Generalized quantum interference of correlated photon pairs
Kim, Heonoh; Lee, Sang Min; Moon, Han Seb
2015-01-01
Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source. PMID:25951143
Clock synchronization by remote detection of correlated photon pairs
Ho, Caleb; Lamas-Linares, AntIa; Kurtsiefer, Christian [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 (Singapore)], E-mail: christian.kurtsiefer@gmail.com
2009-04-15
In this study, we present an algorithm to detect the time and frequency differences of independent clocks based on observation of time-correlated photon pairs. This enables remote coincidence identification in entanglement-based quantum key distribution schemes without dedicated coincidence hardware, pulsed sources with a timing structure or very stable reference clocks. We discuss the method for typical operating conditions and show that the requirement for reference clock accuracy can be relaxed by about five orders of magnitude in comparison with previous schemes.
Correlated Photon Pair Generation in Silicon Wire Waveguides at 1.5 μm
Cheng Jie-Rong; Zhang Wei; Zhou Qiang; Feng Xue; Huang Yi-Dong; Peng Jiang-De
2010-01-01
Correlated photon pairs at 1.5μm are generated in a silicon wire waveguide (SWW) with a length of only 1.6mm. Experimental results show that the single-side count rates on both sides increase quadratically with pump light, indicating that photons are generated from the spontaneous four-wave mixing (SFWM) processes. The quantum correlation property of the generated photons is demonstrated by the ratio between coincident and accidental coincident count rates. The highest ratio measured at room temperature is to be about 19, showing that generated photon pairs have strong quantum correlation property and low noise. What is more, the wavelength correlation property of the coincident count is also measured to demonstrate the correlated photon pair generation. The experimental results demonstrate that SWWs have great potential in on-chip integrated low-noise correlated photon pair sources at 1.5 μm. (fundamental areas of phenomenology(including applications))
Shimizu, Ryosuke; Edamatsu, Keiichi; Itoh, Tadashi
2006-01-01
We present one- and two-photon diffraction and interference experiments involving parametric down-converted photon pairs. By controlling the divergence of the pump beam in parametric down-conversion, the diffraction-interference pattern produced by an object changes from a quantum (perfectly correlated) case to a classical (uncorrelated) one. The observed diffraction and interference patterns are accurately reproduced by Fourier-optical analysis taking into account the quantum spatial correlation. We show that the relation between the spatial correlation and the object size plays a crucial role in the formation of both one- and two-photon diffraction-interference patterns
Lu Liang-Liang; Xu Ping; Xu Jian-Ning; Zhu Shi-Ning; He Guang-Qiang
2015-01-01
Spontaneous four wave mixing in nonlinear waveguide is one of the excellent technique for generating photon pairs in well-defined guided modes. Here we present a comprehensive study of the frequency characteristic of correlated photon pairs generated in telecom C-band from a dispersion-engineered silicon wire waveguide. We have demonstrated that the waveguide configuration, shape of pump pulse, two-photon absorption as well as linear losses have significant influences on the biphoton spectral characteristics and the amount of frequency entanglement generated. The superior performance as well as the structural compactness and CMOS compatibility makes the silicon wire waveguide an ideal integrated platform for the implementation of on-chip quantum technologies. (paper)
Lobino, M.; Marshall, G.D.; Xiong, C.; Clark, A.S.; Bonneau, D.; Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H.; Dorenbos, S.N.; Zijlstra, T.; Zwiller, V.; Marangoni, M.; Ramponi, R.; Thompson, M.G.; Eggleton, B.J.; O'Brien, J.L.
2011-01-01
We demonstrate photon-pair generation in a reverse proton exchanged waveguide fabricated on a periodically poled magnesium doped stoichiometric lithium tantalate substrate. Detected pairs are generated via a cascaded second order nonlinear process where a pump laser at wavelength of 1.55 ?m is first
Pairing correlations in nuclei
Baba, C.V.K.
1988-01-01
There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs
Experiments tests of Bell's inequalities with pairs of low energy correlated photons
Aspect, A.
1986-01-01
This paper reviews the essence of Bell's reasoning, the purpose of which is to convince the reader that a very natural way of understanding the EPR correlations is to complete quantum mechanics in the way considered by Bell. It is noted that Bell's theorem states a conflict between local supplementary parameters theories and certain quantum mechanical predictions. It yields a quantitative criterion for this conflict, that allows one to design sensitive experiments. These experiments are presented in the paper. It is concluded that the predictions of quantum mechanics in EPR-type situations are vindicated by the experiments
Shimizu, Yoshifumi
2009-01-01
Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)
Photon correlation holography.
Naik, Dinesh N; Singh, Rakesh Kumar; Ezawa, Takahiro; Miyamoto, Yoko; Takeda, Mitsuo
2011-01-17
Unconventional holography called photon correlation holography is proposed and experimentally demonstrated. Using photon correlation, i.e. intensity correlation or fourth order correlation of optical field, a 3-D image of the object recorded in a hologram is reconstructed stochastically with illumination through a random phase screen. Two different schemes for realizing photon correlation holography are examined by numerical simulations, and the experiment was performed for one of the reconstruction schemes suitable for the experimental proof of the principle. The technique of photon correlation holography provides a new insight into how the information is embedded in the spatial as well as temporal correlation of photons in the stochastic pseudo thermal light.
Caspani Lucia
2016-06-01
Full Text Available Recent developments in quantum photonics have initiated the process of bringing photonic-quantumbased systems out-of-the-lab and into real-world applications. As an example, devices to enable the exchange of a cryptographic key secured by the laws of quantum mechanics are already commercially available. In order to further boost this process, the next step is to transfer the results achieved by means of bulky and expensive setups into miniaturized and affordable devices. Integrated quantum photonics is exactly addressing this issue. In this paper, we briefly review the most recent advancements in the generation of quantum states of light on-chip. In particular, we focus on optical microcavities, as they can offer a solution to the problem of low efficiency that is characteristic of the materials typically used in integrated platforms. In addition, we show that specifically designed microcavities can also offer further advantages, such as compatibility with telecom standards (for exploiting existing fibre networks and quantum memories (necessary to extend the communication distance, as well as giving a longitudinal multimode character for larger information transfer and processing. This last property (i.e., the increased dimensionality of the photon quantum state is achieved through the ability to generate multiple photon pairs on a frequency comb, corresponding to the microcavity resonances. Further achievements include the possibility of fully exploiting the polarization degree of freedom, even for integrated devices. These results pave the way for the generation of integrated quantum frequency combs that, in turn, may find important applications toward the realization of a compact quantum-computing platform.
Heavy quark pair production in polarized photon-photon collisions
Jikia, G.; Tkabladze, A.
2000-04-01
We present the cross sections of the heavy quark-antiquark pair production in polarized photon photon collision for the general case of photon polarizations. The numerical results for top-antitop production cross sections together with production asymmetries are obtained for linearly polarized photon-photon collisions, including QCD radiative corrections. (orig.)
Pairing correlations around scission
Krappe, H.J.; Fadeev, S.
2001-01-01
To describe pairing correlations in a fissioning system one commonly projects the BCS wave function separately onto good particle numbers in each fragment in the exit channel, but only onto the total number of particles in the parent system. We propose to interpolate between these limiting situations by the generator-coordinate method with the particle-number difference between the nascent fragments as the generator coordinate. Model calculations are presented for the Hill-Wheeler-box potential with a δ-function diaphragm to mimic scission
Pair Correlation Function Integrals
Wedberg, Nils Hejle Rasmus Ingemar; O'Connell, John P.; Peters, Günther H.J.
2011-01-01
We describe a method for extending radial distribution functions obtained from molecular simulations of pure and mixed molecular fluids to arbitrary distances. The method allows total correlation function integrals to be reliably calculated from simulations of relatively small systems. The long......-distance behavior of radial distribution functions is determined by requiring that the corresponding direct correlation functions follow certain approximations at long distances. We have briefly described the method and tested its performance in previous communications [R. Wedberg, J. P. O’Connell, G. H. Peters......, and J. Abildskov, Mol. Simul. 36, 1243 (2010); Fluid Phase Equilib. 302, 32 (2011)], but describe here its theoretical basis more thoroughly and derive long-distance approximations for the direct correlation functions. We describe the numerical implementation of the method in detail, and report...
Pion-pair production by two photons
Terazawa, Hidezumi.
1994-07-01
The cross section for pion-pair production by two photons is calculated approximately by using the low energy theorem previously derived from partially-conserved-axial-vector-current hypothesis and current algebra, and found to agree very well with the experimental data recently obtained by the Mark II, TPC/Two-Gamma and CLEO Collaborations. (author)
Narrowband polarization entangled telecom photon pair source
Kaiser , Florian; Issautier , Amandine; Alibart , Olivier; Martin , Anthony; Tanzilli , Sébastien
2011-01-01
Contributed Talk; International audience; During the last decade, quantum entanglement has paved the way out to of the lab modern applications such as quantum computation and communication. Today, small scale quantum networks exist already, but they are limited to a few 100 km distance, due to intrinsic fiber transmission losses and non perfect detectors. These networks are typically established using photon pair sources based on spontaneous parametric down conversion (SPDC). Widely used enta...
(RN) pair production by photons in a hot Maxwellian plasma
Haug, E.
2004-01-01
The production of electron-positron pairs by photons in the Coulomb Field of electrons and positrons (triplet production) in hot thermal plasmas is investigated. The pair production rate for this process is calculated as a function of the photon energy and compared with the rate of photon-nucleus pair production for semi-relativistic and relativistic plasma temperatures. (author)
Kinetic equations with pairing correlations
Fauser, R.
1995-12-01
The Gorkov equations are derived for a general non-equilibrium system. The Gorkov factorization is generalized by the cumulant expansion of the 2-particle correlation and by a generalized Wick theorem in the case of a perturbation expansion. A stationary solution for the Green functions in the Schwinger-Keldysh formalism is presented taking into account pairing correlations. Especially the effects of collisional broadening on the spectral functions and Green functions is discussed. Kinetic equations are derived in the quasi-particle approximation and in the case of particles with width. Explicit expressions for the self-energies are given. (orig.)
Using Correlated Photons to Suppress Background Noise
Jackson, Deborah; Hockney, George; Dowling, Jonathan
2003-01-01
A proposed method of suppressing the effect of background noise in an optical communication system would exploit the transmission and reception of correlated photons at the receiver. The method would not afford any advantage in a system in which performance is limited by shot noise. However, if the performance of the system is limited by background noise (e.g., sunlight in the case of a free-space optical communication system or incoherently scattered in-band photons in the case of a fiber-optic communication system), then the proposed method could offer an advantage: the proposed method would make it possible to achieve a signal-to-noise ratio (S/N) significantly greater than that of an otherwise equivalent background- noise-limited optical communication system based on the classical transmission and reception of uncorrelated photons. The figure schematically depicts a classical optical-communication system and a system according to the proposed method. In the classical system, a modulated laser beam is transmitted along an optical path to a receiver, the optics of which include a narrow-band-pass filter that suppresses some of the background noise. A photodetector in the receiver detects the laser-beam and background photons, most or all of which are uncorrelated. In the proposed system, correlated photons would be generated at the transmitter by making a modulated laser beam pass through a nonlinear parametric down-conversion crystal. The sum of frequencies of the correlated photons in each pair would equal the frequency of the incident photon from which they were generated. As in the classical system, the correlated photons would travel along an optical path to a receiver, where they would be band-pass filtered and detected. Unlike in the classical system, the photodetector in the receiver in this system would be one that intrinsically favors the detection of pairs of correlated photons over the detection of uncorrelated photons. Even though there would be no
Time-resolved statistics of photon pairs in two-cavity Josephson photonics
Dambach, Simon; Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems and IQST, Ulm University (Germany)
2017-06-15
We analyze the creation and emission of pairs of highly nonclassical microwave photons in a setup where a voltage-biased Josephson junction is connected in series to two electromagnetic oscillators. Tuning the external voltage such that the Josephson frequency equals the sum of the two mode frequencies, each tunneling Cooper pair creates one additional photon in both of the two oscillators. The time-resolved statistics of photon emission events from the two oscillators is investigated by means of single- and cross-oscillator variants of the second-order correlation function g{sup (2)}(τ) and the waiting-time distribution w(τ). They provide insight into the strongly correlated quantum dynamics of the two oscillator subsystems and reveal a rich variety of quantum features of light including strong antibunching and the presence of negative values in the Wigner function. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Multi-photon creation and single-photon annihilation of electron-positron pairs
Hu, Huayu
2011-04-27
In this thesis we study multi-photon e{sup +}e{sup -} pair production in a trident process, and singlephoton e{sup +}e{sup -} pair annihilation in a triple interaction. The pair production is considered in the collision of a relativistic electron with a strong laser beam, and calculated within the theory of laser-dressed quantum electrodynamics. A regularization method is developed systematically for the resonance problem arising in the multi-photon process. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. Our calculation shows good agreement with existing experimental data from SLAC, and adds further insights into the experimental findings. Besides, we study the process in a manifestly nonperturbative domain, whose accessibility to future all-optical experiments based on laser acceleration is shown. In the single-photon e{sup +}e{sup -} pair annihilation, the recoil momentum is absorbed by a spectator particle. Various kinematic configurations of the three incoming particles are examined. Under certain conditions, the emitted photon exhibits distinct angular and polarization distributions which could facilitate the detection of the process. Considering an equilibrium relativistic e{sup +}e{sup -} plasma, it is found that the single-photon process becomes the dominant annihilation channel for plasma temperatures above 3 MeV. Multi-particle correlation effects are therefore essential for the e{sup +}e{sup -} dynamics at very high density. (orig.)
Multi-photon creation and single-photon annihilation of electron-positron pairs
Hu, Huayu
2011-01-01
In this thesis we study multi-photon e + e - pair production in a trident process, and singlephoton e + e - pair annihilation in a triple interaction. The pair production is considered in the collision of a relativistic electron with a strong laser beam, and calculated within the theory of laser-dressed quantum electrodynamics. A regularization method is developed systematically for the resonance problem arising in the multi-photon process. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. Our calculation shows good agreement with existing experimental data from SLAC, and adds further insights into the experimental findings. Besides, we study the process in a manifestly nonperturbative domain, whose accessibility to future all-optical experiments based on laser acceleration is shown. In the single-photon e + e - pair annihilation, the recoil momentum is absorbed by a spectator particle. Various kinematic configurations of the three incoming particles are examined. Under certain conditions, the emitted photon exhibits distinct angular and polarization distributions which could facilitate the detection of the process. Considering an equilibrium relativistic e + e - plasma, it is found that the single-photon process becomes the dominant annihilation channel for plasma temperatures above 3 MeV. Multi-particle correlation effects are therefore essential for the e + e - dynamics at very high density. (orig.)
Pair production by a superhard photon in a crystal
Kalashnikov, N.P.; Kovalev, G.V.; Strikhanov, M.N.
1980-01-01
Electron-positron pair production by a hard photon moving almost parallelly to the crystallographic axis or monocrystal plane is considered. Calculation is conducted of the production differential by the energies of pair components and total cross section of pair production in the case when primary photon moved at a small angle THETA 0 m 2 /U [ru
Selective two-photon excitation of a vibronic state by correlated photons.
Oka, Hisaki
2011-03-28
We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.
System and method for clock synchronization and position determination using entangled photon pairs
Shih, Yanhua (Inventor)
2010-01-01
A system and method for clock synchronization and position determination using entangled photon pairs is provided. The present invention relies on the measurement of the second order correlation function of entangled states. Photons from an entangled photon source travel one-way to the clocks to be synchronized. By analyzing photon registration time histories generated at each clock location, the entangled states allow for high accuracy clock synchronization as well as high accuracy position determination.
Spatial photon correlations in multiple scattering media
Smolka, Stephan; Muskens, O.; Lagendijk, A.
2010-01-01
We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations.......We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations....
Quantum entanglement and phase transition in a two-dimensional photon-photon pair model
Zhang Jianjun; Yuan Jianhui; Zhang Junpei; Cheng Ze
2013-01-01
We propose a two-dimensional model consisting of photons and photon pairs. In the model, the mixed gas of photons and photon pairs is formally equivalent to a two-dimensional system of massive bosons with non-vanishing chemical potential, which implies the existence of two possible condensate phases. Using the variational method, we discuss the quantum phase transition of the mixed gas and obtain the critical coupling line analytically. Moreover, we also find that the phase transition of the photon gas can be interpreted as enhanced second harmonic generation. We then discuss the entanglement between photons and photon pairs. Additionally, we also illustrate how the entanglement between photons and photon pairs can be associated with the phase transition of the system.
Dynamical pairing correlations in rotating nuclei
Szymanski, Z.
1985-01-01
When the atomic nucleus rotates fast enough the static pair correlations may be destroyed. In this situation the pair-vibrations become an important manifestation of the short-range attractive pairing force. The influence of this effect on nuclear properties at high spin is discussed. (orig.)
Christensen, Jesper Bjerge; Koefoed, Jacob Gade; Rottwitt, Karsten
2018-01-01
The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states is quantum-correlated photon pairs, which can be efficiently generated using spo...
Hard photons in W pair production at LEP 2
Oldenborgh, G.J. van
1996-01-01
The properties of hard photon radiation in W pair production at LEP 2 are studied, with emphasis on the energy loss relevant to the W mass measurement. We use a combination of the exact one-photon matrix element and leading logarithmic structure functions. Defining unobservable, observable and initial-state photons in the phase space, it is shown that neither the one-photon matrix element nor the leading logarithmic structure functions alone give an adequate description of the energy loss due to observable or initial-state photons. An event generator based on these calculations is available. (orig.)
Correlated Photon Emission from Multiatom Rydberg Dark States
Pritchard, J.D.; Adams, C.S.; Mølmer, Klaus
2012-01-01
We consider three-level atoms driven by two resonant light fields in a ladder scheme where the upper level is a highly excited Rydberg state. We show that the dipole-dipole interactions between Rydberg excited atoms prevents the formation of single particle dark states and leads to strongly corre...... correlated photon pairs from atoms separated by distances large compared to the emission wavelength. For a pair of atoms, this enables realization of an efficient photon-pair source with on average one pair every 30 μs....
Geometric phase and entanglement of Raman photon pairs in the presence of photonic band gap
Berrada, K.; Ooi, C. H. Raymond; Abdel-Khalek, S.
2015-01-01
Robustness of the geometric phase (GP) with respect to different noise effects is a basic condition for an effective quantum computation. Here, we propose a useful quantum system with real physical parameters by studying the GP of a pair of Stokes and anti-Stokes photons, involving Raman emission processes with and without photonic band gap (PBG) effect. We show that the properties of GP are very sensitive to the change of the Rabi frequency and time, exhibiting collapse phenomenon as the time becomes significantly large. The system allows us to obtain a state which remains with zero GP for longer times. This result plays a significant role to enhance the stabilization and control of the system dynamics. Finally, we investigate the nonlocal correlation (entanglement) between the pair photons by taking into account the effect of different parameters. An interesting correlation between the GP and entanglement is observed showing that the PBG stabilizes the fluctuations in the system and makes the entanglement more robust against the change of time and frequency
Ghost imaging with paired x-ray photons
Schori, A.; Borodin, D.; Tamasaku, K.; Shwartz, S.
2018-06-01
We report the experimental observation of ghost imaging with paired x-ray photons, which are generated by parametric downconversion. We use the one-to-one relation between the photon energies and the emission angles and the anticorrelation between the k -vectors of the signal and the idler photons to reconstruct the images of slits with nominally zero background levels. Further extension of our procedure can be used for the observation of various quantum phenomena at x-ray wavelengths.
Twin photon pairs in a high-Q silicon microresonator
Rogers, Steven; Lu, Xiyuan [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Jiang, Wei C. [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Lin, Qiang, E-mail: qiang.lin@rochester.edu [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States)
2015-07-27
We report the generation of high-purity twin photon pairs through cavity-enhanced non-degenerate four-wave mixing (FWM) in a high-Q silicon microdisk resonator. Twin photon pairs are created within the same cavity mode and are consequently expected to be identical in all degrees of freedom. The device is able to produce twin photons at telecommunication wavelengths with a pair generation rate as large as (3.96 ± 0.03) × 10{sup 5} pairs/s, within a narrow bandwidth of 0.72 GHz. A coincidence-to-accidental ratio of 660 ± 62 was measured, the highest value reported to date for twin photon pairs, at a pair generation rate of (2.47 ± 0.04) × 10{sup 4} pairs/s. Through careful engineering of the dispersion matching window, we have reduced the ratio of photons resulting from degenerate FWM to non-degenerate FWM to less than 0.15.
Time correlation in two-photon decay
Hrasko, P.
1979-11-01
The relative time distribution of the photons emitted in a second order non-cascade process b→a+2γ is investigated under the assumption that only those photon pairs are detected which were emitted a sufficiently long time after the preparation of the decaying state. An anticorrelation between the photons is found and attributed to the propagation of one of the photons backward in time. (author)
Pion pair production in photon-photon interactions
Berger, C.; Deuter, A.; Genzel, H.; Lackas, W.; Pielorz, J.; Raupach, F.; Wagner, W.; Bussey, P.J.; Cartwright, S.L.; Dainton, J.B.; King, B.T.; Raine, C.; Scarr, J.M.; Skillikorn, I.O.; Smith, K.M.; Thomson, J.C.; Achterberg, O.; Blobel, V.; Burkart, D.; Diehlmann, K.; Feindt, M.; Kapitza, H.; Koppitz, B.; Krueger, M.; Poppe, M.; Spitzer, H.; Staa, R. van; Almeida, F.; Baecker, A.; Barreiro, F.; Brandt, S.; Derikum, K.; Grupen, C.; Meyer, H.J.; Mueller, H.; Neumann, B.; Rost, M.; Stupperich, K.; Zech, G.; Alexander, G.; Bella, G.; Gnat, Y.; Grunhaus, J.; Junge, H.; Kraski, K.; Maxeiner, C.; Maxeiner, H.; Meyer, H.; Schmidt, D.; Buerger, J.; Criegee, L.; Ferrarotto, F.; Franke, G.; Gaspero, M.; Gerke, C.; Knies, G.; Lewendel, B.; Meyer, J.; Michelsen, U.; Pape, K.H.; Stella, B.; Timm, U.; Winter, G.G.; Zachara, M.; Zimmermann, W.
1984-08-01
The process γγ -> π + π - has been measured with complete particle identification. Cross-sections are presented from near threshold up to the region of the f(1270). In the mass range 0.5-0.7 GeV, cross-sections are lower than the Born term predictions and show no evidence for an epsilon(600). The two-photon width of the f(1270) is found to be in agreement with previous results. (orig.)
Photon-pair generation in nonlinear metal-dielectric one-dimensional photonic structures
Javůrek, D.; Svozilík, J.; Peřina ml., Jan
2014-01-01
Roč. 90, č. 5 (2014), "053813-1"-"053813-14" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : photon pairs * nonlinear metal-dielectric * one-dimensional photonic structures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.808, year: 2014
Photon pairs: Quantum chromodynamics continuum and the Higgs ...
is the largest. Results are compared with data from the Fermilab Tevatron and predictions are made for the large hadron collider. The QCD continuum is shown to have a softer spectrum than the Higgs boson signal at the LHC. Keywords. Higgs; photon pairs; quantum chromodynamics. PACS Nos 12.15.Ji; 12.38.Cy; 13.85.
Photon correlation in single-photon frequency upconversion.
Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping
2012-01-30
We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.
Pseudopotential transformation of correlated-pair equations
Szasz, L.; Brown, L.
1975-01-01
A pseudopotential transformation for correlated-pair equations is derived that yields solutions that are pseudowavefunctions, i.e., they do not have to be orthogonal to the core functions. The approximate solutions for the transformation will be much simpler to compute, but they do not involve a loss of accuracy
Massive lepton pairs as a prompt photon surrogate
Berger L, Edmond; Gordon E, Lionel; Klasen, Michael
1998-01-01
The authors discuss the transverse momentum distribution for the production of massive lepton-pairs in hadron reactions at fixed target and collider energies within the context of next-to-leading order perturbative quantum chromodynamics. For values of the transverse momentum Q T greater than the pair mass Q, Q T > Q, they show that the differential cross section is dominated by subprocesses initiated by incident gluons. Massive lepton-pair differential cross sections are an advantageous source of constraints on the gluon density, free from the experimental and theoretical complications of photon isolation that beset studies of prompt photon production. They compare calculations with data and provide predictions for the differential cross section as a function of Q T in proton-antiproton reactions at center-of-mass energies of 1.8 TeV, and in proton-nucleon reactions at fixed target and LHC energies
Experimental investigation of quantum key distribution with position and momentum of photon pairs
Almeida, M.P.; Walborn, S.P.; Souto Ribeiro, P.H.
2005-01-01
We investigate the utility of Einstein-Podolsky-Rosen correlations of the position and momentum of photon pairs from parametric down-conversion in the implementation of a secure quantum key distribution protocol. We show that security is guaranteed by the entanglement between down-converted pairs, and can be checked by either direct comparison of Alice and Bob's measurement results or evaluation of an inequality of the sort proposed by Mancini et al. [Phys. Rev. Lett. 88, 120401 (2002)
Pair-correlations in swimmer suspensions
Nambiar, Sankalp; Subramanian, Ganesh
2017-11-01
Suspensions of rear-actuated swimming microorganisms, such as E.coli, exhibit several interesting phenomena including spontaneous pattern formation above a critical concentration, novel rheological properties, shear-induced concentration banding etc. Explanations based on mean-field theory are only qualitative, since interactions between swimmers are important for typical experimental concentrations. We analytically characterize the hydrodynamic pair-interactions in a quiescent suspension of slender straight swimmers. The pair-correlation, calculated at leading order by integrating the swimmer velocity disturbances along straight trajectories, decays as 1/r2 for r >> L (L being the swimmer size). This allows us to characterize both polar and nematic correlations in an interacting swimmer suspension. In the absence of correlations, the velocity covariance asymptotes from a constant for r > L, the latter being characteristic of a suspension of non-interacting point force-dipoles. On including correlations, the slow decay of the pair-orientation correlation leads to an additional contribution to the velocity covariance that diverges logarithmically with system size.
Gajewski, Andrzej; Kolenderski, Piotr L.
2016-10-01
There are several problems that must be solved in order to increase the distance of quantum communication protocols based on photons as an information carriers. One of them is the dispersion, whose effects can be minimized by engineering spectral properties of transmitted photons. In particular, it is expected that positively correlated photon pairs can be very useful. We present the full characterization of a source of single photon pairs at a telecom wavelength based on type II spontaneous parametric down conversion (SPDC) process in a beta-barium borate (BBO) crystal. In the type II process, a pump photon, which is polarized extraordinarily, splits in a nonlinear medium into signal and idler photons, which are polarized perpendicularly to each other. In order for the process to be efficient a phase matching condition must be fulfilled. These conditions originate from momentum and energy conservation rules and put severe restrictions on source parameters. Seemingly, these conditions force the photon pair to be negatively correlated in their spectral domain. However, it is possible to achieve positive correlation for pulsed pumping. The experimentally available degrees of freedom of a source are the width of the pumping beam, the collected modes' widths, the length of the nonlinear crystal and the duration of the pumping pulse. In our numerical model we use the following figures of merit: the pair production rate, the efficiency of photon coupling into a single mode fiber, the spectral correlation of the coupled photon pair. The last one is defined as the Pearson correlation parameter for a joint spectral distribution. The aim here is to find the largest positive spectral correlation and the highest coupling efficiency. By resorting to the numerical model Ref. [1] we showed in Ref. [2], that by careful adjustment of the pump's and the collected modes' characteristics, one can optimize any of the source's parameters. Our numerical outcomes conform to the
Perina, Jan Jr.; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; Scalora, Michael
2006-01-01
We have developed a rigorous quantum model of spontaneous parametric down-conversion in a nonlinear 1D photonic-band-gap structure based upon expansion of the field into monochromatic plane waves. The model provides a two-photon amplitude of a created photon pair. The spectra of the signal and idler fields, their intensity profiles in the time domain, as well as the coincidence-count interference pattern in a Hong-Ou-Mandel interferometer are determined both for cw and pulsed pumping regimes in terms of the two-photon amplitude. A broad range of parameters characterizing the emitted down-converted fields can be used. As an example, a structure composed of 49 layers of GaN/AlN is analyzed as a suitable source of photon pairs having high efficiency
Direct Characterization of Ultrafast Energy-Time Entangled Photon Pairs.
MacLean, Jean-Philippe W; Donohue, John M; Resch, Kevin J
2018-02-02
Energy-time entangled photons are critical in many quantum optical phenomena and have emerged as important elements in quantum information protocols. Entanglement in this degree of freedom often manifests itself on ultrafast time scales, making it very difficult to detect, whether one employs direct or interferometric techniques, as photon-counting detectors have insufficient time resolution. Here, we implement ultrafast photon counters based on nonlinear interactions and strong femtosecond laser pulses to probe energy-time entanglement in this important regime. Using this technique and single-photon spectrometers, we characterize all the spectral and temporal correlations of two entangled photons with femtosecond resolution. This enables the witnessing of energy-time entanglement using uncertainty relations and the direct observation of nonlocal dispersion cancellation on ultrafast time scales. These techniques are essential to understand and control the energy-time degree of freedom of light for ultrafast quantum optics.
Frequency-bin entanglement of ultra-narrow band non-degenerate photon pairs
Rieländer, Daniel; Lenhard, Andreas; Jime`nez Farìas, Osvaldo; Máttar, Alejandro; Cavalcanti, Daniel; Mazzera, Margherita; Acín, Antonio; de Riedmatten, Hugues
2018-01-01
We demonstrate frequency-bin entanglement between ultra-narrowband photons generated by cavity enhanced spontaneous parametric down conversion. Our source generates photon pairs in widely non-degenerate discrete frequency modes, with one photon resonant with a quantum memory material based on praseodymium doped crystals and the other photon at telecom wavelengths. Correlations between the frequency modes are analyzed using phase modulators and narrowband filters before detection. We show high-visibility two photon interference between the frequency modes, allowing us to infer a coherent superposition of the modes. We develop a model describing the state that we create and use it to estimate optimal measurements to achieve a violation of the Clauser-Horne (CH) Bell inequality under realistic assumptions. With these settings we perform a Bell test and show a significant violation of the CH inequality, thus proving the entanglement of the photons. Finally we demonstrate the compatibility with a quantum memory material by using a spectral hole in the praseodymium (Pr) doped crystal as spectral filter for measuring high-visibility two-photon interference. This demonstrates the feasibility of combining frequency-bin entangled photon pairs with Pr-based solid state quantum memories.
Koefoed, Jacob Gade; Christensen, Jesper Bjerge; Rottwitt, Karsten
2017-01-01
We present a general model, based on a Hamiltonian approach, for the joint quantum state of photon pairs generated through pulsed spontaneous four-wave mixing, including nonlinear phase modulation and a finite material response time. For the case of a silica fiber, it is found that the pair......-production rate depends weakly on the waveguide temperature, due to higher-order Raman scattering events, and more strongly on pump-pair frequency detuning. From the analytical model, a numerical scheme is derived, based on the well-known split-step method. This scheme allows computation of joint states where......-dependent change in quantum-mechanical purity may be observed in silica. This shows that Raman scattering not only introduces noise, but can also drastically change the spectral correlations in photon pairs when pumped with short pulses....
Savanier, Marc, E-mail: msavanier@eng.ucsd.edu; Mookherjea, Shayan, E-mail: smookherjea@eng.ucsd.edu [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States)
2016-06-20
Generation of photon pairs from compact, manufacturable, and inexpensive silicon (Si) photonic devices at room temperature may help develop practical applications of quantum photonics. An important characteristic of photon-pair generation is the two-photon joint spectral intensity, which describes the frequency correlations of the photon pair. Recent attempts to generate a factorizable photon-pair state suitable for heralding have used short optical pump pulses from mode-locked lasers, which are much more expensive and bigger table-top or rack-sized instruments compared with the Si microchip used for generating photon pairs, and thus dominate the cost and inhibit the miniaturization of the source. Here, we generate photon pairs from an Si microring resonator by using an electronic step-recovery diode to drive an electro-optic modulator which carves the pump light from a continuous-wave laser diode into pulses of the appropriate width, thus potentially eliminating the need for optical mode-locked lasers.
Photon propagator and pair production in stationary electric field
Makhlin, A.N.; Olejnik, V.P.
1978-01-01
Effects related to pair production by an external field are discussed. It is shown that vacuum instability against pair production leads to an essential difference between the propagator and Feynman Green's function. Analysis of Yang-Feldman equations and of boundary conditions imposed upon the Green's function shows that using Feynman Green's function as a propagator contradicts the causality principle. The physical causality principle is satisfied by Heisenberg Green's function for which usual Schwinger-Dyson equations cannot be formulated. Heisenberg and Feynman Green's functions coincide for the case of stable vacuum state. All calculations are carried out using the technique of the so-called generalized Green's functions in terms of which the propagators are written. The polarization operator in the electric field is calculated in the one-loop approximation. Its' general structure is found. The photon propagator is obtained. Self oscillations of the photon vacuum are determined. It is shown that new modes correspond to collective excitations of the type ''photon+electron-positron pairs''
Strongly correlated photons generated by coupling a three- or four-level system to a waveguide
Zheng, Huaixiu; Gauthier, Daniel J.; Baranger, Harold U.
2012-04-01
We study the generation of strongly correlated photons by coupling an atom to photonic quantum fields in a one-dimensional waveguide. Specifically, we consider a three-level or four-level system for the atom. Photon-photon bound states emerge as a manifestation of the strong photon-photon correlation mediated by the atom. Effective repulsive or attractive interaction between photons can be produced, causing either suppressed multiphoton transmission (photon blockade) or enhanced multiphoton transmission (photon-induced tunneling). As a result, nonclassical light sources can be generated on demand by sending coherent states into the proposed system. We calculate the second-order correlation function of the transmitted field and observe bunching and antibunching caused by the bound states. Furthermore, we demonstrate that the proposed system can produce photon pairs with a high degree of spectral entanglement, which have a large capacity for carrying information and are important for large-alphabet quantum communication.
Pairing correlations in a fissioning potential well
Krappe, H.J.; Fadeev, S.
1999-01-01
To describe pairing correlations in a fissioning system one commonly projects the BCS wave function separately onto good particle numbers in each fragment in the exit channel, but only onto the total number of particles in the parent system. We propose to interpolate between these limiting situations by the generator-coordinate method with the particle-number difference between the nascent fragments as the generator coordinate. Model calculations are presented for the Hill-Wheeler box potential with a δ-function diaphragm to mimic scission
Dimer pair correlations on the brick lattice
Yokoi, C.S.O.; Nagle, J.F.; Sulinas, S.R.
1986-01-01
Using exact methods, pair-correlation functions are studied in the dimer model defined on a brick lattice. At long distances these functions exhibit strongly anisotropic algebraic decay and, near criticality, the length scales diverge differently in the two principal directions. The critical exponents are v /sub x/ =1/2 and v /sub y/ =1. These results are in agreement with deductions drawn from recent exact finite-size scaling calculations. We also interpret our results in the light of domain wall theories of commensurate-incommensurate transitions, and in particular we study the relation of the present model to the discrete version of the Pokrovsky-Talapov model introduced by Villain
Tunable two-photon correlation in a double-cavity optomechanical system
Zhi-Bo Feng
2015-12-01
Full Text Available Correlated photons are essential sources for quantum information processing. We propose a practical scheme to generate pairs of correlated photons in a controllable fashion from a double-cavity optomechanical system, where the variable optomechanical coupling strength makes it possible to tune the photon correlation at our will. The key operation is based on the repulsive or attractive interaction between the two photons intermediated by the mechanical resonator. The present protocol could provide a potential approach to coherent control of the photon correlation using the optomechanical cavity.
Qubit entanglement between ring-resonator photon-pair sources on a silicon chip
Silverstone, J. W.; Santagati, R.; Bonneau, D.; Strain, M. J.; Sorel, M.; O'Brien, J. L.; Thompson, M. G.
2015-01-01
Entanglement—one of the most delicate phenomena in nature—is an essential resource for quantum information applications. Scalable photonic quantum devices must generate and control qubit entanglement on-chip, where quantum information is naturally encoded in photon path. Here we report a silicon photonic chip that uses resonant-enhanced photon-pair sources, spectral demultiplexers and reconfigurable optics to generate a path-entangled two-qubit state and analyse its entanglement. We show that ring-resonator-based spontaneous four-wave mixing photon-pair sources can be made highly indistinguishable and that their spectral correlations are small. We use on-chip frequency demultiplexers and reconfigurable optics to perform both quantum state tomography and the strict Bell-CHSH test, both of which confirm a high level of on-chip entanglement. This work demonstrates the integration of high-performance components that will be essential for building quantum devices and systems to harness photonic entanglement on the large scale. PMID:26245267
Spatiotemporal correlations in entangled photons generated by spontaneous parametric down conversion
Osorio, Clara I; Valencia, Alejandra; Torres, Juan P
2008-01-01
In most configurations aimed at generating entangled photons based on spontaneous parametric down conversion (SPDC), the generated pairs of photons are required to be entangled in only one degree of freedom. Any distinguishing information coming from the other degrees of freedom that characterize the photon should be suppressed to avoid correlations with the degree of freedom of interest. However, this suppression is not always possible. Here, we show how the frequency information available affects the purity of the two-photon state in space, revealing a correlation between the frequency and the space degrees of freedom. This correlation should be taken into account to calculate the total amount of entanglement between the photons.
Multi-user distribution of polarization entangled photon pairs
Trapateau, J.; Orieux, A.; Diamanti, E.; Zaquine, I., E-mail: isabelle.zaquine@telecom-paristech.fr [LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013 Paris (France); Ghalbouni, J. [Applied Physics Laboratory, Faculty of Sciences 2, Lebanese University, Campus Fanar, BP 90656 Jdeidet (Lebanon)
2015-10-14
We experimentally demonstrate multi-user distribution of polarization entanglement using commercial telecom wavelength division demultiplexers. The entangled photon pairs are generated from a broadband source based on spontaneous parametric down conversion in a periodically poled lithium niobate crystal using a double path setup employing a Michelson interferometer and active phase stabilisation. We test and compare demultiplexers based on various technologies and analyze the effect of their characteristics, such as losses and polarization dependence, on the quality of the distributed entanglement for three channel pairs of each demultiplexer. In all cases, we obtain a Bell inequality violation, whose value depends on the demultiplexer features. This demonstrates that entanglement can be distributed to at least three user pairs of a network from a single source. Additionally, we verify for the best demultiplexer that the violation is maintained when the pairs are distributed over a total channel attenuation corresponding to 20 km of optical fiber. These techniques are therefore suitable for resource-efficient practical implementations of entanglement-based quantum key distribution and other quantum communication network applications.
Photon-number correlation for quantum enhanced imaging and sensing
Meda, A.; Losero, E.; Samantaray, N.; Scafirimuto, F.; Pradyumna, S.; Avella, A.; Ruo-Berchera, I.; Genovese, M.
2017-09-01
In this review we present the potentialities and the achievements of the use of non-classical photon-number correlations in twin-beam states for many applications, ranging from imaging to metrology. Photon-number correlations in the quantum regime are easily produced and are rather robust against unavoidable experimental losses, and noise in some cases, if compared to the entanglement, where losing one photon can completely compromise the state and its exploitable advantages. Here, we will focus on quantum enhanced protocols in which only phase-insensitive intensity measurements (photon-number counting) are performed, which allow probing the transmission/absorption properties of a system, leading, for example, to innovative target detection schemes in a strong background. In this framework, one of the advantages is that the sources experimentally available emit a wide number of pair-wise correlated modes, which can be intercepted and exploited separately, for example by many pixels of a camera, providing a parallelism, essential in several applications, such as wide-field sub-shot-noise imaging and quantum enhanced ghost imaging. Finally, non-classical correlation enables new possibilities in quantum radiometry, e.g. the possibility of absolute calibration of a spatial resolving detector from the on-off single-photon regime to the linear regime in the same setup.
A neural-network approach to the problem of photon-pair combinatorics
Awes, T.C.
1990-06-01
A recursive neural-network algorithm is applied to the problem of correctly pairing photons from π 0 , η, and higher resonance decays in the presence of a large background of photons resulting from many simultaneous decays. The method uses the full information of the multi-photon final state to suppress the selection of false photon pairs which arise from the many combinatorial possibilities. The method is demonstrated for simulated photon events under semirealistic experimental conditions. 3 refs., 3 figs
Broadband illumination of superconducting pair breaking photon detectors
Guruswamy, T; Goldie, D J; Withington, S
2016-01-01
Understanding the detailed behaviour of superconducting pair breaking photon detectors such as Kinetic Inductance Detectors (KIDs) requires knowledge of the nonequilibrium quasiparticle energy distributions. We have previously calculated the steady state distributions resulting from uniform absorption of monochromatic sub gap and above gap frequency radiation by thin films. In this work, we use the same methods to calculate the effect of illumination by broadband sources, such as thermal radiation from astrophysical phenomena or from the readout system. Absorption of photons at multiple above gap frequencies is shown to leave unchanged the structure of the quasiparticle energy distribution close to the superconducting gap. Hence for typical absorbed powers, we find the effects of absorption of broadband pair breaking radiation can simply be considered as the sum of the effects of absorption of many monochromatic sources. Distribution averaged quantities, like quasiparticle generation efficiency η, match exactly a weighted average over the bandwidth of the source of calculations assuming a monochromatic source. For sub gap frequencies, however, distributing the absorbed power across multiple frequencies does change the low energy quasiparticle distribution. For moderate and high absorbed powers, this results in a significantly larger η–a higher number of excess quasiparticles for a broadband source compared to a monochromatic source of equal total absorbed power. Typically in KIDs the microwave power absorbed has a very narrow bandwidth, but in devices with broad resonance characteristics (low quality factors), this increase in η may be measurable. (paper)
Ultrabright, narrow-band photon-pair source for atomic quantum memories
Tsai, Pin-Ju; Chen, Ying-Cheng
2018-06-01
We demonstrate an ultrabright, narrow-band and frequency-tunable photon-pair source based on cavity-enhanced spontaneous parametric down conversion (SPDC) which is compatible with atomic transition of rubidium D 2-line (780 nm) or cesium D 2-line (852 nm). With the pump beam alternating between a high and a low power phase, the output is switching between the optical parametric oscillator (OPO) and photon-pair generation mode. We utilize the OPO output light to lock the cavity length to maintain the double resonances of signal and idler, as well as to lock the signal frequency to cesium atomic transition. With a type-II phase matching and a double-passed pump scheme such that the cluster frequency spacing is larger than the SPDC bandwidth, the photon-pair output is in a nearly single-mode operation as confirmed by a scanning Fabry–Perot interferometer with its output detected by a photomultiplier. The achieved generation and detection rates are 7.24× {10}5 and 6142 s‑1 mW‑1, respectively. The correlation time of the photon pair is 21.6(2.2) ns, corresponding to a bandwidth of 2π × 6.6(6) MHz. The spectral brightness is 1.06× {10}5 s‑1 mW‑1 MHz‑1. This is a relatively high value under a single-mode operation with the cavity-SPDC scheme. The generated single photons can be readily used in experiments related to atomic quantum memories.
Photon correlation: a micrometer of the nuclear reaction
Marques, F.M.
1997-01-01
The technique of intensity interferometry was largely applied to pairs of bosons produced in heavy ion collisions to study the properties of their source. Recently this technique was applied also to photons which can be considered 'natural' probes in interferometry. The analysis of the results of two experiments, namely Kr + Mi at 60 MeV/N and Ta + Au at 40 MeV/N carried out with the multidetector TAPS at GANIL has shown the complexity of the space-time characteristic of the photon source. The standard hypothesis describing the production of high energy protons (E γ > 25 MeV) as starting from p-n Bremsstrahlung exclusively in the initial superposition of the two nuclei was rejected. Actually the typical form of the correlation function in which the correlation width corresponds to the inverse of the source size, is not satisfied by any of the two systems. Only, by the taking into account in the BUU calculations the photons produced later bring near the calculations and the data. This late production could originate in the recompression of the di-nuclei system. In analogy with previous application of this technique to stellar interferometry we have studied the structure of the photon source by Monte-Carlo calculations of the correlation function. For the simple case of a binary source the correlation function is dependent on the two source distributions, relative intensity and the space-time separation of the two sources. The results of this calculations evidence the sensitivity of the photon interferometry to different reaction mechanisms by the magnitude and also the shape of the correlation function. The best agreement with the data is obtained when the two nuclear fragments emit simultaneously the photons at a moment subsequent to the reaction moment
Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki; Yamamoto, Takashi; Imoto, Nobuyuki; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Wang, Zhen; Fujiwara, Mikio; Sasaki, Masahide; Koashi, Masato
2014-01-01
We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion
Glucose detection in a highly scattering medium with diffuse photon-pair density wave
Li-Ping Yu
2017-01-01
Full Text Available We propose a novel optical method for glucose measurement based on diffuse photon-pair density wave (DPPDW in a multiple scattering medium (MSM where the light scattering of photon-pair is induced by refractive index mismatch between scatters and phantom solution. Experimentally, the DPPDW propagates in MSM via a two-frequency laser (TFL beam wherein highly correlated pairs of linear polarized photons are generated. The reduced scattering coefficient μ2s′ and absorption coefficient μ2a of DPPDW are measured simultaneously in terms of the amplitude and phase measurements of the detected heterodyne signal under arrangement at different distances between the source and detection fibers in MSM. The results show that the sensitivity of glucose detection via glucose-induced change of reduced scattering coefficient (δμ2s′ is 0.049%mM−1 in a 1% intralipid solution. In addition, the linear range of δμ2s′ vs glucose concentration implies that this DPPDW method can be used to monitor glucose concentration continuously and noninvasively subcutaneously.
Direct Generation and Detection of Quantum Correlated Photons with 3.2 um Wavelength Spacing.
Sua, Yong Meng; Fan, Heng; Shahverdi, Amin; Chen, Jia-Yang; Huang, Yu-Ping
2017-12-13
Quantum correlated, highly non-degenerate photons can be used to synthesize disparate quantum nodes and link quantum processing over incompatible wavelengths, thereby constructing heterogeneous quantum systems for otherwise unattainable superior performance. Existing techniques for correlated photons have been concentrated in the visible and near-IR domains, with the photon pairs residing within one micron. Here, we demonstrate direct generation and detection of high-purity photon pairs at room temperature with 3.2 um wavelength spacing, one at 780 nm to match the rubidium D2 line, and the other at 3950 nm that falls in a transparent, low-scattering optical window for free space applications. The pairs are created via spontaneous parametric downconversion in a lithium niobate waveguide with specially designed geometry and periodic poling. The 780 nm photons are measured with a silicon avalanche photodiode, and the 3950 nm photons are measured with an upconversion photon detector using a similar waveguide, which attains 34% internal conversion efficiency. Quantum correlation measurement yields a high coincidence-to-accidental ratio of 54, which indicates the strong correlation with the extremely non-degenerate photon pairs. Our system bridges existing quantum technology to the challenging mid-IR regime, where unprecedented applications are expected in quantum metrology and sensing, quantum communications, medical diagnostics, and so on.
QCD angular correlations for muon pair production
Kajantie, K.; Raitio, R.; Lindfors, J.
1978-01-01
Angular distributions of muons are discussed in the framework of a QCD treatment of muon pair production in hadron-hadron collisions. The predicted angular effects are independent of the infrared behavior of QCD. Measuring them will permit one to determine whether the origin of the large transverse momentum of the pair is in the quark transverse momenta or in a constituent-constituent subprocess. (author)
Exclusive production of proton-antiproton pairs in photon-photon collisions
Bartel, W.; Becker, L.; Cords, D.; Felst, R.; Haidt, D.; Knies, G.; Krehbiel, H.; Laurikainen, P.; Magnussen, N.; Meinke, R.; Naroska, B.; Olsson, J.; Schmidt, D.; Steffen, P.; Dietrich, G.; Hagemann, J.; Heinzelmann, G.; Kado, H.; Kawagoe, K.; Kleinwort, C.; Kuhlen, M.; Petersen, A.; Ramcke, R.; Schneekloth, U.; Weber, G.; Allison, J.; Ball, A.H.; Barlow, R.J.; Chrin, J.; Duerdoth, I.P.; Greenshaw, T.; Loebinger, F.K.; Macbeth, A.A.; Mills, H.E.; Murphy, P.G.; Stephens, K.; Warming, P.; Glasser, R.G.; Hill, P.; Skard, J.A.J.; Wagner, S.R.; Zorn, G.T.; Cartwright, S.L.; Clarke, D.; Marshall, R.; Middleton, R.P.; Kawamoto, T.; Kobayashi, T.; Takeda, H.; Takeshita, T.; Yamada, S.
1986-01-01
Total and differential cross sections for exclusive production of proton-antiproton pairs in photon-photon collisions have been measured using the JADE detector at PETRA. The total cross section in the CM angular range vertical strokecos thetasup(*)vertical stroke<0.6 reaches a maximum value of 3.8 nb for a γγ invariant mass of Wsub(γγ) = 2.25 GeV, and decreases rapidly for higher values of Wsub(γγ). In the range 2.0 GeV < Wsub(γγ) < 2.6 GeV the angular distribution is not isotropic. The nucleons are preferentially emitted at large angles to the collision axis. (orig.)
Control of photon correlations in type II parametric down-conversion
Andrews, R; Joseph, A T; Pike, E R; Sarkar, Sarben
2005-01-01
In this paper we describe theoretically quantum control of temporal correlations of entangled photons produced by collinear type II spontaneous parametric down-conversion. We examine the effect of spectral phase modulation of the signal or idler photons arriving at a 50/50 beam splitter on the temporal shape of the entangled-photon wavepacket. The coincidence count rate is calculated analytically for photon pairs in terms of the modulation depth applied to either the signal or idler beam with a spectral phase filter. It is found that the two-photon coincidence rate can be controlled by varying the modulation depth of the spectral filter
Quantum-correlated two-photon transitions to excitons in semiconductor quantum wells.
Salazar, L J; Guzmán, D A; Rodríguez, F J; Quiroga, L
2012-02-13
The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers.
Spin polarization in top pair production in association with two photons at NLO+PS
Luisoni, Gionata
2018-01-01
This talk focuses on the impact of top-quark spin polarization effects in Higgs boson production in association with a top-quark pair, where the Higgs boson decays to two photons. Predictions for the signal are compared with direct top-quark pair production in association with two photons at NLO+PS.
Spin polarization in top pair production in association with two photons at NLO+PS
Luisoni, Gionata
2017-01-01
This talk focuses on the impact of top-quark spin polarization effects in Higgs boson production in association with a top-quark pair, where the Higgs boson decays to two photons. Predictions for the signal are compared with direct top-quark pair production in association with two photons at NLO+PS.
Pair correlation of particles in strongly nonideal systems
Vaulina, O. S.
2012-01-01
A new semiempirical model is proposed for describing the spatial correlation between interacting particles in nonideal systems. The developed model describes the main features in the behavior of the pair correlation function for crystalline structures and can also be used for qualitative and quantitative description of the spatial correlation of particles in strongly nonideal liquid systems. The proposed model is compared with the results of simulation of the pair correlation function.
Microwave Correlation Measurement Crossed-pair Antennas ...
We propose here new processes, an add and square correlation radiometer and the non-resonant perturbation, which thoroughly investigated for different muscle phantom materials to define the optimum penetration depth of the electromagnetic field at fixed distance between the antennas. Keywords: Microwave correlation ...
Centini, M.; Peřina ml., Jan; Sciscione, L.; Sibilia, C.; Scalora, M.; Bloemer, M.J.; Bertolotti, M.
2005-01-01
Roč. 72, 03 (2005), 033806/1-033806/11 ISSN 1050-2947 R&D Projects: GA MŠk(CZ) OC P11.003 Institutional research plan: CEZ:AV0Z10100522 Keywords : photon pair * photonic crystals * spontaneous parametric down-conversion Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.997, year: 2005
Intrinsically narrowband pair photon generation in microstructured fibres
Clark, Alex; Bell, Bryn; Fulconis, Jeremie; Halder, Matthaeus M; Cemlyn, Ben; Rarity, John G [Centre for Communications Research, Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB (United Kingdom); Alibart, Olivier [Laboratoire de Physique de la Matiere Condensee, Unite Mixte de Recherche 6622, Centre National de la Recherche Scientifique, Universite de Nice-Sophia Antipolis, Parc Valrose 06108, Nice 2 (France); Xiong Chunle; Wadsworth, William J, E-mail: alex.clark@bristol.ac.uk [Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)
2011-06-15
In this paper, we study the tailoring of photon spectral properties generated by four-wave mixing in a birefringent photonic crystal fibre (PCF). The aim is to produce intrinsically narrow-band photons and hence to achieve high non-classical interference visibility and generate high-fidelity entanglement without any requirement for spectral filtering, leading to high effective detection efficiencies. We show unfiltered Hong-Ou-Mandel interference visibilities of 77% between photons from the same PCF and 80% between separate sources. We compare results from modelling the PCF to these experiments and analyse photon purities.
25 ns software correlator for photon and fluorescence correlation spectroscopy
Magatti, Davide; Ferri, Fabio
2003-02-01
A 25 ns time resolution, multi-tau software correlator developed in LABVIEW based on the use of a standard photon counting unit, a fast timer/counter board (6602-PCI National Instrument) and a personal computer (PC) (1.5 GHz Pentium 4) is presented and quantitatively discussed. The correlator works by processing the stream of incoming data in parallel according to two different algorithms: For large lag times (τ⩾100 μs), a classical time-mode (TM) scheme, based on the measure of the number of pulses per time interval, is used; differently, for τ⩽100 μs a photon-mode (PM) scheme is adopted and the time sequence of the arrival times of the photon pulses is measured. By combining the two methods, we developed a system capable of working out correlation functions on line, in full real time for the TM correlator and partially in batch processing for the PM correlator. For the latter one, the duty cycle depends on the count rate of the incoming pulses, being ˜100% for count rates ⩽3×104 Hz, ˜15% at 105 Hz, and ˜1% at 106 Hz. For limitations imposed by the fairly small first-in, first-out (FIFO) buffer available on the counter board, the maximum count rate permissible for a proper functioning of the PM correlator is limited to ˜105 Hz. However, this limit can be removed by using a board with a deeper FIFO. Similarly, the 25 ns time resolution is only limited by maximum clock frequency available on the 6602-PCI and can be easily improved by using a faster clock. When tested on dilute solutions of calibrated latex spheres, the overall performances of the correlator appear to be comparable with those of commercial hardware correlators, but with several nontrivial advantages related to its flexibility, low cost, and easy adaptability to future developments of PC and data acquisition technology.
Two-color ghost interference with photon pairs generated in hot atoms
Dong-Sheng Ding
2012-09-01
Full Text Available We report on an experimental observation of a two-photon ghost interference experiment. A distinguishing feature of our experiment is that the photons are generated via a non-degenerated spontaneous four-wave mixing process in a hot atomic ensemble; therefore the photon has narrow bandwidth. Besides, there is a large difference in frequency between two photons in a pair. Our works may be important to achieve more secure, large transmission capacity long-distance quantum communication.
Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line
Tian Long; Li Shujing; Yuan Haoxiang; Wang Hai
2016-01-01
Using the process of cavity-enhanced spontaneous parametric down-conversion (SPDC), we generate a narrow-band polarization-entangled photon pair resonant on the rubidium (Rb) D1 line (795 nm). The degenerate single-mode photon pair is selected by multiple temperature controlled etalons. The linewidth of generated polarization-entangled photon pairs is 15 MHz which matches the typical atomic memory bandwidth. The measured Bell parameter for the polarization-entangled photons S = 2.73 ± 0.04 which violates the Bell-CHSH inequality by ∼18 standard deviations. The presented entangled photon pair source could be utilized in quantum communication and quantum computing based on quantum memories in atomic ensemble. (author)
Duan, Peng-Fei; Zhang, Yu; Wang, Yong; Song, Mao; Li, Gang
2017-01-01
We present the next-to-leading order (NLO) electroweak (EW) corrections to the top quark pair production associated with a hard photon at the current and future hadron colliders. The dependence of the leading order (LO) and NLO EW corrected cross sections on the photon transverse momentum cut are investigated. We also provide the LO and NLO EW corrected distributions of the transverse momentum of final top quark and photon and the invariant mass of top quark pair and top–antitop-photon system. The results show that the NLO EW corrections are significant in high energy regions due to the EW Sudakov effect.
THE PAIR BEAM PRODUCTION SPECTRUM FROM PHOTON-PHOTON ANNIHILATION IN COSMIC VOIDS
Schlickeiser, R.; Ibscher, D. [Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Elyiv, A. [Institut d' Astrophysique et de Geophysique, Universite de Liege, B-4000 Liege (Belgium); Miniati, F., E-mail: rsch@tp4.rub.de, E-mail: ibscher@tp4.rub.de, E-mail: elyiv@astro.ulg.ac.be, E-mail: fm@phys.ethz.ch [Physics Department, Wolfgang-Pauli-Strasse 27, ETH-Zuerich, CH-8093 Zuerich (Switzerland)
2012-10-20
Highly beamed relativistic e {sup {+-}}-pair energy distributions result in double photon collisions of the beamed gamma rays from TeV blazars at cosmological distances with the isotropically distributed extragalactic background light (EBL) in the intergalactic medium. The typical energies k {sub 0} {approx_equal} 10{sup -7} in units of m{sub e}c {sup 2} of the EBL are more than 10 orders of magnitude smaller than the observed gamma-ray energies k {sub 1} {>=} 10{sup 7}. Using the limit k {sub 0} << k {sub 1}, we demonstrate that the angular distribution of the generated pairs in the lab frame is highly beamed in the direction of the initial gamma-ray photons. For the astrophysically important case of power-law distributions of the emitted gamma-ray beam up to the maximum energy M interacting with Wien-type N(k {sub 0}){proportional_to}k{sup q} {sub 0}exp (- k {sub 0}/{Theta}) soft photon distributions with total number density N {sub 0}, we calculate analytical approximations for the electron production spectrum. For distant objects with luminosity distances d{sub L} >> r {sub 0} = ({sigma} {sub T} N {sub 0}){sup -1} = 0.49N {sup -1} {sub 0} Mpc (with Thomson cross section {sigma} {sub T}), the implied large values of the optical depth {tau}{sub 0} = d{sub L} /r {sub 0} indicate that the electron production spectra differ at energies inside and outside the interval [({Theta}ln {tau}{sub 0}){sup -1}, {tau}{sub 0}/{Theta}], given the maximum gamma-ray energy M >> {Theta}{sup -1}. In the case M >> {Theta}{sup -1}, the production spectrum is strongly peaked near E {approx_equal} {Theta}{sup -1}, being exponentially reduced at small energies and decreasing with the steep power law {proportional_to}E {sup -1-p} up to the maximum energy E = M - (1/2).
Proton-neutron correlations in a broken-pair model
Akkermans, J.N.L.
1981-01-01
In this thesis nuclear-structure calculations are reported which were performed with the broken-pair model. The model which is developed, is an extension of existing broken-pair models in so far that it includes both proton and neutron valence pairs. The relevant formalisms are presented. In contrast to the number-non-conserving model, a proton-neutron broken-pair model is well suited to study the correlations which are produced by the proton-neutron interaction. It is shown that the proton-neutron force has large matrix elements which mix the proton- with neutron broken-pair configurations. This occurs especially for Jsup(PI)=2 + and 3 - pairs. This property of the proton-neutron force is used to improve the spectra of single-closed shell nuclei, where particle-hole excitations of the closed shell are a special case of broken-pair configurations. Using Kr and Te isotopes it is demonstrated that the proton-neutron force gives rise to correlated pair structures, which remain remarkably constant with varying nucleon numbers. (Auth.)
Randomly poled nonlinear crystals as a source of photon pairs
Peřina ml., Jan; Svozilík, J.
2011-01-01
Roč. 83, č. 3 (2011), 033808/1-033808/14 ISSN 1050-2947 R&D Projects: GA MŠk(CZ) OC09026; GA AV ČR IAA100100713; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : parametric down conversion * production of entangled photons * nonclassical states of the electromagnetic field * entangled photon states Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.878, year: 2011 http://arxiv.org/PS_cache/arxiv/pdf/1101/1101.0757v1.pdf
Correlation of WAIS IQ in 10 Pairs of Brothers.
Matarazzo, Joseph D.; And Others
1978-01-01
Pairs of brothers were individually examined with Wechsler Adult Intelligence Scale some 10 months apart by an experienced clinical psychologist unaware of the consanguineous relationship. Correlation of .42 for Full Scale IQ is consistent with median correlation reported by Erlenmeyer-Kimling and Jarvik in their 1963 literature review.…
The Potts model and flows. 1. The pair correlation function
Essam, J.W.; Tsallis, C.
1985-01-01
It is shown that the partition function for the lambda-state Potts model with pair-interactions is related to the expected number of integer mod-lambda flows in a percolation model. The relation is generalised to the pair correlation function. The resulting high temperature expansion coefficients are shown to be the flow polynomials of graph theory. An observation of Tsallis and Levy concerning the equivalent transmissivity of a cluster is also proved. (Author) [pt
Su Yanli; Jiang Qichang; Ji Xuanmang
2010-01-01
The incoherently coupled grey-grey screening-photovoltaic spatial soliton pairs are predicted in biased two-photon photovoltaic photorefractive crystals under steady-state conditions. These grey-grey screening-photovoltaic soliton pairs can be established provided that the incident beams have the same polarization, wavelength, and are mutually incoherent. The grey-grey screening-photovoltaic soliton pairs can be considered as the united form of grey-grey screening soliton pairs and open or closed-circuit grey-grey photovoltaic soliton pairs. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Power-efficient production of photon pairs in a tapered chalcogenide microwire
Meyer-Scott, Evan, E-mail: emeyersc@uwaterloo.ca; Dot, Audrey [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Ahmad, Raja; Li, Lizhu; Rochette, Martin [Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montréal, Québec H3A 2A7 (Canada); Jennewein, Thomas [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Quantum Information Science Program, Canadian Institute for Advanced Research, 180 Dundas Street West, Suite 1400, Toronto, Ontario M5G 1Z8 (Canada)
2015-02-23
Using tapered fibers of As{sub 2}Se{sub 3} chalcogenide glass, we produce photon pairs at telecommunication wavelengths with low pump powers. We found maximum coincidences-to-accidentals ratios of 2.13 ± 0.07 for degenerate pumping with 3.2 μW average power, and 1.33 ± 0.03 for non-degenerate pumping with 1.0 μW and 1.5 μW average power of the two pumps. Our results show that the ultrahigh nonlinearity in these microwires could allow single-photon pumping to produce photon pairs, enabling the production of large entangled states, heralding of single photons after lossy transmission, and photonic quantum information processing with nonlinear optics.
Multiplying and detecting propagating microwave photons using inelastic Cooper-pair tunneling
Leppäkangas, Juha; Marthaler, Michael; Hazra, Dibyendu; Jebari, Salha; Albert, Romain; Blanchet, Florian; Johansson, Göran; Hofheinz, Max
2018-01-01
The interaction between propagating microwave fields and Cooper-pair tunneling across a DC-voltage-biased Josephson junction can be highly nonlinear. We show theoretically that this nonlinearity can be used to convert an incoming single microwave photon into an outgoing n -photon Fock state in a different mode. In this process, the electrostatic energy released in a Cooper-pair tunneling event is transferred to the outgoing Fock state, providing energy gain. The created multiphoton Fock state is frequency entangled and highly bunched. The conversion can be made reflectionless (impedance matched) so that all incoming photons are converted to n -photon states. With realistic parameters, multiplication ratios n >2 can be reached. By two consecutive multiplications, the outgoing Fock-state number can get sufficiently large to accurately discriminate it from vacuum with linear postamplification and power measurement. Therefore, this amplification scheme can be used as a single-photon detector without dead time.
Split-step scheme for photon-pair generation through spontaneous four-wave mixing
Koefoed, Jacob Gade; Christensen, Jesper Bjerge; Rottwitt, Karsten
2017-01-01
The rapid development of quantum information technology requires the ability to reliably create and distribute single photons [1]. Photon-pair production through spontaneous four-wave mixing (SpFWM) allows heralded single photons to be generated at communication wavelengths and in fiber, compatible...... with conventional communication systems, with small losses. Creating single photons in desired quantum states require careful design of waveguide structures. This is greatly facilitated by a general numerical approach as presented here. Additionally, such a numerical approach allows detailed analysis of real...... systems where all relevent effects are included....
Kroh, Tim; Ahlrichs, Andreas; Sprenger, Benjamin; Benson, Oliver
2017-09-01
Future quantum networks require a hybrid platform of dissimilar quantum systems. Within the platform, joint quantum states have to be mediated either by single photons, photon pairs or entangled photon pairs. The photon wavelength has to lie within the telecommunication band to enable long-distance fibre transmission. In addition, the temporal shape of the photons needs to be tailored to efficiently match the involved quantum systems. Altogether, this requires the efficient coherent wavelength-conversion of arbitrarily shaped single-photon wave packets. Here, we demonstrate the heralded temporal filtering of single photons as well as the synchronisation of state manipulation and detection as key elements in a typical experiment, besides of delaying a photon in a long fibre. All three are realised by utilising commercial telecommunication fibre-optical components which will permit the transition of quantum networks from the lab to real-world applications. The combination of these renders a temporally filtering single-photon storage in a fast switchable fibre loop possible.
Electron-positron pair production by two identical photons in the nuclear field
Smirnov, A.I.
1977-01-01
In the Born approximation of the perturbation theory considered is a nonlinear effect of the electron-positron pair production by two identical photons in the Coulomb field of an atomic nucleus. The kinematic version of identical photons is studied. All the particles are considered to be nonpolarized. The calculation of the differential probability of the effect has been carried out earlier by the Feynman method. The total probability of the effect in limiting energy ranges is determined by integrating the formulas of the pair component distribution over energies. The probabilities of the electron-positron pair production and fusion of two photons into one in the nucleus field have been compared for the case of identical quanta. From the comparison of the results of analyzing both the nonlinear effects it follows that in the high-energy range the electron-positron pair production by two identical photons in the nucleus field extremely predominates over the fusion of two photons into one photon in the same field
Semiconductor devices for entangled photon pair generation: a review
Orieux, Adeline; Versteegh, Marijn A. M.; Jöns, Klaus D.; Ducci, Sara
2017-07-01
Entanglement is one of the most fascinating properties of quantum mechanical systems; when two particles are entangled the measurement of the properties of one of the two allows the properties of the other to be instantaneously known, whatever the distance separating them. In parallel with fundamental research on the foundations of quantum mechanics performed on complex experimental set-ups, we assist today with bourgeoning of quantum information technologies bound to exploit entanglement for a large variety of applications such as secure communications, metrology and computation. Among the different physical systems under investigation, those involving photonic components are likely to play a central role and in this context semiconductor materials exhibit a huge potential in terms of integration of several quantum components in miniature chips. In this article we review the recent progress in the development of semiconductor devices emitting entangled photons. We will present the physical processes allowing the generation of entanglement and the tools to characterize it; we will give an overview of major recent results of the last few years and highlight perspectives for future developments.
Relativistic mean field theory for deformed nuclei with pairing correlations
Geng, Lisheng; Toki, Hiroshi; Sugimoto, Satoru; Meng, Jie
2003-01-01
We develop a relativistic mean field (RMF) description of deformed nuclei with pairing correlations in the BCS approximation. The treatment of the pairing correlations for nuclei whose Fermi surfaces are close to the threshold of unbound states needs special attention. With this in mind, we use a delta function interaction for the pairing interaction to pick up those states whose wave functions are concentrated in the nuclear region and employ the standard BCS approximation for the single-particle states obtained from the BMF theory with deformation. We apply the RMF + BCS method to the Zr isotopes and obtain a good description of the binding energies and the nuclear radii of nuclei from the proton drip line to the neutron drip line. (author)
The pair correlation function of spatial Hawkes processes
Møller, Jesper; Torrisi, Giovanni Luca
2007-01-01
Spatial Hawkes processes can be considered as spatial versions of classical Hawkes processes. We derive the pair correlation function of stationary spatial Hawkes processes and discuss the connection to the Bartlett spectrum and other summary statistics. Particularly, results for Gaussian fertility...... rates and the extension to spatial Hawkes processes with random fertility rates are discussed....
Three-color Sagnac source of polarization-entangled photon pairs.
Hentschel, Michael; Hübel, Hannes; Poppe, Andreas; Zeilinger, Anton
2009-12-07
We demonstrate a compact and stable source of polarization-entangled pairs of photons, one at 810 nm wavelength for high detection efficiency and the other at 1550 nm for long-distance fiber communication networks. Due to a novel Sagnac-based design of the interferometer no active stabilization is needed. Using only one 30 mm ppKTP bulk crystal the source produces photons with a spectral brightness of 1.13 x 10(6) pairs/s/mW/THz with an entanglement fidelity of 98.2%. Both photons are single-mode fiber coupled and ready to be used in quantum key distribution (QKD) or transmission of photonic quantum states over large distances.
Centini, M.; Sciscione, L.; Sibilia, C.; Bertolotti, M.; Perina, J. Jr.; Scalora, M.; Bloemer, M.J.
2005-01-01
A description of spontaneous parametric down-conversion in finite-length one-dimensional nonlinear photonic crystals is developed using semiclassical and quantum approaches. It is shown that if a suitable averaging is added to the semiclassical model, its results are in very good agreement with the quantum approach. We propose two structures made with GaN/AlN that generate both degenerate and nondegenerate entangled photon pairs. Both structures are designed so as to achieve a high efficiency of the nonlinear process
DWBA differential and total pair production cross sections for intermediate energy photons
Selvaraju, C.; Bhullar, A.S.; Sud, K.K.
2001-01-01
We present in this communication the theoretical differential and total cross section for electron-positron pair creation by intermediate energy photons (5.0-10.0 MeV) on different targets (Z=1, 30, 50, 68, 82 and 92). The computed cross sections are in distorted wave Born approximation (DWBA) in point Coulomb potential. The database of the differential and total pair production cross sections is presented in tabulated as well as in graphical form and the interpolation of differential cross sections for different atomic numbers, positron and photon energies is discussed
Positive Noise Cross Correlation in a Copper Pair Splitter.
Das, Anindya; Ronen, Yuval; Heiblum, Moty; Shtrikman, Hadas; Mahalu, Diana
2012-02-01
Entanglement is in heart of the Einstein-Podolsky-Rosen (EPR) paradox, in which non-locality is a fundamental property. Up to date spin entanglement of electrons had not been demonstrated. Here, we provide direct evidence of such entanglement by measuring: non-local positive current correlation and positive cross correlation among current fluctuations, both of separated electrons born by a Cooper-pair-beam-splitter. The realization of the splitter is provided by injecting current from an Al superconductor contact into two, single channel, pure InAs nanowires - each intercepted by a Coulomb blockaded quantum dot (QD). The QDs impedes strongly the flow of Cooper pairs allowing easy single electron transport. The passage of electron in one wire enables the simultaneous passage of the other in the neighboring wire. The splitting efficiency of the Cooper pairs (relative to Cooper pairs actual current) was found to be ˜ 40%. The positive cross-correlations in the currents and their fluctuations (shot noise) are fully consistent with entangled electrons produced by the beam splitter.
Kusunose, Masaaki; Takahara, Fumio
1990-01-01
The present account of the effects of soft photons from external sources on two-temperature accretion disks in electron-positron pair equilibrium solves the energy-balance equation for a given radial distribution of the input rate of soft photons, taking into account their bremsstrahlung and Comptonization. Critical rate behavior is investigated as a function of the ratio of the energy flux of incident soft photons and the energy-generation rate. As in a previous study, the existence of a critical accretion rate is established.
Note on the quantum correlations of two qubits coupled to photon baths
Quintana, Claudia; Rosas-Ortiz, Oscar
2015-01-01
The time-evolution of the quantum correlations between two qubits that are coupled to a pair of photon baths is studied. We show that conditioned transitions occurring in the entire system have influence on the time-evolution of the subsystems. Then, we show that the study of the population inversion of each of the qubits is a measure of the correlations between them that is in agreement with the notion of concurrence. (paper)
Morphological type correlation between nearest neighbor pairs of galaxies
Yamagata, Tomohiko
1990-01-01
Although the morphological type of galaxies is one of the most fundamental properties of galaxies, its origin and evolutionary processes, if any, are not yet fully understood. It has been established that the galaxy morphology strongly depends on the environment in which the galaxy resides (e.g., Dressler 1980). Galaxy pairs correspond to the smallest scales of galaxy clustering and may provide important clues to how the environment influences the formation and evolution of galaxies. Several investigators pointed out that there is a tendency for pair galaxies to have similar morphological types (Karachentsev and Karachentseva 1974, Page 1975, Noerdlinger 1979). Here, researchers analyze morphological type correlation for 18,364 nearest neighbor pairs of galaxies identified in the magnetic tape version of the Center for Astrophysics Redshift Catalogue.
Muon-Pair and Tau-Pair Production in Two-Photon Collisions at LEP
Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, Stefan; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.Wang X.L.; Wang, Z.M.; Weber, M.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.
2004-01-01
The QED processes e^+ e^- -> e^+ e^- \\mu^+ \\mu^- and e^+ e^- -> e^+ e^- \\tau^+ \\tau^- are studied with the L3 detector at LEP using an untagged data sample collected at centre-of-mass energies 161 GeV \\mu^+\\mu^- process is also measured as a function of the two-photon centre-of-mass energy for 3 GeV < W_{\\gamma\\gamma} < 40 GeV. Good agreement is found between these measurements and the O(\\alpha^4) QED expectations. In addition, limits on the anomalous magnetic and electric dipole moments of the tau lepton are extracted.
Quantum nonlocality of photon pairs in interference in a Mach-Zehnder interferometer
Trojek, P.; Peřina ml., Jan
2003-01-01
Roč. 53, č. 4 (2003), s. 335-349 ISSN 0011-4626 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : entangled photon pairs * nonlocal interference * Mach-Zehender interferometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.263, year: 2003
Proposal for the generation of photon pairs with nonzero orbital angular momentum in a ring fiber
Javůrek, D.; Svozilík, J.; Peřina ml., Jan
2014-01-01
Roč. 22, č. 19 (2014), s. 23743-23748 ISSN 1094-4087 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : photon pairs * orbital-angular-momentum states * spontaneous parametric down-conversion Subject RIV: BH - Optics , Masers, Lasers Impact factor: 3.488, year: 2014
Pair correlation of super-deformed rotation band
Shimizu, Yoshio
1989-01-01
The effect of pair correlation, one of the most important residual interactions associated with the super-deformed rotation band, is discussed in terms of the characteristics of the rotation band (its effect on the moment of inertia in particular), and the tunneling into an normal deformed state in relation to its effect on the angular momentum dependence of the potential energy plane as a function of the deformation. The characteristics of the rotation band is discussed in terms of the kinematic and dynamic momenta of inertia. It is shown that the pair correlation in a super-deformed rotation band acts to decrease the former and increase the latter momentum mainly due to dynamic pair correlation. A theoretical approach that takes this effect into account can provide results that are consistent with measured momenta, although large differences can occur in some cases. Major conflicts include a large measured kinetic momentum of inertia compared to the theoretical value, and the absence of the abnormality (shape increase) generally seen in low-spin experiments. The former seems likely to be associated with the method of measuring the angular momentum. (N.K.)
Search for massive photon pair production at the CERN intersecting storage rings
Kourkoumelis, C.; Resvanis, L.K.; Filippas, T.A.; Fokitis, E.; Palmer, R.B.; Rahm, D.C.; Rehak, P.; Stumer, I.; Fabjan, C.W.; Fields, T.
1982-01-01
A search for massive photon pair production at √s=63 GeV has been carried out on the data sample previously employed for the electron pair production study. Positive evidence is reported for msub(γ)sub(γ)>6 GeV, with a production cross-section similar to Drell-Yan electron pairs. The ratio γγ/π 0 π 0 was measured to be approx. equal to10 -3 for a psub(T) of each γ or π 0 above 3 GeV/c. (orig.)
Gamma beams generation with high intensity lasers for two photon Breit-Wheeler pair production
D'Humieres, Emmanuel; Ribeyre, Xavier; Jansen, Oliver; Esnault, Leo; Jequier, Sophie; Dubois, Jean-Luc; Hulin, Sebastien; Tikhonchuk, Vladimir; Arefiev, Alex; Toncian, Toma; Sentoku, Yasuhiko
2017-10-01
Linear Breit-Wheeler pair creation is the lowest threshold process in photon-photon interaction, controlling the energy release in Gamma Ray Bursts and Active Galactic Nuclei, but it has never been directly observed in the laboratory. Using numerical simulations, we demonstrate the possibility to produce collimated gamma beams with high energy conversion efficiency using high intensity lasers and innovative targets. When two of these beams collide at particular angles, our analytical calculations demonstrate a beaming effect easing the detection of the pairs in the laboratory. This effect has been confirmed in photon collision simulations using a recently developed innovative algorithm. An alternative scheme using Bremsstrahlung radiation produced by next generation high repetition rate laser systems is also being explored and the results of first optimization campaigns in this regime will be presented.
Photon-Pair Sources Based on Intermodal Four-Wave Mixing in Few-Mode Fibers
Karsten Rottwitt
2018-05-01
Full Text Available Four-wave mixing in optical fibers has been proven to have many applications within processing of classical optical signals. In addition, recent developments in multimode fibers have made it possible to achieve the necessary phase-matching for efficient four-wave mixing over a very wide bandwidth. Thus, the combination of multimode fiber optics and four-wave mixing is very attractive for various applications. This is especially the case for applications in quantum communication, for example in photon-pair generation. This is the subject of this work, where we discuss the impact of fluctuations in core radius on the quality of the heralded single-photon states and demonstrate experimental results of intermodal spontaneous four-wave mixing for photon-pair generation.
Hadroproduction of t-anti-t pair with two isolated photons with PowHel
Kardos, A.; Trócsányi, Z.
2015-08-01
We simulate the hadroproduction of a t t bar pair in association with two isolated hard photons at 13 TeV LHC using the PowHel package. We use the generated events, stored according to the Les-Houches event format, to make predictions for differential distributions formally at the next-to-leading order (NLO) accuracy. We present predictions at the hadron level employing the cone-type isolation of the photons used by experiments. We also compare the kinematic distributions to the same distributions obtained in the t t bar H final state when the Higgs-boson decays into a photon pair, to which the process discussed here is an irreducible background.
A pair density functional theory utilizing the correlated wave function
Higuchi, M; Higuchi, K
2009-01-01
We propose a practical scheme for calculating the ground-state pair density (PD) by utilizing the correlated wave function. As the correlated wave function, we adopt a linear combination of the single Slater determinants that are constructed from the solutions of the initial scheme [Higuchi M and Higuchi K 2007 Physica B 387, 117]. The single-particle equation is derived by performing the variational principle within the set of PDs that are constructed from such correlated wave functions. Since the search region of the PD is substantially extended as compared with the initial scheme, it is expected that the present scheme can cover more correlation effects. The single-particle equation is practical, and may be easily applied to actual calculations.
Bose-Einstein correlations in W-pair decays
Barate, R; Ghez, P; Goy, C; Jézéquel, S; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Morawitz, P; Pacheco, A; Riu, I; Ruiz, H; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Boix, G; Buchmüller, O L; Cattaneo, M; Cerutti, F; Ciulli, V; Davies, G; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Gianotti, F; Greening, T C; Halley, A W; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kado, M; Leroy, O; Maley, P; Mato, P; Minten, Adolf G; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tournefier, E; Valassi, Andrea; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Dessagne, S; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Pascolo, J M; Perret, P; Podlyski, F; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Swynghedauw, M; Tanaka, R; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Chalmers, M; Kennedy, J; Lynch, J G; Negus, P; O'Shea, V; Räven, B; Smith, D; Teixeira-Dias, P; Thompson, A S; Ward, J J; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Leibenguth, G; Putzer, A; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Marinelli, N; Martin, E B; Nash, J; Nowell, J; Przysiezniak, H; Sciabà, A; Sedgbeer, J K; Thompson, J C; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Robertson, N A; Smizanska, M; Williams, M I; Giehl, I; Hölldorfer, F; Jakobs, K; Kleinknecht, K; Kröcker, M; Müller, A S; Nürnberger, H A; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmeling, S; Wachsmuth, H W; Zeitnitz, C; Ziegler, T; Aubert, Jean-Jacques; Bonissent, A; Carr, J; Coyle, P; Ealet, A; Fouchez, D; Tilquin, A; Aleppo, M; Antonelli, M; Gilardoni, S S; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Lefrançois, J; Serin, L; Veillet, J J; Videau, I; De Vivie de Régie, J B; Zerwas, D; Bagliesi, G; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Tenchini, Roberto; Venturi, A; Verdini, P G; Blair, G A; Coles, J; Cowan, G D; Green, M G; Hutchcroft, D E; Jones, L T; Medcalf, T; Strong, J A; Botterill, David R; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Bloch-Devaux, B; Colas, P; Fabbro, B; Faïf, G; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Seager, P; Trabelsi, A; Tuchming, B; Vallage, B; Black, S N; Dann, J H; Loomis, C; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Grupen, Claus; Hess, J; Misiejuk, A; Prange, G; Sieler, U; Borean, C; Giannini, G; Gobbo, B; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Von Wimmersperg-Töller, J H; Wu Sau Lan; Wu, X; Zobernig, G
2000-01-01
Bose-Einstein correlations are studied in semileptonicWW --> qqbarlnu and fully hadronic WW --> qqbarqqbar W-pair decays with the ALEPH detector at LEP at centre-of-mass energies of 172, 183 and 189GeV. They are compared with those made at the Z peak after correction for the different flavour compositions. A Monte Carlo model of Bose-Einsteincorrelations based on the JETSET hadronization scheme was tuned to the Z data and reproduces the correlations in the WW --> qqbarlnu events. The same Monte Carlo reproduces the correlations in the WW --> qqbarqqbarchannel assuming independent fragmentation of the two W's. A variant thismodel with Bose-Einstein correlations between decay products of different W's is disfavoured.
Polarization effects for pair creation by photon in oriented crystals at high energy
Baier, V.N.; Katkov, V.M.
2006-01-01
Pair creation by a photon in an oriented crystal is considered in the frame of the quasiclassical operator method, which includes processes with polarized particles. Under some quite generic assumptions the general expression is derived for the probability of pair creation of longitudinally polarized electron (positron) by circularly polarized photon in oriented crystal. In the particular cases θ > V /m (θ is the angle of incidence, angle between the momentum of the initial photon and axis (plane) of crystal, V is the scale of a potential of axis or a plane relative to which the angle θ is defined) one has the constant field approximation and the coherent pair production theory correspondingly. Side by side with coherent process the probability of incoherent pair creation is calculated, which differs essentially from amorphous one. At high energy the pair creation in oriented crystal is strongly enhanced comparing with the amorphous medium. In the corresponding appendixes the integral polarization of positron is found in an external field and for the coherent and incoherent mechanisms
Photon pair spectrometers in a μ → eγ decay search with the MEGA experiment
Dzemidzic, M.
1993-01-01
The MEGA experiment at LAMPF is conducting a search for the lepton family number violating decay μ + →e + γ with a branching ratio sensitivity of a few parts in 10 -13 . The detectors are contained in a 1.5 T solenoidal magnetic field. Positrons are confined to the central region and are measured by a set of cylindrical MWPCs. Photons are converted into e + e - pairs by one of three pair spectrometers in the outer region. Each pair spectrometer consists of an inner layer of plastic scintillator, two lead converters separated by a MWPC and three layers of drift chambers. The MEGA collaboration successfully concluded 1992 data taking with a set of positron MWPCs and two pair spectrometers. A brief overview of the pair spectrometer design and performance will be followed by a presentation of results to date of the data analysis
Detection system in photon correlation spectroscopy
Prawiroatmodjo, Soewono
1986-01-01
A simple circuit which is designed to amplify, discriminate and shape pulses from photon counting photomultiplier tubes and to provide an output suitable for digital recording is presented. It is consisting of a differential video wide-band operational amplifier of MC1733C as amplifier stage, a high speed differential comparator of UA760 as essential element of the discriminator and a pulse shaping circuit. This circuit may readily be inserted between the photomultiplier and existing digital processing equipment. (author). 6 refs
Correlated Photon Dynamics in Dissipative Rydberg Media
Zeuthen, Emil; Gullans, Michael J.; Maghrebi, Mohammad F.; Gorshkov, Alexey V.
2017-07-01
Rydberg blockade physics in optically dense atomic media under the conditions of electromagnetically induced transparency (EIT) leads to strong dissipative interactions between single photons. We introduce a new approach to analyzing this challenging many-body problem in the limit of a large optical depth per blockade radius. In our approach, we separate the single-polariton EIT physics from Rydberg-Rydberg interactions in a serialized manner while using a hard-sphere model for the latter, thus capturing the dualistic particle-wave nature of light as it manifests itself in dissipative Rydberg-EIT media. Using this approach, we analyze the saturation behavior of the transmission through one-dimensional Rydberg-EIT media in the regime of nonperturbative dissipative interactions relevant to current experiments. Our model is able to capture the many-body dynamics of bright, coherent pulses through these strongly interacting media. We compare our model with available experimental data in this regime and find good agreement. We also analyze a scheme for generating regular trains of single photons from continuous-wave input and derive its scaling behavior in the presence of imperfect single-photon EIT.
Electron correlation within the relativistic no-pair approximation
Almoukhalalati, Adel; Saue, Trond, E-mail: trond.saue@irsamc.ups-tlse.fr [Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS — Université Toulouse III-Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse (France); Knecht, Stefan [ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); Jensen, Hans Jørgen Aa. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Dyall, Kenneth G. [Dirac Solutions, 10527 NW Lost Park Drive, Portland, Oregon 97229 (United States)
2016-08-21
This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice, what is reported is the basis set correlation energy, where the “exact” value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within the no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF procedure is smaller than the no-pair full CI correlation energy, in accordance with the
Decoherence-induced transition from photon correlation to anti-correlation
Xu, Q
2014-01-01
Decoherence tends to induce the quantum-to-classical transition, which leads to a crucial obstacle in the realization of reliable quantum information processing. Counterintuitively, we propose that the decoherence due to phase decay brings about the switch from photon correlation to anti-correlation. Stronger decoherence also gives rise to an enhancement of the transition from photon correlation to anti-correlation. This breaks the conventional correlation of strong decoherence with fast decorrelation. (letters)
Guo, Kai; Christensen, Erik Nicolai; Christensen, Jesper Bjerge
2017-01-01
We demonstrate a very high coincidence-to-accidental ratio of 673 using continuous-wave photon-pair generation in a silicon strip waveguide through spontaneous four-wave mixing. This result is obtained by employing on-chip photonic-crystal-based grating couplers for both low-loss fiber......-to-chip coupling and on-chip suppression of generated spontaneous Raman scattering noise. We measure a minimum heralded second-order correlation of g(H)((2)) (0) = 0.12, demonstrating that our source operates in the single- photon regime with low noise. (C) 2017 The Japan Society of Applied Physics...
Inhibition of two-photon absorption in a three-level system with a pair of bichromatic fields
Zou Jinhua; Hu Xiangming; Cheng Guangling; Li Xing; Du Dan
2005-01-01
We study two-photon absorption in a three-level ladder atomic system driven by a pair of bichromatic fields of equal frequency differences. The high-frequency component of one bichromatic field and the low-frequency component of the other are on two-photon resonance. The transition probability is calculated by employing the method of harmonic expansion and matrix inversion. Unexpectedly, when the sums of the phases of the different pairs of field components on the two-photon resonance are equal to each other, two-photon absorption is dramatically suppressed and the atomic system becomes transparent against two-photon absorption. Physically, due to dynamical Stark splitting, the two-photon transitions induced by the different pairs of field components experience different dressed states with phase difference of π. As a result, destructive interference occurs between the two pathways and leads to the inhibition of two-photon absorption
Study of KS0 pair production in single-tag two-photon collisions
Masuda, M.; Uehara, S.; Watanabe, Y.; Adachi, I.; Ahn, J. K.; Aihara, H.; Al Said, S.; Asner, D. M.; Atmacan, H.; Aulchenko, V.; Aushev, T.; Ayad, R.; Babu, V.; Badhrees, I.; Bansal, V.; Behera, P.; Berger, M.; Bhardwaj, V.; Bhuyan, B.; Biswal, J.; Bondar, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Červenkov, D.; Chen, A.; Cheon, B. G.; Chilikin, K.; Cho, K.; Choi, Y.; Choudhury, S.; Cinabro, D.; Czank, T.; Dash, N.; Di Carlo, S.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Epifanov, D.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Garg, R.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gelb, M.; Giri, A.; Goldenzweig, P.; Guido, E.; Haba, J.; Hayasaka, K.; Hayashii, H.; Hedges, M. T.; Hou, W.-S.; Iijima, T.; Inami, K.; Inguglia, G.; Ishikawa, A.; Itoh, R.; Iwasaki, M.; Iwasaki, Y.; Jacobs, W. W.; Jaegle, I.; Jin, Y.; Joo, K. K.; Julius, T.; Kang, K. H.; Karyan, G.; Kawasaki, T.; Kichimi, H.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, K. T.; Kim, S. H.; Kodyš, P.; Kotchetkov, D.; Križan, P.; Kroeger, R.; Krokovny, P.; Kulasiri, R.; Kuzmin, A.; Kwon, Y.-J.; Lee, I. S.; Lee, S. C.; Li, L. K.; Li, Y.; Li Gioi, L.; Libby, J.; Liventsev, D.; Lubej, M.; Luo, T.; Matsuda, T.; Matvienko, D.; Merola, M.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Moon, H. K.; Mori, T.; Mussa, R.; Nakao, M.; Nakazawa, H.; Nanut, T.; Nath, K. J.; Natkaniec, Z.; Nayak, M.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Okuno, S.; Ono, H.; Onuki, Y.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Park, H.; Paul, S.; Pedlar, T. K.; Pestotnik, R.; Piilonen, L. E.; Ritter, M.; Rostomyan, A.; Russo, G.; Sakai, Y.; Salehi, M.; Sandilya, S.; Santelj, L.; Sanuki, T.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Seidl, R.; Seino, Y.; Senyo, K.; Seon, O.; Sevior, M. E.; Shebalin, V.; Shen, C. P.; Shibata, T.-A.; Shimizu, N.; Shiu, J.-G.; Shwartz, B.; Sokolov, A.; Solovieva, E.; Starič, M.; Strube, J. F.; Sumihama, M.; Sumiyoshi, T.; Takizawa, M.; Tamponi, U.; Tanida, K.; Tenchini, F.; Teramoto, Y.; Uchida, M.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Van Hulse, C.; Varner, G.; Vinokurova, A.; Vorobyev, V.; Vossen, A.; Wang, B.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Wang, X. L.; Watanabe, M.; Widmann, E.; Won, E.; Ye, H.; Yuan, C. Z.; Yusa, Y.; Zakharov, S.; Zhang, Z. P.; Zhilich, V.; Zhukova, V.; Zhulanov, V.; Zupanc, A.; Belle Collaboration
2018-03-01
We report a measurement of the cross section for KS0 pair production in single-tag two-photon collisions, γ*γ →KS0KS0, for Q2 up to 30 GeV2 , where Q2 is the negative of the invariant mass squared of the tagged photon. The measurement covers the kinematic range 1.0 GeV partial decay widths of the χc 0 and χc 2 mesons are measured as a function of Q2 based on 10 candidate events in total.
Li, J.; Yu, R.; Yang, X.
2008-01-01
We study the propagation of two quantized optical fields via considering the collective effects of photonic emissions and excitations of a three-level cyclic-type system (such as atomic ensemble with symmetry broken, or the chiral molecular gases, or manual 'atomic' array with symmetry broken), where the quantum transitions is driven by two quantized fields and a classical one. The results show that the parametric conversion and maximally entangled photon pair generation can be achieved by means of the collective excitation of the two upper energy levels induced by the classic optical field. This investigation may be used for the generated coherent short-wavelength quantum radiation and quantum information processing
Higgs boson pair production at the photon linear collider in the two Higgs doublet model
Asakawa, Eri; Harada, Daisuke; Okada, Yasuhiro; Kanemura, Shinya; Tsumura, Koji
2009-02-01
We calculate the cross section of the lightest Higgs boson pair production at the Photon Linear Collider in the two Higgs doublet model. We focus on the scenario in which the lightest Higgs boson has the standard model like couplings to gauge bosons. We take into account the one-loop correction to the hhh coupling as well as additional one-loop diagrams due to charged bosons to the γγ → hh helicity amplitudes. We discuss the impact of these corrections on the hhh coupling measurement at the Photon Linear Collider. (author)
Spacings and pair correlations for finite Bernoulli convolutions
Benjamini, Itai; Solomyak, Boris
2009-01-01
We consider finite Bernoulli convolutions with a parameter 1/2 N . These sequences are uniformly distributed with respect to the infinite Bernoulli convolution measure ν λ , as N → ∞. Numerical evidence suggests that for a generic λ, the distribution of spacings between appropriately rescaled points is Poissonian. We obtain some partial results in this direction; for instance, we show that, on average, the pair correlations do not exhibit attraction or repulsion in the limit. On the other hand, for certain algebraic λ the behaviour is totally different
Pair correlations in an expanding universe for a multicomponent system
Kandrup, H.E.
1983-01-01
Fall and Saslaw have derived an equation for the growth of pair correlations in an expanding universe of identical self-gravitating point masses which is correlation-free at some initial time. Their equation is rigorously true for the earliest stages of growth, assuming only that the system is spatially homogeneous and isotropic, and that it is characterized in the ''comoving frame'' by a Maxwellian distribution of velocities. This paper generalizes their analysis to the case of a multicomponent system of particles with different masses, each species of which is characterized by a Maxwellian distribution at the same temperature. Here there are two types of pair correlations to consider, namely among members of the same species and among members of different species. The general behavior may be understood most readily by considering the covariance functions, which assume very simple forms. Thus one finds that the ''strength'' of the covariance scales, for sufficiently small radial separations, as the product of the masses, whereas the ''range'' of the covariance varies inversely as the square root of the reduced mass of the two constituents. This implies that, for two very different masses, the ''range'' will be set by the lighter constituent. Knowledge of the covariances also permits the calculation of such objects as the correlational energy densities of the various interactions. Consider, for example, a two-component system. Here one finds that even a very small contamination of heavy masses, which would have a negligible effect upon the total mass or kinetic energy densities, can increase the total correlational energy density, and hence decrease the time scale for the evolution of interesting structure, by orders of magnitude
Study of correlations between photoproduced pairs of charmed particles at Experiment E831/FOCUS
Castromonte Flores, Cesar Manuel [Brazilian Center for Physics Research, Rio de Janeiro (Brazil)
2008-08-01
The authors present the study of the charm-pair correlations produced in photon-nucleon interactions at $\\langle$E_{γ}$\\rangle$ = 175 GeV/c, by the Fermilab fixed target experiment E831/FOCUS. The E831/FOCUS experiment produced and reconstructed over one million charm particles. This high statistics allows the reconstruction of more than 7000 charm-pair mesons D$\\bar{D}$, 10 times the statistic of former experiments, and also allows to get, for the first time, about 600 totally reconstructed charm-pairs in the DD_{s} and DΛ_{c} channels. They were able to study, with some detail, the kinematical correlations between the charm and anticharm particle forming a pair, in the square transverse momentum (p_{T}^{2}), azimuthal angle difference (ΔΦ), rapidity difference (Δy) and the charm-pair mass variables. They observe some correlation for the longitudinal momenta, and a significant correlation for the transverse momenta of the charm and anticharm particles. They compare the experimental distributions with theoretical predictions based on the photon-gluon fusion model (PGF), for the production of c$\\bar{c}$ quarks, and the standard Lund hadronization model. These models are implemented by the PYTHIA Monte Carlo event generator. The PYTHIA program allows the inclusion, in the simulation, of non-perturbative effects that have been shown to be important for charm production. In order to compare data and simulation, they have generated two Monte Carlo samples, the first one set to favor the production of D$\\bar{D}$ pairs (MCDD2), and the second one set to favor the production of DD_{s}and DΛ_{c} pairs, where each one uses different functions and parameters values for the theoretical models in the simulation. They observe, for the correlation distributions, that the set of parameters used by the MCDD2 model together with the intrinsic transverse momentum (k_{$\\perp$}) of the partons inside the
Electron correlation within the relativistic no-pair approximation
Almoukhalalati, Adel; Knecht, Stefan; Jensen, Hans Jørgen Aa
2016-01-01
and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2....... The well-known 1/Z- expansion in nonrelativistic atomic theory follows from coordinate scaling. We point out that coordinate scaling for consistency should be accompanied by velocity scaling. In the nonrelativistic domain this comes about automatically, whereas in the relativistic domain an explicit...... scaling of the speed of light is required. This in turn explains why the relativistic correlation energy to the lowest order is not independent of nuclear charge, in contrast to nonrelativistic theory....
The Source of Time-Correlated Photons at 1.064 μm and its Applications
Gostev P.P.
2015-01-01
Full Text Available The source of time-correlated photon-pairs at 1064 nm is described. The source consists of the spontaneous parametric down-conversion (SPDC generator, pumped by cw laser operating at 532 nm, and the measuring and control appliances. One of the main parts of the electronic systems is the “time-to-digital converter” which is designed and built by our group. The system allows to create and detect correlation of photon pairs with resolution better than 1 ns. We adduce the results of a quantum key distribution through open air. The key length was about 5000 bits and the accuracy ~0.1%.
Vector meson pair production in two-photon collisions at ARGUS
Patel, P.M.
1989-01-01
New ARGUS results on exclusive final states produced in two-photon interactions are presented. Measurements of the vector meson pairs ρ + ρ - , ωρ 0 , ωω, K* + K* - and K* 0 bar K* 0 , as well as a search for φρ 0 , φω and φφ, are described. The results are compared with theoretical models. It is concluded that none of the models tells the full story when one considers the ARGUS data on all the possible vector meson pairs constructed from the 1 - vector nonet. 17 references, 5 figures, 1 table
Nanoscale protein diffusion by STED-based pair correlation analysis.
Paolo Bianchini
Full Text Available We describe for the first time the combination between cross-pair correlation function analysis (pair correlation analysis or pCF and stimulated emission depletion (STED to obtain diffusion maps at spatial resolution below the optical diffraction limit (super-resolution. Our approach was tested in systems characterized by high and low signal to noise ratio, i.e. Capsid Like Particles (CLPs bearing several (>100 active fluorescent proteins and monomeric fluorescent proteins transiently expressed in living Chinese Hamster Ovary cells, respectively. The latter system represents the usual condition encountered in living cell studies on fluorescent protein chimeras. Spatial resolution of STED-pCF was found to be about 110 nm, with a more than twofold improvement over conventional confocal acquisition. We successfully applied our method to highlight how the proximity to nuclear envelope affects the mobility features of proteins actively imported into the nucleus in living cells. Remarkably, STED-pCF unveiled the existence of local barriers to diffusion as well as the presence of a slow component at distances up to 500-700 nm from either sides of nuclear envelope. The mobility of this component is similar to that previously described for transport complexes. Remarkably, all these features were invisible in conventional confocal mode.
Pion and kaon pair-production in photon-photon collisions
Langeveld, W.G.J.
1985-01-01
This thesis describes an experiment performed at PEP at SLAC, Stanford, California on the two-photon production of two charged particles. In particular, the formation of the tensor (spin-2) meson f(1270) and its decay into π + π - is investigated. The γγ width is determined, and the dependence of the cross section on the four-momentum transfer, Q 2 , of one of the virtual photons is studied. The analysis assumes that the f is produced in a pure helicity-2 state which is justified a posteriori from the data. In the process, the reaction γγ→K + K - is studied, both because it forms a potential background to, and for comparison with, the π + π - data. The contribution of the π + π - continuum is analyzed in terms of Born amplitudes at γγ center-of-mass energies below the f mass. A comparison of the π + π - and K + K - continuum is made at high masses. A prediction of the currently most popular theory of strong interactions, Quantum ChromoDynamics (QCD), is tested. (Auth.)
Broadband photon pair generation in green fluorescent proteins through spontaneous four-wave mixing
Shi, Siyuan; Thomas, Abu; Corzo, Neil V.; Kumar, Prem; Huang, Yuping; Lee, Kim Fook
2016-01-01
Recent studies in quantum biology suggest that quantum mechanics help us to explore quantum processes in biological system. Here, we demonstrate generation of photon pairs through spontaneous four-wave mixing process in naturally occurring fluorescent proteins. We develop a general empirical method for analyzing the relative strength of nonlinear optical interaction processes in five different organic fluorophores. Our results indicate that the generation of photon pairs in green fluorescent proteins is subject to less background noises than in other fluorophores, leading to a coincidence-to-accidental ratio ~145. As such proteins can be genetically engineered and fused to many biological cells, our experiment enables a new platform for quantum information processing in a biological environment such as biomimetic quantum networks and quantum sensors. PMID:27076032
Evidence for longitudinal photon polarization in muon-pair production by pions
Anderson, K.J.; Coleman, R.N.; Karhi, K.P.; Newman, C.B.; Pilcher, J.E.; Rosenberg, E.I.; Thaler, J.J.; Hogan, G.E.; McDonald, K.T.; Sanders, G.H.; Smith, A.J.S.
1979-01-01
Data on μ-pair production by pions are examined as a function of x and P/sub T/ for longitudinal photon polarization. Evidence in the form of a sin 2 theta* term in the helicity angular distribution is observed for x near 1. This is conclusive evidence that production in this region is not predominantly through on-shell quark annihilation. The result is consistent with a calculation based on quantum chromodynamics
Two-photon annihilation into octet meson pairs. Symmetry relations in the handbag approach
Diehl, M.; Kroll, P.; Regensburg Univ.
2009-11-01
We explore the implications of SU(3) flavor symmetry in the soft handbag mechanism for two-photon annihilation into pairs of pseudoscalar octet mesons. In this approach we obtain a good description of the experimental results for all measured channels at high energy, with two complex form factors adjusted to the data. We also predict the cross section for γγ→ηη. (orig.)
Production of W + W - pairs via γ * γ * → W + W - subprocess with photon transverse momenta
Łuszczak, Marta; Schäfer, Wolfgang; Szczurek, Antoni
2018-05-01
We discuss production of W + W - pairs in proton-proton collisions induced by two-photon fusion including, for a first time, transverse momenta of incoming photons. The unintegrated inelastic fluxes (related to proton dissociation) of photons are calculated based on modern parametrizations of deep inelastic structure functions in a broad range of their arguments ( x and Q 2). In our approach we can get separate contributions of different W helicities states. Several one- and two-dimensional differential distributions are shown and discussed. The present results are compared to the results of previous calculations within collinear factorization approach. Similar results are found except of some observables such as e.g. transverse momentum of the pair of W + and W -. We find large contributions to the cross section from the region of large photon virtualities. We show decomposition of the total cross section as well as invariant mass distribution into the polarisation states of both W bosons. The role of the longitudinal F L structure function is quantified. Its inclusion leads to a 4-5% decrease of the cross section, almost independent of M WW .
Role of spontaneous and stimulated emission in photon correlations
Chopra, S.; Bohidar, H.; Harwalkar, V.
1984-01-01
Photon correlations have been alternately attributed to either spontaneous or stimulated emission by various authors. In this paper, the authors interpret, on the basis of available experimental data, the contribution of each emission form to the evolution of photon statistics. The laser is used as an example of a source which exhibits different statistical characteristics depending on the level of excitation, which is governed by the pump parameter a. From the data, it is evident that the transition from below to above threshold is accompanied by a significant drop in the magnitude of correlation and an increase in decay time. It may be noted that this transition causes a substantial increase in the coherent output which emphasizes the predominance of stimulated emission. In the case of a laser below threshold, however, photon correlations arise due to superposition of the more dominant spontaneously emitted wavetrains. Exact solutions of quantized systems do not exist in the presence of saturation effects. This implies that factorization and identification of terms with spontaneous or stimulated emission has not yet been done. This does not preculde a physical and intuitive interpretation of photon statistics within the framework of a standard model, and it is therefore argued that spontaneous emission is responsible for photon correlations while stimulated emission shows up in the dynamics as the coherence time
Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip; Floyd, Bertram M.; Lind, Alexander J.;
2016-01-01
A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nanometer pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nanometer photons are up-converted to a single 532-nanometer photon in the first stage. In the second stage, the 532-nanometer photon is down-converted to an entangled photon-pair at 800 nanometer and 1600 nanometer which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.
Fluorescence decay time imaging using an imaging photon detector with a radio frequency photon correlation system
Morgan, Christopher G.; Mitchell, A. C.; Murray, J. G.
1990-05-01
An imaging photon detector has been modified to incorporate fast timing electronics coupled to a custom built photon correlator interfaced to a RISC computer. Using excitation with intensity- muodulated light, fluorescence images can be readily obtained where contrast is determined by the decay time of emission, rather than by intensity. This technology is readily extended to multifrequency phase/demodulation fluorescence imaging or to differential polarised phase fluorometry. The potential use of the correlator for confocal imaging with a laser scanner is also briefly discussed.
Shcheslavskiy, V., E-mail: vis@becker-hickl.de; Becker, W. [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Morozov, P.; Divochiy, A. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Vakhtomin, Yu. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); Smirnov, K. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow 101000 (Russian Federation)
2016-05-15
Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ∼15% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.
Controlling the transmitted information of a multi-photon interacting with a single-Cooper pair box
Kadry, Heba, E-mail: hkadry1@yahoo.com; Abdel-Aty, Abdel-Haleem, E-mail: hkadry1@yahoo.com; Zakaria, Nordin, E-mail: hkadry1@yahoo.com [Computer and Information Science Department, Universiti Teknologi Petronas, Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Cheong, Lee Yen [Fundamental and Applied Science Department, Universiti Teknologi Petronas, Seri Iskandar, 31750 Tronoh, Perak (Malaysia)
2014-10-24
We study a model of a multi-photon interaction of a single Cooper pair box with a cavity field. The exchange of the information using this system is studied. We quantify the fidelity of the transmitted information. The effect of the system parameters (detuning parameter, field photons, state density and mean photon number) in the fidelity of the transmitted information is investigated. We found that the fidelity of the transmitted information can be controlled using the system parameters.
Controlling the transmitted information of a multi-photon interacting with a single-Cooper pair box
Kadry, Heba; Abdel-Aty, Abdel-Haleem; Zakaria, Nordin; Cheong, Lee Yen
2014-01-01
We study a model of a multi-photon interaction of a single Cooper pair box with a cavity field. The exchange of the information using this system is studied. We quantify the fidelity of the transmitted information. The effect of the system parameters (detuning parameter, field photons, state density and mean photon number) in the fidelity of the transmitted information is investigated. We found that the fidelity of the transmitted information can be controlled using the system parameters
Optimization of time-correlated single photon counting spectrometer
Zhang Xiufeng; Du Haiying; Sun Jinsheng
2011-01-01
The paper proposes a performance improving scheme for the conventional time-correlated single photon counting spectrometer and develops a high speed data acquisition card based on PCI bus and FPGA technologies. The card is used to replace the multi-channel analyzer to improve the capability and decrease the volume of the spectrometer. The process of operation is introduced along with the integration of the spectrometer system. Many standard samples are measured. The experimental results show that the sensitivity of the spectrometer is single photon counting, and the time resolution of fluorescence lifetime measurement can be picosecond level. The instrument could measure the time-resolved spectroscopy. (authors)
$\\Lambda$ and $\\Sigma^{0}$ Pair Production in Two-Photon Collisions at LEP
Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Ewers, A.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hakobyan, R.S.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wallraff, W.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.
2002-01-01
Strange baryon pair production in two-photon collisions is studied with the L3 detector at LEP. The analysis is based on data collected at e+e- centre-of-mass energies from 91 GeV to 208 GeV, corresponding to an integrated luminosity of 844 pb-1. The processes gamma gamma -> Lambda Anti-lambda and gamma gamma -> Sigma0 Anti-sigma0 are identified. Their cross sections as a function of the gamma gamma centre-of-mass energy are measured and results are compared to predictions of the quark-diquark model.
Monojets and mono-photons from light higgsino pair production at LHC14
Baer, Howard; Tata, Xerxes
2014-01-01
Naturalness arguments imply the existence of higgsinos lighter than 200-300 GeV. However, because these higgsinos are nearly mass degenerate, they release very little visible energy in their decays, and signals from electroweak higgsino pair production typically remain buried under Standard Model backgrounds. Moreover, gluinos, squarks and winos may plausibly lie beyond the reach of the LHC14, so that signals from naturalness-inspired supersymmetric models may well remain hidden via conventional searches. We examine instead prospects for detecting higgsino pair production via monojets or mono-photons from initial state radiation. We find typical signal-to-background rates at best at the 1 % level, leading to rather pessimistic conclusions regarding detectability via these channels.
Cobb, J.H.; Iwata, S.; Palmer, R.B.; Rahm, D.C.; Rehak, P.; Stumer, I.; Fabjan, C.W.; Fowler, E.; Mannelli, I.; Mouzourakis, P.; Nakamura, K.; Nappi, A.; Willis, W.J.; Goldberg, M.; Horwitz, N.; Moneti, G.C.; Lankford, A.J.; Kourkoumelis, C.
1978-01-01
The hadronic production of electron pairs with masses between 200 and 500 MeV and large transverse momentum has been measured at the CERN Intersecting Storage Rings (ISR). The expected relation between low-mass electron pairs and real photons is used to determine the direct hadronic production of photons. Contrary to indications from some previous experiments, the observed spectrum is consistent with expectations from the decay of known mesons, and leads to a value for the ratio of direct photons to π 0 of γ/π 0 =(0.55+-0.92)% for 2 = 55 GeV. (Auth.)
Ogawa, Kazuhisa; Kobayashi, Hirokazu; Tomita, Akihisa
2018-02-01
The quantum interference of entangled photons forms a key phenomenon underlying various quantum-optical technologies. It is known that the quantum interference patterns of entangled photon pairs can be reconstructed classically by the time-reversal method; however, the time-reversal method has been applied only to time-frequency-entangled two-photon systems in previous experiments. Here, we apply the time-reversal method to the position-wave-vector-entangled two-photon systems: the two-photon Young interferometer and the two-photon beam focusing system. We experimentally demonstrate that the time-reversed systems classically reconstruct the same interference patterns as the position-wave-vector-entangled two-photon systems.
Yields of correlated fragment pairs and neutron multiplicity in spontaneous fission of {sup 242}Pu
Veselsky, M.; Kliman, J.; Morhaccaron, M. [Institute of Physics of Slovak Academy of Sciences, Dubravska 9, 84228 Bratislava (Slovakia); Ramayya, A.V.; Kormicki, J.; Daniel, A.V. [Physics Department, Vanderbilt University, Nashville (United States)] Rasmussen, J.O. [Lawrence Berkeley National Laboratory, Berkeley (United States)] Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore (United States); Daniel, A.V.; Popeko, G.S.; Oganessian, Yu. Ts. [Joint Institute for Nuclear Research, Dubna (Russia)] Greiner, W. [Institut fur Theoretische Physik, J. W. Goethe Universitaet, Frankfurt a. M. (Germany); Aryaeinejad, R. [Idaho National Engineering Laboratory, Idaho Falls (United States)
1998-10-01
Yields of correlated fragment pairs were obtained in spontaneous fission of {sup 242}Pu. Charge, mass and neutron multiplicity distributions of fragment pairs were determined and compared to available data. The yield of cold fission without neutron emission was determined to about 10{percent} for the set of observed correlated fragment pairs. {copyright} {ital 1998 American Institute of Physics.}
Kinoform optics applied to X-ray photon correlation spectroscopy.
Sandy, A R; Narayanan, S; Sprung, M; Su, J-D; Evans-Lutterodt, K; Isakovic, A F; Stein, A
2010-05-01
Moderate-demagnification higher-order silicon kinoform focusing lenses have been fabricated to facilitate small-angle X-ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one-dimensional vertical X-ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third-generation storage-ring light sources for small-angle XPCS experiments.
Jizan, Iman; Helt, L. G.; Xiong, Chunle; Collins, Matthew J.; Choi, Duk-Yong; Joon Chae, Chang; Liscidini, Marco; Steel, M. J.; Eggleton, Benjamin J.; Clark, Alex S.
2015-01-01
The growing requirement for photon pairs with specific spectral correlations in quantum optics experiments has created a demand for fast, high resolution and accurate source characterisation. A promising tool for such characterisation uses classical stimulated processes, in which an additional seed laser stimulates photon generation yielding much higher count rates, as recently demonstrated for a χ(2) integrated source in A. Eckstein et al. Laser Photon. Rev. 8, L76 (2014). In this work we extend these results to χ(3) integrated sources, directly measuring for the first time the relation between spectral correlation measurements via stimulated and spontaneous four wave mixing in an integrated optical waveguide, a silicon nanowire. We directly confirm the speed-up due to higher count rates and demonstrate that this allows additional resolution to be gained when compared to traditional coincidence measurements without any increase in measurement time. As the pump pulse duration can influence the degree of spectral correlation, all of our measurements are taken for two different pump pulse widths. This allows us to confirm that the classical stimulated process correctly captures the degree of spectral correlation regardless of pump pulse duration, and cements its place as an essential characterisation method for the development of future quantum integrated devices. PMID:26218609
Correlation functions and susceptibilities of photonics band gap reservoirs
Konopka, M.
1998-01-01
We investigate quantum statistical properties of photonic band gap reservoirs in terms of correlation functions and susceptibilities in time and spectral domains. Typical features are oscillations of the time-dependent correlation functions and susceptibilities. This is because photonic bad gap reservoirs are intrinsically non-Markovian reservoirs. The results help us to understand better how intrinsic quantum-statistical properties of a reservoir influence dynamics of an atom interacting with this reservoir. Boundary conditions influence time and spectral properties of the electromagnetic field. This well-known fact has a great importance in optics and generally in electromagnetism. Specific examples are resonators used in laser technique and cavity electrodynamics. In quantum optics high-Q micro cavities are used for single-atom experiments when an atom can interact in a coherent way with an electromagnetic field which has its mode structure totally different from those in free space. In particular, interaction of an (effectively) two-level atom with a single-mode cavity field was observed in the region of microwaves (with the wavelength about 1 cm). In 1987 Yablonovitch and John independently proposed that certain periodic dielectric structures can present forbidden frequency gaps (or pseudo gaps in partially disordered structures) for transverse modes. Such periodic structures were named 'photonic band structures' or 'photonic crystals', in analogy with electronic crystals which also have a (forbidden) gap for electronic energy. For true photonic crystals the basic property of blocking electromagnetic wave propagation must be fulfilled for all waves within some frequency range, i.e. for all wavevector and polarization directions
Azimuthal correlations of high-p{sub T} photons and hadrons in Au+Au collisions at STAR
Dietel, T.
2006-07-01
The STAR experiment observed a modification of the azimuthal correlations between a trigger particle and associated particles in central Au+Au collisions, where trigger particles with 4 GeV
correlations between regions of high energy deposition in the electro-magnetic calorimeter as trigger- and charged tracks as associated particles. The data sample had been enriched by online event selection, allowing for the selection of trigger particles with a transverse energy of more than 10 GeV and associated particles with more than 2, 3 or 4 GeV. The trigger particles are a mixture of photon pairs from the decays of neutral pions and single photons, mainly from photon-jet events, with small contributions from other hadron decays and fragmentation photons. (orig.)
Azimuthal correlations of high-pT photons and hadrons in Au+Au collisions at STAR
Dietel, T.
2006-01-01
The STAR experiment observed a modification of the azimuthal correlations between a trigger particle and associated particles in central Au+Au collisions, where trigger particles with 4 GeV T trigger T trigger <4 GeV were selected. This thesis studies azimuthal correlations between regions of high energy deposition in the electro-magnetic calorimeter as trigger- and charged tracks as associated particles. The data sample had been enriched by online event selection, allowing for the selection of trigger particles with a transverse energy of more than 10 GeV and associated particles with more than 2, 3 or 4 GeV. The trigger particles are a mixture of photon pairs from the decays of neutral pions and single photons, mainly from photon-jet events, with small contributions from other hadron decays and fragmentation photons. (orig.)
2002-01-01
This experiment will use the WA69 set-up to deliver a tagged photon beam in the energy range from 15~GeV to 150~GeV with a total angular spread of about @M~0.5~mrad. The incident photon direction is known to about 35~@mrad through the direction of the emitting electron. The photon beam is incident on an about 1~mm thick Ge single crystal in order to investigate pair production in single crystals. Above a certain energy threshold photons incident along crystal axis will show strongly increased pair production yi - the so-called .us Channelling Pair Production (ChPP). The produced pairs are analyzed in the @W-spectrometer. The large spread in incident photon angles offers an excellent opportunity to investigate in one single experiment the pair production in an angular region around a crystal axes and thereby compare ChPP with coherent (CPP) and incoherent (ICPP) processes. The very abrupt onset of ChPP (around threshold) will be measured and give a crucial test of the theoretical calculations. The differential...
Understanding photon sideband statistics and correlation for determining phonon coherence
Ding, Ding; Yin, Xiaobo; Li, Baowen
2018-01-01
Generating and detecting coherent high-frequency heat-carrying phonons have been topics of great interest in recent years. Although there have been successful attempts in generating and observing coherent phonons, rigorous techniques to characterize and detect phonon coherence in a crystalline material have been lagging compared to what has been achieved for photons. One main challenge is a lack of detailed understanding of how detection signals for phonons can be related to coherence. The quantum theory of photoelectric detection has greatly advanced the ability to characterize photon coherence in the past century, and a similar theory for phonon detection is necessary. Here, we reexamine the optical sideband fluorescence technique that has been used to detect high-frequency phonons in materials with optically active defects. We propose a quantum theory of phonon detection using the sideband technique and found that there are distinct differences in sideband counting statistics between thermal and coherent phonons. We further propose a second-order correlation function unique to sideband signals that allows for a rigorous distinction between thermal and coherent phonons. Our theory is relevant to a correlation measurement with nontrivial response functions at the quantum level and can potentially bridge the gap of experimentally determining phonon coherence to be on par with that of photons.
Signatures of a dissipative phase transition in photon correlation measurements
Fink, Thomas; Schade, Anne; Höfling, Sven; Schneider, Christian; Imamoglu, Ataç
2018-04-01
Understanding and characterizing phase transitions in driven-dissipative systems constitutes a new frontier for many-body physics1-8. A generic feature of dissipative phase transitions is a vanishing gap in the Liouvillian spectrum9, which leads to long-lived deviations from the steady state as the system is driven towards the transition. Here, we show that photon correlation measurements can be used to characterize the corresponding critical slowing down of non-equilibrium dynamics. We focus on the extensively studied phenomenon of optical bistability in GaAs cavity polaritons10,11, which can be described as a first-order dissipative phase transition12-14. Increasing the excitation strength towards the bistable range results in an increasing photon-bunching signal along with a decay time that is prolonged by more than nine orders of magnitude as compared with that of single polaritons. In the limit of strong polariton interactions leading to pronounced quantum fluctuations, the mean-field bistability threshold is washed out. Nevertheless, the functional form with which the Liouvillian gap closes as the thermodynamic limit is approached provides a signature of the emerging dissipative phase transition. Our results establish photon correlation measurements as an invaluable tool for studying dynamical properties of dissipative phase transitions without requiring phase-sensitive interferometric measurements.
Treatment of pairing correlations based on the equations of motion for zero-coupled pair operators
Andreozzi, F.; Covello, A.; Gargano, A.; Ye, L.J.; Porrino, A.
1985-01-01
The pairing problem is treated by means of the equations of motion for zero-coupled pair operators. Exact equations for the seniority-v states of N particles are derived. These equations can be solved by a step-by-step procedure which consists of progressively adding pairs of particles to a core. The theory can be applied at several levels of approximation depending on the number of core states which are taken into account. Some numerical applications to the treatment of v = 0, v = 1, and v = 2 states in the Ni isotopes are performed. The accuracy of various approximations is tested by comparison with exact results. For the seniority-one and seniority-two problems it turns out that the results obtained from the first-order theory are very accurate, while those of higher order calculations are practically exact. Concerning the seniority-zero problem, a fifth-order calculation reproduces quite well the three lowest states
Split and delay photon correlation spectroscopy with a visible light
Rasch, Marten
2016-04-01
The development and performance of a setup constructed with the aim for the split pulse photon correlation spectroscopy is presented in this thesis. The double pulse time structure is accomplished with help of an Acusto-Optic Modulator (AOM) crystal, which mimics the splitting and delaying of photon pulses. The setup provides double pulses and allows to control the pulse width and delay and to synchronize them into one camera exposure window. The performance of the setup was successfully verified in a proof of principle experiment with a model system of polystyrene particles following Brownian motion. The measured radius of particles obtained with from the split pulse experiment (R h =(2.567±0.097) μm) is in agreement with the particle size provided by the manufacturer (R=(2.26±0.08) μm). The achieved results show higher statistics compared to a standard Dynamic Light Scattering (DLS) measurement.
Advanced time-correlated single photon counting applications
Becker, Wolfgang
2015-01-01
This book is an attempt to bridge the gap between the instrumental principles of multi-dimensional time-correlated single photon counting (TCSPC) and typical applications of the technique. Written by an originator of the technique and by sucessful users, it covers the basic principles of the technique, its interaction with optical imaging methods and its application to a wide range of experimental tasks in life sciences and clinical research. The book is recommended for all users of time-resolved detection techniques in biology, bio-chemistry, spectroscopy of live systems, live cell microscopy, clinical imaging, spectroscopy of single molecules, and other applications that require the detection of low-level light signals at single-photon sensitivity and picosecond time resolution.
One-sided imaging of large, dense objects using the 511 keV photons from induced pair production
Tavora, L.M.; Gilboy, W.B.; Morton, E.J. [Univ. of Surrey, Guildford (United Kingdom). Physics Dept.; Morgado, R.E.; Estep, R.J.; Rawool-Sullivan, M. [Los Alamos National Lab., NM (United States)
1998-03-01
The use of annihilation photons from photon-induced electron-positron pair production as a means of inspecting objects when only one side is accessible is described. The Z2 dependence of the pair production cross section and the high penetration of 511 keV photons suggest that this method should be capable of localizing high Z materials in lower Z matrices. The experimental results for the dependence of the back streaming photon yield on Z indicate that dynamic ranges of the order of 20 may be obtained for materials with 4 < Z < 82. Results for point to point images obtained in line scans of representative geometries are also shown. Simulation studies based on the EGS4 Monte Carlo code were also performed and their results show an agreement with experimental data of the order of 5%.
One-sided imaging of large, dense objects using the 511 keV photons from induced pair production
Tavora, L.M.; Gilboy, W.B.; Morton, E.J.
1998-03-01
The use of annihilation photons from photon-induced electron-positron pair production as a means of inspecting objects when only one side is accessible is described. The Z2 dependence of the pair production cross section and the high penetration of 511 keV photons suggest that this method should be capable of localizing high Z materials in lower Z matrices. The experimental results for the dependence of the back streaming photon yield on Z indicate that dynamic ranges of the order of 20 may be obtained for materials with 4 < Z < 82. Results for point to point images obtained in line scans of representative geometries are also shown. Simulation studies based on the EGS4 Monte Carlo code were also performed and their results show an agreement with experimental data of the order of 5%
Wang Chao; Liu Jian-Wei; Liu Xiao; Shang Tao
2013-01-01
A novel deterministic secure quantum communication (DSQC) scheme is presented based on Einstein-Podolsky-Rosen (EPR) pairs and single photons in this study. In this scheme, the secret message can be encoded directly on the first particles of the prepared Bell states by simple unitary operations and decoded by performing the Bell-basis measurement after the additional classic information is exchanged. In addition, the strategy with two-step transmission of quantum data blocks and the technique of decoy-particle checking both are exploited to guarantee the security of the communication. Compared with some previous DSQC schemes, this scheme not only has a higher resource capacity, intrinsic efficiency and total efficiency, but also is more realizable in practical applications. Security analysis shows that the proposed scheme is unconditionally secure against various attacks over an ideal quantum channel and still conditionally robust over a noisy and lossy quantum channel. (general)
Aspect, A.
1983-02-01
We have performed three experimental tests of Bell's inequalities by measuring the linear-polarization correlation of photons emitted by pairs in the 4p 2 1 S 0 → 4s4p 1 P 1 → 4s 2 1 S 0 radiative cascade of calcium. The first part of this dissertation reminds the theoretical background (Bell's theorem), and the experimental situation (previous experiments). We then describe our apparatus: the source (calcium atomic beam selectively excited by two-photon absorption), the optics, the photon coincidence-counting system. Our first experiment, analogous to previous ones (but more precise) involves one-channel polarizers. Our second experiment, based on a conceptually simpler scheme, uses two-channel polarizers. The third experiment involves acousto-optical switches followed by two linear polarizers: these devices act as time-varying polarizers, the orientation of which is changed during the time of flight of photons. In the three experiments, the results are in good agreement with the Quantum mechanical predictions, and they distinctly violate the relevant Bell's inequalities [fr
Free-Space Quantum Key Distribution with a High Generation Rate KTP Waveguide Photon-Pair Source
Wilson, J.; Chaffee, D.; Wilson, N.; Lekki, J.; Tokars, R.; Pouch, J.; Lind, A.; Cavin, J.; Helmick, S.; Roberts, T.;
2016-01-01
NASA awarded Small Business Innovative Research (SBIR) contracts to AdvR, Inc to develop a high generation rate source of entangled photons that could be used to explore quantum key distribution (QKD) protocols. The final product, a photon pair source using a dual-element periodically- poled potassium titanyl phosphate (KTP) waveguide, was delivered to NASA Glenn Research Center in June of 2015. This paper describes the source, its characterization, and its performance in a B92 (Bennett, 1992) protocol QKD experiment.
Bose-Einstein correlations in hadron-pairs from lepto-production on nuclei ranging from hydrogen to xenon
Airapetian, A. [Justus-Liebig Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); University of Michigan, Randall Laboratory of Physics, Ann Arbor, MI (United States); Akopov, N.; Avakian, R.; Avetissian, A.; Elbakian, G.; Gharibyan, V.; Karyan, G.; Marukyan, H.; Petrosyan, A.; Taroian, S. [Yerevan Physics Institute, Yerevan (Armenia); Akopov, Z.; Avetisyan, E.; Borissov, A.; Deconinck, W.; Hartig, M.; Holler, Y.; Lu, X.G.; Martinez de la Ossa, A.; Rostomyan, A.; Ye, Z.; Zihlmann, B. [DESY, Hamburg (Germany); Aschenauer, E.C.; Fabbri, R.; Hristova, I.; Negodaev, M.; Nowak, W.D. [DESY, Zeuthen (Germany); Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P. [National Centre for Nuclear Research, Warsaw (Poland); Belostotski, S.; Kisselev, A.; Naryshkin, Y.; Veretennikov, D.; Vikhrov, V. [B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region (Russian Federation); Bianchi, N.; Capitani, G.P.; De Sanctis, E.; Di Nezza, P.; Fantoni, A.; Hasch, D.; Reolon, A.R. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati (Italy); Blok, H.P. [National Institute for Subatomic Physics (Nikhef), Amsterdam (Netherlands); VU University, Department of Physics and Astronomy, Amsterdam (Netherlands); Bryzgalov, V.; Gapienko, G.; Gapienko, V.; Ivanilov, A.; Korotkov, V.; Salomatin, Y. [Institute for High Energy Physics, Protvino, Moscow Region (Russian Federation); Burns, J.; Kaiser, R.; Lehmann, I.; Mahon, D.; Murray, M.; Rosner, G.; Seitz, B. [University of Glasgow, SUPA, School of Physics and Astronomy, G12 8QQ (United Kingdom); Capiluppi, M.; Ciullo, G.; Dalpiaz, P.F.; Lenisa, P.; Pappalardo, L.L.; Stancari, M.; Statera, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, Ferrara (Italy); Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy); Cisbani, E.; Frullani, S.; Garibaldi, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Gruppo Collegato Sanita, Rome (Italy); Istituto Superiore di Sanita, Rome (Italy); Contalbrigo, M.; Movsisyan, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, Ferrara (Italy); De Leo, R.; Lagamba, L.; Nappi, E.; Vilardi, I. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Diefenthaler, M. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); University of Illinois, Department of Physics, Urbana, IL (United States); Dueren, M.; Etzelmueller, E.; Keri, T.; Perez-Benito, R.; Stahl, M. [Justus-Liebig Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Ellinghaus, F.; Kinney, E. [University of Colorado, Nuclear Physics Laboratory, Boulder, CO (United States); Felawka, L.; Yen, S. [TRIUMF, Vancouver, BC (Canada); Garay Garcia, J. [University of the Basque Country UPV/EHU, Department of Theoretical Physics, Bilbao (Spain); DESY, Hamburg (Germany); Gavrilov, G. [DESY, Hamburg (Germany); B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region (Russian Federation); TRIUMF, Vancouver, BC (Canada); Giordano, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, Ferrara (Italy); Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy); University of Illinois, Department of Physics, Urbana, IL (United States); Gliske, S.; Lorenzon, W. [University of Michigan, Randall Laboratory of Physics, Ann Arbor, MI (United States); Imazu, Y.; Miyachi, Y.; Shibata, T.A. [Tokyo Institute of Technology, Department of Physics, Tokyo (Japan); Jackson, H.E.; Reimer, P.E. [Argonne National Laboratory, Physics Division, Argonne, IL (United States); Joosten, S.; Lopez Ruiz, A.; Ryckbosch, D.; Tytgat, M.; Van Haarlem, Y. [Ghent University, Department of Physics and Astronomy, Ghent (Belgium); Kozlov, V.; Terkulov, A. [Lebedev Physical Institute, Moscow (Russian Federation); Kravchenko, P. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, Leningrad Region (Russian Federation); Krivokhijine, V.G.; Shutov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Lapikas, L.; Steijger, J.J.M. [National Institute for Subatomic Physics (Nikhef), Amsterdam (Netherlands); Ma, B.Q.; Mao, Y.; Wang, S. [Peking University, School of Physics, Beijing (China); Makins, N.C.R.; Truty, R. [University of Illinois, Department of Physics, Urbana, IL (United States); Mussgiller, A.; Yaschenko, S. [DESY, Hamburg (Germany); Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Nass, A.; Rith, K. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Riedl, C. [DESY, Zeuthen (Germany); University of Illinois, Department of Physics, Urbana, IL (United States); Rubin, J. [University of Illinois, Department of Physics, Urbana, IL (United States); University of Michigan, Randall Laboratory of Physics, Ann Arbor, MI (United States); Schaefer, A. [Universitaet Regensburg, Institut fuer Theoretische Physik, Regensburg (Germany); Schnell, G. [University of the Basque Country UPV/EHU, Department of Theoretical Physics, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain); Ghent University, Department of Physics and Astronomy, Ghent (Belgium); Van Hulse, C. [University of the Basque Country UPV/EHU, Department of Theoretical Physics, Bilbao (Spain); Ghent University, Department of Physics and Astronomy, Ghent (Belgium); Collaboration: HERMES Collaboration
2015-08-15
Bose-Einstein correlations of like-sign charged hadrons produced in deep-inelastic electron and positron scattering are studied in the HERMES experiment using nuclear targets of {sup 1}H, {sup 2}H, {sup 3}He, {sup 4}He, N, Ne, Kr, and Xe. A Gaussian approach is used to parametrize a two-particle correlation function determined from events with at least two charged hadrons of the same sign charge. This correlation function is compared to two different empirical distributions that do not include the Bose-Einstein correlations. One distribution is derived from unlike-sign hadron pairs, and the second is derived from mixing like-sign pairs from different events. The extraction procedure used simulations incorporating the experimental setup in order to correct the results for spectrometer acceptance effects, and was tested using the distribution of unlike-sign hadron pairs. Clear signals of Bose-Einstein correlations for all target nuclei without a significant variation with the nuclear target mass are found. Also, no evidence for a dependence on the invariant mass W of the photon-nucleon system is found when the results are compared to those of previous experiments. (orig.)
Study of electron pair and photon production in lead-gold collisions
Ravinovich, I; Fraenkel, Z; Gnaenski, A
2002-01-01
This is a continuation of the NA45 experiment dedicated to the measurement of electron-positron pairs and direct photons produced in Pb-Pb collisions at SPS energies. The main goal remains as outlined in NA45. The strong enhancement of low-mass pairs, over the expected yield from hadronic sources, observed in S-Au collisions by NA45, adds considerably to the physics potential and to the interest in the measurement of these variables. \\\\\\\\The figure shows the layout of the CERES spectrometer which has been upgraded to cope with the higher multiplicities and background of central Pb-Pb collisions. The basic spectrometer remains unchanged, namely two Ring Imaging Cherenkov detectors (RICH), one situated before the other after a short superconducting double solenoid. The main elements of the upgrade are additional detectors, two silicon radial-drift chambers (instead of one in the original set-up) and a pad chamber (a large MWPC with pad readout) located behind the spectrometer. They allow real tracking and help...
Kardos, Adam; Trócsányi, Zoltán
2015-05-01
We simulate the hadroproduction of a -pair in association with a hard photon at LHC using the PowHel package. These events are almost fully inclusive with respect to the photon, allowing for any physically relevant isolation of the photon. We use the generated events, stored according to the Les-Houches event format, to make predictions for differential distributions formally at the next-to-leading order (NLO) accuracy and we compare these to existing predictions accurate at NLO using the smooth isolation prescription of Frixione. Our fixed-order predictions include the direct-photon contribution only. We also make predictions for distributions after full parton shower and hadronization using the standard experimental cone-isolation of the photon.
Cluster pair correlation function of simple fluids: energetic connectivity criteria
Pugnaloni, Luis A.; Zarragoicoechea, Guillermo J.; Vericat, Fernando
2006-01-01
We consider the clustering of Lennard-Jones particles by using an energetic connectivity criterion proposed long ago by T.L. Hill [J. Chem. Phys. 32, 617 (1955)] for the bond between pairs of particles. The criterion establishes that two particles are bonded (directly connected) if their relative kinetic energy is less than minus their relative potential energy. Thus, in general, it depends on the direction as well as on the magnitude of the velocities and positions of the particles. An integ...
Ji, Xuanmang; Wang, Jinlai; Jiang, Qichang; Liu, Jinsong
2012-01-01
Grey-grey separate spatial soliton pairs are predicted in a biased series circuit consisting of two centrosymmetric photorefractive (PR) crystals with the two-photon PR effect. The numerical results show that two grey solitons in a soliton pair can affect each other by the light-induced current. The effects of the intensity of solitary waves and gating lights on the normalized profiles and the dynamical evolutions of solitons are discussed.
Effects of pairing correlation on nuclear level density parameter and nucleon separation energy
Rajesekaran, T.R.; Selvaraj, S.
2002-01-01
A systematic study of effects of pairing correlations on nuclear level density parameter 'a' and neutron separation energy S N is presented for 152 Gd using statistical theory of nuclei with deformation, collective and noncollective rotational degrees of freedom, shell effects, and pairing correlations
Evidence for pair correlation effects in heavy ion reactions
Auditore, L; D'Amico, V; De Pasquale, D; Trifiró, A; Trimarchi, M; Italiano, A
2003-01-01
The study of the sup 1 sup 2 C( sup 1 sup 4 N, sup 1 sup 4 N) sup 1 sup 2 C reaction was performed at 28 and 35 MeV beam energies. The results were analyzed in the frame of the EFRDWBA (Exact-Finite-Range Distorted Wave Born Approximation) assuming the simultaneous and sequential transfer of a np pair. The angular distributions, fairly reproduced in the first case, confirm the validity of the generalized BCS (Bardeen-Cooper-Schrieffer) theory to explain this behaviour. Moreover, this process could be regarded as a possible Nuclear Josephson Effect. (author)
Javůrek, D.; Peřina ml., Jan
2017-01-01
Roč. 95, č. 4 (2017), s. 1-13, č. článku 043828. ISSN 2469-9926 Institutional support: RVO:68378271 Keywords : surface spontaneous * parametric down-conversion * photon pairs * layered media Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.925, year: 2016
Javůrek, D.; Svozilík, J.; Peřina ml., Jan
2014-01-01
Roč. 90, č. 4 (2014), "043844-1"-"043844-12" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : photon pairs * orbital-angular-momentum-entangled * nonlinear ring fiber * spontaneous parametric down-conversion Subject RIV: BH - Optics , Masers, Lasers Impact factor: 2.808, year: 2014
Maksimenko, V. V.; Zagaynov, V. A.; Agranovski, I. E.
2013-11-01
It is shown that complexities in a problem of elastic scattering of a photon on a pair of Rayleigh particles (two small metallic spheres) are similar to the complexities of the classic problem of three bodies in celestial mechanics. In the latter problem, as is well known, the phase trajectory of a system becomes a nonanalytical function of its variables. In our problem, the trajectory of a virtual photon at some frequency could be considered such as the well-known Antoine set (Antoine's necklace) or a chain with interlaced sections having zero topological dimension and fractal structure. Such a virtual “zero-dimensional” photon could be localized between the particles of the pair. The topology suppresses the photon's exit to the real world with dimensional equal-to-or-greater-than units. The physical reason for this type of photon localization is related to the “mechanical rigidity” of interlaced sections of the photon trajectory due to a singularity of energy density along these sections. Within the approximations used in this paper, the effect is possible if the frequency of the incident radiation is equal to double the frequency of the dipole surface plasmon in an isolated particle, which is the only character frequency in the problem. This condition and transformation of the photon trajectory to the zero-dimensional Antoine set reminds of some of the simplest variants of Poincaré's catastrophe in the dynamics of some nonintegrable systems. The influence of the localization on elastic light scattering by the pair is investigated.
The elimination of singularities in pair correlation functions of a multicomponent liquid system
Vasil'jev, O.M.; Chalij, O.V.
2004-01-01
In this paper we propose a method that allows to find nonsingular expressions for pair correlation functions of a multicomponent liquid system. The nature of the method deals with using integral and differential Ornstein-Zernike equations for finding asymptotic expressions for pair correlation functions and their subsequent precision. The obtained results are analyzed taking into account their possible applicability for studying the correlative behaviour of multicomponent liquid systems
Final state interaction effect on correlations in narrow particles pairs
Lednicky, R.; Lyuboshitz, V.L.
1990-01-01
In this paper the dependence of the two-particle correlation function on the space-time dimensions of the particle production region is discussed. The basic formulae, taking into account he effects of quantum statistics and final state interaction, and the conditions of their applicability are given
Cho, Yeong-Kwon; Kim, Ki-Hong
2014-01-01
The propagation of optical vortex beams through disordered nonlinear photonic lattices is numerically studied. The vortex beams are generated by using a superposition of several Gaussian laser beams arranged in a radially-symmetric manner. The paraxial nonlinear Schroedinger equation describing the longitudinal propagation of the beam array through nonlinear triangular photonic lattices with two-dimensional disorder is solved numerically by using the split-step Fourier method. We find that due to the spatial disorder, the vortex beam is destabilized after propagating a finite distance and new vortex-antivortex pairs are nucleated at the positions of perfect destructive interference. We also find that in the presence of a self-focusing nonlinearity, the vortex-antivortex pair nucleation is suppressed and the vortex beam becomes more stable, while a self-defocusing nonlinearity enhances the vortex-antivortex pair nucleation.
Azimuthal correlations of high--transverse-momentum π0 pairs
Cobb, J.H.; Iwata, S.; Palmer, R.B.; Rahm, D.C.; Rehak, R.; Stumer, I.; Fabjan, C.W.; Fowler, E.C.; Mannelli, I.; Mouzourakis, P.; Nakamura, K.; Nappi, A.; Struckzinski, W.; Willis, W.J.; Goldberg, M.; Horwitz, N.; Moneti, G.C.; Kourkoumelis, C.; Resvanis, L.K.; Filippas, T.A.; Lankford, A.J.
1978-01-01
We have studied correlations between two π 0 's produced at the CERN intersecting storage rings, utlizing detectors with large azimuthal acceptance. We find that the previously observed enhancement of two π 0 's produced at azimuthal difference near 180 0 can be made to vanish when certain kinematic effects are removed. However, we observe aligned configurations above 8 GeV of transverse energy unexplained by such kinematic effects
Bose-Einstein correlations in WW pair production at LEP
Van Remortel, N
2003-01-01
This paper presents an overview of the latest results from the L3 and DELPHI collaborations concerning the measurement of Bose-Einstein correlations between identical bosons coming from different W's in fully hadronic WW decays. Using the same method, L3 sees no indication of any inter-W BEC effect, while DELPHI reports an indication of inter-W BEC between like-charged particles of the order of three standard deviations.
Temporal and spectral manipulations of correlated photons using a time-lens
Mittal, Sunil; Orre, Venkata Vikram; Restelli, Alessandro; Salem, Reza; Goldschmidt, Elizabeth A.; Hafezi, Mohammad
2017-01-01
A common challenge in quantum information processing with photons is the limited ability to manipulate and measure correlated states. An example is the inability to measure picosecond scale temporal correlations of a multi-photon state, given state-of-the-art detectors have a temporal resolution of about 100 ps. Here, we demonstrate temporal magnification of time-bin entangled two-photon states using a time-lens, and measure their temporal correlation function which is otherwise not accessibl...
Microscopic theory of photon-correlation spectroscopy in strong-coupling semiconductors
Schneebeli, Lukas
2009-11-27
While many quantum-optical phenomena are already well established in the atomic systems, like the photon antibunching, squeezing, Bose-Einstein condensation, teleportation, the quantum-optical investigations in semiconductors are still at their beginning. The fascinating results observed in the atomic systems inspire physicists to demonstrate similar quantum-optical effects also in the semiconductor systems. In contrast to quantum optics with dilute atomic gases, the semiconductors exhibit a complicated many-body problem which is dominated by the Coulomb interaction between the electrons and holes and by coupling with the semiconductor environment. This makes the experimental observation of similar quantum-optical effects in semiconductors demanding. However, there are already experiments which have verified nonclassical effects in semiconductors. In particular, experiments have demonstrated that semiconductor quantum dots (QDs) can exhibit the single-photon emission and generation of polarization-entangled photon pairs. In fact, both atom and QD systems, embedded within a microcavity, have become versatile platforms where one can perform systematic quantum-optics investigations as well as development work toward quantum-information applications. Another interesting field is the strong-coupling regime in which the light-matter coupling exceeds both the decoherence rate of the atom or QD and the cavity resulting in a reversible dynamics between light and matter excitations. In the strong-coupling regime, the Jaynes-Cummings ladder is predicted and shows a photon-number dependent splitting of the new dressed strong-coupling states which are the polariton states of the coupled light-matter system. Although the semiclassical effect of the vacuum Rabi splitting has already been observed in QDs, the verification of the quantum-mechanical Jaynes-Cummings splitting is still missing mainly due to the dephasing. Clearly, the observation of the Jaynes-Cummings ladder in QDs
Molteni, Matteo; Ferri, Fabio
2016-11-01
A 10 ns time resolution, multi-tau software correlator, capable of computing simultaneous autocorrelation (A-A, B-B) and cross (A-B) correlation functions at count rates up to ˜10 MHz, with no data loss, has been developed in LabVIEW and C++ by using the National Instrument timer/counterboard (NI PCIe-6612) and a fast Personal Computer (PC) (Intel Core i7-4790 Processor 3.60 GHz ). The correlator works by using two algorithms: for large lag times (τ ≳ 1 μs), a classical time-mode scheme, based on the measure of the number of pulses per time interval, is used; differently, for τ ≲ 1 μs a photon-mode (PM) scheme is adopted and the correlation function is retrieved from the sequence of the photon arrival times. Single auto- and cross-correlation functions can be processed online in full real time up to count rates of ˜1.8 MHz and ˜1.2 MHz, respectively. Two autocorrelation (A-A, B-B) and a cross correlation (A-B) functions can be simultaneously processed in full real time only up to count rates of ˜750 kHz. At higher count rates, the online processing takes place in a delayed modality, but with no data loss. When tested with simulated correlation data and latex spheres solutions, the overall performances of the correlator appear to be comparable with those of commercial hardware correlators, but with several nontrivial advantages related to its flexibility, low cost, and easy adaptability to future developments of PC and data acquisition technology.
On Montgomery's pair correlation conjecture to the zeros of Riedmann zeta function
Li, Pei
2005-01-01
In this thesis, we are interested in Montgomery's pair correlation conjecture which is about the distribution of.the spacings between consecutive zeros of the Riemann Zeta function. Our goal is to explain and study Montgomery's pair correlation conjecture and discuss its connection with the random matrix theory. In Chapter One, we will explain how to define the Ftiemann Zeta function by using the analytic continuation. After this, several classical properties of the Ftiemann Zeta function wil...
Martins, D. E.; Vilela Pereira, A.; Sá Borges, J. [Universidade do Estado do Rio de Janeiro - UERJ, Rio de Janeiro-RJ, 20550-900 (Brazil); Rebello Teles, P. [Centro Brasileiro de Pesquisas Físicas - CBPF, Rio de Janeiro-RJ, 22290-180 (Brazil)
2015-04-10
We study the W and Z pair production from two-photon exchange in proton-proton collisions at the LHC in order to evaluate the contributions of anomalous photon-gauge boson couplings, that simulates new particles and couplings predicted in many Standard Model (SM) extensions. The experimental results of W{sup +} W{sup −} exclusive production (pp → pW{sup +}W{sup −} p) at 7 TeV from the CMS collaboration [1] updates the experimental limits on anomalous couplings obtained at the Large Electron-Positron Collider (LEP). This motivates our present analysis hopefully anticipating the expected results using the Precision Proton Spectrometer (PPS) to be installed as part of CMS. In this work, we consider the W{sup +}W{sup −} exclusive production to present the p{sub T} distribution of the lepton pair corresponding to the SM signal with p{sub T} (e, μ) > 10 GeV. Next, we consider the photon-gauge boson anomalous couplings by calculating, from the FPMC and MadGraph event generators, the process γγ → W{sup +}W{sup −} from a model with gauge boson quartic couplings, by considering a 1 TeV scale for new physical effects. We present our results for an integrated luminosity of 5 fb{sup −1} at center-of-mass energy of 7 TeV and for an integrated luminosity of 100 fb{sup −1} at 13 TeV. We present our preliminary results for Z pair exclusive production from two-photon exchange with anomalous couplings, where the ZZγγ quartic coupling is absent in the SM. We calculate the total cross section for the exclusive process and present the four lepton invariant mass distribution. Finally we present an outlook for the present analysis.
Gong, Yan-Xiao; Xie, Zhen-Da; Xu, Ping; Zhu, Shi-Ning; Yu, Xiao-Qiang; Xue, Peng
2011-01-01
We propose a scheme for the generation of counterpropagating polarization-entangled photon pairs from a dual-periodically-poled crystal. Compared with the usual forward-wave-type source, this source, in the backward-wave way, has a much narrower bandwidth. With a 2-cm-long bulk crystal, the bandwidths of the example sources are estimated to be 3.6 GHz, and the spectral brightnesses are more than 100 pairs/(s GHz mW). Two concurrent quasi-phase-matched spontaneous parametric down-conversion processes in a single crystal enable our source to be compact and stable. This scheme does not rely on any state projection and applies to both degenerate and nondegenerate cases, facilitating applications of the entangled photons.
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Heracleous, N.; Kalogeropoulos, A.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Dos Reis Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Mahrous, A.; Radi, A.; Kadastik, M.; Müntel, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Calpas, B.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Geiser, A.; Grebenyuk, A.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Hempel, M.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Krämer, M.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schröder, M.; Stein, M.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Aldaya Martin, M.; Blobel, V.; Enderle, H.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Gosselink, M.; Haller, J.; Höing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hartmann, F.; Hauth, T.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Martschei, D.; Mozer, M. U.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Gouskos, L.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Jones, J.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mittal, M.; Nishu, N.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Singh, A. P.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Chatterjee, R. M.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Musenich, R.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bellato, M.; Biasotto, M.; Bisello, D.; Branca, A.; Checchia, P.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kim, T. Y.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martínez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Korenkov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Khein, L.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Dordevic, M.; Ekmedzic, M.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Willmott, C.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Mulders, M.; Musella, P.; Orsini, L.; Palencia Cortezon, E.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Reece, W.; Rolandi, G.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Meister, D.; Mohr, N.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Ronga, F. J.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Favaro, C.; Hinzmann, A.; Hreus, T.; Ivova Rikova, M.; Kilminster, B.; Millan Mejias, B.; Ngadiuba, J.; Robmann, P.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Wilken, R.; Asavapibhop, B.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Günaydin, Y. O.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Ilic, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Richardson, C.; Rohlf, J.; Sperka, D.; St. John, J.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Lacroix, F.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Shrinivas, A.; Sturdy, J.; Sumowidagdo, S.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Kovalskyi, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Magaña Villalba, R.; Mccoll, N.; Pavlunin, V.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chu, J.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Ratnikova, N.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Gray, J.; Kenny, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Dahmes, B.; De Benedetti, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Cremaldi, L. M.; Kroeger, R.; Oliveros, S.; Perera, L.; Sanders, D. A.; Summers, D.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hunt, A.; Jindal, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Lopes Pegna, D.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Parashar, N.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; Yang, Z. C.; York, A.; Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Woods, N.
2014-11-01
A measurement of differential cross sections for the production of a pair of isolated photons in proton-proton collisions at is presented. The data sample corresponds to an integrated luminosity of 5.0 collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25 respectively, in the pseudorapidity range , and with an angular separation , is . Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins-Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics.
About long range pairing correlations in the Hubbard U-t-t' models
Moreo, A.
1991-01-01
Using a quantum Monte Carlo method the authors measured pair correlation functions with different symmetries as a function of the filling, U/t and t'/t for the Hubbard and U-t-t' models. For the first time the Monte Carlo results are presented for U/t larger than the bandwidth 8t, away from half-filling. D-wave and extended S-wave pairing correlations are enhanced. D-wave pairing is stronger at half-filling but this behavior is reversed when the filling decreases. However, none of the eight pairing correlations that were studied increases as a function of lattice size, which makes the existence of long range superconducting order unlikely. (author). 10 refs.; 5 figs
Stabilizing strongly correlated photon fluids with non-Markovian reservoirs
Lebreuilly, José; Biella, Alberto; Storme, Florent; Rossini, Davide; Fazio, Rosario; Ciuti, Cristiano; Carusotto, Iacopo
2017-09-01
We introduce a frequency-dependent incoherent pump scheme with a square-shaped spectrum as a way to study strongly correlated photons in arrays of coupled nonlinear resonators. This scheme can be implemented via a reservoir of population-inverted two-level emitters with a broad distribution of transition frequencies. Our proposal is predicted to stabilize a nonequilibrium steady state sharing important features with a zero-temperature equilibrium state with a tunable chemical potential. We confirm the efficiency of our proposal for the Bose-Hubbard model by computing numerically the steady state for finite system sizes: first, we predict the occurrence of a sequence of incompressible Mott-insulator-like states with arbitrary integer densities presenting strong robustness against tunneling and losses. Secondly, for stronger tunneling amplitudes or noninteger densities, the system enters a coherent regime analogous to the superfluid state. In addition to an overall agreement with the zero-temperature equilibrium state, exotic nonequilibrium processes leading to a finite entropy generation are pointed out in specific regions of parameter space. The equilibrium ground state is shown to be recovered by adding frequency-dependent losses. The promise of this improved scheme in view of quantum simulation of the zero-temperature many-body physics is highlighted.
Pairing correlations in N ∝Z pf-shell nuclei
Langanke, K.; Dean, D.J.; Koonin, S.E.; Radha, P.B.
1997-01-01
We perform shell model Monte Carlo calculations to study pair correlations in the ground states of N=Z nuclei with masses A=48-60. We find that T=1, J π =0 + proton-neutron correlations play an important, and even dominant role, in the ground states of odd-odd N=Z nuclei, in agreement with experiment. By studying pairing in the ground states of 52-58 Fe, we observe that the isovector proton-neutron correlations decrease rapidly with increasing neutron excess. In contrast, both the proton, and trivially the neutron correlations increase as neutrons are added. We also study the thermal properties and the temperature dependence of pair correlations for 50 Mn and 52 Fe as exemplars of odd-odd and even-even N=Z nuclei. While for 52 Fe results are similar to those obtained for other even-even nuclei in this mass range, the properties of 50 Mn at low temperatures are strongly influenced by isovector neutron-proton pairing. In coexistence with these isovector pair correlations, our calculations also indicate an excess of isoscalar proton-neutron pairing over the mean-field values. The isovector neutron-proton correlations rapidly decrease with temperatures and vanish for temperatures above T=700 keV, while the isovector correlations among like-nucleons persist to higher temperatures. Related to the quenching of the isovector proton-neutron correlations, the average isospin decreases from 1, appropriate for the ground state, to 0 as the temperature increases. (orig.)
Spin Correlations of Lambda anti-Lambda Pairs as a Probe of Quark-Antiquark Pair Production
Ellis, John
2012-01-01
The polarizations of Lambda and anti-Lambda are thought to retain memories of the spins of their parent s quarks and antiquarks, and are readily measurable via the angular distributions of their daughter protons and antiprotons. Correlations between the spins of Lambda and anti-Lambda produced at low relative momenta may therefore be used to probe the spin states of s anti-s pairs produced during hadronization. We consider the possibilities that they are produced in a 3P_0 state, as might result from fluctuations in the magnitude of , a 1S_0 state, as might result from chiral fluctuations, or a 3S_1 or other spin state, as might result from production by a quark-antiquark or gluon pair. We provide templates for the p anti-p angular correlations that would be expected in each of these cases, and discuss how they might be used to distinguish s anti-s production mechanisms in pp and heavy-ion collisions.
Spin correlations of Λanti Λ pairs as a probe of quark-antiquark pair production
Ellis, John; Hwang, Dae Sung
2012-01-01
The polarizations of Λ and anti Λ are thought to retain memories of the spins of their parent s quarks and anti s antiquarks, and are readily measurable via the angular distributions of their daughter protons and antiprotons. Correlations between the spins of Λ and anti Λ produced at low relative momenta may therefore be used to probe the spin states of s anti s pairs produced during hadronization. We consider the possibilities that they are produced in a 3 P 0 state, as might result from fluctuations in the magnitude of left angle anti ss right angle, a 1 S 0 state, as might result from chiral fluctuations, or a 3 S 1 or other spin state, as might result from production by a quark-antiquark or gluon pair. We provide templates for the p anti p angular correlations that would be expected in each of these cases, and discuss how they might be used to distinguish s anti s production mechanisms in pp and heavy-ion collisions. (orig.)
Spin correlations of {lambda}anti {lambda} pairs as a probe of quark-antiquark pair production
Ellis, John [King' s College London, Theoretical Particle Physics and Cosmology Group, Physics Department, London (United Kingdom); CERN, Theory Division, Physics Department, Geneva 23 (Switzerland); Hwang, Dae Sung [Sejong University, Department of Physics, Seoul (Korea, Republic of)
2012-02-15
The polarizations of {lambda} and anti {lambda} are thought to retain memories of the spins of their parent s quarks and anti s antiquarks, and are readily measurable via the angular distributions of their daughter protons and antiprotons. Correlations between the spins of {lambda} and anti {lambda} produced at low relative momenta may therefore be used to probe the spin states of s anti s pairs produced during hadronization. We consider the possibilities that they are produced in a {sup 3}P{sub 0} state, as might result from fluctuations in the magnitude of left angle anti ss right angle, a {sup 1}S{sub 0} state, as might result from chiral fluctuations, or a {sup 3}S{sub 1} or other spin state, as might result from production by a quark-antiquark or gluon pair. We provide templates for the p anti p angular correlations that would be expected in each of these cases, and discuss how they might be used to distinguish s anti s production mechanisms in pp and heavy-ion collisions. (orig.)
Bright nanoscale source of deterministic entangled photon pairs violating Bell's inequality
Jöns, K.D.; Schweickert, L.S.; Versteegh, M.A.M.; Dalacu, Dan; Poole, Philip J.; Gulinatti, Angelo; Giudice, Andrea; Zwiller, V.G.; Reimer, M.E.
2017-01-01
Global, secure quantum channels will require efficient distribution of entangled photons. Long distance, low-loss interconnects can only be realized using photons as quantum information carriers. However, a quantum light source combining both high qubit fidelity and on-demand bright emission has
Production of e, $\\mu$ and $\\tau$ Pairs in Untagged Two-Photon Collisions at LEP
Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Boucham, A; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dorne, I; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hong, S J; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Janssen, H; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sassowsky, M; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F
1997-01-01
The two-photon collision reaction e+e- --> e+e-l+l- has been studied at root(s) ~ 91 GeV using the L3 detector at LEP for l = e, muon , tau. We have analysed untagged configurations where the two photons are quasi-real. Good agreement is found between our measurements and the order alpha**4 QED expectation.
S-pairing in neutron matter: I. Correlated basis function theory
Fabrocini, Adelchi; Fantoni, Stefano; Illarionov, Alexey Yu.; Schmidt, Kevin E.
2008-01-01
S-wave pairing in neutron matter is studied within an extension of correlated basis function (CBF) theory to include the strong, short range spatial correlations due to realistic nuclear forces and the pairing correlations of the Bardeen, Cooper and Schrieffer (BCS) approach. The correlation operator contains central as well as tensor components. The correlated BCS scheme of [S. Fantoni, Nucl. Phys. A 363 (1981) 381], developed for simple scalar correlations, is generalized to this more realistic case. The energy of the correlated pair condensed phase of neutron matter is evaluated at the two-body order of the cluster expansion, but considering the one-body density and the corresponding energy vertex corrections at the first order of the Power Series expansion. Based on these approximations, we have derived a system of Euler equations for the correlation factors and for the BCS amplitudes, resulting in correlated nonlinear gap equations, formally close to the standard BCS ones. These equations have been solved for the momentum independent part of several realistic potentials (Reid, Argonne v 14 and Argonne v 8 ' ) to stress the role of the tensor correlations and of the many-body effects. Simple Jastrow correlations and/or the lack of the density corrections enhance the gap with respect to uncorrelated BCS, whereas it is reduced according to the strength of the tensor interaction and following the inclusion of many-body contributions
Temperature dependence of pair correlations in nuclei in the iron region
Langanke, K.; Dean, D.J.; Oak Ridge National Lab., TN; Radha, P.B.; Koonin, S.E.
1996-01-01
We use the shell-model Monte Carlo approach to study thermal properties and pair correlations in 54,56,58 Fe and in 56 Cr. The calculations are performed with the modified Kuo-Brown interaction in the complete 1p0f model space. We find generally that the proton-proton and neutron-neutron J=0 pairing correlations, which dominate the ground-state properties of even-even nuclei, vanish at temperatures around 1 MeV. This pairing phase transition is accompanied by a rapid increase in the moment of inertia and a partial unquenching of the M1 strength. We find that the M1 strength totally unquenches at higher temperatures, related to the vanishing of isoscalar proton-neutron correlations, which persist to higher temperatures than the pairing between like nucleons. The Gamow-Teller strength is also correlated to the isoscalar proton-neutron pairing and hence also unquenches at a temperature larger than that of the pairing phase transition. (orig.)
Non-thermal gamma-ray emission from delayed pair breakdown in a magnetized and photon-rich outflow
Gill, Ramandeep; Thompson, Christopher, E-mail: rgill@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)
2014-12-01
We consider delayed, volumetric heating in a magnetized outflow that has broken out of a confining medium and expanded to a high Lorentz factor (Γ ∼ 10{sup 2}-10{sup 3}) and low optical depth to scattering (τ {sub T} ∼ 10{sup –3}-10{sup –2}). The energy flux at breakout is dominated by the magnetic field, with a modest contribution from quasi-thermal gamma rays whose spectrum was calculated in Paper I. We focus on the case of extreme baryon depletion in the magnetized material, but allow for a separate baryonic component that is entrained from a confining medium. Dissipation is driven by relativistic motion between these two components, which develops once the photon compactness drops below 4 × 10{sup 3}(Y{sub e} /0.5){sup –1}. We first calculate the acceleration of the magnetized component following breakout, showing that embedded MHD turbulence provides significant inertia, the neglect of which leads to unrealistically high estimates of flow Lorentz factor. After reheating begins, the pair and photon distributions are evolved self-consistently using a one-zone kinetic code that incorporates an exact treatment of Compton scattering, pair production and annihilation, and Coulomb scattering. Heating leads to a surge in pair creation, and the scattering depth saturates at τ {sub T} ∼ 1-4. The plasma maintains a very low ratio of particle to magnetic pressure, and can support strong anisotropy in the charged particle distribution, with cooling dominated by Compton scattering. High-energy power-law spectra with photon indices in the range observed in gamma-ray bursts (GRBs; –3 < β < –3/2) are obtained by varying the ratio of heat input to the seed energy in quasi-thermal photons. We contrast our results with those for continuous heating across an expanding photosphere, and show that the latter model produces soft-to-hard evolution that is inconsistent with observations of GRBs.
Nysteen, Anders; McCutcheon, Dara; Mørk, Jesper
2015-01-01
We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could be quanti......We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could...
Aryanpour, Karan [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); Shukla, Alok [Department of Physics, Indian Institute of Technology, Powai, Mumbai 400076 (India); Mazumdar, Sumit [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States)
2014-03-14
We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D{sub 6h} point group symmetry versus ovalene with D{sub 2h} symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D{sub 6h} group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D{sub 2h} ovalene but not in those with D{sub 6h} symmetry.
Aryanpour, Karan; Shukla, Alok; Mazumdar, Sumit
2014-01-01
We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D 6h point group symmetry versus ovalene with D 2h symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D 6h group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D 2h ovalene but not in those with D 6h symmetry
Aryanpour, Karan; Shukla, Alok; Mazumdar, Sumit
2014-03-14
We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D(6h) point group symmetry versus ovalene with D(2h) symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D(6h) group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D(2h) ovalene but not in those with D(6h) symmetry.
SDSS-IV MaNGA: Galaxy Pair Fraction and Correlated Active Galactic Nuclei
Fu, Hai; Steffen, Joshua L.; Gross, Arran C.; Dai, Y. Sophia; Isbell, Jacob W.; Lin, Lihwai; Wake, David; Xue, Rui; Bizyaev, Dmitry; Pan, Kaike
2018-04-01
We have identified 105 galaxy pairs at z ∼ 0.04 with the MaNGA integral-field spectroscopic data. The pairs have projected separations between 1 and 30 kpc, and are selected to have radial velocity offsets less than 600 km s‑1 and stellar mass ratio between 0.1 and 1. The pair fraction increases with both the physical size of the integral-field unit and the stellar mass, consistent with theoretical expectations. We provide the best-fit analytical function of the pair fraction and find that ∼3% of M* galaxies are in close pairs. For both isolated galaxies and paired galaxies, active galactic nuclei (AGNs) are selected using emission-line ratios and Hα equivalent widths measured inside apertures at a fixed physical size. We find AGNs in ∼24% of the paired galaxies and binary AGNs in ∼13% of the pairs. To account for the selection biases in both the pair sample and the MaNGA sample, we compare the AGN comoving volume densities with those expected from the mass- and redshift-dependent AGN fractions. We find a strong (∼5×) excess of binary AGNs over random pairing and a mild (∼20%) deficit of single AGNs. The binary AGN excess increases from ∼2× to ∼6× as the projected separation decreases from 10–30 to 1–10 kpc. Our results indicate that the pairing of galaxies preserves the AGN duty cycle in individual galaxies but increases the population of binary AGNs through correlated activities. We suggest tidally induced galactic-scale shocks and AGN cross-ionization as two plausible channels to produce low-luminosity narrow-line-selected binary AGNs.
Polarization entangled photon pair source for space-based quantum communication, Phase I
National Aeronautics and Space Administration — The overall goal of this NASA effort is to develop and deliver efficient, single-pass quantum optical waveguide sources generating high purity hyper-entangled photon...
Phase diagram of incoherently driven strongly correlated photonic lattices
Biella, Alberto; Storme, Florent; Lebreuilly, José; Rossini, Davide; Fazio, Rosario; Carusotto, Iacopo; Ciuti, Cristiano
2017-08-01
We explore theoretically the nonequilibrium photonic phases of an array of coupled cavities in presence of incoherent driving and dissipation. In particular, we consider a Hubbard model system where each site is a Kerr nonlinear resonator coupled to a two-level emitter, which is pumped incoherently. Within a Gutzwiller mean-field approach, we determine the steady-state phase diagram of such a system. We find that, at a critical value of the intercavity photon hopping rate, a second-order nonequilibrium phase transition associated with the spontaneous breaking of the U(1 ) symmetry occurs. The transition from an incompressible Mott-like photon fluid to a coherent delocalized phase is driven by commensurability effects and not by the competition between photon hopping and optical nonlinearity. The essence of the mean-field predictions is corroborated by finite-size simulations obtained with matrix product operators and corner-space renormalization methods.
Fermi-Dirac Correlations in $\\Lambda$ Pairs in Hadronic Z Decays
Barate, R; Ghez, P; Goy, C; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Pacheco, A; Riu, I; Ruiz, H; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Boix, G; Buchmüller, O L; Cattaneo, M; Cerutti, F; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Greening, T C; Halley, A W; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Leroy, O; Mato, P; Minten, Adolf G; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tournefier, E; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Teixeira-Dias, P; Thompson, A S; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Sciabà, A; Sedgbeer, J K; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Robertson, N A; Williams, M I; Giehl, I; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Wachsmuth, H W; Zeitnitz, C; Aubert, Jean-Jacques; Bonissent, A; Carr, J; Coyle, P; Payre, P; Rousseau, D; Aleppo, M; Antonelli, M; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Veillet, J J; Videau, I; Zerwas, D; Bagliesi, G; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Ferrante, I; Foà, L; Giassi, A; Gregorio, A; Ligabue, F; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Tenchini, Roberto; Venturi, A; Verdini, P G; Blair, G A; Cowan, G D; Green, M G; Medcalf, T; Strong, J A; Botterill, David R; Clifft, R W; Edgecock, T R; Norton, P R; Thompson, J C; Tomalin, I R; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Lehto, M H; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Grupen, Claus; Hess, J; Misiejuk, A; Prange, G; Sieler, U; Giannini, G; Gobbo, B; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Von Wimmersperg-Töller, J H; Wu Sau Lan; Wu, X; Zobernig, G
2000-01-01
Two-particle correlations of Lambda Lambda and Anti-Lambda Anti-Lambda pairshave been studied in multihadronic Z decays recorded with the ALEPH detector at LEP in the years from 1992 to 1995. The correlations were measured as a function of the four-momentum difference Q of the pair. A depletion of events is observed in the region Q 2 GeV the fraction of pairs with spin one is consistent with the value of 0.75 expected for a statistical spin mixture, whilst for Q < 2 GeV this fraction is found to be lower. For Lambda Anti-Lambda pairs, where no Fermi-Dirac correlations are expected, the spin one fraction is measured to be consistent with 0.75 over the entire analysed Q range.
A Silicon-Chip Source of Bright Photon-Pair Comb
2012-10-16
quantum light sources. Nature Photon. 1, 215 (2007). 14 Kwait, P. G., Mattle, K., Weinfurter, H., & Zeilinger , A. New High-Intensity Source of...Jennewein, T., & Zeilinger , A. A wavelength-tunable fiber-coupled 26 source of narrowband entangled photons. Opt. Express 15, 15377 (2007). 18 Chen...Lett. 101, 051108 (2012). 47 Ramelow, S., Ratschbacher, L., Fedrizzi, A., Langford, N. K., & Zeilinger , A. Discrete tunable color entanglement. Phys
Friis, Søren Michael Mørk; Christensen, Jesper Bjerge; Koefoed, Jacob Gade
2017-01-01
Single-photon sources are key components in applications of photonic quantum technologies such as quantum key distribution (QKD) [1]. One way of realizing single-photon sources is generation of photon pairs (PP) using spontaneous four-wave mixing (FWM): two photons from a pump p annihilate...... and create two side-band photons at frequencies determined partly by the energy conservation 2ωρ = ω1 + ω2, where ωp,ω1,ω2 are the frequencies of the pump and the two side-bands, respectively, and partly by the phase-matching condition. PP generated spontaneously arrive at indeterministic times but even so......, they are useful for QKD because one of the photons can be heralded by detecting the other. The heralded photons are then used for transmitting the quantum key....
Exclusive photon-photon production of muon pairs in proton-proton collisions at sqrt(s) = 7 TeV
Chatrchyan, Serguei; Khachatryan, Vardan; Sirunyan, Albert M.; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; ErÃ¶, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; /Yerevan Phys. Inst. /Vienna, OAW /Minsk, High Energy Phys. Ctr. /Antwerp U., WISINF /Vrije U., Brussels /Brussels U. /Gent U. /Louvain U. /UMH, Mons /Rio de Janeiro, CBPF /Rio de Janeiro State U.
2011-11-01
A measurement of the exclusive two-photon production of muon pairs in proton-proton collisions at {radical}s = 7 TeV, pp {yields} p{mu}{sup +}{mu}{sup -}p, is reported using data corresponding to an integrated luminosity of 40 pb{sup -1}. For muon pairs with invariant mass greater than 11.5 GeV, transverse momentum p{sub T}({mu}) > 4 GeV and pseudorapidity |{eta}({mu})| < 2.1, a fit to the dimuon p{sub T}({mu}{sup +}{mu}{sup -}) distribution results in a measured cross section of {sigma}(p {yields} p{mu}{sup +}{mu}{sup -}) = 3.38{sub -0.55}{sup +0.58}(stat.) {+-} 0.16(syst.) {+-} 0.14(lumi.) pb, consistent with the theoretical prediction evaluated with the event generator LPAIR. The ratio to the predicted cross section is 0.83{sub -0.13}{sup +0.14}(stat.) {+-} 0.04(syst.) {+-} 0.03(lumi.). The characteristic distributions of the muon pairs produced via {gamma}{gamma} fusion, such as the muon acoplanarity, the muon pair invariant mass and transverse momentum agree with those from the theory.
Cross correlations of quantum key distribution based on single-photon sources
Dong Shuangli; Wang Xiaobo; Zhang Guofeng; Sun Jianhu; Zhang Fang; Xiao Liantuan; Jia Suotang
2009-01-01
We theoretically analyze the second-order correlation function in a quantum key distribution system with real single-photon sources. Based on single-event photon statistics, the influence of the modification caused by an eavesdropper's intervention and the effects of background signals on the cross correlations between authorized partners are presented. On this basis, we have shown a secure range of correlation against the intercept-resend attacks.
Barbieri, M.
2007-01-01
Bose-Einstein coalescence of independent photons at the surface of a beam splitter is the physical process that allows linear optical quantum gates to be built. When distinct parametric down-conversion events are used as an independent photon source, distinguishability arises form the energy correlation of each photon with its twin. We derive upper bound for the entanglement which can be generated under these conditions
Eid, JS; Muller, JD; Gratton, E
2000-01-01
Typically, fluctuation correlation spectroscopy (FCS) data acquisition cards measure the number of photon events per time interval (i.e., bin) - time mode. Commercial FCS cards combine the bins through hardware in order to calculate the autocorrelation function. Such a design therefore does not yield the time resolved photon sequence, but only the autocorrelation of that sequence. A different acquisition method which measures the number of time intervals between photon events has been impleme...
Shu Chang-Gan; Xin Xia; Liu Yu-Min; Yu Zhong-Yuan; Yao Wen-Jie; Wang Dong-Lin; Cao Gui
2012-01-01
We investigate theoretically two photon entanglement processes in a photonic-crystal cavity embedding a quantum dot in the strong-coupling regime. The model proposed by Johne et al. (Johne R, Gippius N A, Pavlovic G, Solnyshkov D D, Shelykh I A and Malpuech G 2008 Phys. Rev. Lett. 100 240404), and by Robert et al. (Robert J, Gippius N A and Malpuech G 2009 Phys. Rev. B 79 155317) is modified by considering irreversible dissipation and incoherent continuous pumping for the quantum dot, which is necessary to connect the realistic experiment. The dynamics of the system is analysed by employing the Born—Markov master equation, through which the spectra for the system are computed as a function of various parameters. By means of this analysis the photon-reabsorption process in the strong-coupling regime is first observed and analysed from the perspective of radiation spectrum and the optimal parameters for observing energy-entangled photon pairs are identified. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Weber, Jonas H.; Kettler, Jan; Vural, Hüseyin; Müller, Markus; Maisch, Julian; Jetter, Michael; Portalupi, Simone L.; Michler, Peter
2018-05-01
As a fundamental building block for quantum computation and communication protocols, the correct verification of the two-photon interference (TPI) contrast between two independent quantum light sources is of utmost importance. Here, we experimentally demonstrate how frequently present blinking dynamics and changes in emitter brightness critically affect the Hong-Ou-Mandel-type (HOM) correlation histograms of remote TPI experiments measured via the commonly utilized setup configuration. We further exploit this qualitative and quantitative explanation of the observed correlation dynamics to establish an alternative interferometer configuration, which is overcoming the discussed temporal fluctuations, giving rise to an error-free determination of the remote TPI visibility. We prove full knowledge of the obtained correlation by reproducing the measured correlation statistics via Monte Carlo simulations. As an exemplary system, we make use of two pairs of remote semiconductor quantum dots; however, the same conclusions apply for TPI experiments with flying qubits from any kind of remote solid-state quantum emitters.
Pairing correlations. II. Microscopic analysis of odd-even mass staggering in nuclei
Duguet, T.; Bonche, P.; Heenen, P.-H.; Meyer, J.
2002-01-01
The odd-even mass staggering in nuclei is analyzed in the context of self-consistent mean-field calculations, for spherical as well as for deformed nuclei. For these nuclei, the respective merits of the energy differences Δ (3) and Δ (5) to extract both the pairing gap and the time-reversal symmetry breaking effect at the same time are extensively discussed. The usual mass formula Δ (3) is shown to contain additional mean-field contributions when realistic pairing is used in the calculation. A simple tool is proposed in order to remove the time-reversal symmetry breaking effects from Δ (5) . Extended comparisons with the odd-even mass staggering obtained in the zero-pairing limit (schematic model and self-consistent calculations) show the nonperturbative contribution of pairing correlations on this observable
Bosse, J; Pathak, K N; Singh, G S
2011-10-01
The fluctuation-dissipation theorem together with the exact density response spectrum for ideal quantum gases has been utilized to yield a new expression for the static structure factor, which we use to derive exact analytical expressions for the temperature-dependent pair distribution function g(r) of the ideal gases. The plots of bosonic and fermionic g(r) display "Bose pile" and "Fermi hole" typically akin to bunching and antibunching as observed experimentally for ultracold atomic gases. The behavior of spin-scaled pair correlation for fermions is almost featureless, but bosons show a rich structure including long-range correlations near T(c). The coherent state at T=0 shows no correlation at all, just like single-mode lasers. The depicted decreasing trend in correlation with decrease in temperature for T
Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland); Pire, Bernard [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France)
2010-07-01
We describe a new way to access the chiral odd transversity parton distribution in the proton through the photoproduction of lepton pairs. The basic ingredient is the interference of the usual Bethe Heitler or Drell-Yan amplitudes with the amplitude of a process, where the photon couples to quarks through its chiral-odd distribution amplitude, which is normalized to the magnetic susceptibility of the QCD vacuum. A phenomenology of single and double spin observables emerges from the unusual features of this amplitude (Phys.Rev.Lett.103:072002,2009). (authors)
Structure functions and pair correlations of the quark-gluon plasma
Thoma, Markus H.
2005-01-01
Recent experiments at RHIC and theoretical considerations indicate that the quark-gluon plasma, present in the fireball of relativistic heavy-ion collisions, might be in a liquid phase. The liquid state can be identified by characteristic correlation and structure functions. Here definitions of the structure functions and pair correlations of the quark-gluon plasma are presented as well as perturbative results. These definitions might be useful for verifying the quark-gluon-plasma liquid in QCD lattice calculations
Polarization correlations of 1S0 proton pairs as tests of Bell and Wigner inequalities
Polachic, C.; Rangacharyulu, C.; van den Berg, A.M.; Hamieh, S.; Harakeh, M.N.; Hunyadi, M.D.; de Huu, M.A.; Wörtche, H.J.; Heyse, J.; Bäumer, C.; Frekers, D.; Rakers, S.
2004-01-01
We are investigating the feasibility of nuclear physics experiments designed to overcome the loopholes of observer-dependent reality and satisfying the counterfactuality condition. In a first approach, we have measured polarization correlations of proton pairs produced in 12C(d, 2He) and 1H(d, 2He)
Polarization correlations of S-1(0) proton pairs as tests of hidden-variable theories
Polachic, C; Rangacharyulu, C; van den Berg, AM; Hamieh, S; Harakeh, MN; Hunyadi, M; de Huu, MA; Wortche, HJ; Heyse, J; Baumer, C; Frekers, D; Brooke, JA; Busch, P
2004-01-01
We are investigating the feasibility of nuclear physics experiments designed to overcome the loopholes of observer-dependent reality and satisfying the counterfactuality condition. In a first approach, we have measured polarization correlations of S-1(0) proton pairs produced in C-12(d, He-2) and
Shell-model calculations with a basis that contains correlated pairs
Boisson, J.P.; Silvestre-Brac, B.A.; Liotta, R.J.
1979-01-01
A method to solve the shell-model equations within a basis that contains correlated pairs of particles is presented. The method is illustrated for the three-identical-particle system. Applications in nuclei around 208 Pb are given and comparisons with both experimental data and other calculations are carried out. (Auth.)
Temporally uncorrelated photon-pair generation by dual-pump four-wave mixing
Christensen, Jesper Bjerge; McKinstrie, C. J.; Rottwitt, Karsten
2016-01-01
We study the preparation of heralded single-photon states using dual-pump spontaneous four-wave mixing. The dual-pump configuration, which in our case employs cross-polarized pumps, allows for a gradual variation of the nonlinear interaction strength enabled by a birefringence-induced walk...
Schunk, Gerhard; Vogl, Ulrich; Strekalov, Dmitry V.
2015-01-01
Quantum information technology strongly relies on the coupling of optical photons with narrowband quantum systems, such as quantum dots, color centers, and atomic systems. This coupling requires matching the optical wavelength and bandwidth to the desired system, which presents a considerable pro...
Experimental simulation of a polarization-dispersion-fluctuating channel with photon pairs
Halenková, E.; Lemr, K.; Černoch, Antonín; Soubusta, Jan
2012-01-01
Roč. 85, č. 6 (2012), "063807-1"-"063807-5" ISSN 1050-2947 Institutional research plan: CEZ:AV0Z10100522 Keywords : entangled photons Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.042, year: 2012
A study of trapped ion dynamics by photon-correlation and pulse-probe techniques
Rink, J.; Dholakia, K.; Zs, G.; Horvath, K.; Hernandez-Pozos, J. L.; Power, W.; Segal, D. M.; Thompson, R. C.; Walker, T.
1995-01-01
We demonstrate non-evasive methods for observing ion and ion cloud oscillation frequencies in a quadrupole ion trap. These trap resonances are measured for small clouds using a photon correlation technique. For large clouds the rotation frequency can be detected with the help of an additional pulsed probe laser. We show applications of the photon correlation method such as estimating the dynamic properties of a combined trap and detecting ion crystals
Li, Xingguo; The ATLAS collaboration
2017-01-01
A measurement of the production cross section for two isolated photons in proton-proton collisions at a centre-of-mass energy of √ s = 8 TeV is presented. The results are based on an integrated luminosity of 20.24 fb−1 recorded by the ATLAS detector at the Large Hadron Collider. The measurement considers photons with pseudorapidities satisfying |η γ | 40 GeV and Eγ T,2 > 30 GeV for the highest and second highest Eγ T photon produced in the interaction. The background due to hadronic jets and electrons is subtracted using data-driven techniques. The fiducial cross sections are corrected for detector effects and measured differentially as a function of six kinematic observables. The data are compared to fixed-order QCD calculations at 16 next-to-leading order (NLO) and next-to-next-to-leading-order (NNLO) accuracy as well as NLO computations including resummation of initial-state gluon radiation at next-to-next-to-leading-logarithm or matched to a parton shower.
Marques Moreno, F M
1994-06-01
Heavy-ion collisions offer the unique possibility to create in the laboratory nuclear matter far from equilibrium. The electromagnetic probe constituted by hard photons and the Bose-Einstein correlations were used to study the properties of such a matter (size, density, temperature...). It is shown how the formalism has evolved from Young experiments to heavy-ion collisions experiments. The experiments performed with the photon multidetector TAPS at Ganil are described. The systems studied are: {sup 86}KR + {sup nat}Ni at 60.0 A.MeV, and {sup 181}Ta + {sup 197}Au at 39.5 A.MeV. Results are presented concerning the production of gamma, pi{sup 0}, e{sup +-} and {gamma}{gamma} correlation. The results are interpreted with the help of static and dynamic calculations describing hard photon production in heavy ion collisions. For the first time in Nuclear Physics, the existence of the Bose-Einstein effect for photons in the range of gamma is demonstrated, and the existence of two different photon sources is postulated, reflecting the density oscillations taking place in the nuclear matter created in heavy-ion collisions. (from author) 55 figs., 22 tabs., 76 refs.
Fries, P.
1978-01-01
In order to study the intermolecular relaxation due to magnetic dipolar interactions, we calculate the spectral densities resulting from random translational and rotational motions of spherical molecules carrying off-centre spins. The relative translational motion is treated in the frame-work of a general diffusion equation (the Smoluchowski equation) which takes into account the existence of effective forces between the molecules. This model implies a pair correlation function. i.e. a non unifom relative distribution of the molecules. The analytical calculations are carried out by taking correctly into account the hard sphere boundary conditions for the molecules. Explicit numerical calculations of the spectral densities are performed using finite difference methods and the pair correlation function of Verlet and Weiss obtained by computer experiments. The resulting calculations allow one to interpret the relaxation exhibited by benzene and some of its monohalogen derivatives which has been measured by Jonas et al. at various pressures. The effects of pair correlation and eccentricity contribute to a noticeable enhancement of the spectral densities, especially as the frequency increases. The translational correlation times calculated from the Stokes formula and those deduced from intermolecular relaxation studies are compared. It is shown that in order to distinguish which of the dynamical models is appropriate, measurements must be made as a function of frequency [fr
Coherent effects on two-photon correlation and directional emission of two two-level atoms
Ooi, C. H. Raymond; Kim, Byung-Gyu; Lee, Hai-Woong
2007-01-01
Sub- and superradiant dynamics of spontaneously decaying atoms are manifestations of collective many-body systems. We study the internal dynamics and the radiation properties of two atoms in free space. Interesting results are obtained when the atoms are separated by less than half a wavelength of the atomic transition, where the dipole-dipole interaction gives rise to new coherent effects, such as (a) coherence between two intermediate collective states, (b) oscillations in the two-photon correlation G (2) , (c) emission of two photons by one atom, and (d) the loss of directional correlation. We compare the population dynamics during the two-photon emission process with the dynamics of single-photon emission in the cases of a Λ and a V scheme. We compute the temporal correlation and angular correlation of two successively emitted photons using the G (2) for different values of atomic separation. We find antibunching when the atomic separation is a quarter wavelength λ/4. Oscillations in the temporal correlation provide a useful feature for measuring subwavelength atomic separation. Strong directional correlation between two emitted photons is found for atomic separation larger than a wavelength. We also compare the directionality of a photon spontaneously emitted by the two atoms prepared in phased-symmetric and phased-antisymmetric entangled states vertical bar ±> k 0 =e ik 0 ·r 1 vertical bar a 1 ,b 2 >±e ik 0 ·r 2 vertical bar b 1 ,a 2 > by a laser pulse with wave vector k 0 . Photon emission is directionally suppressed along k 0 for the phased-antisymmetric state. The directionality ceases for interatomic distances less than λ/2
Gibbons, Steven J.; Näsholm, S. P.; Ruigrok, E.; Kværna, T.
2018-04-01
Seismic arrays enhance signal detection and parameter estimation by exploiting the time-delays between arriving signals on sensors at nearby locations. Parameter estimates can suffer due to both signal incoherence, with diminished waveform similarity between sensors, and aberration, with time-delays between coherent waveforms poorly represented by the wave-front model. Sensor-to-sensor correlation approaches to parameter estimation have an advantage over direct beamforming approaches in that individual sensor-pairs can be omitted without necessarily omitting entirely the data from each of the sensors involved. Specifically, we can omit correlations between sensors for which signal coherence in an optimal frequency band is anticipated to be poor or for which anomalous time-delays are anticipated. In practice, this usually means omitting correlations between more distant sensors. We present examples from International Monitoring System seismic arrays with poor parameter estimates resulting when classical f-k analysis is performed over the full array aperture. We demonstrate improved estimates and slowness grid displays using correlation beamforming restricted to correlations between sufficiently closely spaced sensors. This limited sensor-pair correlation (LSPC) approach has lower slowness resolution than would ideally be obtained by considering all sensor-pairs. However, this ideal estimate may be unattainable due to incoherence and/or aberration and the LSPC estimate can often exploit all channels, with the associated noise-suppression, while mitigating the complications arising from correlations between very distant sensors. The greatest need for the method is for short-period signals on large aperture arrays although we also demonstrate significant improvement for secondary regional phases on a small aperture array. LSPC can also provide a robust and flexible approach to parameter estimation on three-component seismic arrays.
Proton-Antiproton Pair Production in Two-Photon Collisions at LEP
Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hakobyan, R.S.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.
2003-01-01
The reaction e+e- -> e+e- proton antiproton is studied with the L3 detector at LEP. The analysis is based on data collected at e+e- center-of-mass energies from 183 GeV to 209 GeV, corresponding to an integrated luminosity of 667 pb-1. The gamma gamma -> proton antiproton differential cross section is measured in the range of the two-photon center-of-mass energy from 2.1 GeV to 4.5 GeV. The results are compared to the predictions of the three-quark and quark-diquark models.
Paired modes of heterostructure cavities in photonic crystal waveguides with split band edges
Mahmoodian, Sahand; Sukhorukov, Andrey A.; Ha, Sangwoo
2010-01-01
We investigate the modes of double heterostructure cavities where the underlying photonic crystal waveguide has been dispersion engineered to have two band-edges inside the Brillouin zone. By deriving and using a perturbative method, we show that these structures possess two modes. For unapodized...... cavities, the relative detuning of the two modes can be controlled by changing the cavity length, and for particular lengths, a resonant-like effect makes the modes degenerate. For apodized cavities no such resonances exist and the modes are always non-degenerate....
Theory of fourfold interference with photon pairs from spatially separated sources
Zhang, Hui Rong; Wang, Ruo Peng
2007-01-01
We present a theory for fourfold quantum interference of photons generated from independent spontaneous parametric down-conversion processes. Closed-form expressions for fourfold quantum interference patterns and visibility are found. The theoretical result for fourfold quantum interference patterns is in good agreement with experimental data reported. Detailed numerical calculations for the dependence of fourfold quantum interference visibility on experimentally controllable parameters are carried out. It is found out that higher visibility can be achieved for small biphoton width, short pump pulse coherence time, and narrow bandwidth of spectral filters. The optimal condition for obtaining at the same time higher fourfold interference visibility and intensity is also discussed
From pair correlations to the quasi-particle-phonon nuclear model
Solov'ev, V.G.
1986-01-01
Modern state of the nucleus theory is discussed. The main attention is paid to pair correlation theory of superconducting type and quasiparticle - phonon nucleus model. Pair correlation account allowed one to describe in detail a series of nucleus properties which did not fall within the framework of earlier known models as, for example, double-quasi-particle states in even-even deformed nuclei. To describe the wave function low-quasi-particle components at low, mean and high excitation energies, the nucleus quasi-particle-phonon model is formulated. The strength function method is used in the model and fragmentation of mono-quasi-particle, mono-phonon states and quasi-particle phonon state by many nuclear levels is calculated
Zegrodnik, M; Bünemann, J; Spałek, J
2014-01-01
We demonstrate the stability of the spin-triplet paired s-wave (with an admixture of extended s-wave) state for the limit of purely repulsive interactions in a degenerate two-band Hubbard model of correlated fermions. The repulsive interactions limit represents an essential extension of our previous analysis (2013 New J. Phys. 15 073050), regarded here as I. We also show that near the half-filling the considered type of superconductivity can coexist with antiferromagnetism. The calculations have been carried out with the use of the so-called statistically consistent Gutzwiller approximation (SGA) for the case of a square lattice. We suggest that the electron correlations in conjunction with the Hund's rule exchange play the crucial role in stabilizing the real-space spin-triplet superconducting state. A sizable hybridization of the bands suppresses the homogeneous paired state. (paper)
Using galaxy pairs to investigate the three-point correlation function in the squeezed limit
Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.
2017-11-01
We investigate the three-point correlation function (3PCF) in the squeezed limit by considering galaxy pairs as discrete objects and cross-correlating them with the galaxy field. We develop an efficient algorithm using fast Fourier transforms to compute such cross-correlations and their associated pair-galaxy bias bp, g and the squeezed 3PCF coefficient Qeff. We implement our method using N-body cosmological simulations and a fiducial halo occupation distribution (HOD) and present the results in both the real space and redshift space. In real space, we observe a peak in bp, g and Qeff at pair separation of ∼2 Mpc, attributed to the fact that galaxy pairs at 2 Mpc separation trace the most massive dark matter haloes. We also see strong anisotropy in the bp, g and Qeff signals that track the large-scale filamentary structure. In redshift space, both the 2 Mpc peak and the anisotropy are significantly smeared out along the line of sight due to finger-of-God effect. In both the real space and redshift space, the squeezed 3PCF shows a factor of 2 variation, contradicting the hierarchical ansatz, but offering rich information on the galaxy-halo connection. Thus, we explore the possibility of using the squeezed 3PCF to constrain the HOD. When we compare two simple HOD models that are closely matched in their projected two-point correlation function (2PCF), we do not yet see a strong variation in the 3PCF that is clearly disentangled from variations in the projected 2PCF. Nevertheless, we propose that more complicated HOD models, e.g. those incorporating assembly bias, can break degeneracies in the 2PCF and show a distinguishable squeezed 3PCF signal.
Top Quark Pair Properties - Spin Correlation, Charge Asymmetry, and Complex Final States - at ATLAS
Brost Elizabeth
2014-04-01
Full Text Available We present measurements of top quark pair properties performed with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of √s = 7 TeV. The latest measurements of spin correlation and charge asymmetry in tt¯$t\\overline t $ events, as well as measurements of the cross section for tt¯$t\\overline t $ production in association with vector bosons, are presented.
Luminosity measurements at LHCb using dimuon pairs produced via elastic two photon fusion.
Anderson, J
2010-01-01
This note outlines the feasibility of using the elastic two photon process pp$\\rightarrow$ p+$\\mu^{+}\\mu^{-}+p$ to make luminosity measurements at LHCb. The overall efficiency at LHCb for recording and selecting pp$\\rightarrow$ p+$\\mu^{+}\\mu^{-}+p$ events produced within 1.6<$\\eta$<5 has been determined using Monte-Carlo to be 0.0587 $\\pm$ 0.0008, yielding 5210$\\pm$71(stat.) events for an integrated luminosity of 1fb$^{-1}$. The main background processes where dimuons are produced via inelastic two-photon fusion and double Pomeron exchange have been studied using the full LHCb detector simulation while the other background sources, including backgrounds caused by K/$\\pi$ mis-identification, have been studied at four vector level. The background is estimated to be (4.1 $\\pm$ 0.5(stat.) $\\pm$ 0.6(syst.))% of the signal level. Most of this background comes from K/$\\pi$ mis-identification, although the largest source of uncertainty in the estimation is due to knowledge of the number of events produced via d...
Tam, Roger C; Traboulsee, Anthony; Riddehough, Andrew; Li, David K B
2012-01-01
The change in T 1-hypointense lesion ("black hole") volume is an important marker of pathological progression in multiple sclerosis (MS). Black hole boundaries often have low contrast and are difficult to determine accurately and most (semi-)automated segmentation methods first compute the T 2-hyperintense lesions, which are a superset of the black holes and are typically more distinct, to form a search space for the T 1w lesions. Two main potential sources of measurement noise in longitudinal black hole volume computation are partial volume and variability in the T 2w lesion segmentation. A paired analysis approach is proposed herein that uses registration to equalize partial volume and lesion mask processing to combine T 2w lesion segmentations across time. The scans of 247 MS patients are used to compare a selected black hole computation method with an enhanced version incorporating paired analysis, using rank correlation to a clinical variable (MS functional composite) as the primary outcome measure. The comparison is done at nine different levels of intensity as a previous study suggests that darker black holes may yield stronger correlations. The results demonstrate that paired analysis can strongly improve longitudinal correlation (from -0.148 to -0.303 in this sample) and may produce segmentations that are more sensitive to clinically relevant changes.
Murad, S.; Gubbins, K.E.; Gray, C.G.
1983-01-01
We compare several recently proposed theories for the angular pair correlation function g(rω 1 ω 2 ), including first- and second-order perturbation theory (the u-expansion), a Pade approximant to this series, first-order f-expansion, the single superchain, generalized mean field, linearized hypernetted chain, and quadratic hypernetted chain approximations. Numerical results from these theories are compared with available computer simulation data for four model fluids whose intermolecular pair potential is of the form u 0 +usub(a), where u 0 is a hard-sphere of Lennard-Jones model, while usub(a) is a dipole-dipole or quadrupole-quadrupole interaction; we refer to these model fluids as HS+μμ, HS+QQ, LJ+μμ, and LJ+QQ. Properties studied include the angular pair correlation function and its spherical harmonic components, the thermodynamic properties, and the angular correlation parameters G 1 and G 2 that are related to the dielectric and Kerr constants. The second-order perturbation theory is superior to the integral equation theories for the thermodynamic harmonics of g(rω 1 ω 2 ) and for the thermodynamic properties themselves at moderate multipole strengths. For other harmonics and properties, the integral equation theories are better, with the quadratic hypernetted chain approximation being the best overall. (orig.)
Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.
2013-01-01
The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass
Investigation of spin correlations in top-pair production with the CMS detector at the LHC
Davids, Martina
2011-01-01
In spring 2010 the Large Hadron Collider (LHC) started its operation with a center-of-mass energy of 7 TeV, that will be increased up to 14 TeV in the following years. Considering a medium energy of √(s)=10 TeV and a luminosity of L=10 33 cm -2 s -1 some million top quarks are produced per year. This offers the opportunity to investigate spin-correlations between the top quarks from pair production. As the spinconfiguration of the top-quark pair depends on the production mechanism, a measurement of such effects is a unique tool to study the contributions of the production processes and spin effects. This allows to test the Standard Model. This thesis investigates dileptonic top-pair decays at the Compact Muon Solenoid based on simulated events. A quantitative measure of spin correlations is the asymmetry A, that manifests itself in the angular distribution of the two leptons. A full kinematic reconstruction of the top pair is necessary to determine this distribution. The MC generators Pythia, MC rate at NLO, and TopReX are tested with respect to their treatment of spin-correlations. Pythia is used to generate uncorrelated samples. MC rate at NLO reproduces the Standard Model prediction. These samples are used to determine the sensitivity of the present analysis. Due to an incorrect implementation of the helicity states, TopReX is not usable. A full event selection and reconstruction are adapted. The reconstructed angular distribution shows a significant distortion. A template method is implemented to determine the asymmetry. Here, the angular distribution is decomposed into a flat, a completely asymmetric, and a background part, that are fitted by a binned χ 2 approach to toy-data. An ensemble study is performed to estimate the statistical uncertainty. As the main systematic uncertainties, generator effects, the jet energy scale and uncertainties in the cross sections or selection efficiency are investigated. Considering an integrated luminosity of L int =1 fb
Investigation of spin correlations in top-pair production with the CMS detector at the LHC
Davids, Martina
2011-02-25
In spring 2010 the Large Hadron Collider (LHC) started its operation with a center-of-mass energy of 7 TeV, that will be increased up to 14 TeV in the following years. Considering a medium energy of {radical}(s)=10 TeV and a luminosity of L=10{sup 33} cm{sup -2}s{sup -1} some million top quarks are produced per year. This offers the opportunity to investigate spin-correlations between the top quarks from pair production. As the spinconfiguration of the top-quark pair depends on the production mechanism, a measurement of such effects is a unique tool to study the contributions of the production processes and spin effects. This allows to test the Standard Model. This thesis investigates dileptonic top-pair decays at the Compact Muon Solenoid based on simulated events. A quantitative measure of spin correlations is the asymmetry A, that manifests itself in the angular distribution of the two leptons. A full kinematic reconstruction of the top pair is necessary to determine this distribution. The MC generators Pythia, MC rate at NLO, and TopReX are tested with respect to their treatment of spin-correlations. Pythia is used to generate uncorrelated samples. MC rate at NLO reproduces the Standard Model prediction. These samples are used to determine the sensitivity of the present analysis. Due to an incorrect implementation of the helicity states, TopReX is not usable. A full event selection and reconstruction are adapted. The reconstructed angular distribution shows a significant distortion. A template method is implemented to determine the asymmetry. Here, the angular distribution is decomposed into a flat, a completely asymmetric, and a background part, that are fitted by a binned {chi}{sup 2} approach to toy-data. An ensemble study is performed to estimate the statistical uncertainty. As the main systematic uncertainties, generator effects, the jet energy scale and uncertainties in the cross sections or selection efficiency are investigated. Considering an integrated
Andrews, David L
2015-01-01
Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov
Andrews, David L
2015-01-01
Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas
Andrews, David L
2015-01-01
Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry
Andrews, David L
2015-01-01
This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol
Experimental many-pairs nonlocality
Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian
2017-08-01
Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.
Recent measurements of two photon muon pair process from Mark J at √s up to 46.78 GeV
Zhang, C.C.
1985-07-01
The recent results from Mark J on two photon muon pair production with √s from 14 to 46.78 GeV are presented, and compared with the complete α 4 QED calculation in a large range of √s and four momentum transfer, including untagged, single and double tagged events. The forward-backward charge asymmetry of muons produced in the two photon process is also compared to the QED prediction. (orig.)
Cao, Yuan; Li, Yu-Huai; Zou, Wen-Jie; Li, Zheng-Ping; Shen, Qi; Liao, Sheng-Kai; Ren, Ji-Gang; Yin, Juan; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei
2018-04-01
Quantum entanglement was termed "spooky action at a distance" in the well-known paper by Einstein, Podolsky, and Rosen. Entanglement is expected to be distributed over longer and longer distances in both practical applications and fundamental research into the principles of nature. Here, we present a proposal for distributing entangled photon pairs between Earth and the Moon using a Lagrangian point at a distance of 1.28 light seconds. One of the most fascinating features in this long-distance distribution of entanglement is as follows. One can perform the Bell test with human supplying the random measurement settings and recording the results while still maintaining spacelike intervals. To realize a proof-of-principle experiment, we develop an entangled photon source with 1 GHz generation rate, about 2 orders of magnitude higher than previous results. Violation of Bell's inequality was observed under a total simulated loss of 103 dB with measurement settings chosen by two experimenters. This demonstrates the feasibility of such long-distance Bell test over extremely high-loss channels, paving the way for one of the ultimate tests of the foundations of quantum mechanics.
Zickler, D; Moreau, P J; Huynh, A D; Slezec, A M
1992-09-01
The decrease of meiotic exchanges (crossing over and conversion) in two mutants of Sordaria macrospora correlated strongly with a reduction of chiasmata and of both types of "recombination nodules." Serial section reconstruction electron microscopy was used to compare the synapsis pattern of meiotic prophase I in wild type and mutants. First, synapsis occurred but the number of synaptonemal complex initiation sites was reduced in both mutants. Second, this reduction was accompanied by, or resulted in, modifications of the pattern of synapsis. Genetic and synaptonemal complex maps were compared in three regions along one chromosome arm divided into well marked intervals. Reciprocal exchange frequencies and number of recombination nodules correlated in wild type in the three analyzed intervals, but disparity was found between the location of recombination nodules and exchanges in the mutants. Despite the twofold exchange decrease, sections of the genome such as the short arm of chromosome 2 and telomere regions were sheltered from nodule decrease and from pairing modifications. This indicated a certain amount of diversity in the control of these features and suggested that exchange frequency was dependent not only on the amount of effective pairing but also on the localization of the pairing sites, as revealed by the synaptonemal complex progression in the mutants.
Pair angular correlations for pions, kaons and protons in proton-proton collisions in ALICE
Zaborowska, Anna
2014-01-01
This thesis presents the correlation functions in $\\Delta\\eta\\, \\Delta\\phi$ space for pairs of pions, kaons and protons. The studies were carried out on the set of proton-proton collisions at the centre-of-mass energy $\\sqrt{s}$ = 7 TeV, obtained in ALICE, A Large Ion Collider Experiment at CERN, the European Organization for Nuclear Research. The analysis was performed for two charge combinations (like-sign pairs and unlike-sign pairs) as well as for three multiplicity ranges. Angular correlations are a rich source of information about the elementary particles behaviour. They result in from the interplay of numerous effects, including resonances’ decays, Coulomb interactions and energy and momentum conservation. In case of identical particles quantum statistics needs to be taken into account. Moreover, particles differ in terms of quark content. Kaons, carrying the strange quark obey the strangeness conservation law. In the production of protons baryon number must be conserved. These features are reflected...
van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-05-14
Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H2, and eliminates delocalization errors in H2(+) and other single-bond systems. It gives surprisingly good non-bonded interaction energies--competitive with the ph-RPA--with the correct R(-6) asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations.
Aggelen, Helen van; Yang, Yang; Yang, Weitao
2014-01-01
Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H 2 , and eliminates delocalization errors in H 2 + and other single-bond systems. It gives surprisingly good non-bonded interaction energies – competitive with the ph-RPA – with the correct R −6 asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations
Dynamical interplay between pairing and quadrupole correlations in odd-mass nuclei
Kaneko, Kazunari; Takada, Kenjiro; Sakata, Fumihiko; Tazaki, Shigeru.
1982-01-01
Study of the dynamical interplay between pairing and quadrupole correlations in odd-mass nuclei has been developed. One of the purposes of this paper is to predict that the new collective excited states may exist system-atically in odd-mass nuclei. Other purpose is to discuss a new collective band structure on the top of a unique-parity one-quasiparticle state. Through the numerical calculations, it has been clarified that the dynamical mutual interplay between the pairing and the quadrupole degrees of freedom played an important role in the odd-mass transitional nuclei to bring about the new type of collective states. The results of calculation were compared with the experimental data. (Kato, T.)
Buchs, Gilles; Krasheninnikov, Arkady V; Ruffieux, Pascal; Groening, Pierangelo; Foster, Adam S; Nieminen, Risto M; Groening, Oliver
2007-01-01
The specific, local modification of the electronic structure of carbon nanomaterials is as important for novel electronic device fabrication as the doping in the case of silicon-based electronics. Here, we report low temperature scanning tunneling microscopy and spectroscopy study of semiconducting carbon nanotubes subjected to hydrogen-plasma treatment. We show that plasma treatment mostly results in the creation of paired electronic states in the nanotube band gap. Combined with extensive first-principle simulations, our results provide direct evidence that these states originate from correlated chemisorption of hydrogen adatoms on the tube surface. The energy splitting of the paired states is governed by the adatom-adatom interaction, so that controlled hydrogenation can be used for engineering the local electronic structure of nanotubes and other sp 2 -bonded nanocarbon systems
Shumilin, A. V.; Kabanov, V. V.; Dediu, V. I.
2018-03-01
We derive kinetic equations for polaron hopping in organic materials that explicitly take into account the double occupation possibility and pair intersite correlations. The equations include simplified phenomenological spin dynamics and provide a self-consistent framework for the description of the bipolaron mechanism of the organic magnetoresistance. At low applied voltages, the equations can be reduced to those for an effective resistor network that generalizes the Miller-Abrahams network and includes the effect of spin relaxation on the system resistivity. Our theory discloses the close relationship between the organic magnetoresistance and the intersite correlations. Moreover, in the absence of correlations, as in an ordered system with zero Hubbard energy, the magnetoresistance vanishes.
EPPUR SI MUOVE: POSITIONAL AND KINEMATIC CORRELATIONS OF SATELLITE PAIRS IN THE LOW Z UNIVERSE
Ibata, Rodrigo A.; Famaey, Benoit; Martin, Nicolas; Lewis, Geraint F.; Ibata, Neil G.
2015-01-01
We have recently shown that pairs of satellite galaxies located diametrically opposite to each other around their host possess predominantly anti-correlated velocities. This is consistent with a scenario in which ≳50% of satellite galaxies belong to kinematically coherent rotating planar structures. Here we extend this analysis, examining satellites of giant galaxies drawn from an SDSS photometric redshift catalog. We find that there is a ∼17% overabundance (>3σ significance) of candidate satellites at positions diametrically opposite to a spectroscopically confirmed satellite. We show that ΛCDM cosmological simulations do not possess this property when contamination is included. After subtracting contamination, we find ∼2 times more satellites diametrically opposed to a spectroscopically confirmed satellite than at 90° from it, at projected distances ranging from 100 to 150 kpc from the host. This independent analysis thus strongly supports our previous results on anti-correlated velocities. We also find that those satellite pairs with anti-correlated velocities have a strong preference (∼3:1) to align with the major axis of the host whereas those with correlated velocities display the opposite behavior. We finally show that repeating a similar analysis to Ibata et al. with same-side satellites is generally hard to interpret, but is not inconsistent with our previous results when strong quality cuts are applied on the sample. This addresses all of the concerns recently raised by Cautun et al., who did not uncover any flaw in our previous analysis, but may simply have hinted at the physical extent of planar satellite structures by pointing out that the anti-correlation signal weakens at radii >150 kpc. All these unexpected positional and kinematic correlations strongly suggest that a substantial fraction of satellite galaxies are causally linked in their formation and evolution
EPPUR SI MUOVE: POSITIONAL AND KINEMATIC CORRELATIONS OF SATELLITE PAIRS IN THE LOW Z UNIVERSE
Ibata, Rodrigo A.; Famaey, Benoit; Martin, Nicolas [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l’Université, F-67000 Strasbourg (France); Lewis, Geraint F. [Sydney Institute of Astronomy, School of Physics A28, University of Sydney, NSW 2006 (Australia); Ibata, Neil G., E-mail: rodrigo.ibata@astro.unistra.fr [Trinity College, Trinity Street, Cambridge, CB2 1TQ (United Kingdom)
2015-05-20
We have recently shown that pairs of satellite galaxies located diametrically opposite to each other around their host possess predominantly anti-correlated velocities. This is consistent with a scenario in which ≳50% of satellite galaxies belong to kinematically coherent rotating planar structures. Here we extend this analysis, examining satellites of giant galaxies drawn from an SDSS photometric redshift catalog. We find that there is a ∼17% overabundance (>3σ significance) of candidate satellites at positions diametrically opposite to a spectroscopically confirmed satellite. We show that ΛCDM cosmological simulations do not possess this property when contamination is included. After subtracting contamination, we find ∼2 times more satellites diametrically opposed to a spectroscopically confirmed satellite than at 90° from it, at projected distances ranging from 100 to 150 kpc from the host. This independent analysis thus strongly supports our previous results on anti-correlated velocities. We also find that those satellite pairs with anti-correlated velocities have a strong preference (∼3:1) to align with the major axis of the host whereas those with correlated velocities display the opposite behavior. We finally show that repeating a similar analysis to Ibata et al. with same-side satellites is generally hard to interpret, but is not inconsistent with our previous results when strong quality cuts are applied on the sample. This addresses all of the concerns recently raised by Cautun et al., who did not uncover any flaw in our previous analysis, but may simply have hinted at the physical extent of planar satellite structures by pointing out that the anti-correlation signal weakens at radii >150 kpc. All these unexpected positional and kinematic correlations strongly suggest that a substantial fraction of satellite galaxies are causally linked in their formation and evolution.
Exploring the effects of photon correlations from thermal sources on bacterial photosynthesis
Manrique, Pedro D.; Caycedo-Soler, Felipe; De Mendoza, Adriana; Rodríguez, Ferney; Quiroga, Luis; Johnson, Neil F.
2016-01-01
Thermal light sources can produce photons with strong spatial correlations. We study the role that these correlations might potentially play in bacterial photosynthesis. Our findings show a relationship between the transversal distance between consecutive absorptions and the efficiency of the photosynthetic process. Furthermore, membranes where the clustering of core complexes (so-called RC-LH1) is high, display a range where the organism profits maximally from the spatial correlation of the ...
Kultavewuti, Pisek
Polarization-entangled photon pair states (PESs) are indispensable in several quantum protocols that should be implemented in an integrated photonic circuit for realizing a practical quantum technology. Preparing such states in integrated waveguides is in fact a challenge due to polarization mode dispersion. Unlike other conventional ways that are plagued with complications in fabrication or in state generation, in this thesis, the scheme based on parallel spontaneous four-wave mixing processes of two polarization waveguide modes is thoroughly studied in theory and experimentation for the polarization entanglement generation. The scheme in fact needs the modal dispersion, contradictory to the general perception, as revealed by a full quantum mechanical framework. The proper modal dispersion balances the effects of temporal walk-off and state factorizability. The study also shows that the popular standard platform such as a silicon-on-insulator wafer is far from suitable to implement the proposed simple generation technique. Proven by the quantum state tomography, the technique produces a highly-entangled state with a maximum concurrence of 0.97 +/- 0:01 from AlGaAs waveguides. In addition, the devices directly generated Bell states with an observed fidelity of 0.92 +/- 0:01 without any post-generation compensating steps. Novel suspended device structures, including their components, are then investigated numerically and experimentally characterized in pursuit of finding the geometry with the optimal dispersion property. The 700 nm x 1100 nm suspended rectangular waveguide is identified as the best geometry with a predicted maximum concurrence of 0.976 and a generation bandwidth of 3.3 THz. The suspended waveguide fabrication procedure adds about 15 dB/cm and 10 dB/cm of propagation loss to the TE and TM mode respectively, on top of the loss in corresponding full-cladding waveguides. Bridges, which structurally support the suspended waveguides, are optimized using
Heavy-quark correlations in photon-hadron collisions
Frixione, S.; Mangano, M.L.; Nason, P.; Ridolfi, G.
1994-01-01
We describe a next-to-leading-order calculation of the fully exclusive parton cross section at next-to-leading order for the photoproduction of heavy quarks. We use our result to compute quantities of interest for current fixed-target experiments. We discuss heavy-quark total cross sections, distributions, and correlations. (orig.)
H → γγ search and direct photon pair production differential cross section
Bu, Xuebing
2010-01-01
. Furthermore, DPP production is also a significant background in searches for new phenomena, such as new heavy resonances, extra spatial dimensions, or cascade decays of heavy new particles. Thus, precise measurements of the DPP cross sections for various kinematic variables and their theoretical understanding are extremely important for future Higgs and new phenomena searches. In this thesis, we also present a precise measurement of the DPP single differential cross sections as a function of the diphoton mass, the transverse momentum of the diphoton system, the azimuthal angle between the photons, and the polar scattering angle of the photons, as well as the double differential cross sections considering the last three kinematic variables in three diphoton mass bins, using 4.2 fb -1 data. These results are the first of their kind at D0 Run II, and in fact the double differential measurements are the first of their kind at Tevatron. The results are compared with different perturbative QCD predictions and event generators.
Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei
2018-06-01
We calculate the current correlations for the steady-state electron transport through multi-level parallel quantum dots embedded in a short quantum wire, that is placed in a non-perfect photon cavity. We account for the electron-electron Coulomb interaction, and the para- and diamagnetic electron-photon interactions with a stepwise scheme of configuration interactions and truncation of the many-body Fock spaces. In the spectral density of the temporal current-current correlations we identify all the transitions, radiative and non-radiative, active in the system in order to maintain the steady state. We observe strong signs of two types of Rabi oscillations.
Pond, Mark J.; Errington, Jeffrey R.; Truskett, Thomas M.
2011-09-01
Partial pair-correlation functions of colloidal suspensions with continuous polydispersity can be challenging to characterize from optical microscopy or computer simulation data due to inadequate sampling. As a result, it is common to adopt an effective one-component description of the structure that ignores the differences between particle types. Unfortunately, whether this kind of simplified description preserves or averages out information important for understanding the behavior of the fluid depends on the degree of polydispersity and can be difficult to assess, especially when the corresponding multicomponent description of the pair correlations is unavailable for comparison. Here, we present a computer simulation study that examines the implications of adopting an effective one-component structural description of a polydisperse fluid. The square-well model that we investigate mimics key aspects of the experimental behavior of suspended colloids with short-range, polymer-mediated attractions. To characterize the partial pair-correlation functions and thermodynamic excess entropy of this system, we introduce a Monte Carlo sampling strategy appropriate for fluids with a large number of pseudo-components. The data from our simulations at high particle concentrations, as well as exact theoretical results for dilute systems, show how qualitatively different trends between structural order and particle attractions emerge from the multicomponent and effective one-component treatments, even with systems characterized by moderate polydispersity. We examine consequences of these differences for excess-entropy based scalings of shear viscosity, and we discuss how use of the multicomponent treatment reveals similarities between the corresponding dynamic scaling behaviors of attractive colloids and liquid water that the effective one-component analysis does not capture.
Pairing correlations. I. Description of odd nuclei in mean-field theories
Duguet, T.; Bonche, P.; Heenen, P.-H.; Meyer, J.
2002-01-01
In order to extract informations on pairing correlations in nuclei from experimental masses, the different contributions to odd-even mass differences are investigated within the Skyrme Hartree-Fock-Bogoliubov (HFB) method. In this part of the paper, the description of odd nuclei within HFB is discussed since it is the key point for the understanding of the above mentioned contributions. To go from an even nucleus to an odd one, the advantage of a two steps process is demonstrated and its physical content is discussed. New results concerning time-reversal symmetry breaking in odd nuclei are also reported
Universal Behavior of Pair Correlations in a Strongly Interacting Fermi Gas
Kuhnle, E. D.; Hu, H.; Liu, X.-J.; Dyke, P.; Mark, M.; Drummond, P. D.; Hannaford, P.; Vale, C. J.
2010-01-01
We show that short-range pair correlations in a strongly interacting Fermi gas follow a simple universal law described by Tan's relations. This is achieved through measurements of the static structure factor which displays a universal scaling proportional to the ratio of Tan's contact to the momentum C/q. Bragg spectroscopy of ultracold 6 Li atoms from a periodic optical potential is used to measure the structure factor for a wide range of momenta and interaction strengths, providing broad confirmation of this universal law. We calibrate our Bragg spectra using the f-sum rule, which is found to improve the accuracy of the structure factor measurement.
Feynman-α correlation analysis by prompt-photon detection
Hashimoto, Kengo; Yamada, Sumasu; Hasegawa, Yasuhiro; Horiguchi, Tetsuo
1998-01-01
Two-detector Feynman-α measurements were carried out using the UTR-KINKI reactor, a light-water-moderated and graphite-reflected reactor, by detecting high-energy, prompt gamma rays. For comparison, the conventional measurements by detecting neutrons were also performed. These measurements were carried out in the subcriticality range from 0 to $1.8. The gate-time dependence of the variance-and covariance-to-mean ratios measured by gamma-ray detection were nearly identical with those obtained using standard neutron-detection techniques. Consequently, the prompt-neutron decay constants inferred from the gamma-ray correlation data agreed with those from the neutron data. Furthermore, the correlated-to-uncorrelated amplitude ratios obtained by gamma-ray detection significantly depended on the low-energy discriminator level of the single-channel analyzer. The discriminator level was determined as optimum for obtaining a maximum value of the amplitude ratio. The maximum amplitude ratio was much larger than that obtained by neutron detection. The subcriticality dependence of the decay constant obtained by gamma-ray detection was consistent with that obtained by neutron detection and followed the linear relation based on the one-point kinetic model in the vicinity of delayed critical. These experimental results suggest that the gamma-ray correlation technique can be applied to measure reactor kinetic parameters more efficiently
Deformed model Sp(4) model for studying pairing correlations in atomic nuclei
Georgieva, A I; Sviratcheva, K
2002-01-01
A fermion representation of the compact symplectic sp(4) algebra introduces a theoretical framework for describing pairing correlations in atomic nuclei. The important non-deformed and deformed subalgebras of sp sub ( sub q sub ) (4) and the corresponding reduction chains are explored for the multiple orbit problem. One realization of the u sub ( sub q sub ) (2) subalgebra is associated with the valence isospin, other reductions describe coupling between identical nucleons or proton-neutron pairs. Microscopic non-deformed and deformed Hamiltonians are expressed in terms of the generators of the sp(4) and sp sub q (4) algebras. In both cases eigenvalues of the isospin breaking Hamiltonian are fit to experimental ground state energies. The theory can be used to investigate the origin of the deformation and predict binding energies of nuclei in proton-rich regions. The q-deformation parameter changes the pairing strength and in so doing introduces a non-linear coupling into the collective degree of freedom
Abazov, V.M.; Abbott, B.; Acharya, B.S.; Adams, M.; Adams, T.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Anikeev, V.B.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D.V.; Banerjee, S.; Barberis, E.; Baringer, P.
2013-01-01
We present measurements of direct photon pair production cross sections using 8.5 fb −1 of data collected with the D0 detector at the Fermilab Tevatron pp ¯ collider. The results are presented as differential distributions of the photon pair invariant mass dσ/dM γγ , pair transverse momentum dσ/dp T γγ , azimuthal angle between the photons dσ/dΔϕ γγ , and polar scattering angle in the Collins–Soper frame dσ/d|cosθ ⁎ |. Measurements are performed for isolated photons with transverse momenta p T γ >18(17) GeV for the leading (next-to-leading) photon in p T , pseudorapidities |η γ | γγ >0.4. We present comparisons with the predictions from Monte Carlo event generators DIPHOX and RESBOS implementing QCD calculations at next-to-leading order, 2γNNLO at next-to-next-to-leading order, and SHERPA using matrix elements with higher-order real emissions matched to parton shower
Charm quark pair correlations with D{sup *}-muon tag at HERA
Gladkov, D.
2007-07-15
This thesis presents a measurement of double-tagged charm quark pair production via the process ep{yields}e' ccX{yields}e' D*{mu}X' in lepton-proton collisions at HERA, using an integrated luminosity of 114 pb{sup -1} gated by the ZEUS detector in the years 1996-2000. Since the charm quark mass provides a large enough energy scale, the perturbative Quantum Chromo-Dynamics approach can be used to calculate the cross section for charm D*-muon pairs. Using the D*-muon pair to tag the charm quark pair, the measurement is sensitive not only to properties of the leading order hard scattering process but also to the hadronisation and the parton density in the proton as well as higher order effects. Employing the angular and charge correlations between the D* meson and the muon, the fraction of charm events is extracted from the data. Cross sections for charm D*-muon pair production in the visible range of the D* transverse momentum p{sub T}{sup D*}>1.5 GeV, the D* pseudorapidity vertical stroke {eta}{sup D*} vertical stroke <1.5, the muon transverse momentum p{sub T}{sup {mu}}>1.0 GeV and the muon pseudorapidity vertical stroke {eta}{sup {mu}} vertical stroke <2.2 are measured for the inclusive, photoproduction (inelasticity 0.05
Charm quark pair correlations with D*-muon tag at HERA
Gladkov, D.
2007-07-01
This thesis presents a measurement of double-tagged charm quark pair production via the process ep→e' ccX→e' D*μX' in lepton-proton collisions at HERA, using an integrated luminosity of 114 pb -1 gated by the ZEUS detector in the years 1996-2000. Since the charm quark mass provides a large enough energy scale, the perturbative Quantum Chromo-Dynamics approach can be used to calculate the cross section for charm D*-muon pairs. Using the D*-muon pair to tag the charm quark pair, the measurement is sensitive not only to properties of the leading order hard scattering process but also to the hadronisation and the parton density in the proton as well as higher order effects. Employing the angular and charge correlations between the D* meson and the muon, the fraction of charm events is extracted from the data. Cross sections for charm D*-muon pair production in the visible range of the D* transverse momentum p T D* >1.5 GeV, the D* pseudorapidity vertical stroke η D* vertical stroke T μ >1.0 GeV and the muon pseudorapidity vertical stroke η μ vertical stroke 2 2 ) and deep inelastic scattering (y 2 >2 GeV 2 ) regimes. For the inclusive and photoproduction regimes differential cross sections in various kinematic variables of the D*-muon pair are measured as well. The differential cross sections for the inclusive regime are compared to the leading order plus parton shower MC approach, while the differential cross sections for the photoproduction regime are compared to next-to leading order calculations. The momentum fraction carried by the gluon in the proton is also measured. The possibility of extending the Global Track Trigger of the ZEUS DAQ/trigger system with a forward trigger algorithm is the technical task of this thesis. A forward trigger algorithm has been written which finds the event vertex position using STT and FMVD detector data. (orig.)
Busz, Piotr; Tomaszewski, Damian; Martinek, Jan
2017-08-01
We analyze a model of a double quantum dot Cooper pair splitter coupled to two ferromagnetic detectors and demonstrate the possibility of determination of spin correlation by current measurements. We use perturbation theory, taking account of the exchange interaction with the detectors, which leads to complex spin dynamics in the dots. This affects the measured spin and restricts the use of ferromagnetic detectors to the nonlinear current-voltage characteristic regime at the current plateau, where the relevant spin projection is conserved, in contrast to the linear current-voltage characteristic regime, in which the spin information is distorted. Moreover, we show that for separable states the spin correlation can only be determined in a limited parameter regime, much more restricted than in the case of entangled states. We propose an entanglement test based on the Bell inequality.
Bose-Einstein Correlations of $\\pi^{0}$ Pairs from Hadronic $Z^{0}$ Decays
Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija
2003-01-01
We observed Bose-Einstein correlation in pi0 pairs produced in Z0 decays using the data sample collected by the OPAL detector at LEP 1 from 1991 to 1995. Using a static Gaussian picture for the pion emitter source, we obtain the chaoticity parameter lambda = 0.55 +- 0.10 +- 0.10 and the source radius R = (0.59 +- 0.08 +- 0.05) fm. according to the JETSET and HERWIG Monte Carlo models, the Bose-Einstein correlations in our data sample largely connect pi0s originating from the decays of different hadrons. Prompt pions formed at string break-up of cluster decays only form a small fraction of the sample.
Gong, S.; Labanca, I.; Rech, I.; Ghioni, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2014-10-15
Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.
Gong, S.; Labanca, I.; Rech, I.; Ghioni, M.
2014-01-01
Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds
Yuan, Hao; Zhang, Qin; Hong, Liang; Yin, Wen-jie; Xu, Dong
2014-08-01
We present a novel scheme for deterministic secure quantum communication (DSQC) over collective rotating noisy channel. Four special two-qubit states are found can constitute a noise-free subspaces, and so are utilized as quantum information carriers. In this scheme, the information carriers transmite over the quantum channel only one time, which can effectively reduce the influence of other noise existing in quantum channel. The information receiver need only perform two single-photon collective measurements to decode the secret messages, which can make the present scheme more convenient in practical application. It will be showed that our scheme has a relatively high information capacity and intrisic efficiency. Foremostly, the decoy photon pair checking technique and the order rearrangement of photon pairs technique guarantee that the present scheme is unconditionally secure.
Off-shell pairing correlations from meson-exchange theory of nuclear forces
Sedrakian, Armen
2003-01-01
We develop a model of off-mass-shell pairing correlations in nuclear systems, which is based on the meson-exchange picture of nuclear interactions. The temporal retardations in the model are generated by the Fock-exchange diagrams. The kernel of the complex gap equation for baryons is related to the in-medium spectral function of mesons, which is evaluated nonperturbatively in the random phase approximation. The model is applied to the low-density neutron matter in neutron star crusts by separating the interaction into a long-range one-pion-exchange component and a short-range component parametrized in terms of Landau Fermi liquid parameters. The resulting Eliashberg-type coupled nonlinear integral equations are solved by an iterative procedure. We find that the self-energies extend to off-shell energies of the order of several tens of MeV. At low energies the damping of the neutron pair correlations due to the coupling to the pionic modes is small, but becomes increasingly important as the energy is increased. We discuss an improved quasiclassical approximation under which the numerical solutions are obtained
Angular correlation of annihilation photons in ice single crystals
Mogensen, O. E.; Kvajic, G.; Eldrup, Morten Mostgaard
1971-01-01
-lattice vectors g⃗ on the direction perpendicular to the slits and the sample surface. The relative area of the central plus the side peaks was (15.2 ± 0.4)% for all curves. All the peaks are interpreted as due to parapositronium annihilation. The side peaks are explained as evidence for the positronium center......Linear-slit angular-correlation curves were obtained at - 148 °C for the [0001], [10¯10], and [11¯20] directions in single crystals of ice. Besides the narrow central peak, pronounced narrow side peaks were also observed. They occurred at angles θ=2πℏgz/mc, where gz is the projection of reciprocal...
Mendez, Derek; Watkins, Herschel; Qiao, Shenglan; Raines, Kevin S.; Lane, Thomas J.
2016-01-01
During X-ray exposure of a molecular solution, photons scattered from the same molecule are correlated. If molecular motion is insignificant during exposure, then differences in momentum transfer between correlated photons are direct measurements of the molecular structure. In conventional small- and wide-angle solution scattering, photon correlations are ignored. This report presents advances in a new biomolecular structural analysis technique, correlated X-ray scattering (CXS), which uses angular intensity correlations to recover hidden structural details from molecules in solution. Due to its intense rapid pulses, an X-ray free electron laser (XFEL) is an excellent tool for CXS experiments. A protocol is outlined for analysis of a CXS data set comprising a total of half a million X-ray exposures of solutions of small gold nanoparticles recorded at the Spring-8 Ångström Compact XFEL facility (SACLA). From the scattered intensities and their correlations, two populations of nanoparticle domains within the solution are distinguished: small twinned, and large probably non-twinned domains. Finally, it is shown analytically how, in a solution measurement, twinning information is only accessible via intensity correlations, demonstrating how CXS reveals atomic-level information from a disordered solution of like molecules.
Osuch, S.; Popkiewicz, M.; Szeflinski, Z.; Wilhelmi, Z. [Warsaw Univ., Inst. of Experimental Physics, Warsaw (Poland)
1995-12-31
The Bell`s inequality has been experimentally tested using angular correlation of Compton-scattered photons from annihilation of positrons emitted from {sup 22}Na source. The result shows a better agreement with the quantum mechanics predictions rather than with the Bell`s inequality. 7 refs, 5 figs, 1 tab.
Osuch, S.; Popkiewicz, M.; Szeflinski, Z.; Wilhelmi, Z.
1995-01-01
The Bell's inequality has been experimentally tested using angular correlation of Compton-scattered photons from annihilation of positrons emitted from 22 Na source. The result shows a better agreement with the quantum mechanics predictions rather than with the Bell's inequality
Plakida, N. M.; Anton, L.; Adam, S. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO); Adam, Gh. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO)
2001-01-01
A microscopical theory of superconductivity in the two-band singlet-hole Hubbard model, in the strong coupling limit in a paramagnetic state, is developed. The model Hamiltonian is obtained by projecting the p-d model to an asymmetric Hubbard model with the lower Hubbard subband occupied by one-hole Cu d-like states and the upper Hubbard subband occupied by two-hole p-d singlet states. The model requires two microscopical parameters only, the p-d hybridization parameter t and the charge-transfer gap Δ. It was previously shown to secure an appropriate description of the normal state properties of the high -T c cuprates. To treat rigorously the strong correlations, the Hubbard operator technique within the projection method for the Green function is used. The Dyson equation is derived. In the molecular field approximation, d-wave superconducting pairing of conventional hole (electron) pairs in one Hubbard subband is found, which is mediated by the exchange interaction given by the interband hopping, J ij = 4 (t ij ) 2 / Δ. The normal and anomalous components of the self-energy matrix are calculated in the self-consistent Born approximation for the electron-spin-fluctuation scattering mediated by kinematic interaction of the second order of the intraband hopping. The derived numerical and analytical solutions predict the occurrence of singlet d x 2 -y 2 -wave pairing both in the d-hole and singlet Hubbard subbands. The gap functions and T c are calculated for different hole concentrations. The exchange interaction is shown to be the most important pairing interaction in the Hubbard model in the strong correlation limit, while the spin-fluctuation coupling results only in a moderate enhancement of T c . The smaller weight of the latter comes from two specific features: its vanishing inside the Brillouin zone (BZ) along the lines, |k x | + |k y |=π pointing towards the hot spots and the existence of a small energy shell within which the pairing is effective. By
Bose-Einstein correlations between hard photons produced in heavy ions collisions
Marques Moreno, F.M.
1994-06-01
Heavy-ion collisions offer the unique possibility to create in the laboratory nuclear matter far from equilibrium. The electromagnetic probe constituted by hard photons and the Bose-Einstein correlations were used to study the properties of such a matter (size, density, temperature...). It is shown how the formalism has evolved from Young experiments to heavy-ion collisions experiments. The experiments performed with the photon multidetector TAPS at Ganil are described. The systems studied are: 86 KR + nat Ni at 60.0 A.MeV, and 181 Ta + 197 Au at 39.5 A.MeV. Results are presented concerning the production of gamma, pi 0 , e +- and γγ correlation. The results are interpreted with the help of static and dynamic calculations describing hard photon production in heavy ion collisions. For the first time in Nuclear Physics, the existence of the Bose-Einstein effect for photons in the range of gamma is demonstrated, and the existence of two different photon sources is postulated, reflecting the density oscillations taking place in the nuclear matter created in heavy-ion collisions. (from author) 55 figs., 22 tabs., 76 refs
Current cross-correlations in double quantum dot Cooper pair splitter
Wrzesniewski, Kacper; Trocha, Piotr; Weymann, Ireneusz [Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan (Poland)
2016-07-01
We investigate theoretically transport properties of a quantum dot (QD) system working as a Cooper pair splitter. The device is coupled to one superconducting and two ferromagnetic leads. Presented results are calculated using real-time diagrammatic technique in the sequential tunneling approximation with respect to the coupling to ferromagnetic leads. The transport properties are evaluated within the superconductor subgap regime taking into account Andreev reflection processes solely. We focus on the analysis of current and current cross-correlations, both in linear and nonlinear responses. Current cross-correlations give additional information about dynamics of transport processes. We identify both positive and negative signs of current cross-correlations and discuss mechanisms leading to those results. Strong negative cross-correlations are found when the occupation number of QD system becomes degenerate and near the emergence of the triplet blockade, while positive ones occur in the most range where current flows due to crossed Andreev processes. Finally, we consider ferromagnetic leads polarization and temperature influences on aforementioned features.
Search for high mass photon pairs in e +e - → f overlinefγγ ( f= e, μ, τ, v, q) at LEP
Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Maggi, M.; Markou, C.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Veenhof, R.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Paplexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jacobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; St. Denis, R.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Gao, Y.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Sharma, V.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Wu, Sau Lan; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration
1993-07-01
The result of a search for high mass photon pairs from the processes e +e - → f overlinefγγ (f = e, μ, τ, v and q) with the ALEPH detector is reported. The result for f = e, μ and τ is to be compared with the observation of 4 events by the L3 Collaboration with invariant masses, Mγγ, of the two photons near 60 GeV. From a data sample approximately twice as large taken from 1990 to 1992, 6 events are found with Mγγ distributed between 50 GeV and 72 GeV, while 4.9 events are expected from a QED calculation. There is no evidence for a mass peak; only one event ( μ+μ-γγ) at Mγγ = 59.4 ± 0.2 GeV is compatible with the L3 observation. In addition, for Mγγ > 50 GeV, no event is found for e +e - → q overlineqγγ and only one event is found consistent with e +e - → v overlinevγγ ; this event has Mγγ = 58.5 ± 1.9 GeV. High mass photon pair events have also been searched for in γγ collisions. This allows one to set an upper limit of 50 MeV for the width of an assumed resonance decaying to photon pairs.
Correlation-induced suppression of decoherence in capacitively coupled Cooper-pair boxes
Hu, Xuedong; You, J. Q.; Nori, Franco
2005-03-01
Charge fluctuations from gate bias and background traps severely limit the performance of a charge qubit in a Cooper-pair box (CPB). Here we discuss an encoding approachootnotetextJ.Q. You, X.Hu, and F. Nori, cond-mat/0407423. to control the decoherence effects of these charge fluctuations using two strongly capacitively coupled CPBs. This coupled-box system has a low-decoherence subspace of two states, for which we calculate the dephasing and relaxation rates using a master equation approach. Our results show that the inter-box Coulomb correlation can significantly suppress decoherence of this two-level system by reducing the strength of the system-environment interaction, making it a promising candidate as a logical qubit, encoded using two CPBs.
Pair correlation function decay in models of simple fluids that contain dispersion interactions.
Evans, R; Henderson, J R
2009-11-25
We investigate the intermediate-and longest-range decay of the total pair correlation function h(r) in model fluids where the inter-particle potential decays as -r(-6), as is appropriate to real fluids in which dispersion forces govern the attraction between particles. It is well-known that such interactions give rise to a term in q(3) in the expansion of [Formula: see text], the Fourier transform of the direct correlation function. Here we show that the presence of the r(-6) tail changes significantly the analytic structure of [Formula: see text] from that found in models where the inter-particle potential is short ranged. In particular the pure imaginary pole at q = iα(0), which generates monotonic-exponential decay of rh(r) in the short-ranged case, is replaced by a complex (pseudo-exponential) pole at q = iα(0)+α(1) whose real part α(1) is negative and generally very small in magnitude. Near the critical point α(1)∼-α(0)(2) and we show how classical Ornstein-Zernike behaviour of the pair correlation function is recovered on approaching the mean-field critical point. Explicit calculations, based on the random phase approximation, enable us to demonstrate the accuracy of asymptotic formulae for h(r) in all regions of the phase diagram and to determine a pseudo-Fisher-Widom (pFW) line. On the high density side of this line, intermediate-range decay of rh(r) is exponentially damped-oscillatory and the ultimate long-range decay is power-law, proportional to r(-6), whereas on the low density side this damped-oscillatory decay is sub-dominant to both monotonic-exponential and power-law decay. Earlier analyses did not identify the pseudo-exponential pole and therefore the existence of the pFW line. Our results enable us to write down the generic wetting potential for a 'real' fluid exhibiting both short-ranged and dispersion interactions. The monotonic-exponential decay of correlations associated with the pseudo-exponential pole introduces additional terms into
A study of pile-up in integrated time-correlated single photon counting systems.
Arlt, Jochen; Tyndall, David; Rae, Bruce R; Li, David D-U; Richardson, Justin A; Henderson, Robert K
2013-10-01
Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.
Chatrchyan, S. [Yerevan Physics Institute (Armenia); et al.,
2012-01-01
The integrated and differential cross sections for the production of pairs of isolated photons is measured in proton-proton collisions at a centre-of-mass energy of 7 TeV with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 36 inverse picobarns is analysed. A next-to-leading-order perturbative QCD calculation is compared to the measurements. A discrepancy is observed for regions of the phase space where the two photons have an azimuthal angle difference, $\\Delta(\\phi)$, less than approximately 2.8.
Chiao, Raymond Y.; Kwiat, Paul G.; Steinberg, Aephraim M.
1992-01-01
The energy-time uncertainty principle is on a different footing than the momentum position uncertainty principle: in contrast to position, time is a c-number parameter, and not an operator. As Aharonov and Bohm have pointed out, this leads to different interpretations of the two uncertainty principles. In particular, one must distinguish between an inner and an outer time in the definition of the spread in time, delta t. It is the inner time which enters the energy-time uncertainty principle. We have checked this by means of a correlated two-photon light source in which the individual energies of the two photons are broad in spectra, but in which their sum is sharp. In other words, the pair of photons is in an entangled state of energy. By passing one member of the photon pair through a filter with width delta E, it is observed that the other member's wave packet collapses upon coincidence detection to a duration delta t, such that delta E(delta t) is approximately equal to planks constant/2 pi, where this duration delta t is an inner time, in the sense of Aharonov and Bohm. We have measured delta t by means of a Michelson interferometer by monitoring the visibility of the fringes seen in coincidence detection. This is a nonlocal effect, in the sense that the two photons are far away from each other when the collapse occurs. We have excluded classical-wave explanations of this effect by means of triple coincidence measurements in conjunction with a beam splitter which follows the Michelson interferometer. Since Bell's inequalities are known to be violated, we believe that it is also incorrect to interpret this experimental outcome as if energy were a local hidden variable, i.e., as if each photon, viewed as a particle, possessed some definite but unknown energy before its detection.
Correlated spins of complementary fragment pairs in the spontaneous fission of 252Cf
Smith, A. G.; Simpson, G. S.; Billowes, J.; Dagnall, P. J.; Durell, J. L.; Freeman, S. J.; Leddy, M.; Phillips, W. R.; Roach, A. A.; Smith, J. F.
1999-01-01
A study of the γ-ray decay of low-lying excited states in fragments produced in the spontaneous fission of 252 Cf has revealed a significant correlation between the angles of emission of the 2 1 + →0 1 + transitions of complementary fragment pairs. Calculations of the amount of dealignment that is needed to reproduce the measured a 2 values, and a comparison with the results of previous fragment-γ angular distribution measurements, suggests that at scission there may be significant population of m≠0 substates associated with the projection of the fragment spin vector on the fission axis. Fragments from the spontaneous fission of 248 Cm emit 2 1 + →0 1 + γ rays that show markedly reduced interfragment correlations, suggesting that either a larger role is played by the relative angular momentum of the fragments, or that the dealignment introduced by the neutron emission and statistical γ decay to the 2 1 + state is larger in 248 Cm than 252 Cf fission. (c) 1999 The American Physical Society
Boehm, H.M.; Conti, S.; Tosi, M.P.
1995-11-01
Electron energy loss experiments have shown a rapid softening of the bulk plasmon dispersion across the series of the alkali metals. Motivated by these observations, we reconsider the evaluation of the dynamic, long-wavelength exchange-correlation potential f xc (ω) in the electron fluid, which is of interest for applications in time-dependent density functional theory. The value of Re[f xc (ω pl )] at the plasma frequency ω pl determines the exchange-correlation contribution to the leading plasmon dispersion coefficient in the homogeneous electron fluid. Whereas an interpolation scheme originally proposed by Gross and Kohn assumes a monotonic increase of Re[f xc (ω) - f xc (0)] across the plasma frequency, we examine the possibility of strongly non-monotonic behaviour arising from a resonance process between plasmons and two-pair excitations. This process is evaluated with the help of sum rules and selfconsistency requirements with a single-pole approximation of the dielectric function. The cases of a fermion plasma and of a boson plasma are treated in parallel and the reliability of the results for the fermion plasma at low coupling is tested by calculations within a random phase approximation for the dielectric function. In all cases it is found that the resonance process accumulates oscillator strength in the neighbourhood of 2ω pl , thus decreasing the value of Re[f xc (ω pl )] below the static value f xc (0) fixed by the compressibility sum rule. Although this lowering does not suffice to account by itself for the measured plasmon dispersion coefficient in the low-density alkali metals, our results provide useful input for combined band-structure and exchange-correlation calculations. (author). 40 refs, 9 figs, 2 tabs
Attractive electron correlation in wide band gap semiconductors by electron-photon interaction
Takeda, Hiroyuki; Yoshino, Katsumi
2004-01-01
We theoretically demonstrate attractive electron correlation in wide band gap semiconductors by electron-photon interaction. At low temperature, wavevectors of electromagnetic waves absorbed in wide band gap semiconductors cannot be neglected for wavevectors of electron waves; that is, electromagnetic waves affect the movements of electrons. In particular, attractive interaction occurs between two electrons when one electron changes from a valence band to a conduction band and the other electron changes from a conduction band to a valence band
Shumanova M.V.
2015-03-01
Full Text Available The process fish salting has been studied by the method of photon correlation spectroscopy; the distribution of salt concentration in the solution and herring flesh with skin has been found, diffusion coefficients and salt concentrations used for creating a mathematical model of the salting technology have been worked out; the possibility of determination by this method the coefficient of dynamic viscosity of solutions and different media (minced meat etc. has been considered
Exploring the effects of photon correlations from thermal sources on bacterial photosynthesis
Pedro D. Manrique
Full Text Available Thermal light sources can produce photons with strong spatial correlations. We study the role that these correlations might potentially play in bacterial photosynthesis. Our findings show a relationship between the transversal distance between consecutive absorptions and the efficiency of the photosynthetic process. Furthermore, membranes where the clustering of core complexes (so-called RC-LH1 is high, display a range where the organism profits maximally from the spatial correlation of the incoming light. By contrast, no maximum is found for membranes with low core-core clustering. We employ a detailed membrane model with state-of-the-art empirical inputs. Our results suggest that the organization of the membrane’s antenna complexes may be well-suited to the spatial correlations present in an natural light source. Future experiments will be needed to test this prediction. Keywords: Photo-bunching, Spatial correlation, Photosynthesis, Purple bacteria
Armbruster, Raymond
1950-07-01
In a first part, the author presents a brief theory of angular correlations of internal conversion pairs and monopolar pairs, and indicates the complete formulations which are used to compute all the angular correlations corresponding to the performed experiments. In a second part, he describes a beta spectrometer, outlines factors which govern the energy resolving power, and the peculiarity of summation of two pulses proportional to the energy of the electron and positron which build up an internal pair. In a third part, the author reports experiments of angular correlations, indicates the shapes of monopolar spectra for different angles between electron and positron emission directions, determines the multipolarity of gamma radiations from the first excited levels of {sup 13}C and {sup 12}C, and gives the angular moments, parity and isobaric spin of two excited levels of the {sup 12}C [French] Dans la premiere partie de notre travail, nous exposons une theorie sommaire des correlations angulaires des paires de conversion interne et des paires monopolaires. A la fin de cette premiere partie sont indiquees les formules completes, qui nous ont servi a calculer pratiquement toutes les correlations angulaires correspondant a nos experiences. Dans la deuxieme partie, nous decrivons un spectrometre beta a scintillation. Nous insistons surtout sur les elements qui determinent le pouvoir de resolution en energie et sur la particularite de sommation de deux impulsions proportionnelles a l'energie de l'electron et du positron formant une paire interne. Dans la troisieme partie, nous exposons nos experiences de correlations angulaires. Nous avons repris une mesure precise de la correlation angulaire des paires monopolaires provenant du niveau 6,05 Mev de l'Oxygene 16. Il nous a ete egalement possible de donner l'allure des spectres monopolaires pour differents angles formes par les directions d'emission de l'electron et du positron. Nous avons determine par la methode des
Mueller, C.; Gruen, N.; Voitkiv, A.B.
2004-01-01
We study the nonlinear process of e - e + pair creation by a nucleus which moves at a relativistic energy in the laboratory frame and collides with an intense x-ray laser beam. The collision system under consideration is chosen in such a way that the simultaneous absorption of at least two photons from the laser wave is required in order to exceed the energy threshold of the reaction. We calculate total and differential rates for both free-free and bound-free pair production. In the case of free-free pair creation we demonstrate the effect of the laser polarization on the spectra of the produced particles, and we show that at very high intensities the total rate exhibits features analogous to those well known from above-threshold ionization rates for atoms. In the case of bound-free pair creation a singularity is found in the laboratory frame angular distribution of the produced positron. This singularity represents a distinct characteristic of the bound-free pair production and allows one to separate this process from free-free pair creation even without detecting a bound state of the captured electron. For both types of pair creation we consider the dependences of the total rates on the collision parameters, give the corresponding scaling laws, and discuss the possibility to observe these nonlinear processes in a future experiment
Koerner, J.G. [Johannes Gutenberg Univ., Mainz (Germany). Inst. fuer Phys.; Merebashvili, Z. [Tbilisi State Univ. (Georgia). Inst. of High Energy Physics and Informatization; Rogal, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2006-08-15
We calculate the so-called loop-by-loop contributions to the next-to-next-to-leading order O({alpha}{sup 2}{alpha}{sup 2}{sub s}) radiative QCD corrections for the production of heavy quark pairs in the collisions of unpolarized on-shell photons. In particular, we present analytical results for the squared matrix elements that correspond to the product of the one-loop amplitudes. All results of the perturbative calculation are given in the dimensional regularization scheme. These results represent the Abelian part of the corresponding gluon-induced next-to-next-to-leading order cross section for heavy quark pair hadroproduction. (orig.)
Koerner, J.G.
2006-11-01
We calculate the so-called loop-by-loop contributions to the next-to-next-to-leading order O(α 2 α 2 s ) radiative QCD corrections for the production of heavy quark pairs in the collisions of unpolarized on-shell photons. In particular, we present analytical results for the squared matrix elements that correspond to the product of the one-loop amplitudes. All results of the perturbative calculation are given in the dimensional regularization scheme. These results represent the Abelian part of the corresponding gluon-induced next-to-next-to-leading order cross section for heavy quark pair hadroproduction. (orig.)
Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation
Ferretti, Sara; Andreani, Lucio Claudio; Tuereci, Hakan E.; Gerace, Dario
2010-01-01
We calculate the normalized second-order correlation function for a system of two tunnel-coupled photonic resonators, each one exhibiting a single-photon nonlinearity of the Kerr type. We employ a full quantum formulation: The master equation for the model, which takes into account both a coherent continuous drive and radiative as well as nonradiative dissipation channels, is solved analytically in steady state through a perturbative approach, and the results are compared to exact numerical simulations. The degree of second-order coherence displays values between 0 and 1, and divides the diagram identified by the two energy scales of the system - the tunneling and the nonlinear Kerr interaction - into two distinct regions separated by a crossover. When the tunneling term dominates over the nonlinear one, the system state is delocalized over both cavities, and the emitted light is coherent. In the opposite limit, photon blockade sets in, and the system shows an insulatorlike state with photons locked on each cavity, identified by antibunching of emitted light.
Perrin, A
2007-11-15
In this thesis, we report on the observation of pairs of correlated atoms produced in the collision of two Bose-Einstein condensates of metastable helium. Three laser beams perform a Raman transfer which extracts the condensate from the magnetic trap and separates it into two parts with opposite mean momenta. While the condensates propagate, elastic scattering of pairs of atoms occurs, whose momenta satisfy energy and momentum conservation laws. Metastable helium atoms large internal energy allows the use of a position-sensitive, single-atom detector which permits a three-dimensional reconstruction of the scattered atoms'momenta. The statistics of these momenta show correlations for atoms with opposite momenta. The measured correlation volume can be understood from the uncertainty-limited momentum spread of the colliding condensates. This interpretation is confirmed by the observation of the momentum correlation function for two atoms scattered in the same direction. This latter effect is a manifestation of the Hanbury Brown-Twiss effect for indistinguishable bosons. Such a correlated-atom-pair source is a first step towards experiments in which one would like to confirm the pairs'entanglement. (author)
Perrin, A
2007-11-15
In this thesis, we report on the observation of pairs of correlated atoms produced in the collision of two Bose-Einstein condensates of metastable helium. Three laser beams perform a Raman transfer which extracts the condensate from the magnetic trap and separates it into two parts with opposite mean momenta. While the condensates propagate, elastic scattering of pairs of atoms occurs, whose momenta satisfy energy and momentum conservation laws. Metastable helium atoms large internal energy allows the use of a position-sensitive, single-atom detector which permits a three-dimensional reconstruction of the scattered atoms'momenta. The statistics of these momenta show correlations for atoms with opposite momenta. The measured correlation volume can be understood from the uncertainty-limited momentum spread of the colliding condensates. This interpretation is confirmed by the observation of the momentum correlation function for two atoms scattered in the same direction. This latter effect is a manifestation of the Hanbury Brown-Twiss effect for indistinguishable bosons. Such a correlated-atom-pair source is a first step towards experiments in which one would like to confirm the pairs'entanglement. (author)
Mullins, S.M.; Schmeing, N.C.; Flibotte, S.; Hackman, G.; Rodriguez, J.L.; Waddington, J.C.; Yao, L.; Andrews, H.R.; Galindo-Uribarri, A.; Janzen, V.P.; Radford, D.C.; Ward, D.; DeGraaf, J.; Drake, T.E.; Pilotte, S.; Paul, E.S.
1994-01-01
A superdeformed band has been observed in the N=80 nucleus 145 Tb which was produced with the reactions 112 Sn( 37 Cl,2p2n) and 118 Sn( 31 P,4n) at bombarding energies of 187 and 160 MeV, respectively. Since superdeformed bands also exist in the three lighter N=80 isotones 142 Sm, 143 Eu, and 144 Gd, it is now possible to understand the valence-proton configurations of these bands in a systematic way. The T (2) dynamic moment of inertia in 145 Tb shows no evidence for the N = 6 quasiproton crossing that is observed in 144 Gd. Comparison with cranked Woods-Saxon and total Routhian surface calculations suggests that the proton configuration in 145 Tb is 6 1 direct-product[404] 9/2 + 2 in which the quasiproton crossing is blocked. Furthermore, like 143 Eu and 142 Sm, there is no evidence in the T (2) for the N=6 quasineutron crossing predicted by the calculations. This may indicate that static neutron pairing correlations are quenched at the N=80 superdeformed shell closure
Long-Lived Correlated Triplet Pairs in a π-Stacked Crystalline Pentacene Derivative.
Folie, Brendan D; Haber, Jonah B; Refaely-Abramson, Sivan; Neaton, Jeffrey B; Ginsberg, Naomi S
2018-02-14
Singlet fission is the spin-conserving process by which a singlet exciton splits into two triplet excitons. Singlet fission occurs via a correlated triplet pair intermediate, but direct evidence of this state has been scant, and in films of TIPS-pentacene, a small molecule organic semiconductor, even the rate of fission has been unclear. We use polarization-resolved transient absorption microscopy on individual crystalline domains of TIPS-pentacene to establish the fission rate and demonstrate that the initially created triplets remain bound for a surprisingly long time, hundreds of picoseconds, before separating. Furthermore, using a broadband probe, we show that it is possible to determine absorbance spectra of individual excited species in a crystalline solid. We find that triplet interactions perturb the absorbance, and provide evidence that triplet interaction and binding could be caused by the π-stacked geometry. Elucidating the relationship between the lattice structure and the electronic structure and dynamics has important implications for the creation of photovoltaic devices that aim to boost efficiency via singlet fission.
Measurement of transparency ratios for protons from short-range correlated pairs
Hen, O.; Hakobyan, H.; Shneor, R.; Piasetzky, E.; Weinstein, L. B.; Brooks, W. K.; May-Tal Beck, S.; Gilad, S.; Korover, I.; Beck, A.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anefalos Pereira, S.; Arrington, J. R.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Harrison, N.; Heddle, D.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Mustapha, B.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vlassov, A.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zheng, X.; Zonta, I.
2013-05-01
Nuclear transparency, Tp (A), is a measure of the average probability for a struck proton to escape the nucleus without significant re-interaction. Previously, nuclear transparencies were extracted for quasi-elastic A (e ,e‧ p) knockout of protons with momentum below the Fermi momentum, where the spectral functions are well known. In this Letter we extract a novel observable, the transparency ratio, Tp (A) /Tp(12 C), for knockout of high-missing-momentum protons from the breakup of short-range correlated pairs (2N-SRC) in Al, Fe and Pb nuclei relative to C. The ratios were measured at momentum transfer Q2 ⩾ 1.5(GeV /c) 2 and xB ⩾ 1.2 where the reaction is expected to be dominated by electron scattering from 2N-SRC. The transparency ratios of the knocked-out protons coming from 2N-SRC breakup are 20-30% lower than those of previous results for low missing momentum. They agree with Glauber calculations and agree with renormalization of the previously published transparencies as proposed by recent theoretical investigations. The new transparencies scale as A - 1 / 3, which is consistent with dominance of scattering from nucleons at the nuclear surface.
Exploring the effects of photon correlations from thermal sources on bacterial photosynthesis
Manrique, Pedro D.; Caycedo-Soler, Felipe; De Mendoza, Adriana; Rodríguez, Ferney; Quiroga, Luis; Johnson, Neil F.
Thermal light sources can produce photons with strong spatial correlations. We study the role that these correlations might potentially play in bacterial photosynthesis. Our findings show a relationship between the transversal distance between consecutive absorptions and the efficiency of the photosynthetic process. Furthermore, membranes where the clustering of core complexes (so-called RC-LH1) is high, display a range where the organism profits maximally from the spatial correlation of the incoming light. By contrast, no maximum is found for membranes with low core-core clustering. We employ a detailed membrane model with state-of-the-art empirical inputs. Our results suggest that the organization of the membrane's antenna complexes may be well-suited to the spatial correlations present in an natural light source. Future experiments will be needed to test this prediction.
Effects of pairing correlation on low-lying quasi-particle resonance in neutron drip-line nuclei
Kobayashi, Yoshihiko; Matsuo, Masayuki
2015-01-01
We discuss effects of pairing correlation on quasi-particle resonance. We analyze in detail how the width of low-lying quasi-particle resonance is governed by the pairing correlation in the neutron drip-line nuclei. We consider the 46Si + n system to discuss low-lying p wave quasi-particle resonance. Solving the Hartree-Fock-Bogoliubov equation in the coordinate space with scattering boundary condition, we calculate the phase shift, the elastic cross section, the resonance width and the reson...
Measurement system of correlation functions of microwave single photon source in real time
Korenkov, A.; Dmitriev, A.; Astafiev, O.
2018-02-01
Several quantum setups, such as quantum key distribution networks[1] and quantum simulators (e.g. boson sampling), by their design rely on single photon sources (SPSs). These quantum setups were demonstrated to operate in optical frequency domain. However, following the steady advances in circuit quantum electrodynamics, a proposal has been made recently[2] to demonstrate boson sampling with microwave photons. This in turn requires the development of reliable microwave SPS. It's one of the most important characteristics are the first-order and the second-order correlation functions g1 and g2. The measurement technique of g1 and g2 is significantly different from that in the optical domain [3],[4] because of the current unavailability of microwave single-photon detectors. In particular, due to high levels of noise present in the system a substantial amount of statistics in needed to be acquired. This work presents a platform for measurement of g1 and g2 that processes the incoming data in real time, maximizing the efficiency of data acquisition. The use of field-programmable gate array (FPGA) electronics, common in similar experiments[3] but complex in programming, is avoided; instead, the calculations are performed on a standard desktop computer. The platform is used to perform the measurements of the first-order and the second-order correlation functions of the microwave SPS.
Electron-photon angular correlation measurements for the 2 1P state of helium
Slevin, J.; Porter, H.Q.; Eminyan, M.; Defrance, A.; Vassilev, G.
1980-01-01
Electron-photon angular correlations have been measured by detecting in delayed coincidence, electrons inelastically scattered from helium and photons emitted in decays from the 2 1 P state at incident electron energies of 60 and 80 eV. Analysis of the data yields values for the ratio lambda of the differential cross sections for magnetic sublevel excitations and the phase difference X between the corresponding probability amplitudes. The measurements extend over the angular range 10-120 0 of electron scattering angles. The present data are in good agreement with the experimental results of Hollywood et al, (J. Phys. B.; 12: 819 (1979)), and show a marked discrepancy at large scattering angles with the recent data of Steph and Golde. (Phys. Rev.; A in press (1980)). The experimental results are compared with some recent theories. (author)
Perrin, A.
2007-11-01
In this thesis, we report on the observation of pairs of correlated atoms produced in the collision of two Bose-Einstein condensates of metastable helium. Three laser beams perform a Raman transfer which extracts the condensate from the magnetic trap and separates it into two parts with opposite mean momenta. While the condensates propagate, elastic scattering of pairs of atoms occurs, whose momenta satisfy energy and momentum conservation laws. Metastable helium atoms large internal energy allows the use of a position-sensitive, single-atom detector which permits a three-dimensional reconstruction of the scattered atoms'momenta. The statistics of these momenta show correlations for atoms with opposite momenta. The measured correlation volume can be understood from the uncertainty-limited momentum spread of the colliding condensates. This interpretation is confirmed by the observation of the momentum correlation function for two atoms scattered in the same direction. This latter effect is a manifestation of the Hanbury Brown-Twiss effect for indistinguishable bosons. Such a correlated-atom-pair source is a first step towards experiments in which one would like to confirm the pairs'entanglement. (author)
Crespillo, M.L., E-mail: mcrespil@utk.edu [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain); Department of Materials Science & Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Agulló-López, F., E-mail: fal@uam.es [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain); Zucchiatti, A. [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain)
2017-03-01
Highlights: • Extensive survey formation energies Frenkel pairs and electronic stopping thresholds. • Correlation: track formation thresholds and the energies for Frenkel pair formation. • Formation energies Frenkel pairs discussed in relation to the cumulative mechanisms. • Amorphous track formation mechanisms: defect accumulation models versus melting. • Advantages cumulative models to deal with new hot topics: nuclear-electronic synergy. - Abstract: An extensive survey for the formation energies of Frenkel pairs, as representative candidates for radiation-induced point defects, is presented and discussed in relation to the cumulative mechanisms (CM) of track formation in dielectric materials under swift heavy ion (SHI) irradiation. These mechanisms rely on the generation and accumulation of point defects during irradiation followed by collapse of the lattice once a threshold defect concentration is reached. The physical basis of those approaches has been discussed by Fecht as a defect-assisted transition to an amorphous phase. Although a first quantitative analysis of the CM model was previously performed for LiNbO{sub 3} crystals, we have, here, adopted a broader phenomenological approach. It explores the correlation between track formation thresholds and the energies for Frenkel pair formation for a broad range of materials. It is concluded that the threshold stopping powers can be roughly scaled with the energies required to generate a critical Frenkel pair concentration in the order of a few percent of the total atomic content. Finally, a comparison with the predictions of the thermal spike model is discussed within the analytical Szenes approximation.
Two-photon interference of polarization-entangled photons in a Franson interferometer.
Kim, Heonoh; Lee, Sang Min; Kwon, Osung; Moon, Han Seb
2017-07-18
We present two-photon interference experiments with polarization-entangled photon pairs in a polarization-based Franson-type interferometer. Although the two photons do not meet at a common beamsplitter, a phase-insensitive Hong-Ou-Mandel type two-photon interference peak and dip fringes are observed, resulting from the two-photon interference effect between two indistinguishable two-photon probability amplitudes leading to a coincidence detection. A spatial quantum beating fringe is also measured for nondegenerate photon pairs in the same interferometer, although the two-photon states have no frequency entanglement. When unentangled polarization-correlated photons are used as an input state, the polarization entanglement is successfully recovered through the interferometer via delayed compensation.
A study of parton fragmentation using photon-hadron correlation with the ALICE experiment at LHC
Arbor, N.
2013-01-01
The strong interaction theory, Quantum Chromodynamic (QCD), predicts a new phase of nuclear matter at very high temperature and/or very high density. This state is composed of deconfined quarks and gluons known as the quark-gluon plasma (QGP). The measurement of its composition and properties is a challenge for the nuclear physics of the 21. century and should lead to a better understanding of the fundamental symmetries and mechanisms related to the quarks confinement inside hadrons and the strong interaction generally.The Large Hadron Collider (LHC) accelerator at CERN (European Organization for Nuclear Research) allows to reach the thermodynamic conditions required to create the quark-gluon plasma using ultra-relativistic heavy ion collisions (Pb). The ALICE experiment (A Large Ion Collider Experiment) allows to access several probes to characterize the QGP through particles reconstruction and. Among these probes, high energy parton energy loss is used to access medium characteristics such as density or temperature. Parton energy loss is estimated from the modification of the energy distribution of hadrons produced by fragmentation.This thesis is dedicated to the photon-hadron correlations analysis in order to study the modification of the parton fragmentation due to the quark-gluon plasma. First part of this thesis is devoted to the characterization of the electromagnetic calorimeter (EMCal), the central detector for energy measurement and photon identification. The second part is dedicated to the photon-hadron correlation measurement, for the 7 TeV proton-proton collisions and 2.76 TeV Lead-Lead collisions. An important work has been done to improve the prompt photon identification, one of the key point of this analysis. (author) [fr
A study of parton fragmentation using photon-hadron correlation with the ALICE experiment at LHC
Arbor, Nicolas
2013-01-01
The strong interaction theory, Quantum Chromodynamic (QCD), predicts a new phase of nuclear matter at very high temperature and/or very high density. This state is composed of deconfined quarks and gluons known as the quark-gluon plasma (QGP). The measurement of its composition and properties is a challenge for the nuclear physics of the 21. century and should lead to a better understanding of the fundamental symmetries and mechanisms related to the quarks confinement inside hadrons and the strong interaction generally. The Large Hadron Collider (LHC) accelerator at CERN (European Organization for Nuclear Research) allows to reach the thermodynamic conditions required to create the quark-gluon plasma using ultra-relativistic heavy ion collisions (Pb). The ALICE experiment (A Large Ion Collider Experiment) allows to access several probes to characterize the QGP through particles reconstruction and. Among these probes, high energy parton energy loss is used to access medium characteristics such as density or temperature. Parton energy loss is estimated from the modification of the energy distribution of hadrons produced by fragmentation. This thesis is dedicated to the photon-hadron correlations analysis in order to study the modification of the parton fragmentation due to the quark-gluon plasma. First part of this thesis is devoted to the characterization of the electromagnetic calorimeter (EMCal), the central detector for energy measurement and photon identification. The second part is dedicated to the photon-hadron correlation measurement, for the 7 TeV proton-proton collisions and 2.76 TeV Lead-Lead collisions. An important work has been done to improve the prompt photon identification, one of the key point of this analysis. (author) [fr
Photon-jet correlations in pp and PbPb collisions at 5.02 TeV with CMS
McGinn, Christopher
2016-01-01
Electromagnetic probes such as photons do not participate in the strong interaction, and thus provide a clean measurement of the initial state in nuclear collisions. Correlations of photons balancing with jets in PbPb collisions constitute the golden channel to study parton energy loss in strongly interacting matter, since the photon not only determines the initial transverse momentum of the balancing parton, but also preferentially selects quark jets. We will present new results from pp and PbPb collisions at 5.02 TeV collision energy, using the high statistics data collected with the CMS detector in the 2015 LHC run. The results include detailed studies of azimuthal and momentum correlations of isolated photons and associated jets, as well as jet $I_{AA}$, as a function of photon $p_{T}$ and collision centrality.
Eichler, J.; Fritsch, W.
1976-01-01
The angular correlation of autoionization electrons or of photons ejected from collisionally aligned excited atoms is calculated assuming unpolarized beam and target, and polarization-insensitive detectors. Starting from the two-step hypothesis for the formation and decay of the intermediate excited atoms, the angular correlation is expressed in terms of the density matrix describing the excited system. Using the symmetries of the density matrix, a minimal set of independent matrix elements is given and the conditions for which a complete determination of this set is experimentally possible are discussed. For the case of electron emission, simple examples are pointed out in which the angular correlation is independent of the reduced Coulomb matrix elements describing the decay. (author)
Kwon, Osung; Park, Kwang-Kyoon; Ra, Young-Sik; Kim, Yong-Su; Kim, Yoon-Ho
2013-10-21
Generation of time-bin entangled photon pairs requires the use of the Franson interferometer which consists of two spatially separated unbalanced Mach-Zehnder interferometers through which the signal and idler photons from spontaneous parametric down-conversion (SPDC) are made to transmit individually. There have been two SPDC pumping regimes where the scheme works: the narrowband regime and the double-pulse regime. In the narrowband regime, the SPDC process is pumped by a narrowband cw laser with the coherence length much longer than the path length difference of the Franson interferometer. In the double-pulse regime, the longitudinal separation between the pulse pair is made equal to the path length difference of the Franson interferometer. In this paper, we propose another regime by which the generation of time-bin entanglement is possible and demonstrate the scheme experimentally. In our scheme, differently from the previous approaches, the SPDC process is pumped by a cw multi-mode (i.e., short coherence length) laser and makes use of the coherence revival property of such a laser. The high-visibility two-photon Franson interference demonstrates clearly that high-quality time-bin entanglement source can be developed using inexpensive cw multi-mode diode lasers for various quantum communication applications.
Pair correlations in near-magic nuclei and the nucleon--phonon interaction
Kadmenskii, S.G.; Luk'yanovich, P.A.; Remesov, Y.I.; Furman, V.I.
1987-01-01
It is demonstrated that the nucleon-pairing phenomenon is entirely due to the finiteness of nuclei. A technique for taking account of the phonon-exchange-related retarded interaction in the particle--particle channel is developed for nuclei of the ''mag +- 2'' and ''mag +- 3'' types. It is shown that the nucleon--phonon interaction strength computed with allowance for the most collectivized surface oscillation branches makes it possible to ensure the correct attraction scale necessary for the description of the pairing phenomenon. The existence of a more profound similarity between the phenomena of superconductivity of metals and Cooper pairing of nucleons in nuclei is thus demonstrated
IBM PC based real time photon correlator [Paper No.:D2
Kumaravadivelu, C.; Nageswaran, A.; Weling, S. A.
1993-01-01
The design aspects and development of IBM PC based real time photon correlator is presented. This system computes 64 auto-correlation functions in real time. Sample data is 4-bit wide. Correlation functions are computed in hard wired logic using discrete components. A combination of parallel and pipelined architecture is adopted to compute the correlation in realtime. A high speed controller generates the required control signals for the computing hardware and also provides handshake signals to IBM PC to access the computed results. IBM PC bus is extended and interfaced to correlation computing hardware. IBM PC collects the experimental parameters through user friendly menu and initiates the correlation hardware and continues to collect the correlation build ups and displays them on the screen. Extensive test and maintenance features are incorporated into the system. This system is developed for Material Science Division in Indira Gandhi Centre for Atomic Research (IGCAR) to study static and dynamic properties of macro molecules and colloidal particles in dispersion using light scattering technique. It can also be used to study the flow characteristics of sodium in nuclear reactors. It can be used in dynamic neutron scattering experiments. (author). 3 figs., 2 tabs
Lu, Zeqin; Jhoja, Jaspreet; Klein, Jackson; Wang, Xu; Liu, Amy; Flueckiger, Jonas; Pond, James; Chrostowski, Lukas
2017-05-01
This work develops an enhanced Monte Carlo (MC) simulation methodology to predict the impacts of layout-dependent correlated manufacturing variations on the performance of photonics integrated circuits (PICs). First, to enable such performance prediction, we demonstrate a simple method with sub-nanometer accuracy to characterize photonics manufacturing variations, where the width and height for a fabricated waveguide can be extracted from the spectral response of a racetrack resonator. By measuring the spectral responses for a large number of identical resonators spread over a wafer, statistical results for the variations of waveguide width and height can be obtained. Second, we develop models for the layout-dependent enhanced MC simulation. Our models use netlist extraction to transfer physical layouts into circuit simulators. Spatially correlated physical variations across the PICs are simulated on a discrete grid and are mapped to each circuit component, so that the performance for each component can be updated according to its obtained variations, and therefore, circuit simulations take the correlated variations between components into account. The simulation flow and theoretical models for our layout-dependent enhanced MC simulation are detailed in this paper. As examples, several ring-resonator filter circuits are studied using the developed enhanced MC simulation, and statistical results from the simulations can predict both common-mode and differential-mode variations of the circuit performance.
Mazouchi, Amir; Liu Baoxu; Bahram, Abdullah [Department of Physics, Institute for Optical Sciences, University of Toronto, Toronto (Canada); Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON, L5L 1C6 (Canada); Gradinaru, Claudiu C., E-mail: claudiu.gradinaru@utoronto.ca [Department of Physics, Institute for Optical Sciences, University of Toronto, Toronto (Canada); Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON, L5L 1C6 (Canada)
2011-02-28
Fluorescence correlation spectroscopy (FCS) data acquisition and analysis routines were developed and implemented in a home-built, multiparameter photon-counting microscope. Laser excitation conditions were investigated for two representative fluorescent probes, Rhodamine110 and enhanced green fluorescent protein (EGFP). Reliable local concentrations and diffusion constants were obtained by fitting measured FCS curves, provided that the excitation intensity did not exceed 20% of the saturation level for each fluorophore. Accurate results were obtained from FCS measurements for sample concentrations varying from pM to {mu}M range, as well as for conditions of high background signals. These experimental constraints were found to be determined by characteristics of the detection system and by the saturation behavior of the fluorescent probes. These factors actually limit the average number of photons that can be collected from a single fluorophore passing through the detection volume. The versatility of our setup and the data analysis capabilities were tested by measuring the mobility of EGFP in the nucleus of Drosophila cells under conditions of high concentration and molecular crowding. As a bioanalytical application, we studied by FCS the binding affinity of a novel peptide-based drug to the cancer-regulating STAT3 protein and corroborated the results with fluorescence polarization analysis derived from the same photon data.
Neural plasticity explored by correlative two-photon and electron/SPIM microscopy
Allegra Mascaro, A. L.; Silvestri, L.; Costantini, I.; Sacconi, L.; Maco, B.; Knott, G. W.; Pavone, F. S.
2013-06-01
Plasticity of the central nervous system is a complex process which involves the remodeling of neuronal processes and synaptic contacts. However, a single imaging technique can reveal only a small part of this complex machinery. To obtain a more complete view, complementary approaches should be combined. Two-photon fluorescence microscopy, combined with multi-photon laser nanosurgery, allow following the real-time dynamics of single neuronal processes in the cerebral cortex of living mice. The structural rearrangement elicited by this highly confined paradigm of injury can be imaged in vivo first, and then the same neuron could be retrieved ex-vivo and characterized in terms of ultrastructural features of the damaged neuronal branch by means of electron microscopy. Afterwards, we describe a method to integrate data from in vivo two-photon fluorescence imaging and ex vivo light sheet microscopy, based on the use of major blood vessels as reference chart. We show how the apical dendritic arbor of a single cortical pyramidal neuron imaged in living mice can be found in the large-scale brain reconstruction obtained with light sheet microscopy. Starting from its apical portion, the whole pyramidal neuron can then be segmented and located in the correct cortical layer. With the correlative approach presented here, researchers will be able to place in a three-dimensional anatomic context the neurons whose dynamics have been observed with high detail in vivo.
A Light Universal Detector for the Study of Correlations between Photons and Charged Particles
2002-01-01
The WA93 experiment combines two essential means of quark matter diagnosis: \\item a)~~~~the measurement of photon production rates relative to charged particles or $ \\pi ^0 ^{a}pos $s \\item b)~~~~the measurement of transverse momenta of charged and neutral particles and their correlations. \\end{enumerate} \\\\ \\\\ The experimental setup consists of highly segmented lead glass arrays (3780~modules) at a distance of 9~m from the target covering the range 2~$<$~y~$<$~3. The detector allows to reconstruct the transverse momentum of $ \\pi ^0 ^{a}pos $s and $ \\eta ^{a}pos $s. A preshower detector which can be operated in a hadron-blind mode complements the photon measurement in the range 3~$<$~y~$<$~5.5. The detector yields the number of photons and,~-~to a limited extend~-, information on the total electromagnetic transverse energy. Charged particle tracking is achieved by a set of newly developed multistep avalanche chambers read out by CCD cameras downstream of the GOLIATH vertex magnet. Bose-Einstein c...
Photon correlation spectroscopic analysis of a natural electret material: Carnauba wax
Barbosa, G. A.; Russi, R.; Pires, A. S. T.; Mesquita, O. N.
1981-02-01
For the first time, photon correlation spectroscopy is applied to the study of an electret material. We show that the average self-diffusion parameter of Carnauba wax in liquid phase, from 85 to 170 °C can be written as D=D0+A exp[-ΔE/k(T-T0)], where D0=1.6×10-10 and A=20×10-10 cm2/sec, ΔE=82 cm-1 and T0=68 °C
Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan
2018-02-01
X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements.
BEC-BCS-laser crossover in Coulomb-correlated electron-hole-photon systems
Yamaguchi, M; Kamide, K; Ogawa, T; Yamamoto, Y
2012-01-01
Many-body features caused by Coulomb correlations are of great importance for understanding phenomena pertaining to polariton systems in semiconductor microcavities, i.e. electron-hole-photon systems. Remarkable many-body effects are shown to exist in both thermal-equilibrium phases and non-equilibrium lasing states. We then show a unified framework for connecting the thermal-equilibrium and the non-equilibrium steady states based on a non-equilibrium Green's function approach. Bose-Einstein condensate (BEC)-Bardeen-Cooper-Schrieffer (BCS)-laser crossovers are investigated by using this approach. (paper)
Managing the spatial properties and photon correlations in squeezed non-classical twisted light
Zakharov, R. V.; Tikhonova, O. V.
2018-05-01
Spatial photon correlations and mode content of the squeezed vacuum light generated in a system of two separated nonlinear crystals is investigated. The contribution of both the polar and azimuthal modes with non-zero orbital angular momentum is analyzed. The control and engineering of the spatial properties and degree of entanglement of the non-classical squeezed light by changing the distance between crystals and pump parameters is demonstrated. Methods for amplification of certain spatial modes and managing the output mode content and intensity profile of quantum twisted light are suggested.
Electron-electron correlation in two-photon double ionization of He-like ions
Hu, S. X.
2018-01-01
Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding and strong-field-induced multielectron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photoinduced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions (L i+,B e2 + , and C4 +) exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra as the ionic charge increases, which is opposite to the intuition that the absolute increase of correlation in the ground state should lead to more equal energy sharing in photoionization. These findings indicate that the final-state electron-electron correlation ultimately determines the energy sharing of the two ionized electrons in TPDI.
Slow dynamics in an azopolymer molecular layer studied by x-ray photon correlation spectroscopy
Orsi, D.; Fluerasu, A.; Cristofolini, L.; Fontana, M.P.; Pontecorvo, E.; Caronna, C.; Zontone, F.; Madsen, A.
2010-01-01
We report the results of x-ray photon correlation spectroscopy (XPCS) experiments on multilayers of a photosensitive azo-polymer which can be softened by photoisomerization. Time correlation functions have been measured at different temperatures and momentum transfers (q) and under different illumination conditions (dark, UV or visible). The correlation functions are well described by the Kohlrausch-Williams-Watts (KWW) form with relaxation times that are proportional to q -1 . The characteristic relaxation times follow the same Vogel-Fulcher-Tammann law describing the bulk viscosity of this polymer. The out-of-equilibrium relaxation dynamics following a UV photoperturbation are accelerated, which is in agreement with a fluidification effect previously measured by rheology. The transient dynamics are characterized by two times correlation function, and dynamical heterogeneity is evidenced by calculating the variance χ of the degree of correlation as a function of ageing time. A clear peak in χ appears at a well defined time τ C which scales with q -1 and with the ageing time, in a similar fashion as previously reported in colloidal suspensions (O. Dauchot et al. Phys. Rev. Lett. 95 265701 (2005)). From an accurate analysis of the correlation functions we could demonstrate a temperature and light dependent cross-over from compressed KWW to simple exponential behavior.
Nambu, Yoshihiro; Usami, Koji; Tsuda, Yoshiyuki; Matsumoto, Keiji; Nakamura, Kazuo
2002-01-01
We report the generation of polarization-entangled photons by femtosecond-pulse-pumped spontaneous parametric down-conversion in a cascade of two type-I crystals. Highly entangled pulsed states were obtained by introducing a temporal delay between the two orthogonal polarization components of the pump field. They exhibited high-visibility quantum interference and a large concurrence value, without the need of postselection using narrow-bandwidth spectral filters. The results are well explained by the theory which incorporates the space-time dependence of interfering two-photon amplitudes if dispersion and birefringence in the crystals are appropriately taken into account. Such a pulsed entangled photon well localized in time domain is useful for various quantum communication experiments, such as quantum cryptography and quantum teleportation
Quantum correlations between each two-level system in a pair of atoms and general coherent fields
S. Abdel-Khalek
Full Text Available The quantitative description of the quantum correlations between each two-level system in a two-atom system and the coherent fields initially defined in a coherent state in the framework of power-law potentials (PLPCSs is considered. Specifically, we consider two atoms locally interacting with PLPCSs and take into account the different terms of interactions, the entanglement and quantum discord are studied including the time-dependent coupling and photon transition effects. Using the monogamic relation between the entanglement of formation and quantum discord in tripartite systems, we show that the control and preservation of the different kinds of quantum correlations greatly benefit from the combination of the choice of the physical quantities. Finally, we explore the link between the dynamical behavior of quantum correlations and nonclassicality of the fields with and without atomic motion effect. Keywords: Quantum correlations, Monogamic relation, Coherent states, Power-law potentials, Wehrl entropy
Correlation of photon beam motion with vacuum chamber cooling on the NSLS x-ray ring
Johnson, E.D.; Fauchet, A.M.; Zhang, Xiaohao.
1991-01-01
The NSLS X-ray ring exhibits a direct correlation between photon beam motion, and distortion of the ring vacuum chamber induced by fluctuations in the cooling system. We have made long term measurements of photon beam vertical position, accelerator vacuum chamber motion, process water temperatures, and angular motions of the magnets around one superperiod of the NSLS x-ray ring. Short term transients in water temperature cause deflection of the ring vacuum chamber which have in turn been shown to induce very small angular rotations of the magnets, on the order of 10 micro-radians. A larger and more difficult to correct effect is the drift in beam position over the course of a fill. This problem has been shown to be related to the thermal gradients that develop across the vacuum chamber which, as a consequence of the configuration of the chamber cooling, depend upon stored current. Orbit simulations based upon the measured rotations are in agreement with the observed beam motions, and reveal that certain patterns of correlated motions of the magnets can produce much larger errors than random motion or concerted motion of all the magnets. During the course of these measurements global orbit feedback was installed, and found to significantly reduce the orbit errors which could not be corrected at their source
Quadrature entanglement and photon-number correlations accompanied by phase-locking
Adamyan, H. H.; Manvelyan, S. B.; Adamyan, N. H.; Kryuchkyan, G. Yu.
2006-01-01
We investigate quantum properties of phase-locked light beams generated in a nondegenerate optical parametric oscillator (NOPO) with an intracavity waveplate. This investigation continues our previous analysis presented in Phys. Rev. A 69, 053814 (2004), and involves problems of continuous-variable quadrature entanglement in the spectral domain, photon-number correlations as well as the signatures of phase-locking in the Wigner function. We study the role of phase-localizing processes on the quantum correlation effects. The peculiarities of phase-locked NOPO in the self-pulsing instability operational regime are also cleared up. The results are obtained in the P-representation as a quantum-mechanical calculation in the framework of stochastic equations of motion, as well as by numerical simulation based on the method of quantum state diffusion
Observation of non-classical correlations in sequential measurements of photon polarization
Suzuki, Yutaro; Iinuma, Masataka; Hofmann, Holger F
2016-01-01
A sequential measurement of two non-commuting quantum observables results in a joint probability distribution for all output combinations that can be explained in terms of an initial joint quasi-probability of the non-commuting observables, modified by the resolution errors and back-action of the initial measurement. Here, we show that the error statistics of a sequential measurement of photon polarization performed at different measurement strengths can be described consistently by an imaginary correlation between the statistics of resolution and back-action. The experimental setup was designed to realize variable strength measurements with well-controlled imaginary correlation between the statistical errors caused by the initial measurement of diagonal polarizations, followed by a precise measurement of the horizontal/vertical polarization. We perform the experimental characterization of an elliptically polarized input state and show that the same complex joint probability distribution is obtained at any measurement strength. (paper)
Roca, Antoaneta; Liu, Yuan-Hao; Wojnecki, Cecile; Green, Stuart; Nievaart, Sander; Ghani, Zamir; Moss, Ray
2009-01-01
The dual ionisation chamber technique is the recommended method for mixed field dosimetry of epithermal neutron beams. This paper presents initial data from an ongoing inter-comparison study involving two identical pairs of ionisation chambers used at the BNCT facilities of Petten, NL and of University of Birmingham, UK. The goal of this study is to evaluate the photon, thermal neutron and epithermal neutron responses of both pairs of TE(TE) (Exradin T2 type) and Mg(Ar) (Exradin M2 type) ionisation chambers in similar experimental conditions. At this stage, the work has been completed for the M2 type chambers and is intended to be completed for the T2 type chambers in the near future.
Bradley, D.A.
1988-01-01
A variant of the multisection filter and annular target geometry, with a designed angular acceptance of +-0.5 0 , has been utilised in measuring accurate, O(5%), absolute total differential scattering cross sections of 60 KeV photons for H 2 O, methyl methacrylate (C 5 H 8 O 2 ) n and nylon-6 (C 12 H 22 O 3 N 2 ) n in the angular scattering range of 2 0 -10 0 . The effects of molecular correlations manifest, to varying degree, in strong forward peaking of the scattered photon distribution. Comparison is made with available experiment and theory [pt
Dorney, Brian Lee
2013-01-01
Beauty quarks are pair-produced by strong interactions in multi-TeV proton- proton (pp) collisions at the CERN Large Hadron Collider (LHC). Such interactions allow for a test of perturbative Quantum Chromodynamics (QCD) in a new energy regime. The primary beauty-antibeauty quark b b pair production mechanisms in perturbative QCD are referred to as avor creation, avor excitation, and gluon splitting. These three mechanisms produce b b pairs with characteristic kinematic behavior, which contribute dierently to the shape of the dierential b b production cross section with respect to the dierence in the azimuthal angle and the combined separation variable R = p 2 + 2 between the beauty and antibeauty quarks ( b and b , respectively); with being the change in the pseudorapidity = ln ( tan ( = 2)), being the polar angle. These and R variables are collectively referred to as angular correlation variables and hence forth referred to as A . By measuring the shape and absolute normalization of the dierential prod...
Interplay of quasiparticle-vibration coupling and pairing correlations on β-decay half-lives
Niu, Y. F.; Niu, Z. M.; Colò, G.; Vigezzi, E.
2018-05-01
The nuclear β-decay half-lives of Ni and Sn isotopes, around the closed shell nuclei 78Ni and 132Sn, are investigated by computing the distribution of the Gamow-Teller strength using the Quasiparticle Random Phase Approximation (QRPA) with quasiparticle-vibration coupling (QPVC), based on ground-state properties obtained by Hartree-Fock-Bogoliubov (HFB) calculations. We employ the effective interaction SkM* and a zero-range effective pairing force. The half-lives are strongly reduced by including the QPVC. We study in detail the effects of isovector (IV) and isoscalar (IS) pairing. Increasing the IV strength tends to increase the lifetime for nuclei in the proximity of, but lighter than, the closed-shell ones in QRPA calculations, while the effect is significantly reduced by taking into account the QPVC. On the contrary, the IS pairing mainly plays a role for nuclei after the shell closure. Increasing its strength decreases the half-lives, and the effect at QRPA and QRPA+QPVC level is comparable. The effect of IS pairing is particularly pronounced in the case of the Sn isotopes, where it turns out to be instrumental to obtain good agreement with experimental data.
Equations-of-motion treatment of pairing correlations: Seniority-one states
Andreozzi, F.; Covello, A.; Gargano, A.; Porrino, A.
1988-01-01
In prior work we have developed an equations-of-motion method for treating seniority-one states in pairing-force theory. Here we present a new and simpler version of that method. Some numerical applications to Sn isotopes show its considerable practical value
High-spin spectroscopy of {sup 168}Yb and the reduction of pairing correlations
Oliveira, J R.B. [Sao Paulo Univ., SP (Brazil); Stephens, F S; Deleplanque, M A; Diamond, R M [Lawrence Berkeley Lab., CA (United States); Draper, J E; Rubel, E; Duyar, C [California Univ., Davis, CA (United States); Beacker, J A; Henry, E A; Roy, N [Lawrence Livermore National Lab., CA (United States); Beausang, C W [Liverpool Univ. (United Kingdom); Frauendorf, S [Institut fur Kern und Hadronen Physik, F2-Rossendorf, Dresden (Germany)
1992-08-01
The high spin states of {sup 168}Yb were investigated by means of in-beam gamma spectroscopy with the High Energy Resolution Array at the 88 in. cyclotron of the Lawrence Berkeley Laboratory. The {sup 168}Yb nucleus was produced in the reaction {sup 48}Ca({sup 124}Sn,4n) at 210 MeV. Five bands previously reported were confirmed; additionally, four other bands, two extending to spins as high as 36 {Dirac_h} were observed. Cranked shell models suggest that one of the new bands can be interpreted as the continuation of the ground state band (above the AB crossing frequency) crossing into the four-quasiparticle band ABCD at about 0.38 MeV. Both relative alignment and Routhians are in good agreement with the experimental values. However, these calculations were done at constant pairing strength, which is not expected to be good at high rotational frequencies where one or more crossings have occurred in each band. Particle-hole calculations (with no pairing) were done for {sup 168}Yb as well as for other N {approx_equal} 98 nuclei for which good experimental data are available. In most cases, it is possible to associate a particle-hole configuration for each band observed at very high rotational frequencies, and the overall description is good. At frequencies below the first crossing, a full pairing calculation is necessary to describe the bands properly. At intermediate frequencies, the pairing strength is believed to be intermediate. 3 figs.
Taguchi, Katsuyuki; Polster, Christoph; Lee, Okkyun; Stierstorfer, Karl; Kappler, Steffen
2016-12-01
An x-ray photon interacts with photon counting detectors (PCDs) and generates an electron charge cloud or multiple clouds. The clouds (thus, the photon energy) may be split between two adjacent PCD pixels when the interaction occurs near pixel boundaries, producing a count at both of the pixels. This is called double-counting with charge sharing. (A photoelectric effect with K-shell fluorescence x-ray emission would result in double-counting as well). As a result, PCD data are spatially and energetically correlated, although the output of individual PCD pixels is Poisson distributed. Major problems include the lack of a detector noise model for the spatio-energetic cross talk and lack of a computationally efficient simulation tool for generating correlated Poisson data. A Monte Carlo (MC) simulation can accurately simulate these phenomena and produce noisy data; however, it is not computationally efficient. In this study, the authors developed a new detector model and implemented it in an efficient software simulator that uses a Poisson random number generator to produce correlated noisy integer counts. The detector model takes the following effects into account: (1) detection efficiency; (2) incomplete charge collection and ballistic effect; (3) interaction with PCDs via photoelectric effect (with or without K-shell fluorescence x-ray emission, which may escape from the PCDs or be reabsorbed); and (4) electronic noise. The correlation was modeled by using these two simplifying assumptions: energy conservation and mutual exclusiveness. The mutual exclusiveness is that no more than two pixels measure energy from one photon. The effect of model parameters has been studied and results were compared with MC simulations. The agreement, with respect to the spectrum, was evaluated using the reduced χ 2 statistics or a weighted sum of squared errors, χ red 2 (≥1), where χ red 2 =1 indicates a perfect fit. The model produced spectra with flat field irradiation that
Naef, H.
2010-07-01
This short report for the Swiss Federal Office of Energy (SFOE) is one of a series of appendices dealing with the potential for geological sequestration of carbon dioxide in Switzerland. This report provides a graphical overview of the situation in Northern Switzerland and correlates aquifer-seal pairs within the molasse basin. The tectonic overview is based on published tectonic summary maps from Swisstopo and the Swiss National Cooperative for the Disposal of Radioactive Wastes (NAGRA). It shows the known large, near-surface structures that are relevant to CO{sub 2} sequestration. A second map shows the correlation of Aquifer-Seal pairs in the molasse basin, based on data from eight deep drillings, illustrating the lengths and thicknesses of the aquifer-seal formations evaluated for CO{sub 2} sequestration.
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Dvornikov, O.; Makarenko, V.; Mossolov, V.; Suarez Gonzalez, J.; Zykunov, V.; Shumeiko, N.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Ruan, M.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Mahmoud, M. A.; Mahrous, A.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Kousouris, K.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Triantis, F. A.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Bhawandeep, U.; Chawla, R.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Mariani, V.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Ali, M. A. B. Md; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Zhemchugov, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chen, Y.; Cimmino, A.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Donato, S.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Boran, F.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Weber, M.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Bunn, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Perry, T.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Forthomme, L.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2018-03-01
Results are presented from a search for natural gauge-mediated supersymmetry (SUSY) in a scenario in which the top squark is the lightest squark, the next-to-lightest SUSY particle is a bino-like neutralino, and the lightest SUSY particle is the gravitino. The strong production of top squark pairs can produce events with pairs of top quarks and neutralinos, with each bino-like neutralino decaying to a photon and a gravitino. The search is performed using a sample of pp collision data accumulated by the CMS experiment at √{s}=8 TeV, corresponding to an integrated luminosity of 19.7 fb-1. The final state consists of a lepton (electron or muon), jets, and one or two photons. The imbalance in transverse momentum in the events is compared with the expected spectrum from standard model processes. No excess event yield is observed beyond the expected background, and the result is interpreted in the context of a general model of gauge-mediated SUSY breaking that leads to exclusion of top squark masses below 650-730 GeV. [Figure not available: see fulltext.
Sirunyan, Albert M; CMS Collaboration; Adam, Wolfgang; Asilar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Krammer, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Dvornikov, Oleg; Makarenko, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; Zykunov, Vladimir; Shumeiko, Nikolai; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Tytgat, Michael; Van Driessche, Ward; Verbeke, Willem; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Shopova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Gao, Xuyang; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Ruan, Manqi; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Yazgan, Efe; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Assran, Yasser; Mahmoud, Mohammed; Mahrous, Ayman; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Lobanov, Artur; Miné, Philippe; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Stahl Leiton, Andre Govinda; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Khvedelidze, Arsen; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Verlage, Tobias; Albert, Andreas; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Spannagel, Simon; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Lapsien, Tobias; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baur, Sebastian; Baus, Colin; Berger, Joram; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Fink, Simon; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Goldenzweig, Pablo; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Katkov, Igor; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Kousouris, Konstantinos; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Triantis, Frixos A; Filipovic, Nicolas; Pasztor, Gabriella; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Bhowmik, Sandeep; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Bhawandeep, Bhawandeep; Chawla, Ridhi; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Kole, Gouranga; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Dewanjee, Ram Krishna; Ganguly, Sanmay; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Nardo, Guglielmo; Di Guida, Salvatore; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Fallavollita, Francesco; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Kim, Hyunchul; Brochero Cifuentes, Javier Andres; Goh, Junghwan; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Lee, Haneol; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Calpas, Betty; Di Francesco, Agostino; Faccioli, Pietro; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Chtchipounov, Leonid; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Murzin, Victor; Oreshkin, Vadim; Sulimov, Valentin; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Bylinkin, Alexander; Chistov, Ruslan; Danilov, Mikhail; Zhemchugov, Evgenii; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Perfilov, Maxim; Savrin, Viktor; Blinov, Vladimir; Skovpen, Yuri; Shtol, Dmitry; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bloch, Philippe; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; Chen, Yi; Cimmino, Anna; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Gulhan, Doga; Gundacker, Stefan; Guthoff, Moritz; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kieseler, Jan; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Selvaggi, Michele; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Verweij, Marta; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagozdzinska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; De Cosa, Annapaola; Donato, Silvio; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Seitz, Claudia; Yang, Yong; Zucchetta, Alberto; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Boran, Fatma; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Jesus, Orduna; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Spencer, Eric; Syarif, Rizki; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Squires, Michael; Stolp, Dustin; Tos, Kyle; Tripathi, Mani; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Weber, Matthias; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Si, Weinan; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Holzner, André; Klein, Daniel; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mullin, Sam Daniel; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Lawhorn, Jay Mathew; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Apresyan, Artur; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cremonesi, Matteo; Duarte, Javier; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Wu, Yujun; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Rank, Douglas; Shchutska, Lesya; Sperka, David; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Bein, Samuel; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Perry, Thomas; Prosper, Harrison; Santra, Arka; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Sandoval Gonzalez, Irving Daniel; Trauger, Hallie; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Forthomme, Laurent; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Apyan, Aram; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Malta Rodrigues, Alan; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Rupprecht, Nathaniel; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Lange, David; Luo, Jingyu; Marlow, Daniel; Medvedeva, Tatiana; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Svyatkovskiy, Alexey; Tully, Christopher; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Schulte, Jan-Frederik; Sun, Jian; Wang, Fuqiang; Xie, Wei; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Juska, Evaldas; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Sturdy, Jared; Zaleski, Shawn; Belknap, Donald; Buchanan, James; Caillol, Cécile; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel
2018-01-01
Results are presented from a search for natural gauge-mediated supersymmetry (SUSY) in a scenario in which the top squark is the lightest squark, the next-to-lightest SUSY particle is a bino-like neutralino, and the lightest SUSY particle is the gravitino. The strong production of top squark pairs can produce events with pairs of top quarks and neutralinos, with each bino-like neutralino decaying to a photon and a gravitino. The search is performed using a sample of pp collision data accumulated by the CMS experiment at $\\sqrt{s} = $8 TeV, corresponding to an integrated luminosity of 19.7 fb$^{-1}$. The final state consists of a lepton (electron or muon), jets, and one or two photons. The imbalance in transverse momentum in the events is compared with the expected spectrum from standard model processes. No excess event yield is observed beyond the expected background, and the result is interpreted in the context of a general model of gauge-mediated SUSY breaking that leads to exclusion of top squark masses be...
Sirunyan, Albert M; et al.
2017-07-11
Results are presented from a search for natural gauge-mediated supersymmetry (SUSY) in a scenario in which the top squark is the lightest squark, the next-to-lightest SUSY particle is a bino-like neutralino, and the lightest SUSY particle is the gravitino. The strong production of top squark pairs can produce events with pairs of top quarks and neutralinos, with each bino-like neutralino decaying to a photon and a gravitino. The search is performed using a sample of pp collision data accumulated by the CMS experiment at sqrt(s)=8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The final state consists of a lepton (electron or muon), jets, and one or two photons. The imbalance in transverse momentum in the events is compared with the expected spectrum from standard model processes. No excess event yield is observed beyond the expected background, and the result is interpreted in the context of a general model of gauge-mediated SUSY breaking that leads to exclusion of top squark masses below 650-730 GeV.
Sharma, Priyanka; Goswami, Mousumi; Singh, Darrel; Massod, Shahid S; Nganba, Khundrakpam
2016-01-01
To determine the prevalence of Streptococcus mutans (MS) in mother-child pairs and to evaluate the correlation in the levels of salivary MS of working and nonworking mothers with that of their children and their associations with other related factors. A cross-sectional study was carried out among 100 mother-child pairs residing in New Multan Nagar Colony, New Delhi, India. A total of 50 children with their mothers were included in the working group and another 50 were included in the nonworking group. A questionnaire regarding the feeding habits, oral hygiene habits, daily intake of sugars of the children along with their weaning time was carried out. All mothers and children were clinically examined for recording decayed, extracted, and filled teeth (deft)/decayed, missing, and filled teeth (DMFT), and whole unstimulated saliva was collected and cultured for MS in the laboratory. The data were collected and subjected to statistical analysis using chi-square, Spearman's correlation, and logistic regression analysis. The prevalence of salivary MS in the children was 69%. A statistically significant correlation was found between the oral levels of MS in nonworking and working mother-child pairs. Regression analysis showed that those children who feed by bottle for more than 12 months, have daily sweet intake, have sugars in feeding bottle and have higher defts were more likely to have mutans score of 1 or 2. The mother, working or nonworking, being the primary care provider is the major source of transmission of MS to their child irrespective of the amount of time spent with them. Sharma P, Goswami M, Singh D, Massod SS, Nganba K. Correlation of Streptococcus mutans count in Mother-child Pair of Working and Nonworking Mothers: A Cross-sectional Study. Int J Clin Pediatr Dent 2016;9(4):342-348.
Aroche, Raúl Riera; Rosas-Cabrera, Rodrigo Arturo; Burgos, Rodrigo Arturo Rosas; Betancourt-Riera, René; Betancourt-Riera, Ricardo
2017-01-01
The formation of Correlated Electron Pairs Oscillating around the Fermi level in Resonant Quantum States (CEPO-RQS), when a metal is cooled to its critical temperature T=Tc, is studied. The necessary conditions for the existence of CEPO-RQS are analyzed. The participation of electron-electron interaction screened by an electron dielectric constant of the form proposed by Thomas Fermi is considered and a physical meaning for the electron-phonon-electron interaction in the formation of the CEPO...
Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Heracleous, Natalie; Kalogeropoulos, Alexis; Keaveney, James; Kim, Tae Jeong; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Mahrous, Ayman; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Calpas, Betty; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Geiser, Achim; Grebenyuk, Anastasia; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Hempel, Maria; Horton, Dean; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krämer, Mira; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Nowak, Friederike; Ntomari, Eleni; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Stein, Matthias; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Enderle, Holger; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Poehlsen, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hartmann, Frank; Hauth, Thomas; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Martschei, Daniel; Mozer, Matthias Ulrich; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Zeise, Manuel; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Gouskos, Loukas; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Jones, John; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mittal, Monika; Nishu, Nishu; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Singh, Anil; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Chatterjee, Rajdeep Mohan; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Musenich, Riccardo; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bellato, Marco; Biasotto, Massimo; Bisello, Dario; Branca, Antonio; Checchia, Paolo; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kim, Tae Yeon; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Asghar, Muhammad Irfan; Butt, Jamila; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Golutvin, Igor; Karjavin, Vladimir; Konoplyanikov, Viktor; Korenkov, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Mitsyn, Valeri Valentinovitch; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Tikhonenko, Elena; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Dordevic, Milos; Ekmedzic, Marko; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Pérez Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Gowdy, Stephen; Guida, Roberto; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Karavakis, Edward; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Palencia Cortezon, Enrique; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Reece, William; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Ronga, Frederic Jean; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Favaro, Carlotta; Hinzmann, Andreas; Hreus, Tomas; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Snoek, Hella; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Wilken, Rachel; Asavapibhop, Burin; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Karapinar, Guler; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Günaydin, Yusuf Oguzhan; Vardarli, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Ilic, Jelena; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Lazic, Dragoslav; Richardson, Clint; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Felcini, Marta; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Rakness, Gregory; Schlein, Peter; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Lacroix, Florent; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Shrinivas, Amithabh; Sturdy, Jared; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Kovalskyi, Dmytro; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Incandela, Joe; Justus, Christopher; Magaña Villalba, Ricardo; Mccoll, Nickolas; Pavlunin, Viktor; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Kcira, Dorian; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Eggert, Nicholas; Gibbons, Lawrence Kent; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Ratnikova, Natalia; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Gray, Julia; Kenny III, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; De Benedetti, Abraham; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Cremaldi, Lucien Marcus; Kroeger, Rob; Oliveros, Sandra; Perera, Lalith; Sanders, David A; Summers, Don; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Vuosalo, Carl; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Berry, Edmund; Elmer, Peter; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Duric, Senka; Friis, Evan; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Woods, Nathaniel
2014-11-12
A measurement of differential cross sections for the production of a pair of isolated photons in proton-proton collisions at $\\sqrt{s}$ = 7 TeV is presented. The data sample corresponds to an integrated luminosity of 5.0 inverse femtobarns collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25 GeV respectively, in the pseudorapidity range |$\\eta$| 0.45, is 17.2 +/- 0.2 (stat.) +/- 1.9 (syst.) +/- 0.4 (lum.) pb. Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins-Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics.
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.
2014-01-01
A measurement of differential cross sections for the production of a pair of isolated photons in proton-proton collisions at √(s) = 7 TeV is presented. The data sample corresponds to an integrated luminosity of 5.0 fb -1 collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25 GeV respectively, in the pseudorapidity range vertical stroke η vertical stroke 0.45, is 17.2 ± 0.2(stat) ± 1.9(syst) ± 0.4(lumi) pb. Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins-Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics. (orig.)
Bose-Einstein correlations in $K^{\\pm}K^{\\pm}$ pairs from $Z^{0}$ decays into two hadronic jets
Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Anderson, K.J.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Boeriu, O.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; Davis, R.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Feld, L.; Ferrari, P.; Fiedler, F.; Fierro, M.; Fleck, I.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lauber, J.; Lawson, I.; Layter, J.G.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Merritt, F.S.; Mes, H.; Meyer, I.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Przybycien, M.; Quadt, A.; Rembser, C.; Rick, H.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.
2001-01-01
Bose-Einstein correlations in pairs of charged kaons produced in a sample of 3.9 million hadronic Z0 decays have been measured with the OPAL experiment at LEP. Charged kaons were identified in the central tracking detector using their specific energy loss in the drift chamber gas. The correlation function was studied in two-jet events using a double ratio, formed by the number of like-sign pairs normalised by a reference sample in the data, divided by the same ratio in a Monte Carlo simulation. The enhancement at small values of the four-momentum difference of the pair was parametrised using a Gaussian function. The parameters of the Bose-Einstein correlations were measured to be lambda = 0.82+-0.22(+0.17,-0.12) for the strength and R0 = 0.56+-0.08(+0.08, -0.06) fm for the kaon source radius, where the first errors are statistical and the second systematic. Corrections for final-state interactions are discussed.
Rees, Terry F.
1990-01-01
Colloidal materials, dispersed phases with dimensions between 0.001 and 1 μm, are potential transport media for a variety of contaminants in surface and ground water. Characterization of these colloids, and identification of the parameters that control their movement, are necessary before transport simulations can be attempted. Two techniques that can be used to determine the particle-size distribution of colloidal materials suspended in natural waters are compared. Photon correlation Spectroscopy (PCS) utilizes the Doppler frequency shift of photons scattered off particles undergoing Brownian motion to determine the size of colloids suspended in water. Photosedimentation analysis (PSA) measures the time-dependent change in optical density of a suspension of colloidal particles undergoing centrifugation. A description of both techniques, important underlying assumptions, and limitations are given. Results for a series of river water samples show that the colloid-size distribution means are statistically identical as determined by both techniques. This also is true of the mass median diameter (MMD), even though MMD values determined by PSA are consistently smaller than those determined by PCS. Because of this small negative bias, the skew parameters for the distributions are generally smaller for the PCS-determined distributions than for the PSA-determined distributions. Smaller polydispersity indices for the distributions are also determined by PCS.
Structural correlations in the generation of polaron pairs in low-bandgap polymers for photovoltaics
Tautz, Raphael; da Como, Enrico; Limmer, Thomas; Feldmann, Jochen; Egelhaaf, Hans-Joachim; von Hauff, Elizabeth; Lemaur, Vincent; Beljonne, David; Yilmaz, Seyfullah; Dumsch, Ines; Allard, Sybille; Scherf, Ullrich
2012-07-01
Polymeric semiconductors are materials where unique optical and electronic properties often originate from a tailored chemical structure. This allows for synthesizing conjugated macromolecules with ad hoc functionalities for organic electronics. In photovoltaics, donor-acceptor co-polymers, with moieties of different electron affinity alternating on the chain, have attracted considerable interest. The low bandgap offers optimal light-harvesting characteristics and has inspired work towards record power conversion efficiencies. Here we show for the first time how the chemical structure of donor and acceptor moieties controls the photogeneration of polaron pairs. We show that co-polymers with strong acceptors show large yields of polaron pair formation up to 24% of the initial photoexcitations as compared with a homopolymer (η=8%). π-conjugated spacers, separating the donor and acceptor centre of masses, have the beneficial role of increasing the recombination time. The results provide useful input into the understanding of polaron pair photogeneration in low-bandgap co-polymers for photovoltaics.
Pike, E.R.
1985-01-01
The Union Gikon Company of Japan has designed their new photon-correlation spectrometer to the outside world with the aid of a number of Japanese Universities and Industrial Research Laboratories. It comes with a list of some two dozen Japanese Institutions who have been using it successfully since its recent launch in their home country. The cost of the system is some $60,000 and it will no doubt, find its place in the market alongside existing well-known photon correlation systems such as those from Brookhaven Instruments Corporation, Hiac Royco, Coulter and Malvern Instruments. Although they may be used for other purposes, the main application of the instruments is the measurement of sizes of submicron particles such as proteins, enzymes, viruses, polymers and numerous other macro-molecular substances. A topical proposal, for example, is the detection of the immunological reactions of the AIDS virus. Photon correlation spectroscopy has become an important technique in modern laboratory practice
Sample-averaged biexciton quantum yield measured by solution-phase photon correlation.
Beyler, Andrew P; Bischof, Thomas S; Cui, Jian; Coropceanu, Igor; Harris, Daniel K; Bawendi, Moungi G
2014-12-10
The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS and InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals.
In situ detection of warfarin using time-correlated single-photon counting
Rosengren, Annika M.; Karlsson, Bjoern C.G. [Bioorganic and Biophysical Chemistry Laboratory, School of Natural Sciences, Linnaeus University, SE-391 82 Kalmar (Sweden); Naeslund, Inga; Andersson, Per Ola [Swedish Defence Research Agency, FOI, CBRN Defence and Security, SE-901 82 Umea (Sweden); Nicholls, Ian A., E-mail: ian.a.nicholls@bioorg.uu.se [Bioorganic and Biophysical Chemistry Laboratory, School of Natural Sciences, Linnaeus University, SE-391 82 Kalmar (Sweden); Department of Biochemistry and Organic Chemistry Laboratory, Uppsala University, SE-751 23 Uppsala (Sweden)
2011-04-01
Highlights: {yields} Direct in situ measurement of specific isomeric forms of the anticoagulant warfarin. {yields} TCSPC spectroscopy in conjunction with synthetic Sudlow I binding site receptors. {yields} Development of sensor principle for use in clinical and environmental monitoring. -- Abstract: Here we report on a novel method for the direct in situ measurement of specific isomeric forms of the anticoagulant warfarin using time correlated single-photon counting (TCSPC) spectroscopy in conjunction with synthetic Sudlow I binding site receptors. The method is highly robust over the clinically significant concentration range, and demonstrates the potential of the binding site mimics in conjunction with the spectroscopic strategy employed here for the determination of this important pharmaceutical in clinical or even environmental samples.
In situ detection of warfarin using time-correlated single-photon counting
Rosengren, Annika M.; Karlsson, Bjoern C.G.; Naeslund, Inga; Andersson, Per Ola; Nicholls, Ian A.
2011-01-01
Highlights: → Direct in situ measurement of specific isomeric forms of the anticoagulant warfarin. → TCSPC spectroscopy in conjunction with synthetic Sudlow I binding site receptors. → Development of sensor principle for use in clinical and environmental monitoring. -- Abstract: Here we report on a novel method for the direct in situ measurement of specific isomeric forms of the anticoagulant warfarin using time correlated single-photon counting (TCSPC) spectroscopy in conjunction with synthetic Sudlow I binding site receptors. The method is highly robust over the clinically significant concentration range, and demonstrates the potential of the binding site mimics in conjunction with the spectroscopic strategy employed here for the determination of this important pharmaceutical in clinical or even environmental samples.
Voisin, Guillaume; Mottez, Fabrice; Bonazzola, Silvano
2018-02-01
Electron-positron pair production by collision of photons is investigated in view of application to pulsar physics. We compute the absorption rate of individual gamma-ray photons by an arbitrary anisotropic distribution of softer photons, and the energy and angular spectrum of the outgoing leptons. We work analytically within the approximation that 1 ≫ mc2/E > ɛ/E, with E and ɛ the gamma-ray and soft-photon maximum energy and mc2 the electron mass energy. We give results at leading order in these small parameters. For practical purposes, we provide expressions in the form of Laurent series which give correct reaction rates in the isotropic case within an average error of ˜ 7 per cent. We apply this formalism to gamma-rays flying downward or upward from a hot neutron star thermally radiating at a uniform temperature of 106 K. Other temperatures can be easily deduced using the relevant scaling laws. We find differences in absorption between these two extreme directions of almost two orders of magnitude, much larger than our error estimate. The magnetosphere appears completely opaque to downward gamma-rays while there are up to ˜ 10 per cent chances of absorbing an upward gamma-ray. We provide energy and angular spectra for both upward and downward gamma-rays. Energy spectra show a typical double peak, with larger separation at larger gamma-ray energies. Angular spectra are very narrow, with an opening angle ranging from 10-3 to 10-7 radians with increasing gamma-ray energies.
Marlowe, Robert Lloyd
The dynamic light scattering technique of photon correlation spectroscopy has been used to investigate the dependence of the mutual diffusion coefficient of a macromolecular system upon concentration. The first part of the research was devoted to the design and construction of a single-clipping autocorrelator based on newly-developed integrated circuits. The resulting 128 channel instrument can perform real time autocorrelation for sample time intervals >(, )10 (mu)s, and batch processed autocorrelation for intervals down to 3 (mu)s. An improved design for a newer, all-digital autocorrelator is given. Homodyne light scattering experiments were then undertaken on monodisperse solutions of polystyrene spheres. The single-mode TEM(,oo) beam of an argon-ion laser ((lamda) = 5145 (ANGSTROM)) was used as the light source; all solutions were studied at room temperature. The scattering angle was varied from 30(DEGREES) to 110(DEGREES). Excellent agreement with the manufacturer's specification for the particle size was obtained from the photon correlation studies. Finally, aqueous solutions of the globular protein ovalbumin, ranging in concentration from 18.9 to 244.3 mg/ml, were illuminated under the same conditions of temperature and wavelength as before; the homodyne scattered light was detected at a fixed scattering angle of 30(DEGREES). The single-clipped photocount autocorrelation function was analyzed using the homodyne exponential integral method of Meneely et al. The resulting diffusion coefficients showed a general linear dependence upon concentration, as predicted by the generalized Stokes-Einstein equation. However, a clear peak in the data was evident at c (TURNEQ) 100 mg/ml, which could not be explained on the basis of a non -interacting particle theory. A semi-quantitative approach based on the Debye-Huckel theory of electrostatic interactions is suggested as the probable cause for the peak's rise, and an excluded volume effect for its decline.
New search for correlated e{sup +}e{sup -} pairs in the {alpha} decay of {sup 241}Am
Bernabei, R.; Belli, P.; Di Marco, A. [INFN, Sezione Roma ' ' Tor Vergata' ' , Rome (Italy); Universita di Roma ' ' Tor Vergata' ' , Dipartimento di Fisica, Rome (Italy); Cappella, F.; D' Angelo, A.; Incicchitti, A. [INFN, Sezione Roma, Rome (Italy); Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); Caracciolo, V.; Castellano, S.; Cerulli, R.; Laubenstein, M. [Laboratori Nazionali del Gran Sasso, INFN, Assergi (Italy); Dai, C.J.; He, H.L.; Ma, X.H.; Sheng, X.D.; Wang, R.G. [Chinese Academy, IHEP, Beijing (China); Montecchia, F. [INFN, Sezione Roma ' ' Tor Vergata' ' , Rome (Italy); Universita di Roma ' ' Tor Vergata' ' , Dipartimento di Ingegneria Civile e Ingegneria Informatica, Rome (Italy); Tretyak, V.I. [Institute for Nuclear Research, Kyiv (Ukraine); Ye, Z.P. [Chinese Academy, IHEP, Beijing (China); University of Jing Gangshan, Jiangxi (China)
2013-05-15
A new search for production of correlated e{sup +}e{sup -} pairs in the {alpha} decay of {sup 241}Am has been carried out deep underground at the Gran Sasso National Laboratory of the INFN by using pairs of NaI(Tl) detectors of the DAMA/LIBRA set-up. The experimental data show an excess of double coincidences of events with energy around 511keV in faced pairs of detectors, which are not explained by known side reactions. This measured excess gives a relative activity {lambda} = (4.70{+-}0.63) x 10{sup -9} for the Internal Pair Production (IPP) with respect to the alpha decay of {sup 241}Am; this value is of the same order of magnitude as previous determinations. In a conservative approach the upper limit {lambda} < 5.5 x 10{sup -9} (90% C.L.) can be derived. It is worth noting that this is the first result on IPP obtained in an underground experiment, and that the {lambda} value obtained in the present work is independent of the live-time estimate. (orig.)
Studte, Sara; Bridger, Emma; Mecklinger, Axel
2017-04-01
The consolidation of new associations is thought to depend in part on physiological processes engaged during non-REM (NREM) sleep, such as slow oscillations and sleep spindles. Moreover, NREM sleep is thought to selectively benefit associations that are adaptive for the future. In line with this, the current study investigated whether different reward cues at encoding are associated with changes in sleep physiology and memory retention. Participants' associative memory was tested after learning a list of arbitrarily paired words both before and after taking a 90-min nap. During learning, word-pairs were preceded by a cue indicating either a high or a low reward for correct memory performance at test. The motivation manipulation successfully impacted retention such that memory declined to a greater extent from pre- to post sleep for low rewarded than for high rewarded word-pairs. In line with previous studies, positive correlations between spindle density during NREM sleep and general memory performance pre- and post-sleep were found. In addition to this, however, a selective positive relationship between memory performance for highly rewarded word-pairs at posttest and spindle density during NREM sleep was also observed. These results support the view that motivationally salient memories are preferentially consolidated and that sleep spindles may be an important underlying mechanism for selective consolidation. Copyright © 2016 Elsevier Inc. All rights reserved.
Number projected statistics and the pairing correlations at high excitation energies
Esebbag, C.; Egido, J.L.
1993-01-01
We analyze the use of particle-number projected statistics (PNPS) as an effective way to include the quantum and statistical fluctuations, associated with the pairing degree of freedom, left out in finite-temperature mean-field theories. As a numerical application the exact-soluble degenerate model is worked out. In particular, we find that the sharp temperature-induced superfluid-normal phase transition, predicted in the mean-field approximations, is washed out in the PNPS. Some approximations as well as the Landau prescription to include statistical fluctuations are also discussed. We find that the Landau prescription provides a reasonable approximation to the PNPS. (orig.)
Akkermans, J.N.L.; Allaart, K.
1982-01-01
Like in earlier work by Schiffer et al. the effective interaction is derived from experimental two-body multiplets. However, now the assumption is that a multiplet state is formed by two unpaired fermions relative to a core of correlated J = 0 pairs. Then the need for two ranges, as proposed Schiffer, disappears for the force between identical nucleons in a model space which is large enough to include pairing correlations. A form with a single attractive medium range is preferred for the identical nucleon interaction in order to reproduce collective 2 + states in even-even nuclei. In contrast, the proton-neutron force requires a very short range or two ranges to reproduce the empirical values of multipole coefficients, observed in odd-odd nuclei. Therefore we discuss the fact that the effective interaction is not always isospin invariant. As a typical case broken-pair calculations in the N = 50 region are considered. But the conclusions drawn, will also apply to other regions of the periodic table. (orig.)
Angular correlations of coincident electron-positron pairs in heavy ion collisions
Graf, O.
1988-10-01
In the present thesis angular correlations of coincident electron-positron pairsnin heavy ion collisions are studied. It is meant as a contribution to the answer of fundamental questions in the quantum electrodynamics of strong fields. (orig./HSI) [de
Pichette, Charles; Giudice, Andrea; Thibault, Simon; Bérubé-Lauzière, Yves
2016-11-20
Single-photon avalanche diodes (SPADs) achieving high timing resolution (≈20-50 ps) developed for time-correlated single-photon counting (TCSPC) generally have very small photosensitive areas (25-100 μm in diameter). This limits the achievable photon counting rate and signal-to-noise ratio and may lead to long counting times. This is detrimental in applications requiring several measurements, such as fluorescence lifetime imaging (FLIM) microscopy, which requires scanning, and time-domain diffuse optical tomography (TD-DOT). We show in this work that the use of an immersion lens directly affixed onto the photosensitive area of the SPAD helps alleviate this problem by allowing more light to be concentrated onto the detector. Following careful optical design and simulations, our experimental results show that it is actually possible to achieve the predicted theoretical increase in the photon counting rate (we achieve a factor of ≈4 here). This work is of high relevance in high timing resolution TCSPC with small photosensitive area detectors and should find widespread interest in FLIM and TD-DOT with SPADs.
J. Spałek
2010-01-01
Full Text Available We use the concept of generalized (almost localized Fermi Liquid composed of nonstandard quasiparticles with spin-dependence effective masses and the effective field induced by electron correlations. This Fermi liquid is obtained within the so-called statistically-consistent Gutzwiller approximation (SGA proposed recently [cf. J. Jędrak et al., arXiv: 1008.0021] and describes electronic states of the correlated quantum liquid. Particular emphasis is put on real space pairing driven by the electronic correlations, the Fulde-Ferrell state of the heavy-fermion liquid, and the d-wave superconducting state of high temperature curate superconductors in the overdoped limit. The appropriate phase diagrams are discussed showing in particular the limits of stability of the Bardeen-Cooper-Schrieffer (BCS type of state.
Exploring the brain on multiple scales with correlative two-photon and light sheet microscopy
Silvestri, Ludovico; Allegra Mascaro, Anna Letizia; Costantini, Irene; Sacconi, Leonardo; Pavone, Francesco S.
2014-02-01
One of the unique features of the brain is that its activity cannot be framed in a single spatio-temporal scale, but rather spans many orders of magnitude both in space and time. A single imaging technique can reveal only a small part of this complex machinery. To obtain a more comprehensive view of brain functionality, complementary approaches should be combined into a correlative framework. Here, we describe a method to integrate data from in vivo two-photon fluorescence imaging and ex vivo light sheet microscopy, taking advantage of blood vessels as reference chart. We show how the apical dendritic arbor of a single cortical pyramidal neuron imaged in living thy1-GFP-M mice can be found in the large-scale brain reconstruction obtained with light sheet microscopy. Starting from the apical portion, the whole pyramidal neuron can then be segmented. The correlative approach presented here allows contextualizing within a three-dimensional anatomic framework the neurons whose dynamics have been observed with high detail in vivo.
Gainutdinov, R.Kh.; Khamadeev, M.A.; Mutygullina, A.A.
2010-01-01
Complete text of publication follows. We discuss various approaches to problem of the electron-positron pair creation in the strong external field. Special interest presents the circuit, in which the interaction of two strong counterpropagating laser beams in vacuum is considered. For the calculation of the probability of the creation the following formula is usually applied: W = 2Im(L (E-H) (ρ L )) = 2m 4 /(2π) 3 ρ L 2 Σ n=1 -∞ 1/n 2 e -nπ /ρ L where ρ L = E L / E cr and E cr = m 2 /e = 1.3 x 10 16 V/cm is the Schwinger field limit. However this expression was obtained even in pioneer works dedicated to vacuum nonlinearity and it based on some approximations. Attempt of the strict analysis has been made in work by introducing the nonlocal form-factor into the Lagrangian. But, as it is well known, such procedure leads to the loss of Lorenz invariance or unitarity. We show that the formalism of generalized quantum dynamic (GQD) opens new opportunities to solve such problems. We show also how it can be made proceeding from nonlocal interaction operator obtained earlier within the framework of the formalism of GQD. Acknowledgements. This work was supported by the Grant of Federal Agency on Education, Russia (Contract number 02.740.11.0428) and by the Grant of Russian President No. NSh 2965.2008.2.
8-Channel acquisition system for Time-Correlated Single-Photon Counting.
Antonioli, S; Miari, L; Cuccato, A; Crotti, M; Rech, I; Ghioni, M
2013-06-01
Nowadays, an increasing number of applications require high-performance analytical instruments capable to detect the temporal trend of weak and fast light signals with picosecond time resolution. The Time-Correlated Single-Photon Counting (TCSPC) technique is currently one of the preferable solutions when such critical optical signals have to be analyzed and it is fully exploited in biomedical and chemical research fields, as well as in security and space applications. Recent progress in the field of single-photon detector arrays is pushing research towards the development of high performance multichannel TCSPC systems, opening the way to modern time-resolved multi-dimensional optical analysis. In this paper we describe a new 8-channel high-performance TCSPC acquisition system, designed to be compact and versatile, to be used in modern TCSPC measurement setups. We designed a novel integrated circuit including a multichannel Time-to-Amplitude Converter with variable full-scale range, a D∕A converter, and a parallel adder stage. The latter is used to adapt each converter output to the input dynamic range of a commercial 8-channel Analog-to-Digital Converter, while the integrated DAC implements the dithering technique with as small as possible area occupation. The use of this monolithic circuit made the design of a scalable system of very small dimensions (95 × 40 mm) and low power consumption (6 W) possible. Data acquired from the TCSPC measurement are digitally processed and stored inside an FPGA (Field-Programmable Gate Array), while a USB transceiver allows real-time transmission of up to eight TCSPC histograms to a remote PC. Eventually, the experimental results demonstrate that the acquisition system performs TCSPC measurements with high conversion rate (up to 5 MHz/channel), extremely low differential nonlinearity (<0.04 peak-to-peak of the time bin width), high time resolution (down to 20 ps Full-Width Half-Maximum), and very low crosstalk between channels.
Awan, Kashif M.; Dolgaleva, Ksenia; Mumthaz Muhammed, Mufasila; Roqan, Iman S.
2016-01-01
Gallium Nitride (GaN), along with other III-Nitrides, is attractive for optoelectronic and electronic applications due to its wide direct energy bandgap, as well as high thermal stability. GaN is transparent over a wide wavelength range from infra-red to the visible band, which makes it suitable for lasers and LEDs. It is also expected to be a suitable candidate for integrated nonlinear photonic circuits for a wide range of applications from all-optical signal processing to quantum computing and on-chip wavelength conversion. Despite its abundant use in commercial devices, there is still need for suitable substrate materials to reduce high densities of threading dislocations (TDs) and other structural defects like stacking faults, and grain boundaries. All these defects degrade the optical quality of the epi-grown GaN layer as they act as non-radiative recombination centers.
Awan, Kashif M.
2016-08-11
Gallium Nitride (GaN), along with other III-Nitrides, is attractive for optoelectronic and electronic applications due to its wide direct energy bandgap, as well as high thermal stability. GaN is transparent over a wide wavelength range from infra-red to the visible band, which makes it suitable for lasers and LEDs. It is also expected to be a suitable candidate for integrated nonlinear photonic circuits for a wide range of applications from all-optical signal processing to quantum computing and on-chip wavelength conversion. Despite its abundant use in commercial devices, there is still need for suitable substrate materials to reduce high densities of threading dislocations (TDs) and other structural defects like stacking faults, and grain boundaries. All these defects degrade the optical quality of the epi-grown GaN layer as they act as non-radiative recombination centers.
Korchin, Alexander Yu.; Kovalchuk, Vladimir A.
2014-01-01
The Higgs-boson decay h @→ γl + l - for various lepton states l = (e, μ, τ) is analyzed. The differential decay width and forward-backward asymmetry are calculated as functions of the dilepton invariant mass in a model where the Higgs boson interacts with leptons and quarks via a mixture of scalar and pseudoscalar couplings. These couplings are partly constrained from data on the decays to leptons, h @→ l + l - , and quarks h @→ q anti q (where q = (c, b)), while the Higgs couplings to the top quark are chosen from the two-photon and two-gluon decay rates. Nonzero values of the forward-backward asymmetry will manifest effects of new physics in the Higgs sector. The decay width and asymmetry integrated over the dilepton invariant mass are also presented. (orig.)
Männer, R.
1989-12-01
This paper describes a systolic array processor for a ring image Cherenkov counter which is capable of identifying pairs of electron circles with a known radius and a certain minimum distance within 15 μs. The processor is a very flexible and fast device. It consists of 128 x 128 processing elements (PEs), where one PE is assigned to each pixel of the image. All PEs run synchronously at 40 MHz. The identification of electron circles is done by correlating the detector image with the proper circle circumference. Circle centers are found by peak detection in the correlation result. A second correlation with a circle disc allows circles of closed electron pairs to be rejected. The trigger decision is generated if a pseudo adder detects at least two remaining circles. The device is controlled by a freely programmable sequencer. A VLSI chip containing 8 x 8 PEs is being developed using a VENUS design system and will be produced in 2μ CMOS technology.
Maenner, R.
1989-01-01
This paper describes a systolic array processor for a ring image Cherenkov counter which is capable of identifying pairs of electron circles with a known radius and a certain minimum distance within 15 μs. The processor is a very flexible and fast device. It consists of 128x128 processing elements (PEs), where one PE is assigned to each pixel of the image. All PEs run synchronously at 40 MHz. The identification of electron circles is done by correlating the detector image with the proper circle circumference. Circle centers are found by peak detection in the correlation result. A second correlation with a circle disc allows circles of closed electron pairs to be rejected. The trigger decision is generated if a pseudo adder detects at least two remaining circles. The device is controlled by a freely programmable sequencer. A VLSI chip containing 8x8 PEs is being developed using a VENUS design system and will be produced in 2μ CMOS technology. (orig.)
Correlations of high transverse momentum π0 pairs produced at the CERN ISR
Kourkoumelis, C.; Resvanis, L.K.; Filippas, T.A.; Fokitis, E.; Fabjan, C.W.; Fields, T.; Lissauer, D.; Mannelli, I.; Mouzourakis, P.; Nappi, A.; Willis, W.J.; Goldberg, M.; Horwitz, N.; Moneti, G.C.
1979-01-01
Correlations of two π 0 mesons with transverse momenta up to 10 GeV/c have been measured utilizing apparatus with large azimuthal acceptance. The data are analysed in the context of constituent scattering models, and also compared with a simple 'background' hypothesis. (Auth.)
Measurement of Spin Correlation in Top Quark Pair Production at ATLAS
McLaughlan, Thomas
2014-01-01
This thesis presents a study of spin correlation in tt ̄ production in the ATLAS detector, in proton-proton collisions, corresponding to an integrated luminosity of 4.7 fb$^{−1}$, with a centre of mass energy of $\\sqrt{s}$ = 7 TeV. Both the dilepton and single lepton channels are considered, the latter providing a greater challenge due to the neccessity to reconstruct the down-type quark resulting from the W boson decay. A simple technique is employed to reconstruct single lepton $t\\bar{t}$ events, with the transverse angle between the charged lepton and down-type quark used as a probe of the spin correlation. In the dilepton channel, the transverse angle between both charged leptons is used. The extracted value of spin correlation in each channel is consistent with Standard Model predictions, with the result in the eμ channel alone sufficient to exclude a model without spin correlation at 7.8$\\sigma$. Also described is the author’s contribution to the maintenance and development of the Atlantis Event D...
Nuchal translucency measurements are highly correlated in both mono- and dichorionic twin pairs
Wøjdemann, Karen R; Larsen, Severin Olesen; Shalmi, Anne-Cathrine
2006-01-01
OBJECTIVES: To establish the distribution of serological and ultrasound first-trimester Down syndrome markers in twins and identify correlations of significance for risk calculation. METHODS: Nuchal translucency (NT), PAPP-A and betahCG data were extracted from 181 twin pregnancies (31 mono- and ...
Polarization correlations of {sup 1}S{sub 0} proton pairs as tests of hidden-variable theories
Polachic, C.; Rangacharyulu, C.; Berg, A.M. van den; Hamieh, S.; Harakeh, M.N.; Hunyadi, M.; Huu, M.A. de; Woertche, H.J.; Heyse, J.; Baeumer, C.; Frekers, D.; Rakers, S.; Brooke, J.A.; Busch, P
2004-03-22
We are investigating the feasibility of nuclear physics experiments designed to overcome the loopholes of observer-dependent reality and satisfying the counterfactuality condition. In a first approach, we have measured polarization correlations of {sup 1}S{sub 0} proton pairs produced in {sup 12}C(d, {sup 2}He) and {sup 1}H(d, {sup 2}He) reactions in one setting. The results of these measurements are used to test the Bell and Wigner-Belinfante inequalities against the predictions of quantum mechanics.
Brezinski, M E
2018-01-01
Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.
Brezinski, ME
2018-01-01
Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.
Martin, Franck
1999-01-01
The measurement of the W boson mass is a key issue of LEP2. In the W + W - → q 1 q 2 -bar q 3 q 4 -bar channel, a large systematic error comes from Bose-Einstein correlations, which could induce a non-independent fragmentation of the two W. This thesis deals with the measurements of these correlations in W boson pair decays. We will focus on the measurement of such correlations between points from different decaying W. The standard model theory and the ALEPH experiment are described in the two first chapters. The analysis requires a selection of W + W - → q 1 q 2 -bar lν l events, which is presented in chapter three. The W + W - → q 1 q 2 -bar q 3 q 4 -bar and W + W - → q 1 q 2 -bar τν event selections are also described in this part. The different phenomenological models of Bose-Einstein correlations are reviewed in chapter four, with their adjustment on the ALEPH data recorded at √s = 91 GeV. The model predictions are compared to results of measurements done in W + W - decays observed at energies of collisions of 172, 183 and 189 GeV. Bose-Einstein correlations between pions coming from different W in the W + W - → q 1 q 2 -bar q 3 q 4 -bar channel are disfavored by 2.7 standard deviations. (author)
Yaddanapudi, S; Cai, B; Sun, B; Noel, C; Goddu, S; Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States)
2015-06-15
Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful for measuring several parameters of interest in linear accelerator (linac) quality assurance (QA). The purpose of this project was to evaluate the feasibility of using EPIDs for determining linac photon beam energies. Methods: Two non-clinical Varian TrueBeam linacs (Varian Medical Systems, Palo Alto, CA) with 6MV and 10MV photon beams were used to perform the measurements. The linacs were equipped with an amorphous silicon based EPIDs (aSi1000) that were used for the measurements. We compared the use of flatness versus percent depth dose (PDD) for predicting changes in linac photon beam energy. PDD was measured in 1D water tank (Sun Nuclear Corporation, Melbourne FL) and the profiles were measured using 2D ion-chamber array (IC-Profiler, Sun Nuclear) and the EPID. Energy changes were accomplished by varying the bending magnet current (BMC). The evaluated energies conformed with the AAPM TG142 tolerance of ±1% change in PDD. Results: BMC changes correlating with a ±1% change in PDD corresponded with a change in flatness of ∼1% to 2% from baseline values on the EPID. IC Profiler flatness values had the same correlation. We observed a similar trend for the 10MV beam energy changes. Our measurements indicated a strong correlation between changes in linac photon beam energy and changes in flatness. For all machines and energies, beam energy changes produced change in the uniformity (AAPM TG-142), varying from ∼1% to 2.5%. Conclusions: EPID image analysis of beam profiles can be used to determine linac photon beam energy changes. Flatness-based metrics or uniformity as defined by AAPM TG-142 were found to be more sensitive to linac photon beam energy changes than PDD. Research funding provided by Varian Medical Systems. Dr. Sasa Mutic receives compensation for providing patient safety training services from Varian Medical Systems, the sponsor of this study.
Schach Von Wittenau, Alexis E.
2003-01-01
A method is provided to represent the calculated phase space of photons emanating from medical accelerators used in photon teletherapy. The method reproduces the energy distributions and trajectories of the photons originating in the bremsstrahlung target and of photons scattered by components within the accelerator head. The method reproduces the energy and directional information from sources up to several centimeters in radial extent, so it is expected to generalize well to accelerators made by different manufacturers. The method is computationally both fast and efficient overall sampling efficiency of 80% or higher for most field sizes. The computational cost is independent of the number of beams used in the treatment plan.
Gleiber Couto Santos
2015-12-01
Full Text Available AbstractInterpersonal interactions as social processes reflect and influence individuals' mental health. The aim of the study was to verify how marital interactions relate to mental health, and to investigate evidence for the validity of the Checklist for Interpersonal Transactions II (CLOIT-II. Participants were 169 couples from the southeast of the Brazilian state of Goiás, aged between 18 and 55 years ( M = 21; SD = 5.48. They responded to a General Health Questionnaire (GHQ and the CLOIT-II. Participants with low mental health problem scores in the GHQ (asymptomatic participants tended to occupy interpersonal positions in the range between Deference/Trust and Affective warmth/Friendliness. In the group with high scores (symptomatic participants, interactions were defined by Coldness/Hostility.Mental health problems were positively correlated with mistrust, coldness and hostility and negatively correlated with positions of Affiliation. These results, in addition to supporting the validity of the CLOIT-II, indicate that the study of interpersonal relationships is relevant for the understanding of mental health.
Probing short-range correlations in asymmetric nuclei with quasi-free pair knockout reactions
Stevens, Sam; Ryckebusch, Jan; Cosyn, Wim; Waets, Andreas
2018-02-01
Short-range correlations (SRC) in asymmetric nuclei with an unusual neutron-to-proton ratio can be studied with quasi-free two-nucleon knockout processes following the collision between accelerated ions and a proton target. We derive an approximate factorized cross section for those SRC-driven p (A ,p‧N1N2) reactions. Our reaction model hinges on the factorization properties of SRC-driven A (e ,e‧N1N2) reactions for which strong indications are found in theory-experiment comparisons. In order to put our model to the test we compare its predictions with results of 12C (p ,p‧ pn) measurements conducted at Brookhaven National Laboratory (BNL) and find a fair agreement. The model can also reproduce characteristic features of SRC-driven two-nucleon knockout reactions, like back-to-back emission of the correlated nucleons. We study the asymmetry dependence of nuclear SRC by providing predictions for the ratio of proton-proton to proton-neutron knockout cross sections for the carbon isotopes 9-15C thereby covering neutron excess values (N - Z) / Z between -0.5 and +0.5.
CORRELATION OF CHANDRA PHOTONS WITH THE RADIO GIANT PULSES FROM THE CRAB PULSAR
Bilous, A. V.; McLaughlin, M. A.; Kondratiev, V. I.; Ransom, S. M.
2012-01-01
No apparent correlation was found between giant pulses (GPs) and X-ray photons from the Crab pulsar during 5.4 hr of simultaneous observations with the Green Bank Telescope at 1.5 GHz and Chandra X-Ray Observatory primarily in the energy range of 1.5-4.5 keV. During the Crab pulsar periods with GPs, the X-ray flux in radio emission phase windows does not change more than by ±10% for main pulse (MP) GPs and ±30% for interpulse (IP) GPs. During GPs themselves, the X-ray flux does not change by more than two times for MP GPs and five times for IP GPs. All limits quoted are compatible with 2σ fluctuations of the X-ray flux around the sets of false GPs with random arrival times. The results speak in favor of changes in plasma coherence as the origin of GPs. However, the results do not rule out variations in the rate of particle creation if the particles that emit coherent radio emission are mostly at the lowest Landau level.
Dynamics and rheology under continuous shear flow studied by x-ray photon correlation spectroscopy
Fluerasu, Andrei [Brookhaven National Laboratory, NSLS-II, Upton, NY 11973 (United States); Kwasniewski, Pawel; Caronna, Chiara; Madsen, Anders [European Synchrotron Radiation Facility, ID10 (Troika), Grenoble 38043 (France); Destremaut, Fanny; Salmon, Jean-Baptiste [LOF, UMR 5258 CNRS-Rhodia Bordeaux 1, 33608 Pessac (France)], E-mail: fluerasu@bnl.gov
2010-03-15
X-ray photon correlation spectroscopy (XPCS) has emerged as a unique technique allowing the measurement of dynamics of materials on mesoscopic lengthscales. One of the most common problems associated with the use of bright x-ray beams is beam-induced radiation damage, and this is likely to become an even more limiting factor at future synchrotron and free-electron laser sources. Flowing the sample during data acquisition is one of the simplest methods allowing the radiation damage to be limited. In addition to distributing the dose over many different scatterers, the method also enables new functionalities such as time-resolved studies. Here, we further develop a recently proposed experimental technique that combines XPCS and continuously flowing samples. More specifically, we use a model colloidal suspension to show how the macroscopic advective response to flow and the microscopic dissipative dynamics (diffusion) can be quantified from the x-ray data. Our results show very good quantitative agreement with a Poisseuille-flow hydrodynamical model combined with Brownian mechanics. The method has many potential applications, e.g. in the study of dynamics of glasses and gels under continuous shear/flow, protein aggregation processes and the interplay between dynamics and rheology in complex fluids.
Johnson, E.
1977-01-01
A theory for site-site pair distribution functions of molecular fluids is derived from the Ornstein-Zernike equation. Atom-atom pair distribution functions of this theory which were obtained by using different approximations for the Percus-Yevick site-site direct correlation functions are compared
Arbor, Nicolas
2013-01-01
At high pT, direct photons produced in Compton and annihilation QCD leading order processes are associated to a jet in the opposite direction. Such processes are tagged experimentally by identifying leading isolated photons and their correlated associated hadrons in the opposite azimuthal direction. The jet fragmentation can be estimated from the hadrons and the photon via the imbalance parameter xE. We present the results extracted from gamma-hadron correlations measured by the ALICE experiment in pp collisions at {\\sqrt(s)} = 7 TeV. Direct photons are first identified using isolated criteria. Then, the remaining contamination from neutral mesons decay photons is subtracted statistically to extract the xE distributions of isolated photon-hadron and isolated {\\pi}^0-hadron correlations.
Martin, Franck [Laboratoire d' Annecy-Le-Vieux de Physique des Particules, Grenoble-1 Univ., 74 Annecy (France)
1999-04-16
The measurement of the W boson mass is a key issue of LEP2. In the W{sup +}W{sup -} {yields} q{sub 1}q{sub 2}-bar q{sub 3}q{sub 4}-bar channel, a large systematic error comes from Bose-Einstein correlations, which could induce a non-independent fragmentation of the two W. This thesis deals with the measurements of these correlations in W boson pair decays. We will focus on the measurement of such correlations between points from different decaying W. The standard model theory and the ALEPH experiment are described in the two first chapters. The analysis requires a selection of W{sup +}W{sup -} {yields} q{sub 1}q{sub 2}-bar l{nu}{sub l} events, which is presented in chapter three. The W{sup +}W{sup -} {yields} q{sub 1}q{sub 2}-bar q{sub 3}q{sub 4}-bar and W{sup +}W{sup -} {yields} q{sub 1}q{sub 2}-bar {tau}{nu} event selections are also described in this part. The different phenomenological models of Bose-Einstein correlations are reviewed in chapter four, with their adjustment on the ALEPH data recorded at {radical}s = 91 GeV. The model predictions are compared to results of measurements done in W{sup +}W{sup -} decays observed at energies of collisions of 172, 183 and 189 GeV. Bose-Einstein correlations between pions coming from different W in the W{sup +}W{sup -} {yields} q{sub 1}q{sub 2}-bar q{sub 3}q{sub 4}-bar channel are disfavored by 2.7 standard deviations.
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Z. M.; Li, Y.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, Y. G.; Ma, G. L.; Ma, L.; Ma, R.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, X.; Sun, Z.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, N.; Szelezniak, M. A.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Wang, H.; Wang, J. S.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, Q. H.; Xu, Z.; Xu, H.; Xu, N.; Xu, Y. F.; Yang, Q.; Yang, Y.; Yang, S.; Yang, Y.; Yang, C.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, J. B.; Zhang, S.; Zhang, Z.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration
2015-12-01
We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in p↑+p collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of 5 standard deviations at high transverse momenta, at high pseudorapidities η >0.5 , and for pair masses around the mass of the ρ meson. This is the first direct transversity measurement in p +p collisions.
Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandin, A V; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cervantes, M C; Chakaberia, I; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, X; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kollegger, T; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, X; Li, C; Li, W; Li, Z M; Li, Y; Li, X; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, Y G; Ma, G L; Ma, L; Ma, R; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; Meehan, K; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Peterson, A; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, M K; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Skoby, M J; Smirnov, D; Smirnov, N; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, X; Sun, Z; Sun, X M; Sun, Y; Surrow, B; Svirida, N; Szelezniak, M A; Tang, A H; Tang, Z; Tarnowsky, T; Tawfik, A N; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Trzeciak, B A; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wang, G; Wang, Y; Wang, F; Wang, Y; Wang, H; Wang, J S; Webb, J C; Webb, G; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z G; Xie, W; Xin, K; Xu, Q H; Xu, Z; Xu, H; Xu, N; Xu, Y F; Yang, Q; Yang, Y; Yang, S; Yang, Y; Yang, C; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, X P; Zhang, J; Zhang, Y; Zhang, J; Zhang, J B; Zhang, S; Zhang, Z; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M
2015-12-11
We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in p^{↑}+p collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of 5 standard deviations at high transverse momenta, at high pseudorapidities η>0.5, and for pair masses around the mass of the ρ meson. This is the first direct transversity measurement in p+p collisions.
An investigation of proton pair correlations relevant to the neutrinoless double beta decay of 76Ge
Ticehurst, David R.
The observation of neutrinoless double beta decay (0nubetabeta ) would demonstrate that the neutrino is a Majorana particle and allow determination of its mass by comparing the measured decay rate to the calculated rate. The main uncertainty in the calculation of the 0 nubetabeta rate is due to uncertainties in the nuclear structure models used in the computation of the nuclear matrix elements for the decay process. This project tested the validity of using wavefunctions for the nuclear states involved in the 0nubetabeta process that are based on a first-order application of the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. In the BCS approximation, most of the strength for two-nucleon transfer reactions should be for transitions to the 0 + ground state of the final nucleus (i.e., little strength should go to the 0+ excited states). This experiment measured the strength to the first 0+ excited state for the 74Ge( 3He,n)76Se and 76Ge( 3He,n)78Se reactions relative to the strength for transition to the 0+ ground state in selenium. For both nuclei, and at 3He beam energies of 15 and 21 MeV, the observed relative strength for transfer to the first 0+ excited state was less than 13%. This result supports the validity of using the BCS approximation to describe the ground state of both 76Se and 78Se and is consistent with the results of recent ( 3He,n) cross section measurements on 74Ge and 76Ge. In addition, the magnitude and shape of the measured angular distributions suggest that contribution of the sequential two-nucleon transfer process, which is an indicator of long-range nucleon-nucleon correlations, is over-predicted by the DWBA code FRESCO.
Chen, Hsiao-Fan; Gardner, Daniel M; Carmieli, Raanan; Wasielewski, Michael R
2013-10-07
Ordered multi-spin assemblies are required for developing solid-state molecule-based spintronics. A linear donor-chromophore-acceptor (D-C-A) molecule was covalently attached inside the 150 nm diam. nanopores of an anodic aluminum oxide (AAO) membrane. Photoexcitation of D-C-A in a 343 mT magnetic field results in sub-nanosecond, two-step electron transfer to yield the spin-correlated radical ion pair (SCRP) (1)(D(+)˙-C-A(-)˙), which then undergoes radical pair intersystem crossing (RP-ISC) to yield (3)(D(+)˙-C-A(-)˙). RP-ISC results in S-T0 mixing to selectively populate the coherent superposition states |S'> and |T'>. Microwave-induced transitions between these states and the unpopulated |T(+1)> and |T(-1)> states result in spin-polarized time-resolved EPR (TREPR) spectra. The dependence of the electron spin polarization (ESP) phase of the TREPR spectra on the orientation of the AAO membrane pores relative to the externally applied magnetic field is used to determine the overall orientation of the SCRPs within the pores at room temperature.
Diamare, D., E-mail: d.diamare@ee.ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom); Wojdak, M. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom); Lettieri, S. [Institute for Superconductors and Innovative Materials, National Council of Research (CNR-SPIN), Via Cintia 80126, Naples (Italy); Department of Physical Sciences, University of Naples “Federico II”, Via Cintia 80126, Naples (Italy); Kenyon, A.J. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom)
2013-04-15
We report time-resolved photoluminescence measurements of thin films of silica containing silicon nanoclusters (Si NCs), produced by PECVD and annealed at temperatures between 700 °C and 1150 °C. While the near infrared emission of Si NCs has long been studied, visible light emission has only recently attracted interest due to its very short decay times and its recently-reported redshift with decreasing NCs size. We analyse the PL decay dynamics in the range 450–700 nm with picosecond time resolution using Time Correlated Single Photon Counting. In the resultant multi-exponential decays two dominant components can clearly be distinguished: a very short component, in the range of hundreds of picoseconds, and a nanosecond component. In this wavelength range we do not detect the microsecond component generally associated with excitonic recombination. We associate the nanosecond component to defect relaxation: it decreases in intensity in the sample annealed at higher temperature, suggesting that the contribution from defects decreases with increasing temperature. The origin of the very fast PL component (ps time region) is also discussed. We show that it is consistent with the Auger recombination times of multiple excitons. Further work needs to be done in order to assess the contribution of the Auger-controlled recombinations to the defect-assisted mechanism of photoluminescence. -- Highlights: ► We report time-resolved PL measurements of Si-Ncs embedded in SiO{sub 2} matrix. ► Net decrease of PL with increasing the annealing temperature has been observed. ► Lifetime distribution analysis revealed a multiexponential decay with ns and ps components. ► Ps components are consistent with the lifetime range of the Auger recombination times. ► No evidence for a fast direct transition at the Brillouin zone centre.
Pair q-coherent states and their antibunching effects
Wang Zhongqing; Li Junhong; An Guanglei; Chongqing Univ. of Posts and Telecommunications, Chongqing
2005-01-01
Using the properties of the q-deformed boson creation and annihilation operators and their inverse operators, two kind of q-deformed pair coherent states are introduced. Antibunching effects and correlation properties between two modes in the states are investigated. It is shown that q-deformed pair coherent states exhibit antibunching effects and the photons of the two modes are correlated. These nonclassical effects are influenced by the parameter q. These effects increase when |lnq| increases. (authors)
Mueller, L.; Waldorf, M.; Klemradt, U.; Gutt, C.; Gruebel, G.; Madsen, A.; Finlayson, T. R.
2011-01-01
Results of a x-ray photon correlation spectroscopy experiment on the very weakly first order martensitic transformation of a Au 50.5 Cd 49.5 single crystal are presented. Slow non-equilibrium-dynamics are observed in a narrow temperature interval in the direct vicinity of the otherwise athermal phase transformation. These dynamics are associated with the martensite-aging effect. The dynamical aging is accompanied by an avalanchelike behavior which is identified with an incubation-time phenomenon.
Müller, L; Waldorf, M; Gutt, C; Grübel, G; Madsen, A; Finlayson, T R; Klemradt, U
2011-09-02
Results of a x-ray photon correlation spectroscopy experiment on the very weakly first order martensitic transformation of a Au50.5Cd49.5 single crystal are presented. Slow non-equilibrium-dynamics are observed in a narrow temperature interval in the direct vicinity of the otherwise athermal phase transformation. These dynamics are associated with the martensite-aging effect. The dynamical aging is accompanied by an avalanchelike behavior which is identified with an incubation-time phenomenon.
Bailey, B.R.
1993-01-01
Symmetry breaking and the question of the origin of mass are the reasons the Superconducting Super Collider and the Large Hadron Collider are being built. The Standard Model of particle physics provides a solution to this problem by proposing the existence of a neutral scalar particle, the Higgs boson. This particle, via its interactions, gives mass to all of the particles in the Standard Model. The question of whether the Higgs boson can be detected at these machines depends critically on its final state decays. These decays in turn depend crucially on the mass of the Higgs boson, an unknown parameter of the theory. A lower bound of the Higgs mass has been set by experiment and a upper bound via theoretical arguments. Throughout much of the mass range Higgs decays via weak gauge bosons yield a clear signal. However, near the lower limit, the so-called intermediate mass region, the situation is less clear. In this region Higgs decays into photon pairs have been suggested as a viable signal. The significance of such a signal depends on other competing processes or backgrounds. This dissertation attempts to answer the question, open-quotes Can the Intermediate mass Higgs boson be detected via its electromagnetic decays?close quotes To answer this question various Standard Model processes are calculated to the leading-log and next-to-leading-log level in a Monte Carlo environment
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Micanovic, Sasa; Sudic, Lucija; Susa, Tatjana; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Assran, Yasser; Elkafrawy, Tamer; Mahrous, Ayman; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Peltola, Timo; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sabes, David; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schomakers, Christian; Schulte, Jan-Frederik; Schulz, Johannes; Verlage, Tobias; Weber, Hendrik; Zhukov, Valery; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Flügge, Günter; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Eckerlin, Guenter; Eckstein, Doris; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Keaveney, James; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Seitz, Claudia; Spannagel, Simon; Stefaniuk, Nazar; Trippkewitz, Karim Damun; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Poehlsen, Jennifer; Sander, Christian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Barth, Christian; Baus, Colin; Berger, Joram; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Fink, Simon; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Goldenzweig, Pablo; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Filipovic, Nicolas; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bahinipati, Seema; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Kole, Gouranga; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhowmik, Sandeep; Dewanjee, Ram Krishna; Ganguly, Sanmay; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Rane, Aditee; Sharma, Seema; Behnamian, Hadi; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Fahim, Ali; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Chiorboli, Massimiliano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Nardo, Guglielmo; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; La Licata, Chiara; Schizzi, Andrea; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Brochero Cifuentes, Javier Andres; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Lee, Haneol; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunchul; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Chtchipounov, Leonid; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Murzin, Victor; Oreshkin, Vadim; Sulimov, Valentin; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Chistov, Ruslan; Danilov, Mikhail; Rusinov, Vladimir; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Rusakov, Sergey V; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Blinov, Vladimir; Skovpen, Yuri; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Gulhan, Doga; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Kousouris, Konstantinos; Krammer, Manfred; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Wardle, Nicholas; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lecomte, Pierre; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Yang, Yong; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Sunar Cerci, Deniz; Tali, Bayram; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Buccilli, Andrew; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Berry, Edmund; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Jesus, Orduna; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Spencer, Eric; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Holzner, André; Klein, Daniel; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mccoll, Nickolas; Mullin, Sam Daniel; Ovcharova, Ana; Richman, Jeffrey; Stuart, David; Suarez, Indara; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Lawhorn, Jay Mathew; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cremonesi, Matteo; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Shchutska, Lesya; Sperka, David; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bein, Samuel; Diamond, Brendan; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Santra, Arka; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Turner, Paul; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zakaria, Mohammed; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Osherson, Marc; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Bruner, Christopher; Castle, James; Forthomme, Laurent; Kenny III, Raymond Patrick; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bartek, Rachel; Bloom, Kenneth; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Malta Rodrigues, Alan; Meier, Frank; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Hortiangtham, Apichart; Knapp, Benjamin; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Hahn, Kristan Allan; Kubik, Andrew; Kumar, Ajay; Low, Jia Fu; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Lange, David; Luo, Jingyu; Marlow, Daniel; Medvedeva, Tatiana; Mei, Kelvin; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Jung, Kurt; Miller, David Harry; Neumeister, Norbert; Shi, Xin; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Chou, John Paul; Contreras-Campana, Emmanuel; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Nash, Kevin; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Juska, Evaldas; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel
2016-07-28
A search for the resonant production of high-mass photon pairs is presented. The analysis is based on samples of proton-proton collision data collected by the CMS experiment at center-of-mass energies of 8 and 13 TeV, corresponding to integrated luminosities of 19.7 and 3.3 fb$^{-1}$, respectively. The search focuses on spin-0 and spin-2 resonances with masses between 0.5 and 4 TeV and with widths, relative to the mass, between $ 1.4 \\times 10^{-4}$ and $ 5.6 \\times 10^{-2}$. Limits are set on scalar resonances produced through gluon-gluon fusion, and on Randall-Sundrum gravitons. A modest excess of events compatible with a narrow resonance with a mass of about 750 GeV is observed. The local significance of the excess is approximately 3.4 standard deviations. The significance is reduced to 1.6 standard deviations once the effect of searching under multiple signal hypotheses is considered. More data are required to determine the origin of this excess.
Sato, K.; Kobayashi, Y.
2015-05-01
Enhancement of molecular sensitivity in positron emission tomography (PET) has long been discussed with respect to imaging instrumentation and algorithms for data treatment. Here, the molecular sensitivity in PET is discussed on the basis of 2-dimensional coincident measurements of 511 keV γ ray photons resultant from two-photon annihilation. Introduction of an additional selection window based on the energy sum and difference of the coincidently measured γ ray photons, without any significant instrumental and algorithmic changes, showed an improvement in the signal-to-noise ratio (SNR) by an order of magnitude. Improvement of performance characteristics in the PET imaging system was demonstrated by an increase in the noise equivalent count rate (NECR) which takes both the SNR and the detection efficiency into consideration. A further improvement of both the SNR and the NECR is expected for the present system in real clinical and in-vivo environments, where much stronger positron sources are employed.
Sato, K.; Kobayashi, Y.
2015-01-01
Enhancement of molecular sensitivity in positron emission tomography (PET) has long been discussed with respect to imaging instrumentation and algorithms for data treatment. Here, the molecular sensitivity in PET is discussed on the basis of 2-dimensional coincident measurements of 511 keV γ ray photons resultant from two-photon annihilation. Introduction of an additional selection window based on the energy sum and difference of the coincidently measured γ ray photons, without any significant instrumental and algorithmic changes, showed an improvement in the signal-to-noise ratio (SNR) by an order of magnitude. Improvement of performance characteristics in the PET imaging system was demonstrated by an increase in the noise equivalent count rate (NECR) which takes both the SNR and the detection efficiency into consideration. A further improvement of both the SNR and the NECR is expected for the present system in real clinical and in-vivo environments, where much stronger positron sources are employed
Correlated two-photon interference in a dual-beam Michelson interferometer
Kwiat, P.G.; Vareka, W.A.; Hong, C.K.; Nathel, H.; Chiao, R.Y.
1990-01-01
We report on an interference effect arising from a two-photon entangled state produced in a potassium dihydrogen phosphate (KDP) crystal pumped by an ultraviolet argon-ion laser. Two conjugate beams of signal and idler photons were injected in a parallel configuration into a single Michelson interferometer, and detected separately by two photomultipliers, while the difference in its arm lengths was slowly scanned. The coincidence rate exhibited fringes with a visibility of nearly 50%, and a period given by half the ultraviolet (not the signal or idler) wavelength, while the singles rate exhibited no fringes
Coherence revivals in two-photon frequency combs
Torres-Company, Victor; Lancis, Jesus; Lajunen, Hanna; Friberg, Ari T.
2011-01-01
We describe and theoretically analyze the self-imaging Talbot effect of entangled photon pairs in the time domain. Rich phenomena are observed in coherence propagation along dispersive media of mode-locked two-photon states with frequency entanglement exhibiting a comblike correlation function. Our results can be used to remotely transfer frequency standards through optical fiber networks with two-photon light, avoiding the requirement of dispersion compensation.
Field, J.H.
1984-01-01
The current status, both theoretical and experimental, of two photon collision physics is reviewed with special emphasis on recent experimental results from e + e - storage rings. After a complete presentation of the helicity amplitude formalism for the general process e + e - → Xe + e - , various approximations (transverse photon, Weisaecker Williams) are discussed. Beam polarisation effects and radiative corrections are also briefly considered. A number of specific processes, for which experimental results are now available, are then described. In each case existing theoretical prediction are confronted with experimental results. The processes described include single resonance production, lepton and hadron pair production, the structure functions of the photon, the production of high Psub(T) jets and the total photon photon cross section. In the last part of the review the current status of the subject is summarised and some comments are made on future prospects. These include both extrapolations of current research to higher energy machines (LEP, HERA) as well as a brief mention of both the technical realisation and the physics interest of the real γγ and eγ collisions which may be possible using linear electron colliders in the 1 TeV energy range
Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Becker, Wolfgang; Smietana, Stefan [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Milnes, James; Conneely, Thomas [Photek Ltd., 26 Castleham Rd, Saint Leonards-on-Sea TN38 9NS (United Kingdom); Jagutzki, Ottmar [Institut für Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany)
2016-08-15
We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.
Exciton absorption of entangled photons in semiconductor quantum wells
Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team
2013-03-01
The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes
Fiber-coupled NbN superconducting single-photon detectors for quantum correlation measurements
Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gorska, M.; Reiger, E.; Dorenbos, S.; Zwiller, V.; Milostnaya, I.; Minaeva, O.
2007-01-01
We have fabricated fiber-coupled superconducting single-photon detectors (SSPDs), designed for quantum-correlationtype experiments. The SSPDs are nanostructured (~100-nm wide and 4-nm thick) NbN superconducting meandering stripes, operated in the 2 to 4.2 K temperature range, and known for ultrafast
Tracking biochemical changes correlated with ultra-weak photon emission using metabolomics
Burgos, R.C.R.; Červinková, Kateřina; van der Laan, T.; Ramautar, R.; van Wijk, E.P.A.; Cifra, Michal; Koval, S.; Berger, R.; Hankemeier, T.; van der Greef, J.
-, č. 163 (2016), s. 237-245 ISSN 1011-1344 R&D Projects: GA ČR GA13-29294S Institutional support: RVO:67985882 Keywords : Ultra-weak photon emission * Capillary electrophoresis-mass spectrometry * HL-60 cells Subject RIV: BO - Biophysics Impact factor: 2.673, year: 2016
Fankhauser, Franz Ii; Ott, Maria; Munteanu, Mihnea
2016-01-01
Photon-correlation spectroscopy (PCS) (quasi-elastic light scattering spectroscopy, dynamic light scattering spectroscopy) allows the non-invasively reveal of local dynamics and local heterogeneities of macromolecular systems. The capability of this technique to diagnose the retinal pathologies by in-vivo investigations of spatial anomalies of retinas displaying non-exudative senile macular degeneration was evaluated. Further, the potential use of the technique for the diagnosis of the macular degeneration was analyzed and displayed by the Receiver Operating Curve (ROC). The maculae and the peripheral retina of 73 normal eyes and of 26 eyes afflicted by an early stage of non-exudative senile macular degeneration were characterized by time-correlation functions and analyzed in terms of characteristic decay times and apparent size distributions. The characteristics of the obtained time-correlation functions of the eyes afflicted with nonexudative macular degeneration and of normal eyes differed significantly, which could be referred to a significant change of the nano- and microstructure of the investigated pathologic maculas. Photon-correlation spectroscopy is able to assess the macromolecular and microstructural aberrations in the macula afflicted by non-exudative, senile macular degeneration. It has been demonstrated that macromolecules of this disease show a characteristic abnormal behavior in the macula.
Experimental generation of complex noisy photonic entanglement
Dobek, K; Banaszek, K; Karpiński, M; Demkowicz-Dobrzański, R; Horodecki, P
2013-01-01
We present an experimental scheme based on spontaneous parametric down-conversion to produce multiple-photon pairs in maximally entangled polarization states using an arrangement of two type-I nonlinear crystals. By introducing correlated polarization noise in the paths of the generated photons we prepare mixed-entangled states whose properties illustrate fundamental results obtained recently in quantum information theory, in particular those concerning bound entanglement and privacy. (paper)
Schmitz, Gunnar; Hättig, Christof
2016-12-21
We present an implementation of pair natural orbital coupled cluster singles and doubles with perturbative triples, PNO-CCSD(T), which avoids the quasi-canonical triples approximation (T0) where couplings due to off-diagonal Fock matrix elements are neglected. A numerical Laplace transformation of the canonical expression for the perturbative (T) triples correction is used to avoid an I/O and storage bottleneck for the triples amplitudes. Results for a test set of reaction energies show that only very few Laplace grid points are needed to obtain converged energy differences and that PNO-CCSD(T) is a more robust approximation than PNO-CCSD(T0) with a reduced mean absolute deviation from canonical CCSD(T) results. We combine the PNO-based (T) triples correction with the explicitly correlated PNO-CCSD(F12*) method and investigate the use of specialized F12-PNOs in the conventional triples correction. We find that no significant additional errors are introduced and that PNO-CCSD(F12*)(T) can be applied in a black box manner.
Schoen, Martin; Haslam, Andrew J; Jackson, George
2017-10-24
The phase behavior and structure of a simple square-well bulk fluid with anisotropic interactions is described in detail. The orientation dependence of the intermolecular interactions allows for the formation of a nematic liquid-crystalline phase in addition to the more conventional isotropic gas and liquid phases. A version of classical density functional theory (DFT) is employed to determine the properties of the model, and comparisons are made with the corresponding data from Monte Carlo (MC) computer simulations in both the grand canonical and canonical ensembles, providing a benchmark to assess the adequacy of the DFT results. A novel element of the DFT approach is the assumption that the structure of the fluid is dominated by intermolecular interactions in the isotropic fluid. A so-called augmented modified mean-field (AMMF) approximation is employed accounting for the influence of anisotropic interactions. The AMMF approximation becomes exact in the limit of vanishing density. We discuss advantages and disadvantages of the AMMF approximation with respect to an accurate description of isotropic and nematic branches of the phase diagram, the degree of orientational order, and orientation-dependent pair correlations. The performance of the AMMF approximations is found to be good in comparison with the MC data; the AMMF approximation has clear advantages with respect to an accurate and more detailed description of the fluid structure. Possible strategies to improve the DFT are discussed.
Allegra Mascaro, A. L.; Cesare, P.; Sacconi, L.; Grasselli, G.; Mandolesi, G.; Maco, B.; Knott, G.; Huang, L.; De Paola, V.; Strata, P.; Pavone, F. S.
2013-02-01
In the adult nervous system, different populations of neurons correspond to different regenerative behavior. Although previous works showed that olivocerebellar fibers are capable of axonal regeneration in a suitable environment as a response to injury1, we have hitherto no details about the real dynamics of fiber regeneration. We set up a model of singularly axotomized climbing fibers (CF) to investigate their reparative properties in the adult central nervous system (CNS) in vivo. Time lapse two-photon imaging has been combined to laser nanosurgery2, 3 to define a temporal pattern of the degenerative event and to follow the structural rearrangement after injury. To characterize the damage and to elucidate the possible formation of new synaptic contacts on the sprouted branches of the lesioned CF, we combined two-photon in vivo imaging with block face scanning electron microscopy (FIB-SEM). Here we describe the approach followed to characterize the reactive plasticity after injury.
Structure-property-correlation of 3D microstructures fabricated using two-photon-polymerization
Cicha, K.
2012-01-01
In the research field of materials sciences, the determination of material properties such as Young's modulus, tensile strength, elongation at break and the like is done on a routine basis. However, when the size of the available test sample gets smaller (in the range of a few millimeters) many of the classic material testing methods are no longer applicable. Components or structures which were fabricated using two-photon polymerization (2PP) are micrometer scale - traditional testing methods are no longer applicable. It was therefore the aim of this thesis to develop routines which allow a characterization of materials or material components (monomer, photoinitiator) with respect to their suitability for the two-photon process. The three methods differ significantly in terms of the measurement result, the user friendliness and the effort for evaluation of the measurement. While the first method is based on optical assessment of manufactured structures and thus provides no quantifiable results, method 2 and method 3 give a quantifiable measure as result of the test procedure. In method 2, the double-bond conversion is measured by using FTIR spectroscopy giving direct information on the reactivity of the material formulation. Method 3 is based on the measurement of the Young's modulus of micro-cantilevers that are deflected by a standard nanoindentation device recording the load and the corresponding deflection signals. Quantifiable measurement of material properties on samples that were fabricated by two-photon polymerization represents an absolute novelty and can provide new insights into the exact mechanisms of the two-photon polymerization. (author) [de
Peronio, P.; Acconcia, G.; Rech, I.; Ghioni, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2015-11-15
Time-Correlated Single Photon Counting (TCSPC) has been long recognized as the most sensitive method for fluorescence lifetime measurements, but often requiring “long” data acquisition times. This drawback is related to the limited counting capability of the TCSPC technique, due to pile-up and counting loss effects. In recent years, multi-module TCSPC systems have been introduced to overcome this issue. Splitting the light into several detectors connected to independent TCSPC modules proportionally increases the counting capability. Of course, multi-module operation also increases the system cost and can cause space and power supply problems. In this paper, we propose an alternative approach based on a new detector and processing electronics designed to reduce the overall system dead time, thus enabling efficient photon collection at high excitation rate. We present a fast active quenching circuit for single-photon avalanche diodes which features a minimum dead time of 12.4 ns. We also introduce a new Time-to-Amplitude Converter (TAC) able to attain extra-short dead time thanks to the combination of a scalable array of monolithically integrated TACs and a sequential router. The fast TAC (F-TAC) makes it possible to operate the system towards the upper limit of detector count rate capability (∼80 Mcps) with reduced pile-up losses, addressing one of the historic criticisms of TCSPC. Preliminary measurements on the F-TAC are presented and discussed.
Ambrose, W.P.; Goodwin, P.M.; Martin, J.C.; Keller, R.A.
1994-01-01
Pulsed excitation, time correlated single photon counting and time gated detection are used in near-field optical microscopy to enhance fluorescence images and measure the fluorescence lifetimes of single molecules of Rhodamine 6G on silica surfaces. Time gated detection is used to reject prompt scattered background and to improve the image signal to noise ratio. The excited state lifetime of a single Rhodamine 6G molecule is found to depend on the position of the near-field probe. We attribute the lifetime variations to spontaneous emission rate alterations by the fluorescence reflected from and quenching by the aluminum coated probe
Changstrom, J R; Sidebottom, D L
2008-01-01
We report results of an extensive study of the structural relaxation occurring in mixed alkali metaphosphate liquids obtained by photon correlation spectroscopy. Values for the glass transition temperature, the fragility index, and the heterogeneity parameter (also known as the Kohlrausch exponent) are extracted from the measurements and are all shown to exhibit a mixed alkali effect wherein nonlinear variations with mixing occur. The depression in the glass transition temperature is shown to be the direct result of mechanical relaxations, present in the solid, which prematurely loosen the glass structure. A minimum in the fragility index is believed to be an artifact of the resulting depression of the glass transition temperature
Liu, C.; Gao, B.; Starace, A.F.
1992-01-01
A variationally stable, adiabatic hyperspherical treatment of two- and three-photon detachment of H - is presented. Results are compared with analytic predictions of a zero-range potential model of H - . Detailed comparisions are made also with other theoretical results which include the effects of electron correlations. We predict analytically (and demonstrate numerically) an extreme sensitivity of the theoretical predictions to any errors in the value of the electron affinity employed. In an Appendix we show that the low-intensity limit of the Keldysh treatment [Sov. Phys. JETP 20, 1307 (1965)] of detachment of an electron bound in a zero-range potential agrees with the results of a perturbative treatment
Karreman, Matthia A.; Mercier, Luc; Schieber, Nicole L.; Shibue, Tsukasa; Schwab, Yannick; Goetz, Jacky G.
2014-01-01
Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electron microscopy. To investigate tumor cell behavior in vivo with ultrastructural accuracy, a reliable approach is needed to retrieve single tumor cells imaged deep within the tissue. For this purpose, fluorescently labeled tumor cells were subcutaneously injected into a mouse ear and imaged using two-photon-excitation microscopy. Using near-infrared branding, the position of the imaged area within the sample was labeled at the skin level, allowing for its precise recollection. Following sample preparation for electron microscopy, concerted usage of the artificial branding and anatomical landmarks enables targeting and approaching the cells of interest while serial sectioning through the specimen. We describe here three procedures showing how three-dimensional (3D) mapping of structural features in the tissue can be exploited to accurately correlate between the two imaging modalities, without having to rely on the use of artificially introduced markers of the region of interest. The methods employed here facilitate the link between intravital and nanoscale imaging of invasive tumor cells, enabling correlating function to structure in the study of tumor invasion and metastasis. PMID:25479106
Cross-correlated imaging of single-mode photonic crystal rod fiber with distributed mode filtering
Laurila, Marko; Barankov, Roman; Jørgensen, Mette Marie
2013-01-01
Photonic crystal bandgap fibers employing distributed mode filtering design provide near diffraction-limited light outputs, a critical property of fiber-based high-power lasers. Microstructure of the fibers is tailored to achieve single-mode operation at specific wavelength by resonant mode...... identify regimes of resonant coupling between higher-order core modes and cladding band. We demonstrate a passive fiber design in which the higher-order modal content inside the single-mode guiding regime is suppressed by at least 20 dB even for significantly misaligned input-coupling configurations....
Bambah, Bindu A.; Mogurampally, Naveen Kumar
2016-01-01
The existence of the Quark Gluon Plasma (QGP) requires that in the collision of heavy ions an initial fireball is formed which has a lifetime larger than typical hadronic time scale of 10"−"2"3 sec and that the temperature and volume of the fireball is sufficient to ensure that the Quark Hadron phase transition predicted by statistical QCD is achieved. Then the pions and photons emitted from this hot fire ball may carry information of the temperature and life time of the emitting region, and this may manifest itself in the correlation functions and multiplicities which can be modified by finite temperature. Thus it is important to find ways of incorporating finite temperature effects in multiplicity distributions and correlations. The Thermo field formalism is particularly useful in the description of parametric dynamical systems in which squeezing of quantum fluctuations is important
Hui, Y.Y.; Chang, Y.-R.; Lee, H.-Y.; Chang, H.-C.; Lim, T.-S.; Fann Wunshain
2009-01-01
The number of negatively charged nitrogen-vacancy centers (N-V) - in fluorescent nanodiamond (FND) has been determined by photon correlation spectroscopy and Monte Carlo simulations at the single particle level. By taking account of the random dipole orientation of the multiple (N-V) - fluorophores and simulating the probability distribution of their effective numbers (N e ), we found that the actual number (N a ) of the fluorophores is in linear correlation with N e , with correction factors of 1.8 and 1.2 in measurements using linearly and circularly polarized lights, respectively. We determined N a =8±1 for 28 nm FND particles prepared by 3 MeV proton irradiation
CORRELATION OF FERMI PHOTONS WITH HIGH-FREQUENCY RADIO GIANT PULSES FROM THE CRAB PULSAR
Bilous, A. V.; Kondratiev, V. I.; McLaughlin, M. A.; Mickaliger, M.; Ransom, S. M.; Lyutikov, M.; Langston, G. I.
2011-01-01
To constrain the giant pulse (GP) emission mechanism and test the model of Lyutikov for GP emission, we have carried out a campaign of simultaneous observations of the Crab pulsar at γ-ray (Fermi) and radio (Green Bank Telescope) wavelengths. Over 10 hr of simultaneous observations we obtained a sample of 2.1 x 10 4 GPs, observed at a radio frequency of 9 GHz, and 77 Fermi photons, with energies between 100 MeV and 5 GeV. The majority of GPs came from the interpulse (IP) phase window. We found no change in the GP generation rate within 10-120 s windows at lags of up to ±40 minutes of observed γ-ray photons. The 95% upper limit for a γ-ray flux enhancement in pulsed emission phase window around all GPs is four times the average pulsed γ-ray flux from the Crab. For the subset of IP GPs, the enhancement upper limit, within the IP emission window, is 12 times the average pulsed γ-ray flux. These results suggest that GPs, at least high-frequency IP GPs, are due to changes in coherence of radio emission rather than an overall increase in the magnetospheric particle density.
Entangled photons from single atoms and molecules
Nordén, Bengt
2018-05-01
The first two-photon entanglement experiment performed 50 years ago by Kocher and Commins (KC) provided isolated pairs of entangled photons from an atomic three-state fluorescence cascade. In view of questioning of Bell's theorem, data from these experiments are re-analyzed and shown sufficiently precise to confirm quantum mechanical and dismiss semi-classical theory without need for Bell's inequalities. Polarization photon correlation anisotropy (A) is useful: A is near unity as predicted quantum mechanically and well above the semi-classic range, 0 ⩽ A ⩽ 1 / 2 . Although yet to be found, one may envisage a three-state molecule emitting entangled photon pairs, in analogy with the KC atomic system. Antibunching in fluorescence from single molecules in matrix and entangled photons from quantum dots promise it be possible. Molecules can have advantages to parametric down-conversion as the latter photon distribution is Poissonian and unsuitable for producing isolated pairs of entangled photons. Analytical molecular applications of entangled light are also envisaged.
Gamow-Teller transitions and proton-neutron pair correlation in N =Z odd-odd p -shell nuclei
Morita, Hiroyuki; Kanada-En'yo, Yoshiko
2017-10-01
We have studied the Gamow-Teller (GT) transitions from N =Z +2 neighbors to N =Z odd-odd nuclei in the p -shell region by using isospin-projected and β γ -constraint antisymmetrized molecular dynamics combined with the generator coordinate method. The calculated GT transition strengths from 0+1 states to 1+0 states such as 6He(01+1 ) →6Li(11+0 ) , 10Be(01+1 ) →10B(11+0 ) , and 14C(01+1 ) →14N(12+0 ) exhaust more than 50% of the sum rule. These N =Z +2 initial states and N =Z odd-odd final states are found to dominantly have S =0 ,T =1 n n pairs and S =1 ,T =0 p n pairs, respectively. Based on the two-nucleon (N N ) pair picture, we can understand the concentration of the GT strengths as the spin-isospin-flip transition n n (S =0 ,T =1 )→p n (S =1 ,T =0 ) in L S coupling. The GT transition can be a good probe to identify the spin-isospin partner states with n n pairs and p n pairs of N =Z +2 and N =Z odd-odd nuclei, respectively.
Lees, Robert M; Peddie, Christopher J; Collinson, Lucy M; Ashby, Michael C; Verkade, Paul
2017-01-01
Linking cellular structure and function has always been a key goal of microscopy, but obtaining high resolution spatial and temporal information from the same specimen is a fundamental challenge. Two-photon (2P) microscopy allows imaging deep inside intact tissue, bringing great insight into the structural and functional dynamics of cells in their physiological environment. At the nanoscale, the complex ultrastructure of a cell's environment in tissue can be reconstructed in three dimensions (3D) using serial block face scanning electron microscopy (SBF-SEM). This provides a snapshot of high resolution structural information pertaining to the shape, organization, and localization of multiple subcellular structures at the same time. The pairing of these two imaging modalities in the same specimen provides key information to relate cellular dynamics to the ultrastructural environment. Until recently, approaches to relocate a region of interest (ROI) in tissue from 2P microscopy for SBF-SEM have been inefficient or unreliable. However, near-infrared branding (NIRB) overcomes this by using the laser from a multiphoton microscope to create fiducial markers for accurate correlation of 2P and electron microscopy (EM) imaging volumes. The process is quick and can be user defined for each sample. Here, to increase the efficiency of ROI relocation, multiple NIRB marks are used in 3D to target ultramicrotomy. A workflow is described and discussed to obtain a data set for 3D correlated light and electron microscopy, using three different preparations of brain tissue as examples. Copyright © 2017 Elsevier Inc. All rights reserved.
Aryanpour, K.; Roberts, A.; Sandhu, A.; Rathore, R.; Shukla, A.; Mazumdar, S.
2013-01-01
Strong electron correlation effects in the photophysics of quasi-one-dimensional $\\pi$-conjugated organic systems such as polyenes, polyacetylenes, polydiacetylenes, etc., have been extensively studied. Far less is known on correlation effects in two-dimensional $\\pi$-conjugated systems. Here we present theoretical and experimental evidence for moderate repulsive electron-electron interactions in a number of finite polycyclic aromatic hydrocarbon molecules with $D_{6h}$ symmetry. We show that...
Wegmann, K.; Brix, G.
2000-01-01
Purpose: Single photon transmission (SPT) measurements offer a new approach for the determination of attenuation correction factors (ACF) in PET. It was the aim of the present work, to evaluate a scatter correction alogrithm proposed by C. Watson by means of Monte Carlo simulations. Methods: SPT measurements with a Cs-137 point source were simulated for a whole-body PET scanner (ECAT EXACT HR + ) in both the 2D and 3D mode. To examine the scatter fraction (SF) in the transmission data, the detected photons were classified as unscattered or scattered. The simulated data were used to determine (i) the spatial distribution of the SFs, (ii) an ACF sinogram from all detected events (ACF tot ) and (iii) from the unscattered events only (ACF unscattered ), and (iv) an ACF cor =(ACF tot ) 1+Κ sinogram corrected according to the Watson algorithm. In addition, density images were reconstructed in order to quantitatively evaluate linear attenuation coefficients. Results: A high correlation was found between the SF and the ACF tot sinograms. For the cylinder and the EEC phantom, similar correction factors Κ were estimated. The determined values resulted in an accurate scatter correction in both the 2D and 3D mode. (orig.) [de
Cominelli, A.; Acconcia, G.; Caldi, F.; Peronio, P.; Ghioni, M.; Rech, I.
2018-02-01
Time-Correlated Single Photon Counting (TCSPC) is a powerful tool that permits to record extremely fast optical signals with a precision down to few picoseconds. On the other hand, it is recognized as a relatively slow technique, especially when a large time-resolved image is acquired exploiting a single acquisition channel and a scanning system. During the last years, much effort has been made towards the parallelization of many acquisition and conversion chains. In particular, the exploitation of Single-Photon Avalanche Diodes in standard CMOS technology has paved the way to the integration of thousands of independent channels on the same chip. Unfortunately, the presence of a large number of detectors can give rise to a huge rate of events, which can easily lead to the saturation of the transfer rate toward the elaboration unit. As a result, a smart readout approach is needed to guarantee an efficient exploitation of the limited transfer bandwidth. We recently introduced a novel readout architecture, aimed at maximizing the counting efficiency of the system in typical TCSPC measurements. It features a limited number of high-performance converters, which are shared with a much larger array, while a smart routing logic provides a dynamic multiplexing between the two parts. Here we propose a novel routing algorithm, which exploits standard digital gates distributed among a large 32x32 array to ensure a dynamic connection between detectors and external time-measurement circuits.
Acconcia, Giulia; Cominelli, Alessandro; Peronio, Pietro; Rech, Ivan; Ghioni, Massimo
2017-05-01
The analysis of optical signals by means of Single Photon Avalanche Diodes (SPADs) has been subject to a widespread interest in recent years. The development of multichannel high-performance Time Correlated Single Photon Counting (TCSPC) acquisition systems has undergone a fast trend. Concerning the detector performance, best in class results have been obtained resorting to custom technologies leading also to a strong dependence of the detector timing jitter from the threshold used to determine the onset of the photogenerated current flow. In this scenario, the avalanche current pick-up circuit plays a key role in determining the timing performance of the TCSPC acquisition system, especially with a large array of SPAD detectors because of electrical crosstalk issues. We developed a new current pick-up circuit based on a transimpedance amplifier structure able to extract the timing information from a 50-μm-diameter custom technology SPAD with a state-of-art timing jitter as low as 32ps and suitable to be exploited with SPAD arrays. In this paper we discuss the key features of this structure and we present a new version of the pick-up circuit that also provides quenching capabilities in order to minimize the number of interconnections required, an aspect that becomes more and more crucial in densely integrated systems.
Cernansky, Robert; Martini, Francesco; Politi, Alberto
2018-02-01
We demonstrate on chip generation of correlated pairs of photons in the near-visible spectrum using a CMOS compatible PECVD Silicon Nitride photonic device. Photons are generated via spontaneous four wave mixing enhanced by a ring resonator with high quality Q-factor of 320,000 resulting in a generation rate of 950,000 $\\frac{pairs}{mW}$. The high brightness of this source offers the opportunity to expand photonic quantum technologies over a broad wavelength range and provides a path to develop fully integrated quantum chips working at room temperature.
How a single photon can mediate entanglement between two others
Lima Bernardo, Bertúlio de, E-mail: bertulio.fisica@gmail.com
2016-10-15
We describe a novel quantum information protocol, which probabilistically entangles two distant photons that have never interacted. Different from the entanglement swapping protocol, which requires two pairs of maximally entangled photons as the input states, as well as a Bell-state measurement (BSM), the present scheme only requires three photons: two to be entangled and another to mediate the correlation, and no BSM, in a process that we call “entanglement mediation”. Furthermore, in analyzing the paths of the photons in our arrangement, we conclude that one of them, the mediator, exchanges information with the two others simultaneously, which seems to be a new quantum-mechanical feature.
Mallick, M.B.; Ravindranath, S.V.G.; Das, N.C.
2002-07-01
A VUV spectroscopic facility for studies in photophysics and photochemistry is being set up at INDUS-I synchrotron source, CAT, Indore. For this purpose, a data acquisition system based on time-correlated single photon counting method is being developed for fluorescence lifetime measurement. To estimate fluorescence lifetime from the data collected with this sytem, a Windows based program has been developed using Visual Basic 5.0. It uses instrument response function (IRF) and observed decay curve and estimates parameters of single exponential decay by least square analysis and Marquardt method as convergence mechanism. Estimation of parameters was performed using data collected with a commercial setup. Goodness of fit was judged by evaluating χR 2 , weighted residuals and autocorrelation function. Performance is compared with two commercial software packages and found to be satisfactory. (author)
Koga, Tadanori; Li Chunhua; Endoh, Maya K; Narayanan, Suresh; Lurio, Laurence; Sinha, Sunil K
2011-01-01
The dynamics of polymer chains near the surface of a melt and within thin films remains a subject of inquiry along with the nature of the glass transition in these systems. Recent studies show that the properties of the free surface region are crucial in determining the anomalous glass transition temperature (T g ) reduction of polymer thin films. In this study, by embedding 'dilute' gold nanoparticles in polystyrene (PS) thin films as 'markers', we could successfully probe the diffusive Brownian motion which tracks the local viscosity both at the free surface and within the rest of the single PS thin film far above bulk T g . The technique used was X-ray photon correlation spectroscopy with resonance-enhanced X-rays that allows us to independently measure the motion in the regions of interest at the nanometer scale. We found the presence of the surface reduced viscosity layer in entangled PS thin films at T>>T g .
Noda, Isao
2018-05-01
Two-trace two-dimensional (2T2D) correlation spectroscopy, where a pair of spectra are compared as 2D maps by a form of cross correlation analysis, is introduced. In 2T2D, spectral intensity changes of bands arising from the same origin, which cannot change independently of each other, are synchronized. Meanwhile, those arising from different sources may and often do change asynchronously. By taking advantage of this property, one can distinguish and classify a number of contributing bands present in the original pair of spectra in a systematic manner. Highly overlapped neighboring bands originating from different sources can also be identified by the presence of asynchronous cross peaks, thus enhancing the apparent spectral resolution. Computational procedure to obtain 2T2D correlation spectra and their interpretation method, as well as an illustrative description of the basic concept in the vector phase space, are provided. 2T2D spectra may also be viewed as individual building blocks of the generalized 2D correlation spectra derived from a series of more than two spectral data. Some promising application potentials of 2T2D correlation and integration with established advanced 2D correlation techniques are discussed.
Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Curtis; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Ilektra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo