increased apoptosis (annexin V binding > 20%) of peripheral blood cells. The frequency of radiological examinations in SLE patients significantly correlated with an increased percentage of apoptotic cells (p < 0.005). In patients with characteristic imaging findings (e.g. lymph node swelling, pleural effusion) an elevated percentage of apoptotic cells was present. In contrast SLE-patients with normal imaging findings or uncharacteristic results of minimal severity had normal percentages of apoptotic blood cells. Conclusion: This correlation between radiographic findings and percentage of apoptotic blood cells provides (1) further insight into pathological mechanisms of SLE, (2) will offer the possibility to introduce apoptotic biomarkers as molecular probes for clinical molecular imaging approaches in future to early diagnose organ complaints in patients with SLE, and (3) is a plea to complement molecular imaging research by this clinical approach.

  12. Cholangiocarcinoma: Correlation between Molecular Profiling and Imaging Phenotypes.

    Directory of Open Access Journals (Sweden)

    Eran Sadot

    Full Text Available To investigate associations between imaging features of cholangiocarcinoma by visual assessment and texture analysis, which quantifies heterogeneity in tumor enhancement patterns, with molecular profiles based on hypoxia markers.The institutional review board approved this HIPAA-compliant retrospective study of CT images of intrahepatic cholangiocarcinoma, obtained before surgery. Immunostaining for hypoxia markers (EGFR, VEGF, CD24, P53, MDM2, MRP-1, HIF-1α, CA-IX, and GLUT1 was performed on pre-treatment liver biopsies. Quantitative imaging phenotypes were determined by texture analysis with gray level co-occurrence matrixes. The correlations between quantitative imaging phenotypes, qualitative imaging features (measured by radiographic inspection alone, and expression levels of the hypoxia markers from the 25 tumors were assessed.Twenty-five patients were included with a median age of 62 years (range: 54-84. The median tumor size was 10.2 cm (range: 4-14, 10 (40% were single tumors, and 90% were moderately differentiated. Positive immunostaining was recorded for VEGF in 67% of the cases, EGFR in 75%, and CD24 in 55%. On multiple linear regression analysis, quantitative imaging phenotypes correlated significantly with EGFR and VEGF expression levels (R2 = 0.4, p<0.05 and R2 = 0.2, p<0.05, respectively, while a trend was demonstrated with CD24 expression (R2 = 0.33, p = 0.1. Three qualitative imaging features correlated with VEGF and CD24 expression (P<0.05, however, none of the qualitative features correlated with the quantitative imaging phenotypes.Quantitative imaging phenotypes, as defined by texture analysis, correlated with expression of specific markers of hypoxia, regardless of conventional imaging features.

  13. Molecular phylogeny and biogeography of the highly specialized grade schizothoracine fishes (Teleostei:Cyprinidae) inferred from cytochrome b sequences

    Institute of Scientific and Technical Information of China (English)

    HE DeKui; CHEN YiFeng

    2007-01-01

    We recovered the phylogenetic relationships among 23 species and subspecies of the highly specialized grade schizothoracine fishes distributing at 36 geographical sites in the Tibetan Plateau and its surrounding regions by analyzing sequences of cytochrome b genes. Furthermore, we estimated the possible divergent times among lineages based on a historical geological isolation event in the Tibetan Plateau. The molecular data revealed that the highly specialized grade schizothoracine fishes were not a monophyletic group, but were the same as genera Gymnocypris and Schizogypsis. Our results indicated that the molecular phylogenetic relationships apparently reflected their geographical and historical associations with drainages, namely species from the same and adjacent drainages clustered together and had close relationships. The divergence times of different lineages were well consistent with the rapid uplift phases of the Tibetan Plateau in the late Cenozoic, suggesting that the origin and evolution of schizothoracine fishes were strongly influenced by environment changes resulting from the upheaval of the Tibetan Plateau.

  14. Morphology and molecular phylogeny of an Antarctic population of Paraholosticha muscicola (Kahl, 1932) Wenzel, 1953 (Ciliophora, Hypotricha)

    Science.gov (United States)

    Jung, Jae-Ho; Park, Kyung-Min; Min, Gi-Sik; Berger, Helmut; Kim, Sanghee

    2015-12-01

    The morphology of an Antarctic soil population of Paraholosticha muscicola, type species of Paraholosticha, is described from life and after protargol preparation. The data agree rather well with that of relevant descriptions, but the total variability of several features is relatively high in this species. Paraholosticha ovata and P. lichenicola are very likely junior synonyms. In addition, we sequenced the SSU rRNA gene of P. muscicola and thus we can estimate for the first time the phylogenetic position of a member of the Keronopsidae, the sole hypotrichs that divide in cysts. The molecular data basically support the position derived from morphological concepts, that is, P. muscicola branches off outside the Dorsomarginalia because kinety fragmentation and dorsomarginal rows are lacking. However, as in many other molecular analyses, discrepancies with morphology-based hypothesis are present. The misclassification of Paraholosticha and its sister-group Keronopsis in the Keronidae, with Kerona pediculus as type species, is discussed.

  15. Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae.

    Science.gov (United States)

    Thornhill, Andrew H; Popple, Lindsay W; Carter, Richard J; Ho, Simon Y W; Crisp, Michael D

    2012-04-01

    The identification and application of reliable fossil calibrations represents a key component of many molecular studies of evolutionary timescales. In studies of plants, most paleontological calibrations are associated with macrofossils. However, the pollen record can also inform age calibrations if fossils matching extant pollen groups are found. Recent work has shown that pollen of the myrtle family, Myrtaceae, can be classified into a number of morphological groups that are synapomorphic with molecular groups. By assembling a data matrix of pollen morphological characters from extant and fossil Myrtaceae, we were able to measure the fit of 26 pollen fossils to a molecular phylogenetic tree using parsimony optimisation of characters. We identified eight Myrtaceidites fossils as appropriate for calibration based on the most parsimonious placements of these fossils on the tree. These fossils were used to inform age constraints in a Bayesian phylogenetic analysis of a sequence alignment comprising two sequences from the chloroplast genome (matK and ndhF) and one nuclear locus (ITS), sampled from 106 taxa representing 80 genera. Three additional analyses were calibrated by placing pollen fossils using geographic and morphological information (eight calibrations), macrofossils (five calibrations), and macrofossils and pollen fossils in combination (12 calibrations). The addition of new fossil pollen calibrations led to older crown ages than have previously been found for tribes such as Eucalypteae and Myrteae. Estimates of rate variation among lineages were affected by the choice of calibrations, suggesting that the use of multiple calibrations can improve estimates of rate heterogeneity among lineages. This study illustrates the potential of including pollen-based calibrations in molecular studies of divergence times.

  16. Mapping Mutations on Phylogenies

    DEFF Research Database (Denmark)

    Nielsen, Rasmus

    2005-01-01

    This chapter provides a short review of recent methodologies developed for mapping mutations on phylogenies. Mapping of mutations, or character changes in general, using the maximum parsimony principle has been one of the most powerful tools in phylogenetics, and it has been used in a variety...... of different applications, for example, in the detection of correlated evolution and to identify selection acting on DNA sequences. However, many uses of parsimony mappings have been criticized because they focus on only one of many possible mappings and/or because they do not incorporate statistical...... uncertainty in the mapping. Recently developed probabilistic methods can incorporate statistical uncertainty in the character mappings. In these methods, focus is on a probability distribution of mutational mappings instead of a single estimate of the mutational mapping....

  17. Integrating a Numerical Taxonomic Method and Molecular Phylogeny for Species Delimitation of Melampsora Species (Melampsoraceae, Pucciniales on Willows in China.

    Directory of Open Access Journals (Sweden)

    Peng Zhao

    Full Text Available The species in genus Melampsora are the causal agents of leaf rust diseases on willows in natural habitats and plantations. However, the classification and recognition of species diversity are challenging because morphological characteristics are scant and morphological variation in Melampsora on willows has not been thoroughly evaluated. Thus, the taxonomy of Melampsora species on willows remains confused, especially in China where 31 species were reported based on either European or Japanese taxonomic systems. To clarify the species boundaries of Melampsora species on willows in China, we tested two approaches for species delimitation inferred from morphological and molecular variations. Morphological species boundaries were determined based on numerical taxonomic analyses of morphological characteristics in the uredinial and telial stages by cluster analysis and one-way analysis of variance. Phylogenetic species boundaries were delineated based on the generalized mixed Yule-coalescent (GMYC model analysis of the sequences of the internal transcribed spacer (ITS1 and ITS2 regions including the 5.8S and D1/D2 regions of the large nuclear subunit of the ribosomal RNA gene. Numerical taxonomic analyses of 14 morphological characteristics recognized in the uredinial-telial stages revealed 22 morphological species, whereas the GMYC results recovered 29 phylogenetic species. In total, 17 morphological species were in concordance with the phylogenetic species and 5 morphological species were in concordance with 12 phylogenetic species. Both the morphological and molecular data supported 14 morphological characteristics, including 5 newly recognized characteristics and 9 traditionally emphasized characteristics, as effective for the differentiation of Melampsora species on willows in China. Based on the concordance and discordance of the two species delimitation approaches, we concluded that integrative taxonomy by using both morphological and

  18. Integrating a Numerical Taxonomic Method and Molecular Phylogeny for Species Delimitation of Melampsora Species (Melampsoraceae, Pucciniales) on Willows in China.

    Science.gov (United States)

    Zhao, Peng; Wang, Qing-Hong; Tian, Cheng-Ming; Kakishima, Makoto

    2015-01-01

    The species in genus Melampsora are the causal agents of leaf rust diseases on willows in natural habitats and plantations. However, the classification and recognition of species diversity are challenging because morphological characteristics are scant and morphological variation in Melampsora on willows has not been thoroughly evaluated. Thus, the taxonomy of Melampsora species on willows remains confused, especially in China where 31 species were reported based on either European or Japanese taxonomic systems. To clarify the species boundaries of Melampsora species on willows in China, we tested two approaches for species delimitation inferred from morphological and molecular variations. Morphological species boundaries were determined based on numerical taxonomic analyses of morphological characteristics in the uredinial and telial stages by cluster analysis and one-way analysis of variance. Phylogenetic species boundaries were delineated based on the generalized mixed Yule-coalescent (GMYC) model analysis of the sequences of the internal transcribed spacer (ITS1 and ITS2) regions including the 5.8S and D1/D2 regions of the large nuclear subunit of the ribosomal RNA gene. Numerical taxonomic analyses of 14 morphological characteristics recognized in the uredinial-telial stages revealed 22 morphological species, whereas the GMYC results recovered 29 phylogenetic species. In total, 17 morphological species were in concordance with the phylogenetic species and 5 morphological species were in concordance with 12 phylogenetic species. Both the morphological and molecular data supported 14 morphological characteristics, including 5 newly recognized characteristics and 9 traditionally emphasized characteristics, as effective for the differentiation of Melampsora species on willows in China. Based on the concordance and discordance of the two species delimitation approaches, we concluded that integrative taxonomy by using both morphological and molecular variations was

  19. The relationships within the Chaitophorinae and Drepanosiphinae (Hemiptera, Aphididae) inferred from molecular-based phylogeny and comprehensive morphological data

    Science.gov (United States)

    Wieczorek, Karina; Lachowska-Cierlik, Dorota; Kajtoch, Łukasz; Kanturski, Mariusz

    2017-01-01

    The Chaitophorinae is a bionomically diverse Holarctic subfamily of Aphididae. The current classification includes two tribes: the Chaitophorini associated with deciduous trees and shrubs, and Siphini that feed on monocotyledonous plants. We present the first phylogenetic hypothesis for the subfamily, based on molecular and morphological datasets. Molecular analyses were based on the mitochondrial gene cytochrome oxidase subunit I (COI) and the nuclear gene elongation factor-1α (EF-1α). Phylogenetic inferences were obtained individually on each of genes and joined alignments using Bayesian inference (BI) and Maximum likelihood (ML). In phylogenetic trees reconstructed on the basis of nuclear and mitochondrial genes as well as a morphological dataset, the monophyly of Siphini and the genus Chaitophorus was supported. Periphyllus forms independent lineages from Chaitophorus and Siphini. Within this genus two clades comprising European and Asiatic species, respectively, were indicated. Concerning relationships within the subfamily, EF-1α and joined COI and EF-1α genes analysis strongly supports the hypothesis that Chaitophorini do not form a monophyletic clade. Periphyllus is a sister group to a clade containing Chaitophorus and Siphini. The Asiatic unit of Periphyllus also includes Trichaitophorus koyaensis. The analysis of morphological dataset under equally weighted parsimony also supports the view that Chaitophorini is an artificial taxon, as Lambersaphis pruinosae and Pseudopterocomma hughi, both traditionally included in the Chaitophorini, formed independent lineages. COI analyses support consistent groups within the subfamily, but relationships between groups are poorly resolved. These analyses were extended to include the species of closely related and phylogenetically unstudied subfamily Drepanosiphinae, which produced congruent results. Genera Drepanosiphum and Depanaphis are monophyletic and sister. The position of Yamatocallis tokyoensis differs in the

  20. Insights into the phylogeny of sporadotrichid ciliates (Protozoa, Ciliophora: Hypotricha) based on genealogical analyses of multiple molecular markers

    Institute of Scientific and Technical Information of China (English)

    HU Xiaoyan; HU Xiaozhong; Khaled A. S. AL-RASHEID; Saieh A. AL-FARRAJ; SONG Weibo

    2011-01-01

    The sporadotrichid ciliates are an especially diverse group. A number of investigators have studied the morphological, morphogenetic, and molecular relationships among members of this group. Despite this, a consistent classification is still lacking and several important questions about the phylogenetic relationships within this group remain unsolved. To improve our understanding of these relationships, we constructed phylogenetic trees using the nucleotide sequences of the small-subunit rRNA (SSrRNA) gene and amino acid sequences of actin I and -αtubulin. Analyses of SSrRNA gene sequences indicated that: 1) the Sporadotrichida sensu Lynn (2008) and the Oxytrichidae are polyphyletic; 2) the Uroleptus species, which are classified to urostylids, formed a sister group with the oxytrichids; 3) Halteria grandinella, which is grouped morphologically with oligotrich species, clustered within the oxytrichids. These results are congruent with previous studies based on SSrRNA gene sequences. However, the amino acid sequences of actin I and α-tubulin yielded different topologies. The main results are: 1) in all phylogenetic trees, the genus Oxylricha was paraphyletic; 2) Uroleptus was sister to a subset of Urostyla and Holosticha, albeit with low supporting values; 3) Halteria grandinella was separated distantly from the Oxytrichidae in trees inferred from actin I amino acid sequences but clustered with oligotrichids in the α-tubulin analysis. The inconsistency among the trees inferred from these different molecular markers may be caused by rapidly accumulated genetic characterizations of ciliates. Further studies with additional molecular markers and sampling of more taxa are expected to better address the relationships among sporadotrichids.

  1. Insights into the phylogeny of sporadotrichid ciliates (Protozoa, Ciliophora: Hypotricha) based on genealogical analyses of multiple molecular markers

    Science.gov (United States)

    Hu, Xiaoyan; Hu, Xiaozhong; Al-Rasheid, Khaled A. S.; Al-Farraj, Saleh A.; Song, Weibo

    2011-01-01

    The sporadotrichid ciliates are an especially diverse group. A number of investigators have studied the morphological, morphogenetic, and molecular relationships among members of this group. Despite this, a consistent classification is still lacking and several important questions about the phylogenetic relationships within this group remain unsolved. To improve our understanding of these relationships, we constructed phylogenetic trees using the nucleotide sequences of the small-subunit rRNA (SSrRNA) gene and amino acid sequences of actin I and α-tubulin. Analyses of SSrRNA gene sequences indicated that: 1) the Sporadotrichida sensu Lynn (2008) and the Oxytrichidae are polyphyletic; 2) the Uroleptus species, which are classified to urostylids, formed a sister group with the oxytrichids; 3) Halteria grandinella, which is grouped morphologically with oligotrich species, clustered within the oxytrichids. These results are congruent with previous studies based on SSrRNA gene sequences. However, the amino acid sequences of actin I and α-tubulin yielded different topologies. The main results are: 1) in all phylogenetic trees, the genus Oxytricha was paraphyletic; 2) Uroleptus was sister to a subset of Urostyla and Holosticha, albeit with low supporting values; 3) Halteria grandinella was separated distantly from the Oxytrichidae in trees inferred from actin I amino acid sequences but clustered with oligotrichids in the α-tubulin analysis. The inconsistency among the trees inferred from these different molecular markers may be caused by rapidly accumulated genetic characterizations of ciliates. Further studies with additional molecular markers and sampling of more taxa are expected to better address the relationships among sporadotrichids.

  2. Congruency of phylogenies derived from different proteins. A molecular analysis of the phylogenetic position of cracid birds.

    Science.gov (United States)

    Prager, E M; Wilson, A C

    1976-12-31

    This communication examines the question of phylogenetic congruency--i.e., whether or not the branching order of evolutionary trees is independent of the protein studied. It was found that trees constructed for birds on the basis of immunological comparison of their transferrins, albumins, and ovalbumins agree approximately with a published tree based on the amino acid sequences of their lysozymes c. This congruency is especially noteworthy with respect to the phylogenetic position of the chachalaca, a Mexican bird classified on morphological grounds in the family Cracidae of the order Galliformes. At the protein level, this species differs as much from non-cracid galliform birds as does the duck, which belongs to another order. Despite the organismal similarity between cracid and non-cracid galliform birds, the molecular relationship is remote. If this contrast between organismal and molecular results had been based on comparative studies with only lysozyme, one could have ascribed the contrast to the possibility that chachalaca lysozyme was paralogous, rather than orthologous, to the other bird lysozymes c. Examination of several proteins is thus desirable in cases of possible paralogy.

  3. Molecular phylogeny of the family Vorticellidae (Ciliophora, Peritrichia) using combined datasets with a special emphasis on the three morphologically similar genera Carchesium, Epicarchesium and Apocarchesium.

    Science.gov (United States)

    Sun, Ping; Clamp, John C; Xu, Dapeng; Kusuoka, Yasushi; Hori, Manabu

    2011-04-01

    Little is known about the phylogeny of the family Vorticellidae at the generic level because few comprehensive analyses of molecular phylogenetic relationships between members of this group have, so far, been done. As a result, the phylogenetic positions of some genera that were based originally on morphological analyses remain controversial. In the present study, we performed phylogenetic analyses of vorticellids based on the sequence of the small-subunit (SSU) rRNA gene, including one species of the genus Apocarchesium, for which no sequence has previously been reported. Phylogenetic trees were reconstructed with SSU rRNA gene sequences by using four different methods (Bayesian analysis, maximum-likelihood, neighbour-joining and maximum-parsimony) and had a consistent branching pattern. Members of the genera Vorticella (except V. microstoma) and Carchesium formed a clearly defined, well supported clade that was divergent from the clade comprising members of the genera Pseudovorticella and Epicarchesium, suggesting that the differences in the silverline system (transverse vs reticulate) among vorticellids may be the result of genuine evolutionary divergence. Members of the newly established genus Apocarchesium clustered within the family Vorticellidae basal to the clade containing members of the genera Pseudovorticella and Epicarchesium and were distinct from members of the genus Carchesium, supporting the validity of Apocarchesium as a novel genus. Additional phylogenetic analyses of 21 strains representing seven genera from the families Vorticellidae and Zoothamniidae were performed with single datasets (ITS1-5.8S-ITS2, ITS2 alone) and combined datasets (SSU rRNA+ITS1-5.8S-ITS2, SSU rRNA+ITS2) to explore further the phylogenetic relationship between the three morphologically similar genera Carchesium, Epicarchesium and Apocarchesium, using characteristics not included in previous analyses. The phylogenetic trees reconstructed with combined datasets were more

  4. Molecular phylogeny of silk-producing insects based on 16S ribosomal RNA and cytochrome oxidase subunit I genes

    Indian Academy of Sciences (India)

    B. Mahendran; S. K. Ghosh; S. C. Kundu

    2006-04-01

    We have examined the molecular-phylogenetic relationships between nonmulberry and mulberry silkwormspecies that belong to the families Saturniidae, Bombycidae and Lasiocampidae using 16S ribosomal RNA (16S rRNA) and cytochrome oxidase subunit I (coxI) gene sequences. Aligned nucleotide sequences of 16S rRNA and coxI from 14 silk-producing species were used for construction of phylogenetic trees by maximum likelihood and maximum parsimony methods. The tree topology on the basis of 16S rRNA supports monophyly for members of Saturniidae and Bombycidae. Weighted parsimony analysis weighted towards transversions relative to transitions (ts, tv4) for coxI resulted in more robust bootstrap support over unweighted parsimony and favours the 16S rRNA tree topology. Combined analysis reflected clear biogeographic pattern, and agrees with morphological and cytological data.

  5. alpha-Crystallin A sequences of Alligator mississippiensis and the lizard Tupinambis teguixin: molecular evolution and reptilian phylogeny.

    Science.gov (United States)

    de Jong, W W; Zweers, A; Versteeg, M; Dessauer, H C; Goodman, M

    1985-11-01

    The amino acid sequences of the eye lens protein alpha-crystallin A from many mammalian and avian species, two frog species, and a dogfish have provided detailed information about the molecular evolution of this protein and allowed some useful inferences about phylogenetic relationships among these species. We now have isolated and sequenced the alpha-crystallins of the American alligator and the common tegu lizard. The reptilian alpha A chains appear to have evolved as slowly as those of other vertebrates, i.e., at two to three amino acid replacements per 100 residues in 100 Myr. The lack of charged replacements and the general types and distribution of replacements also are similar to those in other vertebrate alpha A chains. Maximum-parsimony analyses of the total data set of 67 vertebrate alpha A sequences support the monophyletic origin of alligator, tegu, and birds and favor the grouping of crocodilians and birds as surviving sister groups in the subclass Archosauria.

  6. A new species of Alopoglossus lizard (Squamata, Gymnophthalmidae) from the tropical Andes, with a molecular phylogeny of the genus.

    Science.gov (United States)

    Torres-Carvajal, Omar; Lobos, Simón E

    2014-01-01

    We describe a new species of Alopoglossus from the Pacific slopes of the Andes in northern Ecuador based on morphological and molecular evidence. The new species differs most significantly from all other congeners in having a double longitudinal row of widened gular scales, lanceolate dorsal scales in transverse rows, 29-32 dorsal scales in a transverse row at midbody, and 4 longitudinal rows of ventrals at midbody. It is most similar in morphology to A. festae, the only species of Alopoglossus currently recognized in western Ecuador. We analyze the phylogenetic relationships among species of Alopoglossus based on the mitochondrial gene ND4. Cis-Andean [east of the Andes] and Trans-Andean [west of the Andes] species are nested in two separate clades, suggesting that the uplift of these mountains had an important effect in the diversification of Alopoglossus. In addition, we present an updated key to the species of Alopoglossus.

  7. A new species of Alopoglossus lizard (Squamata, Gymnophthalmidae from the tropical Andes, with a molecular phylogeny of the genus

    Directory of Open Access Journals (Sweden)

    Omar Torres-Carvajal

    2014-05-01

    Full Text Available We describe a new species of Alopoglossus from the Pacific slopes of the Andes in northern Ecuador based on morphological and molecular evidence. The new species differs most significantly from all other congeners ina double longitudinal row of widened gular scales, lanceolate dorsal scales in transverse rows, 29–32 dorsal scales in a transverse row at midbody, and 4 longitudinal rows of ventrals at midbody. It is most similar in morphology to A. festae, the only species of Alopoglossus currently recognized in western Ecuador. We analyze the phylogenetic relationships among species of Alopoglossus based on the mitochondrial gene ND4. Cis-Andean [east of the Andes] and Trans-Andean [west of the Andes] species are nested in two separate clades, suggesting that the uplift of these mountains had an important effect in the diversification of Alopoglossus. In addition, we present an updated key to the species of Alopoglossus.

  8. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases.

    Science.gov (United States)

    Stehle, Jörg H; Saade, Anastasia; Rawashdeh, Oliver; Ackermann, Katrin; Jilg, Antje; Sebestény, Tamás; Maronde, Erik

    2011-08-01

    The human pineal gland is a neuroendocrine transducer that forms an integral part of the brain. Through the nocturnally elevated synthesis and release of the neurohormone melatonin, the pineal gland encodes and disseminates information on circadian time, thus coupling the outside world to the biochemical and physiological internal demands of the body. Approaches to better understand molecular details behind the rhythmic signalling in the human pineal gland are limited but implicitly warranted, as human chronobiological dysfunctions are often associated with alterations in melatonin synthesis. Current knowledge on melatonin synthesis in the human pineal gland is based on minimally invasive analyses, and by the comparison of signalling events between different vertebrate species, with emphasis put on data acquired in sheep and other primates. Together with investigations using autoptic pineal tissue, a remnant silhouette of premortem dynamics within the hormone's biosynthesis pathway can be constructed. The detected biochemical scenario behind the generation of dynamics in melatonin synthesis positions the human pineal gland surprisingly isolated. In this neuroendocrine brain structure, protein-protein interactions and nucleo-cytoplasmic protein shuttling indicate furthermore a novel twist in the molecular dynamics in the cells of this neuroendocrine brain structure. These findings have to be seen in the light that an impaired melatonin synthesis is observed in elderly and/or demented patients, in individuals affected by Alzheimer's disease, Smith-Magenis syndrome, autism spectrum disorder and sleep phase disorders. Already, recent advances in understanding signalling dynamics in the human pineal gland have significantly helped to counteract chronobiological dysfunctions through a proper restoration of the nocturnal melatonin surge.

  9. Molecular phylogeny of the genus Saguinus (Platyrrhini, Primates based on the ND1 mitochondrial gene and implications for conservation

    Directory of Open Access Journals (Sweden)

    Claudia Helena Tagliaro

    2005-03-01

    Full Text Available The systematics of the subfamily Callitrichinae (Platyrrhini, Primates, a group of small monkeys from South America and Panama, remains an area of considerable discussion despite many investigations, there being continuing controversy over subgeneric taxonomic classifications based on morphological characters. The purpose of our research was to help elucidate the phylogenetic relationships within the monkey genus Saguinus (Callitrichinae using a molecular approach to discover whether or not the two different sections containing hairy-faced and bare-faced species are monophyletic, whether Saguinus midas midas and Saguinus bicolor are more closely related than are S. midas midas and Saguinus midas niger, and if Saguinus fuscicollis melanoleucus and Saguinus fuscicollis weddelli really are different species. We sequenced the 957 bp ND1 mitochondrial gene of 21 Saguinus monkeys (belonging to six species and nine morphotypes and one Cebus monkey (the outgroup and constructed phylogenetic trees using maximum parsimony, neighbor joining, and maximum likelihood methods. The phylogenetic trees obtained divided the genus Saguinus into two groups, one containing the small-bodied species S. fuscicollis and the other, the large-bodied species S. mystax, S. leucopus, S. oedipus, S. midas, S. bicolor. The most derived taxa, S. midas and S. bicolor, grouped together, while S. fuscicollis melanoleucus and S. f. weddelli showed divergence values that did not support the division of these morphotypes into subspecies. On the other hand, S. midas individuals showed divergence compatible with the existence of three subspecies, two of them with the same morphotype as the subspecies S. midas niger. The results of our study suggest that there is at least one Saguinus subspecies that has not yet been described and that the conservation status of Saguinus species and subspecies should be carefully revised using modern molecular approaches.

  10. Cloning, molecular characterization, and phylogeny of two evolutionary distinct glutamine synthetase isoforms in the green microalga Haematococcus pluvialis (Chlorophyceae).

    Science.gov (United States)

    Reinecke, Diana L; Zarka, Aliza; Leu, Stefan; Boussiba, Sammy

    2016-12-01

    Haematococcus pluvialis (Chlorophyta) is a widely used microalga of great economic potential, yet its molecular genetics and evolution are largely unknown. We present new detailed molecular and phylogenetic analysis of two glutamine synthetase (GS) enzymes and genes (gln) under the Astaxanthin-inducing conditions of light- and nitrogen-stress. Structure analysis identified key residues and confirmed two decameric GS2 holoenzymes, a cytoplasmic enzyme, termed GS2c , and a plastidic form, termed GS2p , due to chloroplast-transit peptides at its N-terminus. Gene expression analysis showed dissociation of mRNA, protein, and enzyme activity levels for both GS2 under different growth conditions, indicating the strong post-transcriptional regulation. Data-mining identified novel and specified published gln genes from Prasinophyceae, Chlorophyta, Trebouxiophyceae, Charophyceae, Bryophyta, Lycopodiophyta, Spermatophyta, and Rhodophyta. Phylogenetic analysis found homologues to the cytosolic GS2c of H. pluvialis in all other photo- and non-photosynthetic Eukaryota. The chloroplastic GS2p was restricted to Chlorophyta, Bryophyta, some Proteobacteria and Fungii; no homologues were identified in Spermatophyta or other Eukaryota. This indicates two independent prokaryotic donors for these two gln genes in H. pluvialis. Combined phylogenetic analysis of GS, chl-b synthase, elongation factor, and light harvesting complex homologues project a newly refined model of Viridiplantae evolution. Herein, a GS1 evolved into the cytosolic GS2c and was passed on to all Eukaryota. Later, the chloroplastic GS2p entered the Archaeplastida lineage via a horizontal gene transfer at the divergence of Chlorophyta and Rhodophyta lineages. GS2p persisted in Chlorophyta and Bryophyta, but was lost during Spermatophyta evolution. These data suggest the revision of GS classification and nomenclature, and extend our understanding of the photosynthetic Eukaryota evolution.

  11. Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5'-phosphosulfate reductase-encoding genes (aprBA) among sulfur-oxidizing prokaryotes.

    Science.gov (United States)

    Meyer, Birte; Kuever, Jan

    2007-10-01

    Dissimilatory adenosine-5'-phosphosulfate (APS) reductase (AprBA) is a key enzyme of the dissimilatory sulfate-reduction pathway. Homologues have been found in photo- and chemotrophic sulfur-oxidizing prokaryotes (SOP), in which they are postulated to operate in the reverse direction, oxidizing sulfite to APS. Newly developed PCR assays allowed the amplification of 92-93 % (2.1-2.3 kb) of the APS reductase locus aprBA. PCR-based screening of 116 taxonomically divergent SOP reference strains revealed a distribution of aprBA restricted to photo- and chemotrophs with strict anaerobic or at least facultative anaerobic lifestyles, including Chlorobiaceae, Chromatiaceae, Thiobacillus, Thiothrix and invertebrate symbionts. In the AprBA-based tree, the SOP diverge into two distantly related phylogenetic lineages, Apr lineages I and II, with the proteins of lineage II (Chlorobiaceae and others) in closer affiliation to the enzymes of the sulfate-reducing prokaryotes (SRP). This clustering is discordant with the dissimilatory sulfite reductase (DsrAB) phylogeny and indicates putative lateral aprBA gene transfer from SRP to the respective SOB lineages. In support of lateral gene transfer (LGT), several beta- and gammaproteobacterial species harbour both aprBA homologues, the DsrAB-congruent 'authentic' and the SRP-related, LGT-derived gene loci, while some relatives possess exclusively the SRP-related apr genes as a possible result of resident gene displacement by the xenologue. The two-gene state might be an intermediate in the replacement of the resident essential gene. Collected genome data demonstrate the correlation between the AprBA tree topology and the composition/arrangement of the apr gene loci (occurrence of qmoABC or aprM genes) from SRP and SOP of lineages I and II. The putative functional role of the SRP-related APS reductases in photo- and chemotrophic SOP is discussed.

  12. Phylogeny and molecular signatures (conserved proteins and indels that are specific for the Bacteroidetes and Chlorobi species

    Directory of Open Access Journals (Sweden)

    Lorenzini Emily

    2007-05-01

    Full Text Available Abstract Background The Bacteroidetes and Chlorobi species constitute two main groups of the Bacteria that are closely related in phylogenetic trees. The Bacteroidetes species are widely distributed and include many important periodontal pathogens. In contrast, all Chlorobi are anoxygenic obligate photoautotrophs. Very few (or no biochemical or molecular characteristics are known that are distinctive characteristics of these bacteria, or are commonly shared by them. Results Systematic blast searches were performed on each open reading frame in the genomes of Porphyromonas gingivalis W83, Bacteroides fragilis YCH46, B. thetaiotaomicron VPI-5482, Gramella forsetii KT0803, Chlorobium luteolum (formerly Pelodictyon luteolum DSM 273 and Chlorobaculum tepidum (formerly Chlorobium tepidum TLS to search for proteins that are uniquely present in either all or certain subgroups of Bacteroidetes and Chlorobi. These studies have identified > 600 proteins for which homologues are not found in other organisms. This includes 27 and 51 proteins that are specific for most of the sequenced Bacteroidetes and Chlorobi genomes, respectively; 52 and 38 proteins that are limited to species from the Bacteroidales and Flavobacteriales orders, respectively, and 5 proteins that are common to species from these two orders; 185 proteins that are specific for the Bacteroides genus. Additionally, 6 proteins that are uniquely shared by species from the Bacteroidetes and Chlorobi phyla (one of them also present in the Fibrobacteres have also been identified. This work also describes two large conserved inserts in DNA polymerase III (DnaE and alanyl-tRNA synthetase that are distinctive characteristics of the Chlorobi species and a 3 aa deletion in ClpB chaperone that is mainly found in various Bacteroidales, Flavobacteriales and Flexebacteraceae, but generally not found in the homologs from other organisms. Phylogenetic analyses of the Bacteroidetes and Chlorobi species is also

  13. Revision of Khawia spp. (Cestoda: Caryophyllidea), parasites of cyprinid fish, including a key to their identification and molecular phylogeny.

    Science.gov (United States)

    Scholz, Tomás; Brabec, Jan; Král'ová-Hromadová, Ivica; Oros, Mikulás; Bazsalovicsová, Eva; Ermolenko, Alexey; Hanzelová, Vladimíra

    2011-09-01

    Monozoic cestodes of the genus Khawia Hsü, 1935 (Caryophyllidea: Lytocestidae), parasites of cyprinid fish in Europe, Asia, Africa and North America, are revised on the basis of taxonomic evaluation of extensive materials, including recently collected specimens of most species. This evaluation has made it possible to critically assess the validity of all 17 nominal species of the genus and to provide redescriptions of the following seven species considered to be valid: Khawia sinensis Hsü, 1935 (type species); K. armeniaca (Cholodkovsky, 1915); K. baltica Szidat, 1941; K. japonensis (Yamaguti, 1934); K. parva (Zmeev, 1936); K. rossittensis (Szidat, 1937); and K. saurogobii Xi, Oros, Wang, Wu, Gao et Nie, 2009. Several new synonyms are proposed: Khawia barbi Rahemo et Mohammad, 2002 and K. lutei Al-Kalak et Rahemo, 2003 are synonymized with K. armeniaca; K. coregoni Kritscher, 1990 with Caryophyllaeus laticeps (Pallas, 1781) (family Caryophyllaeidae); K. cyprini Li, 1964 and K. iowensis Calentine et Ulmer, 1961 with K. japonensis; K. dubia (Szidat, 1937) (syn. Bothrioscolex dubius Szidat, 1937) with K. rossittensis; and Tsengia neimongkuensis Li, 1964 and T. xiamenensis Liu, Yang et Lin, 1995 with K. sinensis. Khawia prussica (Szidat, 1937) (syn. Bothrioscolex prussicus Szidat, 1937) is considered to be species incertae sedis, but its morphology indicates it may belong to Caryophyllaeus Gmelin, 1790 (Caryophyllaeidae). The molecular analysis of all seven valid species, based on comparison of sequences of two nuclear ribosomal and two mitochondrial genes, has shown that the species form three major groups clustered according to their fish hosts. Five species from common and crucian carp and goldfish were grouped together, whereas K. armeniaca from barbels (Barbinae) and K. baltica from tench (Tinca) formed separate clades. In contrast, geographical distribution does not seem to play a crucial role in grouping of individual taxa. A phylogenetic tree based on

  14. Molecular phylogeny and PSP toxin profile of the Alexandrium tamarense species complex along the coast of China.

    Science.gov (United States)

    Zou, Cheng; Ye, Rui-Min; Zheng, Jian-Wei; Luo, Zhao-He; Gu, Hai-Feng; Yang, Wei-Dong; Li, Hong-Ye; Liu, Jie-Sheng

    2014-12-15

    To explore the genetic diversity and paralytic shellfish poisoning (PSP) toxin profile of the Alexandrium tamarense species complex along the coast of China, 67 strains of A. tamarense from the China Sea were collected and genetic diversity were analyzed based on the rDNA sequences. In addition, PSP toxin compositions and contents were detected by HPLC. According to the 5.8S rDNA and ITS, and LSU rDNA D1-D2 sequence, A. tamarense in the China Sea comprises at least Group IV and Group I ribotypes. In these Chinese strains, the toxins with the highest concentration in the profile were C1/2, gonyautoxins 1/4 (GTX1/4) and neosaxitoxin (NEO). However, the toxin profiles were atypical and C1/2 toxins were not detected in some strains. No strict correlation was observed between the PSP toxins profile and the geographical distribution.

  15. Molecular phylogeny of Cotesia Cameron, 1891 (Insecta: Hymenoptera: Braconidae: Microgastrinae) parasitoids associated with Melitaeini butterflies (Insecta: Lepidoptera: Nymphalidae: Melitaeini).

    Science.gov (United States)

    Kankare, Maaria; Shaw, Mark R

    2004-07-01

    Phylogenetic relationships among Cotesia Cameron (Braconidae) species parasitising Melitaeini butterflies were examined using DNA sequence data (mitochondrial cytochrome oxidase subunit I and NADH1 dehydrogenase genes, nuclear ribosomal DNA internal transcribed spacer region) as well as 12 microsatellite loci. Molecular data were available from ostensibly six species of Cotesia from 16 host butterfly species in Europe, Asia, and North America. Analysis of the combined sequence data using both maximum parsimony and maximum likelihood revealed two distinct Cotesia clades. In one clade (C. acuminata (Reinhard); C. bignellii (Marshall)) host ranges are apparently narrow and, although Euphydryas (s. lato) is well-utilised, permeation of Melitaea (s. lato) has been slight. In the other clade (C. melitaearum (Wilkinson); C. lycophron (Nixon); C. cynthiae (Nixon)) host utilization across the Melitaeini as a whole is more extensive and the data are consistent with more recent, or active, speciation processes. Neighbour-joining trees calculated separately for the two main clades based on chord distance (DCE) of microsatellite allele frequencies were consistent with phylogenetic trees obtained from the sequence data. Our analysis strongly suggests the presence of several additional, previously unrecognised, Cotesia species parasitising this group of butterflies.

  16. Morphology and ontogenesis of Psilotrichides hawaiiensis nov. gen., nov. spec. and molecular phylogeny of the Psilotrichidae (Ciliophora, Hypotrichia).

    Science.gov (United States)

    Heber, Domingo; Stoeck, Thorsten; Foissner, Wilhelm

    2014-01-01

    The Psilotrichidae are a family of middle-sized hypotrichs with unique morphological and ontogenetic features (e.g. the oral primordium develops in a deep pouch) that, however, did not provide a definite phylogenetic signal. Thus, we studied the 18S rRNA gene of Urospinula succisa (Müller 1786) Esteban et al., 2001 as well as the morphology and ontogenesis of Psilotrichides hawaiiensis, a new genus and species from an ephemeral swamp on Oahu Island, Hawaii. The molecular data classify the psilotrichids into the oxytrichids but without clear branching position. A brief revision, using the structure of the oral apparatus, the location of the contractile vacuole, and three ontogenetic features, showed four distinct genera: Psilotricha Stein, 1859; Urospinula Corliss, 1960; Hemiholosticha Gelei, 1954; and Psilotrichides nov. gen., which differs from the confamilials mainly by the obliquely oriented buccal cavity and the shape of the undulating membranes as well as by a distinct ridge along the right buccal margin. The pyriform species, P. hawaiiensis, is about 65 × 45 μm in size and is easily recognized by the table tennis racket-shaped appearance due to the elongated last cirrus of the left marginal row. Refined diagnoses are provided for the family Psilotrichidae Bütschli, 1889 and the genera contained.

  17. Molecular phylogeny of OVOL genes illustrates a conserved C2H2 zinc finger domain coupled by hypervariable unstructured regions.

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar

    Full Text Available OVO-like proteins (OVOL are members of the zinc finger protein family and serve as transcription factors to regulate gene expression in various differentiation processes. Recent studies have shown that OVOL genes are involved in epithelial development and differentiation in a wide variety of organisms; yet there is a lack of comprehensive studies that describe OVOL proteins from an evolutionary perspective. Using comparative genomic analysis, we traced three different OVOL genes (OVOL1-3 in vertebrates. One gene, OVOL3, was duplicated during a whole-genome-duplication event in fish, but only the copy (OVOL3b was retained. From early-branching metazoa to humans, we found that a core domain, comprising a tetrad of C2H2 zinc fingers, is conserved. By domain comparison of the OVOL proteins, we found that they evolved in different metazoan lineages by attaching intrinsically-disordered (ID segments of N/C-terminal extensions of 100 to 1000 amino acids to this conserved core. These ID regions originated independently across different animal lineages giving rise to different types of OVOL genes over the course of metazoan evolution. We illustrated the molecular evolution of metazoan OVOL genes over a period of 700 million years (MY. This study both extends our current understanding of the structure/function relationship of metazoan OVOL genes, and assembles a good platform for further characterization of OVOL genes from diverged organisms.

  18. Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species.

    Science.gov (United States)

    Kubota, Shosei; Konno, Itaru; Kanno, Akira

    2012-02-01

    The genus Asparagus comprises approximately 200 species, some of which are commercially cultivated, such as the garden asparagus (A. officinalis). Many Asparagus species, including A. officinalis, are dioecious and have been grouped into a subgenus distinct from that of hermaphroditic species. Although many interspecific crossings have been attempted to introduce useful traits into A. officinalis, only some of the dioecious species were found to be cross-compatible with A. officinalis. Here, molecular phylogenetic analyses were conducted to determine whether interspecific crossability is proportional to the genetic distance between the crossing pairs and to further clarify the evolutionary history of the Asparagus genus. A clade with all cross-compatible species and no cross-incompatible species was recovered in the phylogenetic tree based on analyses of non-coding cpDNA regions. In addition, a sex-linked marker developed for A. officinalis amplified a male-specific region in all cross-compatible species. The phylogenetic analyses also provided some insights about the evolutionary history of Asparagus; for example, by indicating that the genus had its origin in southern Africa, subsequently spreading throughout the old world through intensive speciation and dispersal. The results also suggest that dioecious species were derived from a single evolutionary transition from hermaphroditism in Asparagus. These findings not only contribute towards the understanding of the evolutionary history of the genus but may also facilitate future interspecific hybridization programs involving Asparagus species.

  19. Molecular Phylogeny of a tick, Ixodes granulatus (Acari: Ixodidae) based on cytochrome oxidase subunit I (COI) marker

    Science.gov (United States)

    Lah, Ernieenor Faraliana Che; Yaakop, Salmah; Ahamad, Mariana; George, Ernna; Nor, Shukor Md

    2014-09-01

    Identification of a local species of tick, Ixodes granulatus from the family Ixodidae is essential because it has potential to be vector for spotted fever group (SFG) rickettsia and tick thypus. The aim of this study is to portray the relationships among several populations of I. granulatus collected from different species of animal hosts and localities in Peninsular Malaysia. Polymerase Chain Reaction was conducted by amplifying mitochondrial DNA marker, namely cytochrome oxidase subunit I (COI) sequences from 15 individual ticks that attached to five different hosts caught from three different localities. Confirmation of the species identity was accomplished using BLAST program. Neighbor-joining (NJ) and Maximum Parsimony (MP) tree based on COI sequences were constructed by using PAUP 4.0b10 to identify the relationship among species. The result of this study showed a high genetic heterogeneity between I. granulatus and other species of the same genus (7.2-23.7%). Furthermore, a low intraspecific variation was observed among the species of I. granulatus collected from different localities (0-3.7%). This study produced the first establishment of molecular marker for clarifying genetic species variation and diversity of local I. granulatus tick which contribute to the control of tick-borne infections.

  20. Phylogeny, classification and evolution of ladybird beetles (Coleoptera: Coccinellidae) based on simultaneous analysis of molecular and morphological data.

    Science.gov (United States)

    Seago, Ainsley E; Giorgi, Jose Adriano; Li, Jiahui; Slipiński, Adam

    2011-07-01

    Ladybird beetles (family Coccinellidae) are a species-rich, ecologically diverse group of substantial agricultural significance, yet have been consistently problematic to classify, with evolutionary relationships poorly understood. In order to identify major clades within Coccinellidae, evaluate the current classification system, and identify likely drivers of diversification in this polyphagous group, we conducted the first simultaneous Bayesian analysis of morphological and multi-locus molecular data for any beetle family. Addition of morphological data significantly improved phylogenetic resolution and support for early diverging lineages, thereby better resolving evolutionary relationships than either data type alone. On the basis of these results, we formally recognize the subfamilies Microweisinae and Coccinellinae sensuŚlipiński (2007). No significant support was found for the subfamilies Coccidulinae, Scymninae, Sticholotidinae, or Ortaliinae. Our phylogenetic results suggest that the evolutionary success of Coccinellidae is in large part attributable to the exploitation of ant-tended sternorrhynchan insects as a food source, enabled by the key innovation of unusual defense mechanisms in larvae. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Cytological and molecular analysis in the rare discoglossid species, Alytes muletensis (Sanchiz & Adrover 1977) and its bearing on archaeobatrachian phylogeny.

    Science.gov (United States)

    Odierna, G; Andreone, F; Aprea, G; Arribas, O; Capriglione, T; Vences, M

    2000-01-01

    Cytogenetic and molecular data on Alytes muletensis (Amphibia: Discoglossidae) are compared with other representatives of archaeobatrachian frogs: Bombina variegata pachypus, Pelobates cultripes, Pelodytes punctatus, Xenopus laevis, and Discoglossus. A. muletensis has the karyotype typical for the genus Alytes, 38 elements with either one or two arms, some of which can be considered as 'microchromosomes'. The NORs are located on the telomeres of the tenth chromosome pair which agrees with the state in A. obstetricians but differs from A. cisternasii reflecting phylogenetic affinities. C-banding and staining with DAPI and chromomycin A3 revealed important blocks of telomeric CMA-positive heterochromatin on the smaller chromosomes of Alytes, similar to the state found in Discoglossus. Phylogenetic analysis of 750 bp of fragments of the mitochondrial 16S and 12S rRNA genes corroborated that Discoglossus and Alytes are sister taxa which together probably form the sister group of the Bombinatorinae. Centromeric heterochromatin in Alytes may be responsible for the retention of a plesiomorphic asymmetric karyotype which independently has evolved into a symmetric karyotype through centric fusions in Bombina and Discoglossus. The HindIII satellite DNA family was present in all archaeobatrachians studied but absent in hyloid and ranoid neobatrachians.

  2. Molecular phylogeny of Amphora sensu lato (Bacillariophyta): an investigation into the monophyly and classification of the amphoroid diatoms.

    Science.gov (United States)

    Stepanek, Joshua G; Kociolek, J Patrick

    2014-03-01

    Amphora sensu lato encompasses a large group of raphid diatoms, diverse in both form and ecology. The defining feature of this group has been an extreme asymmetry of the valve mantle and girdle bands, bringing both faces of the cell onto a single plane. Although this 'amphoroid' structure has long been the diagnostic feature and thus considered 'conservative' for the group, many have argued that the diversity of forms presently assigned to Amphora likely does not represent a monophyletic group. With the exception of several taxonomic transfers and the recent elevation of Halamphora to the level of genus, much of Amphora classification has remained unchanged for over 100 years. This study presents a phylogenetic analysis of Amphora s.l. based on a concatenated molecular alignment including the nuclear marker SSU rDNA and the chloroplast markers rbcL and psbC. These results are discussed within the framework of the current classification system of Amphora and Halamphora and lay the groundwork for a taxonomic revision of the group based on monophyly. The results of this analysis demonstrate that the genus Amphora is polyphyletic and that lineages assigned to the genus are distributed widely across the raphid diatom tree of life. The feature of amphoroid symmetry appears to have evolved independently several times. We discuss the nature of conservative characters in the raphid diatoms and their usefulness as a guide to phylogenetic relationships.

  3. A molecular phylogeny reveals the Cuban enigmatic genus Behaimia as a new piece in the Brongniartieae puzzle of papilionoid legumes.

    Science.gov (United States)

    Queiroz, Luciano Paganucci de; São-Mateus, Wallace; Delgado-Salinas, Alfonso; Torke, Benjamin M; Lewis, Gwilym P; Dorado, Óscar; Ardley, Julie K; Wojciechowski, Martin F; Cardoso, Domingos

    2017-04-01

    The papilionoid legume tribe Brongniartieae comprises a collection of 15 genera with disparate morphologies that were previously positioned in at least four remotely related tribes. The Brongniartieae displays a wide geographical disjunction between Australia and the New World and previous phylogenetic studies had provided conflicting results about the relationships between the American and Australian genera. We carry out phylogenetic analyses of (1) a plastid matK dataset extensively sampled across legumes to solve the enigmatic relationship of the Cuban-endemic monospecific genus Behaimia; and (2) multilocus datasets with focus on all genera ever referred to Brongniartieae. These analyses resulted in a well-resolved and strongly-supported phylogenetic tree of the Brongniartieae. The monophyly of all American genera of Brongniartieae is strongly supported. The doubtful position of the Australian genus Plagiocarpus is resolved within a clade comprising all Australian genera. Behaimia has been traditionally classified in tribe Millettieae, but our new molecular data and re-assessment of morphological traits have resolved the genus within the early-branching papilionoid tribe Brongniartieae. Characters including the pinnately multifoliolate (vs. unifoliolate) leaves, a sessile (vs. stipitate) ovary, and an indehiscent or late dehiscent one-seeded pod distinguish Behaimia from its closer relatives, the South American genera Cyclolobium and Limadendron. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Molecular assessment of the phylogeny and biogeography of a recently diversified endemic group of South American canids (Mammalia: Carnivora: Canidae

    Directory of Open Access Journals (Sweden)

    Ligia Tchaicka

    Full Text Available Abstract To investigate the evolution and biogeography of an endemic group of South American foxes, we examined mitochondrial DNA control region sequences for 118 individuals belonging to all six extant species of the genus Lycalopex. Phylogenetic and molecular dating analyses supported the inference that this genus has undergone a very recent and rapid radiation, stemming from a common ancestor that lived ca. 1 million years ago. The Brazilian endemic L. vetulus was supported as the most basal species in this genus, whereas the most internal group is comprised by the recently diverged (ca. 350,000 years ago Andean/Patagonian species L. griseus and L. culpaeus. We discuss the inferred phylogenetic relationships and divergence times in the context of the current geographic distributions of these species, and the likely effects of Pleistocene climatic changes on the biogeography of this group. Furthermore, a remarkable finding was the identification of multiple individuals classified as L. gymnocercus bearing mtDNA haplotypes clearly belonging to L. griseus, sampled in regions where the latter is not known to occur. At a minimum, this result implies the need to clarify the present-day geographic distribution of each of these fox species, while it may also indicate an ongoing hybridization process between them. Future testing of this hypothesis with in-depth analyses of these populations is thus a priority for understanding the history, evolutionary dynamics and present-day composition of this endemic Neotropical genus.

  5. Molecular phylogeny of Solms-laubachia (Brassicaceae) s.l., based on multiple nuclear and plastid DNA sequences, and its biogeographic implications

    Institute of Scientific and Technical Information of China (English)

    Ji-Pei YUE; Hang SUN; David A. BAUM; Jian-Hua LI; Ihsan A. AL-SHEHBAZ; Richard REE

    2009-01-01

    The Hengduan Mountains region of south-west China is a noted biodiversity,hotspot, but the geographic origins and historical assembly of its rich endemic flora, including the sky-island species of Solms-laubachia Muschl. (Brassicaceae), have been little studied. Previous molecular studies on the phylogeny of Solms-laubachia showed it to be paraphyletic, leading to considerable expansion not only of its taxonomic limits, but also its geographic range, with the inclusion of taxa from outside the Hengduan region. However, these studies provided little resolution of interspecific relationships, preventing inferences about historical biogeography within the clade. In the present study, new sequence data from two nuclear genes (LEAFY and G3pdh) and two chloroplast intergenic spacers (petN-psbM and psbM-trnD) were combined with existing markers to increase phylogenetic signals. Phaeonychium villosum (Maxim.) Al-Shehbaz was found to be nested within Solms-laubachia s.l. In general, phylogenetic relationships appear to be a good predictor of geography, with the Hengduan Mountain endemics embedded in a paraphyletic grade of species from the western Himalayas and central Asia, but they also imply morphological homoplasy. Incongruence was detected between the nuclear and chloroplast gene trees, perhaps resulting from incomplete lineage sorting of ancestral polymorphisms. The crown age of Solms-laubachia s.l. was estimated to be approximately 1.42-3.68 mya, using Bayesian relaxed molecular clock analysis. Historical biogeographic analysis using a parametric dispersal-extinction-cladogenesis model inferred central Asia and the western Himalayas as most probable ancestral range of Solms-laubachia s.l., and estimated higher rates of eastward expansion than westward during the diversification of descendant lineages. In summary, our results suggest that Solms-laubachia s.l. originated during the Pliocene in central Asia, and subsequently migrated eastward into the Hengduan Mountains

  6. A molecular phylogeny of nuclear and mitochondrial sequences in Hymenolepis nana (Cestoda) supports the existence of a cryptic species.

    Science.gov (United States)

    Macnish, M G; Morgan-Ryan, U M; Monis, P T; Behnke, J M; Thompson, R C A

    2002-12-01

    Since isolates of Hymenolepis nana infecting humans and rodents are morphologically indistinguishable, the only way they can be reliably identified is by comparing the parasite in each host using molecular tools. In the current study, isolates of H. nana from rodent and human hosts from a broad geographical range were sequenced at the ribosomal first internal transcribed spacer (ITS1), the mitochondrial cytochrome c oxidase subunit 1 (C01) gene and the nuclear paramyosin gene loci. Twenty-three isolates of H. nana were sequenced at the ITS1 locus and this confirmed the existence of spacers which, although similar in length (approximately 646 bp), differed in their primary sequences which led to the separation of the isolates into 2 clusters when analysed phylogenetically. This sequence variation was not, however, related to the host of origin of the isolate, thus was not a marker of genetic distinction between H. nana from rodents and humans. Sequencing of a 444 bp fragment of the mitochondrial cytochrome c oxidase 1 gene (C01) in 9 isolates of H. nana from rodents and 6 from humans identified a phylogenetically supported genetic divergence of approximately 5% between some mouse and human isolates. This suggests that H. nana is a species complex, or 'cryptic' species (=morphologically identical yet genetically distinct). A small segment of the nuclear gene, paramyosin, (625 bp or 840 bp) was sequenced in 4 mouse and 3 human isolates of H. nana. However, this gene did not provide the level of heterogeneity required to distinguish between isolates from rodent and human hosts. From the results obtained from faster evolving genes, and the epidemiological evidence, we believe that the life-cycle of H. nana that exists in the north-west of Western Australia is likely to involve mainly 'human to human' transmission.

  7. Molecular diversity and phylogeny of Triticum-Aegilops species possessing D genome revealed by SSR and ISSR markers

    Directory of Open Access Journals (Sweden)

    Moradkhani Hoda

    2015-12-01

    Full Text Available The aim of this study is investigation the applicability of SSR and ISSR markers in evaluating the genetic relationships in twenty accessions of Aegilops and Triticum species with D genome in different ploidy levels. Totally, 119 bands and 46 alleles were detected using ten primers for ISSR and SSR markers, respectively. Polymorphism Information Content values for all primers ranged from 0.345 to 0.375 with an average of 0.367 for SSR, and varied from 0.29 to 0.44 with the average 0.37 for ISSR marker. Analysis of molecular variance (AMOVA revealed that 81% (ISSR and 84% (SSR of variability was partitioned among individuals within populations. Comparing the genetic diversity of Aegilops and Triticum accessions, based on genetic parameters, shows that genetic variation of Ae. crassa and Ae. tauschii species are higher than other species, especially in terms of Nei’s gene diversity. Cluster analysis, based on both markers, separated total accessions in three groups. However, classification based on SSR marker data was not conformed to classification according to ISSR marker data. Principal co-ordinate analysis (PCoA for SSR and ISSR data showed that, the first two components clarified 53.48% and 49.91% of the total variation, respectively. This analysis (PCoA, also, indicated consistent patterns of genetic relationships for ISSR data sets, however, the grouping of accessions was not completely accorded to their own geographical origins. Consequently, a high level of genetic diversity was revealed from the accessions sampled from different eco-geographical regions of Iran.

  8. Comparative morphology and molecular phylogeny of Apicoporus n. Gen.: a new genus of marine benthic dinoflagellates formerly classified within Amphidinium.

    Science.gov (United States)

    Sparmann, Sarah F; Leander, Brian S; Hoppenrath, Mona

    2008-07-01

    The composition of the dinoflagellate genus Amphidinium is currently polyphyletic and includes several species in need of re-evaluation using modern morphological and phylogenetic methods. We investigated a broad range of uncultured morphotypes extracted from marine sediments in the Eastern Pacific Ocean that were similar in morphology to Amphidinium glabrum Hoppenrath and Okolodkov. To determine the number of distinct species associated with this phenotypic diversity, we collected LM, SEM, TEM and small subunit ribosomal DNA sequence information from different morphotypes, including the previously described A. glabrum. Both comparative morphological and molecular phylogenetic data supported the establishment of a new genus, Apicoporus n. gen., including at least two species, A. glaber n. comb., and A. parvidiaboli n. sp. Apicoporus is characterized by having amphiesmal pores and an apical pore covered by a hook-like protrusion; neither of these characters has been observed in other athecate dinoflagellates. The posterior end of Apicoporus parvidiaboli possessed varying degrees of "horn formation", ranging from slight to prominent. By contrast, the posterior end of Apicoporus glaber was distinctively rounded and lacked evidence of horn formation. Although these species were previously interpreted to be obligate heterotrophs, TEM and epifluorescence microscopy demonstrated that some cells of both species had unusually small but otherwise typical dinoflagellate plastids. The number and density of plastids in any particular cell varied significantly in the genus, but the plastids were almost always concentrated at the posterior end of the cells or around the nucleus. The presence of cryptic photosynthetic plastids in these benthic species suggests that photosynthesis might be much more widespread in dinoflagellates than is currently assumed.

  9. Unlocking the black box of feather louse diversity: A molecular phylogeny of the hyper-diverse genus Brueelia.

    Science.gov (United States)

    Bush, Sarah E; Weckstein, Jason D; Gustafsson, Daniel R; Allen, Julie; DiBlasi, Emily; Shreve, Scott M; Boldt, Rachel; Skeen, Heather R; Johnson, Kevin P

    2016-01-01

    Songbirds host one of the largest, and most poorly understood, groups of lice: the Brueelia-complex. The Brueelia-complex contains nearly one-tenth of all known louse species (Phthiraptera), and the genus Brueelia has over 300 species. To date, revisions have been confounded by extreme morphological variation, convergent evolution, and periodic movement of lice between unrelated hosts. Here we use Bayesian inference based on mitochondrial (COI) and nuclear (EF-1α) gene fragments to analyze the phylogenetic relationships among 333 individuals within the Brueelia-complex. We show that the genus Brueelia, as it is currently recognized, is paraphyletic. Many well-supported and morphologically unified clades within our phylogenetic reconstruction of Brueelia were previously described as genera. These genera should be recognized, and the erection of several new genera should be explored. We show that four distinct ecomorphs have evolved repeatedly within the Brueelia-complex, mirroring the evolutionary history of feather-lice across the entire order. We show that lice in the Brueelia-complex, with some notable exceptions, are extremely host specific and that the host family associations and geographic distributions of these lice are significantly correlated with our understanding of their phylogenetic history. Several ecological phenomena, including phoresis, may be responsible for the macroevolutionary patterns in this diverse group.

  10. Molecular characterization and phylogeny of Shiga toxin-producing E. coli (STEC) from imported beef meat in Malaysia.

    Science.gov (United States)

    Abuelhassan, Nawal Nouridaim; Mutalib, Sahilah Abdul; Gimba, Fufa Ido; Yusoff, Wan Mohtar

    2016-09-01

    This study aimed at determining the presence and characterization of Escherichia coli and Shiga toxin-producing E. coli (STEC) from imported frozen beef meats. Seventy-four (74) frozen imported beef meat samples from two countries, India (42 samples) and Australia (32 samples), were collected and tested for E. coli. These samples were purchased from the frozen meat sections of five different supermarkets in different locations in Selangor, Malaysia, from April 2012 to October 2014. A total of 222 E. coli strains were isolated from the meat samples; 126 strains were isolated from country A (India), and 96 E. coli strains were from country of origin B (Australia), respectively. A total of 70 E. coli strains were identified and characterized. All E. coli strains were isolated into Fluorocult medium and identified using API 20E kit. All selected E. coli strains were characterized for Shiga toxin genes (stx1 and stx2). All biochemically identified E. coli in this study were further subjected to molecular detection through polymerase chain reaction (PCR) amplification and characterization using 16S ribosomal RNA (rRNA) gene of Shiga toxin-producing E. coli. Of the 70 E. coli strains, 11 strains were positive for both Shiga toxin genes (stx1 and stx2) and 11 (11/70) strains were positive for stx1 gene, while 25 (25/70) strains were positive for stx2 gene. The analysis of 16S rRNA gene of all the E. coli isolates in this study was successfully sequenced and analyzed, and based on sequence data obtained, a phylogenetic tree of the 16S rRNA gene was performed using Clustal W programme in MEGA 6.06 software. Phylogenetic tree showed that the E. coli isolates in our study cluster with the strain of E. coli isolated in other countries, which further confirm that the isolates of E. coli in this study are similar to those obtained in other studies. As a result, all the strains obtained in this study proved to be a strain of pathogenic E. coli, which may cause a serious outbreak

  11. Molecular Phylogeny of Indonesian Armyworm Mythimna Guenée (Lepidoptera: Noctuidae: Hadeninae Based on CO I Gene Sequences

    Directory of Open Access Journals (Sweden)

    HARI SUTRISNO

    2012-06-01

    Full Text Available Armyworm Mythimna Guenée is one of the most important pests on graminaceous crops and pastures in South East Asia (i.e. M. separata Walker is well known to cause serious damages on rice in Indonesia. Like of most other genera of moths, the systematic of this genus is still in dispute, especially on the taxonomy and classification within this genus due to their morphological characters that are very difficult to distinguish from one to others. Molecular approaches such as using CO I gene sequence to differentiate among species has beenrecommended since this gene has ability to reveal the character identity at the specific level. In order to populate the genetic characters of Indonesian Mythimna, to clarify the clasification within the genus Mythimna and to reveal the phylogenetic relationship among them, we analyzed 14 species of Mythimna and two species outgroups (Spodoptera litura dan S. exigua based on nucleotide sequence variation across a 649 bp region in the CO I gene. Over entire 649 bp region 72% of the nucleotide positions were constant, 10.6% were uninformtive (i.e. any variants were found in a single sequence and 16.9% were parsimony informative. The informative site constituted in the 3rd codon position was the highest, whereas in 2nd codon position was the lowest. The results also showed that the base composition of this region was low A + T biased. The results showed that the monophyly of Mytimna was supported by 95% bootstrap test at any tree building methods. The three subgenera based on morphology were recovered but M. (Mythimna shown to be a paraphyletic group in term of M. (Hyphilare, and M. (Pseudalteia; M. (Mythimna was branched off first then followed by M. (Pseudaletia and M. (Hyphilare. However, all internal nodes were least support except for the monophyly of subgenus M. (Hyphilare. It indicates that the relationships among internal nodes proposed here were least valid due to the number of species included in the

  12. 两栖蓼的分子系统学研究%Phylogeny of Polygonum amphibium inferred from molecular sequences

    Institute of Scientific and Technical Information of China (English)

    曲畅游; 许崇梅

    2015-01-01

    were potential-ly parsimony informative.Parsimony-based analysis yielded 9 equally parsimonious trees of 551 steps with CI of 0.911 and RI of 0.910.The trees constructed by Bayesian and MP analyses were basically congruent.Molecular ana-lyses displayed that the ITS tree was similar to the trn L-F tree.In the ITS tree,Polygonum amphibium and other plants of sect.Persicaria plus sect.Echinocaulon formed three parallel clades;In the trn L-F tree,P .amphibium was sister to the remainder of sect.Persicaria with high bootstrap value.Molecular results could be achieved as fol-lows:P .amphibium had a distant relationship to other plants of sect.Persicaria .In addition,the pollen morphology of P .amphibium was scattered ditch,the pollen morphology of the remaining species of sect.Persicaria were scat-tered hole.Combined with amphibious characteristics of P .amphibium ,we were in agreement with Zhang’s view that it was necessary to accord P .amphibium as section rank.sect.Amphibium was defined as herbs perennial,am-phibious,rhizomes horizontal,aquatic plants:stems floating,leave blade oblong or elliptic,terrestrial plants:stems erect,leaf blade lanceolate or oblong-lanceolate,ocrea tubular,thinly membranous,inflorescence spicate,achene suborbicular,pollen with scattered ditch.

  13. Phylogeny of Rhus gall aphids (Hemiptera:Pemphigidae) based on combined molecular analysis of nuclear EF1α and mitochondrial COII genes

    Science.gov (United States)

    Zi-xiang Yang; Xiao-ming Chen; Nathan P. Havill; Ying Feng; Hang. Chen

    2010-01-01

    Rhus gall aphids (Fordinae : Melaphidini) have a disjunct distribution in East Asia and North America and have specific host plant relationships. Some of them are of economic importance and all species form sealed galls which show great variation in shape, size, structure, and galling-site. We present a phylogeny incorporating ten species and four...

  14. 'Andean-centred' genera in the short-branch clade of Annonaceae: testing biogeographical hypotheses using phylogeny reconstruction and molecular dating

    NARCIS (Netherlands)

    Pirie, M.D.; Chatrou, L.W.; Mols, J.B.; Erkens, R.H.J.; Oosterhof, J.

    2006-01-01

    Aim We test biogeographical hypotheses regarding the origin of Andean-centred plant groups by reconstructing phylogeny in the short-branch clade (SBC) of Annonaceae, and estimating the timing of diversifications in four apparently Andean-centred genera: Cremastosperma R.E.Fr., Klarobelia Chatrou, Ma

  15. Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: I. Ancient clade splitting revealed by mitochondrial haplotype markers.

    Science.gov (United States)

    Meraner, A; Brandstätter, A; Thaler, R; Aray, B; Unterlechner, M; Niederstätter, H; Parson, W; Zelger, R; Dalla Via, J; Dallinger, R

    2008-09-01

    The codling moth (Cydia pomonella L., Tortricidae, Lepidoptera) is an important pest of pome fruit with global distribution. It has adapted successfully to different habitats by forming various ecotypes and populations, often termed strains, which differ among each other in several morphological, developmental, and physiological features. Many strains of Cydia pomonella have developed resistance against a broad range of chemically different pesticides. Obviously, pesticide-resistant strains must have a genetic basis inherent to the gene pool of codling moth populations, and this deserves our particular attention. The primary intention of the present study was to contribute novel information regarding the evolutionary phylogeny and phylogeography of codling moth populations in Central Europe. In addition, we aimed at testing the hypothesis that differential biological traits and response patterns towards pesticides in codling moth populations may be reflected at a mitochondrial DNA level. In particular, we wanted to test if pesticide resistance in codling moths is associated repeatedly and independently with more than one mitochondrial haplotype. To this end, we analyzed mitochondrial DNA and constructed phylogenetic trees based on three mitochondrial genes: cytochrome oxidase I (COI), the A+T-rich region of the control region (CR), and the nicotinamide adenine dinucleotide dehydrogenase subunit 5 (ND5). The results indicate that Central European populations of Cydia pomonella are clearly divided in two ancient clades. As shown by means of a molecular clock approach, the splitting of the two clades can be dated to a time period between the lower and middle Pleistocene, about 1.29-0.20 million years ago. It is assumed that the cyclic changes of warm and cold periods during Pleistocene may have lead to the geographic separation of codling moth populations due to glaciation, giving rise to the formation of the two separate refugial clades, as already shown for many

  16. Molecular phylogenies confirm the presence of two cryptic Hemimycale species in the Mediterranean and reveal the polyphyly of the genera Crella and Hemimycale (Demospongiae: Poecilosclerida)

    Science.gov (United States)

    Garate, Leire; Agell, Gemma

    2017-01-01

    Background Sponges are particularly prone to hiding cryptic species as their paradigmatic plasticity often favors species phenotypic convergence as a result of adaptation to similar habitat conditions. Hemimycale is a sponge genus (Family Hymedesmiidae, Order Poecilosclerida) with four formally described species, from which only Hemimycale columella has been recorded in the Atlanto-Mediterranean basin, on shallow to 80 m deep bottoms. Contrasting biological features between shallow and deep individuals of Hemimycale columella suggested larger genetic differences than those expected between sponge populations. To assess whether shallow and deep populations indeed belong to different species, we performed a phylogenetic study of Hemimycale columella across the Mediterranean. We also included other Hemimycale and Crella species from the Red Sea, with the additional aim of clarifying the relationships of the genus Hemimycale. Methods Hemimycale columella was sampled across the Mediterranean, and Adriatic Seas. Hemimycale arabica and Crella cyathophora were collected from the Red Sea and Pacific. From two to three specimens per species and locality were extracted, amplified for Cytochrome C Oxidase I (COI) (M1–M6 partition), 18S rRNA, and 28S (D3–D5 partition) and sequenced. Sequences were aligned using Clustal W v.1.81. Phylogenetic trees were constructed under neighbor joining (NJ), Bayesian inference (BI), and maximum likelihood (ML) criteria as implemented in Geneious software 9.01. Moreover, spicules of the target species were observed through a Scanning Electron microscope. Results The several phylogenetic reconstructions retrieved both Crella and Hemimycale polyphyletic. Strong differences in COI sequences indicated that C. cyathophora from the Red Sea might belong in a different genus, closer to Hemimycale arabica than to the Atlanto-Mediterranean Crella spp. Molecular and external morphological differences between Hemimycale arabica and the Atlanto

  17. Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes

    Science.gov (United States)

    2011-01-01

    Background Species of the Fusarium genus are important fungi which is associated with health hazards in human and animals. The taxonomy of this genus has been a subject of controversy for many years. Although many researchers have applied molecular phylogenetic analysis to examine the taxonomy of Fusarium species, their phylogenetic relationships remain unclear only few comprehensive phylogenetic analyses of the Fusarium genus and a lack of suitable nucleotides and amino acid substitution rates. A previous stugy with whole genome comparison among Fusairum species revealed the possibility that each gene in Fusarium genomes has a unique evolutionary history, and such gene may bring difficulty to the reconstruction of phylogenetic tree of Fusarium. There is a need not only to check substitution rates of genes but also to perform the exact evaluation of each gene-evolution. Results We performed phylogenetic analyses based on the nucleotide sequences of the rDNA cluster region (rDNA cluster), and the β-tubulin gene (β-tub), the elongation factor 1α gene (EF-1α), and the aminoadipate reductase gene (lys2). Although incongruence of the tree topologies between lys2 and the other genes was detected, all genes supported the classification of Fusarium species into 7 major clades, I to VII. To obtain a reliable phylogeny for Fusarium species, we excluded the lys2 sequences from our dataset, and re-constructed a maximum likelihood (ML) tree based on the combined data of the rDNA cluster, β-tub, and EF-1α. Our ML tree indicated some interesting relationships in the higher and lower taxa of Fusarium species and related genera. Moreover, we observed a novel evolutionary history of lys2. We suggest that the unique tree topologies of lys2 are not due to an analytical artefact, but due to differences in the evolutionary history of genomes caused by positive selection of particular lineages. Conclusion This study showed the reliable species tree of the higher and lower taxonomy

  18. Bayesian inference of the metazoan phylogeny

    DEFF Research Database (Denmark)

    Glenner, Henrik; Hansen, Anders J; Sørensen, Martin V

    2004-01-01

    Metazoan phylogeny remains one of evolutionary biology's major unsolved problems. Molecular and morphological data, as well as different analytical approaches, have produced highly conflicting results due to homoplasy resulting from more than 570 million years of evolution. To date, parsimony has...

  19. Ribosomal RNA: a key to phylogeny

    Science.gov (United States)

    Olsen, G. J.; Woese, C. R.

    1993-01-01

    As molecular phylogeny increasingly shapes our understanding of organismal relationships, no molecule has been applied to more questions than have ribosomal RNAs. We review this role of the rRNAs and some of the insights that have been gained from them. We also offer some of the practical considerations in extracting the phylogenetic information from the sequences. Finally, we stress the importance of comparing results from multiple molecules, both as a method for testing the overall reliability of the organismal phylogeny and as a method for more broadly exploring the history of the genome.

  20. Ribosomal RNA: a key to phylogeny

    Science.gov (United States)

    Olsen, G. J.; Woese, C. R.

    1993-01-01

    As molecular phylogeny increasingly shapes our understanding of organismal relationships, no molecule has been applied to more questions than have ribosomal RNAs. We review this role of the rRNAs and some of the insights that have been gained from them. We also offer some of the practical considerations in extracting the phylogenetic information from the sequences. Finally, we stress the importance of comparing results from multiple molecules, both as a method for testing the overall reliability of the organismal phylogeny and as a method for more broadly exploring the history of the genome.

  1. Molecular detection of Peronospora variabilis in quinoa seed and phylogeny of the quinoa downy mildew pathogen in South America and the United States.

    Science.gov (United States)

    Testen, Anna L; del Mar Jiménez-Gasco, María; Ochoa, José B; Backman, Paul A

    2014-04-01

    Quinoa (Chenopodium quinoa) is an important export of the Andean region, and its key disease is quinoa downy mildew, caused by Peronospora variabilis. P. variabilis oospores can be seedborne and rapid methods to detect seedborne P. variabilis have not been developed. In this research, a polymerase chain reaction (PCR)-based detection method was developed to detect seedborne P. variabilis and a sequencing-based method was used to validate the PCR-based method. P. variabilis was detected in 31 of 33 quinoa seed lots using the PCR-based method and in 32 of 33 quinoa seed lots using the sequencing-based method. Thirty-one of the quinoa seed lots tested in this study were sold for human consumption, with seed originating from six different countries. Internal transcribed spacer (ITS) and cytochrome c oxidase subunit 2 (COX2) phylogenies were examined to determine whether geographical differences occurred in P. variabilis populations originating from Ecuador, Bolivia, and the United States. No geographical differences were observed in the ITS-derived phylogeny but the COX2 phylogeny indicated that geographical differences existed between U.S. and South American samples. Both ITS and COX2 phylogenies supported the existence of a Peronospora sp., distinct from P. variabilis, that causes systemic-like downy mildew symptoms on quinoa in Ecuador. The results of these studies allow for a better understanding of P. variabilis populations in South America and identified a new causal agent for quinoa downy mildew. The PCR-based seed detection method allows for the development of P. variabilis-free quinoa seed, which may prove important for management of quinoa downy mildew.

  2. Contribution of genosystematics to current concepts of phylogeny and classification of bryophytes.

    Science.gov (United States)

    Troitsky, A V; Ignatov, M S; Bobrova, V K; Milyutina, I A

    2007-12-01

    This paper is a survey of the current state of molecular studies on bryophyte phylogeny. Molecular data have greatly contributed to developing a phylogeny and classification of bryophytes. The previous traditional systems of classification based on morphological data are being significantly revised. New data of the authors are presented on phylogeny of Hypnales pleurocarpous mosses inferred from nucleotide sequence data of the nuclear DNA internal transcribed spacers ITS1-2 and the trnL-F region of the chloroplast genome.

  3. Whole-genome prokaryotic phylogeny

    National Research Council Canada - National Science Library

    Henz, Stefan R; Huson, Daniel H; Auch, Alexander F; Nieselt-Struwe, Kay; Schuster, Stephan C

    2005-01-01

    .... We introduce a new strategy, GBDP, 'genome blast distance phylogeny', and show that different variants of this approach robustly produce phylogenies that are biologically sound, when applied to 91 prokaryotic genomes...

  4. A test of color-based taxonomy in nudibranchs: Molecular phylogeny and species delimitation of the Felimida clenchi (Mollusca: Chromodorididae) species complex.

    Science.gov (United States)

    Padula, Vinicius; Bahia, Juliana; Stöger, Isabella; Camacho-García, Yolanda; Malaquias, Manuel António E; Cervera, Juan Lucas; Schrödl, Michael

    2016-10-01

    Traditionally, species identification in nudibranch gastropods relies heavily on body color pattern. The Felimida clenchi species complex, a group of brightly colored Atlantic and Mediterranean species in the family Chromodorididae, has a history of exceptional controversy and discussion among taxonomists. The most widely accepted hypothesis is that the complex includes four species (Felimida clenchi, F. neona, F. binza and F. britoi), each with a characteristic body color pattern. In this study, we investigated the taxonomic value of coloration in the Felimida clenchi complex, using molecular phylogenetics, species-delimitation analyses (ABGD, GMYC, PTP), haplotype-network methods, and the anatomy of the reproductive system. None of our analyses recovered the traditional separation into four species. Our results indicated the existence of three species, a result inconsistent with previous taxonomic hypotheses. We distinguished an undescribed species of Felimida and redefined the concepts of F. clenchi and F. binza, both highly polychromatic species. For the first time, molecular data support the existence of extreme color polymorphism in chromatic nudibranch species, with direct implications for the taxonomy of the group and its diversity. The polychromatism observed in the F. clenchi complex apparently correlates with the regional occurrence of similar color patterns in congeneric species, suggesting different mimicry circles. This may represent a parallel in the marine environment to the mechanisms that play a major role in the diversification of color in terrestrial and fresh-water chromatic groups, such as heliconian butterflies.

  5. Distance-Based Phylogeny Reconstruction: Safety and Edge Radius

    OpenAIRE

    Gascuel, Olivier; Pardi, Fabio; Truszkowski, Jakub

    2015-01-01

    International audience; A phylogeny is an evolutionary tree tracing the shared history, including common ancestors, of a set of extant species or “taxa”. Phylogenies are increasingly reconstructed on the basis of molecular data (DNA and protein sequences) using statistical techniques such as likelihood and Bayesian methods. Algorithmically, these techniques suffer from the discrete nature of tree topology space. Since the number of tree topologies increases exponentially as a function of the ...

  6. Phylogeny reconstruction based on protein phylogenetic profiles of organisms

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    With the coming of the Post Genomic Era, more and more genomes have been sequenced and it has become possible to study phylogeny reconstruction at genome level. The concept of protein phylogenetic profiles of organisms is defined in this work which is used in phylogeny reconstruction by proteome comparisons. This method is more stable than the prevailing molecular systematics methods and can be used widely. It will develop very fast with the rapid progress in genome sequencing.

  7. Research Progress on Molecular Phylogeny and Genetic Diversity of Denus Piper L.%胡椒属(Piper L.)分子系统学和遗传多样性的研究进展

    Institute of Scientific and Technical Information of China (English)

    范睿; 黄丽芳; 郝朝运; 闫林; 杨建峰; 邬华松

    2011-01-01

    Genus Piper,one member of the Piperaceae,is located mainly in South and Central America and South Asia.For a large number of species,the genus provides a noteworthy example of an increase in diversification rate at the basal angiosperms.Meanwhile,the genus also includes the most valuable economically important spice crops and various species are of ethnobotanical interest.Given the significant scientific and economic value,many researchers have been dedicated to reveal the intrageneric molecular phylogeny,genetic relationships and fingerprints of different cuhivars,genetic distribution patterns of some endemic species,and so on.To summary the past molecular researches,this paper systematically reviewed the researches on the molecular phylogeny and genetic diversity of genus Piper.The results showed that most researches had focused on intrageneric phylogeny of the genus,and a taxonomic framework had been established.Genetic diversity and identification of the important cultivated Piper species had also been clarified.However,there are still some problems remain to be solved:1) Intrageneric phylogeny needs further refinement.2) Genetic fingerprint bank has not been established.3) Genetic structures of some endemic and rare species have not received sufficient attention.%胡椒属(Piper L.)作为胡椒科(Piperaceae)中遍布于热带地区的重要作物,含有近2000个植物种类,目前集中分布于南亚、南美洲和中美洲.胡椒属内极高的物种多样性在传统的木兰亚纲(Magnoliidae)中显得尤为独特,为基部被子植物(Basal angiosperms)分化速率加快的机理研究提供了一个很好的例子;同时,属内还含有众多具有重要经济价值的香料作物和民族植物种类,如胡椒(Piper nigrum)和蒌叶(P.betle)等.因其具有重要的学术研究价值和经济利用价值,许多研究者一直致力于揭示其属内分子系统关系、栽培品种的遗传相似性和指纹图谱、特有物种的遗传

  8. Phylogeny of the Paracalanidae Giesbrecht, 1888 (Crustacea: Copepoda: Calanoida).

    Science.gov (United States)

    Cornils, Astrid; Blanco-Bercial, Leocadio

    2013-12-01

    The Paracalanidae are ecologically-important marine planktonic copepods that occur in the epipelagic zone in temperate and tropical waters. They are often the dominant taxon - in terms of biomass and abundance - in continental shelf regions. As primary consumers, they form a vital link in the pelagic food web between primary producers and higher trophic levels. Despite the ecological importance of the taxon, evolutionary and systematic relationships within the family remain largely unknown. A multigene phylogeny including 24 species, including representatives for all seven genera, was determined based on two nuclear genes, small-subunit (18S) ribosomal RNA and Histone 3 (H3) and one mitochondrial gene, cytochrome c oxidase subunit I (COI). The molecular phylogeny was well supported by Maximum likelihood and Bayesian inference analysis; all genera were found to be monophyletic, except for Paracalanus, which was separated into two distinct clades: the Paracalanus aculeatus group and Paracalanus parvus group. The molecular phylogeny also confirmed previous findings that Mecynocera and Calocalanus are genera of the family Paracalanidae. For comparison, a morphological phylogeny was created for 35 paracalanid species based on 54 morphological characters derived from published descriptions. The morphological phylogeny did not resolve all genera as monophyletic and bootstrap support was not strong. Molecular and morphological phylogenies were not congruent in the positioning of Bestiolina and the Paracalanus species groups, possibly due to the lack of sufficient phylogenetically-informative morphological characters. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Dihydroazulene Photochromism:Synthesis, Molecular Electronics and Hammett Correlations

    DEFF Research Database (Denmark)

    Broman, Søren Lindbæk

    This thesis describes the development of a versatile synthetic protocol for preparation of a large selection of dihydroazulenes (DHAs) with both electron withdrawing and donating groups. By UV-Vis and NMR spectroscopies and even in a single-molecule junction, their ability to undergo a light...... will be discussed in detail. The second chapter describes the design and synthesis of DHA/VHFs intended for use in molecular electronics and their solution and single-molecule junction switching properties. By the expansion of the recently reported procedure for functionalization of this system by Suzuki cross...... of back-reaction was increased with close to a factor of 2 which is only the statistical improvement of having two possible sites for back-reaction as supposed to just one. The fifth chapter describes, in short, my contributions to an additional seven papers published. Figure 1. Structure of proposed...

  10. Primate diversification inferred from phylogenies and fossils.

    Science.gov (United States)

    Herrera, James P

    2017-09-14

    Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: 1) diversification rates increased through time; 2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies consistently supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Fossils and decapod phylogeny

    NARCIS (Netherlands)

    Schram, Frederick R.; Dixon, Christopher

    2003-01-01

    An expanded series of morphological characters developed for a cladistic analysis of extant decapods has yielded a new hypothesis for the phylogeny of the group. Application of this database to selected fossil genera produces some interesting results and demonstrates the feasibility of treating foss

  12. The phylogeny of Arthrotardigrada

    DEFF Research Database (Denmark)

    Hansen, Jesper Guldberg

    2011-01-01

    The order Arthrotardigrada, or water bears, constitutes a small group of 160 species of marine, microscopical invertebrates, within the phylum Tardigrada. Although the position of tardigrades in the Animal Kingdom has received much attention focusing on the metazoan phylogeny, the phylogenetic...

  13. Building a Twig Phylogeny

    Science.gov (United States)

    Flinn, Kathryn M.

    2015-01-01

    In this classroom activity, students build a phylogeny for woody plant species based on the morphology of their twigs. Using any available twigs, students can practice the process of cladistics to test evolutionary hypotheses for real organisms. They identify homologous characters, determine polarity through outgroup comparison, and construct a…

  14. Building a Twig Phylogeny

    Science.gov (United States)

    Flinn, Kathryn M.

    2015-01-01

    In this classroom activity, students build a phylogeny for woody plant species based on the morphology of their twigs. Using any available twigs, students can practice the process of cladistics to test evolutionary hypotheses for real organisms. They identify homologous characters, determine polarity through outgroup comparison, and construct a…

  15. Characterization of molecularly imprinted polymer nanoparticles by photon correlation spectroscopy.

    Science.gov (United States)

    Malm, Björn; Yoshimatsu, Keiichi; Ye, Lei; Krozer, Anatol

    2014-12-01

    We follow template-binding induced aggregation of nanoparticles enantioselectively imprinted against (S)-propranolol, and the non-imprinted ones, using photon correlation spectroscopy (dynamic light scattering). The method requires no separation steps. We have characterized binding of (R,S)-propranolol to the imprinted polymers and determined the degree of non-specificity by comparing the specific binding with the results obtained using non-imprinted nanoparticles. Using (S)-propranolol as a template for binding to (S)-imprinted nanoparticle, and (R)-propranolol as a non-specific control, we have determined range of concentrations where chiral recognition can be observed. By studying aggregation induced by three analytes related to propranolol, atenolol, betaxolol, and 1-amino-3-(naphthalen-1-yloxy)propan-2-ol, we were able to determine which parts of the template are involved in the specific binding, discuss several details of specific adsorption, and the structure of the imprinted site.

  16. Molecular phylogeny of the butterfly tribe Satyrini (Nymphalidae: Satyrinae) with emphasis on the utility of ribosomal mitochondrial genes 16s rDNA and nuclear 28s rDNA.

    Science.gov (United States)

    Yang, Mingsheng; Zhang, Yalin

    2015-07-09

    The tribe Satyrini is one of the most diverse groups of butterflies, but no robust phylogenetic hypothesis for this group has been achieved. Two rarely used 16s and 28s ribosomal and another seven protein-coding genes were used to reconstruct the phylogeny of the Satyrini, with further aim to evaluate the informativeness of the ribosomal genes. Our maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) analyses consistently recovered three well-supported clades for the eleven sampled subtribes of Satyrini: clade I includes Eritina and Coenonymphina, being sister to the clade II + clade III; clade II contains Parargina, Mycalesina and Lethina, and the other six subtribes constitute clade III. The placements of the taxonomically unstable Davidina Oberthür and geographically restricted Paroeneis Moore in Satyrina are confirmed for the first time based on molecular evidence. The close relationships of Callerebia Butler, Loxerebia Watkins and Argestina Riley are well-supported. We suggest that Rhaphicera Butler belongs to Lethina. The partitioned Bremer support (PBS) values of MP analysis show that the 16s rDNA contributes well to the nodes representing all the taxa from subtribe to species levels, and the 28s rDNA is informative at the subtribe level. Furthermore, our ML analyses show that the ribosomal genes 16s rDNA and 28s rDNA are informative, because most node support values are lower in the ML tree after the removal of them than that in ML tree constructed based on the full nine-gene dataset. This indicates that some other ribosomal genes should be tentatively used through combining with traditionally used protein-coding genes in further analysis on phylogeny of Satyrini, providing that proper representatives are sampled.

  17. Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Giorgi, G.L., E-mail: g.giorgi@inrim.it [INRIM, Strada delle Cacce 91, I-10135 Torino (Italy); Roncaglia, M. [INRIM, Strada delle Cacce 91, I-10135 Torino (Italy); Raffa, F.A. [Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Genovese, M. [INRIM, Strada delle Cacce 91, I-10135 Torino (Italy)

    2015-10-15

    During the long course of evolution, nature has learnt how to exploit quantum effects. In fact, recent experiments reveal the existence of quantum processes whose coherence extends over unexpectedly long time and space ranges. In particular, photosynthetic processes in light-harvesting complexes display a typical oscillatory dynamics ascribed to quantum coherence. Here, we consider the simple model where a dimer made of two chromophores is strongly coupled with a quasi-resonant vibrational mode. We observe the occurrence of wide oscillations of genuine quantum correlations, between electronic excitations and the environment, represented by vibrational bosonic modes. Such a quantum dynamics has been unveiled through the calculation of the negativity of entanglement and the discord, indicators widely used in quantum information for quantifying the resources needed to realize quantum technologies. We also discuss the possibility of approximating additional weakly-coupled off-resonant vibrational modes, simulating the disturbances induced by the rest of the environment, by a single vibrational mode. Within this approximation, one can show that the off-resonant bath behaves like a classical source of noise.

  18. Molecular spin on surface: From strong correlation to dispersion interactions

    Science.gov (United States)

    Zhang, Yachao

    2016-09-01

    A reliable prediction of magnetic properties of surface-supported molecules containing 3d/4f spin carriers has challenged the electronic structure theory for decades. Here we tackle this problem with Hubbard-U corrected van der Waals density functional (vdW-DF), incorporating strong correlation effects of the localized electrons and dispersion interactions involved in the molecule-surface binding. By fitting the spin state energetics of a series of Fe(ii) compounds with varying ligand field strength, we find that the optimal U value for vdW-DF is much smaller than that for the local density approximation (LDA) while quite similar to that for the generalized gradient approximation (GGA). We show that although vdW-DF+U overestimates largely the metal-ligand bond distance, the predicted adiabatic high-spin-low-spin energy splitting ΔEHL is only slightly changed with respect to that obtained using the LDA+U geometries consistent with experiment. Then we use Cu(111)-supported metallocene (M(C5H5)2, M = Fe, and Co) as a prototype example to explore the effects of the molecule-surface interactions. We show that the non-local dispersion interactions, poorly described by LDA and GGA while reasonably captured by vdW-DF, are critical for reproducing ΔEHL at large molecule-surface distances. Besides, we find that ΔEHL is decreased by the molecule-metal contact, which is shown to weaken the local ligand field around the magnetic center.

  19. Molecular phylogeny and species separation of five morphologically similar Holosticha-complex ciliates (Protozoa, Ciliophora) using ARDRA riboprinting and multigene sequence data

    Science.gov (United States)

    Gao, Feng; Yi, Zhenzhen; Gong, Jun; Al-Rasheid Khaled, A. S.; Song, Weibo

    2010-05-01

    To separate and redefine the ambiguous Holosticha-complex, a confusing group of hypotrichous ciliates, six strains belonging to five morphospecies of three genera, Holosticha heterofoissneri, Anteholosticha sp. pop1, Anteholosticha sp. pop2, A. manca, A. gracilis and Nothoholosticha fasciola, were analyzed using 12 restriction enzymes on the basis of amplified ribosomal DNA restriction analysis. Nine of the 12 enzymes could digest the DNA products, four ( Hinf I, Hind III, Msp I, Taq I) yielded species-specific restriction patterns, and Hind III and Taq I produced different patterns for two Anteholosticha sp. populations. Distinctly different restriction digestion haplotypes and similarity indices can be used to separate the species. The secondary structures of the five species were predicted based on the ITS2 transcripts and there were several minor differences among species, while two Anteholosticha sp. populations were identical. In addition, phylogenies based on the SSrRNA gene sequences were reconstructed using multiple algorithms, which grouped them generally into four clades, and exhibited that the genus Anteholosticha should be a convergent assemblage. The fact that Holosticha species clustered with the oligotrichs and choreotrichs, though with very low support values, indicated that the topology may be very divergent and unreliable when the number of sequence data used in the analyses is too low.

  20. Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria - evolution of the Sox sulfur oxidation enzyme system.

    Science.gov (United States)

    Meyer, Birte; Imhoff, Johannes F; Kuever, Jan

    2007-12-01

    The soxB gene encodes the SoxB component of the periplasmic thiosulfate-oxidizing Sox enzyme complex, which has been proposed to be widespread among the various phylogenetic groups of sulfur-oxidizing bacteria (SOB) that convert thiosulfate to sulfate with and without the formation of sulfur globules as intermediate. Indeed, the comprehensive genetic and genomic analyses presented in the present study identified the soxB gene in 121 phylogenetically and physiologically divergent SOB, including several species for which thiosulfate utilization has not been reported yet. In first support of the previously postulated general involvement of components of the Sox enzyme complex in the thiosulfate oxidation process of sulfur-storing SOB, the soxB gene was detected in all investigated photo- and chemotrophic species that form sulfur globules during thiosulfate oxidation (Chromatiaceae, Chlorobiaceae, Ectothiorhodospiraceae, Thiothrix, Beggiatoa, Thiobacillus, invertebrate symbionts and free-living relatives). The SoxB phylogeny reflected the major 16S rRNA gene-based phylogenetic lineages of the investigated SOB, although topological discrepancies indicated several events of lateral soxB gene transfer among the SOB, e.g. its independent acquisition by the anaerobic anoxygenic phototrophic lineages from different chemotrophic donor lineages. A putative scenario for the proteobacterial origin and evolution of the Sox enzyme system in SOB is presented considering the phylogenetic, genomic (sox gene cluster composition) and geochemical data.

  1. Phylogeny and evolution of RNA structure.

    Science.gov (United States)

    Gesell, Tanja; Schuster, Peter

    2014-01-01

    Darwin's conviction that all living beings on Earth are related and the graph of relatedness is tree-shaped has been essentially confirmed by phylogenetic reconstruction first from morphology and later from data obtained by molecular sequencing. Limitations of the phylogenetic tree concept were recognized as more and more sequence information became available. The other path-breaking idea of Darwin, natural selection of fitter variants in populations, is cast into simple mathematical form and extended to mutation-selection dynamics. In this form the theory is directly applicable to RNA evolution in vitro and to virus evolution. Phylogeny and population dynamics of RNA provide complementary insights into evolution and the interplay between the two concepts will be pursued throughout this chapter. The two strategies for understanding evolution are ultimately related through the central paradigm of structural biology: sequence ⇒ structure ⇒ function. We elaborate on the state of the art in modeling both phylogeny and evolution of RNA driven by reproduction and mutation. Thereby the focus will be laid on models for phylogenetic sequence evolution as well as evolution and design of RNA structures with selected examples and notes on simulation methods. In the perspectives an attempt is made to combine molecular structure, population dynamics, and phylogeny in modeling evolution.

  2. Correlated rotational switching in two-dimensional self-assembled molecular rotor arrays

    Science.gov (United States)

    Wasio, Natalie A.; Slough, Diana P.; Smith, Zachary C.; Ivimey, Christopher J.; Thomas, Samuel W., III; Lin, Yu-Shan; Sykes, E. Charles H.

    2017-07-01

    Molecular devices are capable of performing a number of functions from mechanical motion to simple computation. Their utility is somewhat limited, however, by difficulties associated with coupling them with either each other or with interfaces such as electrodes. Self-assembly of coupled molecular devices provides an option for the construction of larger entities that can more easily integrate with existing technologies. Here we demonstrate that ordered organometallic arrays can be formed spontaneously by reaction of precursor molecular rotor molecules with a metal surface. Scanning tunnelling microscopy enables individual rotors in the arrays to be switched and the resultant switches in neighbouring rotors imaged. The structure and dimensions of the ordered molecular rotor arrays dictate the correlated switching properties of the internal submolecular rotor units. Our results indicate that self-assembly of two-dimensional rotor crystals produces systems with correlated dynamics that would not have been predicted a priori.

  3. Correlations and Symmetry of Interactions Influence Collective Dynamics of Molecular Motors

    CERN Document Server

    Celis-Garza, Daniel; Kolomeisky, Anatoly B

    2015-01-01

    Enzymatic molecules that actively support many cellular processes, including transport, cell division and cell motility, are known as motor proteins or molecular motors. Experimental studies indicate that they interact with each other and they frequently work together in large groups. To understand the mechanisms of collective behavior of motor proteins we study the effect of interactions in the transport of molecular motors along linear filaments. It is done by analyzing a recently introduced class of totally asymmetric exclusion processes that takes into account the intermolecular interactions via thermodynamically consistent approach. We develop a new theoretical method that allows us to compute analytically all dynamic properties of the system. Our analysis shows that correlations play important role in dynamics of interacting molecular motors. Surprisingly, we find that the correlations for repulsive interactions are weaker and more short-range than the correlations for the attractive interactions. In ad...

  4. Eumetazoan cryptochrome phylogeny and evolution.

    Science.gov (United States)

    Haug, Marion F; Gesemann, Matthias; Lazović, Viktor; Neuhauss, Stephan C F

    2015-01-18

    Cryptochromes (Crys) are light sensing receptors that are present in all eukaryotes. They mainly absorb light in the UV/blue spectrum. The extant Crys consist of two subfamilies, which are descendants of photolyases but are now involved in the regulation of circadian rhythms. So far, knowledge about the evolution, phylogeny, and expression of cry genes is still scarce. The inclusion of cry sequences from a wide range of bilaterian species allowed us to analyze their phylogeny in detail, identifying six major Cry subgroups. Selective gene inactivations and stabilizations in multiple chordate as well as arthropod lineages suggest several sub- and/or neofunctionalization events. An expression study performed in zebrafish, the model organism harboring the largest amount of crys, showed indeed only partially overlapping expression of paralogous mRNA, supporting gene sub- and/or neofunctionalization. Moreover, the daily cry expression in the adult zebrafish retina indicated varying oscillation patterns in different cell types. Our extensive phylogenetic analysis provides for the first time an overview of cry evolutionary history. Although several, especially parasitic or blind species, have lost all cry genes, crustaceans have retained up to three crys, teleosts possess up to seven, and tetrapods up to four crys. The broad and cyclic expression pattern of all cry transcripts in zebrafish retinal layers implies an involvement in retinal circadian processes and supports the hypothesis of several autonomous circadian clocks present in the vertebrate retina. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Phylogeny, paleontology, and primates: do incomplete fossils bias the tree of life?

    Science.gov (United States)

    Pattinson, David J; Thompson, Richard S; Piotrowski, Aleks K; Asher, Robert J

    2015-03-01

    Paleontological systematics relies heavily on morphological data that have undergone decay and fossilization. Here, we apply a heuristic means to assess how a fossil's incompleteness detracts from inferring its phylogenetic relationships. We compiled a phylogenetic matrix for primates and simulated the extinction of living species by deleting an extant taxon's molecular data and keeping only those morphological characters present in actual fossils. The choice of characters present in a given living taxon (the subject) was defined by those present in a given fossil (the template). By measuring congruence between a well-corroborated phylogeny to those incorporating artificial fossils, and by comparing real vs. random character distributions and states, we tested the information content of paleontological datasets and determined if extinction of a living species leads to bias in phylogeny reconstruction. We found a positive correlation between fossil completeness and topological congruence. Real fossil templates sampled for 36 or more of the 360 available morphological characters (including dental) performed significantly better than similarly complete templates with random states. Templates dominated by only one partition performed worse than templates with randomly sampled characters across partitions. The template based on the Eocene primate Darwinius masillae performs better than most other templates with a similar number of sampled characters, likely due to preservation of data across multiple partitions. Our results support the interpretation that Darwinius is strepsirhine, not haplorhine, and suggest that paleontological datasets are reliable in primate phylogeny reconstruction.

  6. Angular correlations of photons from solution diffraction at a free-electron laser encode molecular structure

    Directory of Open Access Journals (Sweden)

    Derek Mendez

    2016-11-01

    Full Text Available During X-ray exposure of a molecular solution, photons scattered from the same molecule are correlated. If molecular motion is insignificant during exposure, then differences in momentum transfer between correlated photons are direct measurements of the molecular structure. In conventional small- and wide-angle solution scattering, photon correlations are ignored. This report presents advances in a new biomolecular structural analysis technique, correlated X-ray scattering (CXS, which uses angular intensity correlations to recover hidden structural details from molecules in solution. Due to its intense rapid pulses, an X-ray free electron laser (XFEL is an excellent tool for CXS experiments. A protocol is outlined for analysis of a CXS data set comprising a total of half a million X-ray exposures of solutions of small gold nanoparticles recorded at the Spring-8 Ångström Compact XFEL facility (SACLA. From the scattered intensities and their correlations, two populations of nanoparticle domains within the solution are distinguished: small twinned, and large probably non-twinned domains. It is shown analytically how, in a solution measurement, twinning information is only accessible via intensity correlations, demonstrating how CXS reveals atomic-level information from a disordered solution of like molecules.

  7. Detection, phylogeny and population dynamics of syntrophic propionate-oxidizing bacteria in anaerobic granular sludge.

    NARCIS (Netherlands)

    Harmsen, H.J.M.

    1996-01-01

    The research described this thesis concerns the diversity and phylogeny of syntrophic propionate-oxidizing bacteria and their ecology in granular sludge, from which they were obtained. 16S rRNA was used as a molecular marker to study both the phylogeny and the ecology of these bacteria. Sequence ana

  8. Detection, phylogeny and population dynamics of syntrophic propionate - oxidizing bacteria in anaerobic granular sludge

    NARCIS (Netherlands)

    Harmsen, H.J.M.

    1996-01-01


    The research described this thesis concerns the diversity and phylogeny of syntrophic propionate-oxidizing bacteria and their ecology in granular sludge, from which they were obtained. 16S rRNA was used as a molecular marker to study both the phylogeny and the ecology of these bacteria.

  9. Detection, phylogeny and population dynamics of syntrophic propionate - oxidizing bacteria in anaerobic granular sludge

    NARCIS (Netherlands)

    Harmsen, H.J.M.

    1996-01-01


    The research described this thesis concerns the diversity and phylogeny of syntrophic propionate-oxidizing bacteria and their ecology in granular sludge, from which they were obtained. 16S rRNA was used as a molecular marker to study both the phylogeny and the ecology of these bacteria. S

  10. Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics.

    Science.gov (United States)

    Craig, Ian R; Manolopoulos, David E

    2004-08-22

    We propose an approximate method for calculating Kubo-transformed real-time correlation functions involving position-dependent operators, based on path integral (Parrinello-Rahman) molecular dynamics. The method gives the exact quantum mechanical correlation function at time zero, exactly satisfies the quantum mechanical detailed balance condition, and for correlation functions of the form C(Ax)(t) and C(xB)(t) it gives the exact result for a harmonic potential. It also works reasonably well at short times for more general potentials and correlation functions, as we illustrate with some example calculations. The method provides a consistent improvement over purely classical molecular dynamics that is most apparent in the low-temperature regime.

  11. A comprehensive molecular phylogeny of the starlings (Aves: Sturnidae) and mockingbirds (Aves: Mimidae): congruent mtDNA and nuclear trees for a cosmopolitan avian radiation.

    Science.gov (United States)

    Lovette, Irby J; Rubenstein, Dustin R

    2007-09-01

    We generated a comprehensive phylogeny for the avian families Sturnidae (starlings, mynas, Rhabdornis, oxpeckers, and allies) and Mimidae (mockingbirds, thrashers, and allies) to explore patterns of morphological and behavioral diversification. Reconstructions were based on mitochondrial DNA sequences from five coding genes (4108 bp), and nuclear intron sequences from four loci (2974 bp), for most taxa, supplemented with NDII gene sequences (1041 bp) derived from museum skin specimens from additional taxa; together the 117 sampled taxa comprise 78% of the 151 species in these families and include representatives of all currently or recently recognized genera. Phylogenetic analyses consistently identified nine major clades. The basal lineage is comprised of the two Buphagus oxpeckers, which are presently confined to Africa where they are obligately associated with large mammals. Some species in nearly all of the other major clades also feed on or around large vertebrates, and this association may be an ancestral trait that fostered the world-wide dispersal of this group. The remaining taxa divide into sister clades representing the New-World Mimidae and Old-World Sturnidae. The Mimidae are divided into two subclades, a group of Central American and West Indian catbirds and thrashers, and a pan-American clade of mockingbirds and thrashers. The Sturnidae are subdivided into six clades. The Phillipine endemic Rhabdornis are the sister lineage to a larger and substantially more recent radiation of South Asian and Pacific island starlings and mynas. A clade of largely migratory or nomadic Eurasian starlings (within which the basal lineage is the model taxon Sturnus vulgaris) is allied to three groups of largely African species. These reconstructions confirm that Buphagus should not be included in the Sturnidae, and identify many genera that are not monophyletic. They also highlight the substantial diversity among the major Sturnidae subclades in rates of species

  12. Analysis of the effect of core structure upon dineutron correlation using antisymmetrized molecular dynamics

    CERN Document Server

    Kobayashi, Fumiharu

    2015-01-01

    We extend the method of antisymmetrized molecular dynamics to investigate dineutron correlation. We apply this method to $^{10}$Be as an example and investigate the motion of two neutrons around a largely deformed $^8$Be core by analyzing the two-neutron overlap function around the core. We show that the core structure plays an important role in dineutron formation and expansion from the core and that the present framework is effective for the studies of dineutron correlation.

  13. Impact of exchange-correlation effects on the IV characteristics of a molecular junction

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer

    2008-01-01

    The role of exchange-correlation effects in nonequilibrium quantum transport through molecular junctions is assessed by analyzing the IV curve of a generic two-level model using self-consistent many-body perturbation theory (second Born and GW approximations) on the Keldysh contour...

  14. Molecular phylogeny, diversity, community structure, and plant growth promoting properties of fungal endophytes associated with the corms of saffron plant: An insight into the microbiome of Crocus sativus Linn.

    Science.gov (United States)

    Wani, Zahoor Ahmed; Mirza, Dania Nazir; Arora, Palak; Riyaz-Ul-Hassan, Syed

    2016-12-01

    A total of 294 fungal endophytes were isolated from the corms of Crocus sativus at two stages of crocus life cycle collected from 14 different saffron growing sites in Jammu and Kashmir (J & K) State, India. Molecular phylogeny assigned them into 36 distinct internal transcribed spacer (ITS) genotypes which spread over 19 genera. The diversity of endophytes was higher at the dormant than at the vegetative stage. The Saffron microbiome was dominated by Phialophora mustea and Cadophora malorum, both are dark septate endophytes (DSEs). Some endophytes were found to possess antimicrobial properties that could be helpful for the host in evading the pathogens. These endophytes generally produced significant quantities of indole acetic acid (IAA) as well. However, thirteen of the endophytic taxa were found to cause corm rot in the host with different levels of severity under in vitro as well as in vivo conditions. This is the first report of community structure and biological properties of fungal endophytes associated with C. sativus, which may eventually help us to develop agro-technologies, based on plant-endophyte interactions for sustainable cultivation of saffron. The endophytes preserved ex situ, in this study, may also yield bioactive natural products for pharmacological and industrial applications.

  15. Phylogeny and species delineation in European species of the genus Steganacarus (Acari, Oribatida) using mitochondrial and nuclear markers.

    Science.gov (United States)

    Kreipe, Victoria; Corral-Hernández, Elena; Scheu, Stefan; Schaefer, Ina; Maraun, Mark

    2015-06-01

    Species of the genus Steganacarus are soil-living oribatid mites (Acari, Phthiracaridae) with a ptychoid body. The phylogeny and species status of the species of Steganacarus are not resolved, some authors group all ten German species of Steganacarus within the genus Steganacarus whereas others split them into three subgenera, Steganacarus, Tropacarus and Atropacarus. Additionally, two species, S. magnus and T. carinatus, comprise morphotypes of questionable species status. We investigated the phylogeny and species status of ten European Steganacarus species, i.e. S. applicatus, S. herculeanus, S. magnus forma magna, S. magnus forma anomala, S. spinosus, Tropacarus brevipilus, T. carinatus forma carinata, T. carinatus forma pulcherrima, Atropacarus striculus and Rhacaplacarus ortizi. We used two molecular markers, a 251 bp fragment of the nuclear gene 28S rDNA (D3) and a 477 bp fragment of the mitochondrial COI region. The phylogeny based on a combined analysis of D3 and COI separated four subgenera (Steganacarus, Tropacarus and Atropacarus, Rhacaplacarus) indicating that they form monophyletic groups. The COI region separated all ten species of the genus Steganacarus and showed variation within some species often correlating with the geographic origin of the species. Resolution of the more conserved D3 region was limited, indicating that radiation events are rather recent. Overall, our results indicate that both genes alone cannot be used for phylogeny and barcoding since variation is too low in D3 and too high in COI. However, when used in combination these genes provide reliable insight into the phylogeny, radiation and species status of taxa of the genus Steganacarus.

  16. Correlative Study on MRI Morphologic Features,Pathology, and Molecular Biology of Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    Rong Chen; Shuigen Gong; Weiguo Zhang; Jinhua Chen; Shuangwu He; Baohua Liu; Zengpeng Li

    2005-01-01

    OBJECTIVE To investigate the correlation among MRI morphologic features,pathology, and molecular biology of breast cancer.METHORDS MRI was used to analyze the morphologic features of breast cancers of 78 patients before operation. The mastectomy specimens of the breast neoplasms were immunohistochemically stained, and the expression of the estrogen (ER), progesterone receptor (PR), C-erbB-2, P53, and the distribution of microvessel density (MVD) measured. The pathologic results were compared with the MRI features.RESULTS Among the 80 breast cancers, ER positive expression was positively correlated with the spicular contour of breast cancers (P<0.01),while showing a significant inverse correlation with the T-stage (P<0.05). CerbB-2 and P53 positive expression were positively correlated with the necrotic center of the cancers (P<0.05). The expression of PR was not significantly correlated with the spicular contour, obscure margin, necrotic center, and T-stage of these cancers (P>0.05). Among 41 breast cancers examined with dynamic contrast enhanced MR, there was a positive correlation between the spatial distribution of the contrast agent and MVD(P<0.01).CONCLUSION To a certain extent there is some correlation among the MRI morphologic features, pathology, and molecular biological factors in breast cancer. The biological behavior and prognosis of breast cancer can be assessed based on MRI features.

  17. A time-calibrated molecular phylogeny of the precious corals: reconciling discrepancies in the taxonomic classification and insights into their evolutionary history

    Directory of Open Access Journals (Sweden)

    Ardila Néstor E

    2012-12-01

    Full Text Available Abstract Background Seamount-associated faunas are often considered highly endemic but isolation and diversification processes leading to such endemism have been poorly documented at those depths. Likewise, species delimitation and phylogenetic studies in deep-sea organisms remain scarce, due to the difficulty in obtaining samples, and sometimes controversial. The phylogenetic relationships within the precious coral family Coralliidae remain largely unexplored and the monophyly of its two constituent genera, Corallium Cuvier and Paracorallium Bayer & Cairns, has not been resolved. As traditionally recognized, the diversity of colonial forms among the various species correlates with the diversity in shape of their supporting axis, but the phylogenetic significance of these characters remains to be tested. We thus used mitochondrial sequence data to evaluate the monophyly of Corallium and Paracorallium and the species boundaries for nearly all named taxa in the family. Species from across the coralliid range, including material from Antarctica, Hawaii, Japan, New Zealand, Taiwan, Tasmania, the eastern Pacific and the western Atlantic were examined. Results The concatenated analysis of five mitochondrial regions (COI, 16S rRNA, ND2, and ND3-ND6 recovered two major coralliid clades. One clade is composed of two subgroups, the first including Corallium rubrum, the type species of the genus, together with a small group of Paracorallium species (P. japonicum and P. tortuosum and C. medea (clade I-A; the other subgroup includes a poorly-resolved assemblage of six Corallium species (C. abyssale, C. ducale, C. imperiale, C. laauense, C. niobe, and C. sulcatum; clade I-B. The second major clade is well resolved and includes species of Corallium and Paracorallium (C. elatius, C. kishinouyei, C. konojoi, C. niveum, C. secundum, Corallium sp., Paracorallium nix, Paracorallium thrinax and Paracorallium spp.. A traditional taxonomic study of this clade

  18. Conserved signature indels and signature proteins as novel tools for understanding microbial phylogeny and systematics: identification of molecular signatures that are specific for the phytopathogenic genera Dickeya, Pectobacterium and Brenneria.

    Science.gov (United States)

    Naushad, Hafiz Sohail; Lee, Brian; Gupta, Radhey S

    2014-02-01

    Genome sequences are enabling applications of different approaches to more clearly understand microbial phylogeny and systematics. Two of these approaches involve identification of conserved signature indels (CSIs) and conserved signature proteins (CSPs) that are specific for different lineages. These molecular markers provide novel and more definitive means for demarcation of prokaryotic taxa and for identification of species from these groups. Genome sequences are also enabling determination of phylogenetic relationships among species based upon sequences for multiple proteins. In this work, we have used all of these approaches for studying the phytopathogenic bacteria belonging to the genera Dickeya, Pectobacterium and Brenneria. Members of these genera, which cause numerous diseases in important food crops and ornamental plants, are presently distinguished mainly on the basis of their branching in phylogenetic trees. No biochemical or molecular characteristic is known that is uniquely shared by species from these genera. Hence, detailed studies using the above approaches were carried out on proteins from the genomes of these bacteria to identify molecular markers that are specific for them. In phylogenetic trees based upon concatenated sequences for 23 conserved proteins, members of the genera Dickeya, Pectobacterium and Brenneria formed a strongly supported clade within the other Enterobacteriales. Comparative analysis of protein sequences from the Dickeya, Pectobacterium and Brenneria genomes has identified 10 CSIs and five CSPs that are either uniquely or largely found in all genome-sequenced species from these genera, but not present in any other bacteria in the database. In addition, our analyses have identified 10 CSIs and 17 CSPs that are specifically present in either all or most sequenced Dickeya species/strains, and six CSIs and 19 CSPs that are uniquely found in the sequenced Pectobacterium genomes. Finally, our analysis also identified three CSIs

  19. Multi-locus molecular phylogeny and allelic variation in a transcription factor gene suggest the multiple independent origins of kabuli chickpea

    Science.gov (United States)

    To examine the patterns of molecular diversity in wild crop relatives and the cultivated gene pool of chickpea we genotyped a set of 98 wild annual and 224 cultivated accessions with a 768 feature assay that monitored SNPs in low-copy orthologous loci. Analyses of the resulting multi-locus genotypin...

  20. High molecular weight adiponectin correlates positively with myeloperoxidase in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Bobbert, P; Rauch, U; Stratmann, B; Goldin-Lang, P; Antoniak, S; Bobbert, T; Schultheiss, H P; Tschoepe, D

    2008-11-01

    Adiponectin (APN) is present in human plasma as a low molecular weight (LMW), a middle molecular weight (MMW) and a high molecular weight form (HMW). As a support to determine properties such as anti-atherogenic or atherogenic effects, recent clinical studies suppose to determine the ratio of each APN multimer to total APN but not the absolute plasma concentration of APN. In the present study, the correlation of APN and its multimers with myeloperoxidase (MPO), an enzyme with pro-inflammatory properties, was examined in patients with type 2 diabetes mellitus. MPO and APN serum levels were assessed in 49 patients with type 2 diabetes mellitus at the beginning and at the end of an anti-diabetic treatment. After treatment a significant increase in the ratio of HMW to total APN (from 0.43+/-0.16 to 0.59+/-0.14, p<0.05) was found. Before treatment, HMW-APN was correlated positively with MPO (r=0.314, p<0.05). Moreover, a positive correlation was observed between the increased HMW ratio and MPO during treatment (r=0.304, p<0.05). HMW-APN correlates positively with MPO in patients with type 2 diabetes. Therefore, HMW-APN may exert possible pro-inflammatory effects in type 2 diabetes.

  1. TYPES OF DNA USED IN SPECIATION AND PHYLOGENY STUDIES

    Directory of Open Access Journals (Sweden)

    Laura Buburuzan

    2007-12-01

    Full Text Available The present paper represents a synthesis of the main types of molecular markers used in contemporary phylogeny and phylogeography studies. Our purpose is also to reveal the recent discovered role of nuclear DNA polymorphic loci in the studies of filiation.

  2. Phylogeny and taxonomy of obscure genera of microfungi

    NARCIS (Netherlands)

    Crous, P.W.; Braun, U.; Wingfield, M.J.; Wood, A.R.; Shin, H.D.; Summerell, B.A.; Alfenas, A.C.; Cumagun, C.J.R.; Grohenewald, J.Z.

    2009-01-01

    The recently generated molecular phylogeny for the kingdom Fungi, on which anew classification scheme is based, still suffers from an under representation of numerous apparently asexual genera of microfungi. In an attempt to populate the Fungal Tree of Life, fresh samples of 10 obscure genera of

  3. Phylogeny and taxonomy of obscure genera of microfungi

    NARCIS (Netherlands)

    Crous, P.W.; Braun, U.; Wingfield, M.J.; Wood, A.R.; Shin, H.D.; Summerell, B.A.; Alfenas, A.C.; Cumagun, C.J.R.; Groenewald, J.Z.

    2009-01-01

    The recently generated molecular phylogeny for the kingdom Fungi, on which a new classification scheme is based, still suffers from an under representation of numerous apparently asexual genera of microfungi. In an attempt to populate the Fungal Tree of Life, fresh samples of 10 obscure genera of

  4. Calculation of the molecular integrals with the range-separated correlation factor

    CERN Document Server

    Silkowski, Michał; Moszynski, Robert

    2014-01-01

    Explicitly correlated quantum chemical calculations require calculations of five types of molecular integrals beyond the standard electron repulsion integrals. We present a novel scheme, which utilises general ideas of the McMurchie-Davidson technique, to compute these integrals when the so-called \\range-separated" correlation factor is used. This correlation factor combines the well-known short range behaviour, resulting from the electronic cusp condition, with the exact long-range asymptotics found for the helium atom [M. Lesiuk, B. Jeziorski, and R. Moszynski, J. Chem. Phys. $\\textbf{139}$, 134102 (2013)]. Almost all steps of the presented procedure are formulated recursively, so that an efficient implementation and control of the precision are possible. Additionally, the present formulation is very flexible and general, and it allows for use of an arbitrary correlation factor in the electronic structure calculations with minor or no changes.

  5. Randic and Schultz molecular topological indices and their correlation with some X-ray absorption parameters

    Science.gov (United States)

    Khatri, Sunil; Kekre, Pravin A.; Mishra, Ashutosh

    2016-10-01

    The properties of a molecular system are affected by the topology of molecule. Therefore many studies have been made where the various physic-chemical properties are correlated with the topological indices. These studies have shown a very good correlation demonstrating the utility of the graph theoretical approach. It is, therefore, very natural to expect that the various physical properties obtained by the X-ray absorption spectra may also show correlation with the topological indices. Some complexes were used to establish correlation between topological indices and some X-ray absorption parameters like chemical shift. The chemical shift is on the higher energy side of the metal edge in these complexes. The result obtained in these studies shows that the topological indices of organic molecule acting as a legands can be used for estimating edge shift theoretically.

  6. Molecular investigation and phylogeny of Anaplasma spp. in Mediterranean ruminants reveal the presence of neutrophil-tropic strains closely related to A. platys.

    Science.gov (United States)

    Zobba, Rosanna; Anfossi, Antonio G; Pinna Parpaglia, Maria Luisa; Dore, Gian Mario; Chessa, Bernardo; Spezzigu, Antonio; Rocca, Stefano; Visco, Stefano; Pittau, Marco; Alberti, Alberto

    2014-01-01

    Few data are available on the prevalence and molecular typing of species belonging to the genus Anaplasma in Mediterranean ruminants. In this study, PCR analysis and sequencing of both 16S rRNA and groEL genes were combined to investigate the presence, prevalence, and molecular traits of Anaplasma spp. in ruminants sampled on the Island of Sardinia, chosen as a subtropical representative area. The results demonstrate a high prevalence of Anaplasma spp. in ruminants, with animals infected by at least four of six Anaplasma species (Anaplasma marginale, A. bovis, A. ovis, and A. phagocytophilum). Moreover, ruminants host a number of neutrophil-tropic strains genetically closely related to the canine pathogen A. platys. The high Anaplasma spp. prevalence and the identification of as-yet-unclassified neutrophil-tropic strains raise concerns about the specificity of serological tests routinely used in ruminants and provide additional background for reconstructing the evolutionary history of species genetically related to A. phagocytophilum.

  7. Phylogeny mandalas of birds using the lithographs of John Gould's folio bird books.

    Science.gov (United States)

    Hasegawa, Masami; Kuroda, Sayako

    2016-12-09

    The phylogeny mandala, which is a circular phylogeny with photos or drawings of species, is a suitable way to show visually how the biodiversity has developed in the course of evolution as clarified by the molecular phylogenetics. In this article, in order to demonstrate the recent progress of avian molecular phylogenetics, six phylogeny mandalas of various taxonomic groups of birds are presented with the lithographs of John Gould's folio bird books; i.e., (1) whole Aves, (2) Passeriformes, (3) Paradisaeidae in Corvoidea (Passeriformes), (4) Meliphagoidea (Passeriformes), (5) Trochili in Apodiformes, and (6) Galliformes.

  8. PHYLOGENY AND SYSTEMATICS OF EUGLENA (EUGLENACEAE) SPECIES WITH AXIAL, STELLATE CHLOROPLASTS BASED ON MORPHOLOGICAL AND MOLECULAR DATA-NEW TAXA, EMENDED DIAGNOSES, AND EPITYPIFICATIONS(1).

    Science.gov (United States)

    Kosmala, Sylwia; Karnkowska-Ishikawa, Anna; Milanowski, Rafał; Kwiatowski, Jan; Zakryś, Bożena

    2009-04-01

    Morphological and molecular studies, as well as original literature reexamination, necessitate establishment of five Euglena species with a single axial, stellate chloroplast [Euglena viridis (O. F. Müller) Ehrenberg 1830, Euglena pseudoviridis Chadefaud 1937, Euglena stellata Mainx 1926, Euglena pseudostellata sp. nov., and Euglena cantabrica Pringsheim 1956], three species with two chloroplasts (Euglena geniculata Dujardin ex Schmitz 1884, Euglena chadefaudii Bourrelly 1951, and Euglena pseudochadefaudii sp. nov.), and one species with three chloroplasts (Euglena tristella Chu 1946). The primary morphological features, allowing distinction of the considered species are the presence and the shape of mucocysts, as well as the number of chloroplasts. Spherical mucocysts occur in E. cantabrica and E. geniculata, while spindle-shaped mucocysts are present in E. stellata, E. pseudostellata, E. chadefaudii, E. pseudochadefaudii, and E. tristella. No mucocysts are observed in E. viridis and E. pseudoviridis. Two new species (E. pseudochadefaudii sp. nov. and E. pseudostellata sp. nov.) differ from the respective species, E. chadefaudii and E. stellata, only at the molecular level. Molecular signatures and characteristic sequences are designated for nine distinguished species. Emended diagnoses for all and delimitation of epitypes for seven species (except E. viridis and E. tristella) are proposed.

  9. Correlation between calculated molecular descriptors of excipient amino acids and experimentally observed thermal stability of lysozyme

    DEFF Research Database (Denmark)

    Meng-Lund, Helena; Friis, Natascha; van de Weert, Marco

    2017-01-01

    A quantitative structure-property relationship (QSPR) between protein stability and the physicochemical properties of excipients was investigated to enable a more rational choice of stabilizing excipients than prior knowledge. The thermal transition temperature and aggregation time were determined...... analysis was applied to correlate the descriptors with the experimental results. It was possible to identify descriptors, i.e. amino acids properties, with a positive influence on either transition temperature or aggregation onset time, or both. A high number of hydrogen bond acceptor moieties was the most....... The QSPR shows good correlation between calculated molecular descriptors and the measured stabilizing effect of amino acids on lysozyme....

  10. Total and Direct Correlation Function Integrals from Molecular Simulation of Binary Systems

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar; O’Connell, John P.; Peters, Günther H.J.

    2011-01-01

    The possibility for obtaining derivative properties for mixtures from integrals of spatial total and direct correlation functions obtained from molecular dynamics simulations is explored. Theoretically well-supported methods are examined to extend simulation radial distribution functions to long...... range so the integrals can converge. A previously published method developed for pure atomic fluids is here extended to handle simulations of molecular mixtures using all-atom force fields. We first test the method on simulations of Lennard-Jones/Stockmayer mixtures and show that that the results...... are consistent with an excess Helmholtz energy model fitted to available simulations. In addition, simulations of water/methanol and water/t-butanol mixtures have been carried out. The method yields results for partial molar volumes, activity coefficient derivatives, and individual correlation function integrals...

  11. Searching for Correlations with the HCO+ 4-3 Molecular Spectra of Protostars

    Science.gov (United States)

    Acikgoz, Ogulcan; Basturk, Seda

    The assignment is based on HCO+ J=4-3 spectral line molecular observations of protostars from the James Clerk Maxwell Telescope, which has the 15 m diameter dish and located in Mauna Kea, Hawaii, USA. Data of 20 protostars are taken from the public LOMASS database and analyzed. We looked for correlations between a few observational quantities. We thank Dr Umut Yildiz (NASA/JPL-Caltech) for providing data and his comments and support to our research project.

  12. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution.

    Science.gov (United States)

    Löschberger, Anna; Franke, Christian; Krohne, Georg; van de Linde, Sebastian; Sauer, Markus

    2014-10-15

    Here, we combine super-resolution fluorescence localization microscopy with scanning electron microscopy to map the position of proteins of nuclear pore complexes in isolated Xenopus laevis oocyte nuclear envelopes with molecular resolution in both imaging modes. We use the periodic molecular structure of the nuclear pore complex to superimpose direct stochastic optical reconstruction microscopy images with a precision of <20 nm on electron micrographs. The correlative images demonstrate quantitative molecular labeling and localization of nuclear pore complex proteins by standard immunocytochemistry with primary and secondary antibodies and reveal that the nuclear pore complex is composed of eight gp210 (also known as NUP210) protein homodimers. In addition, we find subpopulations of nuclear pore complexes with ninefold symmetry, which are found occasionally among the more typical eightfold symmetrical structures.

  13. Unravelling the Biodiversity and Molecular Phylogeny of Needle Nematodes of the Genus Longidorus (Nematoda: Longidoridae) in Olive and a Description of Six New Species.

    Science.gov (United States)

    Archidona-Yuste, Antonio; Navas-Cortés, Juan A; Cantalapiedra-Navarrete, Carolina; Palomares-Rius, Juan E; Castillo, Pablo

    2016-01-01

    The genus Longidorus includes a remarkable group of invertebrate animals of the phylum Nematoda comprising polyphagous root-ectoparasites of numerous plants including several agricultural crops and trees. Damage is caused by direct feeding on root cells as well as by transmitting nepoviruses that cause disease on those crops. Thus, correct identification of Longidorus species is essential to establish appropriate control measures. We provide the first detailed information on the diversity and distribution of Longidorus species infesting wild and cultivated olive soils in a wide-region in southern Spain that included 159 locations from which 449 sampling sites were analyzed. The present study doubles the known biodiversity of Longidorus species identified in olives by including six new species (Longidorus indalus sp. nov., Longidorus macrodorus sp. nov., Longidorus onubensis sp. nov., Longidorus silvestris sp. nov., Longidorus vallensis sp. nov., and Longidorus wicuolea sp. nov.), two new records for wild and cultivate olives (L. alvegus and L. vineacola), and two additional new records for wild olive (L. intermedius and L. lusitanicus). We also found evidence of some geographic species associations to western (viz. L. alvegus, L. intermedius, L. lusitanicus, L. onubensis sp. nov., L. vineacola, L. vinearum, L. wicuolea sp. nov.) and eastern distributions (viz. L. indalus sp. nov.), while only L. magnus was detected in both areas. We developed a comparative study by considering morphological and morphometrical features together with molecular data from nuclear ribosomal RNA genes (D2-D3 expansion segments of 28S, ITS1, and partial 18S). Results of molecular and phylogenetic analyses confirmed the morphological hypotheses and allowed the delimitation and discrimination of six new species of the genus described herein and four known species. Phylogenetic analyses of Longidorus spp. based on three molecular markers resulted in a general consensus of these species

  14. Unravelling the Biodiversity and Molecular Phylogeny of Needle Nematodes of the Genus Longidorus (Nematoda: Longidoridae) in Olive and a Description of Six New Species

    Science.gov (United States)

    Archidona-Yuste, Antonio; Navas-Cortés, Juan A.; Cantalapiedra-Navarrete, Carolina; Palomares-Rius, Juan E.; Castillo, Pablo

    2016-01-01

    The genus Longidorus includes a remarkable group of invertebrate animals of the phylum Nematoda comprising polyphagous root-ectoparasites of numerous plants including several agricultural crops and trees. Damage is caused by direct feeding on root cells as well as by transmitting nepoviruses that cause disease on those crops. Thus, correct identification of Longidorus species is essential to establish appropriate control measures. We provide the first detailed information on the diversity and distribution of Longidorus species infesting wild and cultivated olive soils in a wide-region in southern Spain that included 159 locations from which 449 sampling sites were analyzed. The present study doubles the known biodiversity of Longidorus species identified in olives by including six new species (Longidorus indalus sp. nov., Longidorus macrodorus sp. nov., Longidorus onubensis sp. nov., Longidorus silvestris sp. nov., Longidorus vallensis sp. nov., and Longidorus wicuolea sp. nov.), two new records for wild and cultivate olives (L. alvegus and L. vineacola), and two additional new records for wild olive (L. intermedius and L. lusitanicus). We also found evidence of some geographic species associations to western (viz. L. alvegus, L. intermedius, L. lusitanicus, L. onubensis sp. nov., L. vineacola, L. vinearum, L. wicuolea sp. nov.) and eastern distributions (viz. L. indalus sp. nov.), while only L. magnus was detected in both areas. We developed a comparative study by considering morphological and morphometrical features together with molecular data from nuclear ribosomal RNA genes (D2–D3 expansion segments of 28S, ITS1, and partial 18S). Results of molecular and phylogenetic analyses confirmed the morphological hypotheses and allowed the delimitation and discrimination of six new species of the genus described herein and four known species. Phylogenetic analyses of Longidorus spp. based on three molecular markers resulted in a general consensus of these species

  15. Molecular characterization and phylogeny of Shiga toxin-producing Escherichia coli isolates obtained from two Dutch regions using whole genome sequencing.

    Science.gov (United States)

    Ferdous, M; Friedrich, A W; Grundmann, H; de Boer, R F; Croughs, P D; Islam, M A; Kluytmans-van den Bergh, M F Q; Kooistra-Smid, A M D; Rossen, J W A

    2016-07-01

    Shiga toxin-producing Escherichia coli (STEC) is one of the major causes of human gastrointestinal disease and has been implicated in sporadic cases and outbreaks of diarrhoea, haemorrhagic colitis and haemolytic uremic syndrome worldwide. In this study, we determined the molecular characteristics and phylogenetic relationship of STEC isolates, and their genetic diversity was compared to that of other E. coli populations. Whole genome sequencing was performed on 132 clinical STEC isolates obtained from the faeces of 129 Dutch patients with gastrointestinal complaints. STEC isolates of this study belonged to 44 different sequence types (STs), 42 serogenotypes and 14 stx subtype combinations. Antibiotic resistance genes were more frequently present in stx1-positive isolates compared to stx2 and stx1 + stx2-positive isolates. The iha, mchB, mchC, mchF, subA, ireA, senB, saa and sigA genes were significantly more frequently present in eae-negative than in eae-positive STEC isolates. Presence of virulence genes encoding type III secretion proteins and adhesins was associated with isolates obtained from patients with bloody diarrhoea. Core genome phylogenetic analysis showed that isolates clustered according to their ST or serogenotypes irrespective of stx subtypes. Isolates obtained from patients with bloody diarrhoea were from diverse phylogenetic backgrounds. Some STEC isolates shared common ancestors with non-STEC isolates. Whole genome sequencing is a powerful tool for clinical microbiology, allowing high-resolution molecular typing, population structure analysis and detailed molecular characterization of strains. STEC isolates of a substantial genetic diversity and of distinct phylogenetic groups were observed in this study.

  16. Unravelling the Biodiversity and Molecular Phylogeny of Needle Nematodes of the Genus Longidorus (Nematoda: Longidoridae in Olive and a Description of Six New Species.

    Directory of Open Access Journals (Sweden)

    Antonio Archidona-Yuste

    Full Text Available The genus Longidorus includes a remarkable group of invertebrate animals of the phylum Nematoda comprising polyphagous root-ectoparasites of numerous plants including several agricultural crops and trees. Damage is caused by direct feeding on root cells as well as by transmitting nepoviruses that cause disease on those crops. Thus, correct identification of Longidorus species is essential to establish appropriate control measures. We provide the first detailed information on the diversity and distribution of Longidorus species infesting wild and cultivated olive soils in a wide-region in southern Spain that included 159 locations from which 449 sampling sites were analyzed. The present study doubles the known biodiversity of Longidorus species identified in olives by including six new species (Longidorus indalus sp. nov., Longidorus macrodorus sp. nov., Longidorus onubensis sp. nov., Longidorus silvestris sp. nov., Longidorus vallensis sp. nov., and Longidorus wicuolea sp. nov., two new records for wild and cultivate olives (L. alvegus and L. vineacola, and two additional new records for wild olive (L. intermedius and L. lusitanicus. We also found evidence of some geographic species associations to western (viz. L. alvegus, L. intermedius, L. lusitanicus, L. onubensis sp. nov., L. vineacola, L. vinearum, L. wicuolea sp. nov. and eastern distributions (viz. L. indalus sp. nov., while only L. magnus was detected in both areas. We developed a comparative study by considering morphological and morphometrical features together with molecular data from nuclear ribosomal RNA genes (D2-D3 expansion segments of 28S, ITS1, and partial 18S. Results of molecular and phylogenetic analyses confirmed the morphological hypotheses and allowed the delimitation and discrimination of six new species of the genus described herein and four known species. Phylogenetic analyses of Longidorus spp. based on three molecular markers resulted in a general consensus of these

  17. Mental retardation in mucopolysaccharidoses correlates with high molecular weight urinary heparan sulphate derived glucosamine.

    Science.gov (United States)

    Coppa, G V; Gabrielli, O; Zampini, L; Maccari, F; Mantovani, V; Galeazzi, T; Santoro, L; Padella, L; Marchesiello, R L; Galeotti, F; Volpi, N

    2015-12-01

    Mucopolysaccharidoses (MPS) are characterized by mental retardation constantly present in the severe forms of Hurler (MPS I), Hunter (MPS II) and Sanfilippo (MPS III) diseases. On the contrary, mental retardation is absent in Morquio (MPS IV) and Maroteaux-Lamy (MPS VI) diseases and absent or only minimal in the attenuated forms of MPS I, II and III. Considering that MPS patients affected by mental disease accumulate heparan sulfate (HS) due to specific enzymatic defects, we hypothesized a possible correlation between urinary HS-derived glucosamine (GlcN) accumulated in tissues and excreted in biological fluids and mental retardation. 83 healthy subjects were found to excrete HS in the form of fragments due to the activity of catabolic enzymes that are absent or impaired in MPS patients. On the contrary, urinary HS in 44 patients was observed to be composed of high molecular weight polymer and fragments of various lengths depending on MPS types. On this basis we correlated mental retardation with GlcN belonging to high and low molecular weight HS. We demonstrate a positive relationship between the accumulation of high molecular weight HS and mental retardation in MPS severe compared to attenuated forms. This is also supported by the consideration that accumulation of other GAGs different from HS, as in MPS IV and MPS VI, and low molecular weight HS fragments do not impact on central nervous system disease.

  18. Sarcocystis in moose (Alces alces): molecular identification and phylogeny of six Sarcocystis species in moose, and a morphological description of three new species.

    Science.gov (United States)

    Dahlgren, Stina S; Gjerde, Bjørn

    2008-06-01

    Muscle tissues from 34 moose from Southeastern Norway and two moose from Canada were examined. Sarcocysts were excised and morphologically classified by light microscopy, and some cysts were further examined by scanning electron microscopy or DNA amplification and sequencing at the small subunit (ssu) rRNA gene. In Norwegian moose, three sarcocyst types were recognized, yet five Sarcocystis species were found by sequence analysis. New names were proposed for three species which could be characterised by both morphological and molecular methods, i.e., Sarcocystis alces, Sarcocystis ovalis, and Sarcocystis scandinavica. S. alces was the most prevalent species, whereas S. scandinavica and the two unnamed species were rare and might either use another principal intermediate host or a rare definitive host. The five species in Norwegian moose were different from Sarcocystis alceslatrans isolated from a Canadian moose. Phylogenetic analyses based on complete ssu rRNA gene sequences revealed a close relationship between the six Sarcocystis species from moose and species from reindeer and Sika deer. We conclude that molecular methods are necessary for unequivocal species identification, as different cervid hosts harbour morphologically indistinguishable sarcocysts.

  19. New insights into the molecular phylogeny of Balantidium (Ciliophora, Vetibuliferida) based on the analysis of new sequences of species from fish hosts.

    Science.gov (United States)

    Li, Ming; Ponce-Gordo, Francisco; Grim, J Norman; Wang, Chong; Nilsen, Frank

    2014-12-01

    We obtained sequences of the small subunit ribosomal RNA (rRNA) for two new isolates of Balantidium from fishes, Balantidium polyvacuolum and Balantidium ctenopharingodoni. This is the first introduction of molecular data of Balantidium species from fish hosts in the phylogenetic analyses of the ciliate subclass Trichostomatia. Despite the fact that these species share morphological characteristics common to other species of Balantidium, the phylogenetic analysis of their sequences has shown that they are to be placed in a different branch closely related to the so-called Australian clade. Thus, our results indicate that the genus Balantidium is polyphyletic and possibly should be represented by two different genera; however, the analysis of more species from other poikilothermic hosts (amphibians, reptiles) should be made before a revised taxonomical proposal could be made.

  20. New insight into molecular phylogeny and epidemiology of Sporothrix schenckii species complex based on calmodulin-encoding gene analysis of Italian isolates.

    Science.gov (United States)

    Romeo, Orazio; Scordino, Fabio; Criseo, Giuseppe

    2011-09-01

    In this study, we investigated phylogenetic relationships among Italian Sporothrix schenckii isolates, by comparing their partial calmodulin sequences. In this analysis, we used 26 environmental strains of S. schenckii, plus two autochthonous clinical isolates. The results showed that our clinical strains grouped with S. schenckii sensu stricto isolates, whereas all 26 environmental isolates co-clustered with Sporothrix albicans (now regarded as a synonym of Sporothrix pallida), a non-pathogenic species closely related to S. schenckii. Furthermore, the group of environmental strains was found to be quite heterogeneous and further subdivided into two subgroups. The data reported here also showed that molecular methods, for specific identification of S. schenckii, developed before the description of its closely related species should be used with caution because of the possibility of false positive results, which could lead to inappropriate antifungal therapy. This study improves our understanding of the distribution of these new closely related Sporothrix species which also showed significant differences in antifungal susceptibilities.

  1. Status of Gobiosoma (Teleostei: Gobiidae) from Brazil: description of a new species, redescription of G. hemigymnum, molecular phylogeny of the genus, and key to Atlantic species.

    Science.gov (United States)

    Van Tassell, James L; Joyeux, Jean-Christophe; Macieira, Raphael Mariano; Tornabene, Luke

    2015-08-31

    It is unclear how many species of Gobiosoma occur in Brazil and what their geographic distributions are. Here we combine data from a comprehensive morphological survey and a molecular analysis to clarify this uncertain taxonomy and place Brazilian Gobiosoma within a phylogenetic framework. Recent collections in Brazil, from the states of Ceará to Santa Catarina, and in Uruguay yielded two allopatric species of Gobiosoma that are distinct in genetics, meristics, morphometrics, scale pattern and coloration. Comparisons were made with types and specimens of Gobiosoma hemigymnum, Garmannia mediocricula, Gobiosoma spilotum and Gobiosoma parri and all other known species of Gobiosoma. We place G. parri in synonomy with G. hemigymnum with a distribution of Rio de Janeiro to Uruguay and Argentina. The northern species, that extends from the states of Espírito Santo to Ceará, is described as a new species, Gobiosoma alfiei. A key to the Atlantic species of Gobiosoma is provided.

  2. Distinguishing commercially grown Ganoderma lucidum from Ganoderma lingzhi from Europe and East Asia on the basis of morphology, molecular phylogeny, and triterpenic acid profiles.

    Science.gov (United States)

    Hennicke, Florian; Cheikh-Ali, Zakaria; Liebisch, Tim; Maciá-Vicente, Jose G; Bode, Helge B; Piepenbring, Meike

    2016-07-01

    In China and other countries of East Asia, so-called Ling-zhi or Reishi mushrooms are used in traditional medicine since several centuries. Although the common practice to apply the originally European name 'Ganoderma lucidum' to these fungi has been questioned by several taxonomists, this is still generally done in recent publications and with commercially cultivated strains. In the present study, two commercially sold strains of 'G. lucidum', M9720 and M9724 from the company Mycelia bvba (Belgium), are compared for their fruiting body (basidiocarp) morphology combined with molecular phylogenetic analyses, and for their secondary metabolite profile employing an ultra-performance liquid chromatography-electrospray ionization mass spectrometry (UPLC-ESIMS) in combination with a high resolution electrospray ionization mass spectrometry (HR-ESI-MS). According to basidiocarp morphology, the strain M9720 was identified as G. lucidum s.str. whereas M9724 was determined as Ganoderma lingzhi. In molecular phylogenetic analyses, the M9720 ITS and beta-tubulin sequences grouped with sequences of G. lucidum s.str. from Europe whereas those from M9724 clustered with sequences of G. lingzhi from East Asia. We show that an ethanol extract of ground basidiocarps from G. lucidum (M9720) contains much less triterpenic acids than found in the extract of G. lingzhi (M9724). The high amount of triterpenic acids accounts for the bitter taste of the basidiocarps of G. lingzhi (M9724) and of its ethanol extract. Apparently, triterpenic acids of G. lucidum s.str. are analyzed here for the first time. These results demonstrate the importance of taxonomy for commercial use of fungi.

  3. From Amazonia to the Atlantic forest: molecular phylogeny of Phyzelaphryninae frogs reveals unexpected diversity and a striking biogeographic pattern emphasizing conservation challenges.

    Science.gov (United States)

    Fouquet, Antoine; Loebmann, Daniel; Castroviejo-Fisher, Santiago; Padial, José M; Orrico, Victor G D; Lyra, Mariana L; Roberto, Igor Joventino; Kok, Philippe J R; Haddad, Célio F B; Rodrigues, Miguel T

    2012-11-01

    Documenting the Neotropical amphibian diversity has become a major challenge facing the threat of global climate change and the pace of environmental alteration. Recent molecular phylogenetic studies have revealed that the actual number of species in South American tropical forests is largely underestimated, but also that many lineages are millions of years old. The genera Phyzelaphryne (1 sp.) and Adelophryne (6 spp.), which compose the subfamily Phyzelaphryninae, include poorly documented, secretive, and minute frogs with an unusual distribution pattern that encompasses the biotic disjunction between Amazonia and the Atlantic forest. We generated >5.8 kb sequence data from six markers for all seven nominal species of the subfamily as well as for newly discovered populations in order to (1) test the monophyly of Phyzelaphryninae, Adelophryne and Phyzelaphryne, (2) estimate species diversity within the subfamily, and (3) investigate their historical biogeography and diversification. Phylogenetic reconstruction confirmed the monophyly of each group and revealed deep subdivisions within Adelophryne and Phyzelaphryne, with three major clades in Adelophryne located in northern Amazonia, northern Atlantic forest and southern Atlantic forest. Our results suggest that the actual number of species in Phyzelaphryninae is, at least, twice the currently recognized species diversity, with almost every geographically isolated population representing an anciently divergent candidate species. Such results highlight the challenges for conservation, especially in the northern Atlantic forest where it is still degraded at a fast pace. Molecular dating revealed that Phyzelaphryninae originated in Amazonia and dispersed during early Miocene to the Atlantic forest. The two Atlantic forest clades of Adelophryne started to diversify some 7 Ma minimum, while the northern Amazonian Adelophryne diversified much earlier, some 13 Ma minimum. This striking biogeographic pattern coincides with

  4. Correlation of Critical Micelle Concentration of Sodium Alkyl Benzenesulfonates with Molecular Descriptors

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The hydrophobic-hydrophilic segment geometries of 36 sodium alkyl benzenesulfonates were fully optimized and calculated by abini-tio RHF/6-31G(d), quantum chemical data such as the charge density, the energy of molecular orbital and the dipole moment were obtained. Based on two topological descriptors and one quantum chemical descriptor, a significant quantitative structure-property relationship (QSPR) model for the critical micelle concentration (cmc) of sodium alkyl benzenesulfonate surfactants was obtained by using the multiple linear regression technique. The good correlation coefficient of R2 (0.980) and cross-validation correlation coefficient R2cv (0.974) indicate the excellent capability and stability of the regression equation developed. In addition, linear relationships between logarithm of cmc and the dipole moment of surfactant hydrophobic hydrophilic segments for each homologous series have also been established with high correlation coefficient.

  5. Calculations of Bose-Einstein correlations from Relativistic Quantum Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.P.; Berenguer, M.; Fields, D.E.; Jacak, B.V.; Sarabura, M.; Simon-Gillo, J.; Sorge, H.; van Hecke, H. [Los Alamos National Lab., NM (United States); Pratt, S. [Michigan State Univ., East Lansing, MI (United States)

    1993-10-01

    Bose-Einstein correlation functions which are in good agreement with pion data can be calculated from an event generator. Here pion and (preliminary) kaon data from CERN experiment NA44 are compared to the calculations. The dynamics of 200 GeV/nucleon {sup 32}S + Pb collisions are calculated, without correlations due to interference patterns of a many-body wavefunction for identical particles, using the Relativistic Quantum Molecular Dynamics model (RQMD). The model is used to generate the phase-space coordinates of the emitted hadrons at the time they suffer their last strong interaction (freeze-out). Using the freeze-out position and momentum of pairs of randomly selected identical particles, a two-particle symmetrized wave-function is calculated and used to add two-body correlations. Details of the technique have been described previously. The method is similar to that used in the Spacer program.

  6. Many-body correlations in Semiclassical Molecular Dynamics and Skyrme interaction

    CERN Document Server

    Papa, Massimo

    2012-01-01

    Constraint Molecular dynamics CoMD calculations have been performed for asymmetric nuclear matter (NM) by using a simple effective interactions of the Skyrme type. The set of parameter values reproducing common accepted saturation properties of nuclear matter have been obtained for different degree of stiffness characterizing the iso-vectorial potential density dependence. A comparison with results obtained in the limit of the Semi-Classical Mean Field approximation using the same kind of interaction put in evidence the role played by the many-body correlations in to explain the noticeable differences obtained in the parameter values in the two cases. Even if from a numerical point of view the obtained results are strictly valid for the CoMD model, some rather general feature of the discussed correlations can give a wider meaning to the obtained differences being strongly related to the spacial correlations generated in the semiclassical wave packets dynamics.

  7. Molecular pathology in vulnerable carotid plaques: correlation with [18]-fluorodeoxyglucose positron emission tomography (FDG-PET)

    DEFF Research Database (Denmark)

    Graebe, M; Pedersen, Sune Folke; Borgwardt, L;

    2008-01-01

    before carotid endarterectomy. Plaque mRNA expression of the inflammatory cytokine interleukin 18 (IL-18), the macrophage-specific marker CD68 and the two proteinases, Cathepsin K and matrix metalloproteinase 9 (MMP-9), were quantified using real-time quantitative polymerase chain reaction. RESULTS......: Consistent up-regulation of CD68 (3.8-fold+/-0.9; mean+/-standard error), Cathepsin K (2.1-fold+/-0.5), MMP-9 (122-fold+/-65) and IL-18 (3.4-fold+/-0.7) were found in the plaques, compared to reference-artery specimens. The FDG uptake by plaques was strongly correlated with CD68 gene expression (r=0.71, P=0.......02). Any correlations with Cathepsin K, MMP-9 or IL-18 gene expression were weaker. CONCLUSIONS: FDG-PET uptake in carotid plaques is correlated to gene expression of CD68 and other molecular markers of inflammation and vulnerability Udgivelsesdato: 2009/6...

  8. Random Matrix Theory Analysis of Cross Correlations in Molecular Dynamics Simulations of Macro-Biomolecules

    Science.gov (United States)

    Yamanaka, Masanori

    2013-08-01

    We apply the random matrix theory to analyze the molecular dynamics simulation of macromolecules, such as proteins. The eigensystem of the cross-correlation matrix for the time series of the atomic coordinates is analyzed. We study a data set with seven different sampling intervals to observe the characteristic motion at each time scale. In all cases, the unfolded eigenvalue spacings are in agreement with the predictions of random matrix theory. In the short-time scale, the cross-correlation matrix has the universal properties of the Gaussian orthogonal ensemble. The eigenvalue distribution and inverse participation ratio have a crossover behavior between the universal and nonuniversal classes, which is distinct from the known results such as the financial time series. Analyzing the inverse participation ratio, we extract the correlated cluster of atoms and decompose it to subclusters.

  9. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches

    Directory of Open Access Journals (Sweden)

    Beaulieu Jeremy M

    2009-02-01

    Full Text Available Abstract Background Biology has increasingly recognized the necessity to build and utilize larger phylogenies to address broad evolutionary questions. Large phylogenies have facilitated the discovery of differential rates of molecular evolution between trees and herbs. They have helped us understand the diversification patterns of mammals as well as the patterns of seed evolution. In addition to these broad evolutionary questions there is increasing awareness of the importance of large phylogenies for addressing conservation issues such as biodiversity hotspots and response to global change. Two major classes of methods have been employed to accomplish the large tree-building task: supertrees and supermatrices. Although these methods are continually being developed, they have yet to be made fully accessible to comparative biologists making extremely large trees rare. Results Here we describe and demonstrate a modified supermatrix method termed mega-phylogeny that uses databased sequences as well as taxonomic hierarchies to make extremely large trees with denser matrices than supermatrices. The two major challenges facing large-scale supermatrix phylogenetics are assembling large data matrices from databases and reconstructing trees from those datasets. The mega-phylogeny approach addresses the former as the latter is accomplished by employing recently developed methods that have greatly reduced the run time of large phylogeny construction. We present an algorithm that requires relatively little human intervention. The implemented algorithm is demonstrated with a dataset and phylogeny for Asterales (within Campanulidae containing 4954 species and 12,033 sites and an rbcL matrix for green plants (Viridiplantae with 13,533 species and 1,401 sites. Conclusion By examining much larger phylogenies, patterns emerge that were otherwise unseen. The phylogeny of Viridiplantae successfully reconstructs major relationships of vascular plants that previously

  10. Ontogeny and Phylogeny from an Epigenetic Point of View.

    Science.gov (United States)

    Lovtrup, Soren

    1984-01-01

    The correlation between ontogeny and phylogeny is analyzed through the discussion of four theories on the reality, history, epigenetic, and ecological aspects of the mechanism of evolution. Also discussed are historical and creative aspects of evolution and three epigenetic mechanisms instantiated in the case of the amphibian embryo. (Author/RH)

  11. Towards a mitogenomic phylogeny of Lepidoptera.

    Science.gov (United States)

    Timmermans, Martijn J T N; Lees, David C; Simonsen, Thomas J

    2014-10-01

    The backbone phylogeny of Lepidoptera remains unresolved, despite strenuous recent morphological and molecular efforts. Molecular studies have focused on nuclear protein coding genes, sometimes adding a single mitochondrial gene. Recent advances in sequencing technology have, however, made acquisition of entire mitochondrial genomes both practical and economically viable. Prior phylogenetic studies utilised just eight of 43 currently recognised lepidopteran superfamilies. Here, we add 23 full and six partial mitochondrial genomes (comprising 22 superfamilies of which 16 are newly represented) to those publically available for a total of 24 superfamilies and ask whether such a sample can resolve deeper lepidopteran phylogeny. Using recoded datasets we obtain topologies that are highly congruent with prior nuclear and/or morphological studies. Our study shows support for an expanded Obtectomera including Gelechioidea, Thyridoidea, plume moths (Alucitoidea and Pterophoroidea; possibly along with Epermenioidea), Papilionoidea, Pyraloidea, Mimallonoidea and Macroheterocera. Regarding other controversially positioned higher taxa, Doidae is supported within the new concept of Drepanoidea and Mimallonidae sister to (or part of) Macroheterocera, while among Nymphalidae butterflies, Danainae and not Libytheinae are sister to the remainder of the family. At the deepest level, we suggest that a tRNA rearrangement occurred at a node between Adeloidea and Ditrysia+Palaephatidae+Tischeriidae.

  12. Molecular characterization of Cucumber mosaic virus infecting Gladiolus, revealing its phylogeny distinct from the Indian isolate and alike the Fny strain of CMV.

    Science.gov (United States)

    Dubey, Vimal Kumar; Aminuddin; Singh, Vijai Pal

    2010-08-01

    The majority of Gladiolus plants growing in the botanical garden at NBRI, Lucknow, India and adjoining areas exhibited symptoms of mosaic, color breaking, stunting of spikes and reduction in flower size. The occurrence of Cucumber mosaic virus (CMV) was suspected in symptomatic Gladiolus plants. Cucumber mosaic virus, the type species of the genus Cucumovirus of the family Bromoviridae, is an important plant virus worldwide, which infects many plants and causes quantity and quality losses. For virus characterization, total RNA was isolated from leaves of infected plants and used in reverse transcriptase polymerase chain reaction with a primer set designed in the Cucumber mosaic virus coat protein region. Viral amplicons of the expected 657 bp size were obtained from infected plants. No viral amplicon was obtained from healthy control plants. Viral amplicons were cloned and sequenced (DQ295914). Molecular characterization was performed and phylogenetic relationship determined by the comparison of coat protein gene nucleotide and amino acid sequences with other Cucumber mosaic virus isolates reported from India and worldwide. The nucleotide and amino acid percentage comparison and phylogenetic tree results revealed that Cucumber mosaic virus infecting Gladiolus show resemblance with the Fny strain, which is not common in the Asian continent.

  13. Molecular Phylogeny and Taxonomy of a New Freshwater Hymenostomatid from Northeastern China, with the Establishment of a New Genus Anteglaucoma gen. n. (Protista, Ciliophora, Oligohymenophorea).

    Science.gov (United States)

    Pan, Xuming; Shi, Zihan; Wang, Chundi; Bourland, William A; Chen, Ying; Song, Weibo

    2017-09-01

    The morphology, infraciliature and SSU rDNA sequence of a new freshwater hymenostomatid ciliate, Anteglaucoma harbinensis gen. nov., spec. nov., collected from a farmland pond in Harbin, China, were investigated. The new genus Anteglaucoma is characterized as follows: small to medium-sized Glaucomidae with oral apparatus in anterior one-third of cell; paroral membrane composed of almost longitudinally arranged dikinetids; three adoral membranelles nearly equal in length and arranged almost longitudinally in parallel; silverline pattern tetrahymenid. The improved diagnosis of family Glaucomidae Corliss 1971 is provided based on the previous and present work. The type species Anteglaucoma harbinensis spec. nov. is defined by having 32-35 somatic kineties; four or five postoral kineties; membranelle 1 and membranelle 2 having five or six kinetosomal rows, membranelle 3 having three kinetosomal rows; single macronuclear nodule; contractile vacuole on average 15% from posterior body end; locomotion characterized by crawling with a rather hectic jerking motion; freshwater habitat. Phylogenetic analyses show that Anteglaucoma clusters in the family Glaucomidae and groups with the genera Glaucoma. The molecular and morphological data indicate that Glaucomidae is related to the family Bromeliophryidae in the phylogenetic trees. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  14. A molecular phylogeny of Equatorial African Lacertidae, with the description of a new genus and species from eastern Democratic Republic of the Congo

    Science.gov (United States)

    Greenbaum, Eli; Villanueva, Cesar O.; Kusamba, Chifundera; Aristote, Mwenebatu M.; Branch, William R.

    2011-01-01

    Currently, four species of the lacertid lizard genus Adolfus are known from Central and East Africa. We sequenced up to 2,825 bp of two mitochondrial (16S and cyt b) and two nuclear (c-mos and RAG1) genes from 41 samples of Adolfus (representing every species), two species each of Gastropholis and Holaspis, and in separate analyses combined this data with GenBank sequences of all other Eremiadini genera and four Lacertini outgroups. Data from DNA sequences were analyzed with maximum parsimony (PAUP), maximum-likelihood (RAxML) and Bayesian inference (MrBayes) criteria. Results demonstrated that Adolfus is not monophyletic: A. africanus (type species), A. alleni and A. jacksoni are sister taxa, whereas A. vauereselli and a new species from the Itombwe Plateau of Democratic Republic of the Congo are in a separate lineage. Holaspis and Gastropholis were recovered in separate clades. Based on this molecular data, relatively substantial sequence divergence and multiple morphological differences, we describe a new genus of lacertid for the lineage including A. vauereselli and the new Itombwe species. The recognition of this new, endemic genus underscores the conservation importance of the Albertine Rift, especially the Itombwe Plateau, a unique region that is severely threatened by unchecked deforestation, mining and poaching. PMID:22121299

  15. Molecular characterization and phylogeny of whipworm nematodes inferred from DNA sequences of cox1 mtDNA and 18S rDNA.

    Science.gov (United States)

    Callejón, Rocío; Nadler, Steven; De Rojas, Manuel; Zurita, Antonio; Petrášová, Jana; Cutillas, Cristina

    2013-11-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from the mitochondrial cytochrome c oxidase 1 (cox1) and ribosomal 18S genes. The taxa consisted of different described species and several host-associated isolates (undescribed taxa) of Trichuris collected from hosts from Spain. Sequence data from mitochondrial cox1 (partial gene) and nuclear 18S near-complete gene were analyzed by maximum likelihood and Bayesian inference methods, as separate and combined datasets, to evaluate phylogenetic relationships among taxa. Phylogenetic results based on 18S ribosomal DNA (rDNA) were robust for relationships among species; cox1 sequences delimited species and revealed phylogeographic variation, but most relationships among Trichuris species were poorly resolved by mitochondrial sequences. The phylogenetic hypotheses for both genes strongly supported monophyly of Trichuris, and distinct genetic lineages corresponding to described species or nematodes associated with certain hosts were recognized based on cox1 sequences. Phylogenetic reconstructions based on concatenated sequences of the two loci, cox1 (mitochondrial DNA (mtDNA)) and 18S rDNA, were congruent with the overall topology inferred from 18S and previously published results based on internal transcribed spacer sequences. Our results demonstrate that the 18S rDNA and cox1 mtDNA genes provide resolution at different levels, but together resolve relationships among geographic populations and species in the genus Trichuris.

  16. Molecular phylogeny of South American screech owls of the Otus atricapillus complex (Aves: Strigidae) inferred from nucleotide sequences of the mitochondrial cytochrome b gene.

    Science.gov (United States)

    Heidrich, P; König, C; Wink, M

    1995-01-01

    The cytochrome b gene of 6 South American screech owls of the genus Otus (O. choliba, O. atricapillus, O. usta, O. sanctaecatarinae, O. guatemalae, and O. hoyi) and two Old World species (Otus scops and Otus leucotis) was amplified by polymerase chain reaction (PCR) and partially sequenced (300 nucleotides). Otus atricapillus, O. guatemalae, O. hoyi and O. sanctaecatarinae which are morphologically very similar, have been treated as belonging to a single species. A. atricapillus (Sibley and Monroe, 1990). Nucleotide sequences differ substantially between these taxa (6.3 to 8.8% nucleotide substitutions) indicating that they represent well established and distinct species which had been implicated already from ecological and bioacoustical analyses (König, 1991, 1994). The importance of vocal and ecological characters for the taxonomy of nocturnal birds is thus confirmed by our molecular analysis. Phylogenetic relationships were reconstructed between Old and New World owls using character state ("maximum parsimony"; PAUP 3.1.1) and distance matrix methods (neighbour-joining; MEGA).

  17. Morphology and molecular phylogeny of Paragorgia rubra sp. nov. (Cnidaria: Octocorallia), a new bubblegum coral species from a seamount in the tropical Western Pacific

    Science.gov (United States)

    Li, Yang; Zhan, Zifeng; Xu, Kuidong

    2017-07-01

    A new species of bubblegum coral, Paragorgia rubra sp. nov., discovered from a seamount at a water depth of 373 m near the Yap Trench is studied using morphological and molecular approaches. Paragorgia rubra sp. nov. is the fourth species of the genus found in the tropical Western Pacific. The new gorgonian is red-colored, uniplanar, and measures approximately 530 mm high and 440 mm wide, with autozooids distributed only on one side of the colony. Paragorgia rubra sp. nov. is most similar to P. kaupeka Sánchez, 2005, but differs distinctly in the polyp ovals with large and compound protuberances (vs. small and simple conical protuberances) and the medullar spindles possessing simple conical protuberances (vs. compound protuberances). Moreover, P. rubra sp. nov. differs from P. kaupeka in the smaller length/width ratio of surface radiates (1.53 vs. 1.75). The genetic distance of the mtMutS gene between P. rubra sp. nov. and P. kaupeka is 0.66%, while the intraspecific distances within Paragorgia Milne-Edwards & Haime, 1857 except the species P. regalis complex are no more than 0.5%, further supporting the establishment of the new species. Furthermore, the ITS2 secondary structure of P. rubra sp. nov. is also different from those of congeners. Phylogenetic analyses indicate Paragorgia rubra sp. nov. and P. kaupeka form a clade, which branched early within Paragorgia and diversified approximately 15 Mya.

  18. Morphology and molecular phylogeny of Haplozoon praxillellae n. sp. (Dinoflagellata): a novel intestinal parasite of the maldanid polychaete Praxillella pacifica Berkeley.

    Science.gov (United States)

    Rueckert, Sonja; Leander, Brian S

    2008-11-01

    The genus Haplozoon comprises a group of endoparasites infecting the intestines of polychaete worms. Comparative studies using light microscopy, scanning and transmission electron microscopy, and small subunit rDNA have shown that these organisms are very unusual dinoflagellates. To date, there is only one species known from the Pacific Ocean, namely Haplozoon axiothellae Siebert. In this study, we describe Haplozoon praxillellae n. sp. from the intestine of the Pacific maldanid polychaete Praxillella pacifica Berkeley. The parasites are relatively small, oblong and about 35-125mum in length, consisting of the trophocyte (anterior-most compartment), rectangular gonocytes and bulbous sporocytes. The trophocyte bears an attachment apparatus with a prominent 'suction disc' and numerous stylets. We were able to detect spherical vesicles near the ventral surface of each gonocyte. The whole organism is covered with thecal barbs of different shape and size, except for the caudal end of the posterior-most sporocyte, which is instead covered with hexagonal or pentagonal alveoli. A continuous membrane encloses the whole pseudocolony. Molecular phylogenetic data, host specificity and morphological differences clearly distinguish H. praxillellae n. sp. from H. axiothellae.

  19. Molecular phylogeny of advanced snakes (Serpentes, Caenophidia with an emphasis on South American Xenodontines: a revised classification and descriptions of new taxa

    Directory of Open Access Journals (Sweden)

    Hussam Zaher

    2009-01-01

    Full Text Available We present a molecular phylogenetic analysis of caenophidian (advanced snakes using sequences from two mitochondrial genes (12S and 16S rRNA and one nuclear (c-mos gene (1681 total base pairs, and with 131 terminal taxa sampled from throughout all major caenophidian lineages but focussing on Neotropical xenodontines. Direct optimization parsimony analysis resulted in a well-resolved phylogenetic tree, which corroborates some clades identified in previous analyses and suggests new hypotheses for the composition and relationships of others. The major salient points of our analysis are: (1 placement of Acrochordus, Xenodermatids, and Pareatids as successive outgroups to all remaining caenophidians (including viperids, elapids, atractaspidids, and all other "colubrid" groups; (2 within the latter group, viperids and homalopsids are sucessive sister clades to all remaining snakes; (3 the following monophyletic clades within crown group caenophidians: Afro-Asian psammophiids (including Mimophis from Madagascar, Elapidae (including hydrophiines but excluding Homoroselaps, Pseudoxyrhophiinae, Colubrinae, Natricinae, Dipsadinae, and Xenodontinae. Homoroselaps is associated with atractaspidids. Our analysis suggests some taxonomic changes within xenodontines, including new taxonomy for Alsophis elegans, Liophis amarali, and further taxonomic changes within Xenodontini and the West Indian radiation of xenodontines. Based on our molecular analysis, we present a revised classification for caenophidians and provide morphological diagnoses for many of the included clades; we also highlight groups where much more work is needed. We name as new two higher taxonomic clades within Caenophidia, one new subfamily within Dipsadidae, and, within Xenodontinae five new tribes, six new genera and two resurrected genera. We synonymize Xenoxybelis and Pseudablabes with Philodryas; Erythrolamprus with Liophis; and Lystrophis and Waglerophis with Xenodon.Este trabalho

  20. Unstable shear flows in two dimensional strongly correlated liquids - a hydrodynamic and molecular dynamics study

    Science.gov (United States)

    Gupta, Akanksha; Ganesh, Rajaraman; Joy, Ashwin

    2016-11-01

    In Navier-Stokes fluids, shear flows are known to become unstable leading to instability and eventually to turbulence. A class of flow namely, Kolmogorov Flows (K-Flows) exhibit such transition at low Reynolds number. Using fluid and molecular dynamics, we address the physics of transition from laminar to turbulent regime in strongly correlated-liquids such as in multi-species plasmas and also in naturally occurring plasmas with K-Flows as initial condition. A 2D phenomenological generalized hydrodynamic model is invoked wherein the effect of strong correlations is incorporated via a viscoelastic memory. To study the stability of K-Flows or in general any shear flow, a generalized eigenvalue solver has been developed along with a spectral solver for the full nonlinear set of fluid equations. A study of the linear and nonlinear features of K-Flow in incompressible and compressible limit exhibits cyclicity and nonlinear pattern formation in vorticity. A first principles based molecular dynamics simulation of particles interacting via Yukawa potential is performed with features such as configurational and kinetic thermostats for K-Flows. This work reveals several interesting similarities and differences between hydrodynamics and molecular dynamics studies.

  1. Correlation spectroscopy and molecular dynamics simulations to study the structural features of proteins.

    Directory of Open Access Journals (Sweden)

    Antonio Varriale

    Full Text Available In this work, we used a combination of fluorescence correlation spectroscopy (FCS and molecular dynamics (MD simulation methodologies to acquire structural information on pH-induced unfolding of the maltotriose-binding protein from Thermus thermophilus (MalE2. FCS has emerged as a powerful technique for characterizing the dynamics of molecules and it is, in fact, used to study molecular diffusion on timescale of microsecond and longer. Our results showed that keeping temperature constant, the protein diffusion coefficient decreased from 84±4 µm(2/s to 44±3 µm(2/s when pH was changed from 7.0 to 4.0. An even more marked decrease of the MalE2 diffusion coefficient (31±3 µm(2/s was registered when pH was raised from 7.0 to 10.0. According to the size of MalE2 (a monomeric protein with a molecular weight of 43 kDa as well as of its globular native shape, the values of 44 µm(2/s and 31 µm(2/s could be ascribed to deformations of the protein structure, which enhances its propensity to form aggregates at extreme pH values. The obtained fluorescence correlation data, corroborated by circular dichroism, fluorescence emission and light-scattering experiments, are discussed together with the MD simulations results.

  2. Gene expression profiling in uveal melanoma: technical reliability and correlation of molecular class with pathologic characteristics.

    Science.gov (United States)

    Plasseraud, Kristen M; Wilkinson, Jeff K; Oelschlager, Kristen M; Poteet, Trisha M; Cook, Robert W; Stone, John F; Monzon, Federico A

    2017-08-04

    A 15-gene expression profile test has been clinically validated and is widely utilized in newly diagnosed uveal melanoma (UM) patients to assess metastatic potential of the tumor. As most patients are treated with eye-sparing radiotherapy, there is limited tumor tissue available for testing, and technical reliability and success of prognostic testing are critical. This study assessed the analytical performance of the 15-gene expression test for UM and the correlation of molecular class with pathologic characteristics. Inter-assay, intra-assay, inter-instrument/operator, and inter-site experiments were conducted, and concordance of the 15-gene expression profile test results and associated discriminant scores for matched tumor samples were evaluated. Technical success was determined from de-identified clinical reports from January 2010 - May 2016. Pathologic characteristics of enucleated tumors were correlated with molecular class results. Inter-assay concordance on 16 samples run on 3 consecutive days was 100%, and matched discriminant scores were strongly correlated (R(2) = 0.9944). Inter-assay concordance of 46 samples assayed within a one year period was 100%, with an R(2) value of 0.9747 for the discriminant scores. Intra-assay concordance of 12 samples run concurrently in duplicates was 100%; discriminant score correlation yielded an R(2) of 0.9934. Concordance between two sites assessing the same tumors was 100% with an R(2) of 0.9818 between discriminant scores. Inter-operator/instrument concordance was 96% for Class 1/2 calls and 90% for Class 1A/1B calls, and the discriminant scores had a correlation R(2) of 0.9636. Technical success was 96.3% on 5516 samples tested since 2010. Increased largest basal diameter and thickness were significantly associated with Class 1B and Class 2 vs. Class 1A signatures. These results show that the 15-gene expression profile test for UM has robust, reproducible performance characteristics. The technical success rate

  3. Molecular phylogeny of marine gregarine parasites (Apicomplexa) from tube-forming polychaetes (Sabellariidae, Cirratulidae and Serpulidae), including descriptions of two new species of Selenidium.

    Science.gov (United States)

    Wakeman, Kevin C; Leander, Brian S

    2013-01-01

    Selenidium is a genus of gregarine parasites that infect the intestines of marine invertebrates and have morphological, ecological, and motility traits inferred to reflect the early evolutionary history of apicomplexans. Because the overall diversity and phylogenetic position(s) of these species remain poorly understood, we performed a species discovery survey of Selenidium from tube-forming polychaetes. This survey uncovered five different morphotypes of trophozoites (feeding stages) living within the intestines of three different polychaete hosts. We acquired small subunit (SSU) rDNA sequences from single-cell (trophozoite) isolates, representing all five morphotypes that were also imaged with light and scanning electron microscopy. The combination of molecular, ecological, and morphological data provided evidence for four novel species of Selenidium, two of which were established in this study: Selenidium neosabellariae n. sp. and Selenidium sensimae n. sp. The trophozoites of these species differed from one another in the overall shape of the cell, the specific shape of the posterior end, the number and form of longitudinal striations, the presence/absence of transverse striations, and the position and shape of the nucleus. A fifth morphotype of Selenidium, isolated from the tube worm Dodecaceria concharum, was inferred to have been previously described as Selenidium cf. echinatum, based on general trophozoite morphology and host association. Phylogenetic analyses of the SSU rDNA sequences resulted in a robust clade of Selenidium species collected from tube-forming polychaetes, consisting of the two new species, the two additional morphotypes, S. cf. echinatum, and four previously described species (Selenidium serpulae, Selenidium boccardiellae, Selenidium idanthyrsae, and Selenidium cf. mesnili). Genetic distances between the SSU rDNA sequences in this clade distinguished closely related and potential cryptic species of Selenidium that were otherwise very

  4. A molecular phylogeny of the Pacific clade of Cyrtandra (Gesneriaceae) reveals a Fijian origin, recent diversification, and the importance of founder events.

    Science.gov (United States)

    Johnson, Melissa A; Clark, John R; Wagner, Warren L; McDade, Lucinda A

    2017-07-10

    Cyrtandra (Gesneriaceae) is among the largest genera of flowering plants in the remote oceanic islands of the Pacific, with an estimated 175 species distributed across an area that extends from the Solomon Islands, east to the Marquesas Islands, and north to the Hawaiian Islands. The vast majority of species are single-island endemics that inhabit upland rainforests. Although previous molecular phylogenetic studies greatly advanced our understanding of the diversification of Pacific Cyrtandra, a number of uncertainties remain regarding phylogenetic relationships, divergence times, and biogeographic patterns within this large and widely dispersed group. In the present study, five loci (ITS, ETS, Cyrt1, psbA-trnH, and rpl32-trnL) were amplified and sequenced for phylogenetic reconstruction of 121 Cyrtandra taxa. Maximum likelihood and Bayesian inference confirmed that C. taviunensis from Fiji is sister to the remaining members of the Pacific clade. Dating analyses and ancestral area estimation indicates that the Pacific clade of Cyrtandra originated in Fiji during the Miocene ca. 9mya. All major crown lineages within the Pacific clade appeared < 5mya, coincident with the emergence of numerous Pacific islands and a subsequent increase in available habitat. The biogeographic history of Cyrtandra in the Pacific has been shaped by extinction, dispersal distance, and founder events. Biogeographic stochastic mapping analyses suggest that cladogenesis within Pacific Cyrtandra involved a combination of narrow (within-area) sympatry and founder events. A mean of 24 founder events was recovered between Pacific archipelagos, while a mean of 10 founder events was recovered within the Hawaiian archipelago. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Multilocus molecular phylogeny of the ornamental wood-eating catfishes (Siluriformes, Loricariidae, Panaqolus and Panaque) reveals undescribed diversity and parapatric clades.

    Science.gov (United States)

    Lujan, Nathan K; Cramer, Christian A; Covain, Raphael; Fisch-Muller, Sonia; López-Fernández, Hernán

    2017-04-01

    Approximately two-dozen species in three genera of the Neotropical suckermouth armored catfish family Loricariidae are the only described fishes known to specialize on diets consisting largely of wood. We conducted a molecular phylogenetic analysis of 10 described species and 14 undescribed species or morphotypes assigned to the wood-eating catfish genus Panaqolus, and four described species and three undescribed species or morphotypes assigned to the distantly related wood-eating catfish genus Panaque. Our analyses included individuals and species from both genera that are broadly distributed throughout tropical South America east of the Andes Mountains and 13 additional genera hypothesized to have also descended from the most recent common ancestor of Panaqolus and Panaque. Bayesian and maximum likelihood analyses of two mitochondrial and three nuclear loci totaling 4293bp confirmed respective monophyly of Panaqolus, exclusive of the putative congener 'Panaqolus' koko, and Panaque. Members of Panaqolus sensu stricto were distributed across three strongly monophyletic clades: a clade of 10 generally darkly colored, lyretail species distributed across western headwaters of the Amazon Basin, a clade of three irregularly and narrowly banded species from the western Orinoco Basin, and a clade of 11 generally brown, broadly banded species that are widely distributed throughout the Amazon Basin. We erect new subgenera for each of these clades and a new genus for the morphologically, biogeographically and ecologically distinct species 'Panaqolus' koko. Our finding that perhaps half of the species-level diversity in the widespread genus Panaqolus remains undescribed illustrates the extent to which total taxonomic diversity of small and philopatric, yet apparently widely distributed, Amazonian fishes may remain underestimated. Ranges for two Panaqolus subgenera and the genus Panaque overlap with the wood-eating genus Cochliodon in central Andean tributaries of the upper

  6. Scaling theory for percolative charge transport in molecular semiconductors: Correlated versus uncorrelated energetic disorder

    Science.gov (United States)

    Cottaar, J.; Coehoorn, R.; Bobbert, P. A.

    2012-06-01

    We recently introduced a scaling theory for charge transport in molecular semiconductors with uncorrelated Gaussian energetic disorder, considering Miller-Abrahams as well as Marcus hopping and different lattice structures [Cottaar , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.136601 107, 136601 (2011)]. A compact expression was derived for the dependence of the charge-carrier mobility on temperature and carrier concentration. We show here that for Miller-Abrahams hopping the theory can also be applied to non-Gaussian energetic disorder, without parameter changes. Moreover, we show how it can be applied to correlated energetic disorder as obtained from randomly oriented molecular dipoles, which experiments suggest to be often more suitable. The same compact expression still describes the charge-carrier mobility, with new parameter values as determined from numerically exact results. The critical scaling exponent for correlated disorder is about twice as large as for uncorrelated disorder, which is caused by a different topology of the percolating network. The temperature dependence of the mobility for correlated disorder is significantly weaker than for uncorrelated disorder, while the carrier-concentration dependence is slightly weaker, due to small deviations of the density of states from a Gaussian. We indicate how comparison with experiments could distinguish between the different models.

  7. Molecular fossils and oil-source rock correlations in Tarim Basin, NW China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The distribution of "molecular fossils" (biomarkers) of steroid compounds in extracts from some specific geologic age in the Tarim Basin have been analyzed and are used as the fingerprints for the oil-source rock correlation. Having been affected by maturation, migration, phase fractionation and biodegradation, not any molecular fossils related to source and environment can be used as the fingerprints for oil-source rock correlation. Some special biomarkers widely existed in the extracts from Cambrian and Ordovician rocks in the Tarim Basin and showed obvious difference in each stratum, including dinosteranes (C30), 4-methyl-24-ethyl-cholestanes (C30) and their aromatized steroids, C24-norcholestanes and C28 steranes originated from dinoflagellates and diatom. Few oils such as the heavy oil drilled in the Cambrian reservoir from Tadong 2 well (TD2) correlated well with the extracts from the Cambrian. The amazing similarity of the relative contents of these compounds between the marine oils produced in Tazhong and Tabei uplifts and the extracts from the Upper Ordovician suggests that the Middle-Upper Ordovician is the very likely main source for the marine oils.

  8. Construction of random perfect phylogeny matrix

    Directory of Open Access Journals (Sweden)

    Mehdi Sadeghi

    2010-11-01

    Full Text Available Mehdi Sadeghi1,2, Hamid Pezeshk4, Changiz Eslahchi3,5, Sara Ahmadian6, Sepideh Mah Abadi61National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; 2School of Computer Science, 3School of Mathematics, Institute for Research in Fundamental Sciences (IPM, Tehran, Iran; 4School of Mathematics, Statistics and Computer Sciences, Center of Excellence in Biomathematics, College of Science, University of Tehran, Tehran, Iran; 5Department of Mathematics, Shahid Beheshti University, G.C., Tehran, Iran; 6Department of Computer Engineering, Sharif University of Technology, Tehran, IranPurpose: Interest in developing methods appropriate for mapping increasing amounts of genome-wide molecular data are increasing rapidly. There is also an increasing need for methods that are able to efficiently simulate such data.Patients and methods: In this article, we provide a graph-theory approach to find the necessary and sufficient conditions for the existence of a phylogeny matrix with k nonidentical haplotypes, n single nucleotide polymorphisms (SNPs, and a population size of m for which the minimum allele frequency of each SNP is between two specific numbers a and b.Results: We introduce an O(max(n2, nm algorithm for the random construction of such a phylogeny matrix. The running time of any algorithm for solving this problem would be Ω (nm.Conclusion: We have developed software, RAPPER, based on this algorithm, which is available at http://bioinf.cs.ipm.ir/softwares/RAPPER.Keywords: perfect phylogeny, minimum allele frequency (MAF, tree, recursive algorithm 

  9. Measurement and Correlation of the Ionic Conductivity of Ionic Liquid-Molecular Solvent Solutions

    Institute of Scientific and Technical Information of China (English)

    LI,Wen-Jing; HAN,Bu-Xing; TAO,Ran-Ting; ZHANG,Zhao-Fu; ZHANG,Jian-Ling

    2007-01-01

    The ionic conductivity of the solutions formed from 1-n-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) or 1-n-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) and different molecular solvents (MSs) were measured at 298.15 K. The molar conductivity of the ionic liquids (ILs) increased dramatically with increasing concentration of the MSs. It was found that the molar conductivity of the IL in the solutions studied in this work could be well correlated by the molar conductivity of the neat ILs and the dielectric constant and molar volume of the MSs.

  10. Prediction of alkane enthalpies by means of correlation weighting of Morgan extended connectivity in molecular graphs

    Science.gov (United States)

    Toropov, A. A.; Toropova, A. P.; Nesterova, A. I.; Nabiev, O. M.

    2004-01-01

    Labeled hydrogen-filled graphs (LHFGs) together with graphs of atomic orbitals (GAOs) have been used to represent the molecular structure of alkanes. The GAO is an attempt at taking into account the structures of atoms (i.e., atomic orbitals such as, 1s 1, 2p 2, 3d 10) for QSPR/QSAR analyses. As a method of alkane enthalpies modeling, optimization of correlation weights of local invariants (OCWLI) of the LHFGs and the GAOs has been used. Statistical characteristics of such models based on the OCWLI of the GAO are better than those based on the OCWLI of the LHFGs.

  11. Cage rattling does not correlate with the local geometry in molecular liquids

    CERN Document Server

    Bernini, S; Leporini, D

    2016-01-01

    Molecular-dynamics simulations of a liquid of short linear molecules have been performed to investigate the correlation between the particle dynamics in the cage of the neighbors and the local geometry. The latter is characterized in terms of the size and the asphericity of the Voronoi polyhedra. The correlation is found to be poor. In particular, in spite of the different Voronoi volume around the end and the inner monomers of a molecule, all the monomers exhibit coinciding displacement distribution when they are caged (as well as at longer times during the structural relaxation). It is concluded that the fast dynamics during the cage trapping is a non-local collective process involving monomers beyond the nearest neighbours.

  12. Correlation Between Pyrolysis Atmosphere and Carbon Molecular Sieve Membrane Performance Properties

    KAUST Repository

    Kiyono, Mayumi

    2011-01-01

    Carbon molecular sieve (CMS) membranes have attractive separation performance properties, greatly exceeding an "upper bound" trade-off curve of polymeric membrane performance. CMS membranes are prepared by pyrolyzing polymers, well above their glass transition temperatures. Multiple factors, such as polymer precursor and pyrolysis protocol, are known to affect the separation performance. In this study, a correlation observed between pyrolysis atmosphere and CMS separation performance properties is discussed. Specifically, oxygen exposure during the pyrolysis process is the focus. The theory and details of the oxygen exposure and development of a new CMS preparation method using oxygen as a "dopant" will be described with a strong correlation observed with separation performance for CMS membranes prepared with various polymer precursors. In addition, study of possible mass transfer limitations on the oxygen "doping" process will be described to clarify the basis for the equilibrium-based interpretation of doping data. The method is also explored by changing the pyrolysis temperature. © 2011 Elsevier B.V.

  13. To gel or not to gel: correlating molecular gelation with solvent parameters.

    Science.gov (United States)

    Lan, Y; Corradini, M G; Weiss, R G; Raghavan, S R; Rogers, M A

    2015-10-07

    Rational design of small molecular gelators is an elusive and herculean task, despite the rapidly growing body of literature devoted to such gels over the past decade. The process of self-assembly, in molecular gels, is intricate and must balance parameters influencing solubility and those contrasting forces that govern epitaxial growth into axially symmetric elongated aggregates. Although the gelator-gelator interactions are of paramount importance in understanding gelation, the solvent-gelator specific (i.e., H-bonding) and nonspecific (dipole-dipole, dipole-induced and instantaneous dipole induced forces) intermolecular interactions are equally important. Solvent properties mediate the self-assembly of molecular gelators into their self-assembled fibrillar networks. Herein, solubility parameters of solvents, ranging from partition coefficients (log P), to Henry's law constants (HLC), to solvatochromic parameters (ET(30)), and Kamlet-Taft parameters (β, α and π), and to Hansen solubility parameters (δp, δd, δh), are correlated with the gelation ability of numerous classes of molecular gelators. Advanced solvent clustering techniques have led to the development of a priori tools that can identify the solvents that will be gelled and not gelled by molecular gelators. These tools will greatly aid in the development of novel gelators without solely relying on serendipitous discoveries. These tools illustrate that the quest for the universal gelator should be left in the hands of Don Quixote and as researchers we must focus on identifying gelators capable of gelling classes of solvents as there is likely no one gelator capable of gelling all solvents.

  14. Correlating the magic numbers of inorganic nanomolecular assemblies with a {Pd84} molecular-ring Rosetta Stone.

    Science.gov (United States)

    Xu, Feng; Miras, Haralampos N; Scullion, Rachel A; Long, De-Liang; Thiel, Johannes; Cronin, Leroy

    2012-07-17

    Molecular self-assembly has often been suggested as the ultimate route for the bottom-up construction of building blocks atom-by-atom for functional nanotechnology, yet structural design or prediction of nanomolecular assemblies is still far from reach. Whereas nature uses complex machinery such as the ribosome, chemists use painstakingly engineered step-by-step approaches to build complex molecules but the size and complexity of such molecules, not to mention the accessible yields, can be limited. Herein we present the discovery of a palladium oxometalate {Pd(84)}-ring cluster 3.3 nm in diameter; [Pd(84)O(42)(OAc)(28)(PO(4))(42)](70-) ({Pd(84)} ≡ {Pd(12)}(7)) that is formed in water just by mixing two reagents at room temperature, giving crystals of the compound in just a few days. The structure of the {Pd(84)}-ring has sevenfold symmetry, comprises 196 building blocks, and we also show, using mass spectrometry, that a large library of other related nanostructures is present in solution. Finally, by analysis of the symmetry and the building block library that construct the {Pd(84)} we show that the correlation of the symmetry, subunit number, and overall cluster nuclearity can be used as a "Rosetta Stone" to rationalize the "magic numbers" defining a number of other systems. This is because the discovery of {Pd(84)} allows the relationship between seemingly unrelated families of molecular inorganic nanosystems to be decoded from the overall cluster magic-number nuclearity, to the symmetry and building blocks that define such structures allowing the prediction of other members of these nanocluster families.

  15. Host specificity, molecular phylogeny and morphological differences of Phyllodistomum pseudofolium Nybelin, 1926 and Phyllodistomum angulatum Linstow, 1907 (Trematoda: Gorgoderidae) with notes on Eurasian ruffe as final host for Phyllodistomum spp.

    Science.gov (United States)

    Stunžėnas, Virmantas; Petkevičiūtė, Romualda; Poddubnaya, Larisa G; Stanevičiūtė, Gražina; Zhokhov, Alexander E

    2017-06-06

    Host-specificity patterns are not well-defined for trematodes of the genus Phyllodistomum Braun, 1899. The Eurasian ruffe, Gymnocephalus cernuus L., has been recorded as a definitive host for Phyllodistomum folium (Olfers, 1816), P. angulatum Linstow, 1907 and P. megalorchis Nybelin, 1926 and as the type-host for P. pseudofolium Nybelin (1926). A wide range of other host fishes have been recorded for these species as well. All present host records have been based on light microscopy and the life-cycles of P. pseudofolium, P. angulatum and P. megalorchis are unknown. The validity of P. pseudofolium and P. megalorchis require verification. In this study, rDNA sequences generated from adult Phyllodistomum spp., as well as from larval stages developing in Pisidium amnicum Müller, were analysed to establish the real number of Phyllodistomum species utilizing G. cernuus, and to associate larvae with the corresponding adult forms. Phylogenetic analyses of adult and larval stages of Phyllodistomum spp. based on ITS2 and partial 28S rDNA data allowed the confirmation of the validity of P. pseudofolium. A macrocercous cercaria, known as Phyllodistomum sp. from P. amnicum is genetically identical to adult P. pseudofolium. Phyllodistomum megalorchis obtained from its type-host, Lota lota L., showed no genetic differences from P. angulatum parasitizing Sander lucioperca L. In our analysis, P. pseudofolium, P. angulatum and P. macrocotyle formed a highly supported clade despite the fact that these species appear to be associated with distinct patterns of first intermediate host identity and cercarial morphology. Some morphological differences between gravid specimens of P. pseudofolium and P. angulatum were observed and their SEM tegumental surface topography is described. The results lead us to the perception that macroevolutionary host switching in the genus Phyllodistomum is independent of host phylogeny. This study suggests strict host-specificity (oioxeny) for P

  16. Ensemble DFT Approach to Excited States of Strongly Correlated Molecular Systems.

    Science.gov (United States)

    Filatov, Michael

    2016-01-01

    Ensemble density functional theory (DFT) is a novel time-independent formalism for obtaining excitation energies of many-body fermionic systems. A considerable advantage of ensemble DFT over the more common Kohn-Sham (KS) DFT and time-dependent DFT formalisms is that it enables one to account for strong non-dynamic electron correlation in the ground and excited states of molecular systems in a transparent and accurate fashion. Despite its positive aspects, ensemble DFT has not so far found its way into the repertoire of methods of modern computational chemistry, probably because of the perceived lack of practically affordable implementations of the theory. The spin-restricted ensemble-referenced KS (REKS) method is perhaps the first computationally feasible implementation of the ideas behind ensemble DFT which enables one to describe accurately electronic transitions in a wide class of molecular systems, including strongly correlated molecules (biradicals, molecules undergoing bond breaking/formation), extended π-conjugated systems, donor-acceptor charge transfer adducts, etc.

  17. Molecular Correlates and Recent Advancements in the Diagnosis and Screening of FMR1-Related Disorders

    Directory of Open Access Journals (Sweden)

    Indhu-Shree Rajan-Babu

    2016-10-01

    Full Text Available Fragile X syndrome (FXS is the most common monogenic cause of intellectual disability and autism. Molecular diagnostic testing of FXS and related disorders (fragile X-associated primary ovarian insufficiency (FXPOI and fragile X-associated tremor/ataxia syndrome (FXTAS relies on a combination of polymerase chain reaction (PCR and Southern blot (SB for the fragile X mental retardation 1 (FMR1 CGG-repeat expansion and methylation analyses. Recent advancements in PCR-based technologies have enabled the characterization of the complete spectrum of CGG-repeat mutation, with or without methylation assessment, and, as a result, have reduced our reliance on the labor- and time-intensive SB, which is the gold standard FXS diagnostic test. The newer and more robust triplet-primed PCR or TP-PCR assays allow the mapping of AGG interruptions and enable the predictive analysis of the risks of unstable CGG expansion during mother-to-child transmission. In this review, we have summarized the correlation between several molecular elements, including CGG-repeat size, methylation, mosaicism and skewed X-chromosome inactivation, and the extent of clinical involvement in patients with FMR1-related disorders, and reviewed key developments in PCR-based methodologies for the molecular diagnosis of FXS, FXTAS and FXPOI, and large-scale (CGGn expansion screening in newborns, women of reproductive age and high-risk populations.

  18. A supertree approach to shorebird phylogeny

    Directory of Open Access Journals (Sweden)

    Thomas Gavin H

    2004-08-01

    Full Text Available Abstract Background Order Charadriiformes (shorebirds is an ideal model group in which to study a wide range of behavioural, ecological and macroevolutionary processes across species. However, comparative studies depend on phylogeny to control for the effects of shared evolutionary history. Although numerous hypotheses have been presented for subsets of the Charadriiformes none to date include all recognised species. Here we use the matrix representation with parsimony method to produce the first fully inclusive supertree of Charadriiformes. We also provide preliminary estimates of ages for all nodes in the tree. Results Three main lineages are revealed: i the plovers and allies; ii the gulls and allies; and iii the sandpipers and allies. The relative position of these clades is unresolved in the strict consensus tree but a 50% majority-rule consensus tree indicates that the sandpiper clade is sister group to the gulls and allies whilst the plover group is placed at the base of the tree. The overall topology is highly consistent with recent molecular hypotheses of shorebird phylogeny. Conclusion The supertree hypothesis presented herein is (to our knowledge the only complete phylogenetic hypothesis of all extant shorebirds. Despite concerns over the robustness of supertrees (see Discussion, we believe that it provides a valuable framework for testing numerous evolutionary hypotheses relating to the diversity of behaviour, ecology and life-history of the Charadriiformes.

  19. Progress in nemertean biology: development and phylogeny.

    Science.gov (United States)

    Turbeville, J M

    2002-07-01

    This paper reviews progress in developmental biology and phylogeny of the Nemertea, a common but poorly studied spiralian taxon of considerable ecological and evolutionary significance. Analyses of reproductive biology (including calcium dynamics during fertilization and oocyte maturation), larval morphology and development and developmental genetics have significantly extended our knowledge of spiralian developmental biology. Developmental genetics studies have in addition provided characters useful for reconstructing metazoan phylogeny. Reinvestigation of the cell lineage of Cerebratulus lacteus using fluorescent tracers revealed that endomesoderm forms from the 4d cell as in other spiralians and that ectomesoderm is derived from the 3a and 3b cells as in annelids, echiurans and molluscs. Studies examining blastomere specification show that cell fates are established precociously in direct developers and later in indirect developers. Morphological characters used to estimate the phylogenetic position of nemerteans are critically re-evaluated, and cladistic analyses of morphology reveal that conflicting hypotheses of nemertean relationships result because of different provisional homology statements. Analyses that include disputed homology statements (1, gliointerstitial cell system 2, coelomic circulatory system) suggest that nemerteans form the sister taxon to the coelomate spiralian taxa rather than the sister taxon to Platyhelminthes. Analyses of small subunit rRNA (18S rDNA) sequences alone or in combination with morphological characters support the inclusion of the nemerteans in a spiralian coelomate clade nested within a more inclusive lophotrochozoan clade. Ongoing evaluation of nemertean relationships with mitochondrial gene rearrangements and other molecular characters is discussed.

  20. Using engineered single-chain antibodies to correlate molecular binding properties and nanoparticle adhesion dynamics.

    Science.gov (United States)

    Haun, Jered B; Pepper, Lauren R; Boder, Eric T; Hammer, Daniel A

    2011-11-15

    Elucidation of the relationship between targeting molecule binding properties and the adhesive behavior of therapeutic or diagnostic nanocarriers would aid in the design of optimized vectors and lead to improved efficacy. We measured the adhesion of 200-nm-diameter particles under fluid flow that was mediated by a diverse array of molecular interactions, including recombinant single-chain antibodies (scFvs), full antibodies, and the avidin/biotin interaction. Within the panel of scFvs, we used a family of mutants that display a spectrum of binding kinetics, allowing us to compare nanoparticle adhesion to bond chemistry. In addition, we explored the effect of molecular size by inserting a protein linker into the scFv fusion construct and by employing scFvs that are specific for targets with vastly different sizes. Using computational models, we extracted multivalent kinetic rate constants for particle attachment and detachment from the adhesion data and correlated the results to molecular binding properties. Our results indicate that the factors that increase encounter probability, such as adhesion molecule valency and size, directly enhance the rate of nanoparticle attachment. Bond kinetics had no influence on scFv-mediated nanoparticle attachment within the kinetic range tested, however, but did appear to affect antibody/antigen and avidin/biotin mediated adhesion. We attribute this finding to a combination of multivalent binding and differences in bond mechanical strength between recombinant scFvs and the other adhesion molecules. Nanoparticle detachment probability correlated directly with adhesion molecule valency and size, as well as the logarithm of the affinity for all molecules tested. On the basis of this work, scFvs can serve as viable targeting receptors for nanoparticles, but improvements to their bond mechanical strength would likely be required to fully exploit their tunable kinetic properties and maximize the adhesion efficiency of nanoparticles that

  1. Phylogeny, diet, and cranial integration in australodelphian marsupials.

    Directory of Open Access Journals (Sweden)

    Anjali Goswami

    Full Text Available Studies of morphological integration provide valuable information on the correlated evolution of traits and its relationship to long-term patterns of morphological evolution. Thus far, studies of morphological integration in mammals have focused on placentals and have demonstrated that similarity in integration is broadly correlated with phylogenetic distance and dietary similarity. Detailed studies have also demonstrated a significant correlation between developmental relationships among structures and adult morphological integration. However, these studies have not yet been applied to marsupial taxa, which differ greatly from placentals in reproductive strategy and cranial development and could provide the diversity necessary to assess the relationships among phylogeny, ecology, development, and cranial integration. This study presents analyses of morphological integration in 20 species of australodelphian marsupials, and shows that phylogeny is significantly correlated with similarity of morphological integration in most clades. Size-related correlations have a significant affect on results, particularly in Peramelia, which shows a striking decrease in similarity of integration among species when size is removed. Diet is not significantly correlated with similarity of integration in any marsupial clade. These results show that marsupials differ markedly from placental mammals in the relationships of cranial integration, phylogeny, and diet, which may be related to the accelerated development of the masticatory apparatus in marsupials.

  2. Gene expression correlations in human cancer cell lines define molecular interaction networks for epithelial phenotype.

    Directory of Open Access Journals (Sweden)

    Kurt W Kohn

    Full Text Available Using gene expression data to enhance our knowledge of control networks relevant to cancer biology and therapy is a challenging but urgent task. Based on the premise that genes that are expressed together in a variety of cell types are likely to functions together, we derived mutually correlated genes that function together in various processes in epithelial-like tumor cells. Expression-correlated genes were derived from data for the NCI-60 human tumor cell lines, as well as data from the Broad Institute's CCLE cell lines. NCI-60 cell lines that selectively expressed a mutually correlated subset of tight junction genes served as a signature for epithelial-like cancer cells. Those signature cell lines served as a seed to derive other correlated genes, many of which had various other epithelial-related functions. Literature survey yielded molecular interaction and function information about those genes, from which molecular interaction maps were assembled. Many of the genes had epithelial functions unrelated to tight junctions, demonstrating that new function categories were elicited. The most highly correlated genes were implicated in the following epithelial functions: interactions at tight junctions (CLDN7, CLDN4, CLDN3, MARVELD3, MARVELD2, TJP3, CGN, CRB3, LLGL2, EPCAM, LNX1; interactions at adherens junctions (CDH1, ADAP1, CAMSAP3; interactions at desmosomes (PPL, PKP3, JUP; transcription regulation of cell-cell junction complexes (GRHL1 and 2; epithelial RNA splicing regulators (ESRP1 and 2; epithelial vesicle traffic (RAB25, EPN3, GRHL2, EHF, ADAP1, MYO5B; epithelial Ca(+2 signaling (ATP2C2, S100A14, BSPRY; terminal differentiation of epithelial cells (OVOL1 and 2, ST14, PRSS8, SPINT1 and 2; maintenance of apico-basal polarity (RAB25, LLGL2, EPN3. The findings provide a foundation for future studies to elucidate the functions of regulatory networks specific to epithelial-like cancer cells and to probe for anti-cancer drug targets.

  3. Angiosperm phylogeny inferred from sequences of four mitochondrial genes

    Institute of Scientific and Technical Information of China (English)

    Yin-Long QIU; Zhi-Duan CHEN; Libo LI; Bin WANG; Jia-Yu XUE; Tory A. HENDRY; Rui-Qi LI; Joseph W. BROWN; Yang LIU; Geordan T. HUDSON

    2010-01-01

    An angiosperm phylogeny was reconstructed in a maximum likelihood analysis of sequences of four mitochondrial genes, atpl, matR, had5, and rps3, from 380 species that represent 376 genera and 296 families of seed plants. It is largely congruent with the phylogeny of angiosperms reconstructed from chloroplast genes atpB, matK, and rbcL, and nuclear 18S rDNA. The basalmost lineage consists of Amborella and Nymphaeales (including Hydatellaceae). Austrobaileyales follow this clade and are sister to the mesangiosperms, which include Chloranthaceae, Ceratophyllum, magnoliids, monocots, and eudicots. With the exception of Chloranthaceae being sister to Ceratophyllum, relationships among these five lineages are not well supported. In eudicots, Ranunculales, Sabiales, Proteales, Trochodendrales, Buxales, Gunnerales, Saxifragales, Vitales, Berberidopsidales, and Dilleniales form a basal grade of lines that diverged before the diversification of rosids and asterids. Within rosids, the COM (Celastrales-Oxalidales-Malpighiales) clade is sister to malvids (or rosid Ⅱ), instead of to the nitrogen-fixing clade as found in all previous large-scale molecular analyses of angiosperms. Santalales and Caryophyllales are members of an expanded asterid clade. This study shows that the mitochondrial genes are informative markers for resolving relationships among genera, families, or higher rank taxa across angiosperms. The low substitution rates and low homoplasy levels of the mitochondrial genes relative to the chloroplast genes, as found in this study, make them particularly useful for reconstructing ancient phylogenetic relationships. A mitochondrial gene-based angiosperm phylogeny provides an independent and essential reference for comparison with hypotheses of angiosperm phylogeny based on chloroplast genes, nuclear genes, and non-molecular data to reconstruct the underlying organismal phylogeny.

  4. Molecular phylogeny of metazoan intermediate filament proteins.

    Science.gov (United States)

    Erber, A; Riemer, D; Bovenschulte, M; Weber, K

    1998-12-01

    We have cloned cytoplasmic intermediate filament (IF) proteins from a large number of invertebrate phyla using cDNA probes, the monoclonal antibody IFA, peptide sequence information, and various RT-PCR procedures. Novel IF protein sequences reported here include the urochordata and nine protostomic phyla, i.e., Annelida, Brachiopoda, Chaetognatha, Echiura, Nematomorpha, Nemertea, Platyhelminthes, Phoronida, and Sipuncula. Taken together with the wealth of data on IF proteins of vertebrates and the results on IF proteins of Cephalochordata, Mollusca, Annelida, and Nematoda, two IF prototypes emerge. The L-type, which includes 35 sequences from 11 protostomic phyla, shares with the nuclear lamins the long version of the coil 1b subdomain and, in most cases, a homology segment of some 120 residues in the carboxyterminal tail domain. The S-type, which includes all four subfamilies (types I to IV) of vertebrate IF proteins, lacks 42 residues in the coil 1b subdomain and the carboxyterminal lamin homology segment. Since IF proteins from all three phyla of the chordates have the 42-residue deletion, this deletion arose in a progenitor prior to the divergence of the chordates into the urochordate, cephalochordate, and vertebrate lineages, possibly already at the origin of the deuterostomic branch. Four phyla recently placed into the protostomia on grounds of their 18S rDNA sequences (Brachiopoda, Nemertea, Phoronida, and Platyhelminthes) show IF proteins of the L-type and fit by sequence identity criteria into the lophotrochozoic branch of the protostomia.

  5. Molecular Phylogeny of the Animal Kingdom.

    Science.gov (United States)

    Field, Katharine G.; And Others

    1988-01-01

    A rapid sequencing method for ribosomal RNA was applied to the resolution of evolutionary relationships among Metazoa. Describes the four groups (chordates, echinoderms, arthropods, and eucoelomate protostomes) that radiated from the coelomates. (TW)

  6. Molecular phylogeny of noctilucoid dinoflagellates (Noctilucales, Dinophyceae).

    Science.gov (United States)

    Gómez, Fernando; Moreira, David; López-García, Purificación

    2010-07-01

    The order Noctilucales or class Noctiluciphyceae encompasses three families of aberrant dinoflagellates (Noctilucaceae, Leptodiscaceae and Kofoidiniaceae) that, at least in some life stages, lack typical dinoflagellate characters such as the ribbon-like transversal flagellum or condensed chromosomes. Noctiluca scintillans, the first dinoflagellate to be described, has been intensively investigated. However, its phylogenetic position based on the small subunit ribosomal DNA (SSU rDNA) sequence is unstable and controversial. Noctiluca has been placed either as an early diverging lineage that diverged after Oxyrrhis and before the dinokaryotes -core dinoflagellates- or as a recent lineage branching from unarmoured dino fl agellates in the order Gymnodiniales. So far, the lack of other noctilucoid sequences has hampered the elucidation of their phylogenetic relationships to other dino fl agellates. Furthermore, even the monophyly of the noctilucoids remained uncertain. We have determined SSU rRNA gene sequences for Kofoidiniaceae, those of the type Spatulodinium (=Gymnodinium) pseudonoctiluca and another Spatulodinium species, as well as of two species of Kofoidinium, and the first gene sequence of Leptodiscaceae, that of Abedinium (=Leptophyllus) dasypus. These taxa were collected from their type localities, the English Channel and the NW Mediterranean Sea, respectively. Phylogenetic analyses place the Noctilucales as a monophyletic group at a basal position close to parasites of the Marine Alveolate Group I (MAGI) and the Syndiniales (MAGII), before the core of dinokaryotic dinoflagellates, although with moderate support.

  7. Restricted Path-Integral Molecular Dynamics for Simulating the Correlated Electron Plasma in Warm Dense Matter

    Science.gov (United States)

    Kapila, Vivek; Deymier, Pierre; Runge, Keith

    2011-10-01

    Several areas of study including heavy ion beam, large scale laser, and high pressure or Thomson scattering studies necessitate a fundamental understanding of warm dense matter (WDM) i.e. matter at high temperature and high density. The WDM regime, however, lacks any adequate highly developed class of simulation methods. Recent progress to address this deficit has been the development of orbital-free Density Functional Theory (ofDFT). However, scant benchmark information is available on temperature and pressure dependence of simple but realistic models in WDM regime. The present work aims to fill this critical gap using the restricted path-integral molecular dynamics (rPIMD) method. Within the discrete path integral representation, electrons are described as harmonic necklaces. Quantum exchange takes the form of cross linking between electron necklaces. The fermion sign problem is addressed by restricting the density matrix to positive values. The molecular dynamics algorithm is employed to sample phase space. Here, we focus on the behavior of strongly correlated electron plasmas under WDM conditions. We compute the kinetic and potential energies and compare them to those obtained with the ofDFT method. Several areas of study including heavy ion beam, large scale laser, and high pressure or Thomson scattering studies necessitate a fundamental understanding of warm dense matter (WDM) i.e. matter at high temperature and high density. The WDM regime, however, lacks any adequate highly developed class of simulation methods. Recent progress to address this deficit has been the development of orbital-free Density Functional Theory (ofDFT). However, scant benchmark information is available on temperature and pressure dependence of simple but realistic models in WDM regime. The present work aims to fill this critical gap using the restricted path-integral molecular dynamics (rPIMD) method. Within the discrete path integral representation, electrons are described as

  8. Advances and challenges in resolving the angiosperm phylogeny

    Directory of Open Access Journals (Sweden)

    Liping Zeng

    2014-01-01

    Full Text Available Angiosperm phylogenetics investigates the evolutionary history and relationships of angiosperms based on the construction of phylogenetic trees. Since the 1990s, nucleotide or amino acid sequences have been widely used for this and angiosperm phylogenetic analysis has advanced from using single or a combination of a few organellar genes to whole plastid genome sequences, resulting in the widely accepted modern molecular systematics of angiosperms. The current framework of the angiosperm phylogeny includes highly supported basal angiosperm relationships, five major clades (eudicots, monocots, magnoliids, Chloranthales, and Ceratophyllales, orders grouped within these clades, and core groups in the monocots or eudicots. However, organellar genes have some limitations; these involve uniparental inheritance in most instances and a relatively low percentage of phylogenetic informative sites. Thus, they are unable to resolve some relationships even when whole plastid genome sequences are used. Therefore, the utility of biparentally inherited nuclear genes with more information about evolutionary history, has gradually received more attention. Nevertheless, there are still some plant groups that are difficult to place in the angiosperm phylogeny, such as those involving the relative positions of the five major groups as well as those of several orders of eudicots. In this review, we discuss the applications, advantages and disadvantages of marker genes, the deep relationships that have been resolved in angiosperm phylogeny, groups with uncertain positions, and the challenges that remain in resolving an accurate phylogeny for angiosperms.

  9. The shape of mammalian phylogeny

    DEFF Research Database (Denmark)

    Purvis, Andy; Fritz, Susanne A; Rodríguez, Jesús

    2011-01-01

    Mammalian phylogeny is far too asymmetric for all contemporaneous lineages to have had equal chances of diversifying. We consider this asymmetry or imbalance from four perspectives. First, we infer a minimal set of 'regime changes'-points at which net diversification rate has changed-identifying ...

  10. Romanian cyprinids phylogeny based on 16S ARN mitochondrial genes

    OpenAIRE

    Luca C.; Kevorkian S.; Elvira M.; Dinischiotu A.; Costache M.

    2007-01-01

    The vertebrate mitochondrial genome has been an important model system for studying molecular evolution, organism phylogeny, and genome structure. Phylogenetic relatioships were inferred from analysis of 570 base pairs (bp) of mithocondrial DNA (mtDNA), representing a conserved region of 16S rRNA. We sequenced 13 cyprinids species and one putative outgroup (Misgurnus fossilis) from Romania. Based upon nucleotide sequence comparisons of cyprinid mitochondrial 16SRNA genes, we established the p...

  11. Correlation between Molecular Structures and Relative Electrophoretic Mobility in Capillary Electrophoresis: Alkylpyridines

    Institute of Scientific and Technical Information of China (English)

    YAO, Xiao-Jun; FAN, Bo-Tao; DOUCET, J. P.; PANAYE, A.; LIU, Man-Cang; ZHANG, Rui-Sheng; HU, Zhi-De

    2003-01-01

    The quantitative relationship between relative electrophoretic mobility in capillary electrophoresis for a series of 31 closely related alkylpyridines and their molecular structures was studied by using CODESSA. According to the t-test on the results, we found that the three most important descriptors affecting the mobility are the relative number of rings (NR), Min e-n attraction for a C-N bond (MEN) and average complementary information index (ACIC). With these structure descriptors a good three-parameter linear model was developed to correlate the mobility of these compounds with their structures. This model can not only correctly predict the migration behavior of these compounds, but also find the structural factors which are responsible for the migration behavior of these compounds,thus can help to explain the separation mechanism of these compounds. The method used in this work can also be extended to the mobility-structure relationship research of other compounds.

  12. Correlation between electron-irradiation defects and applied stress in graphene: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Kida, Shogo; Yamamoto, Masaya; Kawata, Hiroaki; Hirai, Yoshihiko; Yasuda, Masaaki, E-mail: yasuda@pe.osakafu-u.ac.jp [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Tada, Kazuhiro [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, Toyama 939-8630 (Japan)

    2015-09-15

    Molecular dynamics (MD) simulations are performed to study the correlation between electron irradiation defects and applied stress in graphene. The electron irradiation effect is introduced by the binary collision model in the MD simulation. By applying a tensile stress to graphene, the number of adatom-vacancy (AV) and Stone–Wales (SW) defects increase under electron irradiation, while the number of single-vacancy defects is not noticeably affected by the applied stress. Both the activation and formation energies of an AV defect and the activation energy of an SW defect decrease when a tensile stress is applied to graphene. Applying tensile stress also relaxes the compression stress associated with SW defect formation. These effects induced by the applied stress cause the increase in AV and SW defect formation under electron irradiation.

  13. Correlation between the molecular structure and trans←→ cis isomerization characteristics of azobenzenes

    Institute of Scientific and Technical Information of China (English)

    HAN Mina; HONDA Takumu

    2012-01-01

    Photochemical and thermal isomerization of various azobenzenes was systematically investigated to understand the correlation between the molecular structure and trans←→cis isomerization characteristics of azobenzenes.A blue shift in π-π* absorption band of ortho-alkylated azobenzenes (1o and 2o) was observed together with a reduction in molar extinction coefficient (ε) in comparison with both meta-alkylated azobenzenes (4m and 5m) and 7p lacking the meta and ortho substituents.For ortho-alkylated azobenzene,photochemical trans-to-cis isomerization and thermal back cis-to-trans isomerization in solution occurred slowly when compared with 4m,5m and 7p.The half-life time of the cis form of 2o was found to be 380 h,which is about 8-50 times longer than those of comparable 4m,5m (43-13 h) and 7p (7h).Furthermore,comparison of the molecular structure and isomerization characteristics of azobenzene thiol (2oand 5m) self-assembled monolayers on flat gold surfaces indicates that the trans-to-cis photoconversion in monolayer systems is influenced by steric hindrance and strong intermolecular interaction between azobenzene units.

  14. Long-range correlated dynamics in ultra-thin molecular glass films

    Science.gov (United States)

    Zhang, Yue; Glor, Ethan C.; Li, Mu; Liu, Tianyi; Wahid, Kareem; Zhang, William; Riggleman, Robert A.; Fakhraai, Zahra

    2016-09-01

    It has been previously shown that the free surface of molecular glasses has enhanced surface diffusion compared to the bulk. However, the degree by which the glass dynamics are affected by the free surface remains unexplored. Here, we measure enhanced dynamics in ultra-thin molecular glass films as a function of film thickness. We demonstrate that these films exhibit a sharp transition from glassy solid to liquid-like behavior when the thickness is reduced below 30 nm. This liquid-like behavior persists even at temperatures well below the glass transition temperature, Tg. The enhanced dynamics in these films can produce large scale morphological features during physical vapor deposition and lead to a dewetting instability in films held at temperatures as low as Tg - 35 K. The effective viscosity of these films are measured by monitoring the dewetting kinetics. These measurements combined with cooling-rate dependent Tg measurements show that the apparent activation barrier for rearrangement decreases sharply in films thinner than 30 nm. This sharp transition in the dynamics suggests that long-range correlated dynamics exists in these films such that the enhancement induced by the free surface can strongly affect the dynamics of the film over a length scale that is ten times larger than the size of the molecules.

  15. Correlation between Fragility and the Arrhenius Crossover Phenomenon in Metallic, Molecular, and Network Liquids.

    Science.gov (United States)

    Jaiswal, Abhishek; Egami, Takeshi; Kelton, K F; Schweizer, Kenneth S; Zhang, Yang

    2016-11-11

    We report the observation of a distinct correlation between the kinetic fragility index m and the reduced Arrhenius crossover temperature θ_{A}=T_{A}/T_{g} in various glass-forming liquids, identifying three distinguishable groups. In particular, for 11 glass-forming metallic liquids, we universally observe a crossover in the mean diffusion coefficient from high-temperature Arrhenius to low-temperature super-Arrhenius behavior at approximately θ_{A}≈2 which is in the stable liquid phases. In contrast, for fragile molecular liquids, this crossover occurs at much lower θ_{A}≈1.4 and usually in their supercooled states. The θ_{A} values for strong network liquids spans a wide range higher than 2. Intriguingly, the high-temperature activation barrier E_{∞} is universally found to be ∼11k_{B}T_{g} and uncorrelated with the fragility or the reduced crossover temperature θ_{A} for metallic and molecular liquids. These observations provide a way to estimate the low-temperature glassy characteristics (T_{g} and m) from the high-temperature liquid quantities (E_{∞} and θ_{A}).

  16. Molecular correlates of social dominance: a novel role for ependymin in aggression.

    Science.gov (United States)

    Sneddon, Lynne U; Schmidt, Rupert; Fang, Yongxiang; Cossins, Andrew R

    2011-04-05

    Theoretical and empirical studies have sought to explain the formation and maintenance of social relationships within groups. The resulting dominance hierarchies have significant fitness and survival consequences dependent upon social status. We hypothesised that each position or rank within a group has a distinctive brain gene expression profile that correlates with behavioural phenotype. Furthermore, transitions in rank position should determine which genes shift in expression concurrent with the new dominance status. We used a custom cDNA microarray to profile brain transcript expression in a model species, the rainbow trout, which forms tractable linear hierarchies. Dominant, subdominant and submissive individuals had distinctive transcript profiles with 110 gene probes identified using conservative statistical analyses. By removing the dominant, we characterised the changes in transcript expression in sub-dominant individuals that became dominant demonstrating that the molecular transition occurred within 48 hours. A strong, novel candidate gene, ependymin, which was highly expressed in both the transcript and protein in subdominants relative to dominants, was tested further. Using antibody injection to inactivate ependymin in pairs of dominant and subdominant zebrafish, the subdominant fish exhibited a substantial increase in aggression in parallel with an enhanced competitive ability. This is the first study to characterise the molecular signatures of dominance status within groups and the first to implicate ependymin in control of aggressive behaviour. It also provides evidence for indirect genetic effect models in which genotype/phenotype of an individual is influenced by conspecific interactions within a group. The variation in the molecular profile of each individual within a group may offer a new explanation of intraspecific variation in gene expression within undefined groups of animals and provides new candidates for empirical study.

  17. Molecular correlates of social dominance: a novel role for ependymin in aggression.

    Directory of Open Access Journals (Sweden)

    Lynne U Sneddon

    Full Text Available Theoretical and empirical studies have sought to explain the formation and maintenance of social relationships within groups. The resulting dominance hierarchies have significant fitness and survival consequences dependent upon social status. We hypothesised that each position or rank within a group has a distinctive brain gene expression profile that correlates with behavioural phenotype. Furthermore, transitions in rank position should determine which genes shift in expression concurrent with the new dominance status. We used a custom cDNA microarray to profile brain transcript expression in a model species, the rainbow trout, which forms tractable linear hierarchies. Dominant, subdominant and submissive individuals had distinctive transcript profiles with 110 gene probes identified using conservative statistical analyses. By removing the dominant, we characterised the changes in transcript expression in sub-dominant individuals that became dominant demonstrating that the molecular transition occurred within 48 hours. A strong, novel candidate gene, ependymin, which was highly expressed in both the transcript and protein in subdominants relative to dominants, was tested further. Using antibody injection to inactivate ependymin in pairs of dominant and subdominant zebrafish, the subdominant fish exhibited a substantial increase in aggression in parallel with an enhanced competitive ability. This is the first study to characterise the molecular signatures of dominance status within groups and the first to implicate ependymin in control of aggressive behaviour. It also provides evidence for indirect genetic effect models in which genotype/phenotype of an individual is influenced by conspecific interactions within a group. The variation in the molecular profile of each individual within a group may offer a new explanation of intraspecific variation in gene expression within undefined groups of animals and provides new candidates for empirical

  18. Ecological interaction and phylogeny, studying functionality on composed networks

    Science.gov (United States)

    Cruz, Claudia P. T.; Fonseca, Carlos Roberto; Corso, Gilberto

    2012-02-01

    We study a class of composed networks that are formed by two tree networks, TP and TA, whose end points touch each other through a bipartite network BPA. We explore this network using a functional approach. We are interested in how much the topology, or the structure, of TX (X=A or P) determines the links of BPA. This composed structure is a useful model in evolutionary biology, where TP and TA are the phylogenetic trees of plants and animals that interact in an ecological community. We make use of ecological networks of dispersion of fruits, which are formed by frugivorous animals and plants with fruits; the animals, usually birds, eat fruits and disperse their seeds. We analyse how the phylogeny of TX determines or is correlated with BPA using a Monte Carlo approach. We use the phylogenetic distance among elements that interact with a given species to construct an index κ that quantifies the influence of TX over BPA. The algorithm is based on the assumption that interaction matrices that follows a phylogeny of TX have a total phylogenetic distance smaller than the average distance of an ensemble of Monte Carlo realisations. We find that the effect of phylogeny of animal species is more pronounced in the ecological matrix than plant phylogeny.

  19. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy

    Science.gov (United States)

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-03-01

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.

  20. Molecular marker heterozygosities and genetic distances as correlates of production traits in F1 bovine crosses