WorldWideScience

Sample records for correlates brain death-induced

  1. Signal Transduction Pathways Involved in Brain Death-Induced Renal Injury

    NARCIS (Netherlands)

    Bouma, H. R.; Ploeg, R. J.; Schuurs, T. A.

    2009-01-01

    Kidneys derived from brain death organ donors show an inferior survival when compared to kidneys derived from living donors. Brain death is known to induce organ injury by evoking an inflammatory response in the donor. Neuronal injury triggers an inflammatory response in the brain, leading to endoth

  2. Brain death induces the alteration of liver protein expression profiles in rabbits.

    Science.gov (United States)

    Du, Bing; Li, Ling; Zhong, Zhibiao; Fan, Xiaoli; Qiao, Bingbing; He, Chongxiang; Fu, Zhen; Wang, Yanfeng; Ye, Qifa

    2014-08-01

    At present, there is no accurate method for evaluating the quality of liver transplant from a brain-dead donor. Proteomics are used to investigate the mechanisms involved in brain death‑induced liver injury and to identify sensitive biomarkers. In the present study, age‑ and gender‑matched rabbits were randomly divided into the brain death and sham groups. The sham served as the control. A brain‑death model was established using an intracranial progressive pressurized method. The differentially expressed proteins extracted from the liver tissues of rabbits that were brain‑dead for 6 h in the two groups were determined by two‑dimensional gel electrophoresis and matrix‑assisted laser desorption ionization time of flight mass spectrometry. Although there was no obvious functional and morphological difference in 2, 4 and 6 h after brain death, results of the proteomics analysis revealed 973±34 and 987±38 protein spots in the control and brain death groups, respectively. Ten proteins exhibited a ≥2‑fold alteration. The downregulated proteins were: aldehyde dehydrogenase, runt‑related transcription factor 1 (RUNX1), inorganic pyrophosphatase, glutamate‑cysteine ligase regulatory subunit and microsomal cytochrome B5. By contrast, the expression of dihydropyrimidinase-related protein 4, peroxiredoxin‑6, 3‑phosphoinositide‑dependent protein kinase‑1, 3-mercaptopyruvate and alcohol dehydrogenase were clearly upregulated. Immunohistochemistry and western blot analysis results revealed that the expression of RUNX1 was gradually increased in a time‑dependent manner in 2, 4, and 6 h after brain death. In conclusion, alteration of the liver protein expression profile induced by brain death indicated the occurrence of complex pathological changes even if no functional or morphological difference was identified. Thus, RUNX1 may be a sensitive predict factor for evaluating the quality of brain death donated liver.

  3. Furan fatty acids efficiently rescue brain cells from cell death induced by oxidative stress

    NARCIS (Netherlands)

    Teixeira, A.; Cox, R.C.; Egmond, M.R.

    2013-01-01

    Treatment of rat brain C6 astroglioma cells with furan fatty acid F6 prior to exposure to hydrogen peroxide shows a strong protective effect of F6 against cell death resulting from oxidative stress. This protective effect is obtained only for F6 administered as a free fatty acid and with an intact f

  4. Furan fatty acids efficiently rescue brain cells from cell death induced by oxidative stress.

    Science.gov (United States)

    Teixeira, Antoinette; Cox, Ruud C; Egmond, Maarten R

    2013-08-01

    Treatment of rat brain C6 astroglioma cells with furan fatty acid F6 prior to exposure to hydrogen peroxide shows a strong protective effect of F6 against cell death resulting from oxidative stress. This protective effect is obtained only for F6 administered as a free fatty acid and with an intact furan ring. It is proposed that brain cells are rescued by F6 scavenging radicals elicited by lipid peroxidation within the cell membrane. Oxidative processes outside the cell membrane, such as protein carbonylation, are not affected by F6. Furan fatty acids such as those present in fish oils and marine organisms are likely beneficial for consumption in reducing the risk of diseases that have been implicated to arise from oxidative stress, such as Alzheimer's disease.

  5. Kidney Injury Molecule-1 is an Early Noninvasive Indicator for Donor Brain Death-Induced Injury Prior to Kidney Transplantation

    NARCIS (Netherlands)

    Nijboer, W. N.; Schuurs, T. A.; Damman, J.; van Goor, H.; Vaidya, V. S.; van der Heide, J. J. Homan; Leuvenink, H. G. D.; Bonventre, J. V.; Ploeg, R. J.

    2009-01-01

    In rat kidney, real-time PCR revealed a 46-fold Kim-1 gene upregulation after 4 h of brain death. In situ hybridization showed proximal tubular Kim-1 localization, which was confirmed by immunohistochemistry. Also, Luminex assay showed a 6.6-fold Kim-1 rise in urine after 4 h of brain death. In huma

  6. Brain death induced renal injury

    NARCIS (Netherlands)

    Westendorp, Welmoet H.; Leuvenink, Henri G.; Ploeg, Rutger J.

    2011-01-01

    Purpose of review The considerable demand in kidney transplantation against a persisting organ donor shortage has forced most centers to nowadays accept of suboptimal donor kidneys. Recent findings Despite the substantial increase in the past decade in kidney transplantation with grafts retrieved fr

  7. A novel neuron-enriched protein SDIM1 is down regulated in Alzheimer's brains and attenuates cell death induced by DNAJB4 over-expression in neuro-progenitor cells

    Directory of Open Access Journals (Sweden)

    Lei Joy X

    2011-01-01

    Full Text Available Abstract Background Molecular changes in multiple biological processes contribute to the development of chronic neurodegeneration such as late onset Alzheimer's disease (LOAD. To discover how these changes are reflected at the level of gene expression, we used a subtractive transcription-based amplification of mRNA procedure to identify novel genes that have altered expression levels in the brains of Alzheimer's disease (AD patients. Among the genes altered in expression level in AD brains was a transcript encoding a novel protein, SDIM1, that contains 146 amino acids, including a typical signal peptide and two transmembrane domains. Here we examined its biochemical properties and putative roles in neuroprotection/neurodegeneration. Results QRT-PCR analysis of additional AD and control post-mortem human brains showed that the SDIM1 transcript was indeed significantly down regulated in all AD brains. SDIM1 is more abundant in NT2 neurons than astrocytes and present throughout the cytoplasm and neural processes, but not in the nuclei. In NT2 neurons, it is highly responsive to stress conditions mimicking insults that may cause neurodegeneration in AD brains. For example, SDIM1 was significantly down regulated 2 h after oxygen-glucose deprivation (OGD, though had recovered 16 h later, and also appeared significantly up regulated compared to untreated NT2 neurons. Overexpression of SDIM1 in neuro-progenitor cells improved cells' ability to survive after injurious insults and its downregulation accelerated cell death induced by OGD. Yeast two-hybrid screening and co-immunoprecipitation approaches revealed, both in vitro and in vivo, an interaction between SDIM1 and DNAJB4, a heat shock protein hsp40 homolog, recently known as an enhancer of apoptosis that also interacts with the mu opioid receptor in human brain. Overexpression of DNAJB4 alone significantly reduced cell viability and SDIM1 co-overexpression was capable of attenuating the cell death

  8. Brain correlates of subjective freedom of choice.

    Science.gov (United States)

    Filevich, Elisa; Vanneste, Patricia; Brass, Marcel; Fias, Wim; Haggard, Patrick; Kühn, Simone

    2013-12-01

    The subjective feeling of free choice is an important feature of human experience. Experimental tasks have typically studied free choice by contrasting free and instructed selection of response alternatives. These tasks have been criticised, and it remains unclear how they relate to the subjective feeling of freely choosing. We replicated previous findings of the fMRI correlates of free choice, defined objectively. We introduced a novel task in which participants could experience and report a graded sense of free choice. BOLD responses for conditions subjectively experienced as free identified a postcentral area distinct from the areas typically considered to be involved in free action. Thus, the brain correlates of subjective feeling of free action were not directly related to any established brain correlates of objectively-defined free action. Our results call into question traditional assumptions about the relation between subjective experience of choosing and activity in the brain's so-called voluntary motor areas. Copyright © 2013. Published by Elsevier Inc.

  9. Novel bio-spectroscopic imaging reveals disturbed protein homeostasis and thiol redox with protein aggregation prior to hippocampal CA1 pyramidal neuron death induced by global brain ischemia in the rat.

    Science.gov (United States)

    Hackett, Mark J; Smith, Shari E; Caine, Sally; Nichol, Helen; George, Graham N; Pickering, Ingrid J; Paterson, Phyllis G

    2015-12-01

    Global brain ischemia resulting from cardiac arrest and cardiac surgery can lead to permanent brain damage and mental impairment. A clinical hallmark of global brain ischemia is delayed neurodegeneration, particularly within the CA1 subsector of the hippocampus. Unfortunately, the biochemical mechanisms have not been fully elucidated, hindering optimization of current therapies (i.e., therapeutic hypothermia) or development of new therapies. A major limitation to elucidating the mechanisms that contribute to neurodegeneration and understanding how these are influenced by potential therapies is the inability to relate biochemical markers to alterations in the morphology of individual neurons. Although immunocytochemistry allows imaging of numerous biochemical markers at the sub-cellular level, it is not a direct chemical imaging technique and requires successful "tagging" of the desired analyte. Consequently, important biochemical parameters, particularly those that manifest from oxidative damage to biological molecules, such as aggregated protein levels, have been notoriously difficult to image at the cellular or sub-cellular level. It has been hypothesized that reactive oxygen species (ROS) generated during ischemia and reperfusion facilitate protein aggregation, impairing neuronal protein homeostasis (i.e., decreasing protein synthesis) that in turn promotes neurodegeneration. Despite indirect evidence for this theory, direct measurements of morphology and ROS induced biochemical damage, such as increased protein aggregates and decreased protein synthesis, within the same neuron is lacking, due to the unavailability of a suitable imaging method. Our experimental approach has incorporated routine histology with novel wide-field synchrotron radiation Fourier transform infrared imaging (FTIRI) of the same neurons, ex vivo within brain tissue sections. The results demonstrate for the first time that increased protein aggregation and decreased levels of total protein

  10. Structural brain correlates of adolescent resilience.

    Science.gov (United States)

    Burt, Keith B; Whelan, Robert; Conrod, Patricia J; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Fauth-Bühler, Mira; Flor, Herta; Galinowski, André; Gallinat, Juergen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Mann, Karl; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Paus, Tomas; Pausova, Zdenka; Poustka, Luise; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Ströhle, Andreas; Schumann, Gunter; Garavan, Hugh

    2016-11-01

    Despite calls for integration of neurobiological methods into research on youth resilience (high competence despite high adversity), we know little about structural brain correlates of resilient functioning. The aim of the current study was to test for brain regions uniquely associated with positive functioning in the context of adversity, using detailed phenotypic classification. 1,870 European adolescents (Mage  = 14.56 years, SDage  = 0.44 years, 51.5% female) underwent MRI scanning and completed behavioral and psychological measures of stressful life events, academic competence, social competence, rule-abiding conduct, personality, and alcohol use. The interaction of competence and adversity identified two regions centered on the right middle and superior frontal gyri; grey matter volumes in these regions were larger in adolescents experiencing adversity who showed positive adaptation. Differences in these regions among competence/adversity subgroups were maintained after controlling for several covariates and were robust to alternative operationalization decisions for key constructs. We demonstrate structural brain correlates of adolescent resilience, and suggest that right prefrontal structures are implicated in adaptive functioning for youth who have experienced adversity. © 2016 Association for Child and Adolescent Mental Health.

  11. Brain correlates of music-evoked emotions.

    Science.gov (United States)

    Koelsch, Stefan

    2014-03-01

    Music is a universal feature of human societies, partly owing to its power to evoke strong emotions and influence moods. During the past decade, the investigation of the neural correlates of music-evoked emotions has been invaluable for the understanding of human emotion. Functional neuroimaging studies on music and emotion show that music can modulate activity in brain structures that are known to be crucially involved in emotion, such as the amygdala, nucleus accumbens, hypothalamus, hippocampus, insula, cingulate cortex and orbitofrontal cortex. The potential of music to modulate activity in these structures has important implications for the use of music in the treatment of psychiatric and neurological disorders.

  12. Improving standards in brain-behavior correlation analyses.

    Science.gov (United States)

    Rousselet, Guillaume A; Pernet, Cyril R

    2012-01-01

    Associations between two variables, for instance between brain and behavioral measurements, are often studied using correlations, and in particular Pearson correlation. However, Pearson correlation is not robust: outliers can introduce false correlations or mask existing ones. These problems are exacerbated in brain imaging by a widespread lack of control for multiple comparisons, and several issues with data interpretations. We illustrate these important problems associated with brain-behavior correlations, drawing examples from published articles. We make several propositions to alleviate these problems.

  13. Metabolic brain imaging correlated with clinical features of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, J.; Alavi, A.; Dann, R.; Kushner, M.; Chawluk, J.; Powlis, W.; Reivich, M.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1 enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.

  14. On possible linguistic correlates to brain lateralization

    Directory of Open Access Journals (Sweden)

    Tania Kouteva/Kuteva

    2014-04-01

    The present paper compares the two modes of processing proposed by Van Lancker Sidtis (2009 in her dual process model and the two domains of discourse organization distinguished in the framework of Discourse Grammar (Heine et al. 2013; Kaltenböck et al. 2011. These two frameworks were developed on different kinds of data. In the dual process model it is observations on patients with left or right hemisphere damage that marked the starting point of analysis. Central to the dual process model is the distinction between novel speech (or novel language, or newly created language, or propositional speech and formulaic speech (or formulaic expressions or automatic speech. Easily identified instances of formulaic speech are swear words, interjections, pause fillers, discourse elements, non-literal lexical meanings for idioms, proverbs. Unlike the dual process model, in the Discourse Grammar model it is linguistic discontinuities that provided the basis of analysis. Discourse grammar in this model is understood as all the linguistic resources that are available for constructing spoken and written (and signed texts. We argue that Discourse Grammar can be divided into two distinct domains, namely Sentence Grammar and Thetical Grammar. Whereas Sentence Grammar has been at the centre of interest in mainstream linguistics, Thetical Grammar encompasses linguistic phenomena – such as formulae of social exchange, imperatives, vocatives, interjections, including hesitation markers and pause fillers and what is traditionally known as “parenthetical” constructions – that pose a problem to orthodox grammatical analysis. We show that the findings made within the two frameworks are largely compatible with one another: both models converge on claiming that there is a significant correlation between linguistic categorization and hemisphere-based brain activity. In the dual process model it is hypothesized that there is a significant correlation between certain kinds of speech

  15. Brain correlates of automatic visual change detection.

    Science.gov (United States)

    Cléry, H; Andersson, F; Fonlupt, P; Gomot, M

    2013-07-15

    A number of studies support the presence of visual automatic detection of change, but little is known about the brain generators involved in such processing and about the modulation of brain activity according to the salience of the stimulus. The study presented here was designed to locate the brain activity elicited by unattended visual deviant and novel stimuli using fMRI. Seventeen adult participants were presented with a passive visual oddball sequence while performing a concurrent visual task. Variations in BOLD signal were observed in the modality-specific sensory cortex, but also in non-specific areas involved in preattentional processing of changing events. A degree-of-deviance effect was observed, since novel stimuli elicited more activity in the sensory occipital regions and at the medial frontal site than small changes. These findings could be compared to those obtained in the auditory modality and might suggest a "general" change detection process operating in several sensory modalities. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Neural correlates of establishing, maintaining, and switching brain states.

    Science.gov (United States)

    Tang, Yi-Yuan; Rothbart, Mary K; Posner, Michael I

    2012-06-01

    Although the study of brain states is an old one in neuroscience, there has been growing interest in brain state specification owing to MRI studies tracing brain connectivity at rest. In this review, we summarize recent research on three relatively well-described brain states: the resting, alert, and meditation states. We explore the neural correlates of maintaining a state or switching between states, and argue that the anterior cingulate cortex and striatum play a critical role in state maintenance, whereas the insula has a major role in switching between states. Brain state may serve as a predictor of performance in a variety of perceptual, memory, and problem solving tasks. Thus, understanding brain states is critical for understanding human performance.

  17. Temporal lobe cortical thickness correlations differentiate the migraine brain from the healthy brain.

    Directory of Open Access Journals (Sweden)

    Todd J Schwedt

    Full Text Available Interregional cortical thickness correlations reflect underlying brain structural connectivity and functional connectivity. A few prior studies have shown that migraine is associated with atypical cortical brain structure and atypical functional connectivity amongst cortical regions that participate in sensory processing. However, the specific brain regions that most accurately differentiate the migraine brain from the healthy brain have yet to be determined. The aim of this study was to identify the brain regions that comprised interregional cortical thickness correlations that most differed between migraineurs and healthy controls.This was a cross-sectional brain magnetic resonance imaging (MRI investigation of 64 adults with migraine and 39 healthy control subjects recruited from tertiary-care medical centers and their surrounding communities. All subjects underwent structural brain MRI imaging on a 3T scanner. Cortical thickness was determined for 70 brain regions that cover the cerebral cortex and cortical thickness correlations amongst these regions were calculated. Cortical thickness correlations that best differentiated groups of six migraineurs from controls and vice versa were identified.A model containing 15 interregional cortical thickness correlations differentiated groups of migraineurs from healthy controls with high accuracy. The right temporal pole was involved in 13 of the 15 interregional correlations while the right middle temporal cortex was involved in the other two.A model consisting of 15 interregional cortical thickness correlations accurately differentiates the brains of small groups of migraineurs from those of healthy controls. Correlations with the right temporal pole were highly represented in this classifier, suggesting that this region plays an important role in migraine pathophysiology.

  18. Brain Event - Related Correlates of Concept Learning

    Science.gov (United States)

    1983-05-01

    significant discrimination between below- and above-average concept learners. Molfese, Papanicolau , Hess, and Molfese (1979), however, identified...1970, �’ 59-72. Molfese, D., Papanicolau , A., Hess, T, & Molfese, V. Neuroelectrical correlates of semantic processes. In H. Begleiter (Ed

  19. Using brain stimulation to disentangle neural correlates of conscious vision

    Science.gov (United States)

    de Graaf, Tom A.; Sack, Alexander T.

    2014-01-01

    Research into the neural correlates of consciousness (NCCs) has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as functional magnetic resonance imaging or electroencephalography do not always afford inference on the functional role these brain processes play in conscious vision. Such empirical NCCs could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS) techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical NCCs. PMID:25295015

  20. Brain correlates of aesthetic judgment of beauty.

    Science.gov (United States)

    Jacobsen, Thomas; Schubotz, Ricarda I; Höfel, Lea; Cramon, D Yves V

    2006-01-01

    Functional MRI was used to investigate the neural correlates of aesthetic judgments of beauty of geometrical shapes. Participants performed evaluative aesthetic judgments (beautiful or not?) and descriptive symmetry judgments (symmetric or not?) on the same stimulus material. Symmetry was employed because aesthetic judgments are known to be often guided by criteria of symmetry. Novel, abstract graphic patterns were presented to minimize influences of attitudes or memory-related processes and to test effects of stimulus symmetry and complexity. Behavioral results confirmed the influence of stimulus symmetry and complexity on aesthetic judgments. Direct contrasts showed specific activations for aesthetic judgments in the frontomedian cortex (BA 9/10), bilateral prefrontal BA 45/47, and posterior cingulate, left temporal pole, and the temporoparietal junction. In contrast, symmetry judgments elicited specific activations in parietal and premotor areas subserving spatial processing. Interestingly, beautiful judgments enhanced BOLD signals not only in the frontomedian cortex, but also in the left intraparietal sulcus of the symmetry network. Moreover, stimulus complexity caused differential effects for each of the two judgment types. Findings indicate aesthetic judgments of beauty to rely on a network partially overlapping with that underlying evaluative judgments on social and moral cues and substantiate the significance of symmetry and complexity for our judgment of beauty.

  1. Correlation of cell apoptosis with brain edema and elevated intracranial pressure in traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-feng; LIU Wei-guo; SHEN Hong; GONG Jiang-biao; YU Jun; HU Wei-wei; L(U) Shi-ting; ZHENG Xiu-jue; FU Wei-ming

    2005-01-01

    Objective: To study the correlation between brain edema, elevated intracranial pressure (ICP) and cell apoptosis in traumatic brain injury (TBI). Methods: In this study, totally 42 rabbits in 7 groups were studied. Six of the animals were identified as a control group, and the remaining 36 animals were equally divided into 6 TBI groups. TBI models were produced by the modified method of Feeney. After the impact, ICP of each subject was recorded continuously by an ICP monitor until the animal was sacrificed at scheduled time. The apoptotic brain cells were detected by an terminal deoxynucleotide-transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) assay. Cerebral water content (CWC) was measured with a drying method and calculated according to the Elliott formula. Then, an analysis was conducted to determine the correlation between the count of apoptotic cells and the clinical pathological changes of the brain. Results: Apoptotic cell count began to increase 2 h after the impact, and reached its maximum about 3 days after the impact. The peak value of CWC and ICP appeared 1 day and 3 days after the impact, respectively. Apoptotic cell count had a positive correlation with CWC and ICP. Conclusions: In TBI, occurrence of brain edema and ICP increase might lead to apoptosis of brain cells. Any therapy which can relieve brain edema and/or decrease ICP would be able to reduce neuron apoptosis, thereby to attenuate the secondary brain damage.

  2. Imaging of brain tumors with histological correlations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, Antonios (ed.)

    2011-07-01

    This volume provides a deeper understanding of the diagnosis of brain tumors by correlating radiographic imaging features with the underlying pathological abnormalities. All modern imaging modalities are used to complete a diagnostic overview of brain tumors with emphasis on recent advances in diagnostic neuroradiology. High-quality illustrations depicting common and uncommon imaging characteristics of a wide range of brain tumors are presented and analysed, drawing attention to the ways in which these characteristics reflect different aspects of pathology. Important theoretical considerations are also discussed. Since the first edition, chapters have been revised and updated and new material has been added, including detailed information on the clinical application of functional MRI and diffusion tensor imaging. Radiologists and other clinicians interested in the current diagnostic approach to brain tumors will find this book to be an invaluable and enlightening clinical tool. (orig.)

  3. Stereoscopic depth increases intersubject correlations of brain networks.

    Science.gov (United States)

    Gaebler, Michael; Biessmann, Felix; Lamke, Jan-Peter; Müller, Klaus-Robert; Walter, Henrik; Hetzer, Stefan

    2014-10-15

    Three-dimensional movies presented via stereoscopic displays have become more popular in recent years aiming at a more engaging viewing experience. However, neurocognitive processes associated with the perception of stereoscopic depth in complex and dynamic visual stimuli remain understudied. Here, we investigate the influence of stereoscopic depth on both neurophysiology and subjective experience. Using multivariate statistical learning methods, we compare the brain activity of subjects when freely watching the same movies in 2D and in 3D. Subjective reports indicate that 3D movies are more strongly experienced than 2D movies. On the neural level, we observe significantly higher intersubject correlations of cortical networks when subjects are watching 3D movies relative to the same movies in 2D. We demonstrate that increases in intersubject correlations of brain networks can serve as neurophysiological marker for stereoscopic depth and for the strength of the viewing experience.

  4. [Correlation of brain electrical activity and motivation in healthy people].

    Science.gov (United States)

    Bogovin, L V; Nakhamchen, D L; Kolosov, V P; Perel'man, Iu M

    2014-01-01

    Motivation dominates in the structure of the personality and is one of the basic notions which explains the dynamics of the behavior. The literature has little data about neurophysiology of motivation. The aim of the research was to study the correlation between the motivational sphere and electrical activity of the brain at the influence of different provocations. 24 healthy people at the age of 26-36 years were examined. The results of motivation tests turned out to be uniform (the motivation to success was of a moderate or high level, there were mean values of readiness to risk and low motivation to achievement and approval). Multiple correlations between different types of motivation and electrical activity of the brain at rest, at hyperventilation with room temperature air and at isocapnic cold air hyperventilation were revealed.

  5. Brain activity correlates with emotional perception induced by dynamic avatars.

    Science.gov (United States)

    Goldberg, Hagar; Christensen, Andrea; Flash, Tamar; Giese, Martin A; Malach, Rafael

    2015-11-15

    An accurate judgment of the emotional state of others is a prerequisite for successful social interaction and hence survival. Thus, it is not surprising that we are highly skilled at recognizing the emotions of others. Here we aimed to examine the neuronal correlates of emotion recognition from gait. To this end we created highly controlled dynamic body-movement stimuli based on real human motion-capture data (Roether et al., 2009). These animated avatars displayed gait in four emotional (happy, angry, fearful, and sad) and speed-matched neutral styles. For each emotional gait and its equivalent neutral gait, avatars were displayed at five morphing levels between the two. Subjects underwent fMRI scanning while classifying the emotions and the emotional intensity levels expressed by the avatars. Our results revealed robust brain selectivity to emotional compared to neutral gait stimuli in brain regions which are involved in emotion and biological motion processing, such as the extrastriate body area (EBA), fusiform body area (FBA), superior temporal sulcus (STS), and the amygdala (AMG). Brain activity in the amygdala reflected emotional awareness: for visually identical stimuli it showed amplified stronger response when the stimulus was perceived as emotional. Notably, in avatars gradually morphed along an emotional expression axis there was a parametric correlation between amygdala activity and emotional intensity. This study extends the mapping of emotional decoding in the human brain to the domain of highly controlled dynamic biological motion. Our results highlight an extensive level of brain processing of emotional information related to body language, which relies mostly on body kinematics.

  6. Brain correlates of negative and positive visuospatial priming in adults.

    Science.gov (United States)

    Wright, Christopher I; Keuthen, Nancy J; Savage, Cary R; Martis, Brian; Williams, Danielle; Wedig, Michelle; McMullin, Katherine; Rauch, Scott L

    2006-04-15

    A balance of inhibitory and facilitatory mechanisms is essential for efficient and goal-directed behaviors. These mechanisms may go awry in several neuropsychiatric disorders characterized by uncontrolled, repetitive behaviors. The visuospatial priming paradigm is a well-established probe of inhibition and facilitation that has been used to demonstrate behavioral deficits in patients with Tourette syndrome and obsessive-compulsive disorder. However, the brain correlates of this visuospatial priming paradigm are not yet well established. In the present study, we used a visuospatial priming paradigm and event-related functional MRI, to probe inhibitory and facilitatory brain mechanisms in healthy adult women. When subjects performed the negative priming (i.e., inhibitory) task, several regions of the prefrontal cortex were selectively activated relative to the neutral condition. Non-overlapping regions of the prefrontal cortex were deactivated in the positive priming condition. These results support the notion that the prefrontal cortex is involved in both inhibitory and facilitatory processing and demonstrate that this visuospatial priming task shares brain correlates with other positive and negative priming tasks. In conjunction with functional MRI, this visuospatial priming task may be useful for studying the pathophysiology of neuropsychiatric disorders in which deficient inhibitory processing or excessive facilitation is a feature.

  7. Structural brain correlates associated with professional handball playing.

    Directory of Open Access Journals (Sweden)

    Jürgen Hänggi

    Full Text Available There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands.We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM of the primary/secondary motor (MI/supplementary motor area, SMA and somatosensory cortex (SI/SII, basal ganglia, thalamus, and cerebellum and in the white matter (WM of the corticospinal tract (CST and corpus callosum, stronger in brain regions controlling the non-dominant left hand.Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women.Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a

  8. Spatial organization and correlations of cell nuclei in brain tumors.

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    Full Text Available Accepting the hypothesis that cancers are self-organizing, opportunistic systems, it is crucial to understand the collective behavior of cancer cells in their tumorous heterogeneous environment. In the present paper, we ask the following basic question: Is this self-organization of tumor evolution reflected in the manner in which malignant cells are spatially distributed in their heterogeneous environment? We employ a variety of nontrivial statistical microstructural descriptors that arise in the theory of heterogeneous media to characterize the spatial distributions of the nuclei of both benign brain white matter cells and brain glioma cells as obtained from histological images. These descriptors, which include the pair correlation function, structure factor and various nearest neighbor functions, quantify how pairs of cell nuclei are correlated in space in various ways. We map the centroids of the cell nuclei into point distributions to show that while commonly used local spatial statistics (e.g., cell areas and number of neighboring cells cannot clearly distinguish spatial correlations in distributions of normal and abnormal cell nuclei, their salient structural features are captured very well by the aforementioned microstructural descriptors. We show that the tumorous cells pack more densely than normal cells and exhibit stronger effective repulsions between any pair of cells. Moreover, we demonstrate that brain gliomas are organized in a collective way rather than randomly on intermediate and large length scales. The existence of nontrivial spatial correlations between the abnormal cells strongly supports the view that cancer is not an unorganized collection of malignant cells but rather a complex emergent integrated system.

  9. Sexual behavior and its correlates after traumatic brain injury.

    Science.gov (United States)

    Turner, Daniel; Schöttle, Daniel; Krueger, Richard; Briken, Peer

    2015-03-01

    Traumatic brain injury (TBI) is one of the leading causes of permanent disability in young adults and is frequently accompanied by changes in sexual behaviors. Satisfying sexuality is an important factor for overall quality of life in people with disabilities. The purpose of this article is to review the studies evaluating the assessment, correlates and management of sexuality following TBI. The Brain Injury Questionnaire of Sexuality is the first validated questionnaire specifically developed for adults with TBI. A considerable amount of individuals with TBI show inappropriate sexual behaviors and sexual dysfunctions. Whereas inappropriate sexual behaviors are related to younger age, less social participation and more severe injuries, sexual dysfunctions show an association with higher fatigue, higher depression scores, less self-esteem and female sex. Healthcare professionals have suggested that because of discomfort at the individual or institutional level, sexual problems are often not sufficiently addressed and have suggested that a specialist should treat sexual problems. Although some important correlates of sexual problems could be identified, methodological differences across studies limit their comparability. Furthermore, there is an absence of evidence-based treatment strategies for addressing sexual problems. Therapeutic efforts should take into account the identified correlates of sexual problems following TBI.

  10. Flow distributions and spatial correlations in human brain capillary networks

    Science.gov (United States)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy

    2015-11-01

    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  11. Correlation of brain-derived neurotrophic factor to cognitive impairment following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Dezhi Kang; Zhang Guo

    2008-01-01

    BACKGROUND: In vitro and in vivo studies have confirmed that brain-derived neurotrophic factor (BDNF) can promote survival and differentiation of cholinergic, dopaminergic and motor neurons, and axonal regeneration. BDNF has neuroprotective effects on the nervous system. OBJECTIVE: To explore changes in BDNF expression and cognitive function in rats after brain injury DESIGN, TIME AND SETTING: The neuropathology experiment was performed at the Second Research Room, Department of Neurosurgery, Fujian Medical University (China) from July 2007 to July 2008. MATERIALS: A total of 72 healthy, male, Sprague Dawley, rats were selected for this study. METHODS: Rat models of mild and moderate traumatic brain injury were created by percussion, according to Feeney's method (n = 24, each group). A bone window was made in rats from the sham operation group (n = 24), but no attack was conducted. MAIN OUTCOME MEASURES: At days 1,2, 4 and 7 following injury, BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was examined by immunohistochemistry (streptavidin-biotin-peroxidase complex method). Changes in rat cognitive function were assessed by the walking test, balance-beam test and memory function detection. RESULTS: Cognitive impairment was aggravated at day 2, and recovered to normal at days 3 and 7 in rats from the mild and moderate traumatic brain injury groups. BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was increased at 1 day, decreased at day 2, and then gradually increased in the mild and moderate traumatic brain injury groups. BDNF expression was greater in rats from the moderate traumatic brain injury group than in the sham operation and mild traumatic brain injury groups (P < 0.05). CONCLUSION: BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain is correlated to cognitive impairment after traumatic brain injury. BDNF has a protective effect on cognitive function in rats

  12. Brain Structural Correlates of Emotion Recognition in Psychopaths

    Science.gov (United States)

    Batalla, Iolanda; Kosson, David; Menchón, José M; Pifarré, Josep; Bosque, Javier; Cardoner, Narcís; Soriano-Mas, Carles

    2016-01-01

    Individuals with psychopathy present deficits in the recognition of facial emotional expressions. However, the nature and extent of these alterations are not fully understood. Furthermore, available data on the functional neural correlates of emotional face recognition deficits in adult psychopaths have provided mixed results. In this context, emotional face morphing tasks may be suitable for clarifying mild and emotion-specific impairments in psychopaths. Likewise, studies exploring corresponding anatomical correlates may be useful for disentangling available neurofunctional evidence based on the alleged neurodevelopmental roots of psychopathic traits. We used Voxel-Based Morphometry and a morphed emotional face expression recognition task to evaluate the relationship between regional gray matter (GM) volumes and facial emotion recognition deficits in male psychopaths. In comparison to male healthy controls, psychopaths showed deficits in the recognition of sad, happy and fear emotional expressions. In subsequent brain imaging analyses psychopaths with better recognition of facial emotional expressions showed higher volume in the prefrontal cortex (orbitofrontal, inferior frontal and dorsomedial prefrontal cortices), somatosensory cortex, anterior insula, cingulate cortex and the posterior lobe of the cerebellum. Amygdala and temporal lobe volumes contributed to better emotional face recognition in controls only. These findings provide evidence suggesting that variability in brain morphometry plays a role in accounting for psychopaths’ impaired ability to recognize emotional face expressions, and may have implications for comprehensively characterizing the empathy and social cognition dysfunctions typically observed in this population of subjects. PMID:27175777

  13. Dynamic correlations between heart and brain rhythm during Autogenic meditation

    Directory of Open Access Journals (Sweden)

    Daekeun eKim

    2013-07-01

    Full Text Available This study is aimed to determine significant physiological parameters of brain and heart under meditative state, both in each activities and their dynamic correlations. Electrophysiological changes in response to meditation were explored in 12 healthy volunteers who completed 8 weeks of a basic training course in autogenic meditation. Heart coherence, representing the degree of ordering in oscillation of heart rhythm intervals, increased significantly during meditation. Relative EEG alpha power and alpha lagged coherence also increased. A significant slowing of parietal peak alpha frequency was observed. Parietal peak alpha power increased with increasing heart coherence during meditation, but no such relationship was observed during baseline. Average alpha lagged coherence also increased with increasing heart coherence during meditation, but, again, no significant relationship was observed at baseline. Relative alpha power increased with increasing heart coherence during both meditation and baseline periods. Heart coherence can be a cardiac marker for the meditative state and also may be a general marker for the meditative state since heart coherence is strongly correlated with EEG alpha activities. It is expected that increasing heart coherence and the accompanying EEG alpha activations, heart brain synchronicity, would help recover physiological synchrony following a period of homeostatic depletion.

  14. Brain Structural Correlates of Emotion Recognition in Psychopaths.

    Directory of Open Access Journals (Sweden)

    Vanessa Pera-Guardiola

    Full Text Available Individuals with psychopathy present deficits in the recognition of facial emotional expressions. However, the nature and extent of these alterations are not fully understood. Furthermore, available data on the functional neural correlates of emotional face recognition deficits in adult psychopaths have provided mixed results. In this context, emotional face morphing tasks may be suitable for clarifying mild and emotion-specific impairments in psychopaths. Likewise, studies exploring corresponding anatomical correlates may be useful for disentangling available neurofunctional evidence based on the alleged neurodevelopmental roots of psychopathic traits. We used Voxel-Based Morphometry and a morphed emotional face expression recognition task to evaluate the relationship between regional gray matter (GM volumes and facial emotion recognition deficits in male psychopaths. In comparison to male healthy controls, psychopaths showed deficits in the recognition of sad, happy and fear emotional expressions. In subsequent brain imaging analyses psychopaths with better recognition of facial emotional expressions showed higher volume in the prefrontal cortex (orbitofrontal, inferior frontal and dorsomedial prefrontal cortices, somatosensory cortex, anterior insula, cingulate cortex and the posterior lobe of the cerebellum. Amygdala and temporal lobe volumes contributed to better emotional face recognition in controls only. These findings provide evidence suggesting that variability in brain morphometry plays a role in accounting for psychopaths' impaired ability to recognize emotional face expressions, and may have implications for comprehensively characterizing the empathy and social cognition dysfunctions typically observed in this population of subjects.

  15. Play it again Sam: Brain Correlates of Emotional Music Recognition

    Directory of Open Access Journals (Sweden)

    Eckart eAltenmüller

    2014-02-01

    Full Text Available AbstractBackground: Music can elicit strong emotions and can be remembered in connection with these emotions even decades later. Yet, the brain correlates of episodic memory for highly emotional music compared with less emotional music have not been examined. We therefore used fMRI to investigate brain structures activated by emotional processing of short excerpts of film music successfully retrieved from episodic long-term memory.Methods: 18 non-musicians volunteers were exposed to 60 structurally similar pieces of film music of 10 second length with high arousal ratings and either less positive or very positive valence ratings. Two similar sets of 30 pieces were created. Each of these was presented to half of the participants during the encoding session outside of the scanner, while all stimuli were used during the second recognition session inside the MRI-scanner. During fMRI each stimulation period (10 sec was followed by a 20 sec resting period during which participants pressed either the old or the new to indicate whether they had heard the piece before. Results: Musical stimuli vs. silence activated the bilateral superior temporal gyrus, right insula, right middle frontal gyrus, bilateral medial frontal gyrus and the left anterior cerebellum. Old pieces led to activation in the left medial dorsal thalamus and left midbrain compared to new pieces. For recognized vs. not recognized old pieces a focused activation in the right inferior frontal gyrus and the left cerebellum was found. Positive pieces activated the left medial frontal gyrus, the left precuneus, the right superior frontal gyrus, the left posterior cingulate, the bilateral middle temporal gyrus, and the left thalamus compared to less positive pieces. Conclusion: Specific brain networks related to memory retrieval and emotional processing of symphonic film music were identified. The results imply that the valence of a music piece is important for memory performance.

  16. Play it again, Sam: brain correlates of emotional music recognition.

    Science.gov (United States)

    Altenmüller, Eckart; Siggel, Susann; Mohammadi, Bahram; Samii, Amir; Münte, Thomas F

    2014-01-01

    Music can elicit strong emotions and can be remembered in connection with these emotions even decades later. Yet, the brain correlates of episodic memory for highly emotional music compared with less emotional music have not been examined. We therefore used fMRI to investigate brain structures activated by emotional processing of short excerpts of film music successfully retrieved from episodic long-term memory. Eighteen non-musicians volunteers were exposed to 60 structurally similar pieces of film music of 10 s length with high arousal ratings and either less positive or very positive valence ratings. Two similar sets of 30 pieces were created. Each of these was presented to half of the participants during the encoding session outside of the scanner, while all stimuli were used during the second recognition session inside the MRI-scanner. During fMRI each stimulation period (10 s) was followed by a 20 s resting period during which participants pressed either the "old" or the "new" button to indicate whether they had heard the piece before. Musical stimuli vs. silence activated the bilateral superior temporal gyrus, right insula, right middle frontal gyrus, bilateral medial frontal gyrus and the left anterior cerebellum. Old pieces led to activation in the left medial dorsal thalamus and left midbrain compared to new pieces. For recognized vs. not recognized old pieces a focused activation in the right inferior frontal gyrus and the left cerebellum was found. Positive pieces activated the left medial frontal gyrus, the left precuneus, the right superior frontal gyrus, the left posterior cingulate, the bilateral middle temporal gyrus, and the left thalamus compared to less positive pieces. Specific brain networks related to memory retrieval and emotional processing of symphonic film music were identified. The results imply that the valence of a music piece is important for memory performance and is recognized very fast.

  17. The amount of TMJ displacement correlates with brain activity.

    Science.gov (United States)

    Greven, Markus; Otsuka, Takero; Zutz, Leander; Weber, Bernd; Elger, Christian; Sato, Sadao

    2011-10-01

    The aim of this functional magnetic resonance imaging (fMRI) study was to investigate the correlation between the severity of malocclusion and brain activation. The fMRI was used to measure blood-oxygenation- level-dependent (BOLD) signals of twelve healthy human subjects while they clenched in two different ways to simulate two types of malocclusion. In each malocclusion model, a custom-made splint forced the mandible to each of two retrusive positions (0.5 mm, 0.7 mm). A no-modification splint provided the control. We compared the BOLD signals measured at each clenching position with those measured during the corresponding resting conditions. The BOLD signals were significantly stronger in the amygdala and the prefrontal area (PFA) when subjects clenched in the two retrusive positions compared during clenching in the control position. In addition, the BOLD signal in the PFA increased as the simulated malocclusion became more severe. These results indicate that we may be able to objectively assess the severity of malocclusion via focus on the brain activity.

  18. Brain size is correlated with endangerment status in mammals.

    Science.gov (United States)

    Abelson, Eric S

    2016-02-24

    Increases in relative encephalization (RE), brain size after controlling for body size, comes at a great metabolic cost and is correlated with a host of cognitive traits, from the ability to count objects to higher rates of innovation. Despite many studies examining the implications and trade-offs accompanying increased RE, the relationship between mammalian extinction risk and RE is unknown. I examine whether mammals with larger levels of RE are more or less likely to be at risk of endangerment than less-encephalized species. I find that extant species with large levels of encephalization are at greater risk of endangerment, with this effect being strongest in species with small body sizes. These results suggest that RE could be a valuable asset in estimating extinction vulnerability. Additionally, these findings suggest that the cost-benefit trade-off of RE is different in large-bodied species when compared with small-bodied species.

  19. Death induced by CD95 or CD95 ligand elimination.

    Science.gov (United States)

    Hadji, Abbas; Ceppi, Paolo; Murmann, Andrea E; Brockway, Sonia; Pattanayak, Abhinandan; Bhinder, Bhavneet; Hau, Annika; De Chant, Shirley; Parimi, Vamsi; Kolesza, Piotre; Richards, Joanne; Chandel, Navdeep; Djaballah, Hakim; Peter, Marcus E

    2014-04-10

    CD95 (Fas/APO-1), when bound by its cognate ligand CD95L, induces cells to die by apoptosis. We now show that elimination of CD95 or CD95L results in a form of cell death that is independent of caspase-8, RIPK1/MLKL, and p53, is not inhibited by Bcl-xL expression, and preferentially affects cancer cells. All tumors that formed in mouse models of low-grade serous ovarian cancer or chemically induced liver cancer with tissue-specific deletion of CD95 still expressed CD95, suggesting that cancer cannot form in the absence of CD95. Death induced by CD95R/L elimination (DICE) is characterized by an increase in cell size, production of mitochondrial ROS, and DNA damage. It resembles a necrotic form of mitotic catastrophe. No single drug was found to completely block this form of cell death, and it could also not be blocked by the knockdown of a single gene, making it a promising way to kill cancer cells. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Death Induced by CD95 or CD95 Ligand Elimination

    Directory of Open Access Journals (Sweden)

    Abbas Hadji

    2014-04-01

    Full Text Available CD95 (Fas/APO-1, when bound by its cognate ligand CD95L, induces cells to die by apoptosis. We now show that elimination of CD95 or CD95L results in a form of cell death that is independent of caspase-8, RIPK1/MLKL, and p53, is not inhibited by Bcl-xL expression, and preferentially affects cancer cells. All tumors that formed in mouse models of low-grade serous ovarian cancer or chemically induced liver cancer with tissue-specific deletion of CD95 still expressed CD95, suggesting that cancer cannot form in the absence of CD95. Death induced by CD95R/L elimination (DICE is characterized by an increase in cell size, production of mitochondrial ROS, and DNA damage. It resembles a necrotic form of mitotic catastrophe. No single drug was found to completely block this form of cell death, and it could also not be blocked by the knockdown of a single gene, making it a promising way to kill cancer cells.

  1. Neuroimaging of the bilingual brain: Structural brain correlates of listening and speaking in a second language.

    Science.gov (United States)

    Kuhl, Patricia K; Stevenson, Jeff; Corrigan, Neva M; van den Bosch, Jasper J F; Can, Dilara Deniz; Richards, Todd

    2016-11-01

    Diffusion tensor imaging was used to compare white matter structure between American monolingual and Spanish-English bilingual adults living in the United States. In the bilingual group, relationships between white matter structure and naturalistic immersive experience in listening to and speaking English were additionally explored. White matter structural differences between groups were found to be bilateral and widespread. In the bilingual group, experience in listening to English was more robustly correlated with decreases in radial and mean diffusivity in anterior white matter regions of the left hemisphere, whereas experience in speaking English was more robustly correlated with increases in fractional anisotropy in more posterior left hemisphere white matter regions. The findings suggest that (a) foreign language immersion induces neuroplasticity in the adult brain, (b) the degree of alteration is proportional to language experience, and (c) the modes of immersive language experience have more robust effects on different brain regions and on different structural features. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Brain correlates of mathematical competence in processing mathematical representations

    Directory of Open Access Journals (Sweden)

    Roland H. Grabner

    2011-11-01

    Full Text Available The ability to extract numerical information from different representation formats (e.g., equations, tables, or diagrams is a key component of mathematical competence but little is known about its neural correlate. Previous studies comparing mathematically less and more competent adults have focused on mental arithmetic and reported differences in left angular gyrus activity which were interpreted to reflect differential reliance on arithmetic fact retrieval during problem solving. The aim of the present functional magnetic resonance imaging (fMRI study was to investigate the brain correlates of mathematical competence in a task requiring the processing of typical mathematical representations. Twenty-eight adults of lower and higher mathematical competence worked on a representation matching task in which they had to evaluate whether the numerical information of a symbolic equation matches that of a bar chart. Two task conditions without and one condition with arithmetic demands were administered. Both competence groups performed equally well in the non-arithmetic conditions and only differed in accuracy in the condition requiring calculation. Activation contrasts between the groups revealed consistently stronger left angular gyrus activation in the more competent individuals across all three task conditions. The finding of competence-related activation differences independently of arithmetic demands suggests that more and less competent individuals differ in a cognitive process other than arithmetic fact retrieval. Specifically, it is argued that the stronger left angular gyrus activity in the more competent adults may reflect their higher proficiency in processing mathematical symbols. Moreover, the study demonstrates competence-related parietal activation differences that were not accompanied by differential experimental performance.

  3. Correlation of brain levels of progesterone and dehydroepiandrosterone with neurological recovery after traumatic brain injury in female mice.

    Science.gov (United States)

    Lopez-Rodriguez, Ana Belen; Acaz-Fonseca, Estefania; Giatti, Silvia; Caruso, Donatella; Viveros, Maria-Paz; Melcangi, Roberto C; Garcia-Segura, Luis M

    2015-06-01

    Traumatic brain injury (TBI) is an important cause of disability in humans. Neuroactive steroids, such as progesterone and dehydroepiandrosterone (DHEA), are neuroprotective in TBI models. However in order to design potential neuroprotective strategies based on neuroactive steroids it is important to determine whether its brain levels are altered by TBI. In this study we have used a weight-drop model of TBI in young adult female mice to determine the levels of neuroactive steroids in the brain and plasma at 24h, 72 h and 2 weeks after injury. We have also analyzed whether the levels of neuroactive steroids after TBI correlated with the neurological score of the animals. TBI caused neurological deficit detectable at 24 and 72 h, which recovered by 2 weeks after injury. Brain levels of progesterone, tetrahydroprogesterone (THP), isopregnanolone and 17β-estradiol were decreased 24h, 72 h and 2 weeks after TBI. DHEA and brain testosterone levels presented a transient decrease at 24h after lesion. Brain levels of progesterone and DHEA showed a positive correlation with neurological recovery. Plasma analyses showed that progesterone was decreased 72 h after lesion but, in contrast with brain progesterone, its levels did not correlate with neurological deficit. These findings indicate that TBI alters the levels of neuroactive steroids in the brain with independence of its plasma levels and suggest that the pharmacological increase in the brain of the levels of progesterone and DHEA may result in the improvement of neurological recovery after TBI.

  4. Positive genetic correlation between brain size and sexual traits in male guppies artificially selected for brain size.

    Science.gov (United States)

    Kotrschal, A; Corral-Lopez, A; Zajitschek, S; Immler, S; Maklakov, A A; Kolm, N

    2015-04-01

    Brain size is an energetically costly trait to develop and maintain. Investments into other costly aspects of an organism's biology may therefore place important constraints on brain size evolution. Sexual traits are often costly and could therefore be traded off against neural investment. However, brain size may itself be under sexual selection through mate choice on cognitive ability. Here, we use guppy (Poecilia reticulata) lines selected for large and small brain size relative to body size to investigate the relationship between brain size, a large suite of male primary and secondary sexual traits, and body condition index. We found no evidence for trade-offs between brain size and sexual traits. Instead, larger-brained males had higher expression of several primary and precopulatory sexual traits--they had longer genitalia, were more colourful and developed longer tails than smaller-brained males. Larger-brained males were also in better body condition when housed in single-sex groups. There was no difference in post-copulatory sexual traits between males from the large- and small-brained lines. Our data do not support the hypothesis that investment into sexual traits is an important limiting factor to brain size evolution, but instead suggest that brain size and several sexual traits are positively genetically correlated.

  5. Pain Catastrophizing Correlates with Early Mild Traumatic Brain Injury Outcome

    Science.gov (United States)

    Chaput, Geneviève; Lajoie, Susanne P.; Naismith, Laura M.; Lavigne, Gilles

    2016-01-01

    Background. Identifying which patients are most likely to be at risk of chronic pain and other postconcussion symptoms following mild traumatic brain injury (MTBI) is a difficult clinical challenge. Objectives. To examine the relationship between pain catastrophizing, defined as the exaggerated negative appraisal of a pain experience, and early MTBI outcome. Methods. This cross-sectional design included 58 patients diagnosed with a MTBI. In addition to medical chart review, postconcussion symptoms were assessed by self-report at 1 month (Time 1) and 8 weeks (Time 2) after MTBI. Pain severity, psychological distress, level of functionality, and pain catastrophizing were measured by self-report at Time 2. Results. The pain catastrophizing subscales of rumination, magnification, and helplessness were significantly correlated with pain severity (r = .31 to .44), number of postconcussion symptoms reported (r = .35 to .45), psychological distress (r = .57 to .67), and level of functionality (r = −.43 to −.29). Pain catastrophizing scores were significantly higher for patients deemed to be at high risk of postconcussion syndrome (6 or more symptoms reported at both Time 1 and Time 2). Conclusions. Higher levels of pain catastrophizing were related to adverse early MTBI outcomes. The early detection of pain catastrophizing may facilitate goal-oriented interventions to prevent or minimize the development of chronic pain and other postconcussion symptoms. PMID:27445604

  6. Pain Catastrophizing Correlates with Early Mild Traumatic Brain Injury Outcome

    Directory of Open Access Journals (Sweden)

    Geneviève Chaput

    2016-01-01

    Full Text Available Background. Identifying which patients are most likely to be at risk of chronic pain and other postconcussion symptoms following mild traumatic brain injury (MTBI is a difficult clinical challenge. Objectives. To examine the relationship between pain catastrophizing, defined as the exaggerated negative appraisal of a pain experience, and early MTBI outcome. Methods. This cross-sectional design included 58 patients diagnosed with a MTBI. In addition to medical chart review, postconcussion symptoms were assessed by self-report at 1 month (Time 1 and 8 weeks (Time 2 after MTBI. Pain severity, psychological distress, level of functionality, and pain catastrophizing were measured by self-report at Time 2. Results. The pain catastrophizing subscales of rumination, magnification, and helplessness were significantly correlated with pain severity (r=.31 to .44, number of postconcussion symptoms reported (r=.35 to .45, psychological distress (r=.57 to .67, and level of functionality (r=-.43 to -.29. Pain catastrophizing scores were significantly higher for patients deemed to be at high risk of postconcussion syndrome (6 or more symptoms reported at both Time 1 and Time 2. Conclusions. Higher levels of pain catastrophizing were related to adverse early MTBI outcomes. The early detection of pain catastrophizing may facilitate goal-oriented interventions to prevent or minimize the development of chronic pain and other postconcussion symptoms.

  7. Electrophysiological Correlates of Word Retrieval in Traumatic Brain Injury

    Science.gov (United States)

    DeLaRosa, Bambi L.; Didehbani, Nyaz; Hart, John; Kraut, Michael A

    2017-01-01

    Abstract Persons who have had a traumatic brain injury (TBI) often have word retrieval deficits; however, the underlying neural mechanisms of such deficits are yet to be clarified. Previous studies in normal subjects have shown that during a word retrieval task, there is a 750 msec event-related potential (ERP) divergence detected at the left fronto-temporal region when subjects evaluate word pairs that facilitate retrieval compared with responses elicited by word pairs that do not facilitate retrieval. In this study, we investigated the neurophysiological correlates of word retrieval networks in 19 retired professional athletes with TBI and 19 healthy control (HC) subjects. We recorded electroencephalography (EEG) in the participants during a semantic object retrieval task. In this task, participants indicated whether presented word pairs did (retrieval) or did not (non-retrieval) facilitate the retrieval of an object name. There were no significant differences in accuracy or reaction time between the two groups. The EEG showed a significant group by condition interaction over the left fronto-temporal region. The HC group mean amplitudes were significantly different between conditions, but the TBI group data did not show this difference, suggesting neurophysiological effects of injury. These findings provide evidence that ERP amplitudes may be used as a marker of disrupted semantic retrieval circuits in persons with TBI even when those persons perform normally. PMID:27596052

  8. Electrophysiological Correlates of Word Retrieval in Traumatic Brain Injury.

    Science.gov (United States)

    Fratantoni, Julie M; DeLaRosa, Bambi L; Didehbani, Nyaz; Hart, John; Kraut, Michael A

    2017-03-01

    Persons who have had a traumatic brain injury (TBI) often have word retrieval deficits; however, the underlying neural mechanisms of such deficits are yet to be clarified. Previous studies in normal subjects have shown that during a word retrieval task, there is a 750 msec event-related potential (ERP) divergence detected at the left fronto-temporal region when subjects evaluate word pairs that facilitate retrieval compared with responses elicited by word pairs that do not facilitate retrieval. In this study, we investigated the neurophysiological correlates of word retrieval networks in 19 retired professional athletes with TBI and 19 healthy control (HC) subjects. We recorded electroencephalography (EEG) in the participants during a semantic object retrieval task. In this task, participants indicated whether presented word pairs did (retrieval) or did not (non-retrieval) facilitate the retrieval of an object name. There were no significant differences in accuracy or reaction time between the two groups. The EEG showed a significant group by condition interaction over the left fronto-temporal region. The HC group mean amplitudes were significantly different between conditions, but the TBI group data did not show this difference, suggesting neurophysiological effects of injury. These findings provide evidence that ERP amplitudes may be used as a marker of disrupted semantic retrieval circuits in persons with TBI even when those persons perform normally.

  9. Neural correlates of induced motion perception in the human brain.

    Science.gov (United States)

    Takemura, Hiromasa; Ashida, Hiroshi; Amano, Kaoru; Kitaoka, Akiyoshi; Murakami, Ikuya

    2012-10-10

    A physically stationary stimulus surrounded by a moving stimulus appears to move in the opposite direction. There are similarities between the characteristics of this phenomenon of induced motion and surround suppression of directionally selective neurons in the brain. Here, functional magnetic resonance imaging was used to investigate the link between the subjective perception of induced motion and cortical activity. The visual stimuli consisted of a central drifting sinusoid surrounded by a moving random-dot pattern. The change in cortical activity in response to changes in speed and direction of the central stimulus was measured. The human cortical area hMT+ showed the greatest activation when the central stimulus moved at a fast speed in the direction opposite to that of the surround. More importantly, the activity in this area was the lowest when the central stimulus moved in the same direction as the surround and at a speed such that the central stimulus appeared to be stationary. The results indicate that the activity in hMT+ is related to perceived speed modulated by induced motion rather than to physical speed or a kinetic boundary. Early visual areas (V1, V2, V3, and V3A) showed a similar pattern; however, the relationship to perceived speed was not as clear as that in hMT+. These results suggest that hMT+ may be a neural correlate of induced motion perception and play an important role in contrasting motion signals in relation to their surrounding context and adaptively modulating our motion perception depending on the spatial context.

  10. Midsagittal Brain Shape Correlation with Intelligence and Cognitive Performance

    Science.gov (United States)

    Bruner, Emiliano; Martin-Loeches, Manuel; Burgaleta, Miguel; Colom, Roberto

    2011-01-01

    Brain shape might influence cognitive performance because of the relationships between functions, spatial organization, and differential volumetric development of cortical areas. Here we analyze the relationships between midsagittal brain shape variation and a set of basic psychological measures. Coordinates in 2D from 102 MRI-scanned young adult…

  11. An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain.

    Science.gov (United States)

    Manger, Paul R

    2006-05-01

    This review examines aspects of cetacean brain structure related to behaviour and evolution. Major considerations include cetacean brain-body allometry, structure of the cerebral cortex, the hippocampal formation, specialisations of the cetacean brain related to vocalisations and sleep phenomenology, paleoneurology, and brain-body allometry during cetacean evolution. These data are assimilated to demonstrate that there is no neural basis for the often-asserted high intellectual abilities of cetaceans. Despite this, the cetaceans do have volumetrically large brains. A novel hypothesis regarding the evolution of large brain size in cetaceans is put forward. It is shown that a combination of an unusually high number of glial cells and unihemispheric sleep phenomenology make the cetacean brain an efficient thermogenetic organ, which is needed to counteract heat loss to the water. It is demonstrated that water temperature is the major selection pressure driving an altered scaling of brain and body size and an increased actual brain size in cetaceans. A point in the evolutionary history of cetaceans is identified as the moment in which water temperature became a significant selection pressure in cetacean brain evolution. This occurred at the Archaeoceti - modern cetacean faunal transition. The size, structure and scaling of the cetacean brain continues to be shaped by water temperature in extant cetaceans. The alterations in cetacean brain structure, function and scaling, combined with the imperative of producing offspring that can withstand the rate of heat loss experienced in water, within the genetic confines of eutherian mammal reproductive constraints, provides an explanation for the evolution of the large size of the cetacean brain. These observations provide an alternative to the widely held belief of a correlation between brain size and intelligence in cetaceans.

  12. Stimulant: A correlate of brain fag syndrome among undergraduate ...

    African Journals Online (AJOL)

    2014-07-29

    Jul 29, 2014 ... “brain fag” since this was a phrase used by the students to describe the .... year for students, hence the motivation to use psychoactive substances”. ... began lectures. Approval .... was less number of females attending school.

  13. Brain Oxytocin Correlates with Maternal Aggression: Link to Anxiety

    National Research Council Canada - National Science Library

    Bosch, Oliver J; Meddle, Simone L; Beiderbeck, Daniela I; Douglas, Alison J; Neumann, Inga D

    2005-01-01

    .... Because aggression has been linked to anxiety, we investigated the maternal aggression and the role of brain oxytocin in lactating Wistar rats selectively bred for high anxiety-related behavior (HAB...

  14. A healthy brain in a healthy body: brain network correlates of physical and mental fitness.

    Science.gov (United States)

    Douw, Linda; Nieboer, Dagmar; van Dijk, Bob W; Stam, Cornelis J; Twisk, Jos W R

    2014-01-01

    A healthy lifestyle is an important focus in today's society. The physical benefits of regular exercise are abundantly clear, but physical fitness is also associated with better cognitive performance. How these two factors together relate to characteristics of the brain is still incompletely understood. By applying mathematical concepts from 'network theory', insights in the organization and dynamics of brain functioning can be obtained. We test the hypothesis that neural network organization mediates the association between cardio respiratory fitness (i.e. VO₂ max) and cognitive functioning. A healthy cohort was studied (n = 219, 113 women, age range 41-44 years). Subjects underwent resting-state eyes-closed magneto-encephalography (MEG). Five artifact-free epochs were analyzed and averaged in six frequency bands (delta-gamma). The phase lag index (PLI) was used as a measure of functional connectivity between all sensors. Modularity analysis was performed, and both within and between-module connectivity of each sensor was calculated. Subjects underwent a maximum oxygen uptake (VO₂ max) measurement as an indicator of cardio respiratory fitness. All subjects were tested with a commonly used Dutch intelligence test. Intelligence quotient (IQ) was related to VO₂ max. In addition, VO₂ max was negatively associated with upper alpha and beta band modularity. Particularly increased intermodular connectivity in the beta band was associated with higher VO₂ max and IQ, further indicating a benefit of more global network integration as opposed to local connections. Within-module connectivity showed a spatially varied pattern of correlation, while average connectivity did not show significant results. Mediation analysis was not significant. The occurrence of less modularity in the resting-state is associated with better cardio respiratory fitness, while having increased intermodular connectivity, as opposed to within-module connections, is related to better

  15. A Healthy Brain in a Healthy Body: Brain Network Correlates of Physical and Mental Fitness

    Science.gov (United States)

    Douw, Linda; Nieboer, Dagmar; van Dijk, Bob W.; Stam, Cornelis J.; Twisk, Jos W. R.

    2014-01-01

    A healthy lifestyle is an important focus in today's society. The physical benefits of regular exercise are abundantly clear, but physical fitness is also associated with better cognitive performance. How these two factors together relate to characteristics of the brain is still incompletely understood. By applying mathematical concepts from ‘network theory’, insights in the organization and dynamics of brain functioning can be obtained. We test the hypothesis that neural network organization mediates the association between cardio respiratory fitness (i.e. VO2 max) and cognitive functioning. A healthy cohort was studied (n = 219, 113 women, age range 41–44 years). Subjects underwent resting-state eyes-closed magneto-encephalography (MEG). Five artifact-free epochs were analyzed and averaged in six frequency bands (delta-gamma). The phase lag index (PLI) was used as a measure of functional connectivity between all sensors. Modularity analysis was performed, and both within and between-module connectivity of each sensor was calculated. Subjects underwent a maximum oxygen uptake (VO2 max) measurement as an indicator of cardio respiratory fitness. All subjects were tested with a commonly used Dutch intelligence test. Intelligence quotient (IQ) was related to VO2 max. In addition, VO2 max was negatively associated with upper alpha and beta band modularity. Particularly increased intermodular connectivity in the beta band was associated with higher VO2 max and IQ, further indicating a benefit of more global network integration as opposed to local connections. Within-module connectivity showed a spatially varied pattern of correlation, while average connectivity did not show significant results. Mediation analysis was not significant. The occurrence of less modularity in the resting-state is associated with better cardio respiratory fitness, while having increased intermodular connectivity, as opposed to within-module connections, is related to better physical

  16. A healthy brain in a healthy body: brain network correlates of physical and mental fitness.

    Directory of Open Access Journals (Sweden)

    Linda Douw

    Full Text Available A healthy lifestyle is an important focus in today's society. The physical benefits of regular exercise are abundantly clear, but physical fitness is also associated with better cognitive performance. How these two factors together relate to characteristics of the brain is still incompletely understood. By applying mathematical concepts from 'network theory', insights in the organization and dynamics of brain functioning can be obtained. We test the hypothesis that neural network organization mediates the association between cardio respiratory fitness (i.e. VO₂ max and cognitive functioning. A healthy cohort was studied (n = 219, 113 women, age range 41-44 years. Subjects underwent resting-state eyes-closed magneto-encephalography (MEG. Five artifact-free epochs were analyzed and averaged in six frequency bands (delta-gamma. The phase lag index (PLI was used as a measure of functional connectivity between all sensors. Modularity analysis was performed, and both within and between-module connectivity of each sensor was calculated. Subjects underwent a maximum oxygen uptake (VO₂ max measurement as an indicator of cardio respiratory fitness. All subjects were tested with a commonly used Dutch intelligence test. Intelligence quotient (IQ was related to VO₂ max. In addition, VO₂ max was negatively associated with upper alpha and beta band modularity. Particularly increased intermodular connectivity in the beta band was associated with higher VO₂ max and IQ, further indicating a benefit of more global network integration as opposed to local connections. Within-module connectivity showed a spatially varied pattern of correlation, while average connectivity did not show significant results. Mediation analysis was not significant. The occurrence of less modularity in the resting-state is associated with better cardio respiratory fitness, while having increased intermodular connectivity, as opposed to within-module connections, is related to

  17. Specialization and group size: brain and behavioural correlates of colony size in ants lacking morphological castes

    OpenAIRE

    Amador-Vargas, Sabrina; Gronenberg, Wulfila; Wcislo, William T.; Mueller, Ulrich

    2015-01-01

    Group size in both multicellular organisms and animal societies can correlate with the degree of division of labour. For ants, the task specialization hypothesis (TSH) proposes that increased behavioural specialization enabled by larger group size corresponds to anatomical specialization of worker brains. Alternatively, the social brain hypothesis proposes that increased levels of social stimuli in larger colonies lead to enlarged brain regions in all workers, regardless of their task special...

  18. Neural Correlates of Socioeconomic Status in the Developing Human Brain

    Science.gov (United States)

    Noble, Kimberly G.; Houston, Suzanne M.; Kan, Eric; Sowell, Elizabeth R.

    2012-01-01

    Socioeconomic disparities in childhood are associated with remarkable differences in cognitive and socio-emotional development during a time when dramatic changes are occurring in the brain. Yet, the neurobiological pathways through which socioeconomic status (SES) shapes development remain poorly understood. Behavioral evidence suggests that…

  19. Alpha oscillatory correlates of motor inhibition in the aged brain

    Directory of Open Access Journals (Sweden)

    Marlene eBoenstrup

    2015-10-01

    Full Text Available Exerting inhibitory control is a cognitive ability mediated by functions known to decline with age. The goal of this study is to add to the mechanistic understanding of cortical inhibition during motor control in aged brains. Based on behavioral findings of impaired inhibitory control with age we hypothesized that elderly will show a reduced or a lack of EEG alpha-power increase during tasks that require motor inhibition. Since inhibitory control over movements has been shown to rely on prior motor memory formation, we investigated cortical inhibitory processes at two points in time - early after learning and after an overnight consolidation phase and hypothesized an overnight increase of inhibitory capacities. Young and elderly participants acquired a complex finger movement sequence and in each experimental session brain activity during execution and inhibition of the sequence was recorded with multi-channel EEG. We assessed cortical processes of sustained inhibition by means of task-induced changes of alpha oscillatory power. During inhibition of the learned movement, young participants showed a significant alpha power increase at the sensorimotor cortices whereas elderly did not. Interestingly, for both groups, the overnight consolidation phase improved up-regulation of alpha power during sustained inhibition. This points to deficits in the generation and enhancement of local inhibitory mechanisms at the sensorimotor cortices in aged brains. However, the alpha power increase in both groups implies neuroplastic changes that strengthen the network of alpha power generation over time in young as well as elderly brains.

  20. Neural Correlates of Socioeconomic Status in the Developing Human Brain

    Science.gov (United States)

    Noble, Kimberly G.; Houston, Suzanne M.; Kan, Eric; Sowell, Elizabeth R.

    2012-01-01

    Socioeconomic disparities in childhood are associated with remarkable differences in cognitive and socio-emotional development during a time when dramatic changes are occurring in the brain. Yet, the neurobiological pathways through which socioeconomic status (SES) shapes development remain poorly understood. Behavioral evidence suggests that…

  1. Brain structural and functional correlates of resilience to Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Sophia eFrangou

    2012-01-01

    Full Text Available Background: Resilient adaptation can be construed in different ways, but as used here it refers to the adaptive brain changes associated with avoidance of psychopathology despite familiar risk for Bipolar Disorder (BD. Although family history of BD is associated with elevated risk of affective morbidity a significant proportion of first-degree relatives of BD patients remains free of psychopathology. Examination of brain structure and function in these individuals may inform on adaptive changes that may pre-empt disease expression. Methods: Data presented here are derived from the Vulnerability to Bipolar Disorders (VIBES study which includes patients with BD, asymptomatic relatives and healthy controls. Participants underwent extensive investigations including brain structural (sMRI and functional magnetic resonance imaging (fMRI. The data presented here focus on sMRI voxel-based-morphometry and on conventional and connectivity analyses of fMRI data obtained during the Stroop Colour Word Test (SCWT, a task of cognitive control during conflict resolution. All analyses were implemented in SPM (www.fil.ion.ucl.ac.uk/spm. Resilience in relatives was operationalized as the absence of clinical-range symptoms.Results: Resilient relatives of BD patients expressed structural, functional and connectivity changes reflecting the effect of genetic risk on the brain. These included increased insular volume, decreased activation within the posterior and inferior parietal regions involved in selective attention during the SCWT, and reduced fronto-insular and fronto-cingulate connectivity.Resilience was associated with increased cerebellar vermal volume and enhanced functional coupling between the dorsal and the ventral prefrontal cortex. Conclusions: Our findings suggests the presence of biological mechanisms associated with resilient adaptation of brain networks and pave the way for the identification of outcome-specific trajectories given a particular

  2. Clinical topographical correlation upon brain tumors in children

    Directory of Open Access Journals (Sweden)

    A.M. Dolgov

    2014-01-01

    Full Text Available The aim of the study was to explore the most characteristic clinical manifestations of brain tumors in children, depending on their localization, and to detect the earliest of them. Patients and methods. A total of 56 children (32 boys and 24 girls with brain tumor, aged from 1.5 months to 15 years, were examined. The time elapsed between the onset of disease to the emergence of clinical symptoms was assessed. Neurological symptomatology was compared to the localization of a tumor diagnosed using neuroimaging techniques (computed tomography or magnetic resonance imaging and during surgery. Surgery was performed in 18 children (in all of them, localization of the process was observed in the posterior cranial fossa, PCF. Results. The highest incidence of brain tumors was revealed in children aged 3–13 years; most patients became ill at the age between 3 and 6 years. Tumors of the PCF predominated in terms of their localization (67.9% of cases. Intracerebral tumors of the hemispheres or vermis were observed in most (63.2% patients with tumors of the PCF. In 11 (61% of the 18 operated children with subtentorial tumors, astrocytomas of various degrees of differentiation and medulloblastomas were detected using the histological examination. Tumors of the IV ventricle were ependymal. Tumors of the cerebral hemispheres (19.6%, of the pineal and chiasmosellar regions (8.9% predominated among supratentorial tumors. The time between the emergence of initial symptoms of a disease and admission to hospital ranged from 1 month to 3 years. The most characteristic and earliest symptoms for tumors of the PCF and brain ventricles were headache, nausea and vomiting. For tumors of the cerebellar vermis and hemispheres, these symptoms included impairment of the coordination of movements and the muscle tone change. For brain stem tumors, these symptoms included dysfunction of the cranial nerves. For tumors of the cerebral hemispheres, these were seizures and motor

  3. Mechanisms of cell death induced by infusion sets leachables in in vitro experimental settings.

    Science.gov (United States)

    Kozlovskaya, Luba; Stepensky, David

    2015-01-30

    Leachable materials that are released from infusion sets during their use can induce local and systemic toxic effects. We studied the mechanisms and kinetics of cell death induced by infusion sets leachates in vitro using L-929 and bEnd. 3 cells. Changes in cell morphology and metabolic activity were determined using light microscopy and the MTT test, respectively. Detailed analysis of the mechanisms of cell death was performed using membrane integrity and caspases 3 and 7 activity tests, annexin V-FITC/7-AAD analysis by FACS, and DAPI nuclear staining followed by confocal microscopy. Infusion sets released toxic leachables and induced toxic effects. Latex flashball was the most toxic part of the studied infusion sets, and it potently induced cell oncosis via increased permeability of the cell membrane. Latex-induced decrease in cells metabolic activity and cell death were not accompanied by activation of caspases 3 and 7, changes in nuclear morphology, or substantial annexin V-FITC cell staining. Leachables from the tube part of the infusion sets were less toxic, and induced some biochemical changes without altering the cells morphology. Further studies are needed to reveal the in vivo toxicity of infusion sets and its correlation with the results of in vitro toxicity studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Neuropsychological Correlates of Brain Perfusion SPECT in Patients with Macrophagic Myofasciitis.

    Directory of Open Access Journals (Sweden)

    Axel Van Der Gucht

    Full Text Available Patients with aluminum hydroxide adjuvant-induced macrophagic myofasciitis (MMF complain of arthromyalgias, chronic fatigue and cognitive deficits. This study aimed to characterize brain perfusion in these patients.Brain perfusion SPECT was performed in 76 consecutive patients (aged 49±10 y followed in the Garches-Necker-Mondor-Hendaye reference center for rare neuromuscular diseases. Images were acquired 30 min after intravenous injection of 925 MBq 99mTc-ethylcysteinate dimer (ECD at rest. All patients also underwent a comprehensive battery of neuropsychological tests, within 1.3±5.5 mo from SPECT. Statistical parametric maps (SPM12 were obtained for each test using linear regressions between each performance score and brain perfusion, with adjustment for age, sex, socio-cultural level and time delay between brain SPECT and neuropsychological testing.SPM analysis revealed positive correlation between neuropsychological scores (mostly exploring executive functions and brain perfusion in the posterior associative cortex, including cuneus/precuneus/occipital lingual areas, the periventricular white matter/corpus callosum, and the cerebellum, while negative correlation was found with amygdalo-hippocampal/entorhinal complexes. A positive correlation was also observed between brain perfusion and the posterior associative cortex when the time elapsed since last vaccine injection was investigated.Brain perfusion SPECT showed a pattern of cortical and subcortical changes in accordance with the MMF-associated cognitive disorder previously described. These results provide a neurobiological substrate for brain dysfunction in aluminum hydroxide adjuvant-induced MMF patients.

  5. Brain Structural Correlates of Emotion Recognition in Psychopaths

    National Research Council Canada - National Science Library

    Pera-Guardiola, Vanessa; Contreras-Rodríguez, Oren; Batalla, Iolanda; Kosson, David; Menchón, José M; Pifarré, Josep; Bosque, Javier; Cardoner, Narcís; Soriano-Mas, Carles

    2016-01-01

    .... However, the nature and extent of these alterations are not fully understood. Furthermore, available data on the functional neural correlates of emotional face recognition deficits in adult psychopaths have provided mixed results...

  6. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Hidekazu (Tokyo Women' s Medical Coll. (Japan))

    1989-06-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author).

  7. The differential DRP1 phosphorylation and mitochondrial dynamics in the regional specific astroglial death induced by status epilepticus

    Directory of Open Access Journals (Sweden)

    Ah-Reum eKo

    2016-05-01

    Full Text Available The response and susceptibility to astroglial degenerations are relevant to the distinctive properties of astrocytes in a hemodynamic-independent manner following status epilepticus (SE.Since impaired mitochondrial fission plays an important role in mitosis, apoptosis and programmed necrosis, we investigated whether the unique pattern of mitochondrial dynamics is involved in the characteristics of astroglial death induced by SE. In the present study, SE induced astroglial apoptosis in the molecular layer of the dentate gyrus, accompanied by decreased mitochondrial length. In contrast, clasmatodendritic (autophagic astrocytes in the CA1 region showed mitochondrial elongation induced by SE. Mdivi-1 (an inhibitor of mitochondrial fission effectively attenuated astroglial apoptosis, but WY14643 (an enhancer of mitochondrial fissionaggravated it. In addition, Mdivi-1accelerated clasmatodendritic changes in astrocytes. These regional specific mitochondrial dynamics in astrocytes were closely correlated with dynamin-related protein (DRP1, a mitochondrial fission protein phosphorylation, not optic atrophy 1 (a mitochondrial fusion protein expression. To the best of our knowledge, the present data demonstrate for the first time the novel role of DRP1-mediated mitochondrial fission in astroglial loss. Thus, the present findings suggest that the differential astroglial mitochondrial dynamics may participate in the distinct characteristics of astroglial death induced by SE.

  8. Correlation among body height, intelligence, and brain gray matter volume in healthy children.

    Science.gov (United States)

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kotozaki, Yuka; Nouchi, Rui; Wu, Kai; Fukuda, Hiroshi; Kawashima, Ryuta

    2012-01-16

    A significant positive correlation between height and intelligence has been demonstrated in children. Additionally, intelligence has been associated with the volume of gray matter in the brains of children. Based on these correlations, we analyzed the correlation among height, full-scale intelligence quotient (IQ) and gray matter volume applying voxel-based morphometry using data from the brain magnetic resonance images of 160 healthy children aged 5-18 years of age. As a result, body height was significantly positively correlated with brain gray matter volume. Additionally, the regional gray matter volume of several regions such as the bilateral prefrontal cortices, temporoparietal region, and cerebellum was significantly positively correlated with body height and that the gray matter volume of several of these regions was also significantly positively correlated with full-scale intelligence quotient (IQ) scores after adjusting for age, sex, and socioeconomic status. Our results demonstrate that gray and white matter volume may mediate the correlation between body height and intelligence in healthy children. Additionally, the correlations among gray and white matter volume, height, and intelligence may be at least partially explained by the effect of insulin-like growth factor-1 and growth hormones. Given the importance of the effect of environmental factors, especially nutrition, on height, IQ, and gray matter volume, the present results stress the importance of nutrition during childhood for the healthy maturation of body and brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface

    Directory of Open Access Journals (Sweden)

    Brittany Mei Young

    2014-07-01

    Full Text Available This study aims to examine the changes in task-related brain activity induced by rehabilitative therapy using brain-computer interface (BCI technologies and whether these changes are relevant to functional gains achieved through the use of these therapies. Stroke patients with persistent upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device (n=8 or no therapy (n=6. Behavioral assessments using the Stroke Impact Scale, the Action Research Arm Test, and the Nine-Hole Peg Test as well as task-based fMRI scans were conducted before, during, after, and one month after therapy administration or at analogous intervals in the absence of therapy. Laterality Index (LI during finger tapping of each hand were calculated for each time point and assessed for correlation with behavioral outcomes. Brain activity during finger tapping of each hand shifted over the course of BCI therapy but not in the absence of therapy to greater involvement of the non-lesioned hemisphere (and lesser involvement of the stroke-lesioned hemisphere as measured by LI. Moreover, changes from baseline LI values during finger tapping of the impaired hand were correlated with gains in both objective and subjective behavioral measures. These findings suggest that the administration of interventional BCI therapy can induce differential changes in brain activity patterns between the lesioned and nonlesioned hemisphere and that these brain changes are associated with changes in specific motor functions.

  10. Influence of meditation on anti-correlated networks in the brain.

    Science.gov (United States)

    Josipovic, Zoran; Dinstein, Ilan; Weber, Jochen; Heeger, David J

    2011-01-01

    Human experiences can be broadly divided into those that are external and related to interaction with the environment, and experiences that are internal and self-related. The cerebral cortex appears to be divided into two corresponding systems: an "extrinsic" system composed of brain areas that respond more to external stimuli and tasks and an "intrinsic" system composed of brain areas that respond less to external stimuli and tasks. These two broad brain systems seem to compete with each other, such that their activity levels over time is usually anti-correlated, even when subjects are "at rest" and not performing any task. This study used meditation as an experimental manipulation to test whether this competition (anti-correlation) can be modulated by cognitive strategy. Participants either fixated without meditation (fixation), or engaged in non-dual awareness (NDA) or focused attention (FA) meditations. We computed inter-area correlations ("functional connectivity") between pairs of brain regions within each system, and between the entire extrinsic and intrinsic systems. Anti-correlation between extrinsic vs. intrinsic systems was stronger during FA meditation and weaker during NDA meditation in comparison to fixation (without mediation). However, correlation between areas within each system did not change across conditions. These results suggest that the anti-correlation found between extrinsic and intrinsic systems is not an immutable property of brain organization and that practicing different forms of meditation can modulate this gross functional organization in profoundly different ways.

  11. Influence of meditation on anti-correlated networks in the brain

    Directory of Open Access Journals (Sweden)

    Zoran eJosipovic

    2012-01-01

    Full Text Available Human experience can be broadly divided into those that are external and related to interaction with the environment, and experiences that are internal and self-related. The cerebral cortex appears to be divided into two corresponding systems: an extrinsic system composed of brain areas that respond more to external stimuli and tasks and an intrinsic system composed of brain areas that respond less to external stimuli and tasks. These two broad brain systems seem to compete with each other, such that their activity levels over time is usually anti-correlated, even when subjects are at rest and not performing any task. This study used meditation as an experimental manipulation to test whether this competition (anti-correlation can be modulated by cognitive strategy. Participants either fixated without meditation (fixation, or engaged in nondual awareness (NDA or focused attention (FA meditations. We computed inter-area correlations (functional connectivity between pairs of brain regions within each system, and between the entire extrinsic and intrinsic systems. Anti-correlation between extrinsic vs. intrinsic systems was stronger during FA meditation and weaker during NDA meditation in comparison to fixation (without mediation. However, correlation between areas within each system did not change across conditions. These results suggest that the anti-correlation found between extrinsic and intrinsic systems is not an immutable property of brain organization and that practicing different forms of meditation can modulate this gross functional organization in profoundly different ways.

  12. Brain microstructural correlates of visuospatial choice reaction time in children

    DEFF Research Database (Denmark)

    Madsen, Kathrine Skak; Baaré, William F C; Skimminge, Arnold

    2011-01-01

    The corticospinal tracts and the basal ganglia continue to develop during childhood and adolescence, and indices of their maturation can be obtained using diffusion-weighted imaging. Here we show that a simple measure of visuomotor function is correlated with diffusion parameters in the corticosp...

  13. Clinical correlations of brain lesion distribution in multiple sclerosis

    DEFF Research Database (Denmark)

    Vellinga, M M; Geurts, J J G; Rostrup, E

    2009-01-01

    status scale (EDSS) and MS functional composite (MSFC) subdomain scores and demographic characteristics of 325 MS patients. To identify statistically significant locations, a cluster-forming threshold of 3.1 was used. RESULTS: In clusters in the periventricular region, lesion probability correlated...

  14. Interleukin-3 prevents neuronal death induced by amyloid peptide

    Directory of Open Access Journals (Sweden)

    Otth Carola

    2007-10-01

    Full Text Available Abstract Background Interleukin-3 (IL-3 is an important glycoprotein involved in regulating biological responses such as cell proliferation, survival and differentiation. Its effects are mediated via interaction with cell surface receptors. Several studies have demonstrated the expression of IL-3 in neurons and astrocytes of the hippocampus and cortices in normal mouse brain, suggesting a physiological role of IL-3 in the central nervous system. Although there is evidence indicating that IL-3 is expressed in some neuronal populations, its physiological role in these cells is poorly known. Results In this study, we demonstrated the expression of IL-3 receptor in cortical neurons, and analyzed its influence on amyloid β (Aβ-treated cells. In these cells, IL-3 can activate at least three classical signalling pathways, Jak/STAT, Ras/MAP kinase and the PI 3-kinase. Viability assays indicated that IL-3 might play a neuroprotective role in cells treated with Aβ fibrils. It is of interest to note that our results suggest that cell survival induced by IL-3 required PI 3-kinase and Jak/STAT pathway activation, but not MAP kinase. In addition, IL-3 induced an increase of the anti-apoptotic protein Bcl-2. Conclusion Altogether these data strongly suggest that IL-3 neuroprotects neuronal cells against neurodegenerative agents like Aβ.

  15. Dynamic Brain Network Correlates of Spontaneous Fluctuations in Attention.

    Science.gov (United States)

    Kucyi, Aaron; Hove, Michael J; Esterman, Michael; Hutchison, R Matthew; Valera, Eve M

    2017-03-01

    Human attention is intrinsically dynamic, with focus continuously shifting between elements of the external world and internal, self-generated thoughts. Communication within and between large-scale brain networks also fluctuates spontaneously from moment to moment. However, the behavioral relevance of dynamic functional connectivity and possible link with attentional state shifts is unknown. We used a unique approach to examine whether brain network dynamics reflect spontaneous fluctuations in moment-to-moment behavioral variability, a sensitive marker of attentional state. Nineteen healthy adults were instructed to tap their finger every 600 ms while undergoing fMRI. This novel, but simple, approach allowed us to isolate moment-to-moment fluctuations in behavioral variability related to attention, independent of common confounds in cognitive tasks (e.g., stimulus changes, response inhibition). Spontaneously increasing tap variance ("out-of-the-zone" attention) was associated with increasing activation in dorsal-attention and salience network regions, whereas decreasing tap variance ("in-the-zone" attention) was marked by increasing activation of default mode network (DMN) regions. Independent of activation, tap variance representing out-of-the-zone attention was also time-locked to connectivity both within DMN and between DMN and salience network regions. These results provide novel mechanistic data on the understudied neural dynamics of everyday, moment-to-moment attentional fluctuations, elucidating the behavioral importance of spontaneous, transient coupling within and between attention-relevant networks. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Brain correlates of hypnosis: A systematic review and meta-analytic exploration.

    Science.gov (United States)

    Landry, Mathieu; Lifshitz, Michael; Raz, Amir

    2017-02-23

    Imaging of the living human brain elucidates the neural dynamics of hypnosis; however, few reliable brain patterns emerge across studies. Here, we methodically assess neuroimaging assays of hypnosis to uncover common neural configurations using a twofold approach. First, we systematically review research on the neural correlates of hypnotic phenomena; then, we meta-analyze these collective data seeking specific activation and deactivation patterns that typify hypnosis. Anchored around the role of top-down control processes, our comprehensive examination focuses on the involvement of intrinsic brain networks known to operationalize cognitive control and self-referential cognition, including the executive, salience, and default networks. We discuss how these neural dynamics may relate to contemporary theories of hypnosis and show that hypnosis correlates with activation of the lingual gyrus-a brain region involved in higher-order visual processing and mental imagery. Our findings help to better understand the neurobiological substrates comprising the appellation hypnosis.

  17. Long-term global and regional brain volume changes following severe traumatic brain injury: A longitudinal study with clinical correlates

    DEFF Research Database (Denmark)

    Sidaros, Annette; Skimminge, Arnold Jesper Møller; Liptrot, Matthew George;

    2009-01-01

    Traumatic brain injury (TBI) results in neurodegenerative changes that progress for months, perhaps even years post-injury. However, there is little information on the spatial distribution and the clinical significance of this late atrophy. In 24 patients who had sustained severe TBI we acquired 3D...... scan time point using SIENAX. Regional distribution of atrophy was evaluated using tensor-based morphometry (TBM). At the first scan time point, brain parenchymal volume was reduced by mean 8.4% in patients as compared to controls. During the scan interval, patients exhibited continued atrophy...... with percent brain volume change (%BVC) ranging between − 0.6% and − 9.4% (mean − 4.0%). %BVC correlated significantly with injury severity, functional status at both scans, and with 1-year outcome. Moreover, %BVC improved prediction of long-term functional status over and above what could be predicted using...

  18. Correlation between Nerve Growth Factor (NGF) with Brain Derived Neurotropic Factor (BDNF) in Ischemic Stroke Patient

    OpenAIRE

    Islam, Andi Asadul

    2016-01-01

    - The neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) is a family of polypeptides that play critical role during neuronal development, appear to mediate protective role on neurorepair in ischemic stroke. Naturally in adult brain neurorepair process consist of: angiogenesis, neurogenesis, and neuronal plasticity, it can also be stimulated by endogenous neurorepair. In this study we observed correlation between NGF and BDNF ischemic stroke patient's onset...

  19. [Correlations of consciousness and the default function of the brain].

    Science.gov (United States)

    Gyulaházi, Judit; Varga, Katalin

    2014-01-30

    Neural correlation with consciousness represents a main topic of neuroscience studies. New results of consciousness researches proved that based on a coherent function in between its components the default mode network activity is the condition for awake consciousness. The subject of consciousness is self. Tasks related with the self were proving a high default mode network activity. Using connections inside the network, results which were related with self, could be considered to represent a polymodal integration system are they are participating in fine processing of the highly integrated associative information. It could be a result of the convergence of cognitive binding. There is a strong connection between the level of consciousness and praecuneal activation. It was proved that the network activity is changing during sleeping (normal condition), trauma or under drug induced altered consciousness. The default network activity can be considered as the neural correlate of consciousness. Further researches are warranted to answer the question: is the activity of the network the cause or is just accompanying the development of human consciousness?

  20. Decreased serum hepcidin concentration correlates with brain iron deposition in patients with HBV-related cirrhosis.

    Directory of Open Access Journals (Sweden)

    Dong Lin

    Full Text Available PURPOSE: Excessive brain iron accumulation contributes to cognitive impairments in hepatitis B virus (HBV-related cirrhotic patients. The underlying mechanism remains unclear. Hepcidin, a liver-produced, 25-aminoacid peptide, is the major regulator of systemic iron metabolism. Abnormal hepcidin level is a key factor in some body iron accumulation or deficiency disorders, especially in those associated with liver diseases. Our study was aimed to explore the relationship between brain iron content in patients with HBV-related cirrhosis and serum hepcidin level. METHODS: Seventy HBV-related cirrhotic patients and forty age- sex-matched healthy controls were enrolled. Brain iron content was quantified by susceptibility weighted phase imaging technique. Serum hepcidin as well as serum iron, serum transferrin, ferritin, soluble transferrin receptor, total iron binding capacity, and transferrin saturation were tested in thirty cirrhotic patients and nineteen healthy controls. Pearson correlation analysis was performed to investigate correlation between brain iron concentrations and serum hepcidin, or other iron parameters. RESULTS: Cirrhotic patients had increased brain iron accumulation compared to controls in the left red nuclear, the bilateral substantia nigra, the bilateral thalamus, the right caudate, and the right putamen. Cirrhotic patients had significantly decreased serum hepcidin concentration, as well as lower serum transferring level, lower total iron binding capacity and higher transferrin saturation, compared to controls. Serum hepcidin level negatively correlated with the iron content in the right caudate, while serum ferritin level positively correlated with the iron content in the bilateral putamen in cirrhotic patients. CONCLUSIONS: Decreased serum hepcidin level correlated with excessive iron accumulation in the basal ganglia in HBV-related cirrhotic patients. Our results indicated that systemic iron overload underlined regional

  1. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    Science.gov (United States)

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy.

  2. Huperzine A provides neuroprotection against several cell death inducers using in vitro model systems of motor neuron cell death.

    Science.gov (United States)

    Hemendinger, Richelle A; Armstrong, Edward J; Persinski, Rafal; Todd, Julianne; Mougeot, Jean-Luc; Volvovitz, Franklin; Rosenfeld, Jeffrey

    2008-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease resulting from the progressive loss of motor neurons in the spinal cord and brain. To date, clinically effective neuroprotective agents have not been available. The current study demonstrates for the first time that huperzine A, a potential neuroprotective agent, has the ability to protect a motor neuron-like cell line and motor neurons in spinal cord organotypic cultures from toxin-induced cell death. The neuroblastoma-spinal motor neuron fusion cell line, NSC34 and rat spinal cord organotypic cultures (OTC) were exposed to cell death inducers for 24 h or 14 d, respectively, with and without pre-treatment with huperzine A. The inducers used here include: staurosporine, thapsigargin, hydrogen peroxide (H2O2), carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and L-(-)-threo-3-hydroxyaspartic acid (THA). These agents were selected as they induce apoptosis/necrosis via mechanisms implicated in patients with generalized motor neuron disease. Cell death was determined in NSC34 cells by metabolic activity, caspase activity/expression and by nuclear morphology and in the OTCs, using immunohistochemistry and Western blot analysis. Nuclear staining of NSC34 cells revealed cell death induced by staurosporine, thapsigargin, H2O2 and CCCP. This induction was significantly reduced with 2 h pre-treatment with 10 microM huperzine A (maximum, 35% rescue; p 0.05) following exposure to staurosporine, thapsigargin and H2O2 but not with CCCP. These data were supported by the metabolic assays and caspase activity. In addition, pre-treatment with huperzine A dramatically improved motor neuron survival, based on choline acetyltransferase (ChAT) expression analysis in OTCs following exposure to THA, and compared to THA-treated control cultures. These studies are currently being extended to include other inducers and with additional compounds as potential drug therapies that could be used in combination for the treatment of

  3. Whole-brain proton MR spectroscopic imaging of mild-to-moderate traumatic brain injury and correlation with neuropsychological deficits.

    Science.gov (United States)

    Govind, Varan; Gold, Stuart; Kaliannan, Krithica; Saigal, Gaurav; Falcone, Steven; Arheart, Kristopher L; Harris, Leo; Jagid, Jonathan; Maudsley, Andrew A

    2010-03-01

    Changes in the distribution of the magnetic resonance (MR)-observable brain metabolites N-acetyl aspartate (NAA), total choline (Cho), and total creatine (Cre), following mild-to-moderate closed-head traumatic brain injury (mTBI) were evaluated using volumetric proton MR spectroscopic imaging (MRSI). Studies were carried out during the subacute time period following injury, and associations of metabolite indices with neuropsychological test (NPT) results were evaluated. Twenty-nine subjects with mTBI and Glasgow Coma Scale (GCS) scores of 10-15 were included. Differences in individual metabolite and metabolite ratio distributions relative to those of age-matched control subjects were evaluated, as well as analyses by hemispheric lobes and tissue types. Primary findings included a widespread decrease of NAA and NAA/Cre, and increases of Cho and Cho/NAA, within all lobes of the TBI subject group, and with the largest differences seen in white matter. Examination of the association between all of the metabolite measures and the NPT scores found the strongest negative correlations to occur in the frontal lobe and for Cho/NAA. No significant correlations were found between any of the MRSI or NPT measures and the GCS. These results demonstrate that significant and widespread alterations of brain metabolites occur as a result of mild-to-moderate TBI, and that these measures correlate with measures of cognitive performance.

  4. Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia

    Science.gov (United States)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2010-02-01

    Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.

  5. Autophagy protects against neural cell death induced by piperidine alkaloids present in Prosopis juliflora (Mesquite

    Directory of Open Access Journals (Sweden)

    VICTOR D.A. SILVA

    Full Text Available ABSTRACT Prosopis juliflora is a shrub that has been used to feed animals and humans. However, a synergistic action of piperidine alkaloids has been suggested to be responsible for neurotoxic damage observed in animals. We investigated the involvement of programmed cell death (PCD and autophagy on the mechanism of cell death induced by a total extract (TAE of alkaloids and fraction (F32 from P. juliflora leaves composed majoritary of juliprosopine in a model of neuron/glial cell co-culture. We saw that TAE (30 µg/mL and F32 (7.5 µg/mL induced reduction in ATP levels and changes in mitochondrial membrane potential at 12 h exposure. Moreover, TAE and F32 induced caspase-9 activation, nuclear condensation and neuronal death at 16 h exposure. After 4 h, they induced autophagy characterized by decreases of P62 protein level, increase of LC3II expression and increase in number of GFP-LC3 cells. Interestingly, we demonstrated that inhibition of autophagy by bafilomycin and vinblastine increased the cell death induced by TAE and autophagy induced by serum deprivation and rapamycin reduced cell death induced by F32 at 24 h. These results indicate that the mechanism neural cell death induced by these alkaloids involves PCD via caspase-9 activation and autophagy, which seems to be an important protective mechanism.

  6. Neural correlates of executive control in the avian brain.

    Directory of Open Access Journals (Sweden)

    Jonas Rose

    2005-06-01

    Full Text Available Executive control, the ability to plan one's behaviour to achieve a goal, is a hallmark of frontal lobe function in humans and other primates. In the current study we report neural correlates of executive control in the avian nidopallium caudolaterale, a region analogous to the mammalian prefrontal cortex. Homing pigeons (Columba livia performed a working memory task in which cues instructed them whether stimuli should be remembered or forgotten. When instructed to remember, many neurons showed sustained activation throughout the memory period. When instructed to forget, the sustained activation was abolished. Consistent with the neural data, the behavioural data showed that memory performance was high after instructions to remember, and dropped to chance after instructions to forget. Our findings indicate that neurons in the avian nidopallium caudolaterale participate in one of the core forms of executive control, the control of what should be remembered and what should be forgotten. This form of executive control is fundamental not only to working memory, but also to all cognition.

  7. Cluster-based statistics for brain connectivity in correlation with behavioral measures.

    Directory of Open Access Journals (Sweden)

    Cheol E Han

    Full Text Available Graph theoretical approaches have successfully revealed abnormality in brain connectivity, in particular, for contrasting patients from healthy controls. Besides the group comparison analysis, a correlational study is also challenging. In studies with patients, for example, finding brain connections that indeed deepen specific symptoms is interesting. The correlational study is also beneficial since it does not require controls, which are often difficult to find, especially for old-age patients with cognitive impairment where controls could also have cognitive deficits due to normal ageing. However, one of the major difficulties in such correlational studies is too conservative multiple comparison correction. In this paper, we propose a novel method for identifying brain connections that are correlated with a specific cognitive behavior by employing cluster-based statistics, which is less conservative than other methods, such as Bonferroni correction, false discovery rate procedure, and extreme statistics. Our method is based on the insight that multiple brain connections, rather than a single connection, are responsible for abnormal behaviors. Given brain connectivity data, we first compute a partial correlation coefficient between every edge and the behavioral measure. Then we group together neighboring connections with strong correlation into clusters and calculate their maximum sizes. This procedure is repeated for randomly permuted assignments of behavioral measures. Significance levels of the identified sub-networks are estimated from the null distribution of the cluster sizes. This method is independent of network construction methods: either structural or functional network can be used in association with any behavioral measures. We further demonstrated the efficacy of our method using patients with subcortical vascular cognitive impairment. We identified sub-networks that are correlated with the disease severity by exploiting diffusion

  8. Correlating learning and memory improvements to long-term potentiation in patients with brain injury

    Institute of Scientific and Technical Information of China (English)

    Xingfu Peng; Qian Yu

    2008-01-01

    BACKGROUND:Brain injury patients often exhibit learning and memory functional deficits.Long-term potentiation(LTP)is a representative index for studying learning and memory cellular models; the LTP index correlates to neural plasticity. OBJECTIVE:This study was designed to investigate correlations of learning and memory functions to LTP in brain injury patients,and to summarize the research advancements in mechanisms underlying brain functional improvements after rehabilitation intervention. RETRIEVAL STRATEGY:Using the terms "brain injuries,rehabilitation,learning and memory,long-term potentiation",manuscripts that were published from 2000-2007 were retrieved from the PubMed database.At the same time,manuscripts published from 2000-2007 were also retrieved from the Database of Chinese Scientific and Technical Periodicals with the same terms in the Chinese language.A total of 64 manuscripts were obtained and primarily screened.Inclusion criteria:studies on learning and memory,as well as LTP in brain injury patients,and studies focused on the effects of rehabilitation intervention on the two indices; studies that were recently published or in high-impact journals.Exclusion criteria:repetitive studies.LITERATURE EVALUATION:The included manuscripts primarily focused on correlations between learning and memory and LTP,the effects of brain injury on learning and memory,as well as LTP,and the effects of rehabilitation intervention on learning and memory after brain injury.The included 39 manuscripts were clinical,basic experimental,or review studies. DATA SYNTHESIS:Learning and memory closely correlates to LTP.The neurobiological basis of learning and memory is central nervous system plasticity,which involves neural networks,neural circuits,and synaptic connections,in particular,synaptic plasticity.LTP is considered to be an ideal model for studying synaptic plasticity,and it is also a classic model for studying neural plasticity of learning and memory.Brain injury

  9. Correlation of glucose metabolism in brain cells and brain morphological changes with clinical typing in children with cerebral palsy

    Institute of Scientific and Technical Information of China (English)

    Qiongxiang Zhai; Huixian Qiao; Jiqing Liu

    2006-01-01

    BACKGROUND:It is widely known that fluorino-18-fluorodeoxyglucose positron emission tomography(18F-FDG PET)is commonly used to evaluate and diagnose epilepsy;however,whether it is beneficial to understand functional metabolism of bra in cells so as to reflect injured site and degree of brain cells or not should be studied further.OBJECTIVE:To evaluate the correlation between glucose metabolism and clinical typling as well as the conelation between active function of brain cells and degree of brain injury among children with cerbral palsy with 18F-FDG PET and MRI and compare the results of them.DESIGN:Case analysis.SETTING:Department of Pediatrics,People's Hospital of Guangdong Province.PARTICIPANTS:A total of 31 children with cerebral palsy were selected from Out-patient Clinic and In-patient Department of People's Hospital of Guangdong Province from July 2001 to August 2004.Based on clinical criteria of cerebral palsy,patients were classified into spasm(n=10),gradual movement(n=4),mixed type(n =13)and ataxia(n=4).There were 18 boys and 13 girls aged from 10 months to 4 years.All of them were met the diagnostic criteria of cerebral palsy and all parents of them were told the facts.Exclusion cdteria:Patients who had cerebral palsy caused by genetic metabolism disease were excluded.METHODS:①All children accepted MRI examination after hospitalization with Philips Acs NT 15T superconductling magnetic resonance scanner.②All children were fasted for 4 hours.And then,PET image of brain was collected based on T+EID type.If obvious hypermetabolism or hypometabolism region successively occurred on two layers, the image was regarded as abnormality. ③Different correlations of various abnormal greups of MRI and vadous types of cerebral palsy with PET image were compared and analyzed with Erusal-Willas rank sum test.MAIN OUTCOME MEASURES:①Results of 18F-FDG PET;②Results of MRI examination;③Correlation of variously abnormal groups of MRI and various types of cerebral

  10. Objects and their icons in the brain: the neural correlates of visual concept formation.

    Science.gov (United States)

    Shin, Yong-Wook; Kwon, Jun Soo; Kwon, Ki Won; Gu, Bon Mi; Song, In Chan; Na, Dong Gyu; Park, Sohee

    2008-05-16

    We are constantly exposed to symbols such as traffic signs, emoticons in internet communication, or other abstract representations of objects as well as, of course, the written words. However, aside from the word reading, little is known about the way our brain responds when we read non-lexical iconic symbols. By using functional MRI, we found that the watching of icons recruited manifold brain areas including frontal and parietal cortices in addition to the temporo-occipital junction in the ventral pathway. Remarkably, the brain response for icons was contrasted with the response for corresponding concrete objects with the pattern of 'hyper-cortical and hypo-subcortical' brain activation. This neural underpinning might be called the neural correlates for visual concept formation.

  11. Vocal Modification Abilities and Brain Structures in Parrots – how do they Correlate?

    DEFF Research Database (Denmark)

    Harpøth, Solveig Walløe

    -­fronted conure and the budgerigar. Article 2: It has been suggested that the size of various brain regions is important for behavioral capability and also the number of neurons have been suggested to be important. Here we correlate the vocal modification ability of the peach-­fronted conure, the budgerigar......Behavioral capability and related brain structures has been linked many times. It is a relationship that may vary between individuals and species, depending on for example the level of sociality. This PhD-­thesis investigates this relationship using parrots as experimental subjects. Parrots...... independent studies where I 1) compare the level of vocal complexity (i.e. modification of the contact call in response to playback stimuli) with the social complexity of four different parrot species, 2) correlate the vocal modification ability of parrots with a brain region involved in vocal learning, i...

  12. Olfaction evaluation and correlation with brain atrophy in Bardet-Biedl syndrome.

    Science.gov (United States)

    Braun, J-J; Noblet, V; Durand, M; Scheidecker, S; Zinetti-Bertschy, A; Foucher, J; Marion, V; Muller, J; Riehm, S; Dollfus, H; Kremer, S

    2014-12-01

    Bardet-Biedl syndrome (BBS) is a well-recognized ciliopathy characterized by cardinal features namely: early onset retinitis pigmentosa, polydactyly, obesity, hypogonadism, renal and cognitive impairment. Recently, disorders of olfaction (anosmia, hyposmia) have been also described in BBS patients. Moreover, morphological brain anomalies have been reported and prompt for further investigations to determine whether they are primary or secondary to peripheral organ involvement (i.e. visual or olfactory neuronal tissue). The objective of this article is to evaluate olfactory disorders in BBS patients and to investigate putative correlation with morphological cerebral anomalies. To this end, 20 BBS patients were recruited and evaluated for olfaction using the University of Pennsylvania Smell Identification Test (UPSIT). All of them underwent a structural magnetic resonance imaging (MRI) scan. We first investigated brain morphological differences between BBS subjects and 14 healthy volunteers. Then, we showed objective olfaction disorders in BBS patients and highlight correlation between gray matter volume reduction and olfaction dysfunction in several brain areas.

  13. MRI relaxation in the presence of fictitious fields correlates with myelin content in normal rat brain.

    Science.gov (United States)

    Hakkarainen, Hanne; Sierra, Alejandra; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Gröhn, Olli; Liimatainen, Timo

    2016-01-01

    Brain myelin plays an important role in normal brain function. Demyelination is involved in many degenerative brain diseases, thus quantitative imaging of myelin has been under active investigation. In previous work, we demonstrated the capability of the method known as Relaxation Along a Fictitious Field (RAFF) in the rotating frame of rank n (RAFFn) to provide image contrast between white and gray matter in human and rat brains. Here, we provide evidence pointing to myelin being the major source of this contrast. RAFFn relaxation time constant (TRAFFn) was mapped in rat brain ex vivo. TRAFFn was quantified in 12 different brain areas. TRAFFn values were compared with multiple other MRI metrics (T1, T2 , continuous wave T1ρ, adiabatic T1ρ and T2ρ, magnetization transfer ratio), and with histologic measurements of cell density, myelin and iron content. Highest contrast between white and grey matter was obtained with TRAFFn in the rotating frames of ranks n = 4 and 5. TRAFFn values correlated strongly with myelin content, whereas no associations between TRAFFn and iron content or cell density were found. TRAFFn with n = 4 or 5 provides a high sensitivity for selective myelin mapping in the rat brain. © 2015 Wiley Periodicals, Inc.

  14. Neuroimaging Correlates of Novel Psychiatric Disorders after Pediatric Traumatic Brain Injury

    Science.gov (United States)

    Max, Jeffrey E.; Wilde, Elisabeth A.; Bigler, Erin D.; Thompson, Wesley K.; MacLeod, Marianne; Vasquez, Ana C.; Merkley, Tricia L.; Hunter, Jill V.; Chu, Zili D.; Yallampalli, Ragini; Hotz, Gillian; Chapman, Sandra B.; Yang, Tony T.; Levin, Harvey S.

    2012-01-01

    Objective: To study magnetic resonance imaging (MRI) correlates of novel (new-onset) psychiatric disorders (NPD) after traumatic brain injury (TBI) and orthopedic injury (OI). Method: Participants were 7 to 17 years of age at the time of hospitalization for either TBI or OI. The study used a prospective, longitudinal, controlled design with…

  15. Commentary: BRAIN NETWORKS. Correlated Gene Expression Supports Synchronous Activity in Brain Networks. Science 348, 1241–4

    Directory of Open Access Journals (Sweden)

    Spiro P. Pantazatos

    2017-07-01

    Full Text Available A recent report claims that functional brain networks defined with resting-state functional magnetic resonance imaging (fMRI can be recapitulated with correlated gene expression (i.e., high within-network tissue-tissue “strength fraction,” SF (Richiardi et al., 2015. However, the authors do not adequately control for spatial proximity. We replicated their main analysis, performed a more effective adjustment for spatial proximity, and tested whether “null networks” (i.e., clusters with center coordinates randomly placed throughout cortex also exhibit high SF. Removing proximal tissue-tissue correlations by Euclidean distance, as opposed to removing correlations within arbitrary tissue labels as in Richiardi et al. (2015, reduces within-network SF to no greater than null. Moreover, randomly placed clusters also have significantly high SF, indicating that high within-network SF is entirely attributable to proximity and is unrelated to functional brain networks defined by resting-state fMRI. We discuss why additional validations in the original article are invalid and/or misleading and suggest future directions.

  16. Resting brain metabolic correlates of neuroticism and extraversion in young men.

    Science.gov (United States)

    Kim, Sang Hee; Hwang, Ji Hee; Park, Hyun Soo; Kim, Sang Eun

    2008-05-28

    Neuroticism and extraversion are two core dimensions of personality and are considered to be associated with emotional disorders. We investigated resting state brain metabolic correlates of neuroticism and extraversion using a positron emission tomography. Twenty healthy young men completed an F-flurodeoxyglucose-PET scan at rest and the Korean version of the revised Eysenck Personality Questionnaire. Neuroticism was negatively correlated with regional glucose metabolism in prefrontal regions including the medial prefrontal cortex. Extraversion was positively correlated with metabolism in the right putamen. These results suggest close associations between resting state brain activity in the prefrontal and striatal regions and specific personality traits and thus contribute to the understanding of the neurobiological bases of predisposition to psychiatric disorders.

  17. Cascade of Traumatic Brain Injury: A Correlational Study of Cognition, Postconcussion Symptoms, and Quality of Life.

    Science.gov (United States)

    Reddy, Rajakumari Pampa; Rajeswaran, Jamuna; Devi, B Indira; Kandavel, Thennarasu

    2017-01-01

    Traumatic brain injury (TBI) constitutes a significant burden on health care resources in India. TBI is a dynamic process which involves damage to the brain thus leading to behavior cognitive and emotional consequences. To study the cognitive profile, post-concussion symptoms (PCS), quality of life (QOL), and their correlation. A total of 60 patients with TBI were recruited and assessed for neuropsychological profile, PCS, and QOL, the correlation among the variables were analyzed. The results suggest that TBI has series of consequences which is interrelated, and the study has implications for rehabilitation of TBI. The study highlights the deficits of cognition, and its correlation with PCS and QOL, emphasizing integrated rehabilitation approach for patients with TBI.

  18. Cascade of Traumatic Brain Injury: A Correlational Study of Cognition, Postconcussion Symptoms, and Quality of Life

    Science.gov (United States)

    Reddy, Rajakumari Pampa; Rajeswaran, Jamuna; Devi, B. Indira; Kandavel, Thennarasu

    2017-01-01

    Introduction: Traumatic brain injury (TBI) constitutes a significant burden on health care resources in India. TBI is a dynamic process which involves damage to the brain thus leading to behavior cognitive and emotional consequences. Aim: To study the cognitive profile, post-concussion symptoms (PCS), quality of life (QOL), and their correlation. Methods: A total of 60 patients with TBI were recruited and assessed for neuropsychological profile, PCS, and QOL, the correlation among the variables were analyzed. Results: The results suggest that TBI has series of consequences which is interrelated, and the study has implications for rehabilitation of TBI. Conclusion: The study highlights the deficits of cognition, and its correlation with PCS and QOL, emphasizing integrated rehabilitation approach for patients with TBI.

  19. Correlation Networks for Identifying Changes in Brain Connectivity during Epileptiform Discharges and Transcranial Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Elsa Siggiridou

    2014-07-01

    Full Text Available The occurrence of epileptiform discharges (ED in electroencephalographic (EEG recordings of patients with epilepsy signifies a change in brain dynamics and particularly brain connectivity. Transcranial magnetic stimulation (TMS has been recently acknowledged as a non-invasive brain stimulation technique that can be used in focal epilepsy for therapeutic purposes. In this case study, it is investigated whether simple time-domain connectivity measures, namely cross-correlation and partial cross-correlation, can detect alterations in the connectivity structure estimated from selected EEG channels before and during ED, as well as how this changes with the application of TMS. The correlation for each channel pair is computed on non-overlapping windows of 1 s duration forming weighted networks. Further, binary networks are derived by thresholding or statistical significance tests (parametric and randomization tests. The information for the binary networks is summarized by statistical network measures, such as the average degree and the average path length. Alterations of brain connectivity before, during and after ED with or without TMS are identified by statistical analysis of the network measures at each state.

  20. Chemotherapy-induced amenorrhea: a prospective study of brain activation changes and neurocognitive correlates.

    Science.gov (United States)

    Conroy, Susan K; McDonald, Brenna C; Ahles, Tim A; West, John D; Saykin, Andrew J

    2013-12-01

    Chemotherapy-induced amenorrhea (CIA) often occurs in pre- and peri-menopausal BC patients, and while cancer/chemotherapy and abrupt estrogen loss have separately been shown to affect cognition and brain function, studies of the cognitive effects of CIA are equivocal, and its effects on brain function are unknown. Functional MRI (fMRI) during a working memory task was used to prospectively assess the pattern of brain activation and deactivation prior to and 1 month after chemotherapy in BC patients who experienced CIA (n = 9), post-menopausal BC patients undergoing chemotherapy (n = 9), and pre- and post-menopausal healthy controls (n = 6 each). Neurocognitive testing was also performed at both time points. Repeated measures general linear models were used to assess statistical significance, and age was a covariate in all analyses. We observed a group-by-time interaction in the combined magnitudes of brain activation and deactivation (p = 0.006): the CIA group increased in magnitude from baseline to post-treatment while other groups maintained similar levels over time. Further, the change in brain activity magnitude in CIA was strongly correlated with change in processing speed neurocognitive testing score (r = 0.837 p = 0.005), suggesting this increase in brain activity reflects effective cognitive compensation. Our results demonstrate prospectively that the pattern of change in brain activity from pre- to post-chemotherapy varies according to pre-treatment menopausal status. Cognitive correlates add to the potential clinical significance of these findings. These findings have implications for risk appraisal and development of prevention or treatment strategies for cognitive changes in CIA.

  1. Absolute, not relative brain size correlates with sociality in ground squirrels.

    Science.gov (United States)

    Matějů, Jan; Kratochvíl, Lukáš; Pavelková, Zuzana; Pavelková Řičánková, Věra; Vohralík, Vladimír; Němec, Pavel

    2016-03-30

    The social brain hypothesis (SBH) contends that cognitive demands associated with living in cohesive social groups favour the evolution of large brains. Although the correlation between relative brain size and sociality reported in various groups of birds and mammals provides broad empirical support for this hypothesis, it has never been tested in rodents, the largest mammalian order. Here, we test the predictions of the SBH in the ground squirrels from the tribe Marmotini. These rodents exhibit levels of sociality ranging from solitary and single-family female kin groups to egalitarian polygynous harems but feature similar ecologies and life-history traits. We found little support for the association between increase in sociality and increase in relative brain size. Thus, sociality does not drive the evolution of encephalization in this group of rodents, a finding inconsistent with the SBH. However, body mass and absolute brain size increase with sociality. These findings suggest that increased social complexity in the ground squirrels goes hand in hand with larger body mass and brain size, which are tightly coupled to each other.

  2. Specialization and group size: brain and behavioural correlates of colony size in ants lacking morphological castes.

    Science.gov (United States)

    Amador-Vargas, Sabrina; Gronenberg, Wulfila; Wcislo, William T; Mueller, Ulrich

    2015-02-22

    Group size in both multicellular organisms and animal societies can correlate with the degree of division of labour. For ants, the task specialization hypothesis (TSH) proposes that increased behavioural specialization enabled by larger group size corresponds to anatomical specialization of worker brains. Alternatively, the social brain hypothesis proposes that increased levels of social stimuli in larger colonies lead to enlarged brain regions in all workers, regardless of their task specialization. We tested these hypotheses in acacia ants (Pseudomyrmex spinicola), which exhibit behavioural but not morphological task specialization. In wild colonies, we marked, followed and tested ant workers involved in foraging tasks on the leaves (leaf-ants) and in defensive tasks on the host tree trunk (trunk-ants). Task specialization increased with colony size, especially in defensive tasks. The relationship between colony size and brain region volume was task-dependent, supporting the TSH. Specifically, as colony size increased, the relative size of regions within the mushroom bodies of the brain decreased in trunk-ants but increased in leaf-ants; those regions play important roles in learning and memory. Our findings suggest that workers specialized in defence may have reduced learning abilities relative to leaf-ants; these inferences remain to be tested. In societies with monomorphic workers, brain polymorphism enhanced by group size could be a mechanism by which division of labour is achieved. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Multivariate Meta-Analysis of Brain-Mass Correlations in Eutherian Mammals

    Directory of Open Access Journals (Sweden)

    Charlene Steinhausen

    2016-09-01

    Full Text Available The general assumption that brain size differences are an adequate proxy for subtler differences in brain organization turned neurobiologists towards the question why some groups of mammals such as primates, elephants, and whales have such remarkably large brains. In this meta-analysis, an extensive sample of eutherian mammals (115 species distributed in 14 orders provided data about several different biological traits and measures of brain size such as absolute brain mass (AB, relative brain mass (RB; quotient from AB and body mass, and encephalization quotient (EQ. These data were analyzed by established multivariate statistics without taking specific phylogenetic information into account. Species with high AB tend to (1 feed on protein-rich nutrition, (2 have a long lifespan, (3 delay sexual maturity, and (4 have long and rare pregnancies with small litter sizes. Animals with high RB usually have (1 a short life span, (2 reach sexual maturity early, and (3 have short and frequent gestations. Moreover males of species with high RB also have few potential sexual partners. In contrast, animals with high EQs have (1 a high number of potential sexual partners, (2 delayed sexual maturity, and (3 rare gestations with small litter sizes. Based on these correlations, we conclude that Eutheria with either high AB or high EQ occupy high positions in the network of food chains (high trophic levels. Eutheria of low trophic levels can develop a high RB only if they have small body masses.

  4. Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions.

    Science.gov (United States)

    Lin, Aijing; Liu, Kang K L; Bartsch, Ronny P; Ivanov, Plamen Ch

    2016-05-13

    Within the framework of 'Network Physiology', we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain-heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain-heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems.

  5. Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions

    Science.gov (United States)

    Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.

    2016-05-01

    Within the framework of `Network Physiology', we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain-heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain-heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems.

  6. IGF1R levels in the brain negatively correlate with longevity in 16 rodent species

    Science.gov (United States)

    Azpurua, Jorge; Yang, Jiang-Nan; Van Meter, Michael; Liu, Zhengshan; Kim, Julie; Lobo Ladd, Aliny AB; Coppi, Antonio Augusto; Gorbunova, Vera; Seluanov, Andrei

    2013-01-01

    The insulin/insulin-like growth factor signaling (IIS) pathway is a major conserved regulator of aging. Nematode, fruit fly and mouse mutants with reduced IIS signaling exhibit extended lifespan. These mutants are often dwarfs leading to the idea that small body mass correlates with longevity within species. However, when different species are compared, larger animals are typically longer-lived. Hence, the role of IIS in the evolution of life history traits remains unresolved. Here we used comparative approach to test whether IGF1R signaling changes in response to selection on lifespan or body mass and whether specific tissues are involved. The IGF1R levels in the heart, lungs, kidneys, and brains of sixteen rodent species with highly diverse lifespans and body masses were measured via immunoblot after epitope conservation analysis. We report that IGF1R levels display strong negative correlation with maximum lifespan only in brain tissue and no significant correlations with body mass for any organ. The brain-IGF1R and lifespan correlation holds when phylogenetic non-independence of data-points is taken into account. These results suggest that modulation of IGF1R signaling in nervous tissue, but not in the peripheral tissues, is an important factor in the evolution of longevity in mammals. PMID:23651613

  7. How structure sculpts function: Unveiling the contribution of anatomical connectivity to the brain's spontaneous correlation structure

    Science.gov (United States)

    Bettinardi, R. G.; Deco, G.; Karlaftis, V. M.; Van Hartevelt, T. J.; Fernandes, H. M.; Kourtzi, Z.; Kringelbach, M. L.; Zamora-López, G.

    2017-04-01

    Intrinsic brain activity is characterized by highly organized co-activations between different regions, forming clustered spatial patterns referred to as resting-state networks. The observed co-activation patterns are sustained by the intricate fabric of millions of interconnected neurons constituting the brain's wiring diagram. However, as for other real networks, the relationship between the connectional structure and the emergent collective dynamics still evades complete understanding. Here, we show that it is possible to estimate the expected pair-wise correlations that a network tends to generate thanks to the underlying path structure. We start from the assumption that in order for two nodes to exhibit correlated activity, they must be exposed to similar input patterns from the entire network. We then acknowledge that information rarely spreads only along a unique route but rather travels along all possible paths. In real networks, the strength of local perturbations tends to decay as they propagate away from the sources, leading to a progressive attenuation of the original information content and, thus, of their influence. Accordingly, we define a novel graph measure, topological similarity, which quantifies the propensity of two nodes to dynamically correlate as a function of the resemblance of the overall influences they are expected to receive due to the underlying structure of the network. Applied to the human brain, we find that the similarity of whole-network inputs, estimated from the topology of the anatomical connectome, plays an important role in sculpting the backbone pattern of time-average correlations observed at rest.

  8. 7.0 tesla MRI brain atlas. In-vivo atlas with cryomacrotome correlation. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Zang-Hee (ed.) [Gachon Univ., Incheon (Korea, Republic of). Neuroscience Research Institute

    2015-04-01

    Revised edition with updated in vivo images. Features a coordination matrix in each image, facilitating identification of brain structures and anatomy. User-friendly format and size. The inaugural publication of the 7.0 Tesla MRI Brain Atlas: In-vivo Atlas with Cryomacrotome Correlation in 2010 provided readers with a spectacular source of ultra-high resolution images revealing a wealth of details of the brainstem and midbrain structures. This second edition contributes additional knowledge gained as a result of technologic advances and recent research. To facilitate identification and comparison of brain structures and anatomy, a detailed coordination matrix is featured in each image. Updated axial, sagittal, and coronal images are also included. This state-of-the-art and user-friendly reference will provide researchers and clinicians with important new perspectives.

  9. Brain structural correlates of reward sensitivity and impulsivity in adolescents with normal and excess weight.

    Directory of Open Access Journals (Sweden)

    Laura Moreno-López

    Full Text Available INTRODUCTION: Neuroscience evidence suggests that adolescent obesity is linked to brain dysfunctions associated with enhanced reward and somatosensory processing and reduced impulse control during food processing. Comparatively less is known about the role of more stable brain structural measures and their link to personality traits and neuropsychological factors on the presentation of adolescent obesity. Here we aimed to investigate regional brain anatomy in adolescents with excess weight vs. lean controls. We also aimed to contrast the associations between brain structure and personality and cognitive measures in both groups. METHODS: Fifty-two adolescents (16 with normal weight and 36 with excess weight were scanned using magnetic resonance imaging and completed the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ, the UPPS-P scale, and the Stroop task. Voxel-based morphometry (VBM was used to assess possible between-group differences in regional gray matter (GM and to measure the putative differences in the way reward and punishment sensitivity, impulsivity and inhibitory control relate to regional GM volumes, which were analyzed using both region of interest (ROI and whole brain analyses. The ROIs included areas involved in reward/somatosensory processing (striatum, somatosensory cortices and motivation/impulse control (hippocampus, prefrontal cortex. RESULTS: Excess weight adolescents showed increased GM volume in the right hippocampus. Voxel-wise volumes of the second somatosensory cortex (SII were correlated with reward sensitivity and positive urgency in lean controls, but this association was missed in excess weight adolescents. Moreover, Stroop performance correlated with dorsolateral prefrontal cortex volumes in controls but not in excess weight adolescents. CONCLUSION: Adolescents with excess weight have structural abnormalities in brain regions associated with somatosensory processing and motivation.

  10. Wilson's disease: two treatment modalities. Correlations to pretreatment and posttreatment brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Leiros da Costa, Maria do Desterro [Federal University of Paraiba, Movement Disorders Unit, Paraiba (Brazil); Spitz, Mariana; Bacheschi, Luiz Alberto; Barbosa, Egberto Reis [University of Sao Paulo, Movement Disorders Unit, Sao Paulo (Brazil); Leite, Claudia Costa; Lucato, Leandro Tavares [University of Sao Paulo, Department of Radiology, Sao Paulo (Brazil)

    2009-10-15

    Brain magnetic resonance imaging (MRI) studies on Wilson's disease (WD) show lack of correlations between neurological and neuroimaging features. Long-term follow-up reports with sequential brain MRI in patients with neurological WD comparing different modalities of treatment are scarce. Eighteen patients with neurological WD underwent pretreatment and posttreatment brain MRI scans to evaluate the range of abnormalities and the evolution along these different periods. All patients underwent at least two MRI scans at different intervals, up to 11 years after the beginning of treatment. MRI findings were correlated with clinical picture, clinical severity, duration of neurological symptoms, and treatment with two different drugs. Patients were divided into two groups according to treatment: d-penicillamine (D-P), zinc (Zn), and Zn after the onset of severe intolerance to D-P. MRI scans before treatment showed, in all patients, hypersignal intensity lesions on T2- and proton-density-weighted images bilaterally and symmetrically at basal nuclei, thalamus, brain stem, cerebellum, brain cortex, and brain white matter. The most common neurological symptoms were: dysarthria, parkinsonism, dystonia, tremor, psychiatric disturbances, dysphagia, risus sardonicus, ataxia, chorea, and athetosis. From the neurological point of view, there was no difference on the evolution between the group treated exclusively with D-P and the one treated with Zn. Analysis of MRI scans with longer intervals after the beginning of treatment depicted a trend for neuroimaging worsening, without neurological correspondence, among patients treated with Zn. Neuroimaging pattern of evolution was more favorable for the group that received exclusively D-P. (orig.)

  11. Correlation of Brain Atrophy, Disability, and Spinal Cord Atrophy in a Murine Model of Multiple Sclerosis.

    Science.gov (United States)

    Paz Soldán, M Mateo; Raman, Mekala R; Gamez, Jeffrey D; Lohrey, Anne K; Chen, Yi; Pirko, Istvan; Johnson, Aaron J

    2015-01-01

    Disability progression in multiple sclerosis (MS) remains incompletely understood. Unlike lesional measures, central nervous system atrophy has a strong correlation with disability. Theiler's murine encephalomyelitis virus infection in SJL/J mice is an established model of progressive MS. We utilized in vivo MRI to quantify brain and spinal cord atrophy in this model and analyzed the temporal relationship between atrophy and disability. Infected and control mice were followed for 12 months. Disability was assessed periodically using rotarod assay. Volumetric MRI datasets were acquired at 7 Tesla. Ventricular volume and C4-5 spinal cord cross-sectional area measurements were performed using Analyze 10. At 3 months, brain atrophy reached statistical significance (P = .005). In contrast, disability did not differ until 4 months post-infection (P = .0005). Cord atrophy reached significance by 9 months (P = 0.009). By 12 months, brain atrophy resulted in 111.8% increased ventricular volume (P = .00003), while spinal cord cross-sectional area was 25.6% reduced (P = .001) among cases. Our results suggest that significant brain atrophy precedes and predicts the development of disability, while spinal cord atrophy occurs late and correlates with severe disability. The observed temporal relationship establishes a framework for mechanisms of disability progression and enables further investigations of their underlying substrate. Copyright © 2015 by the American Society of Neuroimaging.

  12. Brain neuroimaging of domestic cats: correlation between computed tomography and cross-sectional anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Nepomuceno, A.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Zanatta, R. [Universidade de Cuiaba, MT (Brazil); Chung, D.G.; Costa, P.F.; Feliciano, M.A.R.; Avante, M.L.; Canola, J.C., E-mail: marcusfeliciano@yahoo.com.br [Faculdade de Ciencias Agrarias e Veterinarias, Jaboticabal, SP (Brazil); Lopes, L.S. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil)

    2016-09-15

    Computed tomography of the brain is necessary as part of the diagnosis of lesions of the central nervous system. In this study we used six domestic cats, male or female, aged between one and five years, evaluated by Computed Tomography (CT) examination without clinical signs of central nervous system disorders. Two euthanized animals stating a condition unrelated to the nervous system were incorporated into this study. The proposal consisted in establishing detailed anatomical description of tomographic images of normal brain of cats, using as reference anatomical images of cross sections of the stained brain and cranial part, with thicknesses similar to the planes of the CT images. CT examinations were performed with and without intravenous iodinated contrast media for live animals. With one euthanized animal, the brain was removed and immediately preserved in 10% formalin for later achievement in cross-sectional thickness of approximately 4mm and staining technique of Barnard, and Robert Brown. The head of another animal was disarticulated in the Atlanto-occipital region and frozen at -20 deg C then sliced to a thickness of about 5mm. The description of visualized anatomical structures using tomography is useful as a guide and allows transcribing with relative accuracy the brain region affected by an injury, and thus correlating it with the clinical symptoms of the patient, providing additional information and consequent improvement to veterinarians during the course of surgical clinic in this species. (author)

  13. Brain neuroimaging of domestic cats: correlation between computed tomography and cross- sectional anatomy

    Directory of Open Access Journals (Sweden)

    A.C. Nepomuceno

    Full Text Available ABSTRACT Computed tomography of the brain is necessary as part of the diagnosis of lesions of the central nervous system. In this study we used six domestic cats, male or female, aged between one and five years, evaluated by Computed Tomography (CT examination without clinical signs of central nervous system disorders. Two euthanized animals stating a condition unrelated to the nervous system were incorporated into this study. The proposal consisted in establishing detailed anatomical description of tomographic images of normal brain of cats, using as reference anatomical images of cross sections of the stained brain and cranial part, with thicknesses similar to the planes of the CT images. CT examinations were performed with and without intravenous iodinated contrast media for live animals. With one euthanized animal, the brain was removed and immediately preserved in 10% formalin for later achievement in cross-sectional thickness of approximately 4mm and staining technique of Barnard, and Robert Brown. The head of another animal was disarticulated in the Atlanto-occipital region and frozen at -20ºC then sliced to a thickness of about 5mm. The description of visualized anatomical structures using tomography is useful as a guide and allows transcribing with relative accuracy the brain region affected by an injury, and thus correlating it with the clinical symptoms of the patient, providing additional information and consequent improvement to veterinarians during the course of surgical clinic in this species.

  14. Frequency, Clinical Correlates, and Ratings of Behavioral Changes in Primary Brain Tumor Patients: A Preliminary Investigation

    OpenAIRE

    Simpson, Grahame K.; Eng-Siew eKoh; Diane eWhiting; Wright, Kylie M.; Teresa eSimpson; Rochelle eFirth; Lauren eGillett; Kathryn eYounan

    2015-01-01

    Purpose Few studies have addressed the specific behavioral changes associated with primary brain tumor (PBT). This paper will report on the frequency and demographic/clinical correlates of such behaviors, and the reliability of rating such behaviors among people with PBT, family informants, and clinicians. The association of behavioral changes and patient functional status will also be discussed. Methods A total of 57 patients with 37 family informants were recruited from two large...

  15. Correlation between MRI findings and long-term outcome in patients with severe brain trauma

    Energy Technology Data Exchange (ETDEWEB)

    Pierallini, A.; Pantano, P.; Fantozzi, L.M.; Bonamini, M. [Dept. of Neurological Sciences, Univ. di Roma (Italy); Vichi, R.; Zylberman, R.; Pisarri, F. [Hospital San Giovanni Battista, SMOM, Roma (Italy); Colonnese, C. [IRCCS Neuromed, Pozzilli (Italy); Bozzao, L. [Dept. of Neurological Sciences, Univ. di Roma (Italy); IRCCS Neuromed, Pozzilli (Italy)

    2000-12-01

    Our aim was to relate MRI findings in patients with severe traumatic brain injury (TBI) to clinical severity and long-term outcome. We studied 37 patients with severe TBI, who were submitted to clinical assessment for disability and cognition and to MRI 60-90 days after trauma. Clinical assessment was also performed 3, 6 and 12 months later. The number and volume of lesions in various cerebral structures were calculated semiautomatically from FLAIR and fast field-echo images. Possible correlations between total and regional lesion volume and clinical deficits were then investigated. The frontal and temporal lobes were most frequently involved. Total lesion volume on FLAIR images correlated significantly with clinical outcome, whereas that on FFE images did not. Regional analysis showed that FLAIR lesion volume in the corpus callosum correlated significantly with scores on disability and cognition scales at the first clinical assessment. FLAIR lesion volume in the frontal lobes correlated significantly with clinical scores 1 year later. (orig.)

  16. Brain regions associated with Anhedonia in healthy adults: a PET correlation study

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Young Chul; Chun, Ji Won; Kim, Jae Jin; Park, Hae Jeong; Lee, Jong Doo [Yonsei University College of Medicine, Gwangju (Korea, Republic of); Seok, Jeong Ho [Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of)

    2005-10-15

    Anhedonia has been proposed to be the result of a basic neurophysiologic dysfunction and a vulnerability marker that precede and contribute to the liability of developing schizophrenia. We hypothesized that anhedonia, as a construct reflecting the decreased capacity to experience pleasure, should be associated with decreased positive hedonic affect trait. This study examined the relationship between anhedonia and positive hedonic affect trait and searched for the brain regions which correlate with anhedonia in normal subjects. Using {sup 18}F-FDG PET scan, we investigated the brain activity of twenty one subjects during resting state. Questionnaires were administrated after the scan in order to assess the self-rated individual differences in physical/social anhedonia and positive/negative affect traits. Negative correlation between physical anhedonia score and positive affect trait score was significant (Pearson coefficient=-0.440, {rho} <0.05). The subjects' physical and social anhedonia scores showed positive correlation with metabolic rates in the cerebellum and negative correlation with metabolic rates in the inferior temporal gyrus and middle frontal gyrus. In addition, the positive affect trait score positively correlated with various areas, most prominent with the inferior temporal gyrus. These results suggest that neural substrates, such as the inferior temporal gyrus and prefrontal-cerebellar circuit, which dysfunction has been proposed to be involved with the cognitive deficits of schizophrenia, may also play a significant role in the liability of affective deficits like anhedonia.

  17. Genome size is inversely correlated with relative brain size in parrots and cockatoos.

    Science.gov (United States)

    Andrews, Chandler B; Gregory, T Ryan

    2009-03-01

    Genome size (haploid nuclear DNA content) has been found to correlate positively with cell size and negatively with cell division rate in a variety of taxa. These cytological relationships manifest in various ways at the organism level, for example, in terms of body size, metabolic rate, or developmental rate, depending on the biology of the organisms. In birds, it has been suggested that high metabolic rate and strong flight ability are linked to small genome size. However, it was also hypothesized that the exceptional cognitive abilities of birds may impose additional constraints on genome size through effects on neuron size and differentiation, as has been observed in amphibians. To test this hypothesis, a comparative analysis was made between genome size, cell (erythrocyte) size, and brain size in 54 species of parrots and cockatoos (order Psittaciformes, family Psittacidae). Relative brain volume, which is taken as an indicator of investment in brain tissue and is widely correlated with behavioural and ecological traits, was found to correlate inversely with genome size. Several possible and mutually compatible explanations for this relationship are described.

  18. The brain structure correlates of individual differences in trait mindfulness: a voxel-based morphometry study.

    Science.gov (United States)

    Lu, H; Song, Y; Xu, M; Wang, X; Li, X; Liu, J

    2014-07-11

    Mindfulness is the state of being attentive to and aware of what is taking place in the present, which is beneficial for reducing stress-related symptoms and improving mental and physical health. Previous studies have demonstrated that meditation practice can improve individuals' mindfulness through modifying functions and structures of multiple brain regions, including the anterior cingulate cortex (ACC), insula, fronto-limbic network, posterior cingulate cortex (PCC), and temporal-parietal junction. However, little is known about the neuroanatomical correlates of trait mindfulness. In the current study, we used voxel-based morphometry to investigate the neural correlates of individual differences in trait mindfulness by correlating the gray matter (GM) volume of each voxel across the whole brain with trait mindfulness measured by the Mindful Attention Awareness Scale in a large sample of young adults (N=247). We found that individuals who were more mindful of the present had greater GM volume in the right hippocampus/amygdala and bilateral ACC, but less GM volume in bilateral PCC and the left orbitofrontal cortex. These results suggest that trait mindfulness is associated with brain regions involved in executive attention, emotion regulation, and self-referential processing, through which mindfulness may exert its beneficial effects on psychological and physical well-being.

  19. Correlation of apparent diffusion coefficient and fractional anisotropy values in the developing infant brain.

    Science.gov (United States)

    Provenzale, James M; Isaacson, Jared; Chen, Steven; Stinnett, Sandra; Liu, Chunlei

    2010-12-01

    The purpose of our study was to correlate decrease in apparent diffusion coefficient (ADC) and increase in fractional anisotropy (FA) in various white matter (WM) regions using diffusion tenor imaging (DTI) within the first year of life. We performed DTI on 53 infants and measured FA and ADC within 10 WM regions important in brain development. For each region, we calculated the slope of ADC as a function of FA, the correlation coefficient (r) and correlation of determination (r(2)). We performed a group analysis of r values and r(2)values for six WM regions primarily composed of crossing fibers and four regions primarily having parallel fibers. Upon finding that a strong correlation of FA with age existed, we adjusted for age and calculated partial correlation coefficients. Slopes of FA versus ADC ranged from -1.00711 to -1.67592 (p correlation coefficients ranged from -0.49 to 0.03 and r(2) values from 0.31 to 0.79. The highest partial correlation coefficients were then relatively equally distributed between the two types of WM regions. In various regions, FA and ADC evolved with differing degrees of correlation. We found a strong influence of age on the relationship between FA and ADC.

  20. Negative correlation of CD34+ cells with blood-brain barrier permeability following traumatic brain injury in a rat model.

    Science.gov (United States)

    Jin, Xuelong; Wang, Feifei; Liu, Xingju; Liang, Bin; Chen, Zequn; He, Junfeng; Zhang, Hong; Zhang, Jianning

    2014-11-01

    TBI causes localized cerebral ischemia that, in turn, is accompanied by both changes in BBB permeability and recruitment of CD34(+) cells to the injured tissue. However, it remains unknown whether CD34(+) cell recruitment is linked to BBB permeability. This study is a preliminary investigation into possible correlations between CD34(+) cell recruitment and BBB permeability following TBI in a rat model. Male SD rats were subjected to mild fluid percussion injury. BBB permeability was assessed by measuring extrinsic EB dye extravasation and endogenous EBA expression at days 1, 3, 5, 7, and 12 post injury. The number of CD34(+) cells in the damaged tissue was analyzed by immunohistochemistry at each time point. EB dye extravasation reached a peak at day 3 following TBI, while EBA expression displayed the reverse profile. Accumulation of CD34(+) cells in injured brain tissue was evident at five days post injury. It revealed a negative linear correlation between CD34(+) cell and BBB permeability. The negative linear correlation between CD34(+) cell recruitment and BBB permeability following TBI provides a support for further study of CD34(+) cell transplantation for BBB repair after TBI. © 2014 John Wiley & Sons Ltd.

  1. Brain perfusion correlates of cognitive and nigrostriatal functions in de novo Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Nobili, Flavio; Arnaldi, Dario; Campus, Claudio; Ferrara, Michela; Brugnolo, Andrea; Dessi, Barbara; Girtler, Nicola; Rodriguez, Guido [University of Genoa, Clinical Neurophysiology, Department of Neurosciences, Ophthalmology and Genetics, Genoa (Italy); De Carli, Fabrizio [National Research Council, Institute of Molecular Bioimaging and Physiology, Genoa (Italy); Morbelli, Silvia; Sambuceti, Gianmario [University of Genoa, Nuclear Medicine, Department of Internal Medicine, Genoa (Italy); Abruzzese, Giovanni [University Hospital San. Martino, Clinical Neurology, Department of Neurosciences, Ophthalmology and Genetics, Genoa (Italy)

    2011-12-15

    Subtle cognitive impairment is recognized in the first stages of Parkinson's disease (PD), including executive, memory and visuospatial dysfunction, but its pathophysiological basis is still debated. Twenty-six consecutive, drug-naive, de novo PD patients underwent an extended neuropsychological battery, dopamine transporter (DAT) and brain perfusion single photon emission computed tomography (SPECT). We previously reported that nigrocaudate impairment correlates with executive functions, and nigroputaminal impairment with visuospatial abilities. Here perfusion SPECT was first compared between the PD group and age-matched controls (CTR). Then, perfusion SPECT was correlated with both DAT SPECT and four neuropsychological factors by means of voxel-based analysis (SPM8) with a height threshold of p < 0.005 at peak level and p < 0.05 false discovery rate-corrected at cluster level. Both perfusion and DAT SPECT images were flipped in order to have the more affected hemisphere (MAH), defined clinically, on the same side. Significant hypoperfusion was found in an occipital area of the MAH in PD patients as compared to CTR. Executive functions directly correlated with brain perfusion in bilateral posterior cingulate cortex and precuneus in the less affected hemisphere (LAH), while verbal memory directly correlated with perfusion in the precuneus, inferior parietal lobule and superior temporal gyrus in the LAH. Furthermore, positive correlation was highlighted between nigrocaudate and nigroputaminal impairment and brain perfusion in the precuneus, posterior cingulate and parahippocampal gyri of the LAH. These data support the evidence showing an early involvement of the cholinergic system in the early cognitive dysfunction and point to a more relevant role of parietal lobes and posterior cingulate in executive functions in PD. (orig.)

  2. Schizotypal perceptual aberrations of time: correlation between score, behavior and brain activity.

    Directory of Open Access Journals (Sweden)

    Shahar Arzy

    Full Text Available A fundamental trait of the human self is its continuum experience of space and time. Perceptual aberrations of this spatial and temporal continuity is a major characteristic of schizophrenia spectrum disturbances--including schizophrenia, schizotypal personality disorder and schizotypy. We have previously found the classical Perceptual Aberration Scale (PAS scores, related to body and space, to be positively correlated with both behavior and temporo-parietal activation in healthy participants performing a task involving self-projection in space. However, not much is known about the relationship between temporal perceptual aberration, behavior and brain activity. To this aim, we composed a temporal Perceptual Aberration Scale (tPAS similar to the traditional PAS. Testing on 170 participants suggested similar performance for PAS and tPAS. We then correlated tPAS and PAS scores to participants' performance and neural activity in a task of self-projection in time. tPAS scores correlated positively with reaction times across task conditions, as did PAS scores. Evoked potential mapping and electrical neuroimaging showed self-projection in time to recruit a network of brain regions at the left anterior temporal cortex, right temporo-parietal junction, and occipito-temporal cortex, and duration of activation in this network positively correlated with tPAS and PAS scores. These data demonstrate that schizotypal perceptual aberrations of both time and space, as reflected by tPAS and PAS scores, are positively correlated with performance and brain activation during self-projection in time in healthy individuals along the schizophrenia spectrum.

  3. The Virtual Brain: Modeling Biological Correlates of Recovery after Chronic Stroke.

    Science.gov (United States)

    Falcon, Maria Inez; Riley, Jeffrey D; Jirsa, Viktor; McIntosh, Anthony R; Shereen, Ahmed D; Chen, E Elinor; Solodkin, Ana

    2015-01-01

    There currently remains considerable variability in stroke survivor recovery. To address this, developing individualized treatment has become an important goal in stroke treatment. As a first step, it is necessary to determine brain dynamics associated with stroke and recovery. While recent methods have made strides in this direction, we still lack physiological biomarkers. The Virtual Brain (TVB) is a novel application for modeling brain dynamics that simulates an individual's brain activity by integrating their own neuroimaging data with local biophysical models. Here, we give a detailed description of the TVB modeling process and explore model parameters associated with stroke. In order to establish a parallel between this new type of modeling and those currently in use, in this work we establish an association between a specific TVB parameter (long-range coupling) that increases after stroke with metrics derived from graph analysis. We used TVB to simulate the individual BOLD signals for 20 patients with stroke and 10 healthy controls. We performed graph analysis on their structural connectivity matrices calculating degree centrality, betweenness centrality, and global efficiency. Linear regression analysis demonstrated that long-range coupling is negatively correlated with global efficiency (P = 0.038), but is not correlated with degree centrality or betweenness centrality. Our results suggest that the larger influence of local dynamics seen through the long-range coupling parameter is closely associated with a decreased efficiency of the system. We thus propose that the increase in the long-range parameter in TVB (indicating a bias toward local over global dynamics) is deleterious because it reduces communication as suggested by the decrease in efficiency. The new model platform TVB hence provides a novel perspective to understanding biophysical parameters responsible for global brain dynamics after stroke, allowing the design of focused therapeutic

  4. Cornelia de Lange syndrome: Correlation of brain MRI findings with behavioral assessment.

    Science.gov (United States)

    Roshan Lal, Tamanna R; Kliewer, Mark A; Lopes, Thelma; Rebsamen, Susan L; O'Connor, Julia; Grados, Marco A; Kimball, Amy; Clemens, Julia; Kline, Antonie D

    2016-06-01

    Neurobehavioral and developmental issues with a broad range of deficits are prominent features of Cornelia de Lange syndrome (CdLS), a disorder due to disruption of the cohesin protein complex. The etiologic relationship of these clinical findings to anatomic abnormalities on neuro-imaging studies has not, however, been established. Anatomic abnormalities in the brain and central nervous system specific to CdLS have been observed, including changes in the white matter, brainstem, and cerebellum. We hypothesize that location and severity of brain abnormalities correlate with clinical phenotype in CdLS, as seen in other developmental disorders. In this study, we retrospectively evaluated brain MRI studies of 15 individuals with CdLS and compared these findings to behavior at the time of the scan. Behavior was assessed using the Aberrant Behavior Checklist (ABC), a validated behavioral assessment tool with several clinical features. Ten of fifteen (67%) of CdLS patients had abnormal findings on brain MRI, including cerebral atrophy, white matter changes, cerebellar hypoplasia, and enlarged ventricles. Other findings included pituitary tumors or cysts, Chiari I malformation and gliosis. Abnormal behavioral scores in more than one behavioral area were seen in all but one patient. All 5 of the 15 (33%) patients with normal structural MRI studies had abnormal ABC scores. All normal ABC scores were noted in only one patient and this was correlated with moderately abnormal MRI changes. Although our cohort is small, our results suggest that abnormal behaviors can exist in individuals with CdLS in the setting of relatively normal structural brain findings. © 2016 Wiley Periodicals, Inc.

  5. Correlations between brain cortical thickness and cutaneous pain thresholds are atypical in adults with migraine.

    Directory of Open Access Journals (Sweden)

    Todd J Schwedt

    Full Text Available BACKGROUND/OBJECTIVE: Migraineurs have atypical pain processing, increased expectations for pain, and hypervigilance for pain. Recent studies identified correlations between brain structure and pain sensation in healthy adults. The objective of this study was to compare cortical thickness-to-pain threshold correlations in migraineurs to healthy controls. We hypothesized that migraineurs would have aberrant relationships between the anatomical neurocorrelates of pain processing and pain thresholds. METHODS: Pain thresholds to cutaneously applied heat were determined for 31 adult migraineurs and 32 healthy controls. Cortical thickness was determined from magnetic resonance imaging T1-weighted sequences. Regional cortical thickness-to-pain threshold correlations were determined for migraineurs and controls separately using a general linear model whole brain vertex-wise analysis. A pain threshold-by-group interaction analysis was then conducted to estimate regions where migraineurs show alterations in the pain threshold-to-cortical thickness correlations relative to healthy controls. RESULTS: Controls had negative correlations (p<0.01 uncorrected between pain thresholds and cortical thickness in left posterior cingulate/precuneus, right superior temporal, right inferior parietal, and left inferior temporal regions, and a negative correlation (p<0.01 Monte Carlo corrected with a left superior temporal/inferior parietal region. Migraineurs had positive correlations (p<0.01 uncorrected between pain thresholds and cortical thickness in left superior temporal/inferior parietal, right precuneus, right superior temporal/inferior parietal, and left inferior parietal regions. Cortical thickness-to-pain threshold correlations differed between migraine and control groups (p<0.01 uncorrected for right superior temporal/inferior parietal, right precentral, left posterior cingulate/precuneus, and right inferior parietal regions and (p<0.01 Monte Carlo corrected

  6. Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers.

    Science.gov (United States)

    Fink, Andreas; Graif, Barbara; Neubauer, Aljoscha C

    2009-07-01

    Neuroscientific research on creativity has revealed valuable insights into possible brain correlates underlying this complex mental ability domain. However, most of the studies investigated brain activity during the performance of comparatively simple (verbal) type of tasks and the majority of studies focused on samples of the normal population. In this study we investigate EEG activity in professional dancers (n=15) who have attained a high level of expertise in this domain. This group was compared with a group of novices (n=17) who have only basic experience in dancing and completed no comprehensive training in this field. The EEG was recorded during performance of two different dancing imagery tasks which differed with respect to creative demands. In the first task participants were instructed to mentally perform a dance which should be as unique and original as possible (improvisation dance). In the waltz task they were asked to imagine dancing the waltz, a standard dance which involves a sequence of monotonous steps (lower creative demands). In addition, brain activity was also measured during performance of the Alternative Uses test. We observed evidence that during the generation of alternative uses professional dancers show stronger alpha synchronization in posterior parietal brain regions than novice dancers. During improvisation dance, professional dancers exhibited more right-hemispheric alpha synchronization than the group of novices did, while during imagining dancing the waltz no significant group differences emerged. The findings complement and extend existing findings on the relationship between EEG alpha activity and creative thinking.

  7. Serotonergic, Brain Volume and Attentional Correlates of Trait Anxiety in Primates

    Science.gov (United States)

    Mikheenko, Yevheniia; Shiba, Yoshiro; Sawiak, Stephen; Braesicke, Katrin; Cockcroft, Gemma; Clarke, Hannah; Roberts, Angela C

    2015-01-01

    Trait anxiety is a risk factor for the development and maintenance of affective disorders, and insights into the underlying brain mechanisms are vital for improving treatment and prevention strategies. Translational studies in non-human primates, where targeted neurochemical and genetic manipulations can be made, are critical in view of their close neuroanatomical similarity to humans in brain regions implicated in trait anxiety. Thus, we characterised the serotonergic and regional brain volume correlates of trait-like anxiety in the marmoset monkey. Low- and high-anxious animals were identified by behavioral responses to a human intruder (HI) that are known to be sensitive to anxiolytic drug treatment. Extracellular serotonin levels within the amygdala were measured with in vivo microdialysis, at baseline and in response to challenge with the selective serotonin reuptake inhibitor, citalopram. Regional brain volume was assessed by structural magnetic resonance imaging. Anxious individuals showed persistent, long-term fearful responses to both a HI and a model snake, alongside sustained attention (vigilance) to novel cues in a context associated with unpredictable threat. Neurally, high-anxious marmosets showed reduced amygdala serotonin levels, and smaller volumes in a closely connected prefrontal region, the dorsal anterior cingulate cortex. These findings highlight behavioral and neural similarities between trait-like anxiety in marmosets and humans, and set the stage for further investigation of the processes contributing to vulnerability and resilience to affective disorders. PMID:25586542

  8. Clinical correlative evaluation of an iterative method for reconstruction of brain SPECT images

    Energy Technology Data Exchange (ETDEWEB)

    Nobili, Flavio E-mail: fnobili@smartino.ge.it; Vitali, Paolo; Calvini, Piero; Bollati, Francesca; Girtler, Nicola; Delmonte, Marta; Mariani, Giuliano; Rodriguez, Guido

    2001-08-01

    Background: Brain SPECT and PET investigations have showed discrepancies in Alzheimer's disease (AD) when considering data deriving from deeply located structures, such as the mesial temporal lobe. These discrepancies could be due to a variety of factors, including substantial differences in gamma-cameras and underlying technology. Mesial temporal structures are deeply located within the brain and the commonly used Filtered Back-Projection (FBP) technique does not fully take into account either the physical parameters of gamma-cameras or geometry of collimators. In order to overcome these limitations, alternative reconstruction methods have been proposed, such as the iterative method of the Conjugate Gradients with modified matrix (CG). However, the clinical applications of these methods have so far been only anecdotal. The present study was planned to compare perfusional SPECT data as derived from the conventional FBP method and from the iterative CG method, which takes into account the geometrical and physical characteristics of the gamma-camera, by a correlative approach with neuropsychology. Methods: Correlations were compared between perfusion of the hippocampal region, as achieved by both the FBP and the CG reconstruction methods, and a short-memory test (Selective Reminding Test, SRT), specifically addressing one of its function. A brain-dedicated camera (CERASPECT) was used for SPECT studies with {sup 99m}Tc-hexamethylpropylene-amine-oxime in 23 consecutive patients (mean age: 74.2{+-}6.5) with mild (Mini-Mental Status Examination score {>=}15, mean 20.3{+-}3), probable AD. Counts from a hippocampal region in each hemisphere were referred to the average thalamic counts. Results: Hippocampal perfusion significantly correlated with the MMSE score with similar statistical significance (p<0.01) between the two reconstruction methods. Correlation between hippocampal perfusion and the SRT score was better with the CG method (r=0.50 for both hemispheres, p<0

  9. Interspecies activity correlations reveal functional correspondence between monkey and human brain areas.

    Science.gov (United States)

    Mantini, Dante; Hasson, Uri; Betti, Viviana; Perrucci, Mauro G; Romani, Gian Luca; Corbetta, Maurizio; Orban, Guy A; Vanduffel, Wim

    2012-02-05

    Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. For cases in which functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assessed similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by temporal correlation. Using natural vision data, we revealed regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models.

  10. Brain Metabolism Correlates of the Free and Cued Selective Reminding Test in Mild Cognitive Impairment.

    Science.gov (United States)

    Caffarra, Paolo; Ghetti, Caterina; Ruffini, Livia; Spallazzi, Marco; Spotti, Annamaria; Barocco, Federica; Guzzo, Caterina; Marchi, Massimo; Gardini, Simona

    2016-01-01

    Free and Cued Selective Reminding Test (FCSRT) measures immediate and delayed episodic memory and cueing sensitivity and is suitable to detect prodromal Alzheimer's disease (AD). The present study aimed at investigating the segregation effect of FCSRT scores on brain metabolism of memory-related structures, usually affected by AD pathology, in the Mild Cognitive Impairment (MCI) stage. A cohort of forty-eight MCI patients underwent FCSRT and 18F-FDG-PET. Multiple regression analysis showed that Immediate Free Recall correlated with brain metabolism in the bilateral anterior cingulate and delayed free recall with the left anterior cingulate and medial frontal gyrus, whereas semantic cueing sensitivity with the left posterior cingulate. FCSRT in MCI is associated with neuro-functional activity of specific regions of memory-related structures connected to hippocampal formation, such as the cingulate cortex, usually damaged in AD.

  11. Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognitive Functions

    Science.gov (United States)

    2017-05-14

    neuropsychological batteries that score their performance in various cognitive tasks. • To determine the correlation between GSH content in the above brain...perform brain GSH level and computerized neuropsychological test with larger sample size . List of Publications and Significant Collaborations that

  12. Eating disorder psychopathology, brain structure, neuropsychological correlates and risk mechanisms in very preterm young adults.

    Science.gov (United States)

    Micali, Nadia; Kothari, Radha; Nam, Kie Woo; Gioroukou, Elena; Walshe, Muriel; Allin, Matthew; Rifkin, Larry; Murray, Robin M; Nosarti, Chiara

    2015-03-01

    This study investigates the prevalence of eating disorder (ED) psychopathology, neuropsychological function, structural brain correlates and risk mechanisms in a prospective cohort of very preterm (VPT) young adults. We assessed ED psychopathology and neuropsychological correlates in 143 cohort individuals born at childhood and adolescence, were investigated using prospectively collected data throughout childhood/adolescence. VPT-born individuals had high levels of ED psychopathology at age 21 years. Executive function did not correlate with ED symptomatology. VPT adults presenting with ED psychopathology had smaller grey matter volume at age 14/15 years in the left posterior cerebellum and smaller white matter volume in the fusiform gyrus bilaterally, compared with VPT adults with no ED psychopathology. Caesarean delivery predicted engaging in compensatory behaviours, and severe eating difficulty at age 14 years predicted ED symptomatology in young adulthood. VPT individuals are at risk for ED symptomatology, with evidence of associated structural alterations in posterior brain regions. Further prospective studies are needed to clarify the pathways that lead from perinatal/obstetric complications to ED and relevant neurobiological mechanisms. © 2015 The Authors. European Eating Disorders Review published by John Wiley &Sons, Ltd.

  13. Breakdown of long-range temporal correlations in brain oscillations during general anesthesia.

    Science.gov (United States)

    Krzemiński, Dominik; Kamiński, Maciej; Marchewka, Artur; Bola, Michał

    2017-07-24

    Consciousness has been hypothesized to emerge from complex neuronal dynamics, which prevails when brain operates in a critical state. Evidence supporting this hypothesis comes mainly from studies investigating neuronal activity on a short time-scale of seconds. However, a key aspect of criticality is presence of scale-free temporal dependencies occurring across a wide range of time-scales. Indeed, robust long-range temporal correlations (LRTCs) are found in neuronal oscillations during conscious states, but it is not known how LRTCs are affected by loss of consciousness. To further test a relation between critical dynamics and consciousness, we investigated LRTCs in electrocorticography signals recorded from four macaque monkeys during resting wakefulness and general anesthesia induced by various anesthetics (ketamine, medetomidine, or propofol). Detrended Fluctuation Analysis was used to estimate LRTCs in amplitude fluctuations (envelopes) of band-pass filtered signals. We demonstrate two main findings. First, during conscious states all lateral cortical regions are characterized by significant LRTCs of alpha-band activity (7-14 Hz). LRTCs are stronger in the eyes-open than eyes-closed state, but in both states they form a spatial gradient, with anterior brain regions exhibiting stronger LRTCs than posterior regions. Second, we observed a substantial decrease of LRTCs during loss of consciousness, the magnitude of which was associated with the baseline (i.e. pre-anesthesia) state of the brain. Specifically, brain regions characterized by strongest LRTCs during a wakeful baseline exhibited greatest decreases during anesthesia (i.e. "the rich got poorer"), which consequently disturbed the posterior-anterior gradient. Therefore, our results suggest that general anesthesia affects mainly brain areas characterized by strongest LRTCs during wakefulness, which might account for lack of capacities for extensive temporal integration during loss of consciousness. Copyright

  14. Correlation between Nerve Growth Factor (NGF with Brain Derived Neurotropic Factor (BDNF in Ischemic Stroke Patient

    Directory of Open Access Journals (Sweden)

    Joko Widodo

    2016-05-01

    Full Text Available Background: The neurotrophins nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF is a family of polypeptides that play critical role during neuronal development, appear to mediate protective role on neurorepair in ischemic stroke. Naturally in adult brain neurorepair process consist of: angiogenesis, neurogenesis, and neuronal plasticity, it can also be stimulated by endogenous neurorepair. In this study we observed correlation between NGF and BDNF ischemic stroke patient’s onset: 7-30 and over 30 days. Methods: This is cross sectional study on 46 subjects aged 38 – 74 years old with ischemic stroke from The Indonesian Central Hospital of Army Gatot Subroto Jakarta. Diagnosis of ischemic stroke was made using clinical examination and magnetic resonance imaging (MRI by neurologist. Subjects were divided into 2 groups based on stroke onset: 7 – 30 days (Group A: 19 subjects and > 30 days (Group B: 27 Subjects. Serum NGF levels were measured with ELISA method and BDNF levels were measured using multiplex method with Luminex Magpix. Results: Levels of NGF and BDNF were significantly different between onset group A and B (NGF p= 0.022, and BDNF p=0.008, with mean levels NGF in group A higher than group B, indicating that BDNF levels is lower in group A than group B. There was no significant correlation between NGF and BDNF levels in all groups. Conclusion: The variations in neurotrophic factor levels reflect an endogenous attempt at neuroprotection against biochemical and molecular changes after ischemic stroke. NGF represents an early marker of brain injury while BDNF recovery is most prominent during the first 14 days after onsite but continuous for more than 30 days. There is no significant correlation between NGF and BDNF in each group.  

  15. Structural brain correlates of sensorimotor gating in antipsychotic-naive men with first-episode schizophrenia

    DEFF Research Database (Denmark)

    Hammer, Trine B; Oranje, Bob; Skimminge, Arnold

    2013-01-01

    and structural MRI (1.5 and 3 T) in men with first-episode schizophrenia and age-matched controls. Voxel-based morphometry was used to investigate the association between PPI and grey matter volumes. Results: We included 27 patients and 38 controls in the study. Patients had lower PPI than controls. The brain...... areas in which PPI and grey matter volume correlated did not differ between the groups. Independent of group, PPI was significantly and positively associated with regional grey matter volume in the right superior parietal cortex. Prepulse inhibition and grey matter volume associations were also observed...

  16. Brain N-acetylaspartate levels correlate with motor function in metachromatic leukodystrophy

    DEFF Research Database (Denmark)

    i Dali, C; Hanson, L G; Barton, N W

    2010-01-01

    and is known as a marker for neuronal and axonal loss. NAA and other metabolite levels measured by proton magnetic resonance spectroscopy (MRS) correlate with performance of the brain in normal children. There is a need for sensitive measures of disease progression in patients with MLD to enable development......Late infantile metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal storage disorder that causes severe demyelination of the nervous system. The neuronal metabolite N-acetylaspartate (NAA) serves as a source of acetyl groups for myelin lipid synthesis in oligodendrocytes...

  17. Circulating levels of brain-derived neurotrophic factor: correlation with mood, cognition and motor function.

    Science.gov (United States)

    Teixeira, Antonio Lucio; Barbosa, Izabela Guimarães; Diniz, Breno Satler; Kummer, Arthur

    2010-12-01

    Brain-derived neurotrophic factor (BDNF) is the most widely distributed neurotrophin in the CNS, where it plays several pivotal roles in synaptic plasticity and neuronal survival. As a consequence, BDNF has become a key target in the physiopathology of several neurological and psychiatric diseases. Recent studies have consistently reported altered levels of BDNF in the circulation (i.e., serum or plasma) of patients with major depression, bipolar disorder, Alzheimer's disease, Huntington's disease and Parkinson's disease. Correlations between serum BDNF levels and affective, cognitive and motor symptoms have also been described. BDNF appears to be an unspecific biomarker of neuropsychiatric disorders characterized by neurodegenerative changes.

  18. Nonlocal correlations of polarization-entangled photons through brain tissue (Conference Presentation)

    Science.gov (United States)

    Galvez, Enrique J.; Shi, Lingyan; Alfano, Robert R.

    2017-02-01

    We investigated the preservation of non-local correlations between polarization-entangled photons when one of them traveled through brain tissue slices of different thicknesses. Using down-converted photons at a wavelength of 802 nm minimized the absorption by the tissue. After the light passed through the tissue samples, we performed quantum state tomography to obtain quantitative measures of the entanglement. We found that entanglement is preserved to a surprising degree, and when it degrades, it does so following a particular path in a tangle versus linear-entropy graph. Such a trajectory reveals direct transfer of probability from entangled to mixed state.

  19. Visualizing functional pathways in the human brain using correlation tensors and magnetic resonance imaging.

    Science.gov (United States)

    Ding, Zhaohua; Xu, Ran; Bailey, Stephen K; Wu, Tung-Lin; Morgan, Victoria L; Cutting, Laurie E; Anderson, Adam W; Gore, John C

    2016-01-01

    Functional magnetic resonance imaging usually detects changes in blood oxygenation level dependent (BOLD) signals from T2*-sensitive acquisitions, and is most effective in detecting activity in brain cortex which is irrigated by rich vasculature to meet high metabolic demands. We recently demonstrated that MRI signals from T2*-sensitive acquisitions in a resting state exhibit structure-specific temporal correlations along white matter tracts. In this report we validate our preliminary findings and introduce spatio-temporal functional correlation tensors to characterize the directional preferences of temporal correlations in MRI signals acquired at rest. The results bear a remarkable similarity to data obtained by diffusion tensor imaging but without any diffusion-encoding gradients. Just as in gray matter, temporal correlations in resting state signals may reflect intrinsic synchronizations of neural activity in white matter. Here we demonstrate that functional correlation tensors are able to visualize long range white matter tracts as well as short range sub-cortical fibers imaged at rest, and that evoked functional activities alter these structures and enhance the visualization of relevant neural circuitry. Furthermore, we explore the biophysical mechanisms underlying these phenomena by comparing pulse sequences, which suggest that white matter signal variations are consistent with hemodynamic (BOLD) changes associated with neural activity. These results suggest new ways to evaluate MRI signal changes within white matter. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Positive genetic correlation between brain size and sexual traits in male guppies artificially selected for brain size

    OpenAIRE

    2015-01-01

    Abstract Brain size is an energetically costly trait to develop and maintain. Investments into other costly aspects of an organism's biology may therefore place important constraints on brain size evolution. Sexual traits are often costly and could therefore be traded off against neural investment. However, brain size may itself be under sexual selection through mate choice on cognitive ability. Here, we use guppy ( Poecilia reticulata) lines selected for large and small brain size relative t...

  1. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain.

    Directory of Open Access Journals (Sweden)

    Jacqueline C Lieblein-Boff

    Full Text Available Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510 were excluded. In addition, moderate correlations with xenobiotic relationships (2 or those driven by single outliers (3 were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region-specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development.

  2. Brain N-acetylaspartate levels correlate with motor function in metachromatic leukodystrophy

    DEFF Research Database (Denmark)

    í Dali, Christine; Hanson, Lars G.; Barton, N. W.

    2010-01-01

    in oligodendrocytes and is known as a marker for neuronal and axonal loss. NAA and other metabolite levels measured by proton magnetic resonance spectroscopy (MRS) correlate with performance of the brain in normal children. There is a need for sensitive measures of disease progression in patients with MLD to enable...... development of future reatments. Methods: A cross-section of 13 children with late infantile MLD were examined by proton MRS. Signals from NAA, total choline, and total creatine in the deep white matter were measured and correlated with the results of cognitive and motor function tests. Results: The NAA...... signal decreased as the disease process advanced. Motor function, measured by the Gross Motor Function Measure–88, varied from 13 (only head movement in the supine position) to 180 (able to walk) across the study cohort, demonstrating a wide range in functional status. Similarly, varied decreases were...

  3. Hypermethylation of the CPG Island of p16 Gene Correlates with Gene Inactivation in Brain Glioma

    Institute of Scientific and Technical Information of China (English)

    JIAOBaohua; GENGShaomei; 等

    2002-01-01

    Objective:To study the correlation between hypermethylation of the CPG island of p16 gene and its inactivation in gliomas.Mehtods:In 50 cases of brain glioma,immunohistochemical method was applied to detect the expression of p16 protein; PCR a-nalysis was performed to identify the deletion of exons 1,2 of p16 gene and hypermethylation of CPG island of exon 1 of p16 gene in brain glioma.Results:Immunohistochemical analysis showed that p16 protein expression was negative in 27 cases(54%) and positive in 23 cases(46%) of 50 cases of brain gliomas.In the group with negative p16 protein expression(n=27 cases),RT-PCR analysis showed that there were 9 cases(33%) with homozygous deletions ofp16 gene and 7 cases(26%) with hypermethylation of CPG island of p16 gene.Conclusion:The transcriptional inhibition of p16 gene may be induced by aberrant hypermethylation of p16 gene 5'-CPG island in some of the cases without the homozygous deletions of p16 gene.Hypermethylation of 5'-CPG island is one of the important mechanisms for p16 gene inactivation.

  4. Brain mapping with transcranial magnetic stimulation using a refined correlation ratio and Kendall's tau.

    Science.gov (United States)

    Matthäus, L; Trillenberg, P; Fadini, T; Finke, M; Schweikard, A

    2008-11-10

    Transcranial magnetic stimulation provides a mean to stimulate the brain non-invasively and painlessly. The effect of the stimulation hereby depends on the stimulation coil used and on its placement. This paper presents a mapping algorithm based on the assumption of a monotonous functional relationship between the applied electric field strength at the representation point of a muscle and the evoked motor potential. We combine data from coil characteristics, coil placement, and stimulation outcome to calculate a likelihood map for the representation of stimulated muscles in the brain. Hereby, correlation ratio (CR) and Kendall's rank coefficient tau are used to find areas in the brain where there is most likely a functional or monotonous relationship between electric field strength applied to this area and the muscle response. First results show a good accordance of our method with mapping from functional magnetic resonance imaging. In our case, classical evaluation of CR with binning is impossible, because sample data sets are too small and data are continuous. We therefore introduce a refined CR formula based on a Parzen windowing of the X-data to solve the problem. In contrast to usual windowing approaches, which require numeric integration, it can be evaluated directly in O(n2) time. Hence, its advantage lies in fast evaluation while maintaining robust applicability to small sample sets. We suggest that the presented formula can generally be used in CR-related problems where sample size is small and data range is continuous.

  5. Personality Change Due to Traumatic Brain Injury in Children and Adolescents: Neurocognitive Correlates.

    Science.gov (United States)

    Max, Jeffrey E; Wilde, Elisabeth A; Bigler, Erin D; Hanten, Gerri; Dennis, Maureen; Schachar, Russell J; Saunders, Ann E; Ewing-Cobbs, Linda; Chapman, Sandra B; Thompson, Wesley K; Yang, Tony T; Levin, Harvey S

    2015-01-01

    Personality change due to traumatic brain injury (PC) in children is an important psychiatric complication of injury and is a form of severe affective dysregulation. This study aimed to examine neurocognitive correlates of PC. The sample included 177 children 5-14 years old with traumatic brain injury who were enrolled from consecutive admissions to five trauma centers. Patients were followed up prospectively at baseline and at 6 months, and they were assessed with semistructured psychiatric interviews. Injury severity, socioeconomic status, and neurocognitive function (measures of attention, processing speed, verbal memory, IQ, verbal working memory, executive function, naming/reading, expressive language, motor speed, and motor inhibition) were assessed with standardized instruments. Unremitted PC was present in 26 (18%) of 141 participants assessed at 6 months postinjury. Attention, processing speed, verbal memory, IQ, and executive function were significantly associated with PC even after socioeconomic status, injury severity, and preinjury attention deficit hyperactivity disorder were controlled. These findings are a first step in characterizing concomitant cognitive impairments associated with PC. The results have implications beyond brain injury to potentially elucidate the neurocognitive symptom complex associated with mood instability regardless of etiology.

  6. Brain metabolic correlates of dopaminergic degeneration in de novo idiopathic Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Berti, Valentina; Polito, Cristina; Vanzi, Eleonora; Cristofaro, Maria Teresa de; Pellicano, Giannantonio; Mungai, Francesco; Formiconi, Andreas Robert; Pupi, Alberto [University of Florence, Department of Clinical Pathophysiology, Florence (Italy); Ramat, Silvia; Marini, Paolo; Sorbi, Sandro [University of Florence, Department of Psychiatric and Neurological Sciences, Florence (Italy)

    2010-03-15

    The aim of the present study was to evaluate the reciprocal relationships between motor impairment, dopaminergic dysfunction, and cerebral metabolism (rCMRglc) in de novo Parkinson's disease (PD) patients. Twenty-six de novo untreated PD patients were scanned with {sup 123}I-FP-CIT SPECT and {sup 18}F-FDG PET. The dopaminergic impairment was measured with putaminal {sup 123}I-FP-CIT binding potential (BP), estimated with two different techniques: an iterative reconstruction algorithm (BP{sub OSEM}) and the least-squares (LS) method (BP{sub LS}). Statistical parametric mapping (SPM) multiple regression analyses were performed to determine the specific brain regions in which UPDRS III scores and putaminal BP values correlated with rCMRglc. The SPM results showed a negative correlation between UPDRS III and rCMRglc in premotor cortex, and a positive correlation between BP{sub OSEM} and rCMRglc in premotor and dorsolateral prefrontal cortex, not surviving at multiple comparison correction. Instead, there was a positive significant correlation between putaminal BP{sub LS} and rCMRglc in premotor, dorsolateral prefrontal, anterior prefrontal, and orbitofrontal cortex (p < 0.05, corrected for multiple comparison). Putaminal BP{sub LS} is an efficient parameter for exploring the correlations between PD severity and rCMRglc cortical changes. The correlation between dopaminergic degeneration and rCMRglc in several prefrontal regions likely represents the cortical functional correlate of the dysfunction in the motor basal ganglia-cortical circuit in PD. This finding suggests focusing on the metabolic course of these areas to follow PD progression and to analyze treatment effects. (orig.)

  7. Functional Brain Correlates of Upper Limb Spasticity and Its Mitigation following Rehabilitation in Chronic Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Svetlana Pundik

    2014-01-01

    Full Text Available Background. Arm spasticity is a challenge in the care of chronic stroke survivors with motor deficits. In order to advance spasticity treatments, a better understanding of the mechanism of spasticity-related neuroplasticity is needed. Objective. To investigate brain function correlates of spasticity in chronic stroke and to identify specific regional functional brain changes related to rehabilitation-induced mitigation of spasticity. Methods. 23 stroke survivors (>6 months were treated with an arm motor learning and spasticity therapy (5 d/wk for 12 weeks. Outcome measures included Modified Ashworth scale, sensory tests, and functional magnetic resonance imaging (fMRI for wrist and hand movement. Results. First, at baseline, greater spasticity correlated with poorer motor function (P=0.001 and greater sensory deficits (P=0.003. Second, rehabilitation produced improvement in upper limb spasticity and motor function (P<0.0001. Third, at baseline, greater spasticity correlated with higher fMRI activation in the ipsilesional thalamus (rho=0.49, P=0.03. Fourth, following rehabilitation, greater mitigation of spasticity correlated with enhanced fMRI activation in the contralesional primary motor (r=-0.755, P=0.003, premotor (r=−0.565, P=0.04, primary sensory (r=−0.614, P=0.03, and associative sensory (r=−0.597, P=0.03 regions while controlling for changes in motor function. Conclusions. Contralesional motor regions may contribute to restoring control of muscle tone in chronic stroke.

  8. Structural brain correlates of resilience to traumatic stress in Dutch police officers.

    Science.gov (United States)

    van der Werff, Steven J A; Elzinga, Bernet M; Smit, Annika S; van der Wee, Nic J A

    2017-08-26

    Neurobiological research has traditionally focused on vulnerability rather than on resilience to severe stress. So far, only a few neuroimaging studies examining resilience have used designs that allow disentangling of the neural correlates of resilience from those related to psychopathology or trauma-exposure. The aim of this study was to identify structural brain correlates of resilience, and their correlations with behavioral measures. MRI scanning was performed in three groups of police officers: (1) a resilient group (N=29; trauma-exposed, no psychopathology), (2) a vulnerable group (N=33; trauma-exposed, psychopathology), and (3) a control group (N=19; no trauma, no psychopathology). Using whole brain and region-of-interest approaches, we examined gray matter volume and shapes, and white matter integrity using software tools from the FSL-library. We did not find patterns of gray matter volumes or shape specific for the resilient group. In resilient police officers, we found an increase in structural connectivity in the corticopontine tract. White matter integrity in this location correlated with a coping style of positive reappraisal. Resilient police officers show a specific pattern of increased structural connectivity, which is associated to the use of higher order emotion regulation strategies. Given this finding in an area that has not been implicated in stress-related disorders before, as well as the null findings in areas repeatedly shown to be involved in stress-related disorders, the current study indicates that resilience is not simply the opposite of having psychiatric symptoms, but rather an independent construct. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Apoptotic markers in cultured fibroblasts correlate with brain metabolites and regional brain volume in antipsychotic-naive first-episode schizophrenia and healthy controls.

    Science.gov (United States)

    Batalla, A; Bargalló, N; Gassó, P; Molina, O; Pareto, D; Mas, S; Roca, J M; Bernardo, M; Lafuente, A; Parellada, E

    2015-08-25

    Cultured fibroblasts from first-episode schizophrenia patients (FES) have shown increased susceptibility to apoptosis, which may be related to glutamate dysfunction and progressive neuroanatomical changes. Here we determine whether apoptotic markers obtained from cultured fibroblasts in FES and controls correlate with changes in brain glutamate and N-acetylaspartate (NAA) and regional brain volumes. Eleven antipsychotic-naive FES and seven age- and gender-matched controls underwent 3-Tesla magnetic resonance imaging scanning. Glutamate plus glutamine (Glx) and NAA levels were measured in the anterior cingulate (AC) and the left thalamus (LT). Hallmarks of apoptotic susceptibility (caspase-3-baseline activity, phosphatidylserine externalization and chromatin condensation) were measured in fibroblast cultures obtained from skin biopsies after inducing apoptosis with staurosporine (STS) at doses of 0.25 and 0.5 μM. Apoptotic biomarkers were correlated to brain metabolites and regional brain volume. FES and controls showed a negative correlation in the AC between Glx levels and percentages of cells with condensed chromatin (CC) after both apoptosis inductions (STS 0.5 μM: r = -0.90; P = 0.001; STS 0.25 μM: r = -0.73; P = 0.003), and between NAA and cells with CC (STS 0.5 μM induction r = -0.76; P = 0.002; STS 0.25 μM r = -0.62; P = 0.01). In addition, we found a negative correlation between percentages of cells with CC and regional brain volume in the right supratemporal cortex and post-central region (STS 0.25 and 0.5 μM; P < 0.05 family-wise error corrected (FWEc)). We reveal for the first time that peripheral markers of apoptotic susceptibility may correlate with brain metabolites, Glx and NAA, and regional brain volume in FES and controls, which is consistent with the neuroprogressive theories around the onset of the schizophrenia illness.

  10. Brain correlates of musical and facial emotion recognition: evidence from the dementias.

    Science.gov (United States)

    Hsieh, S; Hornberger, M; Piguet, O; Hodges, J R

    2012-07-01

    The recognition of facial expressions of emotion is impaired in semantic dementia (SD) and is associated with right-sided brain atrophy in areas known to be involved in emotion processing, notably the amygdala. Whether patients with SD also experience difficulty recognizing emotions conveyed by other media, such as music, is unclear. Prior studies have used excerpts of known music from classical or film repertoire but not unfamiliar melodies designed to convey distinct emotions. Patients with SD (n = 11), Alzheimer's disease (n = 12) and healthy control participants (n = 20) underwent tests of emotion recognition in two modalities: unfamiliar musical tunes and unknown faces as well as volumetric MRI. Patients with SD were most impaired with the recognition of facial and musical emotions, particularly for negative emotions. Voxel-based morphometry showed that the labelling of emotions, regardless of modality, correlated with the degree of atrophy in the right temporal pole, amygdala and insula. The recognition of musical (but not facial) emotions was also associated with atrophy of the left anterior and inferior temporal lobe, which overlapped with regions correlating with standardized measures of verbal semantic memory. These findings highlight the common neural substrates supporting the processing of emotions by facial and musical stimuli but also indicate that the recognition of emotions from music draws upon brain regions that are associated with semantics in language. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Connectomic and surface-based morphometric correlates of acute mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Patrizia eDall'Acqua

    2016-03-01

    Full Text Available Reduced integrity of white matter (WM pathways and subtle anomalies in gray matter (GM morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI. However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare.Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected

  12. Brain, body, and cognition: neural, physiological and self-report correlates of phobic and normative fear.

    Science.gov (United States)

    Schaefer, Hillary S; Larson, Christine L; Davidson, Richard J; Coan, James A

    2014-04-01

    The phobic fear response appears to resemble an intense form of normal threat responding that can be induced in a nonthreatening situation. However, normative and phobic fear are rarely contrasted directly, thus the degree to which these two types of fear elicit similar neural and bodily responses is not well understood. To examine biological correlates of normal and phobic fear, 21 snake phobic and 21 nonphobic controls saw videos of slithering snakes, attacking snakes and fish in an event-related fMRI design. Simultaneous eletrodermal, pupillary, and self-reported affective responses were collected. Nonphobic fear activated a network of threat-responsive brain regions and involved pupillary dilation, electrodermal response and self-reported affect selective to the attacking snakes. Phobic fear recruited a large array of brain regions including those active in normal fear plus additional structures and also engendered increased pupil dilation, electrodermal and self-reported responses that were greater to any snake versus fish. Importantly, phobics showed greater between- and within-subject concordance among neural, electrodermal, pupillary, and subjective report measures. These results suggest phobic responses recruit overlapping but more strongly activated and more extensive networks of brain activity as compared to normative fear, and are characterized by greater concordance among neural activation, peripheral physiology and self-report. It is yet unclear whether concordance is unique to psychopathology, or rather simply an indicator of the intense fear seen in the phobic response, but these results underscore the importance of synchrony between brain, body, and cognition during the phobic reaction. Copyright © 2014. Published by Elsevier B.V.

  13. Neural correlates of delayed visual-motor performance in children treated for brain tumours.

    Science.gov (United States)

    Dockstader, Colleen; Gaetz, William; Bouffet, Eric; Tabori, Uri; Wang, Frank; Bostan, Stefan R; Laughlin, Suzanne; Mabbott, Donald J

    2013-09-01

    Both structural and functional neural integrity is critical for healthy cognitive function and performance. Across studies, it is evident that children who are affected by neurological insult commonly demonstrate impaired cognitive abilities. Children treated with cranial radiation for brain tumours suffer substantial structural damage and exhibit a particularly high correlation between the degree of neural injury and cognitive deficits. However the pathophysiology underlying impaired cognitive performance in this population, and many other paediatric populations affected by neurological injury or disease, is unknown. We wished to investigate the characteristics of neuronal function during visual-motor task performance in a group of children who were treated with cranial radiation for brain tumours. We used Magnetoencephalography to investigate neural function during visual-motor reaction time (RT) task performance in 15 children treated with cranial radiation for Posterior Fossa malignant brain tumours and 17 healthy controls. We found that, relative to controls, the patient group showed: 1) delayed latencies for neural activation in both visual and motor cortices; 2) muted motor responses in the alpha (8-12Hz) and beta (13-29Hz) bandwidths, and 3) potentiated visual and motor responses in the gamma (30-100Hz) bandwidth. Collectively these observations indicate impaired neural processing during visual-motor RT performance in this population and that delays in the speed of visual and motor neuronal processing both contribute to the delays in the behavioural response. As increases in gamma activity are often observed with increases in attention and effort, increased gamma activities in the patient group may reflect compensatory neural activity during task performance. This is the first study to investigate neural function in real-time during cognitive performance in paediatric brain tumour patients. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Toward brain correlates of natural behavior: fMRI during violent video games.

    Science.gov (United States)

    Mathiak, Klaus; Weber, René

    2006-12-01

    Modern video games represent highly advanced virtual reality simulations and often contain virtual violence. In a significant amount of young males, playing video games is a quotidian activity, making it an almost natural behavior. Recordings of brain activation with functional magnetic resonance imaging (fMRI) during gameplay may reflect neuronal correlates of real-life behavior. We recorded 13 experienced gamers (18-26 years; average 14 hrs/week playing) while playing a violent first-person shooter game (a violent computer game played in self-perspective) by means of distortion and dephasing reduced fMRI (3 T; single-shot triple-echo echo-planar imaging [EPI]). Content analysis of the video and sound with 100 ms time resolution achieved relevant behavioral variables. These variables explained significant signal variance across large distributed networks. Occurrence of violent scenes revealed significant neuronal correlates in an event-related design. Activation of dorsal and deactivation of rostral anterior cingulate and amygdala characterized the mid-frontal pattern related to virtual violence. Statistics and effect sizes can be considered large at these areas. Optimized imaging strategies allowed for single-subject and for single-trial analysis with good image quality at basal brain structures. We propose that virtual environments can be used to study neuronal processes involved in semi-naturalistic behavior as determined by content analysis. Importantly, the activation pattern reflects brain-environment interactions rather than stimulus responses as observed in classical experimental designs. We relate our findings to the general discussion on social effects of playing first-person shooter games.

  15. Brain correlates of pro-social personality traits: a voxel-based morphometry study.

    Science.gov (United States)

    Coutinho, Joana F; Sampaio, Adriana; Ferreira, Miguel; Soares, José M; Gonçalves, Oscar F

    2013-09-01

    Of the five personality dimensions described by the Big Five Personality Model (Costa and McCrae 1992), Extraversion and Agreeableness are the traits most commonly associated with a pro-social orientation. In this study we tested whether a pro-social orientation, as expressed in terms of Extraversion and Agreeableness, is associated with a specific grey matter phenotype. Fifty-two healthy participants underwent magnetic resonance imaging (MRI) and completed the NEO-Five Factor Inventory (NEO-FFI), a self-report measure of the Big Five personality traits. Voxel-based morphometry (VBM) was used to investigate the correlation between brain structure and the personality traits of Agreeableness and Extraversion. We found that Extraversion was negatively correlated with grey matter density in the middle frontal and orbitofrontal gyri while Agreeableness was negatively correlated with grey matter density in the inferior parietal, middle occipital and posterior cingulate gyri. No positive correlations were found. These results suggest that pro-social personality traits seem to be associated with decreases in grey matter density in more frontal regions for Extraversion, and more posterior regions for Agreeableness.

  16. Studies of the correlations between morphological brain changes on MRI and computerized EEG changes in schizophrenics

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Kouzou (Kagoshima Univ. (Japan). Faculty of Medicine)

    1992-06-01

    Twenty eight schizophrenic patients, who ranged in age from 21 to 39 years with a mean of 30.2, and 21 age- and sex-matched normal volunteers were studied by magnetic resonance (MR) imaging and electroencephalography (EEG). ALl subjects were given informed consent prior to the present study. They were all right-handed. Schizophrenic patients showed a significantly larger ventricular brain ratio (VBR) on the axial and coronal planes as compared with the control. The bilateral anterior horns, left body, left posterior horn of the lateral ventricle and the third ventricle were significantly larger in schizophrenic patients than the control. The middle half of the corpus callosum was smaller in schizophrenic patients than the control. Schizophrenia was more likely associated not only with delta and theta activities in the centro-parieto-occipital regions but also with beta 1 and beta 2 activities in the front-central regions. In schizophrenic patients, however, alpha 2 activity was markedly decreased in all regions. There were significant positive correlations between the total scores for brief psychiatric rating scale (BPRS) and the areas of the left anterior and posterior horns of the lateral ventricle. The total BPRS scores positively correlated with the area of the third ventricle. In addition, positive correlations were significant between delata activity and the area of the left anterior horn of the lateral ventricle, between delta activity and the area of the third ventricle, and between beta 1 activity and the area of left posteior horn of the lateral ventricle. These results suggest that a dilated third ventricle is associated with electrophysiological brain pathology and psychopathology in schizophrenic patients. (N.K.) 76 refs.

  17. Artificial selection on relative brain size reveals a positive genetic correlation between brain size and proactive personality in the guppy.

    Science.gov (United States)

    Kotrschal, Alexander; Lievens, Eva J P; Dahlbom, Josefin; Bundsen, Andreas; Semenova, Svetlana; Sundvik, Maria; Maklakov, Alexei A; Winberg, Svante; Panula, Pertti; Kolm, Niclas

    2014-04-01

    Animal personalities range from individuals that are shy, cautious, and easily stressed (a "reactive" personality type) to individuals that are bold, innovative, and quick to learn novel tasks, but also prone to routine formation (a "proactive" personality type). Although personality differences should have important consequences for fitness, their underlying mechanisms remain poorly understood. Here, we investigated how genetic variation in brain size affects personality. We put selection lines of large- and small-brained guppies (Poecilia reticulata), with known differences in cognitive ability, through three standard personality assays. First, we found that large-brained animals were faster to habituate to, and more exploratory in, open field tests. Large-brained females were also bolder. Second, large-brained animals excreted less cortisol in a stressful situation (confinement). Third, large-brained animals were slower to feed from a novel food source, which we interpret as being caused by reduced behavioral flexibility rather than lack of innovation in the large-brained lines. Overall, the results point toward a more proactive personality type in large-brained animals. Thus, this study provides the first experimental evidence linking brain size and personality, an interaction that may affect important fitness-related aspects of ecology such as dispersal and niche exploration.

  18. Brain functional correlates of emotion regulation across adolescence and young adulthood.

    Science.gov (United States)

    Stephanou, Katerina; Davey, Christopher G; Kerestes, Rebecca; Whittle, Sarah; Pujol, Jesus; Yücel, Murat; Fornito, Alex; López-Solà, Marina; Harrison, Ben J

    2016-01-01

    Few studies have examined the neural correlates of emotion regulation across adolescence and young adulthood. Existing studies of cognitive reappraisal indicate that improvements in regulatory efficiency may develop linearly across this period, in accordance with maturation of prefrontal cortical systems. However, there is also evidence for adolescent differences in reappraisal specific to the activation of "social-information processing network" regions, including the amygdala and temporal-occipital cortices. Here, we use fMRI to examine the neural correlates of emotional reactivity and reappraisal in response to aversive social imagery in a group of 78 adolescents and young adults aged 15-25 years. Within the group, younger participants exhibited greater activation of temporal-occipital brain regions during reappraisal in combination with weaker suppression of amygdala reactivity-the latter being a general correlate of successful reappraisal. Further analyses demonstrated that these age-related influences on amygdala reactivity were specifically mediated by activation of the fusiform face area. Overall, these findings suggest that enhanced processing of salient social cues (i.e., faces) increases reactivity of the amygdala during reappraisal and that this relationship is stronger in younger adolescents. How these relationships contribute to well-known vulnerabilities of emotion regulation during this developmental period will be an important topic for ongoing research.

  19. Correlation mapping method of OCT for visualization blood vessels in brain

    Science.gov (United States)

    Izotova, O. A.; Kalyanov, A. L.; Lychagov, V. V.; Semyachkina-Glushkovskaya, O. V.

    2013-11-01

    The burning issue in modern medicine is the diagnosis and treatment of various life-threatening diseases, in particular the diseases of brain. One of them is intracranial hemorrhage (ICH). It occurs especially among newborn babies and is hard-diagnosed. In order to understand the nature of the ICH, the microcirculation of blood, which serves key functions within the body, is analyzed. On this basis a series of experiments was done, in the results of which it was showed, that latent stage of ICH is characterized by decrease of venous blood outflow and the loss of sensitivity of sagittal vein to vasoconstrictor effect of adrenaline. So, stress-related changes of the cerebral venous blood flow (CVBF) can be the source of this disease. In this paper registration CVBF was made with the help of commercially available Thorlabs Swept Source OCT System, using the correlation mapping method. In this method values of correlation coefficient of several images are analyzed. In the result of the algorithm the correlation map was obtained. By the resulting map the diameter of vessels was calculated, which is necessary for examination of effects of adrenalin to the vessels and identification symptoms of ICH.

  20. Diagnostic performance of whole brain volume perfusion CT in intra-axial brain tumors: Preoperative classification accuracy and histopathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Xyda, Argyro, E-mail: argyro.xyda@med.uni-goettingen.de [Department of Neuroradiology, Georg-August University, University Hospital of Goettingen, Robert-Koch Strasse 40, 37075 Goettingen (Germany); Department of Radialogy, University Hospital of Heraklion, Voutes, 71110 Heraklion, Crete (Greece); Haberland, Ulrike, E-mail: ulrike.haberland@siemens.com [Siemens AG Healthcare Sector, Computed Tomography, Siemensstr. 1, 91301 Forchheim (Germany); Klotz, Ernst, E-mail: ernst.klotz@siemens.com [Siemens AG Healthcare Sector, Computed Tomography, Siemensstr. 1, 91301 Forchheim (Germany); Jung, Klaus, E-mail: kjung1@uni-goettingen.de [Department of Medical Statistics, Georg-August University, Humboldtallee 32, 37073 Goettingen (Germany); Bock, Hans Christoph, E-mail: cbock@gmx.de [Department of Neurosurgery, Johannes Gutenberg University Hospital of Mainz, Langenbeckstraße 1, 55101 Mainz (Germany); Schramm, Ramona, E-mail: ramona.schramm@med.uni-goettingen.de [Department of Neuroradiology, Georg-August University, University Hospital of Goettingen, Robert-Koch Strasse 40, 37075 Goettingen (Germany); Knauth, Michael, E-mail: michael.knauth@med.uni-goettingen.de [Department of Neuroradiology, Georg-August University, University Hospital of Goettingen, Robert-Koch Strasse 40, 37075 Goettingen (Germany); Schramm, Peter, E-mail: p.schramm@med.uni-goettingen.de [Department of Neuroradiology, Georg-August University, University Hospital of Goettingen, Robert-Koch Strasse 40, 37075 Goettingen (Germany)

    2012-12-15

    Background: To evaluate the preoperative diagnostic power and classification accuracy of perfusion parameters derived from whole brain volume perfusion CT (VPCT) in patients with cerebral tumors. Methods: Sixty-three patients (31 male, 32 female; mean age 55.6 ± 13.9 years), with MRI findings suspected of cerebral lesions, underwent VPCT. Two readers independently evaluated VPCT data. Volumes of interest (VOIs) were marked circumscript around the tumor according to maximum intensity projection volumes, and then mapped automatically onto the cerebral blood volume (CBV), flow (CBF) and permeability Ktrans perfusion datasets. A second VOI was placed in the contra lateral cortex, as control. Correlations among perfusion values, tumor grade, cerebral hemisphere and VOIs were evaluated. Moreover, the diagnostic power of VPCT parameters, by means of positive and negative predictive value, was analyzed. Results: Our cohort included 32 high-grade gliomas WHO III/IV, 18 low-grade I/II, 6 primary cerebral lymphomas, 4 metastases and 3 tumor-like lesions. Ktrans demonstrated the highest sensitivity, specificity and positive predictive value, with a cut-off point of 2.21 mL/100 mL/min, for both the comparisons between high-grade versus low-grade and low-grade versus primary cerebral lymphomas. However, for the differentiation between high-grade and primary cerebral lymphomas, CBF and CBV proved to have 100% specificity and 100% positive predictive value, identifying preoperatively all the histopathologically proven high-grade gliomas. Conclusion: Volumetric perfusion data enable the hemodynamic assessment of the entire tumor extent and provide a method of preoperative differentiation among intra-axial cerebral tumors with promising diagnostic accuracy.

  1. Correlation between heat shock protein 70 expression in the brain stem and sudden death after experimental traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    ZHAO Lian-xu; XU Xiao-hu; LIU Chao; PAN Su-yue; ZHU Jia-zhen; ZHANG Cheng

    2001-01-01

    Objective: The aim of this study was to determine the patterns of heat-shock protein 70 (HSP70) biosynthesis following traumatic brain injury, and observe the effect of HSP70 induction on the function of the vital center in the brain stem. Methods: Rat models of sudden death resulted form traumatic brain injury were produced, and HSP70 expression in the rat brain stem was determined by immunohistochemistry, the induction of HSP70 mRNA detected by RT-PCR. Results: The level of HSP70 mRNA was prominently elevated in the brain stem as early as 1 5 min following the impact injury, while HSP70 expression was only observed 3 to 6 h after the injury. It was also observed that the levels of HSP70 mRNA but not the protein were elevated in the brain stem of sudden death rats. Conclusion: The synthesis of HSP70 was significantly enhanced in the brain stem following traumatic injury, and the expression of HSP70 is beneficial to eliminate the stress agents, and to sustain the cellular protein homeostasis. When the injury disturbs the synthesis of HSP70 to disarm the protective mechanism of heat-shock proteins, dysfunction of the vital center in the brain stem, and consequently death may occur. Breach in the synchronization of HSP70 mRNA-protein can be indicative of fatal damage to the nerve cells.

  2. Fatigue in multiple sclerosis: neural correlates and the role of non-invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Moussa A. Chalah

    2015-11-01

    Full Text Available Multiple sclerosis (MS is a chronic progressive inflammatory disease of the central nervous system and the major cause of non-traumatic disability in young adults. Fatigue is a frequent symptom reported by the majority of MS patients during their disease course and drastically af-fects their quality of life. Despite its significant prevalence and impact, the underlying patho-physiological mechanisms are not well elucidated. MS fatigue is still considered the result of multifactorial and complex constellations, and is commonly classified into primary fatigue related to the pathological changes of the disease itself, and secondary fatigue attributed to mimicking symptoms, comorbid sleep and mood disorders, and medications side effects. Data from neuroimaging, neurophysiology, neuroendocrine and neuroimmune studies have raised hypotheses regarding the origin of this symptom, some of which have succeeded in identifying an association between MS fatigue and structural or functional abnormalities within various brain networks. Hence, the aim of this work is to reappraise the neural correlates of MS fatigue and to discuss the rationale for the emergent use of noninvasive brain stimulation (NIBS techniques as potential treatments. This will include a presentation of the various NIBS modalities and a proposition of their potential mechanisms of action in this context. Specific issues related to the value of transcranial direct current stimulation will be addressed.

  3. Structural and Functional Brain Correlates of Cognitive Impairment in Euthymic Patients with Bipolar Disorder

    Science.gov (United States)

    Goikolea, José M.; Bonnin, Caterina M.; Sarró, Salvador; Segura, Barbara; Amann, Benedikt L.; Monté, Gemma C.; Moro, Noemi; Fernandez-Corcuera, Paloma; Maristany, Teresa; Salvador, Raymond; Vieta, Eduard; Pomarol-Clotet, Edith; McKenna, Peter J.

    2016-01-01

    Introduction Cognitive impairment in the euthymic phase is a well-established finding in bipolar disorder. However, its brain structural and/or functional correlates are uncertain. Methods Thirty-three euthymic bipolar patients with preserved memory and executive function and 28 euthymic bipolar patients with significant memory and/or executive impairment, as defined using two test batteries, the Rivermead Behavioural Memory Test (RBMT) and the Behavioural Assessment of the Dysexecutive Syndrome (BADS), plus 28 healthy controls underwent structural MRI using voxel-based morphometry (VBM). Twenty-seven of the cognitively preserved patients, 23 of the cognitively impaired patients and 28 controls also underwent fMRI during performance of the n-back working memory task. Results No clusters of grey or white matter volume difference were found between the two patient groups. During n-back performance, the cognitively impaired patients showed hypoactivation compared to the cognitively preserved patients in a circumscribed region in the right dorsolateral prefrontal cortex. Both patient groups showed failure of de-activation in the medial frontal cortex compared to the healthy controls. Conclusions Cognitive impairment in euthymic bipolar patients appears from this study to be unrelated to structural brain abnormality, but there was some evidence for an association with altered prefrontal function. PMID:27448153

  4. Subthalamic Nucleus Deep Brain Stimulation Alters Prefrontal Correlates of Emotion Induction.

    Science.gov (United States)

    Bick, Sarah K B; Folley, Bradley S; Mayer, Jutta S; Park, Sohee; Charles, P David; Camalier, Corrie R; Pallavaram, Srivatsan; Konrad, Peter E; Neimat, Joseph S

    2017-04-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor symptoms in advanced Parkinson's disease. STN DBS may also affect emotion, possibly by impacting a parallel limbic cortico-striatal circuit. The objective of this study was to investigate changes in prefrontal cortical activity related to DBS during an emotion induction task. We used near infrared spectroscopy to monitor prefrontal cortex hemodynamic changes during an emotion induction task. Seven DBS patients were tested sequentially in the stimulation-on and stimulation-off states while on dopaminergic medication. Patients watched a series of positive, negative, and neutral videos. The general linear model was used to compare prefrontal oxygenated hemoglobin concentration between DBS states. Deep brain stimulation was correlated with prefrontal oxygenated hemoglobin changes relative to the stimulation off state in response to both positive and negative videos. These changes were specific to emotional stimuli and were not seen during neutral stimuli. These results suggest that STN stimulation influences the prefrontal cortical representation of positive and negative emotion induction. © 2016 International Neuromodulation Society.

  5. Correlation of neurocognitive function and brain parenchyma volumes in children surviving cancer

    Science.gov (United States)

    Reddick, Wilburn E.; White, Holly A.; Glass, John O.; Mulhern, Raymond K.

    2002-04-01

    This research builds on our hypothesis that white matter damage and associated neurocognitive symptoms, in children treated for cancer with cranial spinal irradiation, spans a continuum of severity that can be reliably probed using non-invasive MR technology. Quantitative volumetric assessments of MR imaging and psychological assessments were obtained in 40 long-term survivors of malignant brain tumors treated with cranial irradiation. Neurocognitive assessments included a test of intellect (Wechsler Intelligence Test for Children, Wechsler Adult Intelligence Scale), attention (Conner's Continuous Performance Test), and memory (California Verbal Learning Test). One-sample t-tests were conducted to evaluate test performance of survivors against age-adjusted scores from the test norms; these analyses revealed significant impairments in all apriori selected measures of intelligence, attention, and memory. Partial correlation analyses were performed to assess the relationships between brain tissues volumes (normal appearing white matter (NAWM), gray matter, and CSF) and neurocognitive function. Global intelligence (r = 0.32, p = 0.05) and global attentional (r = 0.49, p childhood cancer treated with cranial irradiation reveal that loss of NAWM is associated with decreased intellectual and attentional deficits, whereas overall parenchyma loss, as reflected by increased CSF and decreased white matter, is associated with memory-related deficits.

  6. Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders.

    Science.gov (United States)

    Kos, Claire; van Tol, Marie-José; Marsman, Jan-Bernard C; Knegtering, Henderikus; Aleman, André

    2016-10-01

    Apathy can be described as a loss of goal-directed purposeful behavior and is common in a variety of neurological and psychiatric disorders. Although previous studies investigated associations between abnormal brain functioning and apathy, it is unclear whether the neural basis of apathy is similar across different pathological conditions. The purpose of this systematic review was to provide an extensive overview of the neuroimaging literature on apathy including studies of various patient populations, and evaluate whether the current state of affairs suggest disorder specific or shared neural correlates of apathy. Results suggest that abnormalities within fronto-striatal circuits are most consistently associated with apathy across the different pathological conditions. Of note, abnormalities within the inferior parietal cortex were also linked to apathy, a region previously not included in neuroanatomical models of apathy. The variance in brain regions implicated in apathy may suggest that different routes towards apathy are possible. Future research should investigate possible alterations in different processes underlying goal-directed behavior, ranging from intention and goal-selection to action planning and execution.

  7. Vocal Modification Abilities and Brain Structures in Parrots – how do they Correlate?

    DEFF Research Database (Denmark)

    Harpøth, Solveig Walløe

    .e. the oval nucleus of the mesopallium, MO and 3) investigate the effect of long-­term social and sound-isolation on the vocal modification ability and on the contact call of the peach-­fronted conure, Aratinga aurea. Article 1: The social complexity hypothesis states that with a complex social structure......-­fronted conure and the budgerigar. Article 2: It has been suggested that the size of various brain regions is important for behavioral capability and also the number of neurons have been suggested to be important. Here we correlate the vocal modification ability of the peach-­fronted conure, the budgerigar...... and the peach-faced lovebird with a brain nucleus, MO, involved in vocal learning. We show that the species with the highest level of vocal complexity (i.e. the peach-fronted conure) was also the species with the largest volume of MO and the highest number of neurons in MO. The budgerigar had the smallest...

  8. EVALUATION OF BRAIN TUMOURS BY MRI TECHNIQUES AND THEIR HISTOPATHOLOGICAL CORRELATION

    Directory of Open Access Journals (Sweden)

    Mohammad Shamim

    2014-12-01

    Full Text Available : This study was conducted on thirty patients of brain tumors diagnosed on CT scan/ Conventional MRI. It was performed in the Department of Radiological and PET Imaging, Institute of Nuclear Medicine and Allied Sciences (INMAS, Brig S. K. Mazumdar Marg , Lucknow road, Delhi. Out of thirty patients, 19 patients (63.33% were male and 11 patients (36.66% were female. Their ages ranged from 22 to 63 years. The most common presenting symptom was headache followed by seizures. MRI is a powerful tool for evaluation and characterization of brain tumors because of its superior soft tissue contrast and multiplanar capabilities. All these patients underwent routine MRI sequences, including T1W, T2WI and FLAIR sequences. Histopathological correlation was obtained in all the patients to serve as the gold standard. Out of thirty patients selected for this study, twenty cases were found to be malignant and ten cases were benign on histopathological evaluation. Majority of malignant lesions were glioblastomamultiforme. Amongst benign cases, majorities were meningioma, one was a granulomatous lesion and one was a benign cystic lesion. On conventional MRI sequences, including T1, T2 and FLAIR, there was significant overlap between appearances of benign and malignant lesions in their intensity on various sequences. Moreover, it has got no prognostic value in follow up of patients after therapy.

  9. Math anxiety: A review of its cognitive consequences, psychophysiological correlates, and brain bases.

    Science.gov (United States)

    Suárez-Pellicioni, Macarena; Núñez-Peña, María Isabel; Colomé, Àngels

    2016-02-01

    A decade has passed since the last published review of math anxiety, which was carried out by Ashcraft and Ridley (2005). Given the considerable interest aroused by this topic in recent years and the growing number of publications related to it, the present article aims to provide a full and updated review of the field, ranging from the initial studies of the impact of math anxiety on numerical cognition, to the latest research exploring its electrophysiological correlates and brain bases from a cognitive neuroscience perspective. Finally, this review describes the factors and mechanisms that have been claimed to play a role in the origins and/or maintenance of math anxiety, and it examines in detail the main explanations proposed to account for the negative effects of math anxiety on performance: competition for working memory resources, a deficit in a low-level numerical representation, and inhibition/attentional control deficit.

  10. Exploration of whole brain networks modulated by acupuncture at analgesia acupoint ST36 using scale-specific wavelet correlation analysis

    Institute of Scientific and Technical Information of China (English)

    CHENG Hao; YAN Hao; BAI Li-jun; WANG Bao-guo

    2013-01-01

    Background Previous studies have demonstrated that acupuncture could modulate various brain systems in the resting brain networks.Graph theoretical analysis offers a novel way to investigate the functional organization of the large-scale cortical networks modulated by acupuncture at whole brain level.In this study,we used wavelets correlation analysis to estimate the pairwise correlations between 90 cortical and subcortical human brain regions in normal human volunteers scanned during the post-stimulus resting state.Methods Thirty-two college students,all right-handed and acupuncture na(i)ve,participated in this study.Every participant received only one acupoint stimulation,resulting in 16 subjects in one group.Both structural functional magnetic resonance imaging (fMRI) data (3D sequence with a voxel size of 1 mm3 for anatomical localization) and functional fMRI data (TR=1500 ms,TE=30 ms,flip angle=90°) were collected for each subject.After thresholding the resulting scale-specific wavelet correlation matrices to generate undirected binary graphs,we compared graph metrics of brain organization following verum manual acupuncture (ACU) and sham acupuncture (SHAM) groups.Results The topological parameters of the large-scale brain networks in ACU group were different from those of the SHAM group at multiple scales.There existed distinct modularity functional brain networks during the post-stimulus resting state following ACU and SHAM at multiple scales.Conclusions The distinct modulation patterns of the resting brain attributed to the specific effects evoked by acupuncture.In addition,we also identified that there existed frequency-specific modulation in the post-stimulus resting brain following ACU and SHAM.The modulation may be related to the effects of verum acupuncture on modulating special disorder treatment.This preliminary finding may provide a new clue to understand the relatively functionoriented specificity of acupuncture effects.

  11. Histological-subtypes and anatomical location correlated in meningeal brain tumors (meningiomas

    Directory of Open Access Journals (Sweden)

    Abdul Rashid Bhat

    2014-01-01

    Full Text Available Context: Not enough literature is available to suggest a link between the histological subtypes of intracranial meningeal brain tumors, called ′meningiomas′ and their location of origin. Aim: The evidence of correlation between the anatomical location of the intracranial meningiomas and the histopathological grades will facilitate specific diagnosis and accurate treatment. Materials and Methods: The retrospective study was conducted in a single high-patient-inflow Neurosurgical Center, under a standard and uniform medical protocol, over a period of 30 years from December 1982 to December 2012. The records of all the operated 729 meningiomas were analyzed from the patient files in the Medical Records Department. The biodata, x-rays, angiography, computed tomography (CT scans, imaging, histopathological reports, and mortality were evaluated and results drawn. Results: The uncommon histopathological types of meningiomas (16.88% had common locations of origin in the sphenoid ridge, posterior parafalcine, jugular foramen, peritorcular and intraventricular regions, cerebellopontine angle, and tentorial and petroclival areas. The histopathological World Health Organization (WHO Grade I (Benign Type meningiomas were noted in 89.30%, WHO Grade II (Atypical Type in 5.90%, and WHO Grade III (Malignant Type in 4.80% of all meningiomas. Meningiomas of 64.60% were found in females, 47.32% were in the age group of 41-50 years, and 3.43% meningiomas were found in children. An overall mortality of 6.04% was noted. WHO Grade III (malignant meningiomas carried a high mortality (25.71% and the most common sites of meningiomas with high mortality were: The cerebellopontine angles, intraventricular region, sphenoid ridge, tuberculum sellae, and the posterior parafalcine areas. Conclusion: The correlation between the histological subtypes and the anatomical location of intracranial meningeal brain tumors, called meningiomas, is evident, but further research is

  12. Small-world bias of correlation networks: From brain to climate

    Science.gov (United States)

    Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, Jaroslav; Paluš, Milan

    2017-03-01

    Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, and the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948-2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared with a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.

  13. Reorganization of Functional Connectivity as a Correlate of Cognitive Recovery in Acquired Brain Injury

    Science.gov (United States)

    Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando

    2010-01-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…

  14. Correlative analysis of head kinematics and brain's tissue response: a computational approach toward understanding the mechanisms of blast TBI

    Science.gov (United States)

    Sarvghad-Moghaddam, H.; Rezaei, A.; Ziejewski, M.; Karami, G.

    2017-09-01

    Upon impingement of blast waves on the head, stress waves generated at the interface of the skull are transferred into the cranium and the brain tissue and may cause mild to severe blast traumatic brain injury. The intensity of the shock front, defined by the blast overpressure (BoP), that is, the blast-induced peak static overpressure, significantly affects head kinematics as well as the tissue responses of the brain. While evaluation of global linear and rotational accelerations may be feasible, an experimental determination of dynamic responses of the brain in terms of intracranial pressure (ICP), maximum shear stress (MSS), and maximum principal strain (MPS) is almost impossible. The main objective of this study is to investigate possible correlations between head accelerations and the brain's ICP, MSS, and MPS. To this end, three different blasts were simulated by modeling the detonation of 70, 200, and 500 g of TNT at a fixed distance from the head, corresponding to peak BoPs of 0.52, 1.2, and 2 MPa, respectively. A nonlinear multi-material finite element algorithm was implemented in the LS-DYNA explicit solver. Fluid-solid interaction between the blast waves and head was modeled using a penalty-based method. Strong correlations were found between the brain's dynamic responses and both global linear and rotational accelerations at different blast intensities (R^{2 }≥ 98%), implying that global kinematic parameters of the head might be strong predictors of brain tissue biomechanical parameters.

  15. Evaluation of Phase Locking and Cross Correlation Methods for Estimating the Time Lag between Brain Sites: A Simulation Approach.

    Science.gov (United States)

    Soltanzadeh, Mohammad Javad; Daliri, Mohammad Reza

    2014-01-01

    Direction and latency of electrical connectivity between different sites of brain explains brain neural functionality. We compared efficiency of cross correlation and phase locking methods in time lag estimation which are based on local field potential (LFP) and LFP-spike signals, respectively. Signals recorded from MT area of a macaque's brain was used in a simulation approach. The first signal was real brain activity and the second was identical to the first one, but with two kinds of delayed and not delayed forms. Time lag between two signals was estimated by cross correlation and phase locking methods. Both methods estimated the time lags with no errors. Phase locking was not as time efficient as correlation. In addition, phase locking suffered from temporal self bias. Correlation was a more efficient method. Phase locking was not considered as a proper method to estimate the time lags between brain sites due to time inefficiency and self bias, the problems which are reported for the first time about this method.

  16. Brain correlates of spike and wave discharges in GLUT1 deficiency syndrome.

    Science.gov (United States)

    Vaudano, Anna Elisabetta; Olivotto, Sara; Ruggieri, Andrea; Gessaroli, Giuliana; De Giorgis, Valentina; Parmeggiani, Antonia; Veggiotti, Pierangelo; Meletti, Stefano

    2017-01-01

    To provide imaging biomarkers of generalized spike-and-wave discharges (GSWD) in patients with GLUT1 deficiency syndrome (GLUT1DS). Eighteen GLUT1DS patients with pathogenetic mutation in SLC2A1 gene were studied by means of Video-EEG simultaneously recorded with functional MRI (VideoEEG-fMRI). A control group of sex and age-matched patients affected by Genetic Generalized Epilepsy (GGE) with GSWD were investigated with the same protocol. Within and between groups comparison was performed as appropriated. For GLUT1DS, correlations analyses between the contrast of interest and the main clinical measurements were provided. EEG during fMRI revealed interictal GSWD in 10 GLUT1DS patients. Group-level analysis showed BOLD signal increases at the premotor cortex and putamen. With respect to GGE, GLUT1DS patients demonstrated increased neuronal activity in the putamen, precuneus, cingulate cortex, SMA and paracentral lobule. Whole-brain correlation analyses disclosed a linear relationship between the GSWD-related BOLD changes and the levels of glycorrhachia at diagnosis over the sensory-motor cortex and superior parietal lobuli. The BOLD dynamics related to GSWD in GLUT1DS are substantially different from typical GGE showing the former an increased activity in the premotor-striatal network and a decrease in the thalamus. The revealed hemodynamic maps might represent imaging biomarkers of GLUT1DS, being potentially useful for a precocious diagnosis of this genetic disorder.

  17. Time-Shift Correlation Algorithm for P300 Event Related Potential Brain-Computer Interface Implementation

    Directory of Open Access Journals (Sweden)

    Ju-Chi Liu

    2016-01-01

    Full Text Available A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI. The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN, and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM and accuracy-recognition mode (AM, were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR. When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints.

  18. Time-Shift Correlation Algorithm for P300 Event Related Potential Brain-Computer Interface Implementation.

    Science.gov (United States)

    Liu, Ju-Chi; Chou, Hung-Chyun; Chen, Chien-Hsiu; Lin, Yi-Tseng; Kuo, Chung-Hsien

    2016-01-01

    A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI). The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN), and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM) and accuracy-recognition mode (AM), were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR). When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints.

  19. Development of a Modelling to Correlate Site and Diameter of Brain Metastases with Hippocampal Sparing Using Volumetric Modulated Arc Therapy

    Directory of Open Access Journals (Sweden)

    Silvia Chiesa

    2013-01-01

    Full Text Available Purpose. To correlate site and diameter of brain metastases with hippocampal sparing in patients treated by RapidArc (RA technique on whole brain with simultaneously integrated boost (SIB. Methods and Materials. An RA plan was calculated for brain metastases of 1-2-3 cm of diameter. The whole brain dose was 32.25 Gy (15 fractions, and SIB doses to brain metastases were 63 Gy (2 and 3 cm or 70.8 Gy (1 cm. Plans were optimized and evaluated for conformity, target coverage, prescription isodose to target volume, homogeneity index, and hippocampal sparing. Results. Fifteen brain lesions and RA plan were generated. Hippocampal volume was 4.09 cm3, and hippocampal avoidance volume was 17.50 cm3. Related to site of metastases, the mean hippocampal dose was 9.68 Gy2 for occipital lobe, 10.56 Gy2 for frontal lobe, 10.56 Gy2 for parietal lobe, 10.94 Gy2 for deep brain structures, and 40.44 Gy2 for temporal lobe. The mean hippocampal dose was 9.45 Gy2, 10.15 Gy2, and 11.70 Gy2 for diameter’s metastases of 1.2 and 3 cm, respectively, excluding results relative to temporal brain lesions. Conclusions. Location more than size of metastases can adversely influence the hippocampus sparing. Further investigation is necessary to meet definitive considerations.

  20. Correlation of vascular endothelial growth factor to permeability of blood-brain barrier and brain edema during high-altitude exposure

    Institute of Scientific and Technical Information of China (English)

    Qiquan Zhou; Chang'e Liu; Jing Wang; Yunli Wang; Bo Zhou

    2009-01-01

    BACKGROUND:Many studies have evaluated the role of vascular endothelial growth factor (VEGF) in traumatic brain edema and hemorrhagic brain edema.OBJECTIVE:To observe the effects of VEGF expression on permeability of the blood-brain barrier (BBB) during high-altitude and hypoxia exposure,and to investigate the correlation between VEGF expression and BBB permeability with regard to Evans blue staining and brain edema during high-altitude exposure.DESIGN,TIME AND SETTING:The randomized,controlled,animal study was performed at the Tanggula Etape,Central Laboratory of Chengdu Medical College,and Central Laboratory of General Hospital of Chengdu Military Area Command of Chinese PLA,China,from July 2003 to November 2004.MATERIALS:Quantitative RT-PCR kit (Sigma,USA),VEGF ELISA kit (Biosource,USA),and Evans blue (Jingchun,China) were acquired for this study.METHODS:A total of 180 Wistar rats were equally and randomly assigned to 15 groups:low-altitude (500 m),middle-altitude (2 880 m),high-altitude (4 200 m),super-high-altitude (5 000 m),1,3,5,7,9,11,13,15,17,19,and 21 days of super high-altitude exposure.Wistar rats were exposed to various altitude gradients to establish a hypoxia model.MAIN OUTCOME MEASURES:Brain water content was calculated according to the wet-to-dry weight ratio.BBB permeability to Evans blue was determined by colorimetric method.VEGF mRNA and protein levels in brain tissues were detected using RT-PCR and double-antibody sandwich ELISA.RESULTS:Brain water content,BBB permeability to Evans blue,and VEGF mRNA and protein levels in brain tissues increased with increasing altitude and prolonged exposure to altitude.The greatest increase was determined on day 9 upon ascending 5 000 m.Simultaneously,VEGF expression positively correlated to BBB permeability of Evans blue and brain water content (r=0.975,0.917,P<0.01).CONCLUSION:Increased VEGF protein and mRNA expression was responsible for increased BBB permeability,which may be an important mechanism

  1. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.

    Science.gov (United States)

    Vasilyev, Anatoly; Liburkina, Sofya; Yakovlev, Lev; Perepelkina, Olga; Kaplan, Alexander

    2017-02-04

    Motor imagery (MI) is considered to be a promising cognitive tool for improving motor skills as well as for rehabilitation therapy of movement disorders. It is believed that MI training efficiency could be improved by using the brain-computer interface (BCI) technology providing real-time feedback on person's mental attempts. While BCI is indeed a convenient and motivating tool for practicing MI, it is not clear whether it could be used for predicting or measuring potential positive impact of the training. In this study, we are trying to establish whether the proficiency in BCI control is associated with any of the neurophysiological or psychological correlates of motor imagery, as well as to determine possible interrelations among them. For that purpose, we studied motor imagery in a group of 19 healthy BCI-trained volunteers and performed a correlation analysis across various quantitative assessment metrics. We examined subjects' sensorimotor event-related EEG events, corticospinal excitability changes estimated with single-pulse transcranial magnetic stimulation (TMS), BCI accuracy and self-assessment reports obtained with specially designed questionnaires and interview routine. Our results showed, expectedly, that BCI performance is dependent on the subject's capability to suppress EEG sensorimotor rhythms, which in turn is correlated with the idle state amplitude of those oscillations. Neither BCI accuracy nor the EEG features associated with MI were found to correlate with the level of corticospinal excitability increase during motor imagery, and with assessed imagery vividness. Finally, a significant correlation was found between the level of corticospinal excitability increase and kinesthetic vividness of imagery (KVIQ-20 questionnaire). Our results suggest that two distinct neurophysiological mechanisms might mediate possible effects of motor imagery: the non-specific cortical sensorimotor disinhibition and the focal corticospinal excitability increase

  2. Functional connectivity in the resting brain as biological correlate of the Affective Neuroscience Personality Scales.

    Science.gov (United States)

    Deris, Nadja; Montag, Christian; Reuter, Martin; Weber, Bernd; Markett, Sebastian

    2017-02-15

    According to Jaak Panksepp's Affective Neuroscience Theory and the derived self-report measure, the Affective Neuroscience Personality Scales (ANPS), differences in the responsiveness of primary emotional systems form the basis of human personality. In order to investigate neuronal correlates of personality, the underlying neuronal circuits of the primary emotional systems were analyzed in the present fMRI-study by associating the ANPS to functional connectivity in the resting brain. N=120 healthy participants were invited for the present study. The results were reinvestigated in an independent, smaller sample of N=52 participants. A seed-based whole brain approach was conducted with seed-regions bilaterally in the basolateral and superficial amygdalae. The selection of seed-regions was based on meta-analytic data on affective processing and the Juelich histological atlas. Multiple regression analyses on the functional connectivity maps revealed associations with the SADNESS-scale in both samples. Functional resting-state connectivity between the left basolateral amygdala and a cluster in the postcentral gyrus, and between the right basolateral amygdala and clusters in the superior parietal lobe and subgyral in the parietal lobe was associated with SADNESS. No other ANPS-scale revealed replicable results. The present findings give first insights into the neuronal basis of the SADNESS-scale of the ANPS and support the idea of underlying neuronal circuits. In combination with previous research on genetic associations of the ANPS functional resting-state connectivity is discussed as a possible endophenotype of personality. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Remodeling Pearson's Correlation for Functional Brain Network Estimation and Autism Spectrum Disorder Identification

    Directory of Open Access Journals (Sweden)

    Weikai Li

    2017-08-01

    Full Text Available Functional brain network (FBN has been becoming an increasingly important way to model the statistical dependence among neural time courses of brain, and provides effective imaging biomarkers for diagnosis of some neurological or psychological disorders. Currently, Pearson's Correlation (PC is the simplest and most widely-used method in constructing FBNs. Despite its advantages in statistical meaning and calculated performance, the PC tends to result in a FBN with dense connections. Therefore, in practice, the PC-based FBN needs to be sparsified by removing weak (potential noisy connections. However, such a scheme depends on a hard-threshold without enough flexibility. Different from this traditional strategy, in this paper, we propose a new approach for estimating FBNs by remodeling PC as an optimization problem, which provides a way to incorporate biological/physical priors into the FBNs. In particular, we introduce an L1-norm regularizer into the optimization model for obtaining a sparse solution. Compared with the hard-threshold scheme, the proposed framework gives an elegant mathematical formulation for sparsifying PC-based networks. More importantly, it provides a platform to encode other biological/physical priors into the PC-based FBNs. To further illustrate the flexibility of the proposed method, we extend the model to a weighted counterpart for learning both sparse and scale-free networks, and then conduct experiments to identify autism spectrum disorders (ASD from normal controls (NC based on the constructed FBNs. Consequently, we achieved an 81.52% classification accuracy which outperforms the baseline and state-of-the-art methods.

  4. Correlation of tenascin-C concentrations in serum with outcome of traumatic brain injury in humans.

    Science.gov (United States)

    Zhao, Yuan-Yuan; Lou, Lin; Yang, Kai-Chuang; Wang, Hai-Bo; Xu, Yan; Lu, Gang; He, Hai-Yan

    2017-09-01

    Tenascin-C, a matricellular protein, is involved in brain injury. However, change of tenascin-C concentrations in peripheral blood remains unknown after traumatic brain injury (TBI). Serum tenascin-C concentrations were measured in 100 healthy controls, 108 severe TBI patients, 79 moderate TBI patients and 32 mild TBI patients. Serum tenascin-C concentrations of patients were significantly higher than those of controls. Tenascin-C concentrations negatively correlated with Glasgow Coma Scale (GCS) scores in all patients (r=-0.658, PC in serum significantly discriminated patients at risk of 6-month mortality (area under curve, 0.821; 95% confidence interval, 0.735-0.888) and poor outcome (Glasgow Outcome Scale score of 1-3) (area under curve, 0.833; 95% confidence interval, 0.749-0.898) and emerged as an independent predictor for 6-month mortality (odds ratio, 1.114; 95% confidence interval, 1.008-1.233; P=0.005), overall survival (hazard ratio, 1.085; 95% confidence interval, 1.010-1.166; P=0.003) and unfavorable outcome (odds ratio, 1.049; 95% confidence interval, 1.014-1.076; P=0.001). By receiver-operating characteristic analysis, serum tenascin-C concentrations had similar prognostic value compared with GCS scores. Enhanced serum tenascin-C concentrations are closely related to trauma severity and clinical outcomes, substantializing tenascin-C as a potential prognostic biomarker after TBI. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Watching the brain recalibrate: Neural correlates of renormalization during face adaptation.

    Science.gov (United States)

    Kloth, Nadine; Rhodes, Gillian; Schweinberger, Stefan R

    2017-07-15

    The face perception system flexibly adjusts its neural responses to current face exposure, inducing aftereffects in the perception of subsequent faces. For instance, adaptation to expanded faces makes undistorted faces appear compressed, and adaptation to compressed faces makes undistorted faces appear expanded. Such distortion aftereffects have been proposed to result from renormalization, in which the visual system constantly updates a prototype according to the adaptors' characteristics and evaluates subsequent faces relative to that. However, although consequences of adaptation are easily observed in behavioral aftereffects, it has proven difficult to observe renormalization during adaptation itself. Here we directly measured brain responses during adaptation to establish a neural correlate of renormalization. Given that the face-evoked occipito-temporal P2 event-related brain potential has been found to increase with face prototypicality, we reasoned that the adaptor-elicited P2 could serve as an electrophysiological indicator for renormalization. Participants adapted to sequences of four distorted (compressed or expanded) or undistorted faces, followed by a slightly distorted test face, which they had to classify as undistorted or distorted. We analysed ERPs evoked by each of the adaptors and found that P2 (but not N170) amplitudes evoked by consecutive adaptor faces exhibited an electrophysiological pattern of renormalization during adaptation to distorted faces: P2 amplitudes evoked by both compressed and expanded adaptors significantly increased towards asymptotic levels as adaptation proceeded. P2 amplitudes were smallest for the first adaptor, significantly larger for the second, and yet larger for the third adaptor. We conclude that the sensitivity of the occipito-temporal P2 to the perceived deviation of a face from the norm makes this component an excellent tool to study adaptation-induced renormalization. Copyright © 2017 Elsevier Inc. All rights

  6. Brain edema formation correlates with perfusion deficit during the first six hours after experimental subarachnoid hemorrhage in rats

    Directory of Open Access Journals (Sweden)

    Westermaier Thomas

    2012-07-01

    Full Text Available Abstract Background Severe brain edema is observed in a number of patients suffering from subarachnoid hemorrhage (SAH. Little is known about its pathogenesis and time-course in the first hours after SAH. This study was performed to investigate the development of brain edema and its correlation with brain perfusion after experimental SAH. Methods Male Sprague–Dawley rats, randomly assigned to one of six groups (n = 8, were subjected to SAH using the endovascular filament model or underwent a sham operation. Animals were sacrificed 15, 30, 60, 180 or 360 minutes after SAH. Intracranial pressure (ICP, mean arterial blood pressure (MABP, cerebral perfusion pressure (CPP and bilateral local cerebral blood flow (LCBF were continuously measured. Brain water content (BWC was determined by the wet/dry-weight method. Results After SAH, CPP and LCBF rapidly decreased. The decline of LCBF markedly exceeded the decline of CPP and persisted until the end of the observation period. BWC continuously increased. A significant correlation was observed between the BWC and the extent of the perfusion deficit in animals sacrificed after 180 and 360 minutes. Conclusions The significant correlation with the perfusion deficit after SAH suggests that the development of brain edema is related to the extent of ischemia and acute vasoconstriction in the first hours after SAH.

  7. Flow cytometry analysis of cancer cell death induced by the extract of Thai plant Ellipeiopsis cherrevensis.

    Science.gov (United States)

    Yumoto, Ryoko; Kakizoe, Saki; Nagai, Junya; Patanasethanont, Denpong; Sripanidkulchai, Bung-Orn; Takano, Mikihisa

    2013-01-01

      The mechanism of cancer cell death induced by KP018, an ethanol extract of the Thai plant Ellipeiopsis cherrevensis, was examined in paclitaxel-resistant HepG2 (PR-HepG2) and colon-26 cells using flow cytometry. In PR-HepG2 cells, KP018 induced necrosis in a concentration-dependent manner. Necrosis of PR-HepG2 cells induced by KP018 as well as by hydrogen peroxide was suppressed by co-treatment of the cells with N-acetylcysteine. KP018 decreased the viability of colon-26 cells with an IC50 value of 15.1 µg/mL, which was estimated by XTT assay. As observed in PR-HepG2 cells, KP018 induced necrosis and the necrosis was suppressed by N-acetylcysteine in colon-26 cells. In addition, using colon-26 solid tumor-bearing mice, KP018 was found to suppress tumor growth without apparent toxicities under in vivo conditions. These results indicate that KP018 induces necrosis rather than apoptosis in these cancer cells, and reactive oxygen species such as hydrogen peroxide would be involved in KP018-induced necrosis. KP018 may be a useful source to search for a new anticancer drug that can be used for the chemotherapy of multidrug-resistant tumors.

  8. Arabidopsis GRI is involved in the regulation of cell death induced by extracellular ROS.

    Science.gov (United States)

    Wrzaczek, Michael; Brosché, Mikael; Kollist, Hannes; Kangasjärvi, Jaakko

    2009-03-31

    Reactive oxygen species (ROS) have important functions in plant stress responses and development. In plants, ozone and pathogen infection induce an extracellular oxidative burst that is involved in the regulation of cell death. However, very little is known about how plants can perceive ROS and regulate the initiation and the containment of cell death. We have identified an Arabidopsis thaliana protein, GRIM REAPER (GRI), that is involved in the regulation of cell death induced by extracellular ROS. Plants with an insertion in GRI display an ozone-sensitive phenotype. GRI is an Arabidopsis ortholog of the tobacco flower-specific Stig1 gene. The GRI protein appears to be processed in leaves with a release of an N-terminal fragment of the protein. Infiltration of the N-terminal fragment of the GRI protein into leaves caused cell death in a superoxide- and salicylic acid-dependent manner. Analysis of the extracellular GRI protein yields information on how plants can initiate ROS-induced cell death during stress response and development.

  9. Metallomics insights into the programmed cell death induced by metal-based anticancer compounds.

    Science.gov (United States)

    Tan, Cai-Ping; Lu, Yi-Ying; Ji, Liang-Nian; Mao, Zong-Wan

    2014-05-01

    Since the discovery of cisplatin more than 40 years ago, enormous research efforts have been dedicated to developing metal-based anticancer agents and to elucidating the mechanisms involved in the action of these compounds. Abnormal metabolism and the evasion of apoptosis are important hallmarks of malignant transformation, and the induction of apoptotic cell death has been considered to be a main pathway by which cytotoxic metal complexes combat cancer. However, many cancers have cellular defects involving the apoptotic machinery, which results in an acquired resistance to apoptotic cell death and therefore reduced chemotherapeutic effectiveness. Over the past decade, it has been revealed that a growing number of cell death pathways induced by metal complexes are not dependent on apoptosis. Metal complexes specifically triggering these alternative cell death pathways have been identified and explored as novel cancer treatment options. In this review, we discuss recent examples of metallomics studies on the different types of cell death induced by metal-based anticancer drugs, especially on the three major forms of programmed cell death (PCD) in mammalian cells: apoptosis, autophagy and regulated necrosis, also called necroptosis.

  10. Induction of morphological changes in death-induced cancer cells monitored by holographic microscopy.

    Science.gov (United States)

    El-Schich, Zahra; Mölder, Anna; Tassidis, Helena; Härkönen, Pirkko; Falck Miniotis, Maria; Gjörloff Wingren, Anette

    2015-03-01

    We are using the label-free technique of holographic microscopy to analyze cellular parameters including cell number, confluence, cellular volume and area directly in the cell culture environment. We show that death-induced cells can be distinguished from untreated counterparts by the use of holographic microscopy, and we demonstrate its capability for cell death assessment. Morphological analysis of two representative cell lines (L929 and DU145) was performed in the culture flasks without any prior cell detachment. The two cell lines were treated with the anti-tumour agent etoposide for 1-3days. Measurements by holographic microscopy showed significant differences in average cell number, confluence, volume and area when comparing etoposide-treated with untreated cells. The cell volume of the treated cell lines was initially increased at early time-points. By time, cells decreased in volume, especially when treated with high doses of etoposide. In conclusion, we have shown that holographic microscopy allows label-free and completely non-invasive morphological measurements of cell growth, viability and death. Future applications could include real-time monitoring of these holographic microscopy parameters in cells in response to clinically relevant compounds.

  11. Prototypical antipsychotic drugs protect hippocampal neuronal cultures against cell death induced by growth medium deprivation

    Directory of Open Access Journals (Sweden)

    Williams Sylvain

    2006-03-01

    Full Text Available Abstract Background Several clinical studies suggested that antipsychotic-based medications could ameliorate cognitive functions impaired in certain schizophrenic patients. Accordingly, we investigated the effects of various dopaminergic receptor antagonists – including atypical antipsychotics that are prescribed for the treatment of schizophrenia – in a model of toxicity using cultured hippocampal neurons, the hippocampus being a region of particular relevance to cognition. Results Hippocampal cell death induced by deprivation of growth medium constituents was strongly blocked by drugs including antipsychotics (10-10-10-6 M that display nM affinities for D2 and/or D4 receptors (clozapine, haloperidol, (±-sulpiride, domperidone, clozapine, risperidone, chlorpromazine, (+-butaclamol and L-741,742. These effects were shared by some caspases inhibitors and were not accompanied by inhibition of reactive oxygen species. In contrast, (--raclopride and remoxipride, two drugs that preferentially bind D2 over D4 receptors were ineffective, as well as the selective D3 receptor antagonist U 99194. Interestingly, (--raclopride (10-6 M was able to block the neuroprotective effect of the atypical antipsychotic clozapine (10-6 M. Conclusion Taken together, these data suggest that D2-like receptors, particularly the D4 subtype, mediate the neuroprotective effects of antipsychotic drugs possibly through a ROS-independent, caspase-dependent mechanism.

  12. Monoamines tissue content analysis reveals restricted and site-specific correlations in brain regions involved in cognition.

    Science.gov (United States)

    Fitoussi, A; Dellu-Hagedorn, F; De Deurwaerdère, P

    2013-01-01

    The dopamine (DA), noradrenalin (NA) and serotonin (5-HT) monoaminergic systems are deeply involved in cognitive processes via their influence on cortical and subcortical regions. The widespread distribution of these monoaminergic networks is one of the main difficulties in analyzing their functions and interactions. To address this complexity, we assessed whether inter-individual differences in monoamine tissue contents of various brain areas could provide information about their functional relationships. We used a sensitive biochemical approach to map endogenous monoamine tissue content in 20 rat brain areas involved in cognition, including 10 cortical areas and examined correlations within and between the monoaminergic systems. Whereas DA content and its respective metabolite largely varied across brain regions, the NA and 5-HT contents were relatively homogenous. As expected, the tissue content varied among individuals. Our analyses revealed a few specific relationships (10%) between the tissue content of each monoamine in paired brain regions and even between monoamines in paired brain regions. The tissue contents of NA, 5-HT and DA were inter-correlated with a high incidence when looking at a specific brain region. Most correlations found between cortical areas were positive while some cortico-subcortical relationships regarding the DA, NA and 5-HT tissue contents were negative, in particular for DA content. In conclusion, this work provides a useful database of the monoamine tissue content in numerous brain regions. It suggests that the regulation of these neuromodulatory systems is achieved mainly at the terminals, and that each of these systems contributes to the regulation of the other two.

  13. Correlation between choline level and Gd-DTPA enhancement in patients with brain metastases of mammary carcinoma

    NARCIS (Netherlands)

    P.E. Sijens (Paul); P. van Dijk (Pieter); M. Oudkerk (Matthijs)

    1994-01-01

    textabstractSingle voxel 1HH double spin-echo MR spectroscopy was used to examine 15 cases of brain metastasis of mammary carcinoma (18 lesions) in relation to Gd-DTPA enhanced MR imaging. For lesions larger than 50% of MRS voxel size, there was significant correlation between Gd-DTPA-enhanced MRI

  14. Exploratory metabolomic analyses reveal compounds correlated with lutein concentration in frontal cortex, hippocampus, and occipital cortex of human infant brain

    Science.gov (United States)

    Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with...

  15. Attention Performance Measured by Attention Network Test Is Correlated with Global and Regional Efficiency of Structural Brain Networks

    OpenAIRE

    Min Xiao; Haitao Ge; Budhachandra Singh Khundrakpam; Junhai Xu; Gleb Bezgin; Yuan Leng; Lu Zhao; Yuchun Tang; Xinting Ge; Seun Jeon; Wenjian Xu; Alan Charles Evans; Shuwei Liu

    2016-01-01

    Functional neuroimaging studies have indicated the involvement of separate brain areas in three distinct attention systems: alerting, orienting, and executive control (EC). However, the structural correlates underlying attention remains unexplored. Here, we utilized graph theory to examine the neuroanatomical substrates of the three attention systems measured by attention network test (ANT) in 65 healthy subjects. White matter connectivity, assessed with diffusion tensor imaging deterministic...

  16. Correlation of hyponatremia with plasma renin activity, antidiuretic hormone and brain natri- uretic peptide in chronic heart failure

    Institute of Scientific and Technical Information of China (English)

    富路

    2006-01-01

    Objective To observe the changes of plasma renin activity, antidiuretic hormone and brain natriuretic peptide in chronic heart failure (CHF) and their correlation with hyponatremia. Methods Plasma levels of PRA, ADH, and BNP were measured by radioimmunology in 76 CHF patients. Forty-one out of 76 CHF patients with hyponatremia and 35 CHF patients without hyponatremia

  17. Neural correlates of user-initiated motor success and failure - A brain-computer interface perspective.

    Science.gov (United States)

    Yazmir, Boris; Reiner, Miriam

    2016-11-02

    Any motor action is, by nature, potentially accompanied by human errors. In order to facilitate development of error-tailored Brain-Computer Interface (BCI) correction systems, we focused on internal, human-initiated errors, and investigated EEG correlates of user outcome successes and errors during a continuous 3D virtual tennis game against a computer player. We used a multisensory, 3D, highly immersive environment. Missing and repelling the tennis ball were considered, as 'error' (miss) and 'success' (repel). Unlike most previous studies, where the environment "encouraged" the participant to perform a mistake, here errors happened naturally, resulting from motor-perceptual-cognitive processes of incorrect estimation of the ball kinematics, and can be regarded as user internal, self-initiated errors. Results show distinct and well-defined Event-Related Potentials (ERPs), embedded in the ongoing EEG, that differ across conditions by waveforms, scalp signal distribution maps, source estimation results (sLORETA) and time-frequency patterns, establishing a series of typical features that allow valid discrimination between user internal outcome success and error. The significant delay in latency between positive peaks of error- and success-related ERPs, suggests a cross-talk between top-down and bottom-up processing, represented by an outcome recognition process, in the context of the game world. Success-related ERPs had a central scalp distribution, while error-related ERPs were centro-parietal. The unique characteristics and sharp differences between EEG correlates of error/success provide the crucial components for an improved BCI system. The features of the EEG waveform can be used to detect user action outcome, to be fed into the BCI correction system.

  18. Brain correlates of hypnotic paralysis-a resting-state fMRI study.

    Science.gov (United States)

    Pyka, M; Burgmer, M; Lenzen, T; Pioch, R; Dannlowski, U; Pfleiderer, B; Ewert, A W; Heuft, G; Arolt, V; Konrad, C

    2011-06-15

    Hypnotic paralysis has been used since the times of Charcot to study altered states of consciousness; however, the underlying neurobiological correlates are poorly understood. We investigated human brain function during hypnotic paralysis using resting-state functional magnetic resonance imaging (fMRI), focussing on two core regions of the default mode network and the representation of the paralysed hand in the primary motor cortex. Hypnotic suggestion induced an observable left-hand paralysis in 19 participants. Resting-state fMRI at 3T was performed in pseudo-randomised order awake and in the hypnotic condition. Functional connectivity analyses revealed increased connectivity of the precuneus with the right dorsolateral prefrontal cortex, angular gyrus, and a dorsal part of the precuneus. Functional connectivity of the medial frontal cortex and the primary motor cortex remained unchanged. Our results reveal that the precuneus plays a pivotal role during maintenance of an altered state of consciousness. The increased coupling of selective cortical areas with the precuneus supports the concept that hypnotic paralysis may be mediated by a modified representation of the self which impacts motor abilities. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Electrophysiological correlates of emotional face processing after mild traumatic brain injury in preschool children.

    Science.gov (United States)

    D'Hondt, Fabien; Lassonde, Maryse; Thebault-Dagher, Fanny; Bernier, Annie; Gravel, Jocelyn; Vannasing, Phetsamone; Beauchamp, Miriam H

    2017-02-01

    Evidence suggests that social skills are affected by childhood mild traumatic brain injury (mTBI), but the neural and affective substrates of these difficulties are still underexplored. In particular, nothing is known about consequences on the perception of emotional facial expressions, despite its critical role in social interactions and the importance of the preschool period in the development of this ability. This study thus aimed to investigate the electrophysiological correlates of emotional facial expressions processing after early mTBI. To this end, 18 preschool children (mean age 53 ± 8 months) who sustained mTBI and 15 matched healthy controls (mean age 55 ± 11 months) were presented with pictures of faces expressing anger, happiness, or no emotion (neutral) while event-related potentials (ERP) were recorded. The main results revealed that P1 amplitude was higher for happy faces than for angry faces, and that N170 latency was shorter for emotional faces than for neutral faces in the control group only. These findings suggest that preschool children who sustain mTBI do not present the early emotional effects that are observed in healthy preschool children at visuospatial and visual expertise stages. This study provides new evidence regarding the consequences of childhood mTBI on socioemotional processing, by showing alterations of emotional facial expressions processing, an ability known to underlie social competence and appropriate social interactions.

  20. Neural correlates of radial frequency trajectory perception in the human brain.

    Science.gov (United States)

    Gorbet, Diana J; Wilkinson, Frances; Wilson, Hugh R

    2014-01-10

    Radial frequency (RF) motion trajectories are visual stimuli that consist of a difference of Gaussians moving along a closed trajectory defined by a sinusoidal variation of the radius relative to a circular path. In the current study, multivoxel fMRI analyses demonstrated that spatial patterns of activity in visual regions V2, V3, and MT can predict RF motion trajectory shape regardless of whether an observer can behaviorally identify the shape or not. This result suggests that processing in these regions is concerned with local properties of the trajectories and not directly linked with a conscious percept of global trajectory shape. Whole-brain analyses show that RF motion trajectories also evoke premotor and posterior parietal cortical activity that may be a neural correlate of shape recognizability. Further, comparisons with activity evoked by static versions of the RF shapes reveal cue-invariant processing in regions of the posterior parietal and occipitotemporal cortices. Interestingly, the RF motion trajectories evoke patterns of dorsal visual stream cortical activity typical of visually guided movement preparation or action observation, suggesting that these stimuli may be processed as potential motor actions rather than as purely visual experiences.

  1. Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements.

    Directory of Open Access Journals (Sweden)

    Carl O Olson

    Full Text Available MeCP2 is a critical epigenetic regulator in brain and its abnormal expression or compromised function leads to a spectrum of neurological disorders including Rett Syndrome and autism. Altered expression of the two MeCP2 isoforms, MeCP2E1 and MeCP2E2 has been implicated in neurological complications. However, expression, regulation and functions of the two isoforms are largely uncharacterized. Previously, we showed the role of MeCP2E1 in neuronal maturation and reported MeCP2E1 as the major protein isoform in the adult mouse brain, embryonic neurons and astrocytes. Recently, we showed that DNA methylation at the regulatory elements (REs within the Mecp2 promoter and intron 1 impact the expression of Mecp2 isoforms in differentiating neural stem cells. This current study is aimed for a comparative analysis of temporal, regional and cell type-specific expression of MeCP2 isoforms in the developing and adult mouse brain. MeCP2E2 displayed a later expression onset than MeCP2E1 during mouse brain development. In the adult female and male brain hippocampus, both MeCP2 isoforms were detected in neurons, astrocytes and oligodendrocytes. Furthermore, MeCP2E1 expression was relatively uniform in different brain regions (olfactory bulb, striatum, cortex, hippocampus, thalamus, brainstem and cerebellum, whereas MeCP2E2 showed differential enrichment in these brain regions. Both MeCP2 isoforms showed relatively similar distribution in these brain regions, except for cerebellum. Lastly, a preferential correlation was observed between DNA methylation at specific CpG dinucleotides within the REs and Mecp2 isoform-specific expression in these brain regions. Taken together, we show that MeCP2 isoforms display differential expression patterns during brain development and in adult mouse brain regions. DNA methylation patterns at the Mecp2 REs may impact this differential expression of Mecp2/MeCP2 isoforms in brain regions. Our results significantly contribute

  2. Expression of alcoholism-relevant genes in the liver are differently correlated to different parts of the brain.

    Science.gov (United States)

    Wang, Lishi; Huang, Yue; Jiao, Yan; Chen, Hong; Cao, Yanhong; Bennett, Beth; Wang, Yongjun; Gu, Weikuan

    2013-01-01

    The purpose of this study is to investigate whether expression profiles of alcoholism-relevant genes in different parts of the brain are correlated differently with those in the liver. Four experiments were conducted. First, we used gene expression profiles from five parts of the brain (striatum, prefrontal cortex, nucleus accumbens, hippocampus, and cerebellum) and from liver in a population of recombinant inbred mouse strains to examine the expression association of 10 alcoholism-relevant genes. Second, we conducted the same association analysis between brain structures and the lung. Third, using five randomly selected, nonalcoholism-relevant genes, we conducted the association analysis between brain and liver. Finally, we compared the expression of 10 alcoholism-relevant genes in hippocampus and cerebellum between an alcohol preference strain and a wild-type control. We observed a difference in correlation patterns in expression levels of 10 alcoholism-relevant genes between different parts of the brain with those of liver. We then examined the association of gene expression between alcohol dehydrogenases (Adh1, Adh2, Adh5, and Adh7) and different parts of the brain. The results were similar to those of the 10 genes. Then, we found that the association of those genes between brain structures and lung was different from that of liver. Next, we found that the association patterns of five alcoholism-nonrelevant genes were different from those of 10 alcoholism-relevant genes. Finally, we found that the expression level of 10 alcohol-relevant genes is influenced more in hippocampus than in cerebellum in the alcohol preference strain. Our results show that the expression of alcoholism-relevant genes in liver is differently associated with the expression of genes in different parts of the brain. Because different structural changes in different parts of the brain in alcoholism have been reported, it is important to investigate whether those structural differences in

  3. Blood-brain barrier permeability is positively correlated with cerebral microvascular perfusion in the early fluid percussion-injured brain of the rat.

    Science.gov (United States)

    Lin, Yong; Pan, Yaohua; Wang, Mingliang; Huang, Xianjian; Yin, Yuhua; Wang, Yu; Jia, Feng; Xiong, Wenhao; Zhang, Nu; Jiang, Ji-yao

    2012-11-01

    The blood-brain barrier (BBB) opening following traumatic brain injury (TBI) provides a chance for therapeutic agents to cross the barrier, yet the reduction of the cerebral microvascular perfusion after TBI may limit the intervention. Meanwhile, optimizing the cerebral capillary perfusion by the strategies such as fluid administration may cause brain edema due to the BBB opening post trauma. To guide the TBI therapy, we characterized the relationship between the changes in the cerebral capillary perfusion and BBB permeability after TBI. First, we observed the changes of the cerebral capillary perfusion by the intracardiac perfusion of Evans Blue and the BBB disruption with magnetic resonance imaging (MRI) in the rat subjected to lateral fluid percussion (FP) brain injury. The correlation between two variables was next evaluated with the correlation analysis. Since related to BBB breakdown, matrix metalloproteinase-9 (MMP-9) activity was finally detected by gelatin zymography. We found that the ratios of the perfused microvessel numbers in the lesioned cortices were significantly reduced at 0 and 1 h post trauma compared with that in the normal cortex, which then dramatically recovered at 4 and 24 h after injury, and that the BBB permeability was greatly augmented in the ipsilateral parts at 4, 12, and 24 h, and in the contralateral area at 24 h after injury compared with that in the uninjured brain. The correlation analysis showed that the BBB permeability increase was related to the restoration of the cerebral capillary perfusion over a 24-h period post trauma. Moreover, the gelatin zymography analysis indicated that the MMP-9 activity in the injured brain increased at 4 h and significantly elevated at 12 and 24 h as compared to that at 0 or 1 h after TBI. Our findings demonstrate that the 4 h post trauma is a critical turning point during the development of TBI, and, importantly, the correlation analysis may guide us how to treat TBI.

  4. Healthy children show gender differences in correlations between nonverbal cognitive ability and brain activation during visual perception.

    Science.gov (United States)

    Asano, Kohei; Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Thyreau, Benjamin; Asano, Michiko; Takeuchi, Hikaru; Kawashima, Ryuta

    2014-08-08

    Humans perceive textual and nontextual information in visual perception, and both depend on language. In childhood education, students exhibit diverse perceptual abilities, such that some students process textual information better and some process nontextual information better. These predispositions involve many factors, including cognitive ability and learning preference. However, the relationship between verbal and nonverbal cognitive abilities and brain activation during visual perception has not yet been examined in children. We used functional magnetic resonance imaging to examine the relationship between nonverbal and verbal cognitive abilities and brain activation during nontextual visual perception in large numbers of children. A significant positive correlation was found between nonverbal cognitive abilities and brain activation in the right temporoparietal junction, which is thought to be related to attention reorienting. This significant positive correlation existed only in boys. These findings suggested that male brain activation differed from female brain activation, and that this depended on individual cognitive processes, even if there was no gender difference in behavioral performance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Correlation of aquaporin-4 expression to blood-brain barrier permeability in rats with focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Pengcheng Xu; Haorong Feng; Jinbu Xu; Yongping Wu

    2008-01-01

    BACKGROUND: Ischemic cerebrovascular disease causes injury to the blood-brain barrier. The occurrence of brain edema is associated with aquaporin expression following cerebral ischemia/reperfusion. OBJECTIVE: To analyze the correlation of aquaporin-4 expression to brain edema and blood-brain barrier permeability in brain tissues of rat models of ischemia/reperfusion. DESIGN, TIME AND SETTING: The randomized control experiment was performed at the Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, China from December 2006 to October 2007. MATERIALS: A total of 112 adult, male, Sprague-Dawley rats, weighing 220-250 g, were used to establish rat models of middle cerebral artery occlusion and reperfusion by the suture method. Rabbit anti-aquaporin-4 (Santa Cruz, USA) and Evans blue (Sigma, USA) were used to analyze the tissue. METHODS: The rats were randomized into sham-operated (n = 16) and ischemia/reperfusion (n = 96) groups. There were 6 time points in the ischemia/reperfusion group, comprising 4, 6, 12, 24, 48, and 72 hours after reperfusion, with 16 rats for each time point. Rat models in the sham-operated group at 4 hours after surgery and rat models in the ischemia/reperfusion group at different time points were equally and randomly assigned into 4 different subgroups. MAIN OUTCOME MEASURES: Brain water content on the ischemic side and the control side was measured using the dry-wet weight method. Blood-brain barrier function was determined by Evans Blue. Aquaporin-4 expression surrounding the ischemic focus, as well as the correlation of aquaporin-4 expression with brain water content and Evans blue staining, were measured using immunohistochemistry and Western blot analysis. RESULTS: Brain water content on the ischemic side significantly increased at 12 hours after reperfusion, reached a peak at 48 hours, and was still high at 72 hours. Brain water content was greater on the ischemic hemispheres, compared with the control hemispheres

  6. Protective effect of aqueous extract from Spirulina platensis against cell death induced by free radicals

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Ammu

    2010-09-01

    Full Text Available Abstract Background Spirulina is a commercial alga well known to contain various antioxidants, especially phycocyanin. Apart from being sold as a nutraceutical, Spirulina is incorporated as a functional ingredient in food products and beverages. Most of the previous reports on antioxidant activity of Spirulina were based on chemical rather than cell-based assays. The primary objective of this study was to assess the antioxidant activity of aqueous extract from Spirulina based on its protective effect against cell death induced by free radicals. Methods The antioxidant activity of the cold water extract from food-grade Spirulina platensis was assessed using both chemical and cell-based assays. In the cell-based assay, mouse fibroblast cells (3T3 cells were incubated for 1 h in medium containing aqueous extract of Spirulina or vitamin C (positive control at 25, 125 and 250 μg/mL before the addition of 50 μM 1,1-diphenyl-2-picrylhydrazyl (DPPH or 3-ethylbenzothiazoline-6-sulfonic acid (ABTS. The cells were incubated for another 24 h before being assessed for cell death due to apoptosis using the Cell Death Detection ELISA Kit. Spectrophotometric assays based on DPPH and ABTS were also used to assess the antioxidant activity of the extract compared to vitamin C and vitamin E (positive controls. Results Spirulina extract did not cause cytotoxic effect on 3T3 cells within the range of concentrations tested (0 - 250 μg/mL. The extract reduced significantly (p Conclusions The results showed that aqueous extract of Spirulina has a protective effect against apoptotic cell death due to free radicals. The potential application of incorporating Spirulina into food products and beverages to enhance their antioxidant capacity is worth exploring.

  7. Protective effect of aqueous extract from Spirulina platensis against cell death induced by free radicals

    Science.gov (United States)

    2010-01-01

    Background Spirulina is a commercial alga well known to contain various antioxidants, especially phycocyanin. Apart from being sold as a nutraceutical, Spirulina is incorporated as a functional ingredient in food products and beverages. Most of the previous reports on antioxidant activity of Spirulina were based on chemical rather than cell-based assays. The primary objective of this study was to assess the antioxidant activity of aqueous extract from Spirulina based on its protective effect against cell death induced by free radicals. Methods The antioxidant activity of the cold water extract from food-grade Spirulina platensis was assessed using both chemical and cell-based assays. In the cell-based assay, mouse fibroblast cells (3T3) cells were incubated for 1 h in medium containing aqueous extract of Spirulina or vitamin C (positive control) at 25, 125 and 250 μg/mL before the addition of 50 μM 1,1-diphenyl-2-picrylhydrazyl (DPPH) or 3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The cells were incubated for another 24 h before being assessed for cell death due to apoptosis using the Cell Death Detection ELISA Kit. Spectrophotometric assays based on DPPH and ABTS were also used to assess the antioxidant activity of the extract compared to vitamin C and vitamin E (positive controls). Results Spirulina extract did not cause cytotoxic effect on 3T3 cells within the range of concentrations tested (0 - 250 μg/mL). The extract reduced significantly (p Spirulina has a protective effect against apoptotic cell death due to free radicals. The potential application of incorporating Spirulina into food products and beverages to enhance their antioxidant capacity is worth exploring. PMID:20858231

  8. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Marcos-Campos, I; AsIn, L; Torres, T E; Tres, A; Ibarra, M R; Goya, G F [Instituto de Nanociencia de Aragon (INA), Mariano Esquillor s/n, CP 50018, Zaragoza (Spain); Marquina, C, E-mail: goya@unizar.es [Condensed Matter Department, Sciences Faculty, University of Zaragoza, 50009 (Spain)

    2011-05-20

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH{sub 2}{sup +}) or negative (COOH{sup -}) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  9. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells

    Science.gov (United States)

    Marcos-Campos, I.; Asín, L.; Torres, T. E.; Marquina, C.; Tres, A.; Ibarra, M. R.; Goya, G. F.

    2011-05-01

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH2 + ) or negative (COOH - ) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  10. Alpha band functional connectivity correlates with the performance of brain-machine interfaces to decode real and imagined movements

    Directory of Open Access Journals (Sweden)

    Hisato eSugata

    2014-08-01

    Full Text Available Brain signals recorded from the primary motor cortex (M1 are known to serve a significant role in coding the information brain-machine interfaces (BMIs need to perform real and imagined movements, and also to form several functional networks with motor association areas. However, whether functional networks between M1 and other brain regions, such as these motor association areas, are related to performance of BMIs is unclear. To examine the relationship between functional connectivity and performance of BMIs, we analyzed the correlation coefficient between performance of neural decoding and functional connectivity over the whole brain using magnetoencephalography. Ten healthy participants were instructed to execute or imagine three simple right upper limb movements. To decode the movement type, we extracted 40 virtual channels in the left M1 via the beamforming approach, and used them as a decoding feature. In addition, seed-based functional connectivities of activities in the alpha band during real and imagined movements were calculated using imaginary coherence. Seed voxels were set as the same virtual channels in M1. After calculating the imaginary coherence in individuals, the correlation coefficient between decoding accuracy and strength of imaginary coherence was calculated over the whole brain. The significant correlations were distributed mainly to motor association areas for both real and imagined movements. These regions largely overlapped with brain regions that had significant connectivity to M1. Our results suggest that use of the strength of functional connectivity between M1 and motor association areas has the potential to improve the performance of BMIs to perform real and imagined movements.

  11. Amplitude of Sensorimotor Mu Rhythm Is Correlated with BOLD from Multiple Brain Regions: A Simultaneous EEG-fMRI Study

    Science.gov (United States)

    Yin, Siyang; Liu, Yuelu; Ding, Mingzhou

    2016-01-01

    The mu rhythm is a field oscillation in the ∼10Hz range over the sensorimotor cortex. For decades, the suppression of mu (event-related desynchronization) has been used to index movement planning, execution, and imagery. Recent work reports that non-motor processes, such as spatial attention and movement observation, also desynchronize mu, raising the possibility that the mu rhythm is associated with the activity of multiple brain regions and systems. In this study, we tested this hypothesis by recording simultaneous resting-state EEG-fMRI from healthy subjects. Independent component analysis (ICA) was applied to extract the mu components. The amplitude (power) fluctuations of mu were estimated as a time series using a moving-window approach, which, after convolving with a canonical hemodynamic response function (HRF), was correlated with blood-oxygen-level-dependent (BOLD) signals from the entire brain. Two main results were found. First, mu power was negatively correlated with BOLD from areas of the sensorimotor network, the attention control network, the putative mirror neuron system, and the network thought to support theory of mind. Second, mu power was positively correlated with BOLD from areas of the salience network, including anterior cingulate cortex and anterior insula. These results are consistent with the hypothesis that sensorimotor mu rhythm is associated with multiple brain regions and systems. They also suggest that caution should be exercised when attempting to interpret mu modulation in terms of a single brain network. PMID:27499736

  12. Perfusion imaging of brain gliomas using arterial spin labeling: correlation with histopathological vascular density in MRI-guided biopsies

    Energy Technology Data Exchange (ETDEWEB)

    Di, Ningning; Pang, Haopeng; Ren, Yan; Yao, Zhenwei; Feng, Xiaoyuan [Huashan Hospital Fudan University, Department of Radiology, Shanghai (China); Dang, Xuefei [Shang Hai Gamma Knife Hospital, Shanghai (China); Cheng, Wenna [Binzhou Medical University Affiliated Hospital, Department of Pharmacy, Binzhou (China); Wu, Jingsong; Yao, Chengjun [Huashan Hospital Fudan University, Department of Neurosurgery, Shanghai (China)

    2017-01-15

    This study was designed to determine if cerebral blood flow (CBF) derived from arterial spin labeling (ASL) perfusion imaging could be used to quantitatively evaluate the microvascular density (MVD) of brain gliomas on a ''point-to-point'' basis by matching CBF areas and surgical biopsy sites as accurate as possible. The study enrolled 47 patients with treatment-naive brain gliomas who underwent preoperative ASL, 3D T1-weighted imaging with gadolinium contrast enhancement (3D T1C+), and T2 fluid acquisition of inversion recovery (T2FLAIR) sequences before stereotactic surgery. We histologically quantified MVD from CD34-stained sections of stereotactic biopsies and co-registered biopsy locations with localized CBF measurements. The correlation between CBF and MVD was determined using Spearman's correlation coefficient. P ≤.05 was considered statistically significant. Of the 47 patients enrolled in the study, 6 were excluded from the analysis because of brain shift or poor co-registration and localization of the biopsy site during surgery. Finally, 84 biopsies from 41 subjects were included in the analysis. CBF showed a statistically significant positive correlation with MVD (ρ = 0.567; P =.029). ASL can be a useful noninvasive perfusion MR method for quantitative evaluation of the MVD of brain gliomas. (orig.)

  13. Homogeneous MGMT immunoreactivity correlates with an unmethylated MGMT promoter status in brain metastases of various solid tumors.

    Directory of Open Access Journals (Sweden)

    Barbara Ingold

    Full Text Available The O(6-methylguanine-methyltransferase (MGMT promoter methylation status is a predictive parameter for the response of malignant gliomas to alkylating agents such as temozolomide. First clinical reports on treating brain metastases with temozolomide describe varying effects. This may be due to the fact that MGMT promoter methylation of brain metastases has not yet been explored in depth. Therefore, we assessed MGMT promoter methylation of various brain metastases including those derived from lung (n = 91, breast (n = 72 kidney (n = 49 and from malignant melanomas (n = 113 by methylation-specific polymerase chain reaction (MS-PCR and MGMT immunoreactivity. Fifty-nine of 199 brain metastases (29.6% revealed a methylated MGMT promoter. The methylation rate was the highest in brain metastases derived from lung carcinomas (46.5% followed by those from breast carcinoma (28.8%, malignant melanoma (24.7% and from renal carcinoma (20%. A significant correlation of homogeneous MGMT-immunoreactivity (>95% MGMT positive tumor cells and an unmethylated MGMT promoter was found. Promoter methylation was detected in 26 of 61 (43% tumors lacking MGMT immunoreactivity, in 17 of 63 (27% metastases with heterogeneous MGMT expression, but only in 5 of 54 brain metastases (9% showing a homogeneous MGMT immunoreactivity. Our results demonstrate that a significant number of brain metastases reveal a methylated MGMT-promoter. Based on an obvious correlation between homogeneous MGMT immunoreactivity and unmethylated MGMT promoter, we hypothesize that immunohistochemistry for MGMT may be a helpful diagnostic tool to identify those tumors that probably will not benefit from the use of alkylating agents. The discrepancy between promoter methylation and a lack of MGMT immunoreactivity argues for assessing MGMT promoter methylation both by immunohistochemical as well as by molecular approaches for diagnostic purposes.

  14. Correlations between neurological signs and brain MR images of patients in consecutive stages of subacute sclerosing panencephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Kulczycki, J.; Kryst-Widzgowska, T.; Sobczyk, W.; Bochynska, A.; Pilkowska, E.; Milewska, D. [Pracownia Rezonansu Magnetycznego, Inst. Psychiatrii i Neurologii, Warsaw (Poland)

    1994-12-31

    Correlations between neurological symptoms and brain MRI changes during the course of SSPE in 10 patients were studied. Visual agnosia and mental regression - very frequent symptoms at the early stages of the disease were caused by nearly symmetrical, focal involvement of the occipital and frontal white matter in all cases. Pyramidal and extrapyramidal disturbances reflected rather diffuse lesions of both cerebral hemispheres in late second stage of the illness. In cases with clinical improvement the brain changes disclosed an entire stability, but not diminishing intensity. (author) 9 refs, 8 figs, 3 tabs

  15. Linking ATM Promoter Methylation to Cell Cycle Protein Expression in Brain Tumor Patients: Cellular Molecular Triangle Correlation in ATM Territory.

    Science.gov (United States)

    Mehdipour, P; Karami, F; Javan, Firouzeh; Mehrazin, M

    2015-08-01

    Ataxia telangiectasia mutated (ATM) is a key gene in DNA double-strand break (DSB), and therefore, most of its disabling genetic alterations play an important initiative role in many types of cancer. However, the exact role of ATM gene and its epigenetic alterations, especially promoter methylation in different grades of brain tumors, remains elusive. The current study was conducted to query possible correlations among methylation statue of ATM gene, ATM/ retinoblastoma (RB) protein expression, D1853N ATM polymorphism, telomere length (TL), and clinicopathological characteristics of various types of brain tumors. Isolated DNA from 30 fresh tissues was extracted from different types of brain tumors and two brain tissues from deceased normal healthy individuals. DNAs were treated with bisulfate sodium using DNA modification kit (Qiagen). Methylation-specific polymerase chain reaction (MSP-PCR) was implicated to determine the methylation status of treated DNA templates confirmed by promoter sequencing. Besides, the ATM and RB protein levels were determined by immunofluorescence (IF) assay using monoclonal mouse antihuman against ATM, P53, and RB proteins. To achieve an interactive correlation, the methylation data were statistically analyzed by considering TL and D1853N ATM polymorphism. More than 73% of the brain tumors were methylated in ATM gene promoter. There was strong correlation between ATM promoter methylation and its protein expression (p ATM promoter and ATM protein expression with D1853N ATM polymorphism (p = 0.01). ATM protein expression was not in line with RB protein expression while it was found to be significantly correlated with ATM promoter methylation (p = 0.01). There was significant correlation between TL neither with ATM promoter methylation nor with ATM protein expression nor with D1853N polymorphism. However, TL has shown strong correlation with patient's age and tumor grade (p = 0.01). Given the important role of cell cycle checkpoint

  16. Brain natriuretic peptide correlates with troponin T in patients with renal failure.

    Science.gov (United States)

    Sahinarslan, Asife; Guz, Galip; Okyay, Kaan; Torer, Nihan; Bali, Musa; Sindel, Sükrü; Cengel, Atiye

    2007-04-01

    In patients with chronic renal failure, the main cause of mortality is cardiovascular disease. Cardiac troponin T (cTnT) and brain natriuretic peptide (BNP) are found to be related with decreased survival in both the normal population and in patients with chronic renal failure in different studies. Our aim is to investigate the relationship between cTnT and BNP in patients with chronic renal failure. 58 chronic haemodialysis patients were enrolled prospectively for the study. Blood samples for measurement of cTnT and BNP were collected after the haemodialysis. The patients are divided into 3 groups according to cTnT measurements. Group I included the patients with cTnT 0. 1 ng/ml. We performed echocardiography in all patients to measure the left ventricular ejection fraction and thickness of septum and posterior wall. When BNP levels were compared among the 3 groups, we found that the BNP level was lowest in group I and highest in group III (165.13 +/- 125.44 pg/dl; 236.0 +/- 107.83 pg/dl; 280.71 +/- 153.25 pg/dl, respectively) (P = 0.01).The difference in BNP levels among groups was statistically significant and independent from left ventricular hypertrophy, left ventricular ejection fraction and volume overload in multiple regression analysis. We also searched the relationship between plasma cTnT and BNP levels and found a positive correlation (r = 0.3; P = 0.023). cTnT and BNP levels were related to each other in patients with chronic renal failure.These parameters can help to identify the patients with a high risk for cardiovascular diseases.

  17. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacik, Jan; Fiehler, Jens [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Neuroradiology; Reitz, Matthias; Schmidt, Nils O. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Neurosurgery; Bolar, Divya S. [Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States). Radiology; Adalsteinsson, Elfar [Massachusetts Institute of Technology, Cambridge, MA (United States). Electrical Engineering and Computer Science

    2015-05-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml.kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s {sup and} -1] = 20.7/20.4/20.1, R2*[s {sup and} -1] = 31.6/29.6/25.9, R2'[s {sup and} 1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml.min {sup and} -1.100g {sup and} -1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood

  18. Enhanced microglial pro-inflammatory response to lipopolysaccharide correlates with brain infiltration and blood-brain barrier dysregulation in a mouse model of telomere shortening.

    Science.gov (United States)

    Raj, Divya D A; Moser, Jill; van der Pol, Susanne M A; van Os, Ronald P; Holtman, Inge R; Brouwer, Nieske; Oeseburg, Hisko; Schaafsma, Wandert; Wesseling, Evelyn M; den Dunnen, Wilfred; Biber, Knut P H; de Vries, Helga E; Eggen, Bart J L; Boddeke, Hendrikus W G M

    2015-12-01

    Microglia are a proliferative population of resident brain macrophages that under physiological conditions self-renew independent of hematopoiesis. Microglia are innate immune cells actively surveying the brain and are the earliest responders to injury. During aging, microglia elicit an enhanced innate immune response also referred to as 'priming'. To date, it remains unknown whether telomere shortening affects the proliferative capacity and induces priming of microglia. We addressed this issue using early (first-generation G1 mTerc(-/-) )- and late-generation (third-generation G3 and G4 mTerc(-/-) ) telomerase-deficient mice, which carry a homozygous deletion for the telomerase RNA component gene (mTerc). Late-generation mTerc(-/-) microglia show telomere shortening and decreased proliferation efficiency. Under physiological conditions, gene expression and functionality of G3 mTerc(-/-) microglia are comparable with microglia derived from G1 mTerc(-/-) mice despite changes in morphology. However, after intraperitoneal injection of bacterial lipopolysaccharide (LPS), G3 mTerc(-/-) microglia mice show an enhanced pro-inflammatory response. Nevertheless, this enhanced inflammatory response was not accompanied by an increased expression of genes known to be associated with age-associated microglia priming. The increased inflammatory response in microglia correlates closely with increased peripheral inflammation, a loss of blood-brain barrier integrity, and infiltration of immune cells in the brain parenchyma in this mouse model of telomere shortening. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Spermatozoal cell death-inducing DNA fragmentation factor-α-like effector A (CIDEA) gene expression and DNA fragmentation in infertile men with metabolic syndrome and normal seminogram.

    Science.gov (United States)

    Elsamanoudy, Ayman Z; Abdalla, Hussein Abdelaziz; Hassanien, Mohammed; Gaballah, Mohammad A

    2016-01-01

    This is the first study to investigate spermatozoal cell death-inducing DNA fragmentation factor-α-like effector A (CIDEA) gene expression and DNA fragmentations in the spermatozoa of men diagnosed with metabolic syndrome (MS) who have normal seminograms with unexplained infertility, and to correlate these parameters with seminal glucose concentration. This study included 120 participants: 75 male subjects with MS (38 fertile and 37 infertile), and a control group of 45 fertile males without MS. HOMA-IR, semen analysis, and biochemical measurement of seminal plasma insulin and glucose levels were carried out. Spermatozoal insulin gene and CIDEA gene expressions were performed by the RT-PCR method. The percentage of spermatozoal DNA fragmentation was also estimated. The spermatozoal insulin and CIDEA gene expression, as well as the DNA fragmentation, were significantly higher in the infertile MS group than in the fertile MS group, and significantly higher in both the MS groups than in the control group. Seminal glucose concentration showed significant positive correlations with seminal insulin level, spermatozoa insulin, CIDEA gene expression, and DNA fragmentation. Moreover, there was a positive correlation between spermatozoa CIDEA gene expression and DNA fragmentation. It can be concluded that MS may affect male fertility at the molecular level, through its possible inducing effect of spermatozoa CIDEA and insulin gene expression, DNA fragmentation, and increased seminal glucose.

  20. Physiological Correlates of Intellectual Function in Children with Sickle Cell Disease: Hypoxaemia, Hyperaemia and Brain Infarction

    Science.gov (United States)

    Hogan, Alexandra M.; Pit-ten Cate, Ineke M.; Vargha-Khadem, Faraneh; Prengler, Mara; Kirkham, Fenella J.

    2006-01-01

    Lowered intelligence relative to controls is evident by mid-childhood in children with sickle cell disease. There is consensus that brain infarct contributes to this deficit, but the subtle lowering of IQ in children with normal MRI scans might be accounted for by chronic systemic complications leading to insufficient oxygen delivery to the brain.…

  1. Positive correlation between occlusion rate and nidus size of proton beam treated brain arteriovenous malformations (AVMs)

    DEFF Research Database (Denmark)

    Blomquist, Erik; Ronne Engström, Elisabeth; Borota, Ljubisa

    2016-01-01

    those with and without total occlusion regarding mean age, gender distribution or symptoms at diagnosis. Forty-one patients developed a mild radiation-induced brain edema and this was more common in those that had total occlusion of the AVM. Two patients had brain hemorrhages after treatment. One...

  2. Parcellating an individual subject's cortical and subcortical brain structures using snowball sampling of resting-state correlations.

    Science.gov (United States)

    Wig, Gagan S; Laumann, Timothy O; Cohen, Alexander L; Power, Jonathan D; Nelson, Steven M; Glasser, Matthew F; Miezin, Francis M; Snyder, Abraham Z; Schlaggar, Bradley L; Petersen, Steven E

    2014-08-01

    We describe methods for parcellating an individual subject's cortical and subcortical brain structures using resting-state functional correlations (RSFCs). Inspired by approaches from social network analysis, we first describe the application of snowball sampling on RSFC data (RSFC-Snowballing) to identify the centers of cortical areas, subdivisions of subcortical nuclei, and the cerebellum. RSFC-Snowballing parcellation is then compared with parcellation derived from identifying locations where RSFC maps exhibit abrupt transitions (RSFC-Boundary Mapping). RSFC-Snowballing and RSFC-Boundary Mapping largely complement one another, but also provide unique parcellation information; together, the methods identify independent entities with distinct functional correlations across many cortical and subcortical locations in the brain. RSFC parcellation is relatively reliable within a subject scanned across multiple days, and while the locations of many area centers and boundaries appear to exhibit considerable overlap across subjects, there is also cross-subject variability-reinforcing the motivation to parcellate brains at the level of individuals. Finally, examination of a large meta-analysis of task-evoked functional magnetic resonance imaging data reveals that area centers defined by task-evoked activity exhibit correspondence with area centers defined by RSFC-Snowballing. This observation provides important evidence for the ability of RSFC to parcellate broad expanses of an individual's brain into functionally meaningful units.

  3. The smarter, the stronger: intelligence level correlates with brain resilience to systematic insults.

    Science.gov (United States)

    Santarnecchi, Emiliano; Rossi, Simone; Rossi, Alessandro

    2015-03-01

    Neuroimaging evidences posit human intelligence as tightly coupled with several structural and functional brain properties, also suggesting its potential protective role against aging and neurodegenerative conditions. However, whether higher order cognition might in fact lead to a more resilient brain has not been quantitatively demonstrated yet. Here we document a relationship between individual intelligence quotient (IQ) and brain resilience to targeted and random attacks, as measured through resting-state fMRI graph-theoretical analysis in 102 healthy individuals. In this modeling context, enhanced brain robustness to targeted attacks (TA) in individuals with higher IQ is supported by an increased distributed processing capacity despite the systematic loss of the most important node(s) of the system. Moreover, brain resilience in individuals with higher IQ is supported by a set of neocortical regions mainly belonging to language and memory processing network(s), whereas regions related to emotional processing are mostly responsible for lower IQ individuals. Results suggest intelligence level among the predictors of post-lesional or neurodegenerative recovery, also promoting the evolutionary role of higher order cognition, and simultaneously suggesting a new framework for brain stimulation interventions aimed at counteract brain deterioration over time.

  4. The Ketone Body, β-Hydroxybutyrate Stimulates the Autophagic Flux and Prevents Neuronal Death Induced by Glucose Deprivation in Cortical Cultured Neurons.

    Science.gov (United States)

    Camberos-Luna, Lucy; Gerónimo-Olvera, Cristian; Montiel, Teresa; Rincon-Heredia, Ruth; Massieu, Lourdes

    2016-03-01

    Glucose is the major energy substrate in brain, however, during ketogenesis induced by starvation or prolonged hypoglycemia, the ketone bodies (KB), acetoacetate and β-hydroxybutyrate (BHB) can substitute for glucose. KB improve neuronal survival in diverse injury models, but the mechanisms by which KB prevent neuronal damage are still not well understood. In the present study we have investigated whether protection by the D isomer of BHB (D-BHB) against neuronal death induced by glucose deprivation (GD), is related to autophagy. Autophagy is a lysosomal-dependent degradation process activated during nutritional stress, which leads to the digestion of damaged proteins and organelles providing energy for cell survival. Results show that autophagy is activated in cortical cultured neurons during GD, as indicated by the increase in the levels of the lipidated form of the microtubule associated protein light chain 3 (LC3-II), and the number of autophagic vesicles. At early phases of glucose reintroduction (GR), the levels of p62 declined suggesting that the degradation of the autophagolysosomal content takes place at this time. In cultures exposed to GD and GR in the presence of D-BHB, the levels of LC3-II and p62 rapidly declined and remained low during GR, suggesting that the KB stimulates the autophagic flux preventing autophagosome accumulation and improving neuronal survival.

  5. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Jonathan Wirsich

    2016-01-01

    In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.

  6. A radiologic correlation with the basic functional neuroanatomy of the brain.

    Science.gov (United States)

    Bilicka, Z; Liska, M; Bluska, P; Bilicky, J

    2014-01-01

    Primary cortical areas for motor, sensory and sensitive functions are localized in certain areas of the brain cortex. In clinical practice, cross sectional imaging (computer tomography and magnetic resonance) is wildy used for diagnostics purpose, treatment planning and follow up of the patients. Accurate orientation in brain structures is necessary for the evaluation of radiological images. There are numerable landmark signs, which can be used for precise identification of important brain structures. In this review article, the mostly used anatomical landmarks are described and shown on the cross sectional images (magnetic resonance imaging) (Fig. 14, Ref. 25).

  7. Neuropsin Expression Correlates with Dendritic Marker MAP2c Level in Different Brain Regions of Aging Mice.

    Science.gov (United States)

    Konar, Arpita; Thakur, M K

    2015-01-01

    Neuropsin (NP) is a serine protease, implicated in synaptic plasticity and memory acquisition through cleavage of synaptic adhesion molecule, L1CAM. However, NP has not been explored during brain aging that entails drastic deterioration of plasticity and memory with selective regional vulnerability. Therefore, we have analysed the expression of NP and correlated with its function via analysis of endogenous cleavage of L1CAM and level of dendritic marker MAP2c in different regions of the aging mouse brain. While NP expression gradually decreased in the cerebral cortex during aging, it showed a sharp rise in both olfactory bulb and hippocampus in adult and thereafter declined in old age. NP expression was moderate in young medulla, but undetectable in midbrain and cerebellum. It was positively correlated with L1CAM cleavage and MAP2c level in different brain regions during aging. Taken together, our study shows age-dependent regional variation in NP expression and its positive correlation with MAP2c level, suggesting the involvement of NP in MAP2c mediated alterations in dendritic morphology during aging.

  8. Biliverdin Reductase-A correlates with inducible nitric oxide synthasein in atorvastatin treated aged canine brain

    Institute of Scientific and Technical Information of China (English)

    Fabio Di Domenico; Marzia Perluigi; Eugenio Barone

    2013-01-01

    Alzheimer’s disease is a neurodegenerative disorder characterized by progressive cognitive impairment and neuropathology. Recent preclinical and epidemiological studies proposed statins as a possible therapeutic drug for Alzheimer’s disease, but the exact mechanisms of action are stil unknown. Biliverdin reductase-A is a pleiotropic enzyme involved in cel ular stress responses. It not only transforms biliverdin-IX alpha into the antioxidant bilirubin-IX alpha but its serine/threonine/tyrosine kinase activity is able to modulate cel signaling networks. We previously reported the beneficial effects of atorvastatin treatment on biliverdin reductase-A and heme oxygenase-1 in the brains of a well characterized pre-clinical model of Alzheimer’s disease, aged beagles, together with observed improvement in cognition. Here we extend our knowledge of the effects of atorvastatin on inducible nitric oxide synthase in parietal cortex, cerebel um and liver of the same animals. We demonstrated that atorvastatin treatment (80 mg/day for 14.5 months) to aged beagles selectively increased inducible nitric oxide synthase in the parietal cortex but not in the cerebel um. In contrast, inducible nitric oxide synthase protein levels were significantly decreased in the liver. Significant positive correlations were found between biliverdin reductase-A and inducible nitric oxide synthase as wel as heme oxygenase-1 protein levels in the parietal cortex. The opposite was observed in the liver. Inducible nitric oxide synthase up-regulation in the parietal cortex was positively associated with improved biliverdin reductase-A functions, whereas the oxidative-induced impairment of biliverdin reductase-A in the liver negatively affected inducible nitric oxide synthase expression, thus suggesting a role for biliverdin reductase-A in atorvastatin-dependent inducible nitric oxide synthase changes. Interestingly, increased inducible nitric oxide synthase levels in the parietal cortex were not

  9. Suicidality, bullying and other conduct and mental health correlates of traumatic brain injury in adolescents.

    Directory of Open Access Journals (Sweden)

    Gabriela Ilie

    Full Text Available OBJECTIVE: Our knowledge on the adverse correlates of traumatic brain injuries (TBI, including non-hospitalized cases, among adolescents is limited to case studies. We report lifetime TBI and adverse mental health and conduct behaviours associated with TBI among adolescents from a population-based sample in Ontario. METHOD AND FINDINGS: Data were derived from 4,685 surveys administered to adolescents in grades 7 through 12 as part of the 2011 population-based cross-sectional Ontario Student Drug Use and Health Survey (OSDUHS. Lifetime TBI was defined as head injury that resulted in being unconscious for at least 5 minutes or being retained in the hospital for at least one night, and was reported by 19.5% (95%CI:17.3,21.9 of students. When holding constant sex, grade, and complex sample design, students with TBI had significantly greater odds of reporting elevated psychological distress (AOR = 1.52, attempting suicide (AOR = 3.39, seeking counselling through a crisis help-line (AOR = 2.10, and being prescribed medication for anxiety, depression, or both (AOR = 2.45. Moreover, students with TBI had higher odds of being victimized through bullying at school (AOR = 1.70, being cyber-bullied (AOR = 2.05, and being threatened with a weapon at school (AOR = 2.90, compared with students who did not report TBI. Students with TBI also had higher odds of victimizing others and engaging in numerous violent as well as nonviolent conduct behaviours. CONCLUSIONS: Significant associations between TBI and adverse internalizing and externalizing behaviours were found in this large population-based study of adolescents. Those who reported lifetime TBI were at a high risk for experiencing mental and physical health harms in the past year than peers who never had a head injury. Primary physicians should be vigilant and screen for potential mental heath and behavioural harms in adolescent patients with TBI. Efforts to prevent TBI during

  10. Suicidality, Bullying and Other Conduct and Mental Health Correlates of Traumatic Brain Injury in Adolescents

    Science.gov (United States)

    Ilie, Gabriela; Mann, Robert E.; Boak, Angela; Adlaf, Edward M.; Hamilton, Hayley; Asbridge, Mark; Rehm, Jürgen; Cusimano, Michael D.

    2014-01-01

    Objective Our knowledge on the adverse correlates of traumatic brain injuries (TBI), including non-hospitalized cases, among adolescents is limited to case studies. We report lifetime TBI and adverse mental health and conduct behaviours associated with TBI among adolescents from a population-based sample in Ontario. Method and Findings Data were derived from 4,685 surveys administered to adolescents in grades 7 through 12 as part of the 2011 population-based cross-sectional Ontario Student Drug Use and Health Survey (OSDUHS). Lifetime TBI was defined as head injury that resulted in being unconscious for at least 5 minutes or being retained in the hospital for at least one night, and was reported by 19.5% (95%CI:17.3,21.9) of students. When holding constant sex, grade, and complex sample design, students with TBI had significantly greater odds of reporting elevated psychological distress (AOR = 1.52), attempting suicide (AOR = 3.39), seeking counselling through a crisis help-line (AOR = 2.10), and being prescribed medication for anxiety, depression, or both (AOR = 2.45). Moreover, students with TBI had higher odds of being victimized through bullying at school (AOR = 1.70), being cyber-bullied (AOR = 2.05), and being threatened with a weapon at school (AOR = 2.90), compared with students who did not report TBI. Students with TBI also had higher odds of victimizing others and engaging in numerous violent as well as nonviolent conduct behaviours. Conclusions Significant associations between TBI and adverse internalizing and externalizing behaviours were found in this large population-based study of adolescents. Those who reported lifetime TBI were at a high risk for experiencing mental and physical health harms in the past year than peers who never had a head injury. Primary physicians should be vigilant and screen for potential mental heath and behavioural harms in adolescent patients with TBI. Efforts to prevent TBI during adolescence and

  11. Suicidality, bullying and other conduct and mental health correlates of traumatic brain injury in adolescents.

    Science.gov (United States)

    Ilie, Gabriela; Mann, Robert E; Boak, Angela; Adlaf, Edward M; Hamilton, Hayley; Asbridge, Mark; Rehm, Jürgen; Cusimano, Michael D

    2014-01-01

    Our knowledge on the adverse correlates of traumatic brain injuries (TBI), including non-hospitalized cases, among adolescents is limited to case studies. We report lifetime TBI and adverse mental health and conduct behaviours associated with TBI among adolescents from a population-based sample in Ontario. Data were derived from 4,685 surveys administered to adolescents in grades 7 through 12 as part of the 2011 population-based cross-sectional Ontario Student Drug Use and Health Survey (OSDUHS). Lifetime TBI was defined as head injury that resulted in being unconscious for at least 5 minutes or being retained in the hospital for at least one night, and was reported by 19.5% (95%CI:17.3,21.9) of students. When holding constant sex, grade, and complex sample design, students with TBI had significantly greater odds of reporting elevated psychological distress (AOR = 1.52), attempting suicide (AOR = 3.39), seeking counselling through a crisis help-line (AOR = 2.10), and being prescribed medication for anxiety, depression, or both (AOR = 2.45). Moreover, students with TBI had higher odds of being victimized through bullying at school (AOR = 1.70), being cyber-bullied (AOR = 2.05), and being threatened with a weapon at school (AOR = 2.90), compared with students who did not report TBI. Students with TBI also had higher odds of victimizing others and engaging in numerous violent as well as nonviolent conduct behaviours. Significant associations between TBI and adverse internalizing and externalizing behaviours were found in this large population-based study of adolescents. Those who reported lifetime TBI were at a high risk for experiencing mental and physical health harms in the past year than peers who never had a head injury. Primary physicians should be vigilant and screen for potential mental heath and behavioural harms in adolescent patients with TBI. Efforts to prevent TBI during adolescence and intervene at an early stage may reduce

  12. Changes in functional connectivity correlate with behavioral gains in stroke patients after therapy using a brain-computer interface device

    Directory of Open Access Journals (Sweden)

    Brittany Mei Young

    2014-07-01

    Full Text Available Brain-computer interface (BCI technology is being incorporated into new stroke rehabilitation devices, but little is known about brain changes associated with its use. We collected anatomical and functional MRI of 9 stroke patients with persistent upper extremity motor impairment before, during, and after therapy using a BCI system. Subjects were asked to perform finger tapping of the impaired hand during fMRI. Action Research Arm Test (ARAT, 9-Hole Peg Test (9-HPT, and Stroke Impact Scale (SIS domains of Hand Function (HF and Activities of Daily Living (ADL were also assessed. Group-level analyses examined changes in whole-brain task-based functional connectivity (FC to seed regions in the motor network observed during and after BCI therapy. Whole-brain FC analyses seeded in each thalamus showed FC increases from baseline at mid-therapy and post-therapy (p< 0.05. Changes in FC between seeds at both the network and the connection levels were examined for correlations with changes in behavioral measures. Average motor network FC was increased post-therapy, and changes in average network FC correlated (p < 0.05 with changes in performance on ARAT (R2=0.21, 9-HPT (R2=0.41, SIS HF (R2=0.27, and SIS ADL (R2=0.40. Multiple individual connections within the motor network were found to correlate in change from baseline with changes in behavioral measures. Many of these connections involved the thalamus, with change in each of four behavioral measures significantly correlating with change from baseline FC of at least one thalamic connection. These preliminary results show changes in FC that occur with the administration of rehabilitative therapy using a BCI system. The correlations noted between changes in FC measures and changes in behavioral outcomes indicate that both adaptive and maladaptive changes in FC may develop with this therapy and also suggest a brain-behavior relationship that may be stimulated by the neuromodulatory component of BCI therapy.

  13. [Correlation between the clinical symptoms and the activation pattern of brain neurons in patients with obsessive-compulsive disorder].

    Science.gov (United States)

    Niu, Q H; Cheng, J L; Song, X Q; Yang, L; Chu, C Y; Liu, H; Zhang, L F; Li, Y; Li, Y H

    2017-05-09

    Objective: To explore the correlation between clinical symptoms of patients with obsessive-compulsive disorder (OCD) and the activation pattern of brain neurons at resting. Methods: A total of 26 patients diagnosed with fist-episode OCD were selected and underwent functional magnetic resonance imaging (fMRI) scanning at resting state. The fMRI data were processed by statistical parametric mapping (SPM8), Data Processing Assistant for Resting-State fMRI Analysis Toolkit (DPARSFA), and Resting State fMRI Data Analysis Toolkit (REST) software. With age as concomitant variable, Pearson Correlation Analysis was adopted to study the correlation between clinical symptoms (obsessive thoughts and compulsive behavior) of patients and their regional homogeneity ( ReHo) values of whole brain. Results: The positive correlation between obsessive thoughts score of patients with OCD and ReHo value lied in insular_L, insular_R, cerebellum_L, cerebellum_R, calcarine_L, cuneus_L. The negative correlation between obsessive thoughts score of patients with OCD and ReHo value lied in thalamus_L, precuneus_L, caudate_L, cingulum_R, frontal_R. The positive correlation between compulsive behavior score of patients with OCD and ReHo value lied in temporal_L, frontal_inf_orb_l, frontal_inf_orb_R, frontal_mid_L, precentral_R. The negative correlation between compulsive behavior score of patients with OCD and ReHo value lied in cingulum-L, cingulum-R, caudate_L. Conclusion: Different obsessive-compulsive symptoms has different image foundation, and the dysfunction of cingulate has a major impact on the incidence of both obsessive thoughts and compulsive behavior of OCD patients.

  14. Attentional Performance is Correlated with the Local Regional Efficiency of Intrinsic Brain Networks

    Directory of Open Access Journals (Sweden)

    Junhai eXu

    2015-07-01

    Full Text Available Attention is a crucial brain function for human beings. Using neuropsychological paradigms and task-based functional brain imaging, previous studies have indicated that widely distributed brain regions are engaged in three distinct attention subsystems: alerting, orienting and executive control (EC. Here, we explored the potential contribution of spontaneous brain activity to attention by examining whether resting-state activity could account for individual differences of the attentional performance in normal individuals. The resting-state functional images and behavioral data from attention network test (ANT task were collected in 59 healthy subjects. Graph analysis was conducted to obtain the characteristics of functional brain networks and linear regression analyses were used to explore their relationships with behavioral performances of the three attentional components. We found that there was no significant relationship between the attentional performance and the global measures, while the attentional performance was associated with specific local regional efficiency. These regions related to the scores of alerting, orienting and EC largely overlapped with the regions activated in previous task-related functional imaging studies, and were consistent with the intrinsic dorsal and ventral attention networks (DAN/VAN. In addition, the strong associations between the attentional performance and specific regional efficiency suggested that there was a possible relationship between the DAN/VAN and task performances in the ANT. We concluded that the intrinsic activity of the human brain could reflect the processing efficiency of the attention system. Our findings revealed a robust evidence for the functional significance of the efficiently organized intrinsic brain network for highly productive cognitions and the hypothesized role of the DAN/ VAN at rest.

  15. Diffusion tensor imaging and proton magnetic resonance spectroscopy in brain tumorCorrelation between structure and metabolism

    Institute of Scientific and Technical Information of China (English)

    Zhigang Min; Chen Niu; Netra Rana; Huanmei Ji; Ming Zhang

    2013-01-01

    Proton magnetic resonance spectroscopy and diffusion tensor imaging are non-invasive techniques used to detect metabolites and water diffusion in vivo. Previous studies have confirmed a positive correlation of individual fractional anisotropy values with N-acetylaspartate/creatine and N-acetylaspartate/choline ratios in tumors, edema, and normal white matter. This study divided the brain parenchyma into tumor, peritumoral edema, and normal-appearing white matter according to MRI data, and analyzed the correlation of metabolites with water molecular diffusion. Results demonstrated that in normal-appearing white matter, N-acetylaspartate/creatine ratios were positively correlated with fractional anisotropy values, negatively correlated with radial diffusivities, and positively correlated with maximum eigenvalues. Maximum eigenvalues and radial diffusivities in peritumoral edema showed a negative correlation with choline, N-acetylaspartate, and creatine. Radial diffusivities in tumor demonstrated a negative correlation with choline. These data suggest that the relationship between metabolism and structure is markedly changed from normal white matter to peritumoral edema and tumor. Neural metabolism in the peritumoral edema area decreased with expanding extracellular space. The normal relationship of neural function and microstructure disappeared in the tumor region.

  16. Gadolinium enhancement patterns of tumefactive demyelinating lesions: correlations with brain biopsy findings and pathophysiology.

    Science.gov (United States)

    Kobayashi, Masaki; Shimizu, Yuko; Shibata, Noriyuki; Uchiyama, Shinichiro

    2014-10-01

    Tumefactive demyelinating lesions (TDLs) can mimic brain tumors on radiological images. TDLs are often referred to as tumefactive multiple sclerosis (TMS), but the heterogeneous nature and monophasic course of TDLs do not fulfill clinical and magnetic resonance imaging (MRI) criteria for multiple sclerosis. Redefining TDLs, TMS and other inflammatory brain lesions is essential for the accurate clinical diagnosis of extensive demyelinating brain lesions. We retrospectively analyzed MRI from nine TDL cases that underwent brain biopsy. Patterns of gadolinium enhancement on MRI were categorized as homogenous, inhomogeneous, patchy and diffuse, open ring or irregular rim, and were compared with pathological hallmarks including demyelination, central necrosis, macrophage infiltration, angiogenesis and perivascular lymphocytic cuffing. All cases had coexistence of demyelinating features and axonal loss. Open-ring and irregular rim patterns of gadolinium enhancement were associated with macrophage infiltrations and angiogenesis at the inflammatory border. An inhomogeneous pattern of gadolinium enhancement was associated with perivascular lymphocytic cuffing. Central necrosis was seen in cases of severe multiple sclerosis and hemorrhagic leukoencephalopathy. These results suggest that the radiological features of TDLs may be related to different pathological processes, and indicate that MRI may be useful in understanding their pathophysiology. Further investigation is needed to determine the precise disease entity of these inflammatory demyelinating brain lesions.

  17. Maximum (prior brain size, not atrophy, correlates with cognition in community-dwelling older people: a cross-sectional neuroimaging study

    Directory of Open Access Journals (Sweden)

    Deary Ian J

    2009-04-01

    Full Text Available Abstract Background Brain size is associated with cognitive ability in adulthood (correlation ~ .3, but few studies have investigated the relationship in normal ageing, particularly beyond age 75 years. With age both brain size and fluid-type intelligence decline, and regional atrophy is often suggested as causing decline in specific cognitive abilities. However, an association between brain size and intelligence may be due to the persistence of this relationship from earlier life. Methods We recruited 107 community-dwelling volunteers (29% male aged 75–81 years for cognitive testing and neuroimaging. We used principal components analysis to derived a 'general cognitive factor' (g from tests of fluid-type ability. Using semi-automated analysis, we measured whole brain volume, intracranial area (ICA (an estimate of maximal brain volume, and volume of frontal and temporal lobes, amygdalo-hippocampal complex, and ventricles. Brain atrophy was estimated by correcting WBV for ICA. Results Whole brain volume (WBV correlated with general cognitive ability (g (r = .21, P Conclusion The association between brain regions and specific cognitive abilities in community dwelling people of older age is due to the life-long association between whole brain size and general cognitive ability, rather than atrophy of specific regions. Researchers and clinicians should therefore be cautious of interpreting global or regional brain atrophy on neuroimaging as contributing to cognitive status in older age without taking into account prior mental ability and brain size.

  18. A history of sport-related concussion on event-related brain potential correlates of cognition.

    Science.gov (United States)

    Broglio, Steven P; Moore, Robert D; Hillman, Charles H

    2011-10-01

    Over the past decade, a growing body of research has detailed persistent changes to neuroelectric indices of cognition in amateur and professional athletes with a concussion history. Here, we review the relevant neuroelectric findings on this relationship while considering the duration from the last concussive event. Collectively, the findings support a negative relation of concussive injury to neuroelectric indices of brain health and cognition in the presence of normal clinical findings. The results suggest that event-related brain potentials are especially well-suited for identifying aspects of cognition that remain dysfunctional for an extended period of time, which are otherwise unidentified using standard neuropsychological tests. Such findings also suggest the need for additional research to fully elucidate the extent to which concussive injuries negatively impact brain health and cognition.

  19. Positive selection in ASPM is correlated with cerebral cortex evolution across primates but not with whole-brain size.

    Science.gov (United States)

    Ali, Farhan; Meier, Rudolf

    2008-11-01

    The rapid increase of brain size is a key event in human evolution. Abnormal spindle-like microcephaly associated (ASPM) is discussed as a major candidate gene for explaining the exceptionally large brain in humans but ASPM's role remains controversial. Here we use codon-specific models and a comparative approach to test this candidate gene that was initially identified in Homo-chimp comparisons. We demonstrate that accelerated evolution of ASPM (omega = 4.7) at 16 amino acid sites occurred in 9 primate lineages with major changes in relative cerebral cortex size. However, ASPM's evolution is not correlated with major changes in relative whole-brain or cerebellum sizes. Our results suggest that a single candidate gene such as ASPM can influence a specific component of the brain across large clades through changes in a few amino acid sites. We furthermore illustrate the power of using continuous phenotypic variability across primates to rigorously test candidate genes that have been implicated in the evolution of key human traits.

  20. [Electrophysiological correlates of efficacy of nootropic drugs in the treatment of consequences of traumatic brain injury in adolescents].

    Science.gov (United States)

    Iznak, E V; Iznak, A F; Pankratova, E A; Zavadenko, N N; Guzilova, L S; Guzilova, Iu I

    2010-01-01

    To assess objectively a dynamics of brain functional state, EEG spectral power and peak latency of the P300 component of cognitive auditory evoked potentials have been analyzed in adolescents during the course of nootropic therapy of residual asthenic consequences of traumatic brain injury (ICD-10 F07.2). The study included 76 adolescents, aged 12-18 years, who have undergone severe closed head trauma with brain commotion 1/2--5 years ago. Patients have been divided into 3 groups treated during one month with cerebrolysin, piracetam or magne-B6, respectively. After the end of the nootropic therapy, 77% of patients treated with cerebrolysin as well as 50% of patients treated with piracetam and magne-B6 have demonstrated the positive dynamics of their brain functional state that manifested itself in the appearance of occipital EEG alpha rhythm or in the increase of its spectral power; in the normalization of alpha rhythm frequency; in the decrease in the spectral power of slow wave (theta and delta) EEG activity, in the amount (up to the disappearance) of paroxysmal EEG activity, in the EEG response to hyperventilation and in the shortening of the P300 peak latency. Such positive changes of neurophysiological parameters have been associated with the improvement of clinical conditions of patients and correlated significantly with the dynamics of psychometric scores of attention and memory.

  1. Repetition Priming Influences Distinct Brain Systems: Evidence From Task-Evoked Data and Resting-State Correlations

    Science.gov (United States)

    Wig, Gagan S.; Buckner, Randy L.; Schacter, Daniel L.

    2009-01-01

    Behavioral dissociations suggest that a single experience can separately influence multiple processing components. Here we used a repetition priming functional magnetic resonance imaging paradigm that directly contrasted the effects of stimulus and decision changes to identify the underlying brain systems. Direct repetition of stimulus features caused marked reductions in posterior regions of the inferior temporal lobe that were insensitive to whether the decision was held constant or changed between study and test. By contrast, prefrontal cortex showed repetition effects that were sensitive to the exact stimulus-to-decision mapping. Analysis of resting-state functional connectivity revealed that the dissociated repetition effects are embedded within distinct brain systems. Regions that were sensitive to changes in the stimulus correlated with perceptual cortices, whereas the decision changes attenuated activity in regions correlated with middle-temporal regions and a frontoparietal control system. These results thus explain the long-known dissociation between perceptual and conceptual components of priming by revealing how a single experience can separately influence distinct, concurrently active brain systems. PMID:19225167

  2. Correlation between Peripheral Levels of Brain-Derived Neurotrophic Factor and Hippocampal Volume in Children and Adolescents with Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Tatiana Lauxen Peruzzolo

    2015-01-01

    Full Text Available Pediatric bipolar disorder (PBD is a serious mental disorder that affects the development and emotional growth of affected patients. The brain derived neurotrophic factor (BDNF is recognized as one of the possible markers of the framework and its evolution. Abnormalities in BDNF signaling in the hippocampus could explain the cognitive decline seen in patients with TB. Our aim with this study was to evaluate possible changes in hippocampal volume in children and adolescents with BD and associate them to serum BDNF. Subjects included 30 patients aged seven to seventeen years from the ProCAB (Program for Children and Adolescents with Bipolar Disorder. We observed mean right and left hippocampal volumes of 41910.55 and 41747.96 mm3, respectively. No statistically significant correlations between peripheral BDNF levels and hippocampal volumes were found. We believe that the lack of correlation observed in this study is due to the short time of evolution of BD in children and adolescents. Besides studies with larger sample sizes to confirm the present findings and longitudinal assessments, addressing brain development versus a control group and including drug-naive patients in different mood states may help clarify the role of BDNF in the brain changes consequent upon BD.

  3. Correlation between Peripheral Levels of Brain-Derived Neurotrophic Factor and Hippocampal Volume in Children and Adolescents with Bipolar Disorder.

    Science.gov (United States)

    Lauxen Peruzzolo, Tatiana; Anes, Mauricio; Kohmann, Andre de Moura; Souza, Ana Claudia Mércio Loredo; Rodrigues, Ramiro Borges; Brun, Juliana Basso; Peters, Roberta; de Aguiar, Bianca Wollenhaupt; Kapczinski, Flavio; Tramontina, Silzá; Rohde, Luis Augusto Paim; Zeni, Cristian Patrick

    2015-01-01

    Pediatric bipolar disorder (PBD) is a serious mental disorder that affects the development and emotional growth of affected patients. The brain derived neurotrophic factor (BDNF) is recognized as one of the possible markers of the framework and its evolution. Abnormalities in BDNF signaling in the hippocampus could explain the cognitive decline seen in patients with TB. Our aim with this study was to evaluate possible changes in hippocampal volume in children and adolescents with BD and associate them to serum BDNF. Subjects included 30 patients aged seven to seventeen years from the ProCAB (Program for Children and Adolescents with Bipolar Disorder). We observed mean right and left hippocampal volumes of 41910.55 and 41747.96 mm(3), respectively. No statistically significant correlations between peripheral BDNF levels and hippocampal volumes were found. We believe that the lack of correlation observed in this study is due to the short time of evolution of BD in children and adolescents. Besides studies with larger sample sizes to confirm the present findings and longitudinal assessments, addressing brain development versus a control group and including drug-naive patients in different mood states may help clarify the role of BDNF in the brain changes consequent upon BD.

  4. Brain correlates of craving for online gaming under cue exposure in subjects with Internet gaming addiction and in remitted subjects.

    Science.gov (United States)

    Ko, Chih-Hung; Liu, Gin-Chung; Yen, Ju-Yu; Chen, Chiao-Yun; Yen, Cheng-Fang; Chen, Cheng-Sheng

    2013-05-01

    This study aimed to evaluate brain correlates of cue-induced craving to play online games in subjects with Internet gaming addiction (IGA), subjects in remission from IGA and controls. The craving response was assessed by event-related design of functional magnetic resonance images (fMRIs). Fifteen subjects with IGA, 15 in remission from IGA and 15 controls were recruited in this study. The subjects were arranged to view the gaming screenshots and neutral images under investigation of fMRIs. The results showed that bilateral dorsolateral prefrontal cortex (DLPFC), precuneus, left parahippocampus, posterior cingulate and right anterior cingulate were activated in response to gaming cues in the IGA group and their activation was stronger in the IGA group than those in the control group. Their region-of-interest was also positively correlated with subjective gaming urge under cue exposure. These activated brain areas represent the brain circuit corresponding to the mechanism of substance use disorder. Thus, it would suggest that the mechanism of IGA is similar to substance use disorder. Furthermore, the IGA group had stronger activation over right DLPFC and left parahippocampus than did the remission group. The two areas would be candidate markers for current addiction to online gaming and should be investigated in future studies. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  5. Evaluation of the contribution of multiple DAMPs and DAMP receptors in cell death-induced sterile inflammatory responses.

    Science.gov (United States)

    Kataoka, Hiroshi; Kono, Hajime; Patel, Zubin; Kimura, Yoshitaka; Rock, Kenneth L

    2014-01-01

    When cells die by necrosis in vivo they stimulate an inflammatory response. It is thought that this response is triggered when the injured cells expose proinflammatory molecules, collectively referred to as damage associated molecular patterns (DAMPs), which are recognized by cells or soluble molecules of the innate or adaptive immune system. Several putative DAMPs and/or their receptors have been identified, but whether and how much they participate in responses in vivo is incompletely understood, and they have not previously been compared side-by-side in the same models. This study focuses on evaluating the contribution of multiple mechanisms that have been proposed to or potentially could participate in cell death-induced inflammation: The third component of complement (C3), ATP (and its receptor P2X7), antibodies, the C-type lectin receptor Mincle (Clec4e), and protease-activated receptor 2 (PAR2). We investigate the role of these factors in cell death-induced inflammation to dead cells in the peritoneum and acetaminophen-induced liver damage. We find that mice deficient in antibody, C3 or PAR2 have impaired inflammatory responses to dying cells. In contrast there was no reduction in inflammation to cell death in the peritoneum or liver of mice that genetically lack Mincle, the P2X7 receptor or that were treated with apyrase to deplete ATP. These results indicate that antibody, complement and PAR2 contribute to cell death-induced inflammation but that Mincle and ATP- P2X7 receptor are not required for this response in at least 2 different in vivo models.

  6. Evaluation of the contribution of multiple DAMPs and DAMP receptors in cell death-induced sterile inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Hiroshi Kataoka

    Full Text Available When cells die by necrosis in vivo they stimulate an inflammatory response. It is thought that this response is triggered when the injured cells expose proinflammatory molecules, collectively referred to as damage associated molecular patterns (DAMPs, which are recognized by cells or soluble molecules of the innate or adaptive immune system. Several putative DAMPs and/or their receptors have been identified, but whether and how much they participate in responses in vivo is incompletely understood, and they have not previously been compared side-by-side in the same models. This study focuses on evaluating the contribution of multiple mechanisms that have been proposed to or potentially could participate in cell death-induced inflammation: The third component of complement (C3, ATP (and its receptor P2X7, antibodies, the C-type lectin receptor Mincle (Clec4e, and protease-activated receptor 2 (PAR2. We investigate the role of these factors in cell death-induced inflammation to dead cells in the peritoneum and acetaminophen-induced liver damage. We find that mice deficient in antibody, C3 or PAR2 have impaired inflammatory responses to dying cells. In contrast there was no reduction in inflammation to cell death in the peritoneum or liver of mice that genetically lack Mincle, the P2X7 receptor or that were treated with apyrase to deplete ATP. These results indicate that antibody, complement and PAR2 contribute to cell death-induced inflammation but that Mincle and ATP- P2X7 receptor are not required for this response in at least 2 different in vivo models.

  7. Brain correlates of aesthetic expertise: A parametric fMRI study

    DEFF Research Database (Denmark)

    Kirk, Ulrich; Skov, Martin; Christensen, Mark Schram

    2009-01-01

    of non-architects. This design allowed us to test whether level of expertise modulates neural activity in brain areas associated with either perceptual processing, memory, or reward processing. We show that experts and non-experts recruit bilateral medial orbitofrontal cortex (OFC) and subcallosal...... a dissociable role between these regions in the reward processing of expertise. Finally, categorical responses (irrespective of aesthetic ratings) resulted in expertise effects in memory-related areas such as hippocampus and precuneus. These results highlight the fact that expertise not only modulates cognitive...... processing, but also modulates the response in reward related brain areas....

  8. Neural correlates of motor dysfunction in children with traumatic brain injury: exploration of compensatory recruitment patterns.

    NARCIS (Netherlands)

    Caeyenberghs, K.; Wenderoth, N.; Smits-Engelsman, B.C.M.; Sunaert, S.; Swinnen, S.P.

    2009-01-01

    Traumatic brain injury (TBI) is a common form of disability in children. Persistent deficits in motor control have been documented following TBI but there has been less emphasis on changes in functional cerebral activity. In the present study, children with moderate to severe TBI (n = 9) and control

  9. Similar Neural Correlates for Language and Sequential Learning: Evidence from Event-Related Brain Potentials

    Science.gov (United States)

    Christiansen, Morten H.; Conway, Christopher M.; Onnis, Luca

    2012-01-01

    We used event-related potentials (ERPs) to investigate the time course and distribution of brain activity while adults performed (1) a sequential learning task involving complex structured sequences and (2) a language processing task. The same positive ERP deflection, the P600 effect, typically linked to difficult or ungrammatical syntactic…

  10. First and Second Language in the Brain: Neuronal Correlates of Language Processing and Spelling Strategies

    Science.gov (United States)

    Weber, Patricia; Kozel, Nadja; Purgstaller, Christian; Kargl, Reinhard; Schwab, Daniela; Fink, Andreas

    2013-01-01

    This study explores oscillatory brain activity by means of event-related synchronization and desynchronization (%ERS/ERD) of EEG activity during the use of phonological and orthographic-morphological spelling strategies in L2 (English) and L1 (German) in native German speaking children. EEG was recorded while 33 children worked on a task requiring…

  11. Causes and Correlates of Brain Atrophy: A population-based MRI study

    NARCIS (Netherlands)

    T. den Heijer (Tom)

    2004-01-01

    markdownabstract__Abstract__ In 1906, Alois Alzheimer described for the first time a form of dementia that later became known as Alzheimer’s disease. At necropsy, he had observed that the brain of a 51-year-old woman with progressive cognitive decline was filled with –at that time still anonymous–

  12. Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders

    NARCIS (Netherlands)

    Kos, Claire; van Tol, Marie-José; Marsman, Jan-Bernard C; Knegtering, Henderikus; Aleman, André

    2016-01-01

    Apathy can be described as a loss of goal-directed purposeful behavior and is common in a variety of neurological and psychiatric disorders. Although previous studies investigated associations between abnormal brain functioning and apathy, it is unclear whether the neural basis of apathy is similar

  13. The dissipative quantum model of brain how do memory localize in correlated neuronal domains

    CERN Document Server

    Alfinito, E

    2000-01-01

    The mechanism of memory localization in extended domains is described in the framework of the parametric dissipative quantum model of brain. The size of the domains and the capability in memorizing depend on the number of links the system is able to establish with the external world.

  14. Intranasal Insulin Improves Age-Related Cognitive Deficits and Reverses Electrophysiological Correlates of Brain Aging.

    Science.gov (United States)

    Maimaiti, Shaniya; Anderson, Katie L; DeMoll, Chris; Brewer, Lawrence D; Rauh, Benjamin A; Gant, John C; Blalock, Eric M; Porter, Nada M; Thibault, Olivier

    2016-01-01

    Peripheral insulin resistance is a key component of metabolic syndrome associated with obesity, dyslipidemia, hypertension, and type 2 diabetes. While the impact of insulin resistance is well recognized in the periphery, it is also becoming apparent in the brain. Recent studies suggest that insulin resistance may be a factor in brain aging and Alzheimer's disease (AD) whereby intranasal insulin therapy, which delivers insulin to the brain, improves cognition and memory in AD patients. Here, we tested a clinically relevant delivery method to determine the impact of two forms of insulin, short-acting insulin lispro (Humalog) or long-acting insulin detemir (Levemir), on cognitive functions in aged F344 rats. We also explored insulin effects on the Ca(2+)-dependent hippocampal afterhyperpolarization (AHP), a well-characterized neurophysiological marker of aging which is increased in the aged, memory impaired animal. Low-dose intranasal insulin improved memory recall in aged animals such that their performance was similar to that seen in younger animals. Further, because ex vivo insulin also reduced the AHP, our results suggest that the AHP may be a novel cellular target of insulin in the brain, and improved cognitive performance following intranasal insulin therapy may be the result of insulin actions on the AHP.

  15. Age-correlated gene expression in normal and neurodegenerative human brain tissues.

    Directory of Open Access Journals (Sweden)

    Kajia Cao

    Full Text Available BACKGROUND: Human brain aging has received special attention in part because of the elevated risks of neurodegenerative disorders such as Alzheimer's disease in seniors. Recent technological advances enable us to investigate whether similar mechanisms underlie aging and neurodegeneration, by quantifying the similarities and differences in their genome-wide gene expression profiles. PRINCIPAL FINDINGS: We have developed a computational method for assessing an individual's "physiological brain age" by comparing global mRNA expression datasets across a range of normal human brain samples. Application of this method to brains samples from select regions in two diseases--Alzheimer's disease (AD, superior frontal gyrus, frontotemporal lobar degeneration (FTLD, in rostral aspect of frontal cortex ∼BA10--showed that while control cohorts exhibited no significant difference between physiological and chronological ages, FTLD and AD exhibited prematurely aged expression profiles. CONCLUSIONS: This study establishes a quantitative scale for measuring premature aging in neurodegenerative disease cohorts, and it identifies specific physiological mechanisms common to aging and some forms of neurodegeneration. In addition, accelerated expression profiles associated with AD and FTLD suggest some common mechanisms underlying the risk of developing these diseases.

  16. CEST signal at 2ppm (CEST@2ppm) from Z-spectral fitting correlates with creatine distribution in brain tumor.

    Science.gov (United States)

    Cai, Kejia; Singh, Anup; Poptani, Harish; Li, Weiguo; Yang, Shaolin; Lu, Yang; Hariharan, Hari; Zhou, Xiaohong J; Reddy, Ravinder

    2015-01-01

    In general, multiple components such as water direct saturation, magnetization transfer (MT), chemical exchange saturation transfer (CEST) and aliphatic nuclear Overhauser effect (NOE) contribute to the Z-spectrum. The conventional CEST quantification method based on asymmetrical analysis may lead to quantification errors due to the semi-solid MT asymmetry and the aliphatic NOE located on a single side of the Z-spectrum. Fitting individual contributors to the Z-spectrum may improve the quantification of each component. In this study, we aim to characterize the multiple exchangeable components from an intracranial tumor model using a simplified Z-spectral fitting method. In this method, the Z-spectrum acquired at low saturation RF amplitude (50 Hz) was modeled as the summation of five Lorentzian functions that correspond to NOE, MT effect, bulk water, amide proton transfer (APT) effect and a CEST peak located at +2 ppm, called CEST@2ppm. With the pixel-wise fitting, the regional variations of these five components in the brain tumor and the normal brain tissue were quantified and summarized. Increased APT effect, decreased NOE and reduced CEST@2ppm were observed in the brain tumor compared with the normal brain tissue. Additionally, CEST@2ppm decreased with tumor progression. CEST@2ppm was found to correlate with the creatine concentration quantified with proton MRS. Based on the correlation curve, the creatine contribution to CEST@2ppm was quantified. The CEST@2ppm signal could be a novel imaging surrogate for in vivo creatine, the important bioenergetics marker. Given its noninvasive nature, this CEST MRI method may have broad applications in cancer bioenergetics.

  17. Brain Morphometric Correlates of Metabolic Variables in HIV: The CHARTER Study

    Science.gov (United States)

    ARCHIBALD, S.L.; MCCUTCHAN, J.A.; SANDERS, C.; WOLFSON, T.; JERNIGAN, T.L.; ELLIS, R.J.; ANCES, B.M.; COLLIER, A.C.; MCARTHUR, J.C.; MORGELLO, S.; SIMPSON, D.M.; MARRA, C.; GELMAN, B.B.; CLIFFORD, D.B.; GRANT, I.; FENNEMA-NOTESTINE, C.

    2014-01-01

    Objectives: Obesity and other metabolic variables are associated with abnormal brain structural volumes and cognitive dysfunction in HIV-uninfected populations. Since individuals with HIV infection on combined antiretroviral therapy (CART) often have systemic metabolic abnormalities and changes in brain morphology and function, we examined associations among brain volumes and metabolic factors in the multi-site CNS HIV Anti-Retroviral Therapy Effects Research (CHARTER) cohort. Design: Cross-sectional study of 222 HIV-infected individuals. Methods: Metabolic variables included body mass index (BMI), total blood cholesterol (C), low- and high-density lipoprotein C (LDL-C and HDL-C), blood pressure, random blood glucose, and diabetes. MRI measured volumes of cerebral white matter, abnormal white matter, cortical and subcortical gray matter, and ventricular and sulcal CSF. Multiple linear regression models allowed us to examine metabolic variables separately and in combination to predict each regional volume. Results: Greater body mass index (BMI) was associated with smaller cortical gray and larger white matter volumes. Higher total cholesterol (C) levels were associated with smaller cortex volumes; higher LDL-C was associated with larger cerebral white matter volumes, while higher HDL-C levels were associated with larger sulci. Higher blood glucose levels and diabetes were associated with more abnormal white matter. Conclusions: Multiple atherogenic metabolic factors contribute to regional brain volumes in HIV-infected, CART-treated patients, reflecting associations similar to those found in HIV-uninfected individuals. These risk factors may accelerate cerebral atherosclerosis and consequent brain alterations and cognitive dysfunction. PMID:25227933

  18. Attention Performance Measured by Attention Network Test is Correlated with Global and Regional Efficiency of Structural Human Brain Networks

    Directory of Open Access Journals (Sweden)

    Min Xiao

    2016-10-01

    Full Text Available Functional neuroimaging studies have indicated the involvement of separate brain areas in three distinct attention systems: alerting, orienting and executive control (EC. However, the structural correlates underlying attention remains unexplored. Here, we utilized graph theory to examine the neuroanatomical substrates of the three attention systems measured by attention network test (ANT in 65 healthy subjects. White matter connectivity, assessed with DTI deterministic tractography was modeled as a structural network comprising 90 nodes defined by the Automated Anatomical Labeling (AAL template. Linear regression analyses were conducted to explore the relationship between topological parameters and the three attentional effects. We found a significant positive correlation between EC function and global efficiency of the whole brain network. At the regional level, node-specific correlations were discovered between regional efficiency and all three ANT components, including dorsolateral superior frontal gyrus, thalamus and parahippocampal gyrus for EC, thalamus and inferior parietal gyrus for alerting, and paracentral lobule and inferior occipital gyrus for orienting. Our findings highlight the fundamental architecture of interregional structural connectivity involved in attention and could provide new insights into the anatomical basis underlying human behavior.

  19. Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation.

    Science.gov (United States)

    Herrojo Ruiz, María; Hong, Sang Bin; Hennig, Holger; Altenmüller, Eckart; Kühn, Andrea A

    2014-01-01

    Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC) are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome) of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback. As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS) on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS) due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS. Overall, the present investigations demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN-DBS, which suggests that cortico

  20. Brain structural, functional, and cognitive correlates of recent versus remote autobiographical memories in amnestic Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Clémence Tomadesso

    2015-01-01

    Full Text Available Deficits in autobiographical memory appear earlier for recent than for remote life periods over the course of Alzheimer's disease (AD. The present study aims to further our understanding of this graded effect by investigating the cognitive and neural substrates of recent versus remote autobiographical memories in patients with amnestic Mild Cognitive Impairment (aMCI thanks to an autobiographical fluency task. 20 aMCI patients and 25 Healthy elderly Controls (HC underwent neuropsychological tests assessing remote (20-to-30 years old and recent (the ten last years autobiographical memory as well as episodic and semantic memory, executive function and global cognition. All patients also had a structural MRI and an FDG-PET scan. Correlations were assessed between each autobiographical memory score and the other tests as well as grey matter volume and metabolism. Within the aMCI, performances for the remote period correlated with personal semantic memory and episodic memory retrieval whereas performances for the recent period only correlated with episodic memory retrieval. Neuroimaging analyses revealed significant correlations between performances for the remote period and temporal pole and temporo-parietal cortex volumes and anterior cingulate gyrus metabolism, while performances for the recent period correlated with hippocampal volume and posterior cingulate, medial prefrontal and hippocampus metabolism. The brain regions related with the retrieval of events from the recent period showed greater atrophy/hypometabolism in aMCI patients compared to HC than those involved in remote memories. Recall of recent memories essentially relies on episodic memory processes and brain network while remote memories also involve other processes such as semantic memory. This is consistent with the semanticization of memories with time and may explain the better resistance of remote memory in AD.

  1. Visual and SPM Analysis of Brain Perfusion SPECT in Patients of Dementia with Lewy Bodies with Clinical Correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young; Park, Kyung Won; Kim, Jae Woo [College of Medicine, Univ. of Donga, Busan (Korea, Republic of)

    2003-07-01

    Dementia with Lewy bodies (DLB) is widely recognized as the second commonest form of degenerative dementia. Its core clinical features include persistent visual hallucinosis, fluctuating cognitive impairment and parkinsonism. We evaluated the brain perfusion of dementia with Lewy bodies by SPM analysis and correlated the findings with clinical symptom. Twelve DLB patients (mean age ; 68.88.3 yrs, K-MMSE ; 17.36) and 30 control subjects (mean age ; 60.17.7 yrs) were included. Control subjects were selected by 28 items of exclusion criteria and checked by brain CT or MRI except 3 subjects. Tc-99m HMPAO brain perfusion SPECT was performed and the image data were analyzed by visual interpretation and SPM99 as routine protocol. In visual analysis, 7 patients showed hypoperfusion in both frontal, temporal, parietal and occipital lobe, 2 patients in both frontal, temporal and parietal lobe, 2 patients in both temporal, parietal and occipital lobe, 1 patients in left temporal, parietal and occipital lobe. In SPM analysis (uncorrected p<0.01), significant hypoperfusion was shown in Lt inf. frontal gyrus (B no.47), both inf. parietal lobule (Rt B no.40), Rt parietal lobe (precuneus), both sup. temporal gyrus (Rt B no.42), Rt mid temporal gyrus, Lt transverse temporal gyrus (B no.41), both para hippocampal gyrus, Rt thalamus (pulvinar), both cingulate gyrus (Lt B no.24, Lt B no.25, Rt B no.23, Rt B no.24, Rt B no.33), Rt caudate body, both occipital lobe (cuneus, Lt B no.17, Rt B no.18). All patients had fluctuating cognition and parkinsonism, and 9 patients had visual hallucination. The result of SPM analysis was well correlated with visual interpretation and may be helpful to specify location to correlate with clinical symptom. Significant perfusion deficits in occipital region including visual cortex and visual association area are characteristic findings in DLB. Abnormalities in these areas may be important in understanding symptoms of visual hallucination and

  2. Functional Brain Activation in Response to a Clinical Vestibular Test Correlates with Balance

    Science.gov (United States)

    Noohi, Fatemeh; Kinnaird, Catherine; DeDios, Yiri; Kofman, Igor S.; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2017-01-01

    The current study characterizes brain fMRI activation in response to two modes of vestibular stimulation: Skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either a vestibulo-spinal reflex [saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)], or an ocular muscle response [utricle-mediated ocular VEMP (oVEMP)]. Research suggests that the skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for subjects than the high decibel tones required to elicit VEMPs. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of brain activity. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that pneumatically powered skull taps would elicit a similar pattern of brain activity as shown in previous studies. Our results provide the first evidence of using pneumatically powered skull taps to elicit vestibular activity inside the MRI scanner. A conjunction analysis revealed that skull taps elicit overlapping activation with auditory tone bursts in the canonical vestibular cortical regions. Further, our postural control assessments revealed that greater amplitude of brain activation in response to vestibular stimulation was associated with better balance control for both techniques. Additionally, we found that skull taps elicit more robust vestibular activity compared to auditory tone bursts, with less reported aversive effects, highlighting the utility of this approach for future clinical and basic science research. PMID:28344549

  3. EVALUATION OF BRAIN TUMOURS BY MRI TECHNIQUES AND THEIR HISTOPATHOLOGICAL CORRELATION

    OpenAIRE

    Mohammad Shamim; Reyaz; Anju; Dinesh Kumar; Paricharak

    2014-01-01

    : This study was conducted on thirty patients of brain tumors diagnosed on CT scan/ Conventional MRI. It was performed in the Department of Radiological and PET Imaging, Institute of Nuclear Medicine and Allied Sciences (INMAS), Brig S. K. Mazumdar Marg , Lucknow road, Delhi. Out of thirty patients, 19 patients (63.33%) were male and 11 patients (36.66%) were female. Their ages ranged from 22 to 63 years. The most common presenting symptom was headache followed by seizures...

  4. Identifying with fictive characters: structural brain correlates of the personality trait 'fantasy'.

    Science.gov (United States)

    Cheetham, Marcus; Hänggi, Jürgen; Jancke, Lutz

    2014-11-01

    The perception of oneself as absorbed in the thoughts, feelings and happenings of a fictive character (e.g. in a novel or film) as if the character's experiences were one's own is referred to as identification. We investigated whether individual variation in the personality trait of identification is associated with individual variation in the structure of specific brain regions, using surface and volume-based morphometry. The hypothesized regions of interest were selected on the basis of their functional role in subserving the cognitive processing domains considered important for identification (i.e. mental imagery, empathy, theory of mind and merging) and for the immersive experience called 'presence'. Controlling for age, sex, whole-brain volume and other traits, identification covaried significantly with the left hippocampal volume, cortical thickness in the right anterior insula and the left dorsal medial prefrontal cortex, and with gray matter volume in the dorsolateral prefrontal cortex. These findings show that trait identification is associated with structural variation in specific brain regions. The findings are discussed in relation to the potential functional contribution of these regions to identification.

  5. Prevalence, clinical features, and correlates of inappropriate sexual behavior after traumatic brain injury: a multicenter study.

    Science.gov (United States)

    Simpson, Grahame K; Sabaz, Mark; Daher, Maysaa

    2013-01-01

    Investigate the prevalence and clinical features of inappropriate sexual behavior (ISB) among a community-based cohort of clients of the New South Wales Brain Injury Rehabilitation program. All 11 community-based rehabilitation services of the statewide network. Five hundred seven clients with severe traumatic brain injury. Cross-sectional multicentre study. Overt Behavior Scale, Disability Rating Scale, Sydney Psychosocial Reintegration Scale-2, Health of the Nation Outcome Scale-Acquired Brain Injury, Care and Needs Scale. The point prevalence rate of ISBs was 8.9% (45/507) over the previous 3 months. Inappropriate sexual talk comprised 57.9% of all ISBs, followed by genital and nongenital touching behaviors (29.8%) and exhibitionism/public masturbation (10.5%). In 43 of 45 cases, ISBs were accompanied by other challenging behaviors, most often inappropriate social behavior, and/or aggression. Individuals who sustained more severe injuries and who were younger were significantly more likely to display ISBs. People displaying ISBs were more likely to display higher levels of challenging behaviors overall, lower levels of social participation, and more neuropsychiatric sequelae than 2 other groups: people displaying no challenging behaviors and people displaying challenging behaviors but no ISBs respectively. ISBs pose a complex clinical challenge among a minority of individuals with severe TBI.

  6. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality.

    Science.gov (United States)

    Montiel-Castro, Augusto J; González-Cervantes, Rina M; Bravo-Ruiseco, Gabriela; Pacheco-López, Gustavo

    2013-10-07

    Recent data suggest that the human body is not such a neatly self-sufficient island after all. It is more like a super-complex ecosystem containing trillions of bacteria and other microorganisms that inhabit all our surfaces; skin, mouth, sexual organs, and specially intestines. It has recently become evident that such microbiota, specifically within the gut, can greatly influence many physiological parameters, including cognitive functions, such as learning, memory and decision making processes. Human microbiota is a diverse and dynamic ecosystem, which has evolved in a mutualistic relationship with its host. Ontogenetically, it is vertically inoculated from the mother during birth, established during the first year of life and during lifespan, horizontally transferred among relatives, mates or close community members. This micro-ecosystem serves the host by protecting it against pathogens, metabolizing complex lipids and polysaccharides that otherwise would be inaccessible nutrients, neutralizing drugs and carcinogens, modulating intestinal motility, and making visceral perception possible. It is now evident that the bidirectional signaling between the gastrointestinal tract and the brain, mainly through the vagus nerve, the so called "microbiota-gut-vagus-brain axis," is vital for maintaining homeostasis and it may be also involved in the etiology of several metabolic and mental dysfunctions/disorders. Here we review evidence on the ability of the gut microbiota to communicate with the brain and thus modulate behavior, and also elaborate on the ethological and cultural strategies of human and non-human primates to select, transfer and eliminate microorganisms for selecting the commensal profile.

  7. Long-term correlation of the electrocorticogram as a bioindicator of brain exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, L.A.A.; Nogueira, R.A. [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Departamento de Morfologia e Fisiologia Animal. Lab. de Biofisica Teorico-Experimental e Computacional; Silva, I.M.S.; Fernandes, T.S., E-mail: ran.pe@terra.com.br [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Departamento de Biofisica e Radiobiologia

    2015-10-15

    Understanding the effects of radiation and its possible influence on the nervous system are of great clinical interest. However, there have been few electrophysiological studies on brain activity after exposure to ionizing radiation (IR). A new methodological approach regarding the assessment of the possible effects of IR on brain activity is the use of linear and nonlinear mathematical methods in the analysis of complex time series, such as brain oscillations measured using the electrocorticogram (ECoG). The objective of this study was to use linear and nonlinear mathematical methods as biomarkers of gamma radiation regarding cortical electrical activity. Adult Wistar rats were divided into 3 groups: 1 control and 2 irradiated groups, evaluated at 24 h (IR24) and 90 days (IR90) after exposure to 18 Gy of gamma radiation from a cobalt-60 radiotherapy source. The ECoG was analyzed using power spectrum methods for the calculation of the power of delta, theta, alpha and beta rhythms and by means of the a-exponent of the detrended fluctuation analysis (DFA). Using both mathematical methods it was possible to identify changes in the ECoG, and to identify significant changes in the pattern of the recording at 24 h after irradiation. Some of these changes were persistent at 90 days after exposure to IR. In particular, the theta wave using the two methods showed higher sensitivity than other waves, suggesting that it is a possible biomarker of exposure to IR. (author)

  8. Brain Structural Correlates of Risk-Taking Behavior and Effects of Peer Influence in Adolescents

    Science.gov (United States)

    Kwon, Myoung Soo; Vorobyev, Victor; Moe, Dagfinn; Parkkola, Riitta; Hämäläinen, Heikki

    2014-01-01

    Adolescents are characterized by impulsive risky behavior, particularly in the presence of peers. We discriminated high and low risk-taking male adolescents aged 18–19 years by assessing their propensity for risky behavior and vulnerability to peer influence with personality tests, and compared structural differences in gray and white matter of the brain with voxel-based morphometry (VBM) and diffusion tensor imaging (DTI), respectively. We also compared the brain structures according to the participants' actual risk-taking behavior in a simulated driving task with two different social conditions making up a peer competition situation. There was a discrepancy between the self-reported personality test results and risky driving behavior (running through an intersection with traffic lights turning yellow, chancing a collision with another vehicle). Comparison between high and low risk-taking adolescents according to personality test results revealed no significant difference in gray matter volume and white matter integrity. However, comparison according to actual risk-taking behavior during task performance revealed significantly higher white matter integrity in the high risk-taking group, suggesting that increased risky behavior during adolescence is not necessarily attributed to the immature brain as conventional wisdom says. PMID:25389976

  9. Brain structural correlates of risk-taking behavior and effects of peer influence in adolescents.

    Directory of Open Access Journals (Sweden)

    Myoung Soo Kwon

    Full Text Available Adolescents are characterized by impulsive risky behavior, particularly in the presence of peers. We discriminated high and low risk-taking male adolescents aged 18-19 years by assessing their propensity for risky behavior and vulnerability to peer influence with personality tests, and compared structural differences in gray and white matter of the brain with voxel-based morphometry (VBM and diffusion tensor imaging (DTI, respectively. We also compared the brain structures according to the participants' actual risk-taking behavior in a simulated driving task with two different social conditions making up a peer competition situation. There was a discrepancy between the self-reported personality test results and risky driving behavior (running through an intersection with traffic lights turning yellow, chancing a collision with another vehicle. Comparison between high and low risk-taking adolescents according to personality test results revealed no significant difference in gray matter volume and white matter integrity. However, comparison according to actual risk-taking behavior during task performance revealed significantly higher white matter integrity in the high risk-taking group, suggesting that increased risky behavior during adolescence is not necessarily attributed to the immature brain as conventional wisdom says.

  10. Neural correlates of apathy revealed by lesion mapping in participants with traumatic brain injuries.

    Science.gov (United States)

    Knutson, Kristine M; Monte, Olga Dal; Raymont, Vanessa; Wassermann, Eric M; Krueger, Frank; Grafman, Jordan

    2014-03-01

    Apathy, common in neurological disorders, is defined as disinterest and loss of motivation, with a reduction in self-initiated activity. Research in diseased populations has shown that apathy is associated with variations in the volume of brain regions such as the anterior cingulate and the frontal lobes. The goal of this study was to determine the neural signatures of apathy in people with penetrating traumatic brain injuries (pTBIs), as to our knowledge, these have not been studied in this sample. We studied 176 male Vietnam War veterans with pTBIs using voxel-based lesion-symptom mapping (VLSM) and apathy scores from the UCLA Neuropsychiatric Inventory (NPI), a structured inventory of symptoms completed by a caregiver. Our results revealed that increased apathy symptoms were associated with brain damage in limbic and cortical areas of the left hemisphere including the anterior cingulate, inferior, middle, and superior frontal regions, insula, and supplementary motor area. Our results are consistent with the literature, and extend them to people with focal pTBI. Apathy is a significant symptom since it can reduce participation of the patient in family and other social interactions, and diminish affective decision-making.

  11. Long-term correlation of the electrocorticogram as a bioindicator of brain exposure to ionizing radiation

    Directory of Open Access Journals (Sweden)

    L.A.A. Aguiar

    2015-01-01

    Full Text Available Understanding the effects of radiation and its possible influence on the nervous system are of great clinical interest. However, there have been few electrophysiological studies on brain activity after exposure to ionizing radiation (IR. A new methodological approach regarding the assessment of the possible effects of IR on brain activity is the use of linear and nonlinear mathematical methods in the analysis of complex time series, such as brain oscillations measured using the electrocorticogram (ECoG. The objective of this study was to use linear and nonlinear mathematical methods as biomarkers of gamma radiation regarding cortical electrical activity. Adult Wistar rats were divided into 3 groups: 1 control and 2 irradiated groups, evaluated at 24 h (IR24 and 90 days (IR90 after exposure to 18 Gy of gamma radiation from a cobalt-60 radiotherapy source. The ECoG was analyzed using power spectrum methods for the calculation of the power of delta, theta, alpha and beta rhythms and by means of the α-exponent of the detrended fluctuation analysis (DFA. Using both mathematical methods it was possible to identify changes in the ECoG, and to identify significant changes in the pattern of the recording at 24 h after irradiation. Some of these changes were persistent at 90 days after exposure to IR. In particular, the theta wave using the two methods showed higher sensitivity than other waves, suggesting that it is a possible biomarker of exposure to IR.

  12. Abnormalities on magnetic resonance imaging seen acutely following mild traumatic brain injury: correlation with neuropsychological tests and delayed recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, David G.; Jackson, Alan [Department of Neuroradiology, Hope Hospital, M6 8HD, Salford (United Kingdom); Mason, Damon L.; Berry, Elizabeth [Department of Behavioural Medicine, Hope Hospital, M6 8HD, Salford (United Kingdom); Hollis, Sally [Medical Statistics Unit, Lancaster University, Lancaster (United Kingdom); Yates, David W. [Department of Emergency Medicine, Hope Hospital, M6 8HD, Salford (United Kingdom)

    2004-07-01

    Mild traumatic brain injury (MTBI) is a common reason for hospital attendance and is associated with significant delayed morbidity. We studied a series of 80 persons with MTBI. Magnetic resonance imaging (MRI) and neuropsychological testing were used in the acute phase and a questionnaire for post-concussion syndrome (PCS) and return to work status at 6 months. In 26 subjects abnormalities were seen on MRI, of which 5 were definitely traumatic. There was weak correlation with abnormal neuropsychological tests for attention in the acute period. There was no significant correlation with a questionnaire for PCS and return to work status. Although non-specific abnormalities are frequently seen, standard MRI techniques are not helpful in identifying patients with MTBI who are likely to have delayed recovery. (orig.)

  13. Brain morphometric correlates of MAOA-uVNTR polymorphism in violent behavior

    Directory of Open Access Journals (Sweden)

    C. Romero-Rebollar

    2015-01-01

    Discussion: This findings suggests that grey matter integrity in superior temporal pole could be a neurobiological correlate of the allelic association between MAOA-uVNTR polymorphism and violent behavior due to its implication in socio-emotional processing.

  14. Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Maria eHerrojo Ruiz

    2014-09-01

    Full Text Available Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback.As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS.Overall, the present investigations are the first to demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN

  15. Real world navigation independence in the early blind correlates with differential brain activity associated with virtual navigation.

    Science.gov (United States)

    Halko, Mark A; Connors, Erin C; Sánchez, Jaime; Merabet, Lotfi B

    2014-06-01

    Navigating is a complex cognitive task that places high demands on spatial abilities, particularly in the absence of sight. Significant advances have been made in identifying the neural correlates associated with various aspects of this skill; however, how the brain is able to navigate in the absence of visual experience remains poorly understood. Furthermore, how neural network activity relates to the wide variability in navigational independence and skill in the blind population is also unknown. Using functional magnetic resonance imaging, we investigated the neural correlates of audio-based navigation within a large scale, indoor virtual environment in early profoundly blind participants with differing levels of spatial navigation independence (assessed by the Santa Barbara Sense of Direction scale). Performing path integration tasks in the virtual environment was associated with activation within areas of a core network implicated in navigation. Furthermore, we found a positive relationship between Santa Barbara Sense of Direction scores and activation within right temporal parietal junction during the planning and execution phases of the task. These findings suggest that differential navigational ability in the blind may be related to the utilization of different brain network structures. Further characterization of the factors that influence network activity may have important implications regarding how this skill is taught in the blind community.

  16. Lesion correlates of impairments in actual tool use following unilateral brain damage.

    Science.gov (United States)

    Salazar-López, E; Schwaiger, B J; Hermsdörfer, J

    2016-04-01

    To understand how the brain controls actions involving tools, tests have been developed employing different paradigms such as pantomime, imitation and real tool use. The relevant areas have been localized in the premotor cortex, the middle temporal gyrus and the superior and inferior parietal lobe. This study employs Voxel Lesion Symptom Mapping to relate the functional impairment in actual tool use with extent and localization of the structural damage in the left (LBD, N=31) and right (RBD, N=19) hemisphere in chronic stroke patients. A series of 12 tools was presented to participants in a carousel. In addition, a non-tool condition tested the prescribed manipulation of a bar. The execution was scored according to an apraxic error scale based on the dimensions grasp, movement, direction and space. Results in the LBD group show that the ventro-dorsal stream constitutes the core of the defective network responsible for impaired tool use; it is composed of the inferior parietal lobe, the supramarginal and angular gyrus and the dorsal premotor cortex. In addition, involvement of regions in the temporal lobe, the rolandic operculum, the ventral premotor cortex and the middle occipital gyrus provide evidence of the role of the ventral stream in this task. Brain areas related to the use of the bar largely overlapped with this network. For patients with RBD data were less conclusive; however, a trend for the involvement of the temporal lobe in apraxic errors was manifested. Skilled bar manipulation depended on the same temporal area in these patients. Therefore, actual tool use depends on a well described left fronto-parietal-temporal network. RBD affects actual tool use, however the underlying neural processes may be more widely distributed and more heterogeneous. Goal directed manipulation of non-tool objects seems to involve very similar brain areas as tool use, suggesting that both types of manipulation share identical processes and neural representations. Copyright

  17. General and specialized brain correlates for analogical reasoning: A meta-analysis of functional imaging studies.

    Science.gov (United States)

    Hobeika, Lucie; Diard-Detoeuf, Capucine; Garcin, Béatrice; Levy, Richard; Volle, Emmanuelle

    2016-05-01

    Reasoning by analogy allows us to link distinct domains of knowledge and to transfer solutions from one domain to another. Analogical reasoning has been studied using various tasks that have generally required the consideration of the relationships between objects and their integration to infer an analogy schema. However, these tasks varied in terms of the level and the nature of the relationships to consider (e.g., semantic, visuospatial). The aim of this study was to identify the cerebral network involved in analogical reasoning and its specialization based on the domains of information and task specificity. We conducted a coordinate-based meta-analysis of 27 experiments that used analogical reasoning tasks. The left rostrolateral prefrontal cortex was one of the regions most consistently activated across the studies. A comparison between semantic and visuospatial analogy tasks showed both domain-oriented regions in the inferior and middle frontal gyri and a domain-general region, the left rostrolateral prefrontal cortex, which was specialized for analogy tasks. A comparison of visuospatial analogy to matrix problem tasks revealed that these two relational reasoning tasks engage, at least in part, distinct right and left cerebral networks, particularly separate areas within the left rostrolateral prefrontal cortex. These findings highlight several cognitive and cerebral differences between relational reasoning tasks that can allow us to make predictions about the respective roles of distinct brain regions or networks. These results also provide new, testable anatomical hypotheses about reasoning disorders that are induced by brain damage. Hum Brain Mapp 37:1953-1969, 2016. © 2016 Wiley Periodicals, Inc.

  18. Multimodal magnetic resonance imaging increases the overall diagnostic accuracy in brain tumours: Correlation with histopathology

    Directory of Open Access Journals (Sweden)

    Kasim Abul-Kasim

    2013-03-01

    Full Text Available Background: The aim of this retrospective study was to assess the contribution of multimodal MRI techniques, specifically perfusion-weighted imaging (PWI, and/or MR spectroscopy (MRS, in increasing the diagnostic accuracy of MRI in brain tumours.Methods: Forty-four patients with suspected brain tumours (27 (61% patients male, mean age 58±17 (mean±SD years were included in this retrospective analysis. Patients were examined with conventional MR sequences, DWI, and with PWI and/or MRS. The concordance between the diagnoses obtained with multimodal MRI and with the conventional MR sequences, and the final diagnosis obtained by biopsy, was estimated. Fisher’s exact test and/or chi-square test was performed to estimate the added utility of multimodal MRI. Statistical significance was set at p<0.05.Results: With multimodal MRI, the diagnosis in 41 (93% patients was the same as that obtained by biopsy, compared with 39% (17/44 patients when the readers were allowed to give one diagnostic possibility during the evaluation of the conventional MR sequences alone (p<0.001. The concordance between the diagnoses provided by evaluating the multimodal MRIs and the final diagnoses was almost perfect (κ value 0.92, 95% CI 0.82 - 1. PWI primarily helped to differentiate lymphomas from other solid tumours, whereas MRS helped to differentiate malignant glioma from metastasis. Both PWI and MRS helped in grading astrocytomas.Conclusion: Multimodal MRI increases diagnostic accuracy and should, wherever available, be performed in the work-up of brain tumours, although this entails increased examination cost and time.

  19. Functional and structural brain correlates of theory of mind and empathy deficits in schizophrenia.

    Science.gov (United States)

    Benedetti, Francesco; Bernasconi, Alessandro; Bosia, Marta; Cavallaro, Roberto; Dallaspezia, Sara; Falini, Andrea; Poletti, Sara; Radaelli, Daniele; Riccaboni, Roberta; Scotti, Giuseppe; Smeraldi, Enrico

    2009-10-01

    Patients affected by schizophrenia show deficits in social cognition, with abnormal performance on tasks targeting theory of mind (ToM) and empathy (Emp). Brain imaging studies suggested that ToM and Emp depend on the activation of brain networks mainly localized at the superior temporal lobe and temporo-parietal junction. Participants included 24 schizophrenia patients and 20 control subjects. We used brain blood oxygen level dependent fMRI to study the neural responses to tasks targeting ToM and Emp. We then studied voxel-based morphometry of grey matter in areas where diagnosis influenced functional activation to both tasks. Outcomes were analyzed in the context of the general linear model, with global grey matter volume as nuisance covariate for structural MRI. Patients showed worse performance on both tasks. We found significant effects of diagnosis on neural responses to the tasks in a wide cluster in right posterior superior temporal lobe (encompassing BA 22-42), in smaller clusters in left temporo-parietal junction and temporal pole (BA 38 and 39), and in a white matter region adjacent to medial prefrontal cortex (BA 10). A pattern of double dissociation of the effects of diagnosis and task on neural responses emerged. Among these areas, grey matter volume was found to be reduced in right superior temporal lobe regions of patients. Functional and structural abnormalities were observed in areas affected by the schizophrenic process early in the illness course, and known to be crucial for social cognition, suggesting a biological basis for social cognition deficits in schizophrenia.

  20. Behavioral and brain oscillatory correlates of affective processing in subclinical depression.

    Science.gov (United States)

    Slobodskoy-Plusnin, Jaroslav

    2017-09-15

    Named among the most dangerous diseases of the modern era, depression is characterized primarily by distortions in the affective sphere. Despite extensive investigations of underlying the neural background, mechanisms of the distortion still remain unknown. The current study analyzed brain oscillatory dynamics in different frequencies during resting state and presentation of affective stimuli in nonclinical individuals with high Beck Depression Inventory-II (BDI-II) scores (HB) versus controls. Both behavioral and electrocortical "markers" of clinical depression were apparent at subclinical level. A resting-state electroencephalogram (EEG) of HB revealed increased power in low frequencies, predominantly in the frontal cortical areas, that is in accordance with a "spatio-temporal dysfunction" model of depression. Related to that, transition from an eyes-closed to eyes-open condition was associated with diminished alpha blockade in HB, suggesting difficulties with the relocation of attention focus from inner processes toward environmental stimuli. Subsequently, independently of a sign of emotion, five out of six discrete emotions were evaluated as less valenced and four out of six as less intense by HB than by controls, corroborating the view of emotion context insensitivity (ECI) associated with depression. Underlying brain oscillatory dynamics revealed that depression was associated with deficits in the early, implicit, processing stages of emotional stimuli. Later processing stages were characterized by prominent power surges in low and alpha frequencies, presumably indicating emotion upregulation processes and increased engagement of cognitive mechanisms in affective tasks. The study provides brain oscillatory-based mechanisms of emotion processing distortions associated with depression.

  1. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality

    Directory of Open Access Journals (Sweden)

    Augusto Jacobo Montiel-Castro

    2013-10-01

    Full Text Available Recent data suggest that the human body is not such a neatly self-sufficient island after all. It is more like a super-complex ecosystem containing trillions of bacteria and other microorganisms that inhabit all our surfaces; skin, mouth, sexual organs, and specially intestines. It has recently become evident that such microbiota, specifically within the gut, can greatly influence many physiological parameters, including cognitive functions, such as learning, memory and decision making processes. Human microbiota is a diverse and dynamic ecosystem, which has evolved in a mutualistic relationship with its host. Ontogenetically, it is vertically inoculated from the mother during birth, established during the first year of life and during lifespan, horizontally transferred among relatives, mates or close community members. This micro-ecosystem serves the host by protecting against pathogens, metabolizing complex lipids and polysaccharides that otherwise would be inaccessible nutrients, neutralizing drugs and carcinogens, modulating intestinal motility, and making visceral perception possible. It is now evident that the bidirectional signaling between the gastrointestinal tract and the brain, mainly through the vagus nerve, the so called ´microbiota-gut-vagus-brain axis,´ is vital for maintaining homeostasis and it may be also involved in the etiology of several metabolic and mental dysfunctions/disorders. Here we review evidence on the ability of the gut microbiota to communicate with the brain and thus modulate behavior, and also elaborate on the ethological and cultural strategies of human and non-human primates to select, transfer and eliminate microorganisms for selecting the commensal profile.

  2. Characterization of Breast Cancer Cell Death Induced by Interferons and Retinoids

    Science.gov (United States)

    1999-07-01

    Bioi.. activity, which also reached its maximum during cell death. WEHI cells (2), it inhibited the growth of certain hepatoma Thus, there appears...culture flask generally chains oflgA and IgG, correlating with IgA and IgG deficiency previoulsy showed much lower cyclins as well as CKI levels than the

  3. Serum level of brain-derived neurotrophic factor in fibromyalgia syndrome correlates with depression but not anxiety.

    Science.gov (United States)

    Nugraha, Boya; Korallus, Christoph; Gutenbrunner, Christoph

    2013-02-01

    Brain-derived neurotrophic factor (BDNF) has been known to play a role in fibromyalgia syndrome (FMS) patients. Depression and anxiety are quite common additional symptoms in FMS. However the role of BDNF in these symptoms still needs to be elucidated. Although BDNF has been shown to be relevant in major depression, however studies could not show such differences between FMS patients with and without major depression. As mood-related symptom occurs frequently and differs in its intensity in FMS patients, BDNF level should be measured in subgroup regarding depression and anxiety scale. Therefore the aim of this study was to evaluate the correlation of BDNF in serum of FMS with intensity of depression and anxiety. Additionally, interleukin (IL)-6 was measured. This study showed that serum level of BDNF was age-dependent in HCs. FMS patients had higher level of serum BDNF as compared to HC. Additionally, serum level of BDNF showed correlation with depression, but not with anxiety. Serum level of BDNF increased with depression score in FMS. However, serum level of IL-6 was not correlated with both depression and anxiety scores. Taken together, BDNF is involved in the pathophysiology of FMS. Additionally, it seems to be correlated with intensity of depressive symptoms in FMS.

  4. Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study.

    Directory of Open Access Journals (Sweden)

    Xia Liang

    Full Text Available Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation, global signal presence (regressed or not and frequency band selection [slow-5 (0.01-0.027 Hz versus slow-4 (0.027-0.073 Hz] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR. The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics

  5. Functional and structural brain correlates of risk for major depression in children with familial depression.

    Science.gov (United States)

    Chai, Xiaoqian J; Hirshfeld-Becker, Dina; Biederman, Joseph; Uchida, Mai; Doehrmann, Oliver; Leonard, Julia A; Salvatore, John; Kenworthy, Tara; Brown, Ariel; Kagan, Elana; de Los Angeles, Carlo; Whitfield-Gabrieli, Susan; Gabrieli, John D E

    2015-01-01

    Despite growing evidence for atypical amygdala function and structure in major depression, it remains uncertain as to whether these brain differences reflect the clinical state of depression or neurobiological traits that predispose individuals to major depression. We examined function and structure of the amygdala and associated areas in a group of unaffected children of depressed parents (at-risk group) and a group of children of parents without a history of major depression (control group). Compared to the control group, the at-risk group showed increased activation to fearful relative to neutral facial expressions in the amygdala and multiple cortical regions, and decreased activation to happy relative to neutral facial expressions in the anterior cingulate cortex and supramarginal gyrus. At-risk children also exhibited reduced amygdala volume. The extensive hyperactivation to negative facial expressions and hypoactivation to positive facial expressions in at-risk children are consistent with behavioral evidence that risk for major depression involves a bias to attend to negative information. These functional and structural brain differences between at-risk children and controls suggest that there are trait neurobiological underpinnings of risk for major depression.

  6. Emotion Regulatory Brain Function and SSRI Treatment in PTSD: Neural Correlates and Predictors of Change.

    Science.gov (United States)

    MacNamara, Annmarie; Rabinak, Christine A; Kennedy, Amy E; Fitzgerald, Daniel A; Liberzon, Israel; Stein, Murray B; Phan, K Luan

    2016-01-01

    Posttraumatic stress disorder (PTSD)-a chronic, debilitating condition, broadly characterized by emotion dysregulation-is prevalent among US military personnel who have returned from Operations Enduring Freedom (OEF) and Iraqi Freedom (OIF). Selective serotonin reuptake inhibitors (SSRIs) are a first-line treatment for PTSD, but treatment mechanisms are unknown and patient response varies. SSRIs may exert their effects by remediating emotion regulatory brain activity and individual differences in patient response might be explained, in part, by pre-treatment differences in neural systems supporting the downregulation of negative affect. Thirty-four OEF/OIF veterans, 17 with PTSD and 17 without PTSD underwent 2 functional magnetic resonance imaging scans 12 weeks apart. At each scan, they performed an emotion regulation task; in the interim, veterans with PTSD were treated with the SSRI, paroxetine. SSRI treatment increased activation in both the left dorsolateral prefrontal cortex (PFC) and supplementary motor area (SMA) during emotion regulation, although only change in the SMA over time occurred in veterans with PTSD and not those without PTSD. Less activation of the right ventrolateral PFC/inferior frontal gyrus during pre-treatment emotion regulation was associated with greater reduction in PTSD symptoms with SSRI treatment, irrespective of pre-treatment severity. Patients with the least recruitment of prefrontal emotion regulatory brain regions may benefit most from treatment with SSRIs, which appear to augment activity in these regions.

  7. Functional and structural brain correlates of risk for major depression in children with familial depression

    Directory of Open Access Journals (Sweden)

    Xiaoqian J. Chai

    2015-01-01

    Full Text Available Despite growing evidence for atypical amygdala function and structure in major depression, it remains uncertain as to whether these brain differences reflect the clinical state of depression or neurobiological traits that predispose individuals to major depression. We examined function and structure of the amygdala and associated areas in a group of unaffected children of depressed parents (at-risk group and a group of children of parents without a history of major depression (control group. Compared to the control group, the at-risk group showed increased activation to fearful relative to neutral facial expressions in the amygdala and multiple cortical regions, and decreased activation to happy relative to neutral facial expressions in the anterior cingulate cortex and supramarginal gyrus. At-risk children also exhibited reduced amygdala volume. The extensive hyperactivation to negative facial expressions and hypoactivation to positive facial expressions in at-risk children are consistent with behavioral evidence that risk for major depression involves a bias to attend to negative information. These functional and structural brain differences between at-risk children and controls suggest that there are trait neurobiological underpinnings of risk for major depression.

  8. Noribogaine generalization to the ibogaine stimulus: correlation with noribogaine concentration in rat brain.

    Science.gov (United States)

    Zubaran, C; Shoaib, M; Stolerman, I P; Pablo, J; Mash, D C

    1999-07-01

    The discriminative stimulus effects of ibogaine and noribogaine in rats have been examined in relation to their concentrations in blood plasma and brain regions and to receptor systems through which they have been proposed to act. Rats were trained to discriminate ibogaine (10 mg/kg i.p.), the NMDA antagonist dizocilpine (0.08 mg/kg i.p.) or the kappa-opioid agonist U50,488 (5 mg/kg i.p.) from vehicle in a standard two-lever operant conditioning procedure with a tandem VI-FR schedule of food reinforcement. Only rats trained on ibogaine generalized to noribogaine, which was approximately twice as potent as the parent compound. Noribogaine was detected in plasma and brain after administration of ibogaine and noribogaine. At the ED50 doses for the discriminative effect, the estimated concentrations of noribogaine in plasma, cerebral cortex, and striatum were similar regardless of whether ibogaine or noribogaine was administered. The findings suggest that the metabolite noribogaine may be devoid of NMDA antagonist and kappa-opioid agonist discriminative effects and that it may play a major role in mediating the discriminative stimulus effect of ibogaine.

  9. Neural correlates of envy: Regional homogeneity of resting-state brain activity predicts dispositional envy.

    Science.gov (United States)

    Xiang, Yanhui; Kong, Feng; Wen, Xue; Wu, Qihan; Mo, Lei

    2016-11-15

    Envy differs from common negative emotions across cultures. Although previous studies have explored the neural basis of episodic envy via functional magnetic resonance imaging (fMRI), little is known about the neural processes associated with dispositional envy. In the present study, we used regional homogeneity (ReHo) as an index in resting-state fMRI (rs-fMRI) to identify brain regions involved in individual differences in dispositional envy, as measured by the Dispositional Envy Scale (DES). Results showed that ReHo in the inferior/middle frontal gyrus (IFG/MFG) and dorsomedial prefrontal cortex (DMPFC) positively predicted dispositional envy. Moreover, of all the personality traits measured by the Revised NEO Personality Inventory (NEO-PI-R), only neuroticism was significantly associated with dispositional envy. Furthermore, neuroticism mediated the underlying association between the ReHo of the IFG/MFG and dispositional envy. Hence, to the best of our knowledge, this study provides the first evidence that spontaneous brain activity in multiple regions related to self-evaluation, social perception, and social emotion contributes to dispositional envy. In addition, our findings reveal that neuroticism may play an important role in the cognitive processing of dispositional envy.

  10. Studies on the molecular correlates of genomic stability in rat brain cells following Amalakirasayana therapy.

    Science.gov (United States)

    Swain, Umakanta; Sindhu, Kiran Kumar; Boda, Ushasri; Pothani, Suresh; Giridharan, Nappan V; Raghunath, Manchala; Rao, Kalluri Subba

    2012-04-01

    Adult Wistar NIN (WNIN) rats (6 months old) of both sexes were orally fed Amalakirasayana at a dose of 4.5 g per kg body weight, five days in a week. The Amalakirasayana was prepared by Arya Vaidya Sala, Kottakkal, Kerala, India, which is considered as gold standard. After 3, 9 and 15 months of such therapeutic regime, rats were sacrificed and various tissues including brain were removed. Isolated cell suspensions of neurons and astroglia were prepared from the cerebral cortex. DNA damage, as a prime indicator of the status of genomic stability was measured in terms of single (SSBs) and double strand breaks (DSBs) through (a). The "comet" assay and (b). The biochemical methods utilizing the unique properties of Escherichia coli DNA polymerase I (pol I) and calf thymus terminal transferase. The results convincingly indicate that while in control animals, there was a distinct increase in DNA damage with age in neurons and astrocytes, rasayana fed animals showed significantly less DNA damage in brain cells demonstrating beneficial effects of Rasayana therapy towards maintenance of genomic stability. DNA-damage may be the proximal cause of aging and strategies to reduce the rate of aging could be based on this fact.

  11. Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3T 1H-MRS study.

    Directory of Open Access Journals (Sweden)

    Daisuke Matsuzawa

    Full Text Available BACKGROUND: Glutathione (GSH, a major intracellular antioxidant, plays a role in NMDA receptor-mediated neurotransmission, which is involved in the pathophysiology of schizophrenia. In the present study, we aimed to investigate whether GSH levels are altered in the posterior medial frontal cortex of schizophrenic patients. Furthermore, we examined correlations between GSH levels and clinical variables in patients. METHODS AND FINDINGS: Twenty schizophrenia patients and 16 age- and gender-matched normal controls were enrolled to examine the levels of GSH in the posterior medial frontal cortex by using 3T SIGNA EXCITE (1H-MRS with the spectral editing technique, MEGA-PRESS. Clinical variables of patients were assessed by the Global Assessment of Functioning (GAF, Scale for the Assessment of Negative Symptoms (SANS, Brief Psychiatric Rating Scale (BPRS, Drug-Induced Extra-Pyramidal Symptoms Scale (DIEPSS, and five cognitive performance tests (Word Fluency Test, Stroop Test, Trail Making Test, Wisconsin Card Sorting Test and Digit Span Distractibility Test. Levels of GSH in the posterior medial frontal cortex of schizophrenic patients were not different from those of normal controls. However, we found a significant negative correlation between GSH levels and the severity of negative symptoms (SANS total score and negative symptom subscore on BPRS in patients. There were no correlations between brain GSH levels and scores on any cognitive performance test except Trail Making Test part A. CONCLUSION: These results suggest that GSH levels in the posterior medial frontal cortex may be related to negative symptoms in schizophrenic patients. Therefore, agents that increase GSH levels in the brain could be potential therapeutic drugs for negative symptoms in schizophrenia.

  12. Creativity and Brain-Functioning in Product Development Engineers: A Canonical Correlation Analysis

    Science.gov (United States)

    Travis, Frederick; Lagrosen, Yvonne

    2014-01-01

    This study used canonical correlation analysis to explore the relation among scores on the Torrance test of figural and verbal creativity and demographic, psychological and physiological measures in Swedish product-development engineers. The first canonical variate included figural and verbal flexibility and originality as dependent measures and…

  13. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1

    Science.gov (United States)

    Wang, Yingfei; An, Ran; Umanah, George K.; Park, Hyejin; Nambiar, Kalyani; Eacker, Stephen M.; Kim, BongWoo; Bao, Lei; Harraz, Maged M.; Chang, Calvin; Chen, Rong; Wang, Jennifer E.; Kam, Tae-In; Jeong, Jun Seop; Xie, Zhi; Neifert, Stewart; Qian, Jiang; Andrabi, Shaida A.; Blackshaw, Seth; Zhu, Heng; Song, Hongjun; Ming, Guo-li; Dawson, Valina L.; Dawson, Ted M.

    2016-01-01

    Inhibition or genetic deletion of poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) is protective against toxic insults in many organ systems. The molecular mechanisms underlying PARP-1–dependent cell death involve release of mitochondrial apoptosis-inducing factor (AIF) and its translocation to the nucleus, which results in chromatinolysis. We identified macrophage migration inhibitory factor (MIF) as a PARP-1–dependent AIF-associated nuclease (PAAN). AIF was required for recruitment of MIF to the nucleus, where MIF cleaves genomic DNA into large fragments. Depletion of MIF, disruption of the AIF-MIF interaction, or mutation of glutamic acid at position 22 in the catalytic nuclease domain blocked MIF nuclease activity and inhibited chromatinolysis, cell death induced by glutamate excitotoxicity, and focal stroke. Inhibition of MIF's nuclease activity is a potential therapeutic target for diseases caused by excessive PARP-1 activation. PMID:27846469

  14. Metabolic connectivity by interregional correlation analysis using statistical parametric mapping (SPM) and FDG brain PET; methodological development and patterns of metabolic connectivity in adults

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Soo; Oh, Jungsu S.; Lee, Jae Sung; Lee, Myung Chul [Seoul National University, College of Medicine, Department of Nuclear Medicine, Jongno-gu, Seoul (Korea); Kang, Hyejin [Seoul National University, College of Medicine, Department of Nuclear Medicine, Jongno-gu, Seoul (Korea); Seoul National University, Programs in Brain and Neuroscience, Seoul (Korea); Kim, Heejung; Park, Hyojin [Seoul National University, College of Medicine, Department of Nuclear Medicine, Jongno-gu, Seoul (Korea); Seoul National University, Interdisciplinary Program in Cognitive Science, Seoul (Korea)

    2008-09-15

    Regionally connected areas of the resting brain can be detected by fluorodeoxyglucose-positron emission tomography (FDG-PET). Voxel-wise metabolic connectivity was examined, and normative data were established by performing interregional correlation analysis on statistical parametric mapping of FDG-PET data. Characteristics of seed volumes of interest (VOIs) as functional brain units were represented by their locations, sizes, and the independent methods of their determination. Seed brain areas were identified as population-based gyral VOIs (n=70) or as population-based cytoarchitectonic Brodmann areas (BA; n=28). FDG uptakes in these areas were used as independent variables in a general linear model to search for voxels correlated with average seed VOI counts. Positive correlations were searched in entire brain areas. In normal adults, one third of gyral VOIs yielded correlations that were confined to themselves, but in the others, correlated voxels extended to adjacent areas and/or contralateral homologous regions. In tens of these latter areas with extensive connectivity, correlated voxels were found across midline, and asymmetry was observed in the patterns of connectivity of left and right homologous seed VOIs. Most of the available BAs yielded correlations reaching contralateral homologous regions and/or neighboring areas. Extents of metabolic connectivity were not found to be related to seed VOI size or to the methods used to define seed VOIs. These findings indicate that patterns of metabolic connectivity of functional brain units depend on their regional locations. We propose that interregional correlation analysis of FDG-PET data offers a means of examining voxel-wise regional metabolic connectivity of the resting human brain. (orig.)

  15. Automatic Contrast Enhancement of Brain MR Images Using Hierarchical Correlation Histogram Analysis.

    Science.gov (United States)

    Chen, Chiao-Min; Chen, Chih-Cheng; Wu, Ming-Chi; Horng, Gwoboa; Wu, Hsien-Chu; Hsueh, Shih-Hua; Ho, His-Yun

    Parkinson's disease is a progressive neurodegenerative disorder that has a higher probability of occurrence in middle-aged and older adults than in the young. With the use of a computer-aided diagnosis (CAD) system, abnormal cell regions can be identified, and this identification can help medical personnel to evaluate the chance of disease. This study proposes a hierarchical correlation histogram analysis based on the grayscale distribution degree of pixel intensity by constructing a correlation histogram, that can improves the adaptive contrast enhancement for specific objects. The proposed method produces significant results during contrast enhancement preprocessing and facilitates subsequent CAD processes, thereby reducing recognition time and improving accuracy. The experimental results show that the proposed method is superior to existing methods by using two estimation image quantitative methods of PSNR and average gradient values. Furthermore, the edge information pertaining to specific cells can effectively increase the accuracy of the results.

  16. Spontaneous conscious covert cognition states and brain electric spectral states in canonical correlations.

    Science.gov (United States)

    Lehmann, D; Grass, P; Meier, B

    1995-02-01

    Correlations between subjective, conscious, spontaneous cognitions and EEG power spectral profiles were investigated in 20 normal volunteers (2 sessions each) during relaxation-drowsiness-sleep onset. Four-channel EEG (temporal-parietal and parietal-central, left and right) was continuously recorded. The subjects were prompted 15 times per session to give brief reports of their ongoing thoughts. The reports were rated on 23 scales, and the 16 seconds of EEG recording preceding the prompts were spectral analyzed. Canonical correlation analysis was applied to the data (23 cognition ratings and 124 EEG spectral values for each of the 538 prompts). Four of the 23 pairs of canonical EEG variables and cognition variables were significant (p covert, cognitive-emotional states in a no-input, no-task, no-response paradigm.

  17. Decreased apparent diffusion coefficient in the pituitary and correlation with hypopituitarism in patients with traumatic brain injury.

    Science.gov (United States)

    Zheng, Ping; He, Bin; Guo, Yijun; Zeng, Jingsong; Tong, Wusong

    2015-07-01

    The relationship between microstructural abnormality in patients with traumatic brain injury (TBI) and hormone-secreting status remains unknown. In this study, the authors aimed to identify the role of the apparent diffusion coefficient (ADC) using a diffusion-weighted imaging (DWI) technique and to evaluate the association of such changes with hypopituitarism in patients with TBI. Diffusion-weighted images were obtained in 164 consecutive patients with TBI within 2 weeks after injury to generate the pituitary ADC as a measure of microstructural change. Patients with TBI were further grouped into those with and those without hypopituitarism based on the secretion status of pituitary hormones at 6 months postinjury. Thirty healthy individuals were enrolled in the study and underwent MRI examinations for comparison. Mean ADC values were compared between this control group, the patients with TBI and hypopituitarism, and the patients with TBI without hypopituitarism; correlational studies were also performed. Neurological outcome was assessed with the Glasgow Outcome Scale (GOS) for all TBI patients 6 months postinjury. In the TBI group, 84 patients had hypopituitarism and 80 had normal pituitary function. The pituitary ADC in TBI patients was significantly less than that in controls (1.83 ± 0.16 vs 4.13 ± 0.33, p correlated with neurological outcome at 6 months following TBI (r = 0.602, p correlated with hormone-secreting status in TBI patients. The authors suggest that pituitary ADC may be a useful biomarker to predict pituitary function in patients with TBI.

  18. Serum levels of brain-derived neurotrophic factor correlate with the number of T2 MRI lesions in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Comini-Frota, E.R. [Unidade de Neurologia, Hospital Universitário, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Rodrigues, D.H. [Laboratório de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Miranda, E.C. [Ecoar Diagnostic Center, Belo Horizonte, MG (Brazil); Brum, D.G. [Hospital das Clínicas,Faculdade de Medicina de Ribeirão Preto,Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Kaimen-Maciel, D.R. [Unidade de Neurologia, Hospital Universitário, Universidade Estadual de Londrina, Londrina, PR (Brazil); Donadi, E.A. [Hospital das Clínicas,Faculdade de Medicina de Ribeirão Preto,Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Teixeira, A.L. [Unidade de Neurologia, Hospital Universitário, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Laboratório de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2011-11-23

    The objective of the present study was to determine if there is a relationship between serum levels of brain-derived neurotrophic factor (BDNF) and the number of T2/fluid-attenuated inversion recovery (T2/FLAIR) lesions in multiple sclerosis (MS). The use of magnetic resonance imaging (MRI) has revolutionized the study of MS. However, MRI has limitations and the use of other biomarkers such as BDNF may be useful for the clinical assessment and the study of the disease. Serum was obtained from 28 MS patients, 18-50 years old (median 38), 21 women, 0.5-10 years (median 5) of disease duration, EDSS 1-4 (median 1.5) and 28 healthy controls, 19-49 years old (median 33), 19 women. BDNF levels were measured by ELISA. T1, T2/FLAIR and gadolinium-enhanced lesions were measured by a trained radiologist. BDNF was reduced in MS patients (median [range] pg/mL; 1160 [352.6-2640]) compared to healthy controls (1640 [632.4-4268]; P = 0.03, Mann-Whitney test) and was negatively correlated (Spearman correlation test, r = -0.41; P = 0.02) with T2/FLAIR (11-81 lesions, median 42). We found that serum BDNF levels were inversely correlated with the number of T2/FLAIR lesions in patients with MS. BDNF may be a promising biomarker of MS.

  19. Serum levels of brain-derived neurotrophicfactor correlate with the number of T2 MRI lesions in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    E.R. Comini-Frota

    2012-01-01

    Full Text Available The objective of the present study was to determine if there is a relationship between serum levels of brain-derived neurotrophic factor (BDNF and the number of T2/fluid-attenuated inversion recovery (T2/FLAIR lesions in multiple sclerosis (MS. The use of magnetic resonance imaging (MRI has revolutionized the study of MS. However, MRI has limitations and the use of other biomarkers such as BDNF may be useful for the clinical assessment and the study of the disease. Serum was obtained from 28 MS patients, 18-50 years old (median 38, 21 women, 0.5-10 years (median 5 of disease duration, EDSS 1-4 (median 1.5 and 28 healthy controls, 19-49 years old (median 33, 19 women. BDNF levels were measured by ELISA. T1, T2/FLAIR and gadolinium-enhanced lesions were measured by a trained radiologist. BDNF was reduced in MS patients (median [range] pg/mL; 1160 [352.6-2640] compared to healthy controls (1640 [632.4-4268]; P = 0.03, Mann-Whitney test and was negatively correlated (Spearman correlation test, r = -0.41; P = 0.02 with T2/FLAIR (11-81 lesions, median 42. We found that serum BDNF levels were inversely correlated with the number of T2/FLAIR lesions in patients with MS. BDNF may be a promising biomarker of MS.

  20. Development of a hybrid broadband NIRS/diffusion correlation spectroscopy system to monitor preterm brain injury (Conference Presentation)

    Science.gov (United States)

    Rajaram, Ajay; St. Lawrence, Keith; Diop, Mamadou

    2017-02-01

    In Canada, 8% of births occur prematurely. Preterm infants weighing less than 1500g are at a high risk of neurodevelopmental impairment: 5-10% develop major disabilities such as cerebral palsy and 40-50% show other cognitive and behavioural deficits. The brain is vulnerable to periods of low cerebral blood flow (CBF) that can impair energy metabolism and cause tissue damage. There is, therefore, a need for an efficient neuromonitoring system to alert the neonatal intensive care team to clinically significant changes in CBF and metabolism, before injury occurs. Optical technologies offer safe, non-invasive, and cost-effective methods for neuromonitoring. Cerebral oxygen saturation (ScO2) can be measured by exploiting the absorption properties of hemoglobin though Near-Infrared Spectroscopy (NIRS), and Diffuse Correlation Spectroscopy (DCS) can monitor CBF by tracking red blood cells. These measures can be combined to describe metabolism, a key indicator of tissue viability. In this study we present the development and testing of a hybrid broadband NIRS/DCS neuromonitor. This system is novel in its ability to simultaneously acquire broadband NIRS and DCS signals, providing a truly real-time measure of metabolism. Narrow bandpass and notch filters have been incorporated to diminish light contamination between the two modalities, preferentially filtering out each source from the opposing detector, allowing for an accurate measure of ScO2, CBF, and metabolism. With a broadband NIRS/DCS system, a real-time measure of CBF and metabolism within the developing brain can aid clinicians in monitoring events that precede brain injury, ultimately leading to better clinical outcomes.

  1. Tumor necrosis factor inhibitor therapy in ankylosing spondylitis: differential effects on pain and fatigue and brain correlates.

    Science.gov (United States)

    Wu, Qi; Inman, Robert D; Davis, Karen D

    2015-02-01

    Ankylosing spondylitis is associated with back pain and fatigue and impacts mobility but can be treated with tumor necrosis factor inhibitors (TNFi). The differential effects of TNFi treatment on multiple symptoms and the brain is not well delineated. Thus, we conducted a 2-part study. In study 1, we conducted a retrospective chart review in 129 ankylosing spondylitis patients to assess TNFi effects on pain, fatigue, motor function, mobility, and quality of life (QoL). After at least 10 weeks of TNFi treatment, patients had clinically significant improvements (>30%) in pain (including neuropathic pain), most disease and QoL factors, and normalized sensory detection thresholds. However, residual fatigue (mean = 5.3) was prominent. Although 60% of patients had significant relief of pain, only 22% of patients had significant relief of both pain and fatigue. Therefore, the preferential TNFi treatment effect on pain compared with fatigue could contribute to suboptimal effects on QoL. Part 2 was a prospective study in 14 patients to identify TNFi treatment effects on pain, fatigue, sensory and psychological factors, and brain cortical thickness based on 3T magnetic resonance imaging. Centrally, TNFi was associated with statistically significant cortical thinning of motor, premotor, and posterior parietal regions. Pain intensity reduction was associated with cortical thinning of the secondary somatosensory cortex, and pain unpleasantness reduction was associated with the cortical thinning of motor areas. In contrast, fatigue reduction correlated with cortical thinning of the insula, primary sensory cortex/inferior parietal sulcus, and superior temporal polysensory areas. This indicates that TNFi treatment produces changes in brain areas implicated in sensory, motor, affective, and cognitive functions.

  2. Correlation of preoperative MRI and intraoperative 3D ultrasound to measure brain tissue shift

    Science.gov (United States)

    Gobbi, David G.; Lee, Belinda K. H.; Peters, Terence M.

    2001-05-01

    B-Mode ultrasound is often used during neurosurgery to provide intra-operative images of the brain though a craniotomy, but the use of 3D ultrasound during surgery is still in its infancy. We have developed a system that provides real-time freehand 3D ultrasound reconstruction at a reduced resolution. The reconstruction proceeds incrementally and the 3D image is overlayed, via a computer, on a pre-operative 3D MRI scan. This provides the operator with the necessary feedback to maintain a constant freehand sweep-rate, and also ensures that the sweep covers the desired anatomical volume. All of the ultrasound video frames are buffered, and a full-resolution, compounded reconstruction proceeds once the manual sweep is complete. We have also developed tools for manual tagging of homologous landmarks in the 3D MRI and 3D ultrasound volumes that use a piecewise cubic approximation of thin-plate spline interpolation to achieve interactive nonlinear registration and warping of the MRI volume to the ultrasound volume: Each time a homologous point-pair is identified by the use, the image of the warped MRI is updated on the computer screen after less than 0.5 s.

  3. Serum ferritin correlates with Glasgow coma scale scores and fatal outcome after severe traumatic brain injury.

    Science.gov (United States)

    Simon, Daniel; Nicol, Josi Mara Botome; Sabino da Silva, Sabrina; Graziottin, Camila; Silveira, Patrícia Corso; Ikuta, Nilo; Regner, Andrea

    2015-01-01

    Severe traumatic brain injury (TBI) is associated with a 30-70% mortality rate. Nevertheless, in clinical practice there are no effective biomarkers for the prediction of fatal outcome following severe TBI. Therefore, the aim was to determine whether ferritin serum levels are associated with ICU mortality in patients with severe TBI. This prospective study enrolled 69 male patients who suffered severe TBI [Glasgow Coma Scale (GCS) 3-8 at emergency room admission]. The serum ferritin protein level was determined at ICU admission (mean 5.6 ± 2.5 hours after emergency room admission). Severe TBI was associated with a 39% mortality rate. Higher serum ferritin concentrations were significantly associated with lower hospital admission GCS scores (p = 0.049). Further, there was a significant association between higher ferritin concentrations and fatal outcome (289.5 ± 27.1 µg L(-1) for survivors and 376.5 ± 31.5 µg L(-1) for non-survivors, respectively, mean ± SEM, p = 0.032). Increased serum ferritin levels were associated with lower hospital admission GCS scores and predicted short-term fatal outcome following severe TBI.

  4. An experimental study on acute brain radiation injury: Dynamic changes in proton magnetic resonance spectroscopy and the correlation with histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui, E-mail: lihui@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Medical Imaging and Minimally Invasive Interventional Center, Cancer Center, Sun Yat-sen University, Guangzhou (China); Li, Jian-peng, E-mail: lijp@sysucc.org.cn [Department of Radiology, Dongguan People' s Hospital, Dongguan City (China); Lin, Cheng-guang, E-mail: linchg@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Department of Radiation Oncology, Cancer Center, Sun Yat-sen University, Guangzhou (China); Liu, Xue-wen, E-mail: liuxw@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Medical Imaging and Minimally Invasive Interventional Center, Cancer Center, Sun Yat-sen University, Guangzhou (China); Geng, Zhi-jun, E-mail: gengzhj@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Medical Imaging and Minimally Invasive Interventional Center, Cancer Center, Sun Yat-sen University, Guangzhou (China); Mo, Yun-xian, E-mail: moyx@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Medical Imaging and Minimally Invasive Interventional Center, Cancer Center, Sun Yat-sen University, Guangzhou (China); Zhang, Rong, E-mail: zhangr@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Medical Imaging and Minimally Invasive Interventional Center, Cancer Center, Sun Yat-sen University, Guangzhou (China); Xie, Chuan-miao, E-mail: xchuanm@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Medical Imaging and Minimally Invasive Interventional Center, Cancer Center, Sun Yat-sen University, Guangzhou (China)

    2012-11-15

    Purpose: To investigate the correlation between the alterations of single-voxel {sup 1}H MRS and the histopathological characteristics of radiation brain injury following radiation. Materials and methods: Twenty-seven rabbits were randomized into nine groups to receive radiation with a single dose of 25 Gy. The observation time points included a pre-radiation and 1, 2, 3, 4, 5, 6, 7, and 8 wk following radiation. Each treatment group underwent conventional MRI and single-voxel {sup 1}H MRS, N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr) were observed over the region of interest, and the presence or absence of lactate (Lac) and lipid (Lip) was detected. Histological specimens of each group were obtained after image acquisition. Results: The values of Cho were significantly increased in the first 3 wk, and decreased over the following 5 wk after radiation. Levels of NAA showed a trend toward a decrease 5 wk after radiation. The levels of Cr were not changed between before and after radiation. The Cho/NAA metabolic ratio was significantly increased in weeks 6, 7, and 8 following irradiation, compared to pre-radiation values. Vascular and glial injury appeared on 2 wk after RT in the histology samples, until 4 wk after RT, necrosis of the oligodendrocytes, neuronal degeneration and demyelination could be observed. Conclusions: MRS is sensitive to detect metabolic changes following radiation, and can be used in the early diagnosis of radiation brain injury.

  5. Brain activity in adults who stutter: Similarities across speaking tasks and correlations with stuttering frequency and speaking rate

    Science.gov (United States)

    Ingham, Roger J.; Grafton, Scott T.; Bothe, Anne K.; Ingham, Janis C.

    2012-01-01

    Many differences in brain activity have been reported between persons who stutter (PWS) and typically fluent controls during oral reading tasks. An earlier meta-analysis of imaging studies identified stutter-related regions, but recent studies report less agreement with those regions. A PET study on adult dextral PWS (n = 18) and matched fluent controls (CONT, n = 12) is reported that used both oral reading and monologue tasks. After correcting for speech rate differences between the groups the task-activation differences were surprisingly small. For both analyses only some regions previously considered stutter-related were more activated in the PWS group than in the CONT group, and these were also activated during eyes-closed rest (ECR). In the PWS group, stuttering frequency was correlated with cortico-striatal-thalamic circuit activity in both speaking tasks. The neuroimaging findings for the PWS group, relative to the CONT group, appear consistent with neuroanatomic abnormalities being increasingly reported among PWS. PMID:22564749

  6. Support vector regression correlates single-sweep evoked brain potentials to gastrointestinal symptoms in diabetes mellitus patients

    DEFF Research Database (Denmark)

    Graversen, C; Frokjaer, J B; Brock, Christina

    2012-01-01

    Diabetes mellitus (DM) is a multi-factorial and complex disease causing autonomic neuropathy and gastrointestinal symptoms in some patients. The neural mechanisms behind these symptoms are poorly understood, but it is believed that both peripheral and central mechanisms are involved. To gain...... further knowledge of the central mechanisms, the aim of this study was to identify biomarkers for the altered brain activity in type-1 DM patients compared to healthy volunteers (HV), and to correlate the obtained biomarkers to clinical patient scores. The study included 14 DM patients and 15 HV...... approach to study central mechanisms in diabetes mellitus, and may provide a future application for a clinical tool to optimize treatment in individual patients....

  7. Clinical correlates of plasma brain-derived neurotrophic factor in post-traumatic stress disorder spectrum after a natural disaster.

    Science.gov (United States)

    Stratta, Paolo; Sanità, Patrizia; Bonanni, Roberto L; de Cataldo, Stefano; Angelucci, Adriano; Rossi, Rodolfo; Origlia, Nicola; Domenici, Luciano; Carmassi, Claudia; Piccinni, Armando; Dell'Osso, Liliana; Rossi, Alessandro

    2016-10-30

    Clinical correlates of plasma Brain-Derived Neurotrophic Factor (BDNF) have been investigated in a clinical population with Post Traumatic Stress Disorder (PTSD) symptoms and healthy control subjects who survived to the L'Aquila 2009 earthquake. Twenty-six outpatients and 14 control subjects were recruited. Assessments included: Structured Clinical Interview for DSM-IV Axis-I disorders Patient Version, Trauma and Loss Spectrum-Self Report (TALS-SR) for post-traumatic spectrum symptoms. Thirteen patients were diagnosed as Full PTSD and 13 as Partial PTSD. The subjects with full-blown PTSD showed lower BDNF level than subjects with partial PTSD and controls. Different relationship patterns of BDNF with post-traumatic stress spectrum symptoms have been reported in the three samples. Our findings add more insight on the mechanisms regulating BDNF levels in response to stress and further proofs of the utility of the distinction of PTSD into full and partial categories.

  8. TLR4, ATF-3 and IL8 inflammation mediator expression correlates with seizure frequency in human epileptic brain tissue.

    Science.gov (United States)

    Pernhorst, Katharina; Herms, Stefan; Hoffmann, Per; Cichon, Sven; Schulz, Herbert; Sander, Thomas; Schoch, Susanne; Becker, Albert J; Grote, Alexander

    2013-10-01

    Data from animal models has nicely shown that inflammatory processes in the central nervous system (CNS) can modulate seizure frequency. However, a potential relationship between the modulation of seizure frequency and gene expression of key inflammatory factors in human epileptic tissue is still unresolved. Brain tissue from pharmacoresistant patients with mesial temporal lobe epilepsy (mTLE) provides a unique prerequisite for clinico-neuropathological correlations. Here, we have concentrated on gene expression of the human key inflammatory mediators, TLR4, ATF-3 and IL8, in correlation to seizure frequency and additional clinical parameters in human epileptic brain tissue of pharmacoresistant mTLE patients. Furthermore, we characterized the cell types expressing the respective proteins in epileptic hippocampi. Total RNAs were isolated from n=26 hippocampi of pharmacoresistant mTLE patients using AllPrep DNA/RNA Mini Kit. cRNA was used for hybridization on Human HT-12 v3 Expression BeadChips with Illumina Direct Hybridization Assay Kit and resulting gene expression data was normalized based on the Illumina BeadStudio software suite by means of quantile normalization with background subtraction. Corresponding human hippocampal sections for immunohistochemistry were probed with antibodies against TLR4, ATF-3, IL8 and glial fibrillary acidic protein (GFAP), neuronal nuclear protein (NeuN) and the microglial marker HLA-DR. We observed abundant TLR4 gene expression to relate to seizure frequency per month. For ATF-3, we found an inverse correlation of expression to seizure frequency. Lower expression of IL8 was significantly associated with high seizure frequency. Further, we detected TLR4 expression in neurons and GFAP-positive astrocytes of pharmacoresistant mTLE patients. Only neurons of human epileptic hippocampi express ATF-3. IL8 was expressed in microglia and reactive astrocytes. Our results suggest a differential correlation of key inflammatory factor

  9. Neural correlates of informational cascades: brain mechanisms of social influence on belief updating

    Science.gov (United States)

    Klucharev, Vasily; Rieskamp, Jörg

    2015-01-01

    Informational cascades can occur when rationally acting individuals decide independently of their private information and follow the decisions of preceding decision-makers. In the process of updating beliefs, differences in the weighting of private and publicly available social information may modulate the probability that a cascade starts in a decisive way. By using functional magnetic resonance imaging, we examined neural activity while participants updated their beliefs based on the decisions of two fictitious stock market traders and their own private information, which led to a final decision of buying one of two stocks. Computational modeling of the behavioral data showed that a majority of participants overweighted private information. Overweighting was negatively correlated with the probability of starting an informational cascade in trials especially prone to conformity. Belief updating by private information was related to activity in the inferior frontal gyrus/anterior insula, the dorsolateral prefrontal cortex and the parietal cortex; the more a participant overweighted private information, the higher the activity in the inferior frontal gyrus/anterior insula and the lower in the parietal-temporal cortex. This study explores the neural correlates of overweighting of private information, which underlies the tendency to start an informational cascade. PMID:24974396

  10. Efficient statistical analysis of large correlated multivariate datasets: a case study on brain connectivity matrices

    CERN Document Server

    Meskaldji, Djalel Eddine; Hagmann, Patric; Meuli, Reto; Thiran, Jean Philippe; Morgenthaler, Stephan

    2010-01-01

    In neuroimaging, a large number of correlated tests are routinely performed to detect active voxels in single-subject experiments or to detect regions that differ between individuals belonging to different groups. In order to bound the probability of a false discovery of pair-wise differences, a Bonferroni or other correction for multiplicity is necessary. These corrections greatly reduce the power of the comparisons which means that small signals (differences) remain hidden and therefore have been more or less successful depending on the application. We introduce a method that improves the power of a family of correlated statistical tests by reducing their number in an orderly fashion using our a-priori understanding of the problem . The tests are grouped by blocks that respect the data structure and only one or a few tests per group are performed. For each block we construct an appropriate summary statistic that characterizes a meaningful feature of the block. The comparisons are based on these summary stat...

  11. The brain correlates of the effects of monetary and verbal rewards on intrinsic motivation.

    Science.gov (United States)

    Albrecht, Konstanze; Abeler, Johannes; Weber, Bernd; Falk, Armin

    2014-01-01

    Apart from everyday duties, such as doing the laundry or cleaning the house, there are tasks we do for pleasure and enjoyment. We do such tasks, like solving crossword puzzles or reading novels, without any external pressure or force; instead, we are intrinsically motivated: we do the tasks because we enjoy doing them. Previous studies suggest that external rewards, i.e., rewards from the outside, affect the intrinsic motivation to engage in a task: while performance-based monetary rewards are perceived as controlling and induce a business-contract framing, verbal rewards praising one's competence can enhance the perceived self-determination. Accordingly, the former have been shown to decrease intrinsic motivation, whereas the latter have been shown to increase intrinsic motivation. The present study investigated the neural processes underlying the effects of monetary and verbal rewards on intrinsic motivation in a group of 64 subjects applying functional magnetic resonance imaging (fMRI). We found that, when participants received positive performance feedback, activation in the anterior striatum and midbrain was affected by the nature of the reward; compared to a non-rewarded control group, activation was higher while monetary rewards were administered. However, we did not find a decrease in activation after reward withdrawal. In contrast, we found an increase in activation for verbal rewards: after verbal rewards had been withdrawn, participants showed a higher activation in the aforementioned brain areas when they received success compared to failure feedback. We further found that, while participants worked on the task, activation in the lateral prefrontal cortex was enhanced after the verbal rewards were administered and withdrawn.

  12. Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain.

    Science.gov (United States)

    Shelbourne, Peggy F; Keller-McGandy, Christine; Bi, Wenya Linda; Yoon, Song-Ro; Dubeau, Louis; Veitch, Nicola J; Vonsattel, Jean Paul; Wexler, Nancy S; Arnheim, Norman; Augood, Sarah J

    2007-05-15

    Huntington disease is caused by the expansion of a CAG repeat encoding an extended glutamine tract in a protein called huntingtin. Here, we provide evidence supporting the hypothesis that somatic increases of mutation length play a role in the progressive nature and cell-selective aspects of HD pathogenesis. Results from micro-dissected tissue and individual laser-dissected cells obtained from human HD cases and knock-in HD mice indicate that the CAG repeat is unstable in all cell types tested although neurons tend to have longer mutation length gains than glia. Mutation length gains occur early in the disease process and continue to accumulate as the disease progresses. In keeping with observed patterns of cell loss, neuronal mutation length gains tend to be more prominent in the striatum than in the cortex of low-grade human HD cases, less so in more advanced cases. Interestingly, neuronal sub-populations of HD mice appear to have different propensities for mutation length gains; in particular, smaller mutation length gains occur in nitric oxide synthase-positive striatal interneurons (a relatively spared cell type in HD) compared with the pan-striatal neuronal population. More generally, the data demonstrate that neuronal changes in HD repeat length can be at least as great, if not greater, than those observed in the germline. The fact that significant CAG repeat length gains occur in non-replicating cells also argues that processes such as inappropriate mismatch repair rather than DNA replication are involved in generating mutation instability in HD brain tissue.

  13. THE BRAIN CORRELATES OF THE EFFECTS OF MONETARY AND VERBAL REWARDS ON INTRINSIC MOTIVATION

    Directory of Open Access Journals (Sweden)

    Konstanze eAlbrecht

    2014-09-01

    Full Text Available Apart from everyday duties, such as doing the laundry or cleaning the house, there are tasks we do for pleasure and enjoyment. We do such tasks, like solving crossword puzzles or reading novels, without any external pressure or force; instead, we are intrinsically motivated: We do the tasks because we enjoy doing them. Previous studies suggest that external rewards, i.e., rewards from the outside, affect the intrinsic motivation to engage in a task: While performance-based monetary rewards are perceived as controlling and induce a business-contract framing, verbal rewards praising one’s competence can enhance the perceived self-determination. Accordingly, the former have been shown to decrease intrinsic motivation, whereas the latter have been shown to increase intrinsic motivation. The present study investigated the neural processes underlying the effects of monetary and verbal rewards on intrinsic motivation in a group of 64 subjects applying functional magnetic resonance imaging (fMRI. We found that, when participants received positive performance feedback, activation in the anterior striatum and midbrain was affected by the nature of the reward; compared to a non-rewarded control group, activation was higher while monetary rewards were administered. However, we did not find a decrease in activation after reward withdrawal. In contrast, we found an increase in activation for verbal rewards: After verbal rewards had been withdrawn, participants showed a higher activation in the aforementioned brain areas when they received success compared to failure feedback. We further found that, while participants worked on the task, activation in the lateral prefrontal cortex was enhanced after the verbal rewards were administered and withdrawn.

  14. Brain perfusion monitoring with frequency-domain and continuous-wave near-infrared spectroscopy: a cross-correlation study in newborn piglets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G.; Katz, A.; Alfano, R.R. [Institute for Ultrafast Spectroscopy and Lasers and New York State Center for Advanced Technology for Ultrafast Photonic Materials and Applications Department of Electrical Engineering and Physics, The City College of the City University of New York, 138th Street and Convent Avenue, New York, NY 10031 (United States); Kofinas, A.D.; Kofinas, D.A.; Beyer, D. [Departments of Obstetrics and Gynecology and Medicine, The Brooklyn Hospital Center, The Affiliate of Weill Medical College of Cornell University, 121 De Kalb Avenue, Brooklyn, NY 11201 (United States); Stubblefield, P.G. [Department of Obstetrics and Gynecology, Boston University School of Medicine, 1 Boston Medical Center Place, Boston, MA 02118 (United States); Rosenfeld, W.; Maulik, D. [Departments of Obstetrics and Gynecology and Pediatrics, Winthrop University Hospital, State University of New York at Stony Brook, 251 First Street, Mineola, New York 11501 (United States); Stankovic, M.R. [Departments of Obstetrics and Gynecology and Medicine, The Brooklyn Hospital Center, The Affiliate of Weill Medical College of Cornell University, 121 De Kalb Avenue, Brooklyn, NY 11201 (United States); Department of Obstetrics and Gynecology, Boston University School of Medicine, 1 Boston Medical Center Place, Boston, MA 02118 (United States); Departments of Obstetrics and Gynecology and Pediatrics, Winthrop University Hospital, State University of New York at Stony Brook, 251 First Street, Mineola, New York 11501 (United States)

    2000-11-01

    The newborn piglet brain model was used to correlate continuous-wave (CW) and frequency-domain (FD) near-infrared spectroscopy. Six ventilated and instrumented newborn piglets were subjected to a series of manipulations in blood oxygenation with the effects on brain perfusion known to be associated with brain hypoxia-ischaemia. An excellent agreement between the CW and FD was demonstrated. This agreement improved when the scattering properties (determined by the FD device) were employed to calculate the differential pathlength factor, an important step in CW data processing. (author)

  15. Delayed luminescence to monitor programmed cell death induced by berberine on thyroid cancer cells

    Science.gov (United States)

    Scordino, Agata; Campisi, Agata; Grasso, Rosaria; Bonfanti, Roberta; Gulino, Marisa; Iauk, Liliana; Parenti, Rosalba; Musumeci, Francesco

    2014-11-01

    Correlation between apoptosis and UVA-induced ultraweak photon emission delayed luminescence (DL) from tumor thyroid cell lines was investigated. In particular, the effects of berberine, an alkaloid that has been reported to have anticancer activities, on two cancer cell lines were studied. The FTC-133 and 8305C cell lines, as representative of follicular and anaplastic thyroid human cancer, respectively, were chosen. The results show that berberine is able to arrest cell cycle and activate apoptotic pathway as shown in both cell lines by deoxyribonucleic acid fragmentation, caspase-3 cleavage, p53 and p27 protein overexpression. In parallel, changes in DL spectral components after berberine treatment support the hypothesis that DL from human cells originates mainly from mitochondria, since berberine acts especially at the mitochondrial level. The decrease of DL blue component for both cell lines could be related to the decrease of intra-mitochondrial nicotinamide adenine dinucleotide and may be a hallmark of induced apoptosis. In contrast, the response in the red spectral range is different for the two cell lines and may be ascribed to a different iron homeostasis.

  16. Friends and foes from an ant brain's point of view--neuronal correlates of colony odors in a social insect.

    Directory of Open Access Journals (Sweden)

    Andreas Simon Brandstaetter

    Full Text Available BACKGROUND: Successful cooperation depends on reliable identification of friends and foes. Social insects discriminate colony members (nestmates/friends from foreign workers (non-nestmates/foes by colony-specific, multi-component colony odors. Traditionally, complex processing in the brain has been regarded as crucial for colony recognition. Odor information is represented as spatial patterns of activity and processed in the primary olfactory neuropile, the antennal lobe (AL of insects, which is analogous to the vertebrate olfactory bulb. Correlative evidence indicates that the spatial activity patterns reflect odor-quality, i.e., how an odor is perceived. For colony odors, alternatively, a sensory filter in the peripheral nervous system was suggested, causing specific anosmia to nestmate colony odors. Here, we investigate neuronal correlates of colony odors in the brain of a social insect to directly test whether they are anosmic to nestmate colony odors and whether spatial activity patterns in the AL can predict how odor qualities like "friend" and "foe" are attributed to colony odors. METHODOLOGY/PRINCIPAL FINDINGS: Using ant dummies that mimic natural conditions, we presented colony odors and investigated their neuronal representation in the ant Camponotus floridanus. Nestmate and non-nestmate colony odors elicited neuronal activity: In the periphery, we recorded sensory responses of olfactory receptor neurons (electroantennography, and in the brain, we measured colony odor specific spatial activity patterns in the AL (calcium imaging. Surprisingly, upon repeated stimulation with the same colony odor, spatial activity patterns were variable, and as variable as activity patterns elicited by different colony odors. CONCLUSIONS: Ants are not anosmic to nestmate colony odors. However, spatial activity patterns in the AL alone do not provide sufficient information for colony odor discrimination and this finding challenges the current notion of

  17. Functional and Structural Correlates of Social Influence in the Human Brain

    DEFF Research Database (Denmark)

    Campbell-Meiklejohn, Daniel; Bach, Dominik; Kanai, Ryota

    2012-01-01

    ; b) functional responses reflecting social influence on object value; and c) grey matter volume (GM) the orbitofrontal cortex (OFC) – an area not available to functional analysis in our study but clearly involved in social conduct and value learning. Methods: Prior to testing, 28 healthy subjects......Introduction: Values that one associates with available options, from foods to political candidates, help to guide our choices and behaviour. These values can be updated by the preferences expressed by other people as much as by independent experience with the options. However, some people conform...... their values more than others. Across different contexts, the tendency to conform is a fairly stable trait. This stability suggests that it may have stable anatomical and physiological correlates. We tested for relationships between the tendency to conform values and: a) functional responses to social conflict...

  18. Functional and Structural Correlates of Social Influence in the Human Brain

    DEFF Research Database (Denmark)

    Campbell-Meiklejohn, Daniel; Bach, Dominik; Kanai, Ryota

    2012-01-01

    ) social influence on neural value signals (the interaction between object reward (receiving preferred song vs. receiving other) and reviewer preference (prefer same song vs. prefer other)). In the structural analysis of OFC, Binf was entered as a between-subject regressor (along with age, gender and whole...... their values more than others. Across different contexts, the tendency to conform is a fairly stable trait. This stability suggests that it may have stable anatomical and physiological correlates. We tested for relationships between the tendency to conform values and: a) functional responses to social conflict......; b) functional responses reflecting social influence on object value; and c) grey matter volume (GM) the orbitofrontal cortex (OFC) – an area not available to functional analysis in our study but clearly involved in social conduct and value learning. Methods: Prior to testing, 28 healthy subjects...

  19. Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain.

    Science.gov (United States)

    Mauelshagen, J

    1993-02-01

    1. Sensitization and classical odor conditioning of the proboscis extension reflex were functionally analyzed by repeated intracellular recordings from a single identified neuron (PE1-neuron) in the central bee brain. This neuron belongs to the class of "extrinsic cells" arising from the pedunculus of the mushroom bodies and has extensive arborizations in the median and lateral protocerebrum. The recordings were performed on isolated bee heads. 2. Two different series of physiological experiments were carried out with the use of a similar temporal succession of stimuli as in previous behavioral experiments. In the first series, one group of animals was used for a single conditioning trial [conditioned stimulus (CS), carnation; unconditioned stimulus (US), sucrose solution to the antennae and proboscis), a second group was used for sensitization (sensitizing stimulus, sucrose solution to the antennae and/or proboscis), and the third group served as control (no sucrose stimulation). In the second series, a differential conditioning paradigm (paired odor CS+, carnation; unpaired odor CS-, orange blossom) was applied to test the associative nature of the conditioning effect. 3. The PE1-neuron showed a characteristic burstlike odor response before the training procedures. The treatments resulted in different spike-frequency modulations of this response, which were specific for the nonassociative and associative stimulus paradigms applied. During differential conditioning, there are dynamic up and down modulations of spike frequencies and of the DC potentials underlying the responses to the CS+. Overall, only transient changes in the minute range were observed. 4. The results of the sensitization procedures suggest two qualitatively different US pathways. The comparison between sensitization and one-trial conditioning shows differential effects of nonassociative and associative stimulus paradigms on the response behavior of the PE1-neuron. The results of the differential

  20. Quantification of Tc-99m-ethyl cysteinate dimer brain single photon emission computed tomography images using statistical probabilistic brain atlas in depressive end-stage renal disease patients Correlation with disease severity and symptom factors

    Institute of Scientific and Technical Information of China (English)

    Heeyoung Kim; In Joo Kim; Seong-Jang Kim; Sang Heon Song; Kyoungjune Pak; Keunyoung Kim

    2012-01-01

    This study adapted a statistical probabilistic anatomical map of the brain for single photon emission computed tomography images of depressive end-stage renal disease patients. This research aimed to investigate the relationship between symptom clusters, disease severity, and cerebral blood flow. Twenty-seven patients (16 males, 11 females) with stages 4 and 5 end-stage renal disease were enrolled, along with 25 healthy controls. All patients underwent depressive mood assessment and brain single photon emission computed tomography. The statistical probabilistic anatomical map images were used to calculate the brain single photon emission computed tomography counts. Asymmetric index was acquired and Pearson correlation analysis was performed to analyze the correlation between symptom factors, severity, and regional cerebral blood flow. The depression factors of the Hamilton Depression Rating Scale showed a negative correlation with cerebral blood flow in the left amygdale. The insomnia factor showed negative correlations with cerebral blood flow in the left amygdala, right superior frontal gyrus, right middle frontal gyrus, and left middle frontal gyrus. The anxiety factor showed a positive correlation with cerebral glucose metabolism in the cerebellar vermis and a negative correlation with cerebral glucose metabolism in the left globus pallidus, right inferior frontal gyrus, both temporal poles, and left parahippocampus. The overall depression severity (total scores of Hamilton Depression Rating Scale) was negatively correlated with the statistical probabilistic anatomical map results in the left amygdala and right inferior frontal gyrus. In conclusion, our results demonstrated that the disease severity and extent of cerebral blood flow quantified by a probabilistic brain atlas was related to various brain areas in terms of the overall severity and symptom factors in end-stage renal disease patients.

  1. EEG correlates of P300-based brain-computer interface (BCI) performance in people with amyotrophic lateral sclerosis

    Science.gov (United States)

    Mak, Joseph N.; McFarland, Dennis J.; Vaughan, Theresa M.; McCane, Lynn M.; Tsui, Phillippa Z.; Zeitlin, Debra J.; Sellers, Eric W.; Wolpaw, Jonathan R.

    2012-04-01

    The purpose of this study was to identify electroencephalography (EEG) features that correlate with P300-based brain-computer interface (P300 BCI) performance in people with amyotrophic lateral sclerosis (ALS). Twenty people with ALS used a P300 BCI spelling application in copy-spelling mode. Three types of EEG features were found to be good predictors of P300 BCI performance: (1) the root-mean-square amplitude and (2) the negative peak amplitude of the event-related potential to target stimuli (target ERP) at Fz, Cz, P3, Pz, and P4; and (3) EEG theta frequency (4.5-8 Hz) power at Fz, Cz, P3, Pz, P4, PO7, PO8 and Oz. A statistical prediction model that used a subset of these features accounted for >60% of the variance in copy-spelling performance (p < 0.001, mean R2 = 0.6175). The correlations reflected between-subject, rather than within-subject, effects. The results enhance understanding of performance differences among P300 BCI users. The predictors found in this study might help in: (1) identifying suitable candidates for long-term P300 BCI operation; (2) assessing performance online. Further work on within-subject effects needs to be done to establish whether P300 BCI user performance could be improved by optimizing one or more of these EEG features.

  2. Structured and Sparse Canonical Correlation Analysis as a Brain-Wide Multi-Modal Data Fusion Approach.

    Science.gov (United States)

    Mohammadi-Nejad, Ali-Reza; Hossein-Zadeh, Gholam-Ali; Soltanian-Zadeh, Hamid

    2017-07-01

    Multi-modal data fusion has recently emerged as a comprehensive neuroimaging analysis approach, which usually uses canonical correlation analysis (CCA). However, the current CCA-based fusion approaches face problems like high-dimensionality, multi-collinearity, unimodal feature selection, asymmetry, and loss of spatial information in reshaping the imaging data into vectors. This paper proposes a structured and sparse CCA (ssCCA) technique as a novel CCA method to overcome the above problems. To investigate the performance of the proposed algorithm, we have compared three data fusion techniques: standard CCA, regularized CCA, and ssCCA, and evaluated their ability to detect multi-modal data associations. We have used simulations to compare the performance of these approaches and probe the effects of non-negativity constraint, the dimensionality of features, sample size, and noise power. The results demonstrate that ssCCA outperforms the existing standard and regularized CCA-based fusion approaches. We have also applied the methods to real functional magnetic resonance imaging (fMRI) and structural MRI data of Alzheimer's disease (AD) patients (n = 34) and healthy control (HC) subjects (n = 42) from the ADNI database. The results illustrate that the proposed unsupervised technique differentiates the transition pattern between the subject-course of AD patients and HC subjects with a p-value of less than 1×10(-6) . Furthermore, we have depicted the brain mapping of functional areas that are most correlated with the anatomical changes in AD patients relative to HC subjects.

  3. A lack of correlation between brain-derived neurotrophic factor serum level and verbal memory performance in healthy Polish population

    Directory of Open Access Journals (Sweden)

    Monika eWilkosc

    2016-05-01

    Full Text Available Brain derived neurotrophic factor is considered to be connected with memory and learning through the processes of long term synaptic potentiation and synaptic plasticity. The aim of the study was to examine the relationship between precursor BDNF (proBNDF and mature BDNF (mBDNF serum levels and performance on Rey Auditory-Verbal Learning Test (RAVLT in 150 healthy volunteers. In addition, we have verified the relationships between serum concentration of both forms of BDNF and RAVLT with sociodemographic and lifestyle factors. We found no strong evidence for the correlation of proBDNF and mBDNF serum levels with performance on RAVLT in healthy Polish population in early and middle adulthood. We observed the mBDNF serum concentration to be higher in women compared with men. Moreover, we revealed higher mBDNF level to be connected with lower Body Mass Index (BMI. In turn, the results of RAVLT correlated with sociodemographic and lifestyle factors, such as: age, education, gender, BMI and smoking.

  4. Distribution of brain infarction in children with tuberculous meningitis and correlation with outcome score at 6 months

    Energy Technology Data Exchange (ETDEWEB)

    Andronikou, Savvas [University of Stellenbosch, Department of Radiology, Tygerberg Hospital, P.O. Box 19063, Tygerberg (South Africa); Wilmshurst, Jo; Hatherill, Mark [University of Cape Town, Pediatric Neurology, Red Cross Children' s Hospital, School of Child and Adolescent Health, Cape Town (South Africa); VanToorn, Ronald [University of Stellenbosch, Department of Pediatric Neurology, Tygerberg Hospital, Cape Town (South Africa)

    2006-12-15

    Prognostic indicators for tuberculous meningitis (TBM) offer realistic expectations for parents of affected children. Infarctions affecting the basal ganglia are associated with a poor outcome. To correlate the distribution of infarction in children with TBM on CT with an outcome score (OS). CT brain scans in children with TBM were retrospectively reviewed and the distribution of infarctions recorded. The degree of correlation with OS at 6 months was determined. There was a statistically significant association between all sites of infarction (P = 0.0001-0.001), other than hemispheric (P = 0.35), and outcome score. There was also a statistically significant association between all types of infarction (P = 0.0001-0.02), other than hemispheric (P = 0.05), and overall poor outcome. The odds ratio for poor outcome with bilateral basal ganglia and internal capsule infarction was 12. The odds ratio for poor outcome with 'any infarction' was 4.91 (CI 2.24-10.74), with 'bilateral infarctions' 8.50 (CI 2.49-28.59), with basal ganglia infarction 5.73 (CI 2.60-12.64), and for hemispheric infarction 2.30 (CI 1.00-5.28). Infarction is associated with a poor outcome unless purely hemispheric. MRI diffusion-weighted imaging was not part of this study, but is likely to play a central role in detecting infarctions not demonstrated by CT. (orig.)

  5. Increased thalamic gamma band activity correlates with symptom relief following deep brain stimulation in humans with Tourette's syndrome.

    Directory of Open Access Journals (Sweden)

    Nicholas Maling

    Full Text Available Tourette syndrome (TS is an idiopathic, childhood-onset neuropsychiatric disorder, which is marked by persistent multiple motor and phonic tics. The disorder is highly disruptive and in some cases completely debilitating. For those with severe, treatment-refractory TS, deep brain stimulation (DBS has emerged as a possible option, although its mechanism of action is not fully understood. We performed a longitudinal study of the effects of DBS on TS symptomatology while concomitantly examining neurophysiological dynamics. We present the first report of the clinical correlation between the presence of gamma band activity and decreased tic severity. Local field potential recordings from five subjects implanted in the centromedian nucleus (CM of the thalamus revealed a temporal correlation between the power of gamma band activity and the clinical metrics of symptomatology as measured by the Yale Global Tic Severity Scale and the Modified Rush Tic Rating Scale. Additional studies utilizing short-term stimulation also produced increases in gamma power. Our results suggest that modulation of gamma band activity in both long-term and short-term DBS of the CM is a key factor in mitigating the pathophysiology associated with TS.

  6. Correlation between urinary incontinence and localization of brain lesion and severity of neurological lesion caused by a stroke

    Directory of Open Access Journals (Sweden)

    Vetra A.

    2012-10-01

    disorders. Urinary incontinence develops more frequently among patients with anterior circulation of the brain and subcortical brain lesion. There is a reliable correlation between severity of neurological lesion and urinary incontinence.

  7. Brain imaging correlates of recovered swallowing after dysphagic stroke: A fMRI and DWI study

    Directory of Open Access Journals (Sweden)

    Paul Glad Mihai

    2016-01-01

    Full Text Available Neurogenic dysphagia frequently occurs after stroke and deglutitive aspiration is one of the main reasons for subacute death after stroke. Although promising therapeutic interventions for neurogenic dysphagia are being developed, the functional neuroanatomy of recovered swallowing in this population remains uncertain. Here, we investigated 18 patients post-stroke who recovered from dysphagia using an event related functional magnetic resonance imaging (fMRI study of swallowing. Patients were characterized by initial dysphagia score (mild to severe, lesion mapping, white matter fractional anisotropy (FA of the pyramidal tracts, and swallowing performance measurement during fMRI scanning. Eighteen age matched healthy participants served as a control group. Overall, patients showed decreased fMRI-activation in the entire swallowing network apart from an increase of activation in the contralesional primary somatosensory cortex (S1. Moreover, fMRI activation in contralesional S1 correlated with initial dysphagia score. Finally, when lesions of the pyramidal tract were more severe, recovered swallowing appeared to be associated with asymmetric activation of the ipsilesional anterior cerebellum. Taken together, our data support a role for increased contralesional somatosensory resources and ipsilesional anterior cerebellum feed forward loops for recovered swallowing after dysphagia following stroke.

  8. Surprise! Neural Correlates of Pearce-Hall and Rescorla-Wagner Coexist within the Brain

    Science.gov (United States)

    Roesch, Matthew R; Esber, Guillem R; Li, Jian; Daw, Nathaniel D; Schoenbaum, Geoffrey

    2011-01-01

    Learning theory and computational accounts suggest that learning depends on errors in outcome prediction as well as changes in processing of or attention to events. These divergent ideas are captured by models, such as Rescorla-Wagner (RW) and temporal difference (TD) learning on one hand, which emphasize errors as directly driving changes in associative strength, versus models such Pearce-Hall (PH) and more recent variants on the other hand, which propose that errors promote changes in associative strength by modulating attention and processing of events. Numerous studies have shown that phasic firing of midbrain dopamine neurons carries a signed error signal consistent with RW or TD learning theories, and recently we have shown that this signal can be dissociated from attentional correlates in the basolateral amygdala and anterior cingulate. Here we will review this data along with new evidence 1) implicating habenula and striatal regions in supporting error signaling in midbrain dopamine neurons and 2) suggesting that central nucleus of the amygdala and prefrontal regions process the amygdalar attentional signal. However while the neural instantiations of the RW and PH signals are dissociable and complementary, they may be linked. Any linkage would have implications for understanding why one signal dominates learning in some situations and not others and also for appreciating the potential impact on learning of neuropathological conditions involving altered dopamine or amygdalar function, such as schizophrenia, addiction, or anxiety disorders. PMID:22487047

  9. Brain imaging investigation of the neural correlates of observing virtual social interactions.

    Science.gov (United States)

    Sung, Keen; Dolcos, Sanda; Flor-Henry, Sophie; Zhou, Crystal; Gasior, Claudia; Argo, Jennifer; Dolcos, Florin

    2011-07-06

    The ability to gauge social interactions is crucial in the assessment of others' intentions. Factors such as facial expressions and body language affect our decisions in personal and professional life alike (1). These "friend or foe" judgements are often based on first impressions, which in turn may affect our decisions to "approach or avoid". Previous studies investigating the neural correlates of social cognition tended to use static facial stimuli (2). Here, we illustrate an experimental design in which whole-body animated characters were used in conjunction with functional magnetic resonance imaging (fMRI) recordings. Fifteen participants were presented with short movie-clips of guest-host interactions in a business setting, while fMRI data were recorded; at the end of each movie, participants also provided ratings of the host behaviour. This design mimics more closely real-life situations, and hence may contribute to better understanding of the neural mechanisms of social interactions in healthy behaviour, and to gaining insight into possible causes of deficits in social behaviour in such clinical conditions as social anxiety and autism (3).

  10. Brain dynamics that correlate with effects of learning on auditory distance perception.

    Science.gov (United States)

    Wisniewski, Matthew G; Mercado, Eduardo; Church, Barbara A; Gramann, Klaus; Makeig, Scott

    2014-01-01

    Accuracy in auditory distance perception can improve with practice and varies for sounds differing in familiarity. Here, listeners were trained to judge the distances of English, Bengali, and backwards speech sources pre-recorded at near (2-m) and far (30-m) distances. Listeners' accuracy was tested before and after training. Improvements from pre-test to post-test were greater for forward speech, demonstrating a learning advantage for forward speech sounds. Independent component (IC) processes identified in electroencephalographic (EEG) data collected during pre- and post-testing revealed three clusters of ICs across subjects with stimulus-locked spectral perturbations related to learning and accuracy. One cluster exhibited a transient stimulus-locked increase in 4-8 Hz power (theta event-related synchronization; ERS) that was smaller after training and largest for backwards speech. For a left temporal cluster, 8-12 Hz decreases in power (alpha event-related desynchronization; ERD) were greatest for English speech and less prominent after training. In contrast, a cluster of IC processes centered at or near anterior portions of the medial frontal cortex showed learning-related enhancement of sustained increases in 10-16 Hz power (upper-alpha/low-beta ERS). The degree of this enhancement was positively correlated with the degree of behavioral improvements. Results suggest that neural dynamics in non-auditory cortical areas support distance judgments. Further, frontal cortical networks associated with attentional and/or working memory processes appear to play a role in perceptual learning for source distance.

  11. Associative memory and underlying brain correlates in older adults with mild cognitive impairment.

    Science.gov (United States)

    Chen, Pei-Ching; Chang, Yu-Ling

    2016-05-01

    This study investigated associative recognition memory by using unique features of the Chinese language and the underlying neuroanatomical correlates. The study participants were 22 Chinese speakers with mild cognitive impairment (MCI) and 25 cognitively normal (CN) Chinese speakers. The results revealed that the MCI group demonstrated impaired associative memory performance, despite exhibiting item memory performance comparable with that of the CN group, and that associative memory performance in older adults was associated with gray matter integrity in the medial temporal regions as well as executive function. An abnormal elevation was also observed in false-positive errors related to features unique to Chinese characters, namely orthographical errors, in addition to rearranged and semantic errors in the MCI group relative to the CN group, and the three error subtypes were differentially associated with gray matter integrity in the hippocampus or lateral prefrontal regions. Overall, these results demonstrate the value of evaluating associative memory in people with prodromal Alzheimer's disease (AD), and further elucidate the underlying neural substrates related to associative recognition memory in older adults.

  12. Brain Tissue Volumes and Perfusion Change with the Number of Optic Neuritis Attacks in Relapsing Neuromyelitis Optica: A Voxel-Based Correlation Study.

    Directory of Open Access Journals (Sweden)

    Carlos A Sánchez-Catasús

    Full Text Available Recent neuroimaging studies show that brain abnormalities in neuromyelitis optica (NMO are more frequent than earlier described. Yet, more research considering multiple aspects of NMO is necessary to better understand these abnormalities. A clinical feature of relapsing NMO (RNMO is that the incremental disability is attack-related. Therefore, association between the attack-related process and neuroimaging might be expected. On the other hand, the immunopathological analysis of NMO lesions has suggested that CNS microvasculature could be an early disease target, which could alter brain perfusion. Brain tissue volume changes accompanying perfusion alteration could also be expected throughout the attack-related process. The aim of this study was to investigate in RNMO patients, by voxel-based correlation analysis, the assumed associations between regional brain white (WMV and grey matter volumes (GMV and/or perfusion on one side, and the number of optic neuritis (ON attacks, myelitis attacks and/or total attacks on the other side. For this purpose, high resolution T1-weighted MRI and perfusion SPECT imaging were obtained in 15 RNMO patients. The results showed negative regional correlations of WMV, GMV and perfusion with the number of ON attacks, involving important components of the visual system, which could be relevant for the comprehension of incremental visual disability in RNMO. We also found positive regional correlation of perfusion with the number of ON attacks, mostly overlapping the brain area where the WMV showed negative correlation. This provides evidence that brain microvasculature is an early disease target and suggests that perfusion alteration could be important in the development of brain structural abnormalities in RNMO.

  13. Brain Tissue Volumes and Perfusion Change with the Number of Optic Neuritis Attacks in Relapsing Neuromyelitis Optica: A Voxel-Based Correlation Study.

    Science.gov (United States)

    Sánchez-Catasús, Carlos A; Cabrera-Gomez, José; Almaguer Melián, William; Giroud Benítez, José Luis; Rodríguez Rojas, Rafael; Bayard, Jorge Bosch; Galán, Lídice; Sánchez, Reinaldo Galvizu; Fuentes, Nancy Pavón; Valdes-Sosa, Pedro

    2013-01-01

    Recent neuroimaging studies show that brain abnormalities in neuromyelitis optica (NMO) are more frequent than earlier described. Yet, more research considering multiple aspects of NMO is necessary to better understand these abnormalities. A clinical feature of relapsing NMO (RNMO) is that the incremental disability is attack-related. Therefore, association between the attack-related process and neuroimaging might be expected. On the other hand, the immunopathological analysis of NMO lesions has suggested that CNS microvasculature could be an early disease target, which could alter brain perfusion. Brain tissue volume changes accompanying perfusion alteration could also be expected throughout the attack-related process. The aim of this study was to investigate in RNMO patients, by voxel-based correlation analysis, the assumed associations between regional brain white (WMV) and grey matter volumes (GMV) and/or perfusion on one side, and the number of optic neuritis (ON) attacks, myelitis attacks and/or total attacks on the other side. For this purpose, high resolution T1-weighted MRI and perfusion SPECT imaging were obtained in 15 RNMO patients. The results showed negative regional correlations of WMV, GMV and perfusion with the number of ON attacks, involving important components of the visual system, which could be relevant for the comprehension of incremental visual disability in RNMO. We also found positive regional correlation of perfusion with the number of ON attacks, mostly overlapping the brain area where the WMV showed negative correlation. This provides evidence that brain microvasculature is an early disease target and suggests that perfusion alteration could be important in the development of brain structural abnormalities in RNMO.

  14. Whole-brain diffusion tensor imaging in correlation to visual-evoked potentials in multiple sclerosis: a tract-based spatial statistics analysis.

    Science.gov (United States)

    Lobsien, D; Ettrich, B; Sotiriou, K; Classen, J; Then Bergh, F; Hoffmann, K-T

    2014-01-01

    Functional correlates of microstructural damage of the brain affected by MS are incompletely understood. The purpose of this study was to evaluate correlations of visual-evoked potentials with microstructural brain changes as determined by DTI in patients with demyelinating central nervous disease. Sixty-one patients with clinically isolated syndrome or MS were prospectively recruited. The mean P100 visual-evoked potential latencies of the right and left eyes of each patient were calculated and used for the analysis. For DTI acquisition, a single-shot echo-planar imaging pulse sequence with 80 diffusion directions was performed at 3T. Fractional anisotropy, radial diffusivity, and axial diffusivity were calculated and correlated with mean P100 visual-evoked potentials by tract-based spatial statistics. Significant negative correlations between mean P100 visual-evoked potentials and fractional anisotropy and significant positive correlations between mean P100 visual-evoked potentials and radial diffusivity were found widespread over the whole brain. The highest significance was found in the optic radiation, frontoparietal white matter, and corpus callosum. Significant positive correlations between mean P100 visual-evoked potentials and axial diffusivity were less widespread, notably sparing the optic radiation. Microstructural changes of the whole brain correlated significantly with mean P100 visual-evoked potentials. The distribution of the correlations showed clear differences among axial diffusivity, fractional anisotropy, and radial diffusivity, notably in the optic radiation. This finding suggests a stronger correlation of mean P100 visual-evoked potentials to demyelination than to axonal damage. © 2014 by American Journal of Neuroradiology.

  15. Surprise! Neural correlates of Pearce-Hall and Rescorla-Wagner coexist within the brain.

    Science.gov (United States)

    Roesch, Matthew R; Esber, Guillem R; Li, Jian; Daw, Nathaniel D; Schoenbaum, Geoffrey

    2012-04-01

    Learning theory and computational accounts suggest that learning depends on errors in outcome prediction as well as changes in processing of or attention to events. These divergent ideas are captured by models, such as Rescorla-Wagner (RW) and temporal difference (TD) learning on the one hand, which emphasize errors as directly driving changes in associative strength, vs. models such as Pearce-Hall (PH) and more recent variants on the other hand, which propose that errors promote changes in associative strength by modulating attention and processing of events. Numerous studies have shown that phasic firing of midbrain dopamine (DA) neurons carries a signed error signal consistent with RW or TD learning theories, and recently we have shown that this signal can be dissociated from attentional correlates in the basolateral amygdala and anterior cingulate. Here we will review these data along with new evidence: (i) implicating habenula and striatal regions in supporting error signaling in midbrain DA neurons; and (ii) suggesting that the central nucleus of the amygdala and prefrontal regions process the amygdalar attentional signal. However, while the neural instantiations of the RW and PH signals are dissociable and complementary, they may be linked. Any linkage would have implications for understanding why one signal dominates learning in some situations and not others, and also for appreciating the potential impact on learning of neuropathological conditions involving altered DA or amygdalar function, such as schizophrenia, addiction or anxiety disorders. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  16. Brain dynamics that correlate with effects of learning on auditory distance perception

    Directory of Open Access Journals (Sweden)

    Matthew G. Wisniewski

    2014-12-01

    Full Text Available Accuracy in auditory distance perception can improve with practice and varies for sounds differing in familiarity. Here, listeners were trained to judge the distances of English, Bengali, and backwards speech sources pre-recorded at near (2-m and far (30-m distances. Listeners’ accuracy was tested before and after training. Improvements from pre-test to post-test were greater for forward speech, demonstrating a learning advantage for forward speech sounds. Independent component (IC processes identified in electroencephalographic (EEG data collected during pre- and post-testing revealed three clusters of ICs across subjects with stimulus-locked spectral perturbations related to learning and accuracy. One cluster exhibited a transient stimulus-locked increase in 4-8 Hz power (theta event-related synchronization; ERS that was smaller after training and largest for backwards speech. For a left temporal cluster, 8-12 Hz decreases in power (alpha event-related desynchronization; ERD were greatest for English speech and less prominent after training. In contrast, a cluster of IC processes centered at or near anterior portions of the medial frontal cortex showed learning-related enhancement of sustained increases in 10-16 Hz power (upper-alpha/low-beta ERS. The degree of this enhancement was positively correlated with the degree of behavioral improvements. Results suggest that neural dynamics in non-auditory cortical areas support distance judgments. Further, frontal cortical networks associated with attentional and/or working memory processes appear to play a role in perceptual learning for source distance.

  17. Biochemical Analysis of Initiator Caspase-Activating Complexes: The Apoptosome and the Death-Inducing Signaling Complex.

    Science.gov (United States)

    Langlais, Claudia; Hughes, Michelle A; Cain, Kelvin; MacFarlane, Marion

    2015-12-02

    Apoptosis is a highly regulated process that can be initiated by activation of death receptors or perturbation of mitochondria causing the release of apoptogenic proteins. This results in the activation of caspases, which are responsible for many of the biochemical and morphological changes associated with apoptosis. Caspases are normally inactive and require activation in a cascade emanating from an "initiator" or activating caspase, which in turn activates a downstream or "effector" caspase. Activation of initiator caspases is tightly regulated and requires the assembly of caspase-9 (via mitochondrial perturbation) or caspase-8/10 (via death receptor ligation) activating complexes, which are termed the apoptosome and the death-inducing signaling complex (DISC), respectively. These large multiprotein complexes can initially be separated according to size by gel filtration chromatography and subsequently analyzed by affinity purification or immunoprecipitation. The advantage of combining these techniques is one can first assess the assembly of individual components into a multiprotein complex, and then assess the size and composition of the native functional signaling platform within a particular cell type alongside a biochemical analysis of the enriched/purified complex. Here, we describe various methods currently used for characterization of the apoptosome and DISC.

  18. Cell death induced on cell cultures and nude mouse skin by non-thermal, nanosecond-pulsed generated plasma.

    Directory of Open Access Journals (Sweden)

    Arnaud Duval

    Full Text Available Non-thermal plasmas are gaseous mixtures of molecules, radicals, and excited species with a small proportion of ions and energetic electrons. Non-thermal plasmas can be generated with any high electro-magnetic field. We studied here the pathological effects, and in particular cell death, induced by nanosecond-pulsed high voltage generated plasmas homogeneously applied on cell cultures and nude mouse skin. In vitro, Jurkat cells and HMEC exhibited apoptosis and necrosis, in dose-dependent manner. In vivo, on nude mouse skin, cell death occurred for doses above 113 J/cm(2 for the epidermis, 281 J/cm(2 for the dermis, and 394 J/cm(2 for the hypodermis. Using electron microscopy, we characterized apoptosis for low doses and necrosis for high doses. We demonstrated that these effects were not related to thermal, photonic or pH variations, and were due to the production of free radicals. The ability of cold plasmas to generate apoptosis on cells in suspension and, without any sensitizer, on precise skin areas, opens new fields of application in dermatology for extracorporeal blood cell treatment and the eradication of superficial skin lesions.

  19. Cell death-inducing DFF45-like effector C is reduced by caloric restriction and regulates adipocyte lipid metabolism.

    Science.gov (United States)

    Magnusson, Björn; Gummesson, Anders; Glad, Camilla A M; Goedecke, Julia H; Jernås, Margareta; Lystig, Theodore C; Carlsson, Björn; Fagerberg, Björn; Carlsson, Lena M S; Svensson, Per-Arne

    2008-09-01

    Members of the cell death-inducing DFF45-like effector (CIDE) gene family have been shown to regulate lipid metabolism. In this article, we report that the third member of the human CIDE family, CIDEC, is down-regulated in response to a reduced caloric intake. The down-regulation was demonstrated by microarray and real-time polymerase chain reaction analysis of subcutaneous adipose tissue in 2 independent studies on obese patients undergoing treatment with a very low calorie diet. By analysis of CIDEC expression in 65 human tissues, we conclude that human CIDEC is predominantly expressed in subcutaneous adipocytes. Together, these observations led us to investigate the effect of decreased CIDEC expression in cultured 3T3-L1 adipocytes. Small interfering RNA-mediated knockdown of CIDEC resulted in an increased basal release of nonesterified fatty acids, decreased responsiveness to adrenergic stimulation of lipolysis, and increased oxidation of endogenous fatty acids. Thus, we suggest that CIDEC is a regulator of adipocyte lipid metabolism and may be important for the adipocyte to adapt to changes in energy availability.

  20. Apoptotic Cell Death Induced by Resveratrol Is Partially Mediated by the Autophagy Pathway in Human Ovarian Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Fangfang Lang

    Full Text Available Resveratrol (trans-3,4,5'-trihydroxystilbene is an active compound in food, such as red grapes, peanuts, and berries. Resveratrol exhibits an anticancer effect on various human cancer cells. However, the mechanism of resveratrol-induced anti-cancer effect at the molecular level remains to be elucidated. In this study, the mechanism underlying the anti-cancer effect of resveratrol in human ovarian cancer cells (OVCAR-3 and Caov-3 was investigated using various molecular biology techniques, such as flow cytometry, western blotting, and RNA interference, with a major focus on the potential role of autophagy in resveratrol-induced apoptotic cell death. We demonstrated that resveratrol induced reactive oxygen species (ROS generation, which triggers autophagy and subsequent apoptotic cell death. Resveratrol induced ATG5 expression and promoted LC3 cleavage. The apoptotic cell death induced by resveratrol was attenuated by both pharmacological and genetic inhibition of autophagy. The autophagy inhibitor chloroquine, which functions at the late stage of autophagy, significantly reduced resveratrol-induced cell death and caspase 3 activity in human ovarian cancer cells. We also demonstrated that targeting ATG5 by siRNA also suppressed resveratrol-induced apoptotic cell death. Thus, we concluded that a common pathway between autophagy and apoptosis exists in resveratrol-induced cell death in OVCAR-3 human ovarian cancer cells.

  1. Sudden Oak Death-Induced Tanoak Mortality in Coast Redwood Forests: Current and Predicted Impacts to Stand Structure

    Directory of Open Access Journals (Sweden)

    Kevin L. O’Hara

    2010-08-01

    Full Text Available Tanoak (Notholithocarpus densiflorus syn. Lithocarpus densiflorus is one of the most widespread and abundant associates of coast redwood (Sequoia sempervirens, but little is known about the structural relationships between these two species. Knowledge of such relationships is essential for a thorough understanding of the impacts of sudden oak death (caused by the exotic pathogen Phytophthora ramorum, which is currently decimating tanoak populations throughout the redwood range. In this study, we utilized a stratified plot design and a stand reconstruction technique to assess structural impacts, at present and in the future, of this emerging disease. We found that residual trees in diseased plots were more aggregated than trees in unaffected plots, and we predicted that the loss of tanoak will lead to the following short-term changes: greater average diameter, height, height-to-live-crown, and crown length, as well as an increase in average nearest neighbor differences for diameter, height, and crown length. In addition, plots lacking tanoak (living or dead—as compared to plots with tanoak—exhibited greater average diameter and increased nearest neighbor differences with regard to diameter, height, and crown length. We also conducted a preliminary exploration of how sudden oak death-induced structural changes compare with typical old-growth characteristics, and how this disease may affect the structure of old-growth forests.

  2. Enhanced microglial pro-inflammatory response to lipopolysaccharide correlates with brain infiltration and blood-brain barrier dysregulation in a mouse model of telomere shortening

    NARCIS (Netherlands)

    Raj, Divya D.A.; Moser, Jill; van der Pol, Susanne M. A.; van Os, Ronald P.; Holtman, Inge R.; Brouwer, Nieske; Oeseburg, Hisko; Schaafsma, Wandert; Wesseling, Evelyn M.; Dunnen, den Wilfred; Biber, Knut P. H.; de Vries, Helga E.; Eggen, Bart J. L.; Boddeke, Hendrikus W. G. M.

    2015-01-01

    Microglia are a proliferative population of resident brain macrophages that under physiological conditions self-renew independent of hematopoiesis. Microglia are innate immune cells actively surveying the brain and are the earliest responders to injury. During aging, microglia elicit an enhanced inn

  3. A correlative study between AQP4 expression and the manifestation of DWI after the acute ischemic brain edema in rats

    Institute of Scientific and Technical Information of China (English)

    鲁宏; 孙善全

    2003-01-01

    Objective To investigate the rule of the aquaporin-4 (AQP4) expression in acute ischemic brain edema, and to study the correlation between AQP4 expression and diffusion-weighted imaging (DWI).Methods Thirty-six Wistar rats were divided into 2 groups randomly, control group (n=12) and operation group (n=24) in which right middle cerebral artery of each animal had been occluded unilaterally (MCAO) at interval times of: 15 minutes, 30 minutes, 1 hours, 3 hours, 6 hours and 24 hours, respectively. The operation process of the control group was the same as the operation group except for the MCAO. All groups were examined using DWI. The apparent diffusion coefficient (ADC), relative density (rd) and relative area (rs) of the biggest hyperintensity signal layer on DWI were measured. After that the animals were sacrificed and perfused with the mixture solution consisting of TTC. The biggest layers of the ischemic cerebral tissues in each rat corresponding to the DWI were stained with TTC and examined with immunochemistry (△S) , in situ hybridization (α) and histology.Results There was no significant change in the control group. In the operation group, a hyperintensity signal was found in the DWI of the right MAC territory at 15 minutes after MCAO. The ADC value decreased quickly within one hour after MCAO, while the AQP4 expression, rd-DWI and rs-DWI increased rapidly during this stage. As time progressed, the ADC value decreased further to (2.1±0.6)×10-4 mm2/s at 3 hours, and then began to increase slowly till 24 hours. But the AQP4 expression (△S and α) and rd as well as the rs continuously increased slowly between 1 hour and 6 hours after MCAO, followed a peak after 6 hours. The AQP4 expression (α) showed a positive relationship with the rs-DWI, they all presented two peaks and a plateau. The corresponding sequential pathologic changes were a gradual increase of intracellular edema (within one hour), then an emergence of vasogenic edema (1-6 hours), and final

  4. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed

    DEFF Research Database (Denmark)

    Posthuma, Daniëlle; Baare, Wim F.C.; Hulshoff Pol, Hilleke E.;

    2003-01-01

    to cerebellar volume. Verbal Comprehension was not related to any of the three brain volumes. It is concluded that brain volumes are genetically related to intelligence which suggests that genes that influence brain volume may also be important for intelligence. It is also noted however, that the direction......We recently showed that the correlation of gray and white matter volume with full scale IQ and the Working Memory dimension are completely mediated by common genetic factors (Posthuma et al., 2002). Here we examine whether the other WAIS III dimensions (Verbal Comprehension, Perceptual Organization...... to Working Memory capacity (r = 0.27). This phenotypic correlation is completely due to a common underlying genetic factor. Processing Speed was genetically related to white matter volume (r(g) = 0.39). Perceptual Organization was both genetically (r(g) = 0.39) and environmentally (r(e) = -0.71) related...

  5. The Correlation between the Virus- and Brain Antigen-Specific B Cell Response in the Blood of Patients with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Marie Wunsch

    2016-04-01

    Full Text Available There is a largely divergent body of literature regarding the relationship between Epstein-Barr virus (EBV infection and brain inflammation in multiple sclerosis (MS. Here, we tested MS patients during relapse (n = 11 and in remission (n = 19 in addition to n = 22 healthy controls to study the correlation between the EBV- and brain-specific B cell response in the blood by enzyme-linked immunospot (ELISPOT and enzyme-linked immunosorbent assay (ELISA. Cytomegalovirus (CMV was used as a control antigen tested in n = 16 MS patients during relapse and in n = 35 patients in remission. Over the course of the study, n = 16 patients were untreated, while n = 33 patients received immunomodulatory therapy. The data show that there was a moderate correlation between the frequencies of EBV- and brain-reactive B cells in MS patients in remission. In addition we could detect a correlation between the B cell response to EBV and disease activity. There was no evidence of an EBV reactivation. Interestingly, there was also a correlation between the frequencies of CMV- and brain-specific B cells in MS patients experiencing an acute relapse and an elevated B cell response to CMV was associated with higher disease activity. The trend remained when excluding seronegative subjects but was non-significant. These data underline that viral infections might impact the immunopathology of MS, but the exact link between the two entities remains subject of controversy.

  6. Characterization of the Pathological and Biochemical Markers that Correlate to the Clinical Features of Autism. Subproject 1: The Neuropathological Markers of Abnormal Brain Development and Aging in Autism

    Science.gov (United States)

    2013-04-01

    heterotopias and dysplastic changes in the hippocampus in 89% of dup 15 cases (10% in idiopathic autism). Cerebral cortical dysplasia was found only in...subependymal nodular dysplasia, hypothalamus, serotonergic system, desynchronized neuronal growth, clinico -pathological correlations 16. SECURITY... Cases with signs of comorbidity, premortem and postmortem changes affecting brain structure were excluded from the morphometric studies. 3. To

  7. Correlations of behavioral deficits with brain pathology assessed through longitudinal MRI and histopathology in the R6/2 mouse model of HD.

    Directory of Open Access Journals (Sweden)

    Ivan Rattray

    Full Text Available Huntington's disease (HD is caused by the expansion of a CAG repeat in the huntingtin (HTT gene. The R6/2 mouse model of HD expresses a mutant version of exon 1 HTT and develops motor and cognitive impairments, a widespread huntingtin (HTT aggregate pathology and brain atrophy. Despite the vast number of studies that have been performed on this model, the association between the molecular and cellular neuropathology with brain atrophy, and with the development of behavioral phenotypes remains poorly understood. In an attempt to link these factors, we have performed longitudinal assessments of behavior (rotarod, open field, passive avoidance and of regional brain abnormalities determined through magnetic resonance imaging (MRI (whole brain, striatum, cortex, hippocampus, corpus callosum, as well as an end-stage histological assessment. Detailed correlative analyses of these three measures were then performed. We found a gender-dependent emergence of motor impairments that was associated with an age-related loss of regional brain volumes. MRI measurements further indicated that there was no striatal atrophy, but rather a lack of striatal growth beyond 8 weeks of age. T2 relaxivity further indicated tissue-level changes within brain regions. Despite these dramatic motor and neuroanatomical abnormalities, R6/2 mice did not exhibit neuronal loss in the striatum or motor cortex, although there was a significant increase in neuronal density due to tissue atrophy. The deposition of the mutant HTT (mHTT protein, the hallmark of HD molecular pathology, was widely distributed throughout the brain. End-stage histopathological assessments were not found to be as robustly correlated with the longitudinal measures of brain atrophy or motor impairments. In conclusion, modeling pre-manifest and early progression of the disease in more slowly progressing animal models will be key to establishing which changes are causally related.

  8. A correlation study of the expression of resistin and glycometabolism in muscle tissue after traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Jin Peng; Zhu Lielie; Zhang Jiasheng; Xie Songling; Pan Da; Wen Hao; Meng Weiyang

    2014-01-01

    Objective:To investigate the expression pattern of resistin (RSTN) in skeletal muscle tissue and its influence on glycometabolism in rats with traumatic brain injury (TBI).Methods:Seventy-eight SD rats were randomly divided into traumatic group (n=36),RSTN group (n=36) and sham operation group (n=6).Fluid percussion TBI model was developed in traumatic and RSTN groups and the latter received additional 1 mg RSTN antibody treatment for each rat.At respectively 12 h,24 h,72 h,1 w,2 w,and 4 w after operation,venous blood was collected and the right hind leg skeletal muscle tissue was sampled.We used real-time PCR to determine mRNA expression of RSTN in skeletal muscles,western blot to determine RSTN protein expression and ELISA to assess serum insulin as well as fasting blood glucose (FBG) levels.Calculation of the quantitative insulin sensitivity check index (Q value) was also conducted.The above mentioned indicators and their correction were statistically analyzed.Results:Compared with sham operation group,the RSTN expression in the skeletal muscle as well as serum insulin and FBG levels revealed significant elevation (P<0.05),and reduced Q value (P<0.05) in traumatic group.Single factor linear correlation analysis showed a significant negative correlation between RSTN expression and Q values (P<0.001) in traumatic group.Conclusion:The expression of RSTN has been greatly increased in the muscular tissue of TBI rats and it was closely related to the index of glycometabolism.RSTN may play an important role in the process of insulin resistance after TBI.

  9. Analysis of behavioral and EEG correlatives of attention in the dynamics of recovery of consciousness following severe brain injury

    Directory of Open Access Journals (Sweden)

    E. V. Sharova

    2016-01-01

    Full Text Available Objective: to determine the behavioral manifestations and electroencephalographic correlates of modality-nonspecific attention using a clinical model of severe brain injury (SBI.Patients and methods. 35 patients with SBI in the dynamics of post-coma recovery of mental activity (a study group and 23 healthy subjects (a control group were examined. The behavioral manifestations of NSA from coma to clear consciousness were analyzed in the patients. Changes in the pattern of EEG and in the indices of its coherence in the presence and activation of different forms of attention (an orienting response to the sound and eye opening; involuntary and voluntary visual forms, by applying specially developed computerized techniques, were investigated. The features of associated with attention changes in interhemispheric EEG coherence (IHC with the data of 3T diffusion tensor tractography of the corpus callosum (CC were compared.Results. Attention disorders were shown to be essential and an «axial disorder» in patients with SBI. There were statistically confirmed qualitative and quantitative differences attention-associated changes in the EEG pattern and IHC in reversible and chronic unconsciousness. The important favorable prognostic sign proved to be reactive changes in interhemispheric EEG relations, including frontal ones characterized by the absence of clear external manifestations of consciousness in the very earliest stages. There was a significant correlation between the preservation of CC tracts (primarily, the rostrum, anterior portion, and splenium and attention-related reactivity of IHC, which reflects the specific, though nonrigid, structural determinacy of the latter.

  10. Conventional and cross-correlation brain-stem auditory evoked responses in the white leghorn chick: rate manipulations

    Science.gov (United States)

    Burkard, R.; Jones, S.; Jones, T.

    1994-01-01

    Rate-dependent changes in the chick brain-stem auditory evoked response (BAER) using conventional averaging and a cross-correlation technique were investigated. Five 15- to 19-day-old white leghorn chicks were anesthetized with Chloropent. In each chick, the left ear was acoustically stimulated. Electrical pulses of 0.1-ms duration were shaped, attenuated, and passed through a current driver to an Etymotic ER-2 which was sealed in the ear canal. Electrical activity from stainless-steel electrodes was amplified, filtered (300-3000 Hz) and digitized at 20 kHz. Click levels included 70 and 90 dB peSPL. In each animal, conventional BAERs were obtained at rates ranging from 5 to 90 Hz. BAERs were also obtained using a cross-correlation technique involving pseudorandom pulse sequences called maximum length sequences (MLSs). The minimum time between pulses, called the minimum pulse interval (MPI), ranged from 0.5 to 6 ms. Two BAERs were obtained for each condition. Dependent variables included the latency and amplitude of the cochlear microphonic (CM), wave 2 and wave 3. BAERs were observed in all chicks, for all level by rate combinations for both conventional and MLS BAERs. There was no effect of click level or rate on the latency of the CM. The latency of waves 2 and 3 increased with decreasing click level and increasing rate. CM amplitude decreased with decreasing click level, but was not influenced by click rate for the 70 dB peSPL condition. For the 90 dB peSPL click, CM amplitude was uninfluenced by click rate for conventional averaging. For MLS BAERs, CM amplitude was similar to conventional averaging for longer MPIs.(ABSTRACT TRUNCATED AT 250 WORDS).

  11. Correlations between brain activity and components of motor learning in middle-aged adults: An fMRI study

    Directory of Open Access Journals (Sweden)

    Katie P Wadden

    2013-05-01

    Full Text Available Implicit learning may be shown by improvements in motor performance, which occur unconsciously with practice and are typically restricted to the task that was practiced. The purpose of this study was to examine behaviorally relevant brain activation associated with change in motor behaviour during sequence-specific motor learning of a perceptuomotor continuous tracking (CT task in middle-aged adults. To gain further insight into the neural structures associated with change in motor behaviour, overall improvement in tracking (root mean square error; RMSE was decomposed into two components – temporal precision and spatial accuracy. A group of middle-aged healthy individuals performed the CT task, which contains repeated and random segments for seven days. Functional magnetic resonance imaging (fMRI data was collected on the first and seventh day while the participants performed the task. To assess behaviorally relevant changes in the blood oxygenation level dependent (BOLD response associated with individual sequence-specific tracking performance, separate statistical images were created for each participant and weighted by the difference score between repeated and random performance for days 1 and 7. On Day 7 the resultant group statistical fMRI image demonstrated a positive correlation between RMSE difference score and bilateral cerebellar activation (lobule VI. In addition, individuals who showed greater sequence-specific temporal precision demonstrated increased activation in the precentral gyrus, middle occipital gyrus and putamen of the right hemisphere and the thalamus, cuneus and cerebellum of the left hemisphere. In the present study, behavioral performance was associated with neural correlates of individual variation in motor learning that characterized the ability to implicitly learn a sequence-specific CT task.

  12. The moderating effects of sex and age on the association between traumatic brain injury and harmful psychological correlates among adolescents.

    Directory of Open Access Journals (Sweden)

    Gabriela Ilie

    Full Text Available BACKGROUND: Although it is well established that sex is a risk factor in acquiring a traumatic brain injury (TBI among adolescents, it has not been established whether it also moderates the influence of other TBI psychological health correlates. METHODS AND FINDINGS: Data were derived from a 2011 population-based cross-sectional school survey, which included 9,288 Ontario 7th-12th graders who completed anonymous self-administered questionnaires in classrooms. Response rate was 62%. Preliminary analyses found no evidence of nonresponse bias in the reporting of TBI. TBI was defined as a hit or blow to the head that resulted in a 5 minutes loss of consciousness or at least one overnight hospitalization due to symptoms associated with it. Reports of lifetime TBI were more common among males than females (23.1%, 95% CI: 20.5, 25.8 vs. 17.1%, 95% CI: 14.7, 19.8. Thirteen correlates were examined and included cigarette smoking, elevated psychological distress, suicide ideation, bully victimization (at school, as well as cyber bullying, bullying others, cannabis use, cannabis dependence and drug use problems, physical injuries, daily smoking, drinking alcohol, binge drinking, use of cannabis, and poor academic performance. Among the outcomes examined, sex moderated the relationship between lifetime TBI and cigarette smoking. In addition, sex and age jointly moderated the relationship between lifetime TBI and daily smoking, alcohol use and physical injuries. Late adolescent males who reported lifetime TBI, relative to females, displayed elevated daily smoking and injuries, whereas their females counterparts displayed elevated past year drinking. Possible bias related to self-report procedures and the preclusion of causal inferences due to the cross-sectional nature of the data are limitations of this study. CONCLUSIONS: TBI differences in outcomes need to be assessed for potential moderating effects of sex and age. Results have important implications for

  13. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces.

    Science.gov (United States)

    Cao, Lei; Ju, Zhengyu; Li, Jie; Jian, Rongjun; Jiang, Changjun

    2015-09-30

    Steady-state visual evoked potential (SSVEP) has been widely applied to develop brain computer interface (BCI) systems. The essence of SSVEP recognition is to recognize the frequency component of target stimulus focused by a subject significantly present in EEG spectrum. In this paper, a novel statistical approach based on sequence detection (SD) is proposed for improving the performance of SSVEP recognition. This method uses canonical correlation analysis (CCA) coefficients to observe SSVEP signal sequence. And then, a threshold strategy is utilized for SSVEP recognition. The result showed the classification performance with the longer duration of time window achieved the higher accuracy for most subjects. And the average time costing per trial was lower than the predefined recognition time. It was implicated that our approach could improve the speed of BCI system in contrast to other methods. Comparison with existing method(s): In comparison with other resultful algorithms, experimental accuracy of SD approach was better than those using a widely used CCA-based method and two newly proposed algorithms, least absolute shrinkage and selection operator (LASSO) recognition model as well as multivariate synchronization index (MSI) method. Furthermore, the information transfer rate (ITR) obtained by SD approach was higher than those using other three methods for most participants. These conclusions demonstrated that our proposed method was promising for a high-speed online BCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Positron emission tomography studies in eating disorders: multireceptor brain imaging, correlates with behavior and implications for pharmacotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Guido K. [Department of Child and Adolescent Psychiatry, Center for Eating Disorders Research, School of Medicine, University of California San Diego, San Diego, CA 92123 (United States); Kaye, Walter H. [Department of Psychiatry, Western Psychiatric Institute and Clinic, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2005-10-01

    Modern imaging techniques that visualize disease-specific organ neurotransmitter or protein receptor sites are increasingly able to define pathological processes on a molecular level. One of those imaging modalities, positron emission tomography (PET), for the assessment of brain neuroreceptor binding has revolutionized the in vivo assessment of biologic markers that may be related to human behavior. Such studies may help identify chemical targets that may be directly related to psychiatric pathology and, thus, opportunities for pharmacological intervention. In this review, we describe results from PET studies in eating disorders (EDs). Eating disorders are frequently debilitating illnesses that are quite homogeneous in their presentation. Those studies that identified particular serotonin and dopamine receptor alterations can distinguish recovered ED subjects from controls as well as ED subgroups. Furthermore, correlations of receptor binding with behavioral constructs, such as harm avoidance or novelty seeking, could be found. These recognized receptors may now help us to move away from rather nonspecific treatment approaches in psychiatric research and clinic to the possibility of more syndrome- and symptom-specific treatment approaches.

  15. Event-related brain potentials reveal correlates of the transformation of stimulus functions through derived relations in healthy humans.

    Science.gov (United States)

    O'Regan, L M; Farina, F R; Hussey, I; Roche, R A P

    2015-03-02

    This research aimed to explore the neural correlates of relational learning by recording high-density EEG during a behavioural task involving derivation levels of varying complexity. A total of 15 participants (5 male; age range 18-23 years; mean age=20.0 years) completed contextual cue training, relational learning, function training and a derivation task while 128-channel event-related potentials (ERPs) were recorded from the scalp (Background). Differences in response latencies were observed between the two derived (symmetry and equivalence) and directly trained relations, with longest latencies found for equivalence and shortest for the directly trained relations. This pattern failed to reach statistical significance. Importantly, ERPs revealed an early P3a positivity (from 230 to 350ms) over right posterior scalp sites. Significantly larger mean amplitudes were found at three channels (P6, E115 and E121) for the equivalence relations compared to the two other types (Results). We believe this may constitute a first demonstration of differences in brain electrophysiology in the transformation of stimulus functions through derived relations of hierarchical levels of complexity (Conclusions). Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Memory traces for spoken words in the brain as revealed by the hemodynamic correlate of the mismatch negativity.

    Science.gov (United States)

    Shtyrov, Yury; Osswald, Katja; Pulvermüller, Friedemann

    2008-01-01

    The mismatch negativity response, considered a brain correlate of automatic preattentive auditory processing, is enhanced for word stimuli as compared with acoustically matched pseudowords. This lexical enhancement, taken as a signature of activation of language-specific long-term memory traces, was investigated here using functional magnetic resonance imaging to complement the previous electrophysiological studies. In passive oddball paradigm, word stimuli were randomly presented as rare deviants among frequent pseudowords; the reverse conditions employed infrequent pseudowords among word stimuli. Random-effect analysis indicated clearly distinct patterns for the different lexical types. Whereas the hemodynamic mismatch response was significant for the word deviants, it did not reach significance for the pseudoword conditions. This difference, more pronounced in the left than right hemisphere, was also assessed by analyzing average parameter estimates in regions of interests within both temporal lobes. A significant hemisphere-by-lexicality interaction confirmed stronger blood oxygenation level-dependent mismatch responses to words than pseudowords in the left but not in the right superior temporal cortex. The increased left superior temporal activation and the laterality of cortical sources elicited by spoken words compared with pseudowords may indicate the activation of cortical circuits for lexical material even in passive oddball conditions and suggest involvement of the left superior temporal areas in housing such word-processing neuronal circuits.

  17. Non-uniformly weighted sampling for faster localized two-dimensional correlated spectroscopy of the brain in vivo

    Science.gov (United States)

    Verma, Gaurav; Chawla, Sanjeev; Nagarajan, Rajakumar; Iqbal, Zohaib; Albert Thomas, M.; Poptani, Harish

    2017-04-01

    Two-dimensional localized correlated spectroscopy (2D L-COSY) offers greater spectral dispersion than conventional one-dimensional (1D) MRS techniques, yet long acquisition times and limited post-processing support have slowed its clinical adoption. Improving acquisition efficiency and developing versatile post-processing techniques can bolster the clinical viability of 2D MRS. The purpose of this study was to implement a non-uniformly weighted sampling (NUWS) scheme for faster acquisition of 2D-MRS. A NUWS 2D L-COSY sequence was developed for 7T whole-body MRI. A phantom containing metabolites commonly observed in the brain at physiological concentrations was scanned ten times with both the NUWS scheme of 12:48 duration and a 17:04 constant eight-average sequence using a 32-channel head coil. 2D L-COSY spectra were also acquired from the occipital lobe of four healthy volunteers using both the proposed NUWS and the conventional uniformly-averaged L-COSY sequence. The NUWS 2D L-COSY sequence facilitated 25% shorter acquisition time while maintaining comparable SNR in humans (+0.3%) and phantom studies (+6.0%) compared to uniform averaging. NUWS schemes successfully demonstrated improved efficiency of L-COSY, by facilitating a reduction in scan time without affecting signal quality.

  18. Menopause Analytical Hormonal Correlate Outcome Study (MAHCOS and the association to brain electrophysiology (P300 in a clinical setting.

    Directory of Open Access Journals (Sweden)

    Eric R Braverman

    Full Text Available Various studies have demonstrated that increased leptin levels and obesity are inversely related to cognitive decline in menopausal women. It is hypothesized that adiposity is inversely correlated with cognitive decline, as women with increased weight are less vulnerable to diminishing cognition. However, it is increasingly observed that menopausal women, even with increased adiposity, experience significant cognitive decline. Positron emission tomography (PET has been used to analyze cognitive function and processing in menopausal women. Evoked potentials (P300 and neurophysiologic tests have validated brain metabolism in cognitively impaired patients. Post-hoc analyses of 796 female patients entering PATH Medical Clinic, between January 4, 2009 and February 24, 2013, were performed as part of the "Menopause Analytical Hormonal Correlate Outcome Study" (MAHCOS. Patient age range was 39-76 years (46.7 ± 0.2. P300 latency and amplitude correlated with a number of hormones: follicle stimulating hormone (FSH, luteinizing hormone (LH, estradiol, estrone, estriol, DHEA, pregnenolone, progesterone, free and total testosterone, thyroid stimulating hormone (TSH, Vitamins D 1.25 and D 25OH, leptin, and insulin-like growth factor-binding protein 3 (IGF-BP3. Corrected statistics did not reveal significant associations with P300 latency or amplitude for these hormones except for leptin plasma levels. However, factor analysis showed that FSH and LH clustered together with Vitamin D1.25 and Vitamin D25OH, P300 latency (not amplitude, and log leptin were found to be associated in the same cluster. Utilizing regression analysis, once age adjusted, leptin was the only significant predictor for latency or speed (p = 0.03 with an effect size of 0.23. Higher plasma leptin levels were associated with abnormal P300 speed (OR = 0.98. Our findings show a significant relationship of higher plasma leptin levels, potentially due to leptin resistance, and prolonged P300

  19. Correlations between diffusion tensor imaging and levels of consciousness in patients with traumatic brain injury: a systematic review and meta-analysis.

    Science.gov (United States)

    Zhang, Jie; Wei, Rui-Li; Peng, Guo-Ping; Zhou, Jia-Jia; Wu, Min; He, Fang-Ping; Pan, Gang; Gao, Jian; Luo, Ben-Yan

    2017-06-05

    Traumatic brain injury (TBI) often leads to impaired consciousness. Recent diffusion tensor imaging studies associated consciousness with imaging metrics including fractional anisotropy (FA) and apparent diffusion coefficient (ADC). We evaluated their correlations and determined the best index in candidate regions. Six databases were searched, including PubMed and Embase, and 16 studies with 701 participants were included. Data from region-of-interest and whole-brain analysis methods were meta-analysed separately. The FA-consciousness correlation was marginal in the whole-brain white matter (r = 0.63, 95% CI [0.47, 0.79], p = 0.000) and the corpus callosum (CC) (r = 0.60, 95% CI [0.48, 0.71], p = 0.000), and moderate in the internal capsule (r = 0.48, 95% CI [0.24, 0.72], p = 0.000). Correlations with ADC trended negative and lacked significance. Further subgroup analysis revealed that consciousness levels correlated strongly with FA in the CC body (r = 0.66, 95% CI [0.43, 0.89]), moderately in the splenium (r = 0.58, 95% CI [0.38, 0.78]), but insignificantly in the genu. In conclusion, FA correlates better with consciousness levels than ADC in TBI. The degree of correlation varies among brain regions. The CC (especially its splenium and body) is a reliable candidate region to quantitatively reflect consciousness levels.

  20. Human cell-death-inducing DFF45-1ike effector C induces apoptosis via caspase-8

    Institute of Scientific and Technical Information of China (English)

    Xin Tang; Zhen Xing; Hong Tang; Liang Liang; Mujun Zhao

    2011-01-01

    Human cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector C (CIDEC) is a potent apoptotic inducer.Previous studies have indicated that the Fatspecific protein 27 (Fsp27),a mouse homolog of CIDEC,induces apoptosis via caspase-3,-7,and -9 and triggers the release of cytocbrome c from mitochondria,which implies that the mitochondrial pathway is involved in Fsp27-induced apoptosis,in the current study,we found that CIDEC-inducedapoptosiswasmediatedby caspase-8.The caspase inhibitor assay showed that CIDEC-induced apoptosis was dramatically reduced in the presence of the general caspase inhibitor,the caspase-3 inhibitor,and the caspase-8 inhibitor,whereas the caspase-9 inhibitor only weakly inhibited CIDEC-induced apoptosis.These results confirmed that the activation of caspase-3 and caspase-8 were involved in CIDEC-induced apoptosis.Moreover,in caspase-3- or caspase-8-deficient cells,CIDEC-induced apoptosis were dramatically decreased,which demonstrated that CIDEC-induced apoptosis might require the activation of caspase-3 and caspase-8.Because caspase-8 in general is a key effecter of death-receptor pathway and activated by Fas-Associated protein with Death Domain (FADD),we examined whether FADD was involved in CIDEC-induced apoptosis.Our results demonstrated that CIDEC-induced apoptosis was independent of FADD,suggesting that CIDEC-induced apoptosis might be in a death-receptor-independent,caspase-8-dependent manner.It was also found that the region of amino acid 168-200 in carboxyl domain of CIDEC was critical for its crucial pro-apoptotic function.

  1. Nitric oxide is the key mediator of death induced by fisetin in human acute monocytic leukemia cells.

    Science.gov (United States)

    Ash, Dipankar; Subramanian, Manikandan; Surolia, Avadhesha; Shaha, Chandrima

    2015-01-01

    Nitric oxide (NO) has been shown to be effective in cancer chemoprevention and therefore drugs that help generate NO would be preferable for combination chemotherapy or solo use. This study shows a new evidence of NO as a mediator of acute leukemia cell death induced by fisetin, a promising chemotherapeutic agent. Fisetin was able to kill THP-1 cells in vivo resulting in tumor shrinkage in the mouse xenograft model. Death induction in vitro was mediated by an increase in NO resulting in double strand DNA breaks and the activation of both the extrinsic and the intrinsic apoptotic pathways. Double strand DNA breaks could be reduced if NO inhibitor was present during fisetin treatment. Fisetin also inhibited the downstream components of the mTORC1 pathway through downregulation of levels of p70 S6 kinase and inducing hypo-phosphorylation of S6 Ri P kinase, eIF4B and eEF2K. NO inhibition restored phosphorylation of downstream effectors of mTORC1 and rescued cells from death. Fisetin induced Ca(2+) entry through L-type Ca(2+) channels and abrogation of Ca(2+) influx reduced caspase activation and cell death. NO increase and increased Ca(2+) were independent phenomenon. It was inferred that apoptotic death of acute monocytic leukemia cells was induced by fisetin through increased generation of NO and elevated Ca(2+) entry activating the caspase dependent apoptotic pathways. Therefore, manipulation of NO production could be viewed as a potential strategy to increase efficacy of chemotherapy in acute monocytic leukemia.

  2. Functional resting-state fMRI connectivity correlates with serum levels of the S100B protein in the acute phase of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    William Hedley Thompson

    2016-01-01

    Full Text Available The S100B protein is an intra-cellular calcium-binding protein that mainly resides in astrocytes in the central nervous system. The serum level of S100B is used as biomarker for the severity of brain damage in traumatic brain injury (TBI patients. In this study we investigated the relationship between intrinsic resting-state brain connectivity, measured 1–22 days (mean 8 days after trauma, and serum levels of S100B in a patient cohort with mild-to-severe TBI in need of neuro-intensive care in the acute phase. In line with previous investigations, our results show that the peak level of S100B acquired during the acute phase of TBI was negatively correlated with behavioral measures (Glasgow Outcome Score, GOS of functional outcome assessed 6 to 12 months post injury. Using a multi-variate pattern analysis-informed seed-based correlation analysis, we show that the strength of resting-state brain connectivity in multiple resting-state networks was negatively correlated with the peak of serum levels of S100B. A negative correspondence between S100B peak levels recorded 12–36 h after trauma and intrinsic connectivity was found for brain regions located in the default mode, fronto-parietal, visual and motor resting-state networks. Our results suggest that resting-state brain connectivity measures acquired during the acute phase of TBI is concordant with results obtained from molecular biomarkers and that it may hold a capacity to predict long-term cognitive outcome in TBI patients.

  3. Linear and curvilinear correlations of brain gray matter volume and density with age using voxel-based morphometry with the Akaike information criterion in 291 healthy children.

    Science.gov (United States)

    Taki, Yasuyuki; Hashizume, Hiroshi; Thyreau, Benjamin; Sassa, Yuko; Takeuchi, Hikaru; Wu, Kai; Kotozaki, Yuka; Nouchi, Rui; Asano, Michiko; Asano, Kohei; Fukuda, Hiroshi; Kawashima, Ryuta

    2013-08-01

    We examined linear and curvilinear correlations of gray matter volume and density in cortical and subcortical gray matter with age using magnetic resonance images (MRI) in a large number of healthy children. We applied voxel-based morphometry (VBM) and region-of-interest (ROI) analyses with the Akaike information criterion (AIC), which was used to determine the best-fit model by selecting which predictor terms should be included. We collected data on brain structural MRI in 291 healthy children aged 5-18 years. Structural MRI data were segmented and normalized using a custom template by applying the diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) procedure. Next, we analyzed the correlations of gray matter volume and density with age in VBM with AIC by estimating linear, quadratic, and cubic polynomial functions. Several regions such as the prefrontal cortex, the precentral gyrus, and cerebellum showed significant linear or curvilinear correlations between gray matter volume and age on an increasing trajectory, and between gray matter density and age on a decreasing trajectory in VBM and ROI analyses with AIC. Because the trajectory of gray matter volume and density with age suggests the progress of brain maturation, our results may contribute to clarifying brain maturation in healthy children from the viewpoint of brain structure.

  4. Ictal {sup 99m}Tc-ECD brain SPECT imaging: localization of seizure foci and correlation with semiology in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young; Ryu, Jin Sook; Lee, Hee Kyung; Ma, Hyeo Il; Lee, Sang Ahm; Lee, Jung Kyo; Kang, Joong Koo [Asan Medical Center, Seoul (Korea, Republic of)

    1997-07-01

    The purpose of this study was to evaluate the usefulness of ictal {sup 99m}Tc-ECD brain SPECT in temporal lobe epilepsy (TLE) patients for presurgical localization of seizure foci, and to correlate ictal SPECT patterns with the semiology of seizure. ictal {sup 99m}Tc-ECD Brain SPECT was performed in 23 TLE patients whose MRI showed unilateral hippocampal atrophy (18 patients), other focal temporal lesions (4 patients) and normal finding (1 patient). Under CCTV monitoring, injection was done during ictal period in all patients with the mean delay of 38.5{+-}17.3 sec (mean seizure duration : 90.5{+-}35.9 sec). Ictal {sup 99m}Tc-ECD Brain SPECT was visually analysed by three blinded observers. All patients underwent temporal lobectomy with a minimum 3 months follow-up (range 3-29 months) ; all had good post-surgical seizure control (Engel's calssification class I). Ictal {sup 99m}Tc-ECD Brain SPECT showed unilateral temporal hyperperfusion concordant with epileptic foci in 22/23 (95.7%), whereas non-lateralization in 1/23 (4.3%). The hyperperfusion of the ipsilateral basal ganglia was present in 72.7% (16/22) of patients with dystonic/tonic posture of the contralateral hand. The contralateral cerebellar hyperperfusion was observed in the 7/22 (32%). The group with secondary generalized tonic clonic seizure (GTC) had brain stem and bilateral thalamic hyperperfusion in 4/7 (57.1%) while the group without secondary GTC had the same hyperperfusion in 1/16 (6.3%). There was statistically significant difference in brain stem and bilateral thalamic perfusion between two groups. Ictal {sup 99m}Tc-ECD Brain SPECT is a useful modality in pre-surgical localization of the epileptic foci and well correlated with the semiology of seizure.

  5. Brain structural changes and their correlation with vascular disease in type 2 diabetes mellitus patients:a voxel-based morphometric study

    Institute of Scientific and Technical Information of China (English)

    Chunxia Wang; Kailiang Fu; Huaijun Liu; Fei Xing; Songyun Zhang

    2014-01-01

    Voxel-based morphometry has been used in the study of alterations in brain structure in type 1 diabetes mellitus patients. These changes are associated with clinical indices. The age at onset, pathogenesis, and treatment of type 1 diabetes mellitus are different from those for type 2 diabetes mellitus. Thus, type 1 and type 2 diabetes mellitus may have different impacts on brain structure. Only a few studies of the alterations in brain structure in type 2 diabetes mellitus patients using voxel-based morphometry have been conducted, with inconsistent results. We detected subtle changes in the brain structure of 23 cases of type 2 diabetes mellitus, and demonstrated that there was no signiifcant difference between the total volume of gray and white matter of the brain of type 2 diabetes mellitus patients and that in controls. Regional atrophy of gray matter mainly occurred in the right temporal and left occipital cortex, while regional atrophy of white matter involved the right temporal lobe and the right cerebellar hemisphere. The ankle-brachial index in patients with type 2 diabetes mellitus strongly correlated with the volume of brain regions in the default mode network. The ankle-brachial index, followed by the level of glycosylated hemoglobin, most strongly correlated with the volume of gray matter in the right temporal lobe. These data suggest that voxel-based morphometry could detect small structural changes in patients with type 2 diabetes mellitus. Early macrovascular atherosclerosis may play a crucial role in subtle brain atro-phy in type 2 diabetes mellitus patients, with chronic hyperglycemia playing a lesser role.

  6. Homogeneous MGMT Immunoreactivity Correlates with an Unmethylated MGMT Promoter Status in Brain Metastases of Various Solid Tumors

    OpenAIRE

    Barbara Ingold; Peter Schraml; Heppner, Frank L.; Holger Moch

    2009-01-01

    The O(6)-methylguanine-methyltransferase (MGMT) promoter methylation status is a predictive parameter for the response of malignant gliomas to alkylating agents such as temozolomide. First clinical reports on treating brain metastases with temozolomide describe varying effects. This may be due to the fact that MGMT promoter methylation of brain metastases has not yet been explored in depth. Therefore, we assessed MGMT promoter methylation of various brain metastases including those derived fr...

  7. Correlations of behavioral deficits with brain pathology assessed through longitudinal MRI and histopathology in the R6/1 mouse model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Ivan Rattray

    Full Text Available Huntington's disease (HD is caused by the expansion of a CAG repeat in the huntingtin (HTT gene. The R6 mouse models of HD express a mutant version of exon 1 HTT and typically develop motor and cognitive impairments, a widespread huntingtin (HTT aggregate pathology and brain atrophy. Unlike the more commonly used R6/2 mouse line, R6/1 mice have fewer CAG repeats and, subsequently, a less rapid pathological decline. Compared to the R6/2 line, fewer descriptions of the progressive pathologies exhibited by R6/1 mice exist. The association between the molecular and cellular neuropathology with brain atrophy, and with the development of behavioral phenotypes remains poorly understood in many models of HD. In attempt to link these factors in the R6/1 mouse line, we have performed detailed assessments of behavior and of regional brain abnormalities determined through longitudinal, in vivo magnetic resonance imaging (MRI, as well as an end-stage, ex vivo MRI study and histological assessment. We found progressive decline in both motor and non-motor related behavioral tasks in R6/1 mice, first evident at 11 weeks of age. Regional brain volumes were generally unaffected at 9 weeks, but by 17 weeks there was significant grey matter atrophy. This age-related brain volume loss was validated using a more precise, semi-automated Tensor Based morphometry assessment. As well as these clear progressive phenotypes, mutant HTT (mHTT protein, the hallmark of HD molecular pathology, was widely distributed throughout the R6/1 brain and was accompanied by neuronal loss. Despite these seemingly concomitant, robust pathological phenotypes, there appeared to be little correlation between the three main outcome measures: behavioral performance, MRI-detected brain atrophy and histopathology. In conclusion, R6/1 mice exhibit many features of HD, but the underlying mechanisms driving these clear behavioral disturbances and the brain volume loss, still remain unclear.

  8. Correlation with neuropsychological assessment and SPM analysis of brain perfusion SPECT in patients with progressive supranuclear palsy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young Jin; Kang, Do Young; Park, Kyung Won; Kim, Jae Woo [School of Medicine, Dong-A University, Busan (Korea, Republic of)

    2004-07-01

    Progressive supranuclear palsy (PSP) is a degenerative condition of unknown aetiology that produces an akinetic-rigid form of parkinsonism characterised by early falls, dementia and abnormalities of extraocular movements. The patterns of decreased regional cerebral blood flow and cognitive impairment in PSP compared with normal control have been insufficiently investigated and a limited number of studies have been performed. We evaluated clinical symptoms, functional neuroimaging study using Tc-99m HMPAO SPECT and neuropsychological profiles in patients with PSP. Eleven patients with PSP diagnosed by the clinical criteria of National Institute of Neurological Disorders and Stroke and the Society for PSP (NINDS-SPSP) (mean age: 70.5{+-}5.6 years, educational period: 4.5{+-}4.7 years) and age-matched 10 healthy control subjects (mean age: 68.1{+-}4.5 years, educational period: 6.5{+-}4.1 years) participated in this study were participated. All patients were given a neurologic examination, brain MRI and cerebral perfusion SPECT using Tc-99m HMPAO. We concomittently evaluated several cognitive profiles using the Seoul Neuropsychological Screening Battery. SPM analysis of the SPECT image showed significant perfusion deficits in the left inferior frontal gyrus, left caudate nucleus, left middle frontal gyrus and cingulate gyrus in the patients with PSP compared with age-matched healthy control (uncorrected p<0.01). On neuropsychological assessment, cognitive deficits on verbal and visual memory, word fluency and frontal executive functions were prominent in most patients with PSP compared with healthy control subjects. Our findings suggest that measurement of regional cerebral blood flow by perfusion SPECT and voxel-based SPM analysis with neuropsychological assessment are useful to understanding the correlation between perfusion deficits and abnormal cognitive profiles in patients with PSP.

  9. Alzheimer’s Biomarkers are Correlated with Brain Connectivity in Older Adults Differentially during Resting and Task States

    Directory of Open Access Journals (Sweden)

    Yang eJiang

    2016-02-01

    Full Text Available ß-amyloid (Aß plaques and tau-related neurodegeneration are pathologic hallmarks of Alzheimer’s disease (AD. The utility of AD biomarkers, including those measured in cerebrospinal fluid (CSF, in predicting future AD risk and cognitive decline is still being refined. Here we explored potential relationships between functional connectivity patterns within the default-mode network (DMN, age, CSF biomarkers (Aß42 and pTau181 and cognitive status in older adults. Multiple measures of functional connectivity were explored including a novel time series based measure (Total Interdependence; TI. In our sample of 27 cognitively normal older adults, no significant associations were found between levels of Aß42 or pTau181 and cognitive scores or regional brain volumes. However, we observed several novel relationships between these biomarkers and measures of functional connectivity in DMN during both resting-state and a short-term memory task. First, increased connectivity between bilateral anterior middle temporal gyri was associated with higher levels of CSF Aβ42 and Aβ42/pTau181 ratio (reflecting lower AD risk during both rest and task. Second, increased bilateral parietal connectivity during the short-term memory task, but not during rest, was associated with higher levels of CSF pTau181 (reflecting higher AD risk. Third, increased connectivity between left middle temporal and left parietal cortices during the active task was associated with decreased global cognitive status but not CSF biomarkers. Lastly, we found that our new TI method was more sensitive to the CSF Aβ42-connectivity relationship whereas the traditional cross-correlation method was more sensitive to levels of CSF pTau181 and cognitive status. With further refinement, resting-state connectivity and task-driven connectivity measures hold promise as non-invasive neuroimaging markers of Aβ and pTau burden in cognitively normal older adults.

  10. Theory of Mind Performance in Children Correlates with Functional Specialization of a Brain Region for Thinking about Thoughts

    Science.gov (United States)

    Gweon, Hyowon; Dodell-Feder, David; Bedny, Marina; Saxe, Rebecca

    2012-01-01

    Thinking about other people's thoughts recruits a specific group of brain regions, including the temporo-parietal junctions (TPJ), precuneus (PC), and medial prefrontal cortex (MPFC). The same brain regions were recruited when children (N = 20, 5-11 years) and adults (N = 8) listened to descriptions of characters' mental states, compared to…

  11. Structural and functional correlates of visual field asymmetry in the human brain by diffusion kurtosis MRI and functional MRI.

    Science.gov (United States)

    O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C

    2016-11-09

    Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.

  12. Theory of Mind Performance in Children Correlates with Functional Specialization of a Brain Region for Thinking about Thoughts

    Science.gov (United States)

    Gweon, Hyowon; Dodell-Feder, David; Bedny, Marina; Saxe, Rebecca

    2012-01-01

    Thinking about other people's thoughts recruits a specific group of brain regions, including the temporo-parietal junctions (TPJ), precuneus (PC), and medial prefrontal cortex (MPFC). The same brain regions were recruited when children (N = 20, 5-11 years) and adults (N = 8) listened to descriptions of characters' mental states, compared to…

  13. Working Memory Performance Is Correlated with Local Brain Morphology in the Medial Frontal and Anterior Cingulate Cortex in Fibromyalgia Patients: Structural Correlates of Pain-Cognition Interaction

    Science.gov (United States)

    Luerding, R.; Weigand, T.; Bogdahn, U.; Schmidt-Wilcke, T.

    2008-01-01

    Fibromyalgia (FM) is a disorder of unknown aetiology, characterized by chronic widespread pain, stiffness and sleep disturbances. In addition, patients frequently complain of memory and attention deficits. Accumulating evidence suggests that FM is associated with CNS dysfunction and with an altered brain morphology. However, few studies have…

  14. Content of endoplasmic reticulum and Golgi complex membranes positively correlates with the proliferative status of brain cells.

    Science.gov (United States)

    Silvestre, David C; Maccioni, Hugo J F; Caputto, Beatriz L

    2009-03-01

    Although the molecular and cellular basis of particular events that lead to the biogenesis of membranes in eukaryotic cells has been described in detail, understanding of the intrinsic complexity of the pleiotropic response by which a cell adjusts the overall activity of its endomembrane system to accomplish these requirements is limited. Here we carried out an immunocytochemical and biochemical examination of the content and quality of the endoplasmic reticulum (ER) and Golgi apparatus membranes in two in vivo situations characterized by a phase of active cell proliferation followed by a phase of declination in proliferation (rat brain tissue at early and late developmental stages) or by permanent active proliferation (gliomas and their most malignant manifestation, glioblastomas multiforme). It was found that, in highly proliferative phases of brain development (early embryo brain cells), the content of ER and Golgi apparatus membranes, measured as total lipid phosphorous content, is higher than in adult brain cells. In addition, the concentration of protein markers of ER and Golgi is also higher in early embryo brain cells and in human glioblastoma multiforme cells than in adult rat brain or in nonpathological human brain cells. Results suggest that the amount of endomembranes and the concentration of constituent functional proteins diminish as cells decline in their proliferative activity.

  15. Investigation on positive correlation of increased brain iron deposition with cognitive impairment in Alzheimer disease by using quantitative MR R2' mapping.

    Science.gov (United States)

    Qin, Yuanyuan; Zhu, Wenzhen; Zhan, Chuanjia; Zhao, Lingyun; Wang, Jianzhi; Tian, Qing; Wang, Wei

    2011-08-01

    Brain iron deposition has been proposed to play an important role in the pathophysiology of Alzheimer disease (AD). The aim of this study was to investigate the correlation of brain iron accumulation with the severity of cognitive impairment in patients with AD by using quantitative MR relaxation rate R2' measurements. Fifteen patients with AD, 15 age- and sex-matched healthy controls, and 30 healthy volunteers underwent 1.5T MR multi-echo T2 mapping and T2* mapping for the measurement of transverse relaxation rate R2' (R2'=R2*-R2). We statistically analyzed the R2' and iron concentrations of bilateral hippocampus (HP), parietal cortex (PC), frontal white matter (FWM), putamen (PU), caudate nucleus (CN), thalamus (TH), red nucleus (RN), substantia nigra (SN), and dentate nucleus (DN) of the cerebellum for the correlation with the severity of dementia. Two-tailed t-test, Student-Newman-Keuls test (ANOVA) and linear correlation test were used for statistical analysis. In 30 healthy volunteers, the R2' values of bilateral SN, RN, PU, CN, globus pallidus (GP), TH, and FWM were measured. The correlation with the postmortem iron concentration in normal adults was analyzed in order to establish a formula on the relationship between regional R2' and brain iron concentration. The iron concentration of regions of interest (ROI) in AD patients and controls was calculated by this formula and its correlation with the severity of AD was analyzed. Regional R2' was positively correlated with regional brain iron concentration in normal adults (r=0.977, PIron concentrations in bilateral HP, PC, PU, CN, and DN of patients with AD were significantly higher than those of the controls (Piron concentrations, especially in parietal cortex and hippocampus at the early stage of AD, were positively correlated with the severity of patients' cognitive impairment (Piron concentrations were, the more severe the cognitive impairment was. Regional R2' and iron concentration in parietal cortex and

  16. Correlation between EGFR mutation status and the incidence of brain metastases in patients with non-small cell lung cancer.

    Science.gov (United States)

    Li, Lina; Luo, Shuimei; Lin, Heng; Yang, Haitao; Chen, Huijuan; Liao, Ziyuan; Lin, Wanzun; Zheng, Weili; Xie, Xianhe

    2017-08-01

    Lung cancer is the leading cause of cancer-related death worldwide. Numerous studies have been performed to investigate the correlation between epidermal growth factor receptor (EGFR) mutation status and the incidence of brain metastases (BMs) in patients with non-small cell lung cancer (NSCLC), however, the outcomes were inconsistent. Thus, we performed this study to establish the role of EGFR mutation status in BMs. Electronic databases PubMed, Embase, Cochrane Library, CBM, WanFang, CNKI were searched to identify relevant trials. The primary endpoint was the incidence of BMs in EGFR mutations or wild type NSCLC and the secondary endpoint was overall survival calculated from the BMs emerging (BMOS). Twenty-two studies incorporating 8,152 participants were eligible. EGFR mutations group possessed a significantly higher risk of BMs (OR =1.99; 95% CI, 1.59-2.48; P=0.000) than EGFR wild type group. In the stratified analysis, compared with EGFR wild type group, EGFR mutations group had a significant higher incidence (OR =2.01; 95% CI, 1.56-2.59; P=0.000) of subsequent BMs while only a trend of increasing the incidence of initial BMs (OR =1.38; 95% CI, 0.98-1.94; P=0.066). Moreover, exon 19 deletion had a trend of increasing the incidence of BMs than exon 21 mutation (OR =1.44; 95% CI, 0.77-2.68; P=0.252). Compared with EGFR wild type group, EGFR mutations group possessed a prolonged overall BMOS (HR =0.68; 95% CI, 0.47-0.98; P=0.038) and a longer BMOS in initial BMs (HR =0.50; 95% CI, 0.31-0.80; P=0.004) but no significant difference in NSCLC with subsequent BMs (HR =0.95; 95% CI, 0.42-2.15; P=0.901). Patients with EGFR mutations were more susceptible to develop into BMs than those with EGFR wild type, especially during the course of disease.

  17. Radiological-Pathological Correlations Following Blast-Related Traumatic Brain Injury in the Whole Human Brain Using ex Vivo Diffusion Tensor Imaging

    Science.gov (United States)

    2014-01-01

    injuries caused by non-blast related trauma (e.g. falls, motor vehicle accidents, etc.), post - mortem pathological analyses have revealed that...issues: 1) Selection of control cases: we will select only young, otherwise healthy patients who died from non-head trauma and had a short post - mortem ...20 Oppenheimer, D. R. (1968). "Microscopic lesions in the brain following head injury." J Neurol Neurosurg Psychiatry 31(4): 299-306. http

  18. Brain wave correlates of attentional states: Event related potentials and quantitative EEG analysis during performance of cognitive and perceptual tasks

    Science.gov (United States)

    Freeman, Frederick G.

    1993-01-01

    presented target stimulus. In addition to the task requirements, irrelevant tones were presented in the background. Research has shown that even though these stimuli are not attended, ERP's to them can still be elicited. The amplitude of the ERP waves has been shown to change as a function of a person's level of alertness. ERP's were also collected and analyzed for the target stimuli for each task. Brain maps were produced based on the ERP voltages for the different stimuli. In addition to the ERP's, a quantitative EEG (QEEG) was performed on the data using a fast Fourier technique to produce a power spectral analysis of the EEG. This analysis was conducted on the continuous EEG while the subjects were performing the tasks. Finally, a QEEG was performed on periods during the task when subjects indicated that they were in an altered state of awareness. During the tasks, subjects were asked to indicate by pressing a button when they realized their level of task awareness had changed. EEG epochs were collected for times just before and just after subjects made this reponse. The purpose of this final analysis was to determine whether or not subjective indices of level of awareness could be correlated with different patterns of EEG.

  19. Network-based analysis reveals stronger local diffusion-based connectivity and different correlations with oral language skills in brains of children with high functioning autism spectrum disorders.

    Science.gov (United States)

    Li, Hai; Xue, Zhong; Ellmore, Timothy M; Frye, Richard E; Wong, Stephen T C

    2014-02-01

    Neuroimaging has uncovered both long-range and short-range connectivity abnormalities in the brains of individuals with autism spectrum disorders (ASD). However, the precise connectivity abnormalities and the relationship between these abnormalities and cognition and ASD symptoms have been inconsistent across studies. Indeed, studies find both increases and decreases in connectivity, suggesting that connectivity changes in the ASD brain are not merely due to abnormalities in specific connections, but rather, due to changes in the structure of the network in which the brain areas interact (i.e., network topology). In this study, we examined the differences in the network topology between high-functioning ASD patients and age and gender matched typically developing (TD) controls. After quantitatively characterizing the whole-brain connectivity network using diffusion tensor imaging (DTI) data, we searched for brain regions with different connectivity between ASD and TD. A measure of oral language ability was then correlated with the connectivity changes to determine the functional significance of such changes. Whole-brain connectivity measures demonstrated greater local connectivity and shorter path length in ASD as compared to TD. Stronger local connectivity was found in ASD, especially in regions such as the left superior parietal lobule, the precuneus and angular gyrus, and the right supramarginal gyrus. The relationship between oral language ability and local connectivity within these regions was significantly different between ASD and TD. Stronger local connectivity was associated with better performance in ASD and poorer performance in TD. This study supports the notion that increased local connectivity is compensatory for supporting cognitive function in ASD. Copyright © 2012 Wiley Periodicals, Inc.

  20. Correlation of brain tissue oxygen tension with cerebral near-infrared spectroscopy and mixed venous oxygen saturation during extracorporeal membrane oxygenation.

    Science.gov (United States)

    Tyree, Kreangkai; Tyree, Melissa; DiGeronimo, Robert

    2009-09-01

    The aim of this prospective, animal study was to compare brain tissue oxygen tension (PbtO(2)) with cerebral near infrared spectroscopy (NIRS) and mixed venous oxygen saturation (SVO(2)) during venoarterial extracorporeal membrane oxygenation (VA ECMO) in a porcine model. This was accomplished using twelve immature piglets with surgically implanted catheters placed in the superficial cerebral cortex to measure brain PbtO(2) and microdialysis metabolites. The NIRS sensor was placed overlying the forehead to measure cerebral regional saturation index (rSO(2)i) while SVO(2) was measured directly from the ECMO circuit. Animals were placed on VA ECMO followed by an initial period of stabilization, after which they were subjected to graded hypoxia and recovery. Our results revealed that rSO(2)i and SVO(2) correlated only marginally with PbtO(2) (R(2)=0.32 and R(2)=0.26, respectively) while the correlation between rSO(2)i and SVO( 2) was significantly stronger (R(2)=0.59). Cerebral metabolites and rSO(2)i were significantly altered during attenuation of PbtO( 2), p<0.05). A subset of animals, following exposure to hypoxia, experienced markedly delayed recovery of both rSO(2)i and PbtO( 2) despite rapid normalization of SVO(2). Upon further analysis, these animals had significantly lower blood pressure (p=0.001), lower serum pH (p=0.01), and higher serum lactate (p=0.02). Additionally, in this subgroup, rSO(2)i correlated better with PbtO(2) (R(2)=0.76). These findings suggest that, in our ECMO model, rSO(2)i and SVO( 2) correlate reasonably well with each other, but not necessarily with brain PbtO(2) and that NIRS-derived rSO(2)i may more accurately reflect cerebral tissue hypoxia in sicker animals.

  1. Quantification of magnetization transfer rate and native T1 relaxation time of the brain: correlation with magnetization transfer ratio measurements in patients with multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Karampekios, Spyros; Papanikolaou, Nickolas; Papadaki, Eufrosini; Gourtsoyiannis, Nicholas [University Hospital of Heraklion, Department of Radiology, Heraklion (Greece); Maris, Thomas [University Hospital of Heraklion, Department of Medical Physics, Heraklion (Greece); Uffman, Kai [University Hospital of Essen, Department of Diagnostic Radiology, Essen (Germany); Spilioti, Martha; Plaitakis, Andreas [University Hospital of Heraklion, Department of Neurology, Heraklion (Greece)

    2005-03-01

    The purpose of this paper is to perform quantitative measurements of the magnetization transfer rate (Kfor) and native T1 relaxation time (T1free) in the brain tissue of normal individuals and patients with multiple sclerosis (MS) by means of multiple gradient echo acquisitions, and to correlate these measurements with the magnetization transfer ratio (MTR). Quantitative magnetization transfer imaging was performed in five normal volunteers and 12 patients with relapsing-remitting MS on a 1.5 T magnetic resonance (MR) scanner. The T1 relaxation time under magnetization transfer irradiation (T1sat) was calculated by means of fitting the signal intensity over the flip angle in several 3D spoiled gradient echo acquisitions (3 , 15 , 30 , and 60 ), while a single acquisition without MT irradiation (flip angle of 3 ) was utilized to calculate the MTR. The Kfor and T1free constants were quantified on a pixel-by-pixel basis and parametric maps were reconstructed. We performed 226 measurements of Kfor, T1free, and the MTR on normal white matter (NWM) of healthy volunteers (n=50), and normal-appearing white matter (NAWM) and pathological brain areas of MS patients (n=120 and 56, respectively). Correlation coefficients between Kfor-MTR, T1free-MTR, and T1free-Kfor were calculated. Lesions were classified, according to their characteristics on T1-weighted images, into isointense (compared to white matter), mildly hypointense (showing signal intensity lower than white matter and higher than gray matter), and severely hypointense (revealing signal intensity lower than gray matter). ''Dirty'' white matter (DWM) corresponded to areas with diffused high signal, as identified on T2-weighted images. Strong correlation coefficients were obtained between MTR and Kfor for all lesions studied (r{sup 2}=0.9, p<0.0001), for mildly hypointense plaques (r{sup 2}=0.82, p<0.0001), and for DWM (r{sup 2}=0.78, p=0.0007). In contrast, comparison between MTR and T1free values

  2. Miliary brain metastases from adenocarcinoma of the lung: MR imaging findings with clinical and post-mortem histopathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Yohei; Mano, Kazuo; Goto, Yoji; Nakano, Tomonobu [Japanese Red Cross Nagoya First Hospital, Department of Neurology Medicine, Nagoya, Aichi (Japan); Nomura, Fumio; Shimokata, Tomoya [Japanese Red Cross Nagoya First Hospital, Department of Respiratory Medicine, Nagoya, Aichi (Japan); Iwamizu-Watanabe, Sachiko [Nagoya University Graduate School of Medicine, Department of Pathology of Molecular Diagnosis, Nagoya (Japan); Hashizume, Yoshio [Aichi Medical University, Institute for Medical Science of Aging, Nagakute, Aichi (Japan)

    2007-01-15

    Miliary dissemination is a rare form of brain metastasis. The clinical and pathologic features of this form are unclear. We report a 66-year-old man with miliary brain metastases from adenocarcinoma of the lung, describing MRI and neuropathologic findings in the context of previously reported cases. Initial disorientation progressed to an apallic state within 6 months. Although, CT with administration of contrast agent failed to demonstrate any lesions, MRI with Gd-DTPA administration showed multiple enhancing miliary nodules in the cerebral cortex, basal ganglia, thalamus, cerebellum, and brainstem. Some of those nodules also could be seen on T2-weighted imaging without Gd-DTPA, but were difficult to identify conclusively. A histopathologic examination at autopsy disclosed diffusely distributed miliary tumor nodules in a perivascular distribution without surrounding focal edema or reactive gliosis. Notably, this patient with miliary brain metastases developed disorientation followed by unconsciousness, which overshadowed other focal neurologic signs at that time. We should consider this pattern of brain dissemination when a cancer is associated with unexplained disturbance of consciousness. (orig.)

  3. Brain Activity in Adults Who Stutter: Similarities across Speaking Tasks and Correlations with Stuttering Frequency and Speaking Rate

    Science.gov (United States)

    Ingham, Roger J.; Grafton, Scott T.; Bothe, Anne K.; Ingham, Janis C.

    2012-01-01

    Many differences in brain activity have been reported between persons who stutter (PWS) and typically fluent controls during oral reading tasks. An earlier meta-analysis of imaging studies identified stutter-related regions, but recent studies report less agreement with those regions. A PET study on adult dextral PWS (n = 18) and matched fluent…

  4. Correlation of acetylcholinesterase activity in the brain and blood of wistar rats acutely infected with Trypanosoma congolense

    Institute of Scientific and Technical Information of China (English)

    Habila N; Inuwa HM; Aimola IA; Lasisi OI; Chechet DG; Okafor IA

    2012-01-01

    Objective: To investigate the neurotransmitter enzyme Acetylcholinesterase (AChE) activity in the brain and blood of rats infected with Trypanosoma congolense (T. congo). Methods: Presence and degree of parasitemia was determined daily for each rat by the rapid matching method. AChE activity was determined by preparing a reaction mixture of brain homogenate and whole blood with 5, 5-dithiobisnitrobenzioc acid (DTNB or Ellman’s reagent) and Acetylthiocholine (ATC). The increase in absorbance was recorded at 436 nm over 10 min at 2 min intervals. Trypanosome species identification (before inoculation and on day 10 post infection) was done by Polymerase chain reaction using specific primers. Results: The AChE activity in the brain and blood decreased significantly as compared with the uninfected control. The AChE activity dropped to 0.32 from 2.20 μmol ACTC min-1mg protein-1 in the brain and 4.57 to 0.76 μmol ACTC min-1mg protein-1 in the blood. The animals treated with Diminaveto at 3.5 mg/kg/d were observed to have recovered significantly from parasitemia and were able to regain AChE activity in the blood but not in the brain as compared to the control groups. We also observed, that progressive parasitemia resulted to alterations in PCV, Hb, RBC, WBC, neurophils, total protein, lymphocytes, monocytes and eosinophil in acute infections of T. congo. Polymerase chain reaction (PCR) of infected blood before inoculation and on day 10 post infection revealed 600 bp on agarose gel electrophoresis. Conclusions: This finding suggest that decrease in AChE activity increases acetylcholine concentration in the synaptic cleft resulting to neurological failures in impulse transfer in T. congo infection rats.

  5. [Correlations of activity of neurons of sensorimotor cortex of the right and left brain hemispheres of rabbits during defensive dominant and "animal hypnosis"].

    Science.gov (United States)

    Bogdanov, A V; Galashina, A G; Karamysheva, N N

    2009-01-01

    A hidden excitation focus of the rhythmic nature (a rhythmic defensive dominant focus) was produced in the rabbit's CNS. The focus was formed by means of threshold electrodermal stimulation of the left forelimb by series of pulses consisting of 15-20 stimuli with 2 s intervals between the pulses. Correlated activity of cells in the sensorimotor cortex of the right and left brain hemispheres was analyzed. In cases when crosscorrelation histograms were constructed by the results of the analysis of discharges of the left-side cortical of neurons regarding high- and middle-amplitude pulses in a right hemisphere, 15 and 23 % of correlated neural pairs, respectively, revealed the prevalence of the rhythm identical or close to the initial rhythm of stimulation that formed the hidden excitation focus. In contrast, in cases when the same analysis was applied to the right-side cortical neurons regarding high- and middle-amplitude discharges in the left hemisphere, prevalence of the dominant 2-second rhythm was revealed in correlated activity of only 3 and 10% of neural pairs, respectively. After the exposure to "animal hypnosis" procedure, the distinctions between the brain in this parameter were eliminated.

  6. Analysis of acute brain slices by electron microscopy: a correlative light-electron microscopy workflow based on Tokuyasu cryo-sectioning.

    Science.gov (United States)

    Loussert Fonta, Celine; Leis, Andrew; Mathisen, Cliff; Bouvier, David S; Blanchard, Willy; Volterra, Andrea; Lich, Ben; Humbel, Bruno M

    2015-01-01

    Acute brain slices are slices of brain tissue that are kept vital in vitro for further recordings and analyses. This tool is of major importance in neurobiology and allows the study of brain cells such as microglia, astrocytes, neurons and their inter/intracellular communications via ion channels or transporters. In combination with light/fluorescence microscopies, acute brain slices enable the ex vivo analysis of specific cells or groups of cells inside the slice, e.g. astrocytes. To bridge ex vivo knowledge of a cell with its ultrastructure, we developed a correlative microscopy approach for acute brain slices. The workflow begins with sampling of the tissue and precise trimming of a region of interest, which contains GFP-tagged astrocytes that can be visualised by fluorescence microscopy of ultrathin sections. The astrocytes and their surroundings are then analysed by high resolution scanning transmission electron microscopy (STEM). An important aspect of this workflow is the modification of a commercial cryo-ultramicrotome to observe the fluorescent GFP signal during the trimming process. It ensured that sections contained at least one GFP astrocyte. After cryo-sectioning, a map of the GFP-expressing astrocytes is established and transferred to correlation software installed on a focused ion beam scanning electron microscope equipped with a STEM detector. Next, the areas displaying fluorescence are selected for high resolution STEM imaging. An overview area (e.g. a whole mesh of the grid) is imaged with an automated tiling and stitching process. In the final stitched image, the local organisation of the brain tissue can be surveyed or areas of interest can be magnified to observe fine details, e.g. vesicles or gold labels on specific proteins. The robustness of this workflow is contingent on the quality of sample preparation, based on Tokuyasu's protocol. This method results in a reasonable compromise between preservation of morphology and maintenance of

  7. Morphological and chemical studies of pathological human and mice brain at the subcellular level: correlation between light, electron, and nanosims microscopies.

    Science.gov (United States)

    Quintana, Carmen; Wu, Ting-Di; Delatour, Benoit; Dhenain, Marc; Guerquin-Kern, Jean Luc; Croisy, Alain

    2007-04-01

    Neurodegenerative diseases induce morphological and chemical alterations in well-characterized regions of the brain. Understanding their pathological processes requires the use of methods that assess both morphological and chemical alterations in the tissues. In the past, microprobe approaches such as scanning electron microscopy combined with an X-ray spectrometer, Proton induced X-ray emission, secondary ion mass spectrometry (SIMS), and laser microprobe mass analysis have been used for the study of pathological human brain with limited success. At the present, new SIMS instruments have been developed, such as the NanoSIMS-50 ion microprobe, that allow the simultaneous identification of five elements with high sensitivity, at subcellular spatial resolution (about 50-100 nm with the Cs(+) source and about 150-200 nm with O(-) source). Working in scanning mode, 2D distribution of five elements (elemental maps) can be obtained, thus providing their exact colocalization. The analysis can be performed on semithin or ultrathin embedded sections. The possibility of using transmission electron microscopy and SIMS on the same ultrathin sections allows the correlation between structural and analytical observations at subcellular and ultrastructural level to be established. Our observations on pathological brain areas allow us to establish that the NanoSIMS-50 ion microprobe is a highly useful instrument for the imaging of the morphological and chemical alterations that take place in these brain areas. In the human brain our results put forward the subcellular distribution of iron-ferritin-hemosiderin in the hippocampus of Alzheimer disease patients. In the thalamus of transgenic mice, our results have shown the presence of Ca-Fe mineralized amyloid deposits.

  8. T2 and T2* measurements of fetal brain oxygenation during hypoxia with MRI at 3T: correlation with fetal arterial blood oxygen saturation

    Energy Technology Data Exchange (ETDEWEB)

    Wedegaertner, Ulrike; Adam, Gerhard [Universitaetsklinikum Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Kooijman, Hendrik [Philips Medical Systems, Best (Netherlands); Andreas, Thomas; Beindorff, Nicola; Hecher, Kurt [University Hospital Hamburg-Eppendorf, Department of Obstetrics and Prenatal Medicine, Hamburg (Germany)

    2010-01-15

    The purpose of this prospective study was to determine the oxygen saturation of blood in the fetal brain based on T2 and T2* measurements in a fetal sheep model. Five sheep fetuses were investigated during normoxia and hypoxia by 3T MRI. Multi-echo gradient-echo and turbo-spin-echo sequences were performed on the fetal brain. MR-determined oxygen saturation (MR-sO{sub 2}) of blood in the fetal brain was calculated based on T2 and T2* values. Fetal arterial blood oxygen saturation (blood-sO{sub 2}) was measured during the two experimental phases. The slope of MR-sO{sub 2} as a function of blood-sO{sub 2} was estimated and tested for compatibility using the one-sample t-test. During normoxia, mean values for carotid blood oxygen saturation were 67%, 83 ms for T2*, 202 ms for T2 and 96% for MR-sO{sub 2}. During hypoxia, arterial blood oxygen saturation, T2* and calculated MR-sO{sub 2} decreased to 22%, 64 ms, and 68% respectively. The one-sample t-test revealed the slope to be significantly different from 0(T=5.023, df=4, P=0.007). It is feasible to perform quantitative T2 and T2* measurements in the fetal brain. MR-sO{sub 2} and fetal arterial blood oxygen saturation correlated significantly. However, based on these data a reliable quantification of fetal brain tissue oxygenation is not possible. (orig.)

  9. Trypanosoma brucei Invasion and T-Cell Infiltration of the Brain Parenchyma in Experimental Sleeping Sickness: Timing and Correlation with Functional Changes

    Science.gov (United States)

    Laperchia, Claudia; Palomba, Maria; Seke Etet, Paul F.; Rodgers, Jean; Bradley, Barbara; Montague, Paul; Grassi-Zucconi, Gigliola; Bentivoglio, Marina

    2016-01-01

    Background The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications. Methodology Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM) periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses. Principal findings Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion. Conclusion These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging. PMID:28002454

  10. Reperfusion of the rat brain tissues following acute ischemia: the correlation among diffusion-weighted imaging, histopathology,and aquaporin-4 expression

    Institute of Scientific and Technical Information of China (English)

    LU Hong; HU Hui; HE Zhan-ping

    2011-01-01

    Background Although some studies have reported that aquaporin-4 (AQP4) plays a role in the post-ischemic edema formation and diffusion-weighted imaging (DWI), little is known about the AQP4 expression in stage of the reperfusion following acute cerebral ischemia, as well as the correlation between histopathology and DWl. The aim of the study was to investigate the correlation among DWl, histopathology and the AQP4 expression in the reperfused rat brain tissues following acute ischemia.Methods Seventy Wistar rats were randomly divided into a control group (group A), and several occluded and reperfusion groups. They had their middle cerebral artery unilaterally occluded (MCAO) for 30 minutes (group B) followed by 30 minutes (group D) or 60 minutes (group E) of reperfusion, or 60 minutes of MCAO (group C) followed by 30 minutes (group F), or 60 minutes (group G) of reperfusion (n=10 for each group). All rats underwent DWl scanning.The relative apparent diffusion coefficient (rADC) value of each rat was calculated. All the rats were sacrificed and the cerebral ischemic tissues were examined for histopathology. Real-time fluro-quantitative polymerase chain reaction (RT-PCR) and Western-blotting were performed. The amount of AQP4 mRNA (Ex △△Ct) and AQP4 protein (Q) was statistically analyzed. The correlation between rADC values and AQP4 mRNA expression was analyzed with the Pearson correlation test.Results In all the reperfusion groups, the areas of hyper-intensity signal in DWl were decreased, and the rADC value increased and the AQP4 expression decreased significantly compared with the occluded group (t=26.89, t=18.26, P<0.01). There was a negative correlation between AQP4 mRNA expression and rADC values (r=-0.72, P<0.01). A mixed edema, composed of cerebral intracelluar edema and vasogenic brain edema, was observed in all the reperfusion groups.It was more prevalent in groups D and F than in the groups E and G. With the reperfusion time postponed, the cerebral

  11. Computed tomography of the dog's brain: normal aspects and anatomical correlation; Tomografia computadorizada do encefalo do cao: aspectos da normalidade e correlacao anatomica

    Energy Technology Data Exchange (ETDEWEB)

    Lorigados, C.A.B., E-mail: clorigados@usp.br [Faculdades Metropolitanas Unidas (UniFMU), Sao Paulo, SP (Brazil); Pinto, A.C.B.F. [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Medicina Veterinaria e Zootecnia

    2013-06-15

    Normal tomographic images of dog's heads were obtained, aimed to familiarize them with the normal aspects of the brain and correlate these findings with the relevant anatomy of the region studied. Several anatomical structures, such as the parenchyma of the frontal, parietal, temporal and occipital lobes, the longitudinal fissure, the ventricular system, the cerebellum, the olfactory bulb, the corpus callosum, diencephalon, the pons, the medulla oblongata and the chiasmatic sulcus were directly identified or were related to neighboring structures which helped in their identification. (author)

  12. Clinical, cognitive, and functional connectivity correlations of resting-state intrinsic brain activity alterations in unmedicated depression

    OpenAIRE

    Tadayonnejad, Reza; Yang, Shaolin; Kumar, Anand; Ajilore, Olusola

    2014-01-01

    The pervasive and persistent nature of depressive symptoms has made resting-state functional magnetic resonance imaging (rs-fMRI) an appropriate approach for understanding the underlying mechanisms of major depressive disorder. The majority of rs-fMRI research has focused on depression-related alterations in the interregional coordination of brain baseline low frequency oscillations (LFOs). However, alteration of the regional amplitude of LFOs in depression, particularly its clinical, cogniti...

  13. Brain oscillatory correlates of altered executive functioning in positive and negative symptomatic schizophrenia patients and healthy controls

    Directory of Open Access Journals (Sweden)

    Barbara eBerger

    2016-05-01

    Full Text Available Working Memory and executive functioning deficits are core characteristics of patients suffering from schizophrenia. Electrophysiological research indicates that altered patterns of neural oscillatory mechanisms underpinning executive functioning are associated with the psychiatric disorder. Such brain oscillatory changes have been found in local amplitude differences at gamma and theta frequencies in task-specific cortical areas. Moreover, interregional interactions are also disrupted as signified by decreased phase coherence of fronto-posterior theta activity in schizophrenia patients. However, schizophrenia is not a one-dimensional psychiatric disorder but has various forms and expressions. A common distinction is between positive and negative symptomatology but most patients have both negative and positive symptoms to some extent. Here, we examined three groups – healthy controls, predominantly negative and predominantly positive symptomatic schizophrenia patients – when performing a working memory task with increasing cognitive demand and increasing need for executive control. We analysed brain oscillatory activity in the three groups separately and investigated how predominant symptomatology might explain differences in brain oscillatory patterns. Our results indicate that differences in task specific fronto-posterior network activity (i.e. executive control network expressed by interregional phase synchronisation are able to account for working memory dysfunctions between groups. Local changes in the theta and gamma frequency range also show differences between patients and healthy controls, and more importantly, between the two patient groups. We conclude that differences in oscillatory brain activation patterns related to executive processing can be an indicator for positive and negative symptomatology in schizophrenia. Furthermore, changes in cognitive and especially executive functioning in patients are expressed by alterations in

  14. Oxytocin receptor polymorphism and childhood social experiences shape adult personality, brain structure and neural correlates of mentalizing.

    Science.gov (United States)

    Schneider-Hassloff, H; Straube, B; Jansen, A; Nuscheler, B; Wemken, G; Witt, S H; Rietschel, M; Kircher, T

    2016-07-01

    The oxytocin system is involved in human social behavior and social cognition such as attachment, emotion recognition and mentalizing (i.e. the ability to represent mental states of oneself and others). It is shaped by social experiences in early life, especially by parent-infant interactions. The single nucleotid polymorphism rs53576 in the oxytocin receptor (OXTR) gene has been linked to social behavioral phenotypes. In 195 adult healthy subjects we investigated the interaction of OXTR rs53576 and childhood attachment security (CAS) on the personality traits "adult attachment style" and "alexithymia" (i.e. emotional self-awareness), on brain structure (voxel-based morphometry) and neural activation (fMRI) during an interactive mentalizing paradigm (prisoner's dilemma game; subgroup: n=163). We found that in GG-homozygotes, but not in A-allele carriers, insecure childhood attachment is - in adulthood - associated with a) higher attachment-related anxiety and alexithymia, b) higher brain gray matter volume of left amygdala and lower volumes in right superior parietal lobule (SPL), left temporal pole (TP), and bilateral frontal regions, and c) higher mentalizing-related neural activity in bilateral TP and precunei, and right middle and superior frontal gyri. Interaction effects of genotype and CAS on brain volume and/or function were associated with individual differences in alexithymia and attachment-related anxiety. Interactive effects were in part sexually dimorphic. The interaction of OXTR genotype and CAS modulates adult personality as well as brain structure and function of areas implicated in salience processing and mentalizing. Rs53576 GG-homozygotes are partially more susceptible to childhood attachment experiences than A-allele carriers. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Brain Oscillatory Correlates of Altered Executive Functioning in Positive and Negative Symptomatic Schizophrenia Patients and Healthy Controls

    Science.gov (United States)

    Berger, Barbara; Minarik, Tamas; Griesmayr, Birgit; Stelzig-Schoeler, Renate; Aichhorn, Wolfgang; Sauseng, Paul

    2016-01-01

    Working Memory and executive functioning deficits are core characteristics of patients suffering from schizophrenia. Electrophysiological research indicates that altered patterns of neural oscillatory mechanisms underpinning executive functioning are associated with the psychiatric disorder. Such brain oscillatory changes have been found in local amplitude differences at gamma and theta frequencies in task-specific cortical areas. Moreover, interregional interactions are also disrupted as signified by decreased phase coherence of fronto-posterior theta activity in schizophrenia patients. However, schizophrenia is not a one-dimensional psychiatric disorder but has various forms and expressions. A common distinction is between positive and negative symptomatology but most patients have both negative and positive symptoms to some extent. Here, we examined three groups—healthy controls, predominantly negative, and predominantly positive symptomatic schizophrenia patients—when performing a working memory task with increasing cognitive demand and increasing need for executive control. We analyzed brain oscillatory activity in the three groups separately and investigated how predominant symptomatology might explain differences in brain oscillatory patterns. Our results indicate that differences in task specific fronto-posterior network activity (i.e., executive control network) expressed by interregional phase synchronization are able to account for working memory dysfunctions between groups. Local changes in the theta and gamma frequency range also show differences between patients and healthy controls, and more importantly, between the two patient groups. We conclude that differences in oscillatory brain activation patterns related to executive processing can be an indicator for positive and negative symptomatology in schizophrenia. Furthermore, changes in cognitive and especially executive functioning in patients are expressed by alterations in a task

  16. Whole brain volume changes and its correlation with clinical symptom severity in patients with schizophrenia: A DARTEL-based VBM study.

    Science.gov (United States)

    Kim, Gwang-Won; Kim, Yun-Hyeon; Jeong, Gwang-Woo

    2017-01-01

    The purpose of this study was to evaluate gray matter (GM) and white matter (WM) volume alterations in whole-brain structures in patients with schizophrenia and healthy controls using voxel-based morphometry (VBM), and further to assess the correlation between GM and WM volume variations and symptom severity in schizophrenia. A total of 22 patients with schizophrenia and 22 age-matched healthy controls participated. Magnetic resonance image data were processed using SPM8 software with diffeomorphic anatomical registration via an exponentiated Lie algebra (DARTEL) algorithm. Patients with schizophrenia exhibited significantly decreased GM volumes of the insula, superior temporal gyrus (STG), gyrus rectus, and anterior cingulate cortex (ACC) compared with healthy controls. The GM volumes of the STG and gyrus rectus were negatively correlated with the positive scales on the Positive and Negative Syndrome Scale (PANSS) and those of the STG and ACC were negatively correlated with the negative scales. The durations of illness in schizophrenia were negatively correlated with the GM volumes of the insula, STG, and ACC. Patients with schizophrenia exhibited significantly decreased WM volumes of the superior frontal gyrus, inferior temporal gyrus, and STG. The WM volumes of the STG were negatively correlated with the duration of illness. Our findings suggest that GM and WM volume abnormalities in the STG are associated with the psychopathology of schizophrenia.

  17. Brain death is associated with endoplasmic reticulum stress and apoptosis in rat liver.

    Science.gov (United States)

    Cao, S; Wang, T; Yan, B; Lu, Y; Zhao, Y; Zhang, S

    2014-12-01

    Cell death pathways initiated by stress on the endoplasmic reticulum (ER) have been implicated in a variety of common diseases, such as ischemia/reperfusion injury, diabetes, heart disease, and neurodegenerative disorders. However, the contribution of ER stress to apoptosis and liver injury after brain death is not known. In the present study, we found that brain death induces a variety of signature ER stress markers, including ER stress-specific X box-binding protein 1 and up-regulation of glucose-regulated protein 78. Furthermore, brain death causes up-regulation of C/EBP homologous protein and caspase-12. Consistent with this, terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick-end labeling assay and transmission electron microscopy confirmed apoptosis in the liver after brain death. Taken together, the present study provides strong evidence supporting the presence and importance of ER stress and response in mediating brain death-induced apoptosis and liver injury.

  18. Correlation of tooth size and body size in living hominoid primates, with a note on relative brain size in Aegyptopithecus and Proconsul.

    Science.gov (United States)

    Gingerich, P D

    1977-11-01

    Second molar length and body weight are used to test the correlation between tooth size and body size in living Hominoidea. These variates are highly correlated (r= 0.942, p less than 0.001), indicating that tooth size can be used in dentally unspecialized fossil hominoids as one method of predicting the average body weight of species. Based on tooth size, the average body weight of Aegyptopithecus zeuxis is estimated to have been beteen 4.5 and 7.5 kg, which is corroborated by known cranial and postcranial elements. Using Radinsky's estimates of brain size, the encephalization quotient (EQ) for Aegyptopithecus was between 0.65 and 1.04. A similar analysis for Proconsul africanus yields a body weight between 16 and 34 kg, and an EQ between 1.19 and 1.96.

  19. Increased micro-RNA 29b in the aged brain correlates with the reduction of insulin-like growth factor-1 and fractalkine ligand.

    Science.gov (United States)

    Fenn, Ashley M; Smith, Kristen M; Lovett-Racke, Amy E; Guerau-de-Arellano, Mireia; Whitacre, Caroline C; Godbout, Jonathan P

    2013-12-01

    Microglia develop an inflammatory phenotype during normal aging. The mechanism by which this occurs is not well understood, but might be related to impairments in several key immunoregulatory systems. Here we show that micro-RNA (miR)-29a and miR-29b, 2 immunoregulatory micro-RNAs, were increased in the brain of aged BALB/c mice compared with adults. Insulin-like growth factor-1 (IGF-1) and fractalkine ligand (CX3CL1) are negative modulators of microglial activation and were identified as targets of miR-29a and miR-29b using luciferase assay and primary microglia transfection. Indeed, higher expression of miR-29b in the brain of aged mice was associated with reduced messenger RNA (mRNA) levels of IGF-1 and CX3CL1. Parallel to these results in mice, miR-29a and miR-29b were also markedly increased in cortical brain tissue of older individuals (mean, 77 years) compared with middle-aged adults (mean, 45 years). Moreover, increased expression of miR-29b in human cortical tissue was negatively correlated with IGF-1 and CX3CL1 expression. Collectively, these data indicate that an age-associated increase in miR-29 corresponded with the reduction of 2 important regulators of microglia, IGF-1 and CX3CL1. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Magnetoencephalography Slow-Wave Detection in Patients with Mild Traumatic Brain Injury and Ongoing Symptoms Correlated with Long-Term Neuropsychological Outcome.

    Science.gov (United States)

    Robb Swan, Ashley; Nichols, Sharon; Drake, Angela; Angeles, AnneMarie; Diwakar, Mithun; Song, Tao; Lee, Roland R; Huang, Ming-Xiong

    2015-10-01

    Mild traumatic brain injury (mTBI) is common in the United States, accounting for as many as 75-80% of all TBIs. It is recognized as a significant public health concern, but there are ongoing controversies regarding the etiology of persistent symptoms post-mTBI. This constellation of nonspecific symptoms is referred to as postconcussive syndrome (PCS). The present study combined results from magnetoencephalography (MEG) and cognitive assessment to examine group differences and relationships between brain activity and cognitive performance in 31 military and civilian individuals with a history of mTBI+PCS and 33 matched healthy control subjects. An operator-free analysis was used for MEG data to increase reliability of the technique. Subjects completed a comprehensive neuropsychological assessment, and measures of abnormal slow-wave activity from MEG were collected. Results demonstrated significant group differences on measures of executive functioning and processing speed. In addition, significant correlations between slow-wave activity on MEG and patterns of cognitive functioning were found in cortical areas, consistent with cognitive impairments on exams. Results provide more objective evidence that there may be subtle changes to the neurobiological integrity of the brain that can be detected by MEG. Further, these findings suggest that these abnormalities are associated with cognitive outcomes and may account, at least in part, for long-term PCS in those who have sustained an mTBI.

  1. Long-Term Functional Outcomes and Correlation with Regional Brain Connectivity by MRI Diffusion Tractography Metrics in a Near-Term Rabbit Model of Intrauterine Growth Restriction

    Science.gov (United States)

    Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard

    2013-01-01

    Background Intrauterine growth restriction (IUGR) affects 5–10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. Methodology At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. Principal Findings The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. Conclusions The rabbit model used reproduced long-term functional impairments and their neurostructural

  2. Long-term functional outcomes and correlation with regional brain connectivity by MRI diffusion tractography metrics in a near-term rabbit model of intrauterine growth restriction.

    Directory of Open Access Journals (Sweden)

    Miriam Illa

    Full Text Available BACKGROUND: Intrauterine growth restriction (IUGR affects 5-10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI parameters and connectivity. METHODOLOGY: At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. PRINCIPAL FINDINGS: The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. CONCLUSIONS: The rabbit model used reproduced long-term functional impairments and their

  3. Decreased cerebellar-orbitofrontal connectivity correlates with stuttering severity: Whole-brain functional and structural connectivity associations with persistent developmental stuttering

    Directory of Open Access Journals (Sweden)

    Kevin Richard Sitek

    2016-05-01

    Full Text Available Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here, we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex. Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and orbitofrontal cortex may underlie successful compensatory mechanisms by more fluent stutterers.

  4. The enzymatic activities of brain catechol-O-methyltransferase (COMT) and methionine sulphoxide reductase are correlated in a COMT Val/Met allele-dependent fashion.

    Science.gov (United States)

    Moskovitz, Jackob; Walss-Bass, Consuelo; Cruz, Dianne A; Thompson, Peter M; Hairston, Jenaqua; Bortolato, Marco

    2015-12-01

    The enzyme catechol-O-methyltransferase (COMT) plays a primary role in the metabolism of catecholamine neurotransmitters and is implicated in the modulation of cognitive and emotional responses. The best characterized single nucleotide polymorphism (SNP) of the COMT gene consists of a valine (Val)-to-methionine (Met) substitution at codon 108/158. The Met-containing variant confers a marked reduction in COMT catalytic activity. We recently showed that the activity of recombinant COMT is positively regulated by the enzyme Met sulphoxide reductase (MSR), which counters the oxidation of Met residues of proteins. The current study was designed to assess whether brain COMT activity may be correlated to MSR in an allele-dependent fashion. COMT and MSR activities were measured from post-mortem samples of prefrontal cortices, striata and cerebella of 32 subjects by using catechol and dabsyl-Met sulphoxide as substrates, respectively. Allelic discrimination of COMT Val(108/185) Met SNP was performed using the Taqman 5'nuclease assay. Our studies revealed that, in homozygous carriers of Met, but not Val alleles, the activity of COMT and MSR was significantly correlated throughout all tested brain regions. These results suggest that the reduced enzymatic activity of Met-containing COMT may be secondary to Met sulphoxidation and point to MSR as a key molecular determinant for the modulation of COMT activity. © 2015 British Neuropathological Society.

  5. Registration of FA and T1-weighted MRI data of healthy human brain based on template matching and normalized cross-correlation.

    Science.gov (United States)

    Malinsky, Milos; Peter, Roman; Hodneland, Erlend; Lundervold, Astri J; Lundervold, Arvid; Jan, Jiri

    2013-08-01

    In this work, we propose a new approach for three-dimensional registration of MR fractional anisotropy images with T1-weighted anatomy images of human brain. From the clinical point of view, this accurate coregistration allows precise detection of nerve fibers that is essential in neuroscience. A template matching algorithm combined with normalized cross-correlation was used for this registration task. To show the suitability of the proposed method, it was compared with the normalized mutual information-based B-spline registration provided by the Elastix software library, considered a reference method. We also propose a general framework for the evaluation of robustness and reliability of both registration methods. Both registration methods were tested by four evaluation criteria on a dataset consisting of 74 healthy subjects. The template matching algorithm has shown more reliable results than the reference method in registration of the MR fractional anisotropy and T1 anatomy image data. Significant differences were observed in the regions splenium of corpus callosum and genu of corpus callosum, considered very important areas of brain connectivity. We demonstrate that, in this registration task, the currently used mutual information-based parametric registration can be replaced by more accurate local template matching utilizing the normalized cross-correlation similarity measure.

  6. Six-Minute Walking Distance Correlated with Memory and Brain Volume in Older Adults with Mild Cognitive Impairment: A Voxel-Based Morphometry Study

    Directory of Open Access Journals (Sweden)

    Hyuma Makizako

    2013-08-01

    Full Text Available Background/Aims: High fitness levels play an important role in maintaining memory function and delaying the progression of structural brain changes in older people at risk of developing dementia. However, it is unclear which specific regions of the brain volume are associated with exercise capacity. We investigated whether exercise capacity, determined by a 6-min walking distance (6MWD, is associated with measures of logical and visual memory and where gray matter regions correlate with exercise capacity in older adults with mild cognitive impairment (MCI. Methods: Ninety-one community-dwelling older adults with MCI completed a 6-min walking test, structural magnetic resonance imaging scanning, and memory tests. The Wechsler Memory Scale-Revised Logical Memory and Rey-Osterrieth Complex Figure Tests were used to assess logical and visual memory, respectively. Results: The logical and visual memory tests were positively correlated with the 6MWD (p Conclusions: These results suggest that a better 6MWD performance may be related to better memory function and the maintenance of gray matter volume in older adults with MCI.

  7. Phasic and tonic fluctuations in brain, muscle, and skin temperatures during motivated drinking behavior in rats: physiological correlates of motivation and reward.

    Science.gov (United States)

    Smirnov, Michael S; Kiyatkin, Eugene A

    2010-01-15

    Since brain metabolism is accompanied by heat production, measurement of brain temperature offers a method for assessing global alterations in metabolic neural activity. This approach, high-resolution (5-s bin) temperature recording from the nucleus accumbens (NAcc), temporal muscle, and facial skin, was used to study motivated drinking behavior in rats. Experienced animals were presented with a cup containing 5-ml of Coca-Cola(R) (Coke) beverage that resulted, within certain latencies, in initiation of a continuous chain of licking until all liquid was fully consumed. While cup presentation induced rapid, gradual NAcc temperature increase peaking at the start of drinking, temperatures slowly decreased during Coke consumption, but phasically increased again in the post-consumption period when rats were hyperactive, showing multiple interactions with an empty cup. Muscle temperatures followed a similar pattern, but the changes were weaker and delayed compared to those in the brain. Skin temperature rapidly dropped after cup presentation, steadily maintained at low levels during consumption, and slowly restored during the post-consumption period. Substitution of the expected Coke with either sugar-free Diet Coke(R) or water resulted in numerous drinking attempts but ultimately no consumption. During these tests, locomotor activation was much greater and more prolonged, brain and muscle temperatures increased monophasically, and their elevation was significantly greater than that with regular Coke tests. Food deprivation decreased drinking latencies, did not change the pattern of temperature fluctuations during Coke consumption, but temperature elevations were greater than in controls. Our data suggest sustained neural activation triggered by appetitive stimuli and associated with activational (seeking) aspects of appetitive motivated behavior. This seeking-related activation is rapidly ceased following consumption, suggesting this change as a neural correlate of

  8. Serum BDNF correlates with connectivity in the (pre)motor hub in the aging human brain--a resting-state fMRI pilot study.

    Science.gov (United States)

    Mueller, Karsten; Arelin, Katrin; Möller, Harald E; Sacher, Julia; Kratzsch, Jürgen; Luck, Tobias; Riedel-Heller, Steffi; Villringer, Arno; Schroeter, Matthias L

    2016-02-01

    Brain-derived neurotrophic factor (BDNF) has been discussed to be involved in plasticity processes in the human brain, in particular during aging. Recently, aging and its (neurodegenerative) diseases have increasingly been conceptualized as disconnection syndromes. Here, connectivity changes in neural networks (the connectome) are suggested to be the most relevant and characteristic features for such processes or diseases. To further elucidate the impact of aging on neural networks, we investigated the interaction between plasticity processes, brain connectivity, and healthy aging by measuring levels of serum BDNF and resting-state fMRI data in 25 young (mean age 24.8 ± 2.7 (SD) years) and 23 old healthy participants (mean age, 68.6 ± 4.1 years). To identify neural hubs most essentially related to serum BDNF, we applied graph theory approaches, namely the new data-driven and parameter-free approach eigenvector centrality (EC) mapping. The analysis revealed a positive correlation between serum BDNF and EC in the premotor and motor cortex in older participants in contrast to young volunteers, where we did not detect any association. This positive relationship between serum BDNF and EC appears to be specific for older adults. Our results might indicate that the amount of physical activity and learning capacities, leading to higher BDNF levels, increases brain connectivity in (pre)motor areas in healthy aging in agreement with rodent animal studies. Pilot results have to be replicated in a larger sample including behavioral data to disentangle the cause for the relationship between BDNF levels and connectivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Acute pressure changes in the brain are correlated with MR elastography stiffness measurements: initial feasibility in an in vivo large animal model.

    Science.gov (United States)

    Arani, Arvin; Min, Hoon-Ki; Fattahi, Nikoo; Wetjen, Nicholas M; Trzasko, Joshua D; Manduca, Armando; Jack, Clifford R; Lee, Kendall H; Ehman, Richard L; Huston, John

    2017-05-09

    The homeostasis of intracranial pressure (ICP) is of paramount importance for maintaining normal brain function. A noninvasive technique capable of making direct measurements of ICP currently does not exist. MR elastography (MRE) is capable of noninvasively measuring brain tissue stiffness in vivo, and may act as a surrogate to measure ICP. The objective of this study was to investigate the impact of changing ICP on brain stiffness using MRE in a swine model. Baseline MRE measurements were obtained, and then catheters were surgically placed into the left and right lateral ventricles of three animals. ICP was systematically increased over the range of 0 to 55 millimeters mercury (mmHg), and stiffness measurements were made using brain MRE at vibration frequencies of 60 hertz (Hz), 90 Hz, 120 Hz, and 150 Hz. A significant linear correlation between stiffness and ICP in the cross-subject comparison was observed for all tested vibrational frequencies (P ≤ 0.01). The 120 Hz (0.030 ± 0.004 kilopascal (kPa)/mmHg, P vibrational frequencies had nearly identical slopes, which were approximately two- to three-fold higher than the 90 Hz (0.017 ± 0.002 kPa/mmHg, P Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  10. Multivariate imaging-genetics study of MRI gray matter volume and SNPs reveals biological pathways correlated with brain structural differences in Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Sabin Khadka

    2016-07-01

    Full Text Available Background: Attention Deficit Hyperactivity Disorder (ADHD is a prevalent neurodevelopmental disorder affecting children, adolescents, and adults. Its etiology is not well-understood, but it is increasingly believed to result from diverse pathophysiologies that affect the structure and function of specific brain circuits. Although one of the best-studied neurobiological abnormalities in ADHD is reduced fronto-striatal-cerebellar gray matter volume, its specific genetic correlates are largely unknown. Methods: In this study, T1-weighted MR images of brain structure were collected from 198 adolescents (63 ADHD-diagnosed. A multivariate parallel independent component analysis technique (Para-ICA identified imaging-genetic relationships between regional gray matter volume and single nucleotide polymorphism data. Results: Para-ICA analyses extracted 14 components from genetic data and 9 from MR data. An iterative cross-validation using randomly-chosen sub-samples indicated acceptable stability of these ICA solutions. A series of partial correlation analyses controlling for age, sex, and ethnicity revealed two genotype-phenotype component pairs significantly differed between ADHD and non-ADHD groups, after a Bonferroni correction for multiple comparisons. The brain phenotype component not only included structures frequently found to have abnormally low volume in previous ADHD studies, but was also significantly associated with ADHD differences in symptom severity and performance on cognitive tests frequently found to be impaired in patients diagnosed with the disorder. Pathway analysis of the genotype component identified several different biological pathways linked to these structural abnormalities in ADHD. Conclusions: Some of these pathways implicate well-known dopaminergic neurotransmission and neurodevelopment hypothesized to be abnormal in ADHD. Other more recently implicated pathways included glutamatergic and GABA-eric physiological systems

  11. Downregulation of MicroRNA-330 Correlates with the Radiation Sensitivity and Prognosis of Patients with Brain Metastasis from Lung Cancer.

    Science.gov (United States)

    Jiang, Li-Peng; Zhu, Zhi-Tu; Zhang, Yue; He, Chun-Yan

    2017-08-16

    The present study sought to explore the role of microRNA-330 (miR-330) in predicting the radiation response and prognosis of patients with brain metastasis (BM) from lung cancer (LC). Patients with BM from LC were identified and classified into radiation-sensitive and radiation-resistant groups according to the overall survival rate, local and distant recurrence rate after conventional whole-brain radiation therapy. Quantitative realtime polymerase chain reaction (qRT-PCR) was used to detect miR-330 expression in serum. Receiver operating characteristic (ROC) curves were used to evaluate the prognostic value of miR-330 for the radiation sensitivity of brain metastasis from LC. Related clinical factors for radiation sensitivity were assessed by logistic regression analysis, and a survival analysis was conducted using COX regression and the Kaplan-Meier method. MiR-330 exhibited lower expression in the radiation-sensitive group than in the radiation-resistant group. The area under the ROC curve of miR-330 for predicting radiation sensitivity was 0.898 (optimal cut-off value, 0.815), with a sensitivity of 71.7% and a specificity of 90.1%. After radiation therapy, patients with low miR-330 expression, compared to patients with high miR-330 expression, displayed a lower survival rate and a median survival time. MiR-330 expression was correlated with extracranial metastasis, maximum BM diameter, tumor-node-metastasis (TNM) stage and node (N) stage. Logistic regression and COX regression analyses revealed that extracranial metastasis, TNM stage, N stage and miR-330 expression were factors that influenced both radiation sensitivity and individual prognostic factors in patients with BM from LC. These findings indicate that the downregulation of miR-330 correlates with radiation sensitivity and poor prognosis in patients with BM from LC. © 2017 The Author(s). Published by S. Karger AG, Basel.

  12. Study on CT changes in autistic children; Anatomical correlation of the damaged brain and delay of psychomotor development

    Energy Technology Data Exchange (ETDEWEB)

    Yaguchi, Katsumi (Juntendo Univ., Tokyo (Japan). School of Medicine)

    1993-05-01

    Since 1979 we have performed CT examinations on 132 autistic children. Neurological diagnosis of the lesion was established by Dr. Segawa's group. On the CT of many autistic children, we found a small low density change located in the anterior wall of the temporal horn, or localized dilatation of the inferior horn near the damaged brain. We reviewed 96 of these patients who all had the obvious low density changes, or localized irregular dilatations in the anterior wall of the temporal horn. By measuring the distance of damage from the midline, we divided the 96 cases into two groups. Group 1 consisted of those with damage located laterally more than 30 mm line from the midline. Group 2 consisted of those with damage medially to the 30 mm line from the midline. Those cases with a large lesion both laterally and medially of the 30 mm line were categorized into group 1. In the adult brain the lateral border of the amygdaloid nucleus was never located laterally more than 30 mm from the midline. Laterally over the 30 mm line there were two marked fiber systems running near the anterior wall of the temporal horn: the fiber of the anterior commissure and the uncinate fascicle. Group 1 consisted of 62 patients and group 2 of 34 patients. The majority of the two group patients were pure autism children. This suggested that the main lesion in autism was in the amygdala. (author).

  13. Tunes stuck in your brain: The frequency and affective evaluation of involuntary musical imagery correlate with cortical structure.

    Science.gov (United States)

    Farrugia, Nicolas; Jakubowski, Kelly; Cusack, Rhodri; Stewart, Lauren

    2015-09-01

    Recent years have seen a growing interest in the neuroscience of spontaneous cognition. One form of such cognition is involuntary musical imagery (INMI), the non-pathological and everyday experience of having music in one's head, in the absence of an external stimulus. In this study, aspects of INMI, including frequency and affective evaluation, were measured by self-report in 44 subjects and related to variation in brain structure in these individuals. Frequency of INMI was related to cortical thickness in regions of right frontal and temporal cortices as well as the anterior cingulate and left angular gyrus. Affective aspects of INMI, namely the extent to which subjects wished to suppress INMI or considered them helpful, were related to gray matter volume in right temporopolar and parahippocampal cortices respectively. These results provide the first evidence that INMI is a common internal experience recruiting brain networks involved in perception, emotions, memory and spontaneous thoughts. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Structural brain correlates of interpersonal violence: Systematic review and voxel-based meta-analysis of neuroimaging studies.

    Science.gov (United States)

    Lamsma, Jelle; Mackay, Clare; Fazel, Seena

    2017-09-30

    Owing to inconsistent nomenclature and results, we have undertaken a label-based review and anatomical likelihood estimation (ALE) meta-analysis of studies measuring the quantitative association between regional grey matter (GM) volume and interpersonal violence. Following PRISMA guidelines, we identified studies by searching 3 online databases (Embase, Medline, PsycInfo) and reference lists. Thirty-five studies were included in the label-based review, providing information for 1288 participants and 86 brain regions. Per region, 0-57% of the results indicated significant reductions in GM volume, while 0-23% indicated significant increases. The only region for which more than half of all results indicated significant reductions was the parietal lobe. However, these results were dispersed across subregions. The ALE meta-analysis, which included 6 whole-brain voxel-based morphometry studies totaling 278 participants and reporting 144 foci, showed no significant clusters of reduced GM volume. No material differences were observed when excluding experiments using reactive violence as outcome or subjects diagnosed with psychopathy. Possible explanations for these findings are phenomenological and etiological heterogeneity, and insufficient power in the label-based review and ALE meta-analysis to detect small effects. We recommend that future studies distinguish between subtypes of interpersonal violence, and investigate mediation by underlying emotional and cognitive processes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Is Karnofsky Performance Status Correlate with Better Overall Survival in Palliative Conformal Whole Brain Radiotherapy? Our Experience

    Science.gov (United States)

    Reali, Alessia; Allis, Simona; Girardi, Andrea; Verna, Roberta; Bianco, Lavinia; Redda, Maria Grazia Ruo

    2015-01-01

    Aim: Brain metastases (BMs) are a common event in the progression of many human cancers. The aim of this study was to evaluate the potential prognostic factors for the clinical identification of a subgroup of patients that could benefit from whole brain conformal radiotherapy (WBRT). Materials and Methods: From January 2010 to February 2014, 80 patients with a diagnosis of BMs underwent WBRT at our Radiation Oncology Department, San Luigi Hospital, Italy. Among them, 36 medical records were retrospective reviewed. Gender, age, Karnofsky performance status (KPS), number of BMs on computed tomography and/or magnetic resonance images, presence or absence of perilesional edema, presence or absence of necrosis pattern, and histology of primary tumor were analyzed. Univariate and multivariate analyses were performed. Results: In our cohort of patients, significant prognostic factors for 20 months overall survival was KPS> 70, while a statistical trend (P = 0.098) was registered regarding primary breast. Conclusion: WBRT can be still considered a standard and effective treatment in patients with BMs. High KPS and breast cancer primary tumor seem to be useful parameters for characterize a subgroup of patients with more favorable prognosis. PMID:26600700

  16. Effects of pre-encoding stress on brain correlates associated with the long-term memory for emotional scenes.

    Directory of Open Access Journals (Sweden)

    Janine Wirkner

    Full Text Available Recent animal and human research indicates that stress around the time of encoding enhances long-term memory for emotionally arousing events but neural evidence remains unclear. In the present study we used the ERP old/new effect to investigate brain dynamics underlying the long-term effects of acute pre-encoding stress on memory for emotional and neutral scenes. Participants were exposed either to the Socially Evaluated Cold Pressure Test (SECPT or a warm water control procedure before viewing 30 unpleasant, 30 neutral and 30 pleasant pictures. Two weeks after encoding, recognition memory was tested using 90 old and 90 new pictures. Emotional pictures were better recognized than neutral pictures in both groups and related to an enhanced centro-parietal ERP old/new difference (400-800 ms during recognition, which suggests better recollection. Most interestingly, pre-encoding stress exposure specifically increased the ERP old/new-effect for emotional (unpleasant pictures, but not for neutral pictures. These enhanced ERP/old new differences for emotional (unpleasant scenes were particularly pronounced for those participants who reported high levels of stress during the SECPT. The results suggest that acute pre-encoding stress specifically strengthens brain signals of emotional memories, substantiating a facilitating role of stress on memory for emotional scenes.

  17. Effects of pre-encoding stress on brain correlates associated with the long-term memory for emotional scenes.

    Science.gov (United States)

    Wirkner, Janine; Weymar, Mathias; Löw, Andreas; Hamm, Alfons O

    2013-01-01

    Recent animal and human research indicates that stress around the time of encoding enhances long-term memory for emotionally arousing events but neural evidence remains unclear. In the present study we used the ERP old/new effect to investigate brain dynamics underlying the long-term effects of acute pre-encoding stress on memory for emotional and neutral scenes. Participants were exposed either to the Socially Evaluated Cold Pressure Test (SECPT) or a warm water control procedure before viewing 30 unpleasant, 30 neutral and 30 pleasant pictures. Two weeks after encoding, recognition memory was tested using 90 old and 90 new pictures. Emotional pictures were better recognized than neutral pictures in both groups and related to an enhanced centro-parietal ERP old/new difference (400-800 ms) during recognition, which suggests better recollection. Most interestingly, pre-encoding stress exposure specifically increased the ERP old/new-effect for emotional (unpleasant) pictures, but not for neutral pictures. These enhanced ERP/old new differences for emotional (unpleasant) scenes were particularly pronounced for those participants who reported high levels of stress during the SECPT. The results suggest that acute pre-encoding stress specifically strengthens brain signals of emotional memories, substantiating a facilitating role of stress on memory for emotional scenes.

  18. Quantification of magnetization transfer rate and native T1 relaxation time of the brain: correlation with magnetization transfer ratio measurements in patients with multiple sclerosis.

    Science.gov (United States)

    Karampekios, Spyros; Papanikolaou, Nickolas; Papadaki, Eufrosini; Maris, Thomas; Uffman, Kai; Spilioti, Martha; Plaitakis, Andreas; Gourtsoyiannis, Nicholas

    2005-03-01

    The purpose of this paper is to perform quantitative measurements of the magnetization transfer rate (Kfor) and native T1 relaxation time (T1free) in the brain tissue of normal individuals and patients with multiple sclerosis (MS) by means of multiple gradient echo acquisitions, and to correlate these measurements with the magnetization transfer ratio (MTR). Quantitative magnetization transfer imaging was performed in five normal volunteers and 12 patients with relapsing-remitting MS on a 1.5 T magnetic resonance (MR) scanner. The T1 relaxation time under magnetization transfer irradiation (T1sat) was calculated by means of fitting the signal intensity over the flip angle in several 3D spoiled gradient echo acquisitions (3 degrees , 15 degrees , 30 degrees , and 60 degrees ), while a single acquisition without MT irradiation (flip angle of 3 degrees ) was utilized to calculate the MTR. The Kfor and T1free constants were quantified on a pixel-by-pixel basis and parametric maps were reconstructed. We performed 226 measurements of Kfor, T1free, and the MTR on normal white matter (NWM) of healthy volunteers (n=50), and normal-appearing white matter (NAWM) and pathological brain areas of MS patients (n=120 and 56, respectively). Correlation coefficients between Kfor-MTR, T1free-MTR, and T1free-Kfor were calculated. Lesions were classified, according to their characteristics on T1-weighted images, into isointense (compared to white matter), mildly hypointense (showing signal intensity lower than white matter and higher than gray matter), and severely hypointense (revealing signal intensity lower than gray matter). "Dirty" white matter (DWM) corresponded to areas with diffused high signal, as identified on T2-weighted images. Strong correlation coefficients were obtained between MTR and Kfor for all lesions studied (r2=0.9, pKfor and T1free measurements (r2=0.98, pKfor and T1free were found for the rest of the subgroups, except for the NAWM, in which a moderate

  19. Brain hypoxanthine concentration correlates to lactate/pyruvate ratio but not intracranial pressure in patients with acute liver failure

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Hauerberg, John; Jørgensen, Linda;

    2010-01-01

    The pathogenesis of cerebral edema in acute liver failure is suggested, in in vitro and animal studies, to involve a compromised oxidative metabolism with a decrease in cerebral ATP levels and an increase in purine concentrations. In this study we hypothesize that the cerebral concentrations...... of hypoxanthine, inosine, and lactate/pyruvate (LP) ratio are increased and correlated in patients with acute liver failure. Furthermore, we expect the purines and L/P ratio to correlate with intracranial pressure (ICP) (positively), and cerebral perfusion pressure (CPP) (negatively)....

  20. Support vector regression correlates single-sweep evoked brain potentials to gastrointestinal symptoms in diabetes mellitus patients

    DEFF Research Database (Denmark)

    Graversen, C; Frokjaer, J B; Brock, Christina

    2012-01-01

    performance of 86.2% (P=0.01) was obtained by applying a majority voting scheme to the 5 best performing channels. The biomarker was identified as decreased theta band activity. The regression value was correlated to symptoms reported by the patients (P=0.04). The methodology is an improvement of the present...

  1. Pro-Brain Natriuretic Peptide and Troponin T-Hypersensitivity Levels Correlate With the Severity of Liver Dysfunction in Liver Cirrhosis.

    Science.gov (United States)

    Zhao, Jiancheng; Li, Sai; Ren, Linan; Guo, Xiaozhong; Qi, Xingshun

    2017-08-01

    Increased pro-brain natriuretic peptide (pro-BNP) or troponin T-hypersensitivity (TnT-HSST) levels are common in liver cirrhosis. We conducted a retrospective observational study aimed to evaluate the correlation of pro-BNP and TnT-HSST levels with the clinical characteristics, laboratory data and in-hospital outcomes of patients with liver cirrhosis. We selected cirrhotic patients admitted to our hospital between January 2011 and June 2014. All eligible patients had pro-BNP or TnT-HSST data, or both. The pro-BNP and TnT-HSST data were further divided according to the presence of cardiac diseases. The prevalence of pro-BNP level >900pg/mL was 41.72% (63 of 151 patients). The prevalence of TnT-HSST level >0.05ng/mL was 11.22% (45 of 401 patients). In the overall analysis, pro-BNP level significantly correlated with red blood cell (RBC), platelet, ascites, blood urea nitrogen (BUN), creatinine (Cr), Child-Pugh score, model for end-stage liver disease (MELD) score and in-hospital death; TnT-HSST level significantly correlated with white blood cell, ascites, albumin (ALB), BUN, Cr, Child-Pugh score, MELD score and in-hospital death. In patients with cardiac diseases, pro-BNP level significantly correlated with RBC, ascites, BUN, Cr, Child-Pugh score and MELD score; TnT-HSST level significantly correlated with sex, ascites, white blood cell, ALB, BUN, Cr, Child-Pugh score, MELD score and in-hospital death. In patients without cardiac diseases, pro-BNP level significantly correlated with ascites, RBC, platelet, BUN, Cr, MELD score and in-hospital death; TnT-HSST level significantly correlated with age, ascites, RBC, ALB, BUN, Cr, Child-Pugh score, MELD score and in-hospital death. Pro-BNP and TnT-HSST levels significantly correlated with the severity of liver dysfunction and in-hospital mortality in cirrhosis. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  2. Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface.

    Directory of Open Access Journals (Sweden)

    Guillaume Lajoie

    2017-02-01

    Full Text Available Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI can artificially strengthen connections between separate neural sites in motor cortex (MC. When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity.

  3. Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface

    Science.gov (United States)

    Lajoie, Guillaume; Kalaska, John F.; Fairhall, Adrienne L.; Fetz, Eberhard E.

    2017-01-01

    Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity. PMID:28151957

  4. Hypothesizing Music Intervention Enhances Brain Functional Connectivity Involving Dopaminergic Recruitment: Common Neuro-correlates to Abusable Drugs.

    Science.gov (United States)

    Blum, Kenneth; Simpatico, Thomas; Febo, Marcelo; Rodriquez, Chris; Dushaj, Kristina; Li, Mona; Braverman, Eric R; Demetrovics, Zsolt; Oscar-Berman, Marlene; Badgaiyan, Rajendra D

    2017-07-01

    The goal of this review is to explore the clinical significance of music listening on neuroplasticity and dopaminergic activation by understanding the role of music therapy in addictive behavior treatment. fMRI data has shown that music listening intensely modifies mesolimbic structural changes responsible for reward processing (e.g., nucleus accumbens [NAc]) and may control the emotional stimuli's effect on autonomic and physiological responses (e.g., hypothalamus). Music listening has been proven to induce the endorphinergic response blocked by naloxone, a common opioid antagonist. NAc opioid transmission is linked to the ventral tegmental area (VTA) dopamine release. There are remarkable commonalities between listening to music and the effect of drugs on mesolimbic dopaminergic activation. It has been found that musical training before the age of 7 results in changes in white-matter connectivity, protecting carriers with low dopaminergic function (DRD2A1 allele, etc.) from poor decision-making, reward dependence, and impulsivity. In this article, we briefly review a few studies on the neurochemical effects of music and propose that these findings are relevant to the positive clinical findings observed in the literature. We hypothesize that music intervention enhances brain white matter plasticity through dopaminergic recruitment and that more research is needed to explore the efficacy of these therapies.

  5. Brain cortical thickness and surface area correlates of neurocognitive performance in patients with schizophrenia, bipolar disorder, and healthy adults.

    Science.gov (United States)

    Hartberg, C B; Sundet, K; Rimol, L M; Haukvik, U K; Lange, E H; Nesvåg, R; Dale, A M; Melle, I; Andreassen, O A; Agartz, I

    2011-11-01

    Relationships between cortical brain structure and neurocognitive functioning have been reported in schizophrenia, but findings are inconclusive, and only a few studies in bipolar disorder have addressed this issue. This is the first study to directly compare relationships between cortical thickness and surface area with neurocognitive functioning in patients with schizophrenia (n = 117) and bipolar disorder (n = 121) and healthy controls (n = 192). MRI scans were obtained, and regional cortical thickness and surface area measurements were analyzed for relationships with test scores from 6 neurocognitive domains. In the combined sample, cortical thickness in the right rostral anterior cingulate was inversely related to working memory, and cortical surface area in four frontal and temporal regions were positively related to neurocognitive functioning. A positive relationship between left transverse temporal thickness and processing speed was specific to schizophrenia. A negative relationship between right temporal pole thickness and working memory was specific to bipolar disorder. In conclusion, significant cortical structure/function relationships were found in a large sample of healthy controls and patients with schizophrenia or bipolar disorder. The differences that were found between schizophrenia and bipolar may indicate differential relationship patterns in the two disorders, which may be of relevance for understanding the underlying pathophysiology.

  6. NF-κB signalling requirement for brain myelin formation is shown by genotype/MRI phenotype correlations in patients with Xq28 duplications.

    Science.gov (United States)

    Philippe, Orianne; Rio, Marlène; Malan, Valérie; Van Esch, Hilde; Baujat, Geneviève; Bahi-Buisson, Nadia; Valayannopoulos, Vassili; Gesny, Roseline; Bonnefont, Jean-Paul; Munnich, Arnold; Froyen, Guy; Amiel, Jeanne; Boddaert, Nathalie; Colleaux, Laurence

    2013-02-01

    One of the key signals regulating peripheral myelin formation by Schwann cell is the activation of the transcription factor NF-κB. Yet, whether NF-κB exerts similar functions in central myelin formation by oligodendrocytes remains largely unknown. We previously reported white matter abnormalities with unusual discordance between T2 and FLAIR sequences in a patient with intellectual disability and defective NF-κB signalling. These observations prompted us to hypothesise that NF-κB signalling may have a role in the axon myelination process of central neurons. We report here on five male patients with Xq28 duplications encompassing MECP2, three of which presented white matter anomalies on brain MRI. Array-CGH and FISH analyses demonstrated that brain abnormalities correlate with additional copies of the IKBKG, a gene encoding a key regulator of NF-κB activation. Quantitative RT-PCR experiments and κB-responsive reporter gene assays provide evidence that IKBKG overexpression causes impaired NF-κB signalling in skin fibroblasts derived from patients with white matter anomalies. These data further support the role of NF-κB signalling in astroglial cells for normal myelin formation of the central nervous system.

  7. 帕金森病“肾脑相关”理论浅析%Theory analysis of the "Correlation of Kidney and Brain" on Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    常学辉; 宁亚红

    2015-01-01

    本文从生理联系、病理相关、现代研究等方面阐述“肾脑相关”理论,认为帕金森病病位在脑,肾虚髓空是其发病关键,治疗上当以滋补肝肾、填精补髓、活血熄风为主,临床以龟羚帕安丸加减运用,可减少西药用量,减轻不良反应,提高患者生存质量,延缓病情发展。%This article expounds the theory of correlation of kidney and brain from aspects of the physical contact,pathological correla­ tion and modern research,and thinks of the location of parkinsonˊs disease in the brain,kidney deficiency and marrow empty is the key pathogenesis,should be treated with nourishing liver and kidney,replenishing essence and supplementing marrow,activating blood and relieving wind. Clinical modified uses Guiling Paˊan Wan,which can reduce the drug dosage,reduce adverse reactions,improve the quality of life of patients,delay the disease development.

  8. Enhancing the classification accuracy of steady-state visual evoked potential-based brain-computer interfaces using phase constrained canonical correlation analysis

    Science.gov (United States)

    Pan, Jie; Gao, Xiaorong; Duan, Fang; Yan, Zheng; Gao, Shangkai

    2011-06-01

    In this study, a novel method of phase constrained canonical correlation analysis (p-CCA) is presented for classifying steady-state visual evoked potentials (SSVEPs) using multichannel electroencephalography (EEG) signals. p-CCA is employed to improve the performance of the SSVEP-based brain-computer interface (BCI) system using standard CCA. SSVEP response phases are estimated based on the physiologically meaningful apparent latency and are added as a reliable constraint into standard CCA. The results of EEG experiments involving 10 subjects demonstrate that p-CCA consistently outperforms standard CCA in classification accuracy. The improvement is up to 6.8% using 1-4 s data segments. The results indicate that the reliable measurement of phase information is of importance in SSVEP-based BCIs.

  9. Antimicrobial properties and death-inducing mechanisms of saccharomycin, a biocide secreted by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Branco, Patrícia; Francisco, Diana; Monteiro, Margarida

    2017-01-01

    We recently found that Saccharomyces cerevisiae (strain CCMI 885) secretes antimicrobial peptides (AMPs) derived from the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) that are active against various wine-related yeast and bacteria. Here, we show that several other S. cerevis......We recently found that Saccharomyces cerevisiae (strain CCMI 885) secretes antimicrobial peptides (AMPs) derived from the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) that are active against various wine-related yeast and bacteria. Here, we show that several other S....... cerevisiae strains also secrete natural biocide fractions during alcoholic fermentation, although at different levels, which correlates with the antagonistic effect exerted against non-Saccharomyces yeasts. We, therefore, term this biocide saccharomycin. The native AMPs were purified by gel...... species during alcoholic fermentations....

  10. Distribution of neuropeptide FF (NPFF) receptors in correlation with morphine-induced reward in the rat brain.

    Science.gov (United States)

    Wu, Chun-Hung; Tao, Pao-Luh; Huang, Eagle Yi-Kung

    2010-07-01

    Neuropeptide FF (NPFF) exhibited anti-/pro-opioid effects when centrally injected. It was proved to bind to its own receptors, namely NPFF(1) and NPFF(2) receptors, but did not bind to opioid receptors. In our previous study, we found that i.c.v. injected NPFF suppressed morphine-induced conditioned place preference (CPP) in rats, which indicated that NPFF may play a role in the modulation of morphine-induced reward. In the present study, we further investigated the action site of NPFF to attenuate morphine-induced reward. Bilateral intra-VTA (ventral tegmental area) and intra-NAc (nucleus accumbens) injections of NPFF both blocked the CPP caused by morphine in rats. This suggests that NPFF may act at both VTA and NAc to inhibit the sensitization of the mesocorticolimbic dopaminergic pathway. Neurochemical analyses support that NPFF could be acting through the inhibition of the mesocorticolimbic dopaminergic activity increased by morphine. We also determined the distribution of NPFF receptors in rat brains. Our results showed that both NPFF receptors were abundantly expressed in VTA but with less content in NAc. In fluorescent immunohistochemical staining, our results revealed that NPFF(1) and NPFF(2) receptors could be expressed at the TH (tyrosine hydroxylase)- or GAD67 (glutamic acid decarboxylase-67)-positive neurons in VTA, whereas some of them were present in the negative neurons. This implied a possible function of NPFF to modulate dopaminergic neurons directly and a possible indirect action of NPFF on GABAergic neurons to modulate dopamine release. Taken together, our study should be helpful for clarifying the possible mechanisms of NPFF system to modulate morphine-induced reward. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Structural Insight for Roles of DR5 Death Domain Mutations on Oligomerization of DR5 Death Domain-FADD Complex in the Death-Inducing Signaling Complex Formation: A Computational Study.

    Science.gov (United States)

    Yang, Hongyi; Song, Yuhua

    2016-04-01

    Death receptor 5 (DR5)-induced apoptosis that prioritizes the death of tumor cells has been proposed as one of the promising cancer therapies. In this process, oligomerized DR5 death domain (DD) binding to Fas-associated death domain (FADD) leads to FADD activating caspase-8, which marks the formation of the death-inducing signaling complex (DISC) that initiates apoptosis. DR5 DD mutations found in cancer cells have been suggested to play an important pathological role, the mechanism through which those mutants prevent the DR5-activated DISC formation is not clear yet. This study sought to provide structural and molecular insight for the roles of four selected DR5 DD mutations (E355K, E367K, K415N, and L363F) in the oligomerization of DR5 DD-FADD complex during the DISC formation. Results from the molecular dynamics simulations show that the simulated mutants induce conformational, dynamical motions and interactions changes in the DR5 DD-FADD tetramer complex, including changes in a protein's backbone flexibility, less exposure of FADD DED's caspase-8 binding site, reduced H-bonding and hydrophobic contacts at the DR5 DD-FADD DD binding, altered distribution of the electrostatic potentials and correlated motions of residues, and reduced binding affinity of DR5 DD binding to FADD. This study provides structural and molecular insight for the influence of DR5 DD mutations on oligomerization of DR5 DD-FADD complex, which is expected to foster understanding of the DR5 DD mutants' resistance mechanism against DR5-activated DISC formation.

  12. Retinal cell death induced by TRPV1 activation involves NMDA signaling and upregulation of nitric oxide synthases.

    Science.gov (United States)

    Leonelli, Mauro; Martins, Daniel O; Britto, Luiz R G

    2013-04-01

    The activation of the transient receptor potential vanilloid type 1 channel (TRPV1) has been correlated with oxidative and nitrosative stress and cell death in the nervous system. Our previous results indicate that TRPV1 activation in the adult retina can lead to constitutive and inducible nitric oxide synthase-dependent protein nitration and apoptosis. In this report, we have investigated the potential effects of TRPV1 channel activation on nitric oxide synthase (NOS) expression and function, and the putative participation of ionotropic glutamate receptors in retinal TRPV1-induced protein nitration, lipid peroxidation, and DNA fragmentation. Intravitreal injections of the classical TRPV1 agonist capsaicin up-regulated the protein expression of the inducible and endothelial NOS isoforms. Using 4,5-diaminofluorescein diacetate for nitric oxide (NO) imaging, we found that capsaicin also increased the production of NO in retinal blood vessels. Processes and perikarya of TRPV1-expressing neurons in the inner nuclear layer of the retina were found in the vicinity of nNOS-positive neurons, but those two proteins did not colocalize. Retinal explants exposed to capsaicin presented high protein nitration, lipid peroxidation, and cell death, which were observed in the inner nuclear and plexiform layers and in ganglion cells. This effect was partially blocked by AP-5, a NMDA glutamate receptor antagonist, but not by CNQX, an AMPA/kainate receptor antagonist. These data support a potential role for TRPV1 channels in physiopathological retinal processes mediated by NO, which at least in part involve glutamate release.

  13. CORRELATION OF NEUROLOGIC DYSFUNCTION WITH CT-SCAN BRAIN FINDINGS AND CAROTID DOPPLER STUDY IN ACUTE ISCHAEMIC STROKE

    Directory of Open Access Journals (Sweden)

    Bharat L

    2014-12-01

    Full Text Available BACKGROUND AND OBJECTIVES: stroke is one of the most common debilitating diseases with a huge burden related to both mortality and morbidity, ischemic stroke is far common compared to haemorrhagic stroke and also associated with significant carotid stenosis. Hence this present study is carried out to evaluate all the aspects of this disease. OBJECTIVES: 1. To correlate the nature of lesion, site of lesion, and severity of lesion on clinical grounds with CT-Scan findings. 2. To find the prevalence of Carotid Artery Stenosis in Acute Ischaemic Stroke patients. 3. To find if there is any association between Carotid Artery Stenosis and risk factors such as Diabetes mellitus, Hypertension, Hyperlipidemia, Smoking and Age.

  14. Structural brain abnormalities correlate with clinical features in patients with drug-naïve OCD: A DARTEL-enhanced voxel-based morphometry study.

    Science.gov (United States)

    Tang, Wanjie; Huang, Xiaoqi; Li, Bin; Jiang, Xiaoyu; Li, Fei; Xu, Jiuping; Yang, Yanchun; Gong, Qiyong

    2015-11-01

    Abnormal brain structure has been reported in obsessive-compulsive disorder (OCD), but findings from these reports have been inconsistent. This study aimed to gain more detailed insights into gray matter structure and correlate this structure with clinical features in patients with drug-naïve OCD using voxel-based morphometry (VBM). Voxel-based morphometry and tools of Diffeomorphic Anatomical Registration through Exponentiated Lie Algebra (DARTEL) were used to investigate structural differences in gray matter volume between 26 drug-naïve OCD patients and 32 healthy controls. Partial correlation analysis was used to analyze associations of gray matter abnormalities with Yale-Brown Obsessive Compulsive Scale (Y-BOCS) scores and illness duration. Compared to healthy controls, drug-naïve OCD patients showed significantly smaller gray matter volume in the right dorsolateral prefrontal cortex (DLPFC), left superior temporal gyrus, left precuneus and right precentral gyrus, as well as significantly greater gray matter volume in the left anterior insula and right parahippocampal gyrus (psuperior temporal gyrus and connected limbic structures such as the parahippocampal gyrus and anterior insula. Longitudinal studies are needed that integrate anatomical, functional and diffusion MRI data. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cognitive correlates of psychosocial outcome following traumatic brain injury in early childhood: comparisons between groups of children aged under and over 10 years of age.

    Science.gov (United States)

    Tonks, James; Williams, W Huw; Yates, Phil; Slater, Alan

    2011-04-01

    Children with traumatic brain injuries (TBI) commonly present with socioemotional difficulties, as well as accompanying multiple cognitive impairments. Often difficulties worsen at around 10 years old. This change is associated with frontal system changes, and tests of executive function (EF) predict outcome. However, children with TBI sometimes present with socioemotional difficulties despite apparent cognitive recovery. Our aims were to explore potential cognitive and socioemotional effects following childhood TBI, before and after the age of 10 years. We also wanted to identify cognitive correlates of psychosocial dysfunction. Measures of cognitive function and socioemotional disturbance administered to 14 children with TBI aged 8-10 years, and 14 children with TBI aged 10-16 years, were compared to control data from 22 non-injured 8- to 10 year-olds and 67 non-injured 10- to 16-year-olds. Results indicated that only the older group of children with TBI were impaired in tests of EF, but significant socioemotional difficulties were commonly evident in both groups. Processing speed (as well as EF) was found to correlate with socioemotional disturbance. We conclude that poor processing speed may also index the risk of socioemotional difficulties, but our general findings indicate that cognitive functions relevant to socioemotional functioning are not readily testable in younger children and are not strongly associated with such outcomes as they may be in adults.

  16. Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer’s Disease

    Science.gov (United States)

    Hao, Xiaoke; Li, Chanxiu; Du, Lei; Yao, Xiaohui; Yan, Jingwen; Risacher, Shannon L.; Saykin, Andrew J.; Shen, Li; Zhang, Daoqiang; Weiner, Michael W.; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Mason, Sara S.; Albers, Colleen S.; Knopman, David; Johnson, Kris; Jagust, William; Trojanowki, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Farlow, Martin R.; Marie Hake, Ann; Matthews, Brandy R.; Brosch, Jared R.; Herring, Scott; Hunt, Cynthia; Shaw, Leslie M.; Ances, Beau; Morris, John C.; Carroll, Maria; Creech, Mary L.; Franklin, Erin; Mintun, Mark A.; Schneider, Stacy; Oliver, Angela; Kaye, Jeffrey; Quinn, Joseph; Silbert, Lisa; Lind, Betty; Carter, Raina; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Beccera, Mauricio; Teodoro, Liberty; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Fleisher, Adam; Tariot, Pierre; Burke, Anna; Trncic, Nadira; Reeder, Stephanie; Heidebrink, Judith L.; Lord, Joanne L.; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Rountree, Susan; Dang, Mimi; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Marson, Daniel; Griffith, Randall; Clark, David; Geldmacher, David; Brockington, John; Roberson, Erik; Love, Marissa Natelson; Grossman, Hillel; Mitsis, Effie; Shah, Raj C.; deToledo-Morrell, Leyla; Duara, Ranjan; Varon, Daniel; Greig, Maria T.; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; D’Agostino, Daniel; Kielb, Stephanie; Galvin, James E.; Cerbone, Brittany; Michel, Christina A.; Pogorelec, Dana M.; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Borges-Neto, Salvador; Wong, Terence Z.; Coleman, Edward; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Sinha, Partha; Oates, Elizabeth; Conrad, Gary; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Swerdlow, Russell H.; Brooks, William M.; Apostolova, Liana; Tingus, Kathleen; Woo, Ellen; Silverman, Daniel H. S.; Lu, Po H.; Bartzokis, George; Graff-Radford, Neill R.; Parfitt, Francine; Kendall, Tracy; Johnson, Heather; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Varma, Pradeep; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Finger, Elizabeth; Pasternack, Stephen; Rachisky, Irina; Trost, Dick; Kertesz, Andrew; Bernick, Charles; Munic, Donna; Mesulam, Marek-Marsel; Lipowski, Kristine; Weintraub, Sandra; Bonakdarpour, Borna; Kerwin, Diana; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan N.; Belden, Christine M.; Jacobson, Sandra A.; Sirrel, Sherye A.; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Allard, Joanne; Lerner, Alan; Ogrocki, Paula; Tatsuoka, Curtis; Fatica, Parianne; Fletcher, Evan; Maillard, Pauline; Olichney, John; DeCarli, Charles; Carmichael, Owen; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Adeli, Anahita; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Flashman, Laura A.; Seltzer, Marc; Hynes, Mary L.; Santulli, Robert B.; Sink, Kaycee M.; Gordineer, Leslie; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Perry, David; Mintzer, Jacobo; Spicer, Kenneth; Bachman, David; Pomara, Nunzio; Hernando, Raymundo; Sarrael, Antero; Relkin, Norman; Chaing, Gloria; Lin, Michael; Ravdin, Lisa; Smith, Amanda; Raj, Balebail Ashok; Fargher, Kristin

    2017-01-01

    Neuroimaging genetics is an emerging field that aims to identify the associations between genetic variants (e.g., single nucleotide polymorphisms (SNPs)) and quantitative traits (QTs) such as brain imaging phenotypes. In recent studies, in order to detect complex multi-SNP-multi-QT associations, bi-multivariate techniques such as various structured sparse canonical correlation analysis (SCCA) algorithms have been proposed and used in imaging genetics studies. However, associations between genetic markers and imaging QTs identified by existing bi-multivariate methods may not be all disease specific. To bridge this gap, we propose an analytical framework, based on three-way sparse canonical correlation analysis (T-SCCA), to explore the intrinsic associations among genetic markers, imaging QTs, and clinical scores of interest. We perform an empirical study using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort to discover the relationships among SNPs from AD risk gene APOE, imaging QTs extracted from structural magnetic resonance imaging scans, and cognitive and diagnostic outcomes. The proposed T-SCCA model not only outperforms the traditional SCCA method in terms of identifying strong associations, but also discovers robust outcome-relevant imaging genetic patterns, demonstrating its promise for improving disease-related mechanistic understanding. PMID:28291242

  17. Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain-computer interface.

    Science.gov (United States)

    Siuly, Siuly; Li, Yan

    2012-07-01

    Although brain-computer interface (BCI) techniques have been developing quickly in recent decades, there still exist a number of unsolved problems, such as improvement of motor imagery (MI) signal classification. In this paper, we propose a hybrid algorithm to improve the classification success rate of MI-based electroencephalogram (EEG) signals in BCIs. The proposed scheme develops a novel cross-correlation based feature extractor, which is aided with a least square support vector machine (LS-SVM) for two-class MI signals recognition. To verify the effectiveness of the proposed classifier, we replace the LS-SVM classifier by a logistic regression classifier and a kernel logistic regression classifier, separately, with the same features extracted from the cross-correlation technique for the classification. The proposed approach is tested on datasets, IVa and IVb of BCI Competition III. The performances of those methods are evaluated with classification accuracy through a 10-fold cross-validation procedure. We also assess the performance of the proposed method by comparing it with eight recently reported algorithms. Experimental results on the two datasets show that the proposed LS-SVM classifier provides an improvement compared to the logistic regression and kernel logistic regression classifiers. The results also indicate that the proposed approach outperforms the most recently reported eight methods and achieves a 7.40% improvement over the best results of the other eight studies.

  18. Correlation between qualitative balance indices, dynamic posturography and structural brain imaging in patients with progressive supranuclear palsy and its subtypes.

    Science.gov (United States)

    Pasha, Shaik Afsar; Yadav, Ravi; Ganeshan, Mohan; Saini, Jitender; Gupta, Anupam; Sandhya, M; Pal, Pramod Kumar

    2016-01-01

    To compare the clinical, balance, and radiological profile of progressive supranuclear palsy (PSP) of Richardson type (PSP-R) and Parkinsonian type (PSP-P). Twenty-nine patients with PSP (PSP-R: 17, PSP-P: 12) satisfying the probable/possible National Institute of Neurological Disorders and Stroke-PSP criteria were recruited and assessed with Unified Parkinson's Disease Rating Scale-III, PSP rating scale (PSPRS), Berg balance scale (BBS), Tinetti performance-oriented mobility assessment gait and total (TPG and TPT) score, dynamic posturography (DP), and magnetic resonance imaging. Data were compared with 30 age- and gender-matched healthy controls. The mean ages of PSP-R, PSP-P, and controls were comparable (62.5 ± 6.6, 59 ± 8.9, and 59.8 ± 7.6 years). The PSP group had significantly poor DP scores and more radiological abnormalities than controls. The PSPRS, TPG, and TPT scores were significantly more impaired in PSP-R compared to PSP-P (P = 0.045, P = 0.031, and P = 0.037, respectively). In DP, the limits of overall stability were most significant (P scores. PSP-R compared to PSP-P had more often "Humming Bird" sign (P < 0.001), "Morning Glory" sign (P < 0.008), and generalized cortical atrophy (P < 0.001). The area of midbrain (P < 0.002) and midbrain/pons ratio (P < 0.013) was significantly lower in PSP-R. In PSP-P, the overall balance index significantly correlated with BBS, TPG, and TPT (r = -0.79, P = 0.002; r = -0.772, P = 0.003; and r = -0.688, P = 0.013) and the midbrain axial anterior-posterior diameter significantly correlated with the TPG and TPT (r = 0.74, P = 0.01; r = 0.66, P = 0.018). While balance and radiological abnormalities were more severe in PSP-R, the qualitative and quantitative measurements of severity of balance in PSP-P rather than PSP-R was a better reflection of the pathology of the midbrain.

  19. Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood–brain barrier through paracellular transmigration and ERK activation

    Directory of Open Access Journals (Sweden)

    Sagar Divya

    2012-10-01

    Full Text Available Abstract Background Transmigration of circulating dendritic cells (DCs into the central nervous system (CNS across the blood–brain barrier (BBB has not thus far been investigated. An increase in immune cell infiltration across the BBB, uncontrolled activation and antigen presentation are influenced by chemokines. Chemokine ligand 2 (CCL2 is a potent chemoattractant known to be secreted by the BBB but has not been implicated in the recruitment of DCs specifically at the BBB. Methods Experimental autoimmune encephalomyelitis (EAE was induced in C57BL/6 mice by injection of MOG35–55 peptide and pertussis toxin intraperitoneally. Animals with increasing degree of EAE score were sacrificed and subjected to near-infrared and fluorescence imaging analysis to detect and localize the accumulation of CD11c+-labeled DCs with respect to CCL2 expression. To further characterize the direct effect of CCL2 in DC trafficking at the BBB, we utilized an in vitro BBB model consisting of human brain microvascular endothelial cells to compare migratory patterns of monocyte-derived dendritic cells, CD4+ and CD8+ T cells. Further, this model was used to image transmigration using fluorescence microcopy and to assess specific molecular signaling pathways involved in transmigration. Results Near-infrared imaging of DC transmigration correlated with the severity of inflammation during EAE. Ex vivo histology confirmed the presence of CCL2 in EAE lesions, with DCs emerging from perivascular spaces. DCs exhibited more efficient transmigration than T cells in BBB model studies. These observations correlated with transwell imaging, which indicated a paracellular versus transcellular pattern of migration by DCs and T cells. Moreover, at the molecular level, CCL2 seems to facilitate DC transmigration in an ERK1/2-dependent manner. Conclusion CNS recruitment of DCs correlates with disease severity in EAE via CCL2 chemotaxis and paracellular transmigration across the BBB

  20. Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI–fMRI connectivity correlations in children with and without dysgraphia or dyslexia

    Directory of Open Access Journals (Sweden)

    T.L. Richards

    2015-01-01

    Full Text Available Based on comprehensive testing and educational history, children in grades 4–9 (on average 12 years were diagnosed with dysgraphia (persisting handwriting impairment or dyslexia (persisting word spelling/reading impairment or as typical writers and readers (controls. The dysgraphia group (n = 14 and dyslexia group (n = 17 were each compared to the control group (n = 9 and to each other in separate analyses. Four brain region seed points (left occipital temporal gyrus, supramarginal gyrus, precuneus, and inferior frontal gyrus were used in these analyses which were shown in a metaanalysis to be related to written word production on four indicators of white matter integrity and fMRI functional connectivity for four tasks (self-guided mind wandering during resting state, writing letter that follows a visually displayed letter in alphabet, writing missing letter to create a correctly spelled real word, and planning for composing after scanning on topic specified by researcher. For those DTI indicators on which the dysgraphic group or dyslexic group differed from the control group (fractional anisotropy, relative anisotropy, axial diffusivity but not radial diffusivity, correlations were computed between the DTI parameter and fMRI functional connectivity for the two writing tasks (alphabet and spelling by seed points. Analyses, controlled for multiple comparisons, showed that (a the control group exhibited more white matter integrity than either the dysgraphic or dyslexic group; (b the dysgraphic and dyslexic groups showed more functional connectivity than the control group but differed in patterns of functional connectivity for task and seed point; and (c the dysgraphic and dyslexic groups showed different patterns of significant DTI–fMRI connectivity correlations for specific seed points and written language tasks. Thus, dysgraphia and dyslexia differ in white matter integrity, fMRI functional connectivity, and white matter–gray matter

  1. Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI–fMRI connectivity correlations in children with and without dysgraphia or dyslexia

    Science.gov (United States)

    Richards, T.L.; Grabowski, T.J.; Boord, P.; Yagle, K.; Askren, M.; Mestre, Z.; Robinson, P.; Welker, O.; Gulliford, D.; Nagy, W.; Berninger, V.

    2015-01-01

    Based on comprehensive testing and educational history, children in grades 4–9 (on average 12 years) were diagnosed with dysgraphia (persisting handwriting impairment) or dyslexia (persisting word spelling/reading impairment) or as typical writers and readers (controls). The dysgraphia group (n = 14) and dyslexia group (n = 17) were each compared to the control group (n = 9) and to each other in separate analyses. Four brain region seed points (left occipital temporal gyrus, supramarginal gyrus, precuneus, and inferior frontal gyrus) were used in these analyses which were shown in a metaanalysis to be related to written word production on four indicators of white matter integrity and fMRI functional connectivity for four tasks (self-guided mind wandering during resting state, writing letter that follows a visually displayed letter in alphabet, writing missing letter to create a correctly spelled real word, and planning for composing after scanning on topic specified by researcher). For those DTI indicators on which the dysgraphic group or dyslexic group differed from the control group (fractional anisotropy, relative anisotropy, axial diffusivity but not radial diffusivity), correlations were computed between the DTI parameter and fMRI functional connectivity for the two writing tasks (alphabet and spelling) by seed points. Analyses, controlled for multiple comparisons, showed that (a) the control group exhibited more white matter integrity than either the dysgraphic or dyslexic group; (b) the dysgraphic and dyslexic groups showed more functional connectivity than the control group but differed in patterns of functional connectivity for task and seed point; and (c) the dysgraphic and dyslexic groups showed different patterns of significant DTI–fMRI connectivity correlations for specific seed points and written language tasks. Thus, dysgraphia and dyslexia differ in white matter integrity, fMRI functional connectivity, and white matter–gray matter

  2. Expression of ZFX gene correlated with the central features of the neoplastic phenotype in human brain tumors with distinct phenotypes.

    Science.gov (United States)

    Afzali, Azita; Emadi-Baygi, Modjtaba; Nikpour, Parvaneh; Naze