WorldWideScience

Sample records for correlated image guidance

  1. Respiration-correlated image guidance is the most important radiotherapy motion management strategy for most lung cancer patients

    DEFF Research Database (Denmark)

    Korreman, Stine; Persson, Gitte; Nygaard, Ditte Eklund

    2012-01-01

    The purpose of this study was to quantify the effects of four-dimensional computed tomography (4DCT), 4D image guidance (4D-IG), and beam gating on calculated treatment field margins in a lung cancer patient population....

  2. SU-E-J-45: The Correlation Between CBCT Flat Panel Misalignment and 3D Image Guidance Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Kenton, O; Valdes, G; Yin, L; Teo, B [The Hospital of the University of Pennsylvania, Philadelphia, PA (United States); Brousmiche, S; Wikler, D [Ion Beam Application, Louvain-la-neuve (Belgium)

    2015-06-15

    Purpose To simulate the impact of CBCT flat panel misalignment on the image quality, the calculated correction vectors in 3D image guided proton therapy and to determine if these calibration errors can be caught in our QA process. Methods The X-ray source and detector geometrical calibration (flexmap) file of the CBCT system in the AdaPTinsight software (IBA proton therapy) was edited to induce known changes in the rotational and translational calibrations of the imaging panel. Translations of up to ±10 mm in the x, y and z directions (see supplemental) and rotational errors of up to ±3° were induced. The calibration files were then used to reconstruct the CBCT image of a pancreatic patient and CatPhan phantom. Correction vectors were calculated for the patient using the software’s auto match system and compared to baseline values. The CatPhan CBCT images were used for quantitative evaluation of image quality for each type of induced error. Results Translations of 1 to 3 mm in the x and y calibration resulted in corresponding correction vector errors of equal magnitude. Similar 10mm shifts were seen in the y-direction; however, in the x-direction, the image quality was too degraded for a match. These translational errors can be identified through differences in isocenter from orthogonal kV images taken during routine QA. Errors in the z-direction had no effect on the correction vector and image quality.Rotations of the imaging panel calibration resulted in corresponding correction vector rotations of the patient images. These rotations also resulted in degraded image quality which can be identified through quantitative image quality metrics. Conclusion Misalignment of CBCT geometry can lead to incorrect translational and rotational patient correction vectors. These errors can be identified through QA of the imaging isocenter as compared to orthogonal images combined with monitoring of CBCT image quality.

  3. Correlation plenoptic imaging

    CERN Document Server

    D'Angelo, Milena; Pepe, Francesco V; Vaccarelli, Ornella; Scarcelli, Giuliano

    2016-01-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable tridimensional imaging in a single shot. However, in classical imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this paper, we demonstrate that the momentum/position correlation of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  4. Correlation Plenoptic Imaging

    Science.gov (United States)

    D'Angelo, Milena; Pepe, Francesco V.; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  5. Image guidance in endoscopic sinus surgery and skull base surgery

    Institute of Scientific and Technical Information of China (English)

    Mitchell R.Gore; Brent A.Senior

    2012-01-01

    Objective The objective of this study was to review the current clinical applications and impact of intraoperative imaging on endoscopic sinonasal and skull base procedures in adult and pediatric patients.Methods The PubMed database was searched for articles related to the use of image guidance in otolaryngology using the search terms "image guidance otolaryngology".This was supplemented by the authors′ experience utilizing image guidance in nearly 3000 endoscopic sinus and skull base procedures.Results The literature demonstrates that intraoperative image guidance has utility in primary and revision endoscopic sinus surgery,as well as endoscopic surgery of the skull base.Image guidance also has applications in pediatric endoscopic surgery,such as pediatric sinus surgery and repair of choanal atresia.Conclusions Intraoperative image guidance,when combined with a thorough knowledge of paranasal sinus and skull base anatomy and technical proficiency,can provide improved safety when performing otolaryngologic procedures from endoscopic sinus surgery to endoscopic skull base surgery.While not a substitute for knowledge of anatomy,the increased availability and usability of image guidance systems make them a useful tool in the armamentarium of the otolaryngologist/head and neck surgeon and neurosurgeon.

  6. Phase contrast image guidance for synchrotron microbeam radiotherapy

    Science.gov (United States)

    Pelliccia, Daniele; Crosbie, Jeffrey C.; Larkin, Kieran G.

    2016-08-01

    Recent image guidance developments for preclinical synchrotron microbeam radiotherapy represent a necessary step for future clinical translation of the technique. Image quality can be further improved using x-ray phase contrast, which is readily available at synchrotron facilities. We here describe a methodology for phase contrast image guidance at the Imaging and Medical Beamline at the Australian Synchrotron. Differential phase contrast is measured alongside conventional attenuation and used to improve the image quality. Post-processing based on the inverse Riesz transform is employed on the measured data to obtain noticeably sharper images. The procedure is extremely well suited for applications such as image guidance which require both visual assessment and sample alignment based on semi automatic image registration. Moreover, our approach can be combined with all other differential phase contrast imaging techniques, in all cases where a quantitative evaluation of the refractive index is not required.

  7. Correlation-Peak Imaging

    Science.gov (United States)

    Ziegler, A.; Metzler, A.; Köckenberger, W.; Izquierdo, M.; Komor, E.; Haase, A.; Décorps, M.; von Kienlin, M.

    1996-08-01

    Identification and quantitation in conventional1H spectroscopic imagingin vivois often hampered by the small chemical-shift range. To improve the spectral resolution of spectroscopic imaging, homonuclear two-dimensional correlation spectroscopy has been combined with phase encoding of the spatial dimensions. From the theoretical description of the coherence-transfer signal in the Fourier-transform domain, a comprehensive acquisition and processing strategy is presented that includes optimization of the width and the position of the acquisition windows, matched filtering of the signal envelope, and graphical presentation of the cross peak of interest. The procedure has been applied to image the spatial distribution of the correlation peaks from specific spin systems in the hypocotyl of castor bean (Ricinus communis) seedlings. Despite the overlap of many resonances, correlation-peak imaging made it possible to observe a number of proton resonances, such as those of sucrose, β-glucose, glutamine/glutamate, lysine, and arginine.

  8. Investigation of the Guidance Law for an Image Homing Guidance System

    Institute of Scientific and Technical Information of China (English)

    SHANGGUAN Yin-li

    2005-01-01

    This paper aims at a type of image homing guided missile. The guided trajectory characteristics and the initial condition of the homing guidance are analyzed by calculating the miss distance of the image guided missile. Several modified proportional navigation laws which are easy for engineering implementation are introduced.

  9. Robotic needle steering: design, modeling, planning, and image guidance

    NARCIS (Netherlands)

    Cowan, Noah J.; Goldberg, Ken; Chirikjian, Gregory S.; Fichtinger, Gabor; Alterovitz, Ron; Reed, Kyle B.; Kallem, Vinutha; Park, Wooram; Misra, Sarthak; Okamura, Allison M.; Rosen, Jacob; Hannaford, Blake; Satava, Richard M.

    2010-01-01

    This chapter describes how advances in needle design, modeling, planning, and image guidance make it possible to steer flexible needles from outside the body to reach specified anatomical targets not accessible using traditional needle insertion methods. Steering can be achieved using a variety of m

  10. Augmented Reality Image Guidance in Minimally Invasive Prostatectomy

    Science.gov (United States)

    Cohen, Daniel; Mayer, Erik; Chen, Dongbin; Anstee, Ann; Vale, Justin; Yang, Guang-Zhong; Darzi, Ara; Edwards, Philip'eddie'

    This paper presents our work aimed at providing augmented reality (AR) guidance of robot-assisted laparoscopic surgery (RALP) using the da Vinci system. There is a good clinical case for guidance due to the significant rate of complications and steep learning curve for this procedure. Patients who were due to undergo robotic prostatectomy for organ-confined prostate cancer underwent preoperative 3T MRI scans of the pelvis. These were segmented and reconstructed to form 3D images of pelvic anatomy. The reconstructed image was successfully overlaid onto screenshots of the recorded surgery post-procedure. Surgeons who perform minimally-invasive prostatectomy took part in a user-needs analysis to determine the potential benefits of an image guidance system after viewing the overlaid images. All surgeons stated that the development would be useful at key stages of the surgery and could help to improve the learning curve of the procedure and improve functional and oncological outcomes. Establishing the clinical need in this way is a vital early step in development of an AR guidance system. We have also identified relevant anatomy from preoperative MRI. Further work will be aimed at automated registration to account for tissue deformation during the procedure, using a combination of transrectal ultrasound and stereoendoscopic video.

  11. Multi-Criteria Optimization for Image Guidance

    CERN Document Server

    Winey, Brian

    2011-01-01

    Purpose: To develop a multi-criteria optimization framework for image guided radiotherapy. Methods: An algorithm is proposed for a multi-criteria framework for the purpose of patient setup verification decision processes. Optimal patient setup shifts and rotations are not always straightforward, particularly for deformable or moving targets of the spine, abdomen, thorax, breast, head and neck and limbs. The algorithm relies upon dosimetric constraints and objectives to aid in the patient setup such that the patient is setup to maximize tumor dose coverage and minimize dose to organs at risk while allowing for daily clinical changes. A simple 1D model and a lung lesion are presented. Results: The algorithm delivers a multi-criteria optimization framework allowing for clinical decisions to accommodate patient target variation make setup decisions less straightforward. With dosimetric considerations, optimal patient positions can be derived. Conclusions: A multi-criteria framework is demonstrated to aid in the p...

  12. Space imaging infrared optical guidance for autonomous ground vehicle

    Science.gov (United States)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  13. Correlation on Noisy Images

    Science.gov (United States)

    1980-06-01

    pattern were varied., Background 0 Real-world guidance systems (i.e. self -guided missiles) often determine their course of motion by taking continuous...5 5 5 ii 5 5 55 5 5 55 5 5 e a I 5 I I a a tj te I I 5 5 a 5 5 I 5 I 5 5 5 II I 5 asttasataglIeeeelgttgeiseeeIigleg eases legs 555a5 tag tas estee ...tIes ~ii~ 51555 555 55liett estee ,,,, egg,,,e atlas,., 1555i5 sassess gets,,,, asset,,, a ass, less, a gist, ti, ages,, i~~’ a555t gil a lest

  14. Improved Digital Image Correlation method

    Science.gov (United States)

    Mudassar, Asloob Ahmad; Butt, Saira

    2016-12-01

    Digital Image Correlation (DIC) is a powerful technique which is used to correlate two image segments to determine the similarity between them. A correlation image is formed which gives a peak known as correlation peak. If the two image segments are identical the peak is known as auto-correlation peak otherwise it is known as cross correlation peak. The location of the peak in a correlation image gives the relative displacement between the two image segments. Use of DIC for in-plane displacement and deformation measurements in Electronic Speckle Photography (ESP) is well known. In ESP two speckle images are correlated using DIC and relative displacement is measured. We are presenting background review of ESP and disclosing a technique based on DIC for improved relative measurements which we regard as the improved DIC method. Simulation and experimental results reveal that the proposed improved-DIC method is superior to the conventional DIC method in two aspects, in resolution and in the availability of reference position in displacement measurements.

  15. Image Guidance of Flexible Tip-Steerable Needles

    Science.gov (United States)

    Kallem, Vinutha; Cowan, Noah J

    2010-01-01

    Image guidance promises to improve targeting accuracy and broaden the scope of medical procedures performed with needles. This paper takes a step toward automating the guidance of a flexible tip-steerable needle as it is inserted into human tissue. We build upon a previously proposed nonholonomic model of needles that derive steering from asymmetric bevel forces at the tip. The bevel-tip needle is inserted and rotated at its base in order to steer it in six degrees of freedom. As a first step for control, we show that the needle tip can be automatically guided to a planar slice of tissue as it is inserted. Our approach keeps the physician in the loop to control insertion speed. The distance of the needle tip position from the plane of interest is used to drive an observer-based feedback controller which we prove is locally asymptotically stable. Numerical simulations demonstrate a large domain of attraction and robustness of the controller in the face of parametric uncertainty and measurement noise. Physical experiments with tip-steerable Nitinol needles inserted into a transparent plastisol tissue phantom under stereo image guidance validate the effectiveness of our approach. PMID:20431694

  16. Stereoscopic Integrated Imaging Goggles for Multimodal Intraoperative Image Guidance.

    Directory of Open Access Journals (Sweden)

    Christopher A Mela

    Full Text Available We have developed novel stereoscopic wearable multimodal intraoperative imaging and display systems entitled Integrated Imaging Goggles for guiding surgeries. The prototype systems offer real time stereoscopic fluorescence imaging and color reflectance imaging capacity, along with in vivo handheld microscopy and ultrasound imaging. With the Integrated Imaging Goggle, both wide-field fluorescence imaging and in vivo microscopy are provided. The real time ultrasound images can also be presented in the goggle display. Furthermore, real time goggle-to-goggle stereoscopic video sharing is demonstrated, which can greatly facilitate telemedicine. In this paper, the prototype systems are described, characterized and tested in surgeries in biological tissues ex vivo. We have found that the system can detect fluorescent targets with as low as 60 nM indocyanine green and can resolve structures down to 0.25 mm with large FOV stereoscopic imaging. The system has successfully guided simulated cancer surgeries in chicken. The Integrated Imaging Goggle is novel in 4 aspects: it is (a the first wearable stereoscopic wide-field intraoperative fluorescence imaging and display system, (b the first wearable system offering both large FOV and microscopic imaging simultaneously,

  17. Stereoscopic Integrated Imaging Goggles for Multimodal Intraoperative Image Guidance.

    Science.gov (United States)

    Mela, Christopher A; Patterson, Carrie; Thompson, William K; Papay, Francis; Liu, Yang

    2015-01-01

    We have developed novel stereoscopic wearable multimodal intraoperative imaging and display systems entitled Integrated Imaging Goggles for guiding surgeries. The prototype systems offer real time stereoscopic fluorescence imaging and color reflectance imaging capacity, along with in vivo handheld microscopy and ultrasound imaging. With the Integrated Imaging Goggle, both wide-field fluorescence imaging and in vivo microscopy are provided. The real time ultrasound images can also be presented in the goggle display. Furthermore, real time goggle-to-goggle stereoscopic video sharing is demonstrated, which can greatly facilitate telemedicine. In this paper, the prototype systems are described, characterized and tested in surgeries in biological tissues ex vivo. We have found that the system can detect fluorescent targets with as low as 60 nM indocyanine green and can resolve structures down to 0.25 mm with large FOV stereoscopic imaging. The system has successfully guided simulated cancer surgeries in chicken. The Integrated Imaging Goggle is novel in 4 aspects: it is (a) the first wearable stereoscopic wide-field intraoperative fluorescence imaging and display system, (b) the first wearable system offering both large FOV and microscopic imaging simultaneously,

  18. Image guidance for robotic minimally invasive coronary artery bypass.

    Science.gov (United States)

    Figl, Michael; Rueckert, Daniel; Hawkes, David; Casula, Roberto; Hu, Mingxing; Pedro, Ose; Zhang, Dong Ping; Penney, Graeme; Bello, Fernando; Edwards, Philip

    2010-01-01

    A novel system for image guidance in totally endoscopic coronary artery bypass (TECAB) is presented. Key requirement is the availability of 2D-3D registration techniques that can deal with non-rigid motion and deformation. Image guidance for TECAB is mainly required before the mechanical stabilisation of the heart, when the most dominant source of misregistration is the deformation and non-rigid motion of the heart. To augment the images in the endoscope of the da Vinci robot, we have to find the transformation from the coordinate system of the preoperative imaging modality to the system of the endoscopic cameras. In a first step we build a 4D motion model of the beating heart. Intraoperatively we can use the ECG or video processing to determine the phase of the cardiac cycle, as well as the heart and respiratory frequencies. We then take the heart surface from the motion model and register it to the stereo endoscopic images of the da Vinci robot resp. of a validation system using photo-consistency. To take advantage of the fact that there is a whole image sequence available for registration, we use the different phases together to get the registration. We found the similarity function to be much smoother when using more phases. This also showed promising behaviour in convergence tests. Images of the vessels available in the preoperative coordinate system can then be transformed to the camera system and projected into the calibrated endoscope view using two video mixers with chroma keying. It is hoped that the augmented view can improve the efficiency of TECAB surgery and reduce the conversion rate to more conventional procedures.

  19. Core needle biopsy guidance based on EMOCT imaging (Conference Presentation)

    Science.gov (United States)

    Iftimia, Nicusor V.; Park, Jesung; Maguluri, Gopi

    2016-03-01

    We present a novel method, based on encoder mapping OCT imaging, for real-time guidance of core biopsy procedures. This method provides real-time feedback to the interventional radiologist, such that he/she can reorient the needle during the biopsy and sample the most representative area of the suspicious mass that is being investigated. This aspect is very important for tailoring therapy to the specific cancer based on biomarker analysis, which will become one of the next big advances in our search for the optimal cancer therapy. To enable individualized treatment, the genetic constitution and the DNA repair status in the affected areas is needed for each patient. Thus, representative sampling of the tumor is needed for analyzing various biomarkers, which are used as a tool to personalize cancer therapy. The encoder-based OCT enables samping of large size masses and provides full control on the imaging probe, which is passed through the bore of the biopsy guidance needle. The OCT image is built gradually, based on the feedback of an optical encoder which senses the incremental movement of the needle with a few microns resolution. Tissue mapping is independent of the needle speed, while it is advanced through the tissue. The OCT frame is analyzed in real-time and tissue cellularity is reported in a very simple manner (pie chart). Our preliminary study on a rabbit model of cancer has demonstrated the capability of this technology for accurately differentiating between viable cancer and heterogeneous or necrotic tissue.

  20. Reach on laser imaging technology to terminal guidance

    Science.gov (United States)

    Tan, Xue-chun; Jin, Guang-yong; Wu, Zhi-chao; Ling, Ming; Liang, Zhu

    2009-07-01

    The development of range-imaging devices is motivated by various ground and space applications. Tasks in space missions include docking, rendezvous, manipulating robotic arms, landing and autonomous rover applications, sample identification and surface mapping. The ground applications include the guidance of vehicles, robotic and manipulator arms, and other autonomous or teleoperated machines, as well as surface or construction model generation. Without the scanner devices, scannerless imaging lidars have the characteristic of high frame rate, wide field of view and high reliability,which can be successful used in terminal guidance. Diode pumped laser radar with high repetition rate is studied in this paper. A bistatic system is set up and a high speed signal processor for the system is researched. In a conceptual sense, the imaging lidar has two parts, a transmitter and a receiver. Their field of views overlap throughout the measuring range.The imaging lidar operates as follows. Based on principle of pulsed time-of-flight (TOF) laser range finding, the solid-state laser diode-pumped laser produces short laser pulses, which though the expanded lens, then reach the target. The back reflected light is collected with a receiver lens and fed through optical fibres to discrete avalanche photo diodes (APDs). When a received pulse is detected by the comparator a time to digital converter (TDC) stops counting and a time interval, corresponding to the range, is produced. The precision of a single measurement is about +/-4.0cm, but better precision is achieved by averaging. Information about the reflectivity of the target is gathered by recording the amplitude of the received pulse. Range images with the lidar prototype were taken indoors, the measuring distance was about 14m.

  1. Correlation analysis-based image segmentation approach for automatic agriculture vehicle

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    It is important to segment image correctly to extract guidance information for automatic agriculture vehicle. If we can make the computer know where the crops are, we can extract the guidance line easily. Images were divided into some rectangle small windows, then a pair of 1-D arrays was constructed in each small windows. The correlation coefficients of every small window constructed the features to segment images. The results showed that correlation analysis is a potential approach for processing complex farmland for guidance system, and more correlation analysis methods must be researched.

  2. EPA guidance on improving the image of psychiatry.

    Science.gov (United States)

    Möller-Leimkühler, A M; Möller, H-J; Maier, W; Gaebel, W; Falkai, P

    2016-03-01

    This paper explores causes, explanations and consequences of the negative image of psychiatry and develops recommendations for improvement. It is primarily based on a WPA guidance paper on how to combat the stigmatization of psychiatry and psychiatrists and a Medline search on related publications since 2010. Furthermore, focussing on potential causes and explanations, the authors performed a selective literature search regarding additional image-related issues such as mental health literacy and diagnostic and treatment issues. Underestimation of psychiatry results from both unjustified prejudices of the general public, mass media and healthcare professionals and psychiatry's own unfavourable coping with external and internal concerns. Issues related to unjustified devaluation of psychiatry include overestimation of coercion, associative stigma, lack of public knowledge, need to simplify complex mental issues, problem of the continuum between normality and psychopathology, competition with medical and non-medical disciplines and psychopharmacological treatment. Issues related to psychiatry's own contribution to being underestimated include lack of a clear professional identity, lack of biomarkers supporting clinical diagnoses, limited consensus about best treatment options, lack of collaboration with other medical disciplines and low recruitment rates among medical students. Recommendations are proposed for creating and representing a positive self-concept with different components. The negative image of psychiatry is not only due to unfavourable communication with the media, but is basically a problem of self-conceptualization. Much can be improved. However, psychiatry will remain a profession with an exceptional position among the medical disciplines, which should be seen as its specific strength.

  3. Evaluation of a mobile augmented reality application for image guidance of neurosurgical interventions.

    Science.gov (United States)

    Kramers, Matthew; Armstrong, Ryan; Bakhshmand, Saeed M; Fenster, Aaron; de Ribaupierre, Sandrine; Eagleson, Roy

    2014-01-01

    Image guidance can provide surgeons with valuable contextual information during a medical intervention. Often, image guidance systems require considerable infrastructure, setup-time, and operator experience to be utilized. Certain procedures performed at bedside are susceptible to navigational errors that can lead to complications. We present an application for mobile devices that can provide image guidance using augmented reality to assist in performing neurosurgical tasks. A methodology is outlined that evaluates this mode of visualization from the standpoint of perceptual localization, depth estimation, and pointing performance, in scenarios derived from a neurosurgical targeting task. By measuring user variability and speed we can report objective metrics of performance for our augmented reality guidance system.

  4. Edge-based correlation image registration for multispectral imaging

    Science.gov (United States)

    Nandy, Prabal [Albuquerque, NM

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  5. Lightweight distributed computing for intraoperative real-time image guidance

    Science.gov (United States)

    Suwelack, Stefan; Katic, Darko; Wagner, Simon; Spengler, Patrick; Bodenstedt, Sebastian; Röhl, Sebastian; Dillmann, Rüdiger; Speidel, Stefanie

    2012-02-01

    In order to provide real-time intraoperative guidance, computer assisted surgery (CAS) systems often rely on computationally expensive algorithms. The real-time constraint is especially challenging if several components such as intraoperative image processing, soft tissue registration or context aware visualization are combined in a single system. In this paper, we present a lightweight approach to distribute the workload over several workstations based on the OpenIGTLink protocol. We use XML-based message passing for remote procedure calls and native types for transferring data such as images, meshes or point coordinates. Two different, but typical scenarios are considered in order to evaluate the performance of the new system. First, we analyze a real-time soft tissue registration algorithm based on a finite element (FE) model. Here, we use the proposed approach to distribute the computational workload between a primary workstation that handles sensor data processing and visualization and a dedicated workstation that runs the real-time FE algorithm. We show that the additional overhead that is introduced by the technique is small compared to the total execution time. Furthermore, the approach is used to speed up a context aware augmented reality based navigation system for dental implant surgery. In this scenario, the additional delay for running the computationally expensive reasoning server on a separate workstation is less than a millisecond. The results show that the presented approach is a promising strategy to speed up real-time CAS systems.

  6. The first clinical treatment with kilovoltage intrafraction monitoring (KIM): A real-time image guidance method

    Energy Technology Data Exchange (ETDEWEB)

    Keall, Paul J., E-mail: paul.keall@sydney.edu.au; O’Brien, Ricky; Huang, Chen-Yu [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006 (Australia); Aun Ng, Jin [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006, Australia and School of Physics, University of Sydney, Camperdown, New South Wales 2006 (Australia); Colvill, Emma [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006, Australia and Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales 2065 (Australia); Rugaard Poulsen, Per; Fledelius, Walther [Department of Oncology, Aarhus University Hospital, 8000 Aarhus C, Denmark and Institute of Clinical Medicine, Aarhus University, 8000 Aarhus C (Denmark); Juneja, Prabhjot; Booth, Jeremy T. [School of Physics, University of Sydney, Camperdown, New South Wales 2006, Australia and Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales 2065 (Australia); Simpson, Emma; Bell, Linda; Alfieri, Florencia; Eade, Thomas; Kneebone, Andrew [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales 2065 (Australia)

    2015-01-15

    Purpose: Kilovoltage intrafraction monitoring (KIM) is a real-time image guidance method that uses widely available radiotherapy technology, i.e., a gantry-mounted x-ray imager. The authors report on the geometric and dosimetric results of the first patient treatment using KIM which occurred on September 16, 2014. Methods: KIM uses current and prior 2D x-ray images to estimate the 3D target position during cancer radiotherapy treatment delivery. KIM software was written to process kilovoltage (kV) images streamed from a standard C-arm linear accelerator with a gantry-mounted kV x-ray imaging system. A 120° pretreatment kV imaging arc was acquired to build the patient-specific 2D to 3D motion correlation. The kV imager was activated during the megavoltage (MV) treatment, a dual arc VMAT prostate treatment, to estimate the 3D prostate position in real-time. All necessary ethics, legal, and regulatory requirements were met for this clinical study. The quality assurance processes were completed and peer reviewed. Results: During treatment, a prostate position offset of nearly 3 mm in the posterior direction was observed with KIM. This position offset did not trigger a gating event. After the treatment, the prostate motion was independently measured using kV/MV triangulation, resulting in a mean difference of less than 0.6 mm and standard deviation of less than 0.6 mm in each direction. The accuracy of the marker segmentation was visually assessed during and after treatment and found to be performing well. During treatment, there were no interruptions due to performance of the KIM software. Conclusions: For the first time, KIM has been used for real-time image guidance during cancer radiotherapy. The measured accuracy and precision were both submillimeter for the first treatment fraction. This clinical translational research milestone paves the way for the broad implementation of real-time image guidance to facilitate the detection and correction of geometric and

  7. Physics-based shape matching for intraoperative image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Suwelack, Stefan, E-mail: suwelack@kit.edu; Röhl, Sebastian; Bodenstedt, Sebastian; Reichard, Daniel; Dillmann, Rüdiger; Speidel, Stefanie [Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, Adenauerring 2, Karlsruhe 76131 (Germany); Santos, Thiago dos; Maier-Hein, Lena [Computer-assisted Interventions, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Wagner, Martin; Wünscher, Josephine; Kenngott, Hannes; Müller, Beat P. [General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg 69120 (Germany)

    2014-11-01

    Purpose: Soft-tissue deformations can severely degrade the validity of preoperative planning data during computer assisted interventions. Intraoperative imaging such as stereo endoscopic, time-of-flight or, laser range scanner data can be used to compensate these movements. In this context, the intraoperative surface has to be matched to the preoperative model. The shape matching is especially challenging in the intraoperative setting due to noisy sensor data, only partially visible surfaces, ambiguous shape descriptors, and real-time requirements. Methods: A novel physics-based shape matching (PBSM) approach to register intraoperatively acquired surface meshes to preoperative planning data is proposed. The key idea of the method is to describe the nonrigid registration process as an electrostatic–elastic problem, where an elastic body (preoperative model) that is electrically charged slides into an oppositely charged rigid shape (intraoperative surface). It is shown that the corresponding energy functional can be efficiently solved using the finite element (FE) method. It is also demonstrated how PBSM can be combined with rigid registration schemes for robust nonrigid registration of arbitrarily aligned surfaces. Furthermore, it is shown how the approach can be combined with landmark based methods and outline its application to image guidance in laparoscopic interventions. Results: A profound analysis of the PBSM scheme based on in silico and phantom data is presented. Simulation studies on several liver models show that the approach is robust to the initial rigid registration and to parameter variations. The studies also reveal that the method achieves submillimeter registration accuracy (mean error between 0.32 and 0.46 mm). An unoptimized, single core implementation of the approach achieves near real-time performance (2 TPS, 7–19 s total registration time). It outperforms established methods in terms of speed and accuracy. Furthermore, it is shown that the

  8. Characterization of image quality and image-guidance performance of a preclinical microirradiator

    Energy Technology Data Exchange (ETDEWEB)

    Clarkson, R.; Lindsay, P. E.; Ansell, S.; Wilson, G.; Jelveh, S.; Hill, R. P.; Jaffray, D. A. [Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada) and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A1 (Canada); Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada) and Ontario Cancer Institute, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Ontario Cancer Institute, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A1 (Canada) and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A1 (Canada); Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Ontario Cancer Institute, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A1 (Canada) and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A1 (Canada)

    2011-02-15

    Purpose: To assess image quality and image-guidance capabilities of a cone-beam CT based small-animal image-guided irradiation unit (micro-IGRT). Methods: A micro-IGRT system has been developed in collaboration with the authors' laboratory as a means to study the radiobiological effects of conformal radiation dose distributions in small animals. The system, the X-Rad 225Cx, consists of a 225 kVp x-ray tube and a flat-panel amorphous silicon detector mounted on a rotational C-arm gantry and is capable of both fluoroscopic x-ray and cone-beam CT imaging, as well as image-guided placement of the radiation beams. Image quality (voxel noise, modulation transfer, CT number accuracy, and geometric accuracy characteristics) was assessed using water cylinder and micro-CT test phantoms. Image guidance was tested by analyzing the dose delivered to radiochromic films fixed to BB's through the end-to-end process of imaging, targeting the center of the BB, and irradiation of the film/BB in order to compare the offset between the center of the field and the center of the BB. Image quality and geometric studies were repeated over a 5-7 month period to assess stability. Results: CT numbers reported were found to be linear (R{sup 2}{>=}0.998) and the noise for images of homogeneous water phantom was 30 HU at imaging doses of approximately 1 cGy (to water). The presampled MTF at 50% and 10% reached 0.64 and 1.35 mm{sup -1}, respectively. Targeting accuracy by means of film irradiations was shown to have a mean displacement error of [{Delta}x,{Delta}y,{Delta}z]=[-0.12,-0.05,-0.02] mm, with standard deviations of [0.02, 0.20, 0.17] mm. The system has proven to be stable over time, with both the image quality and image-guidance performance being reproducible for the duration of the studies. Conclusions: The micro-IGRT unit provides soft-tissue imaging of small-animal anatomy at acceptable imaging doses ({<=}1 cGy). The geometric accuracy and targeting systems permit dose

  9. Gynecologic radiation therapy. Novel approaches to image-guidance and management

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Akila N. [Harvard Medical School, Boston, MA (United States). Dept. of Radiation Oncology; Kirisits, Christian; Poetter, Richard (eds.) [Vienna General Hospital Medical Univ. (Austria). Dept. of Radiotherapy; Erickson, Beth E. [Medical College of Wisconsin Clinics Froedtert Hospital, Milwaukee, WI (United States). Dept. of Radiation Oncology

    2011-07-01

    Recent advances in the treatment of gynecologic malignancies led to a new worldwide consensus to introduce image guidance to gynecologic radiation therapy, particularly to brachytherapy. The book summarizes the changed practice of management: treatment planning for cervical cancer, not modified for over 60 years, has been shifted to an image-based approach, endometrial cancer management with an increase in the use of chemotherapy and vaginal brachytherapy, and vaginal cancer therapy including image guidance and high-dose delivery with IMRT. (orig.)

  10. Spatial correlation coefficient images for ultrasonic detection.

    Science.gov (United States)

    Cepel, Raina; Ho, K C; Rinker, Brett A; Palmer, Donald D; Lerch, Terrence P; Neal, Steven P

    2007-09-01

    In ultrasonics, image formation and detection are generally based on signal amplitude. In this paper, we introduce correlation coefficient images as a signal-amplitude independent approach for image formation. The correlation coefficients are calculated between A-scans digitized at adjacent measurement positions. In these images, defects are revealed as regions of high or low correlation relative to the background correlations associated with noise. Correlation coefficient and C-scan images are shown to demonstrate flat-bottom-hole detection in a stainless steel annular ring and crack detection in an aluminum aircraft structure.

  11. Progressive Wavelet Correlation for Image Recognition

    OpenAIRE

    Stojanovic, Igor

    2013-01-01

    An algorithm for recognition and retrieval of image from image collection is developed. Basis of the algorithm is the progressive wavelet correlation. The final result is the recognition and retrieval of the wanted image, if it is in the image collection. Instructions for the choice of correlation threshold value for obtaining desired results are defined. The areas where the algorithm can be applied are also discussed. To increase efficiency is presented two phases solution. The first phase u...

  12. Correlation Plenoptic Imaging With Entangled Photons

    CERN Document Server

    Pepe, Francesco V; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena

    2016-01-01

    Plenoptic imaging is a novel optical technique for three-dimensional imaging in a single shot. It is enabled by the simultaneous measurement of both the location and the propagation direction of light in a given scene. In the standard approach, the maximum spatial and angular resolutions are inversely proportional, and so are the resolution and the maximum achievable depth of focus of the 3D image. We have recently proposed a method to overcome such fundamental limits by combining plenoptic imaging with an intriguing correlation remote-imaging technique: ghost imaging. Here, we theoretically demonstrate that correlation plenoptic imaging can be effectively achieved by exploiting the position-momentum entanglement characterizing spontaneous parametric down-conversion (SPDC) photon pairs. As a proof-of-principle demonstration, we shall show that correlation plenoptic imaging with entangled photons may enable the refocusing of an out-of-focus image at the same depth of focus of a standard plenoptic device, but w...

  13. Precision-guided surgical navigation system using laser guidance and 3D autostereoscopic image overlay.

    Science.gov (United States)

    Liao, Hongen; Ishihara, Hirotaka; Tran, Huy Hoang; Masamune, Ken; Sakuma, Ichiro; Dohi, Takeyoshi

    2010-01-01

    This paper describes a precision-guided surgical navigation system for minimally invasive surgery. The system combines a laser guidance technique with a three-dimensional (3D) autostereoscopic image overlay technique. Images of surgical anatomic structures superimposed onto the patient are created by employing an animated imaging method called integral videography (IV), which can display geometrically accurate 3D autostereoscopic images and reproduce motion parallax without the need for special viewing or tracking devices. To improve the placement accuracy of surgical instruments, we integrated an image overlay system with a laser guidance system for alignment of the surgical instrument and better visualization of patient's internal structure. We fabricated a laser guidance device and mounted it on an IV image overlay device. Experimental evaluations showed that the system could guide a linear surgical instrument toward a target with an average error of 2.48 mm and standard deviation of 1.76 mm. Further improvement to the design of the laser guidance device and the patient-image registration procedure of the IV image overlay will make this system practical; its use would increase surgical accuracy and reduce invasiveness.

  14. Correlation Imaging with Arbitrary Sampling Trajectories

    Science.gov (United States)

    Li, Yu

    2014-01-01

    The presented work aims to develop a generalized linear approach to image reconstruction with arbitrary sampling trajectories for high-speed MRI. This approach is based on a previously developed image reconstruction framework, "correlation imaging" (1). In the presented work, correlation imaging with arbitrary sampling trajectories is implemented in a multi-dimensional hybrid space that is formed from the physical sampling space and a virtually defined space. By introducing an undersampling trajectory with both uniformity and randomness in the hybrid space, correlation imaging may take advantage of multiple image reconstruction mechanisms including coil sensitivity encoding, data sparsity and information sharing. This hybrid-space implementation is demonstrated in multi-slice 2D imaging, multi-scan imaging, and radial dynamic imaging. Since more information is used in image reconstruction, it is found that hybrid-space correlation imaging outperforms several conventional techniques. The presented approach will benefit clinical MRI by enabling correlation imaging to be used to accelerate multi-scan clinical protocols that need different sampling trajectories in different scans. PMID:24629517

  15. SU-E-J-06: Additional Imaging Guidance Dose to Patient Organs Resulting From X-Ray Tubes Used in CyberKnife Image Guidance System

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, A; Ding, G [Vanderbilt University, Nashville, TN (United States)

    2015-06-15

    Purpose: The use of image-guided radiation therapy (IGRT) has become increasingly common, but the additional radiation exposure resulting from repeated image guidance procedures raises concerns. Although there are many studies reporting imaging dose from different image guidance devices, imaging dose for the CyberKnife Robotic Radiosurgery System is not available. This study provides estimated organ doses resulting from image guidance procedures on the CyberKnife system. Methods: Commercially available Monte Carlo software, PCXMC, was used to calculate average organ doses resulting from x-ray tubes used in the CyberKnife system. There are seven imaging protocols with kVp ranging from 60 – 120 kV and 15 mAs for treatment sites in the Cranium, Head and Neck, Thorax, and Abdomen. The output of each image protocol was measured at treatment isocenter. For each site and protocol, Adult body sizes ranging from anorexic to extremely obese were simulated since organ dose depends on patient size. Doses for all organs within the imaging field-of-view of each site were calculated for a single image acquisition from both of the orthogonal x-ray tubes. Results: Average organ doses were <1.0 mGy for every treatment site and imaging protocol. For a given organ, dose increases as kV increases or body size decreases. Higher doses are typically reported for skeletal components, such as the skull, ribs, or clavicles, than for softtissue organs. Typical organ doses due to a single exposure are estimated as 0.23 mGy to the brain, 0.29 mGy to the heart, 0.08 mGy to the kidneys, etc., depending on the imaging protocol and site. Conclusion: The organ doses vary with treatment site, imaging protocol and patient size. Although the organ dose from a single image acquisition resulting from two orthogonal beams is generally insignificant, the sum of repeated image acquisitions (>100) could reach 10–20 cGy for a typical treatment fraction.

  16. Real-time image guidance in laparoscopic liver surgery

    DEFF Research Database (Denmark)

    Kenngott, Hannes G.; Wagner, Martin; Gondan, Matthias

    2014-01-01

    . This study aims to evaluate the feasibility of a commercially available augmented reality (AR) guidance system employing intraoperative robotic C-arm cone-beam computed tomography (CBCT) for laparoscopic liver surgery. Methods: A human liver-like phantom with sixteen target fiducials was used to evaluate......Background: Laparoscopic liver surgery is particularly challenging owing to restricted access, risk of bleeding and lack of haptic feedback. Navigation systems have the potential to improve information on the exact position of intrahepatic tumors, and thus facilitate oncological resection.......49 mm. The patient successfully underwent the operation and showed no post-operative complications. Conclusion: The use of intraoperative CBCT and AR for laparoscopic liver resection is feasible and could be considered an option for future liver surgery in complex cases....

  17. Trigeminal nerve: Anatomic correlation with MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, D.L.; Pech, P.; Pojunas, K.W.; Kilgore, D.P.; Williams, A.L.; Haughton, V.M.

    1986-06-01

    Through correlation with cryomicrotic sections, the appearance of the trigeminal nerve and its branches on magnetic resonance images is described in healthy individuals and in patients with tumors involving this nerve. Coronal images are best for defining the different parts of the nerve and for making a side-to-side comparison. Sagittal images are useful to demonstrate tumors involving the Gasserian ganglion.

  18. Novel Image Guidance Techniques for Portal Vein Targeting During Transjugular Intrahepatic Portosystemic Shunt Creation.

    Science.gov (United States)

    Farsad, Khashayar; Kaufman, John A

    2016-03-01

    The most challenging part of transjugular intrahepatic portosystemic shunt creation is arguably the transvenous access from the hepatic vein to the portal vein. As experience and technology have evolved, the image guidance aspect of this critical step in the procedure has become more robust. Improved means to target the portal vein include both direct and indirect methods of portal vein opacification, cross-sectional imaging for both targeting and access, and novel use of transabdominal and intravascular ultrasound guidance. These techniques are described herein.

  19. Procedural guidance using advance imaging techniques for percutaneous edge-to-edge mitral valve repair.

    Science.gov (United States)

    Quaife, Robert A; Salcedo, Ernesto E; Carroll, John D

    2014-02-01

    The complexity of structural heart disease interventions such as edge-to edge mitral valve repair requires integration of multiple highly technical imaging modalities. Real time imaging with 3-dimensional (3D) echocardiography is a relatively new technique that first, allows clear volumetric imaging of target structures such as the mitral valve for both pre-procedural diagnosis and planning in patients with degenerative or functional mitral valve regurgitation. Secondly it provides intra-procedural, real-time panoramic volumetric 3D view of structural heart disease targets that facilitates eye-hand coordination while manipulating devices within the heart. X-ray fluoroscopy and RT 3D TEE images are used in combination to display specific targets and movement of catheter based technologies in 3D space. This integration requires at least two different image display monitors and mentally fusing the individual datasets by the operator. Combined display technology such as this, allow rotation and orientation of both dataset perspectives necessary to define targets and guidance of structural disease device procedures. The inherently easy concept of direct visual feedback and eye-hand coordination allows safe and efficient completion of MitraClip procedures. This technology is now merged into a single structural heart disease guidance mode called EchoNavigator(TM) (Philips Medical Imaging Andover, MA). These advanced imaging techniques have revolutionized the field of structural heart disease interventions and this experience is exemplified by a cooperative imaging approach used for guidance of edge-to-edge mitral valve repair procedures.

  20. Medical Image Fusion Based on Rolling Guidance Filter and Spiking Cortical Model.

    Science.gov (United States)

    Shuaiqi, Liu; Jie, Zhao; Mingzhu, Shi

    2015-01-01

    Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. Although numerous medical image fusion methods have been proposed, most of these approaches are sensitive to the noise and usually lead to fusion image distortion, and image information loss. Furthermore, they lack universality when dealing with different kinds of medical images. In this paper, we propose a new medical image fusion to overcome the aforementioned issues of the existing methods. It is achieved by combining with rolling guidance filter (RGF) and spiking cortical model (SCM). Firstly, saliency of medical images can be captured by RGF. Secondly, a self-adaptive threshold of SCM is gained by utilizing the mean and variance of the source images. Finally, fused image can be gotten by SCM motivated by RGF coefficients. Experimental results show that the proposed method is superior to other current popular ones in both subjectively visual performance and objective criteria.

  1. Medical Image Fusion Based on Rolling Guidance Filter and Spiking Cortical Model

    Directory of Open Access Journals (Sweden)

    Liu Shuaiqi

    2015-01-01

    Full Text Available Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. Although numerous medical image fusion methods have been proposed, most of these approaches are sensitive to the noise and usually lead to fusion image distortion, and image information loss. Furthermore, they lack universality when dealing with different kinds of medical images. In this paper, we propose a new medical image fusion to overcome the aforementioned issues of the existing methods. It is achieved by combining with rolling guidance filter (RGF and spiking cortical model (SCM. Firstly, saliency of medical images can be captured by RGF. Secondly, a self-adaptive threshold of SCM is gained by utilizing the mean and variance of the source images. Finally, fused image can be gotten by SCM motivated by RGF coefficients. Experimental results show that the proposed method is superior to other current popular ones in both subjectively visual performance and objective criteria.

  2. Rainbow correlation imaging with macroscopic twin beam

    Science.gov (United States)

    Allevi, Alessia; Bondani, Maria

    2017-06-01

    We present the implementation of a correlation-imaging protocol that exploits both the spatial and spectral correlations of macroscopic twin-beam states generated by parametric downconversion. In particular, the spectral resolution of an imaging spectrometer coupled to an EMCCD camera is used in a proof-of-principle experiment to encrypt and decrypt a simple code to be transmitted between two parties. In order to optimize the trade-off between visibility and resolution, we provide the characterization of the correlation images as a function of the spatio-spectral properties of twin beams generated at different pump power values.

  3. X-ray tomographic intervention guidance: Towards real-time 4D imaging

    CERN Document Server

    Bartling, Sönke

    2016-01-01

    Implementation of real-time, continuous, and three-dimensional imaging (4D intervention guidance) would be a quantum leap for minimally-invasive medicine. It allows guidance during interventions by assessing the spatial position of instruments continuously in respect to their surroundings. Recent research showed that it is feasible using X-ray and novel tomographic reconstruction approaches. Radiation dose stays within reasonable limits. This article provides abstractions and background information together with an outlook on these prospects. There are explanations of how situational awareness during interventions is generated today and how they will be in future. The differences between fluoroscopically and CT-guided interventions are eluted to within the context of these developments. The exploration of uncharted terrain between these current methods is worth pursuing. Necessary image quality of 4D intervention guidance varies relevantly from that of standard computed tomography. Means to analyze the risk-b...

  4. Correlation of masticatory muscle activity with masticatory ability in complete denture patients with canine guidance and balanced occlusion

    Science.gov (United States)

    Maxwell, D.; Odang, R. W.; Koesmaningati, H.

    2017-08-01

    Balanced occlusion is commonly used in complete denture occlusion scheme; however, canine guidance offers a simpler process and reduces alveolar ridge resorption. Correlative research of these two occlusion schemes is required. This study was done to analyze the correlation between masticatory muscle activity and masticatory ability of the subjects with canine guidance and balanced occlusion complete dentures. Ten denture wearers participated in this cross-over clinical trial, and five subjects were randomly selected to wear balanced occlusion followed by canine guidance complete dentures and vice versa. Electromyogram (EMG) activities of superficial masseter and anterior temporal muscles were measured and masticatory ability questionnaires were collected 30 days after the subjects wore each occlusal scheme. There were significant differences between the EMG activities of masticatory muscles in subjects who were given canine guidance and balanced occlusion complete dentures (p dentures (p = 0.046). There was a significant and strong correlation (p = 0.045; r = 0.642) between the EMG activity of anterior temporal muscles and masticatory ability when the subjects wore balanced occlusion dentures and between the EMG activity of superficial masseter muscles and masticatory ability (p = 0.043; r = 0.648) when wearing canine guidance dentures. Masticatory ability is better when using canine guidance dentures. There is a significant and strong correlation between masticatory muscle activity and masticatory ability.

  5. Cognitive task analysis and prioritization to improve image guidance of TIPS

    NARCIS (Netherlands)

    Cuijpers, C.F.; Klink, C.; Stappers, P.J.; Freudenthal, A.

    2013-01-01

    TIPS placement is one of the most technically challenging procedures in interventional radiology. During TIPS, limited image guidance (IG) is provided, especially during the intrahepatic puncture. To develop a suitable IG system, the aim of this study was (1) to know what parts of the procedure deve

  6. Neurocysticercosis: Correlative pathomorphology and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lotz, J.; Hewlett, R.; Alheit, B.; Bowen, R.

    1988-02-01

    CT and MR images of 32 patients with neurocysticercosis were correlated with pathomorphology. Gross morphological features of cystic larvae, complex arachnoid cysts, granulomatous abscesses, basal meningitis and mineralised nodules correlated closely with the images obtained, especially on MR, where resolution permitted visualisation of larval protoscolices. Our material indicates three forms of the natural history of neurocysticercosis related chiefly to anatomic location, and provides details of the evolution of large, complex arachnoid cysts.

  7. Correlation Plenoptic Imaging With Entangled Photons

    Directory of Open Access Journals (Sweden)

    Francesco V. Pepe

    2016-06-01

    Full Text Available Plenoptic imaging is a novel optical technique for three-dimensional imaging in a single shot. It is enabled by the simultaneous measurement of both the location and the propagation direction of light in a given scene. In the standard approach, the maximum spatial and angular resolutions are inversely proportional, and so are the resolution and the maximum achievable depth of focus of the 3D image. We have recently proposed a method to overcome such fundamental limits by combining plenoptic imaging with an intriguing correlation remote-imaging technique: ghost imaging. Here, we theoretically demonstrate that correlation plenoptic imaging can be effectively achieved by exploiting the position-momentum entanglement characterizing spontaneous parametric down-conversion (SPDC photon pairs. As a proof-of-principle demonstration, we shall show that correlation plenoptic imaging with entangled photons may enable the refocusing of an out-of-focus image at the same depth of focus of a standard plenoptic device, but without sacrificing diffraction-limited image resolution.

  8. Economics of image guidance and navigation in spine surgery

    Directory of Open Access Journals (Sweden)

    Lutfi Al-Khouja

    2015-01-01

    Conclusion: There is currently an insufficient amount of studies reporting on the economics of spinal navigation to accurately conclude on its cost-effectiveness in clinical practice. Although a few of these studies showed less costs associated with intraoperative imaging, none were able to establish a statistically significant difference. Preliminary findings drawn from this study indicate a possible cost-effectiveness advantage with IGS, but more comprehensive data on costs need to be reported in order to validate its utilization.

  9. Speckle pattern processing by digital image correlation

    Directory of Open Access Journals (Sweden)

    Gubarev Fedor

    2016-01-01

    Full Text Available Testing the method of speckle pattern processing based on the digital image correlation is carried out in the current work. Three the most widely used formulas of the correlation coefficient are tested. To determine the accuracy of the speckle pattern processing, test speckle patterns with known displacement are used. The optimal size of a speckle pattern template used for determination of correlation and corresponding the speckle pattern displacement is also considered in the work.

  10. Coherent photoacoustic-ultrasound correlation and imaging.

    Science.gov (United States)

    Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin

    2014-09-01

    Both photoacoustics and ultrasound have been researched extensively but separately. In this letter, we report an initial study on the coherent correlation between pulsed photoacoustic wave and pulse-echo ultrasound wave. By illuminating an object with a pulsed laser and external ultrasound sequentially, both the endogenous photoacoustic wave and pulse-echo ultrasound wave are received and coherently correlated, demonstrating enhanced signal-to-noise ratio. Image contrast of the proposed coherent photoacoustic-ultrasound imaging is also demonstrated to be improved significantly on vessel-mimicking phantom, due to fusion of the optical absorption and ultrasound reflection contrasts by coherent correlation of either conventional laser-induced photoacoustic imaging or pulse-echo ultrasound imaging separately.

  11. Image Correlation Microscopy for Uniform Illumination

    Science.gov (United States)

    Gaborski, Thomas R.; Sealander, Michael N.; Ehrenberg, Morton; Waugh, Richard E.; McGrath, James L.

    2011-01-01

    Image cross-correlation microscopy (ICM) is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. ICM has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy (FCS). In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy (UI-ICM). Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning ICM, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function (SACF). Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function (TACF) depends strongly on particle size and not particle shape. In this report, we establish the relationships between the SACF feature size, TACF characteristic time and the diffusion coefficient for UI-ICM using analytical, Monte-Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate UI-ICM analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils. PMID:20055917

  12. Visual tracking for multi-modality computer-assisted image guidance

    Science.gov (United States)

    Basafa, Ehsan; Foroughi, Pezhman; Hossbach, Martin; Bhanushali, Jasmine; Stolka, Philipp

    2017-03-01

    With optical cameras, many interventional navigation tasks previously relying on EM, optical, or mechanical guidance can be performed robustly, quickly, and conveniently. We developed a family of novel guidance systems based on wide-spectrum cameras and vision algorithms for real-time tracking of interventional instruments and multi-modality markers. These navigation systems support the localization of anatomical targets, support placement of imaging probe and instruments, and provide fusion imaging. The unique architecture - low-cost, miniature, in-hand stereo vision cameras fitted directly to imaging probes - allows for an intuitive workflow that fits a wide variety of specialties such as anesthesiology, interventional radiology, interventional oncology, emergency medicine, urology, and others, many of which see increasing pressure to utilize medical imaging and especially ultrasound, but have yet to develop the requisite skills for reliable success. We developed a modular system, consisting of hardware (the Optical Head containing the mini cameras) and software (components for visual instrument tracking with or without specialized visual features, fully automated marker segmentation from a variety of 3D imaging modalities, visual observation of meshes of widely separated markers, instant automatic registration, and target tracking and guidance on real-time multi-modality fusion views). From these components, we implemented a family of distinct clinical and pre-clinical systems (for combinations of ultrasound, CT, CBCT, and MRI), most of which have international regulatory clearance for clinical use. We present technical and clinical results on phantoms, ex- and in-vivo animals, and patients.

  13. Phase Correlation Based Iris Image Registration Model

    Institute of Scientific and Technical Information of China (English)

    Jun-Zhou Huang; Tie-Niu Tan; Li Ma; Yun-Hong Wang

    2005-01-01

    Iris recognition is one of the most reliable personal identification methods. In iris recognition systems, image registration is an important component. Accurately registering iris images leads to higher recognition rate for an iris recognition system. This paper proposes a phase correlation based method for iris image registration with sub-pixel accuracy.Compared with existing methods, it is insensitive to image intensity and can compensate to a certain extent the non-linear iris deformation caused by pupil movement. Experimental results show that the proposed algorithm has an encouraging performance.

  14. Monopulse radar 3-D imaging and application in terminal guidance radar

    Science.gov (United States)

    Xu, Hui; Qin, Guodong; Zhang, Lina

    2007-11-01

    Monopulse radar 3-D imaging integrates ISAR, monopulse angle measurement and 3-D imaging processing to obtain the 3-D image which can reflect the real size of a target, which means any two of the three measurement parameters, namely azimuth difference beam elevation difference beam and radial range, can be used to form 3-D image of 3-D object. The basic principles of Monopulse radar 3-D imaging are briefly introduced, the effect of target carriage changes(including yaw, pitch, roll and movement of target itself) on 3-D imaging and 3-D moving compensation based on the chirp rate μ and Doppler frequency f d are analyzed, and the application of monopulse radar 3-D imaging to terminal guidance radars is forecasted. The computer simulation results show that monopulse radar 3-D imaging has apparent advantages in distinguishing a target from overside interference and precise assault on vital part of a target, and has great importance in terminal guidance radars.

  15. An interventional multispectral photoacoustic imaging platform for the guidance of minimally invasive procedures

    Science.gov (United States)

    Xia, Wenfeng; Nikitichev, Daniil I.; Mari, Jean Martial; West, Simeon J.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.

    2015-07-01

    Precise and efficient guidance of medical devices is of paramount importance for many minimally invasive procedures. These procedures include fetal interventions, tumor biopsies and treatments, central venous catheterisations and peripheral nerve blocks. Ultrasound imaging is commonly used for guidance, but it often provides insufficient contrast with which to identify soft tissue structures such as vessels, tumors, and nerves. In this study, a hybrid interventional imaging system that combines ultrasound imaging and multispectral photoacoustic imaging for guiding minimally invasive procedures was developed and characterized. The system provides both structural information from ultrasound imaging and molecular information from multispectral photoacoustic imaging. It uses a commercial linear-array ultrasound imaging probe as the ultrasound receiver, with a multimode optical fiber embedded in a needle to deliver pulsed excitation light to tissue. Co-registration of ultrasound and photoacoustic images is achieved with the use of the same ultrasound receiver for both modalities. Using tissue ex vivo, the system successfully discriminated deep-located fat tissue from the surrounding muscle tissue. The measured photoacoustic spectrum of the fat tissue had good agreement with the lipid spectrum in literature.

  16. Sidescan Sonar Image Matching Using Cross Correlation

    DEFF Research Database (Denmark)

    Thisen, Erik; Sørensen, Helge Bjarup Dissing; Stage, Bjarne

    2003-01-01

    When surveying an area for sea mines with a sidescan sonar, the ability to find the same object in two different sonar images is helpful to determine the nature of the object. The main problem with matching two sidescan sonar images is that a scene changes appearance when viewed from different...... viewpoints. This paper presents a novel approach for matching two sidescan sonar images. The method first registers the two images to ground, then uses the cross correlation of the object positions on the seabed to find the correct displacement between the two images. In order to correct any minor...... displacements of the relative objects position as a result of the ground registration, the object position is given an area of influence. The method is compared to an existing method for matching sidescan sonar images based on hypothetical reasoning. The two methods are compared on a number of real sidescan...

  17. Tracking the key point of a building in infrared imaging guidance

    Science.gov (United States)

    Tan, Yi-mei; Zhou, Fu-gen; Jin, Ting

    2013-09-01

    Ground target detection is very important in precise infrared imaging guidance. To address this problem, an accurate tracking algorithm of the key points, i.e., vertex of buildings is proposed. First, the feature points are extracted by Kanade-Lucas-Tomasi (KLT) algorithm, and the template of feature points is updated constantly in the tracking process according to the offset. Then based on the extracted feature points, the key point can be positioned using the geometric relation between the feature points and the key point. Third, the algorithm tracks the feature points and uses the geometric relation to track the key point in the next frame. The experimental results demonstrate the effectiveness of the proposed algorithm in tracking the key point of buildings in front-lower infrared image sequences for long time precise guidance.

  18. Orthogonal Rings, Fiducial Markers, and Overlay Accuracy When Image Fusion is Used for EVAR Guidance.

    Science.gov (United States)

    Koutouzi, G; Sandström, C; Roos, H; Henrikson, O; Leonhardt, H; Falkenberg, M

    2016-11-01

    Evaluation of orthogonal rings, fiducial markers, and overlay accuracy when image fusion is used for endovascular aortic repair (EVAR). This was a prospective single centre study. In 19 patients undergoing standard EVAR, 3D image fusion was used for intra-operative guidance. Renal arteries and targeted stent graft positions were marked with rings orthogonal to the respective centre lines from pre-operative computed tomography (CT). Radiopaque reference objects attached to the back of the patient were used as fiducial markers to detect patient movement intra-operatively. Automatic 3D-3D registration of the pre-operative CT with an intra-operative cone beam computed tomography (CBCT) as well as 3D-3D registration after manual alignment of nearby vertebrae were evaluated. Registration was defined as being sufficient for EVAR guidance if the deviation of the origin of the lower renal artery was less than 3 mm. For final overlay registration, the renal arteries were manually aligned using aortic calcification and vessel outlines. The accuracy of the overlay before stent graft deployment was evaluated using digital subtraction angiography (DSA) as direct comparison. Fiducial markers helped in detecting misalignment caused by patient movement during the procedure. Use of automatic intensity based registration alone was insufficient for EVAR guidance. Manual registration based on vertebrae L1-L2 was sufficient in 7/19 patients (37%). Using the final adjusted registration as overlay, the median alignment error of the lower renal artery marking at pre-deployment DSA was 2 mm (0-5) sideways and 2 mm (0-9) longitudinally, mostly in a caudal direction. 3D image fusion can facilitate intra-operative guidance during EVAR. Orthogonal rings and fiducial markers are useful for visualization and overlay correction. However, the accuracy of the overlaid 3D image is not always ideal and further technical development is needed. Copyright © 2016 European Society for Vascular Surgery

  19. Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies.

    Science.gov (United States)

    Nazarian, Saman; Kolandaivelu, Aravindan; Zviman, Menekhem M; Meininger, Glenn R; Kato, Ritsushi; Susil, Robert C; Roguin, Ariel; Dickfeld, Timm L; Ashikaga, Hiroshi; Calkins, Hugh; Berger, Ronald D; Bluemke, David A; Lardo, Albert C; Halperin, Henry R

    2008-07-15

    Compared with fluoroscopy, the current imaging standard of care for guidance of electrophysiology procedures, magnetic resonance imaging (MRI) provides improved soft-tissue resolution and eliminates radiation exposure. However, because of inherent magnetic forces and electromagnetic interference, the MRI environment poses challenges for electrophysiology procedures. In this study, we sought to test the feasibility of performing electrophysiology studies with real-time MRI guidance. An MRI-compatible electrophysiology system was developed. Catheters were targeted to the right atrium, His bundle, and right ventricle of 10 mongrel dogs (23 to 32 kg) via a 1.5-T MRI system using rapidly acquired fast gradient-echo images (approximately 5 frames per second). Catheters were successfully positioned at the right atrial, His bundle, and right ventricular target sites of all animals. Comprehensive electrophysiology studies with recording of intracardiac electrograms and atrial and ventricular pacing were performed. Postprocedural pathological evaluation revealed no evidence of thermal injury to the myocardium. After proof of safety in animal studies, limited real-time MRI-guided catheter mapping studies were performed in 2 patients. Adequate target catheter localization was confirmed via recording of intracardiac electrograms in both patients. To the best of our knowledge, this is the first study to report the feasibility of real-time MRI-guided electrophysiology procedures. This technique may eliminate patient and staff radiation exposure and improve real-time soft tissue resolution for procedural guidance.

  20. Electromagnetic image guidance in gynecology: prospective study of a new laparoscopic imaging and targeting technique for the treatment of symptomatic uterine fibroids

    OpenAIRE

    Galen, Donald I.

    2015-01-01

    Background Uterine fibroids occur singly or as multiple benign tumors originating in the myometrium. Because they vary in size and location, the approach and technique for their identification and surgical management vary. Reference images, such as ultrasound images, magnetic resonance images, and sonohystograms, do not provide real-time intraoperative findings. Methods Electromagnetic image guidance, as incorporated in the Acessa Guidance System, has been cleared by the FDA to facilitate tar...

  1. Stereotactic radiosurgery for intradural spine tumors using cone-beam CT image guidance.

    Science.gov (United States)

    Monserrate, Andrés; Zussman, Benjamin; Ozpinar, Alp; Niranjan, Ajay; Flickinger, John C; Gerszten, Peter C

    2017-01-01

    OBJECTIVE Cone-beam CT (CBCT) image guidance technology has been widely adopted for spine radiosurgery delivery. There is relatively little experience with spine radiosurgery for intradural tumors using CBCT image guidance. This study prospectively evaluated a series of intradural spine tumors treated with radiosurgery. Patient setup accuracy for spine radiosurgery delivery using CBCT image guidance for intradural spine tumors was determined. METHODS Eighty-two patients with intradural tumors were treated and prospectively evaluated. The positioning deviations of the spine radiosurgery treatments in patients were recorded. Radiosurgery was delivered using a linear accelerator with a beam modulator and CBCT image guidance combined with a robotic couch that allows positioning correction in 3 translational and 3 rotational directions. To measure patient movement, 3 quality assurance CBCTs were performed and recorded in 30 patients: before, halfway, and after the radiosurgery treatment. The positioning data and fused images of planning CT and CBCT from the treatments were analyzed to determine intrafraction patient movements. From each of 3 CBCTs, 3 translational and 3 rotational coordinates were obtained. RESULTS The radiosurgery procedure was successfully completed for all patients. Lesion locations included cervical (22), thoracic (17), lumbar (38), and sacral (5). Tumor histologies included schwannoma (27), neurofibromas (18), meningioma (16), hemangioblastoma (8), and ependymoma (5). The mean prescription dose was 17 Gy (range 12-27 Gy) delivered in 1-3 fractions. At the halfway point of the radiation, the translational variations and standard deviations were 0.4 ± 0.5, 0.5 ± 0.8, and 0.4 ± 0.5 mm in the lateral (x), longitudinal (y), and anteroposterior (z) directions, respectively. Similarly, the variations immediately after treatment were 0.5 ± 0.4, 0.5 ± 0.6, and 0.6 ± 0.5 mm along x, y, and z directions, respectively. The mean rotational angles were 0

  2. Technologies of image guidance and the development of advanced linear accelerator systems for radiotherapy.

    Science.gov (United States)

    Wu, Vincent W C; Law, Maria Y Y; Star-Lack, Josh; Cheung, Fion W K; Ling, C Clifton

    2011-01-01

    As advanced radiotherapy approaches for targeting the tumor and sparing the normal tissues have been developed, the image guidance of therapy has become essential to directing and confirming treatment accuracy. To approach these goals, image guidance devices now include kV on-board imagers, kV/MV cone-beam CT systems, CT-on-rails, and mobile and in-room radiographic/fluoroscopic systems. Nonionizing sources, such as ultrasound and optical systems, and electromagnetic devices have been introduced to monitor or track the patient and/or tumor positions during treatment. In addition, devices have been designed specifically for monitoring and/or controlling respiratory motion. Optimally, image-guided radiation therapy systems should possess 3 essential elements: (1) 3D imaging of soft tissues and tumors, (2) efficient acquisition and comparison of the 3D images, and (3) an efficacious process for clinically meaningful intervention. Understanding and using these tools effectively is central to current radiotherapy practice. The implementation and integration of these devices continue to carry practical challenges, which emphasize the need for further development of the technologies and their clinical applications.

  3. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance.

    Science.gov (United States)

    Dibildox, Gerardo; Baka, Nora; Punt, Mark; Aben, Jean-Paul; Schultz, Carl; Niessen, Wiro; van Walsum, Theo

    2014-09-01

    The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P>0.1) but did improve robustness with regards to the initialization of the 3D models. The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  4. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Dibildox, Gerardo, E-mail: g.dibildox@erasmusmc.nl; Baka, Nora; Walsum, Theo van [Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Punt, Mark; Aben, Jean-Paul [Pie Medical Imaging, 6227 AJ Maastricht (Netherlands); Schultz, Carl [Department of Cardiology, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Niessen, Wiro [Quantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft, The Netherlands and Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands)

    2014-09-15

    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  5. Digital image correlation: displacement accuracy estimation

    Directory of Open Access Journals (Sweden)

    Wattrisse B.

    2010-06-01

    Full Text Available The aim of this collaborative work is to study the uncertainties associated with Digital Image Correlation techniques (DIC. More specifically, the link between displacement uncertainties and several correlation parameters chosen by the user and relative to the image analysis software and several image characteristics like speckle size and image noise is emphasized. A previous work [1] has been done for situations with spatially fluctuating displacement fields which dealt with mismatch error linked to the discrepancy between the adopted shape function and the real displacement field in the subset. This present work is focused on the ultimate error regime. To ensure that there is no mismatch error, synthetic images of plane rigid body translation have been analysed. DIC softwares developed by or used in the French community were used to study a large number of settings. The first observations are: (a bias amplitude is almost always insensitive to the subset size, (b DIC formulations can be split up into two families. For the first one, the bias amplitude increases with the noise while it remains constant for the second one. For both families, the mean value of the random error increases with the noise level and with the inverse of the subset size. Furthermore, the random error decreases with the radius of the speckle for the first family, while it increases for the second one. These two different behaviours of the tested DIC package are probably due to their underlying DIC formulation (interpolation, correlation criteria, optimisation process.

  6. Accuracy Evaluation of a 3-Dimensional Surface Imaging System for Guidance in Deep-Inspiration Breath-Hold Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Alderliesten, Tanja; Sonke, Jan-Jakob; Betgen, Anja; Honnef, Joeri; Vliet-Vroegindeweij, Corine van [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Remeijer, Peter, E-mail: p.remeijer@nki.nl [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2013-02-01

    Purpose: To investigate the applicability of 3-dimensional (3D) surface imaging for image guidance in deep-inspiration breath-hold radiation therapy (DIBH-RT) for patients with left-sided breast cancer. For this purpose, setup data based on captured 3D surfaces was compared with setup data based on cone beam computed tomography (CBCT). Methods and Materials: Twenty patients treated with DIBH-RT after breast-conserving surgery (BCS) were included. Before the start of treatment, each patient underwent a breath-hold CT scan for planning purposes. During treatment, dose delivery was preceded by setup verification using CBCT of the left breast. 3D surfaces were captured by a surface imaging system concurrently with the CBCT scan. Retrospectively, surface registrations were performed for CBCT to CT and for a captured 3D surface to CT. The resulting setup errors were compared with linear regression analysis. For the differences between setup errors, group mean, systematic error, random error, and 95% limits of agreement were calculated. Furthermore, receiver operating characteristic (ROC) analysis was performed. Results: Good correlation between setup errors was found: R{sup 2}=0.70, 0.90, 0.82 in left-right, craniocaudal, and anterior-posterior directions, respectively. Systematic errors were {<=}0.17 cm in all directions. Random errors were {<=}0.15 cm. The limits of agreement were -0.34-0.48, -0.42-0.39, and -0.52-0.23 cm in left-right, craniocaudal, and anterior-posterior directions, respectively. ROC analysis showed that a threshold between 0.4 and 0.8 cm corresponds to promising true positive rates (0.78-0.95) and false positive rates (0.12-0.28). Conclusions: The results support the application of 3D surface imaging for image guidance in DIBH-RT after BCS.

  7. Spectroscopic Imaging of Strongly Correlated Electronic States

    Science.gov (United States)

    Yazdani, Ali; da Silva Neto, Eduardo H.; Aynajian, Pegor

    2016-03-01

    The study of correlated electronic systems from high-Tc cuprates to heavy-fermion systems continues to motivate the development of experimental tools to probe electronic phenomena in new ways and with increasing precision. In the past two decades, spectroscopic imaging with scanning tunneling microscopy has emerged as a powerful experimental technique. The combination of high energy and spatial resolutions provided by this technique reveals unprecedented detail of the electronic properties of strongly correlated metals and superconductors. This review examines specific experiments, theoretical concepts, and measurement methods that have established the application of these techniques to correlated materials. A wide range of applications, such as the study of collective responses to single atomic impurities, the characterization of quasiparticle-like excitations through their interference, and the identification of competing electronic phases using spectroscopic imaging, are discussed.

  8. Digital Image Correlation with Dynamic Subset Selection

    Science.gov (United States)

    Hassan, Ghulam Mubashar; MacNish, Cara; Dyskin, Arcady; Shufrin, Igor

    2016-09-01

    The quality of the surface pattern and selection of subset size play a critical role in achieving high accuracy in Digital Image Correlation (DIC). The subset size in DIC is normally selected by testing different subset sizes across the entire image, which is a laborious procedure. This also leads to the problem that the worst region of the surface pattern influences the performance of DIC across the entire image. In order to avoid these limitations, a Dynamic Subset Selection (DSS) algorithm is proposed in this paper to optimize the subset size for each point in an image before optimizing the correlation parameters. The proposed DSS algorithm uses the local pattern around the point of interest to calculate a parameter called the Intensity Variation Ratio (Λ), which is used to optimize the subset size. The performance of the DSS algorithm is analyzed using numerically generated images and is compared with the results of traditional DIC. Images obtained from laboratory experiments are also used to demonstrate the utility of the DSS algorithm. Results illustrate that the DSS algorithm provides a better alternative to subset size "guessing" and finds an appropriate subset size for each point of interest according to the local pattern.

  9. An improved image reconstruction method for optical intensity correlation Imaging

    Science.gov (United States)

    Gao, Xin; Feng, Lingjie; Li, Xiyu

    2016-12-01

    The intensity correlation imaging method is a novel kind of interference imaging and it has favorable prospects in deep space recognition. However, restricted by the low detecting signal-to-noise ratio (SNR), it's usually very difficult to obtain high-quality image of deep space object like high-Earth-orbit (HEO) satellite with existing phase retrieval methods. In this paper, based on the priori intensity statistical distribution model of the object and characteristics of measurement noise distribution, an improved method of Prior Information Optimization (PIO) is proposed to reduce the ambiguous images and accelerate the phase retrieval procedure thus realizing fine image reconstruction. As the simulations and experiments show, compared to previous methods, our method could acquire higher-resolution images with less error in low SNR condition.

  10. Advances in fiducial-free image-guidance for spinal radiosurgery with CyberKnife--a phantom study.

    Science.gov (United States)

    Fürweger, Christoph; Drexler, Christian; Kufeld, Markus; Muacevic, Alexander; Wowra, Berndt

    2010-12-22

    The image-guided CyberKnife radiosurgery system is apable of tracking spinal targets without fiducial implants. Recently, a new version of this fiducial-free image guidance modality ("enhanced Xsight spine tracking") has been introduced. We assessed the accuracy of this novel technique versus its precursor in a comparative phantom study. The CyberKnife consists of a 6 MV linac on a six-axis robot and a stereoscopic kV image guidance system. An anthropomorphic head-and-neck phantom with a cervical spine section was mounted on the linac nozzle. The robotic manipulator was used to precisely move the phantom to defined positions in the CyberKnife workspace. Multiple stereoscopic images were acquired at different translational and rotational positions. The enhanced Xsight spine tracking readouts were recorded and compared to the nominal phantom position. These tests were repeated with the original Xsight spine tracking version to analyze potential differences. Enhanced Xsight spine tracking correctly reported translational offsets with an RMS error of less than 0.4 mm. Yaw and roll rotations were detected with an accuracy of 0.2°, 0.25°. Pitch offsets were slightly underestimated, with up to 0.3° for an offset of ± 2°. Nominal X (left-right) translational offsets were partially misinterpreted as roll (0.2° at a 10 mm offset). Apart from this, no correlation between rotational and translational directions was found. In comparison, the original Xsight spine tracking showed identical results for translations, but larger systematic and statistical errors for rotations. Enhanced Xsight spine tracking measurably improves precision in fiducial-free spinal radiosurgery with the CyberKnife.

  11. Computing dynamic classification images from correlation maps.

    Science.gov (United States)

    Lu, Hongjing; Liu, Zili

    2006-05-22

    We used Pearson's correlation to compute dynamic classification images of biological motion in a point-light display. Observers discriminated whether a human figure that was embedded in dynamic white Gaussian noise was walking forward or backward. Their responses were correlated with the Gaussian noise fields frame by frame, across trials. The resultant correlation map gave rise to a sequence of dynamic classification images that were clearer than either the standard method of A. J. Ahumada and J. Lovell (1971) or the optimal weighting method of R. F. Murray, P. J. Bennett, and A. B. Sekuler (2002). Further, the correlation coefficients of all the point lights were similar to each other when overlapping pixels between forward and backward walkers were excluded. This pattern is consistent with the hypothesis that the point-light walker is represented in a global manner, as opposed to a fixed subset of point lights being more important than others. We conjecture that the superior performance of the correlation map may reflect inherent nonlinearities in processing biological motion, which are incompatible with the assumptions underlying the previous methods.

  12. Four-dimensional modeling of the heart for image guidance of minimally invasive cardiac surgeries

    Science.gov (United States)

    Wierzbicki, Marcin; Drangova, Maria; Guiraudon, Gerard; Peters, Terry

    2004-05-01

    Minimally invasive surgery of the beating heart can be associated with two major limitations: selecting port locations for optimal target coverage from x-rays and angiograms, and navigating instruments in a dynamic and confined 3D environment using only an endoscope. To supplement the current surgery planning and guidance strategies, we continue developing VCSP - a virtual reality, patient-specific, thoracic cavity model derived from 3D pre-procedural images. In this work, we apply elastic image registration to 4D cardiac images to model the dynamic heart. Our method is validated on two image modalities, and for different parts of the cardiac anatomy. In a helical CT dataset of an excised heart phantom, we found that the artificial motion of the epicardial surface can be extracted to within 0.93 +/- 0.33 mm. For an MR dataset of a human volunteer, the error for different heart structures such as the myocardium, right and left atria, right ventricle, aorta, vena cava, and pulmonary artery, ranged from 1.08 +/- 0.18 mm to 1.14 +/- 0.22 mm. These results indicate that our method of modeling the motion of the heart is not only easily adaptable but also sufficiently accurate to meet the requirements for reliable cardiac surgery training, planning, and guidance.

  13. Screen-imaging guidance using a modified portable video macroscope for middle cerebral artery occlusion

    Institute of Scientific and Technical Information of China (English)

    Xingbao Zhu; Xinghua Pan; Junli Luo; Yun Liu; Guolong Chen; Song Liu; Qiangjin Ruan; Xunding Deng; Dianchun Wang; Quanshui Fan

    2012-01-01

    The use of operating microscopes is limited by the focal length. Surgeons using these instruments cannot simultaneously view and access the surgical field and must choose one or the other. The longer focal length (more than 1 000 mm) of an operating telescope permits a position away from the operating field, above the surgeon and out of the field of view. This gives the telescope an advantage over an operating microscope. We developed a telescopic system using screen-imaging guidance and a modified portable video macroscope constructed from a Computar MLH-10 × macro lens, a DFK-21AU04 USB CCD Camera and a Dell laptop computer as monitor screen. This system was used to establish a middle cerebral artery occlusion model in rats. Results showed that magnification of the modified portable video macroscope was appropriate (5-20 ×) even though the Computar MLH-10 × macro lens was placed 800 mm away from the operating field rather than at the specified working distance of 152.4 mm with a zoom of 1-40 ×. The screen-imaging telescopic technique was clear, life-like, stereoscopic and matched the actual operation. Screen-imaging guidance led to an accurate, smooth, minimally invasive and comparatively easy surgical procedure. Success rate of the model establishment evaluated by neurological function using the modified neurological score system was 74.07%. There was no significant difference in model establishment time, sensorimotor deficit and infarct volume percentage. Our findings indicate that the telescopic lens is effective in the screen surgical operation mode referred to as "long distance observation and short distance operation" and that screen-imaging guidance using an modified portable video macroscope can be utilized for the establishment of a middle cerebral artery occlusion model and micro-neurosurgery.

  14. Screen-imaging guidance using a modified portable video macroscope for middle cerebral artery occlusion.

    Science.gov (United States)

    Zhu, Xingbao; Luo, Junli; Liu, Yun; Chen, Guolong; Liu, Song; Ruan, Qiangjin; Deng, Xunding; Wang, Dianchun; Fan, Quanshui; Pan, Xinghua

    2012-04-25

    The use of operating microscopes is limited by the focal length. Surgeons using these instruments cannot simultaneously view and access the surgical field and must choose one or the other. The longer focal length (more than 1 000 mm) of an operating telescope permits a position away from the operating field, above the surgeon and out of the field of view. This gives the telescope an advantage over an operating microscope. We developed a telescopic system using screen-imaging guidance and a modified portable video macroscope constructed from a Computar MLH-10 × macro lens, a DFK-21AU04 USB CCD Camera and a Dell laptop computer as monitor screen. This system was used to establish a middle cerebral artery occlusion model in rats. Results showed that magnification of the modified portable video macroscope was appropriate (5-20 ×) even though the Computar MLH-10 × macro lens was placed 800 mm away from the operating field rather than at the specified working distance of 152.4 mm with a zoom of 1-40 ×. The screen-imaging telescopic technique was clear, life-like, stereoscopic and matched the actual operation. Screen-imaging guidance led to an accurate, smooth, minimally invasive and comparatively easy surgical procedure. Success rate of the model establishment evaluated by neurological function using the modified neurological score system was 74.07%. There was no significant difference in model establishment time, sensorimotor deficit and infarct volume percentage. Our findings indicate that the telescopic lens is effective in the screen surgical operation mode referred to as "long distance observation and short distance operation" and that screen-imaging guidance using an modified portable video macroscope can be utilized for the establishment of a middle cerebral artery occlusion model and micro-neurosurgery.

  15. MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Redler, G; Bernard, D; Templeton, A; Chu, J [Rush University Medical Center, Chicago, IL (United States); Nair, C Kumaran [University of Chicago, Chicago, IL (United States); Turian, J [Rush University Medical Center, Chicago, IL (United States); Rush Radiosurgery LLC, Chicago, IL (United States)

    2015-06-15

    approach, employing multiple simulation techniques and experiments, is taken to demonstrate the feasibility of a novel scatter imaging modality for the necessary real-time image guidance.

  16. Demosaicing images from colour cameras for digital image correlation

    Science.gov (United States)

    Forsey, A.; Gungor, S.

    2016-11-01

    Digital image correlation is not the intended use for consumer colour cameras, but with care they can be successfully employed in such a role. The main obstacle is the sparsely sampled colour data caused by the use of a colour filter array (CFA) to separate the colour channels. It is shown that the method used to convert consumer camera raw files into a monochrome image suitable for digital image correlation (DIC) can have a significant effect on the DIC output. A number of widely available software packages and two in-house methods are evaluated in terms of their performance when used with DIC. Using an in-plane rotating disc to produce a highly constrained displacement field, it was found that the bicubic spline based in-house demosaicing method outperformed the other methods in terms of accuracy and aliasing suppression.

  17. Image correlates of crowding in natural scenes.

    Science.gov (United States)

    Wallis, Thomas S A; Bex, Peter J

    2012-07-13

    Visual crowding is the inability to identify visible features when they are surrounded by other structure in the peripheral field. Since natural environments are replete with structure and most of our visual field is peripheral, crowding represents the primary limit on vision in the real world. However, little is known about the characteristics of crowding under natural conditions. Here we examine where crowding occurs in natural images. Observers were required to identify which of four locations contained a patch of "dead leaves'' (synthetic, naturalistic contour structure) embedded into natural images. Threshold size for the dead leaves patch scaled with eccentricity in a manner consistent with crowding. Reverse correlation at multiple scales was used to determine local image statistics that correlated with task performance. Stepwise model selection revealed that local RMS contrast and edge density at the site of the dead leaves patch were of primary importance in predicting the occurrence of crowding once patch size and eccentricity had been considered. The absolute magnitudes of the regression weights for RMS contrast at different spatial scales varied in a manner consistent with receptive field sizes measured in striate cortex of primate brains. Our results are consistent with crowding models that are based on spatial averaging of features in the early stages of the visual system, and allow the prediction of where crowding is likely to occur in natural images.

  18. Nurses' provision of parental guidance regarding school-aged children's postoperative pain management: a descriptive correlational study.

    Science.gov (United States)

    He, Hong-Gu; Klainin-Yobas, Piyanee; Ang, Emily Neo Kim; Sinnappan, Rajammal; Pölkki, Tarja; Wang, Wenru

    2015-02-01

    Involving parents in children's pain management is essential to achieve optimal outcomes. Parents need to be equipped with sufficient knowledge and information. Only a limited number of studies have explored nurses' provision of parental guidance regarding the use of nonpharmacologic methods in children's pain management. This study aimed to examine nurses' perceptions of providing preparatory information and nonpharmacologic methods to parents, and how their demographics and perceived knowledge adequacy of these methods influence this guidance. A descriptive correlational study using questionnaire surveys was conducted to collect data from a convenience sample of 134 registered nurses working in seven pediatric wards of two public hospitals in Singapore. Descriptive statistics, independent-samples t test, and multiple linear regression were used to analyze the data. Most nurses provided various types of cognitive information to parents related to their children's surgery, whereas information about children's feelings was less often provided. Most nurses provided guidance to parents on positioning, breathing technique, comforting/reassurance, helping with activities of daily living, relaxation, and creating a comfortable environment. Nurses' provision of parental guidance on preparatory information and nonpharmacologic methods was significantly different between subgroups of age, education, parent or not, and perceived knowledge adequacy of nonpharmacologic methods. Nurses' perceived knowledge adequacy was the main factor influencing their provision of parental guidance. More attention should be paid to nurses who are younger, have less working experience, and are not parents. There is a need to educate nurses about nonpharmacologic pain relief methods to optimize their provision of parental guidance. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  19. Hybrid Surgical Guidance: Does Hardware Integration of γ- and Fluorescence Imaging Modalities Make Sense?

    Science.gov (United States)

    KleinJan, Gijs H; Hellingman, Daan; van den Berg, Nynke S; van Oosterom, Matthias N; Hendricksen, Kees; Horenblas, Simon; Valdes Olmos, Renato A; van Leeuwen, Fijs Wb

    2017-04-01

    The clinically applied hybrid tracer indocyanine green-(99m)Tc-nanocolloid enables combined radio- and fluorescence image guidance during sentinel node (SN) biopsy procedures. To provide optimal surgical guidance, this tracer requires the presence of both γ- and fluorescence modalities in the operating room. We reasoned that the combination or integration of these modalities could further evolve the hybrid surgical guidance concept. To study this potential, we clinically applied 2 setups that included the combination of γ-detection modalities and an open surgery fluorescence camera. Methods: To attach the fluorescence camera (VITOM) to either a γ-ray detection probe (GP; VITOM-GP) or a portable γ-camera (GC; Vitom GC), clip-on brackets were designed and printed in 3-dimensional sterilizable RC31. Both combined modalities were evaluated in, respectively, 5 and 6 patients with penile cancer during an SN biopsy procedure using indocyanine green-(99m)Tc-nanocolloid. Intraoperatively, radio- and fluorescence-guided SN detection rates were scored at working distances of 0, 10, 20, and 30 cm for both combinations. Results: Using the VITOM-GP combination, we evaluated 9 SNs. γ-tracing rates were shown to be 100%, 88.9%, 55.6%, and 55.6% at a respective working distance of 0, 10, 20, and 30 cm. Detection rates for the fluorescence imaging-based detection were found to be 100%, 77.8%, and 77.8%, at respective working distances of 10, 20, and 30 cm. When the VITOM-GC setup was used, all 10 intraoperatively evaluated SNs could be visualized with the γ-camera independent of the working distance. Fluorescence detection rates were 90%, 80%, and 80% at 10-, 20-, and 30-cm working distances. The integrated detection modalities were shown to work synergistically; overall the, GC was most valuable for rough localization (10- to 30-cm range) of the SNs, the GP for providing convenient real-time acoustic feedback, whereas fluorescence guidance allowed detailed real-time SN

  20. Precisely shaped acoustic ablation of tumors utilizing steerable needle and 3D ultrasound image guidance

    Science.gov (United States)

    Boctor, Emad M.; Stolka, Philipp; Kang, Hyun-Jae; Clarke, Clyde; Rucker, Caleb; Croom, Jordon; Burdette, E. Clif; Webster, Robert J., III

    2010-02-01

    Many recent studies have demonstrated the efficacy of interstitial ablative approaches for the treatment of hepatic tumors. Despite these promising results, current systems remain highly dependent on operator skill, and cannot treat many tumors because there is little control of the size and shape of the zone of necrosis, and no control over ablator trajectory within tissue once insertion has taken place. Additionally, tissue deformation and target motion make it extremely difficult to place the ablator device precisely into the target. Irregularly shaped target volumes typically require multiple insertions and several overlapping (thermal) lesions, which are even more challenging to accomplish in a precise, predictable, and timely manner without causing excessive damage to surrounding normal tissues. In answer to these problems, we have developed a steerable acoustic ablator called the ACUSITT with the ability of directional energy delivery to precisely shape the applied thermal dose . In this paper, we address image guidance for this device, proposing an innovative method for accurate tracking and tool registration with spatially-registered intra-operative three-dimensional US volumes, without relying on an external tracking device. This method is applied to guid-ance of the flexible, snake-like, lightweight, and inexpensive ACUSITT to facilitate precise placement of its ablator tip within the liver, with ablation monitoring via strain imaging. Recent advancements in interstitial high-power ultrasound applicators enable controllable and penetrating heating patterns which can be dynamically altered. This paper summarizes the design and development of the first synergistic system that integrates a novel steerable interstitial acoustic ablation device with a novel trackerless 3DUS guidance strategy.

  1. The first clinical treatment with kilovoltage intrafraction monitoring (KIM): A real-time image guidance method

    DEFF Research Database (Denmark)

    Keall, Paul J.; Aun Ng, Jin; O'Brien, Ricky;

    2015-01-01

    system. A 120° pretreatment kV imaging arc was acquired to build the patient-specific 2D to 3D motion correlation. The kV imager was activated during the megavoltage (MV) treatment, a dual arc VMAT prostate treatment, to estimate the 3D prostate position in real-time. All necessary ethics, legal...

  2. Optical flow based guidance system design for semi-strapdown image homing guided missiles

    Directory of Open Access Journals (Sweden)

    Huang Lan

    2016-10-01

    Full Text Available This paper focuses mainly on semi-strapdown image homing guided (SSIHG system design based on optical flow for a six-degree-of-freedom (6-DOF axial-symmetric skid-to-turn missile. Three optical flow algorithms suitable for large displacements are introduced and compared. The influence of different displacements on computational accuracy of the three algorithms is analyzed statistically. The total optical flow of the SSIHG missile is obtained using the Scale Invariant Feature Transform (SIFT algorithm, which is the best among the three for large displacements. After removing the rotational optical flow caused by rotation of the gimbal and missile body from the total optical flow, the remaining translational optical flow is smoothed via Kalman filtering. The circular navigation guidance (CNG law with impact angle constraint is then obtained utilizing the smoothed translational optical flow and position of the target image. Simulations are carried out under both disturbed and undisturbed conditions, and results indicate the proposed guidance strategy for SSIHG missiles can result in a precise target hit with a desired impact angle without the need for the time-to-go parameter.

  3. Impact of robotic ultrasound image guidance on plan quality in SBRT of the prostate.

    Science.gov (United States)

    Gerlach, Stefan; Kuhlemann, Ivo; Ernst, Floris; Fürweger, Christoph; Schlaefer, Alexander

    2017-07-27

    Ultrasound provides good image quality, fast volumetric imaging, and is established for abdominal image guidance. Robotic transducer placement may facilitate intra-fractional motion compensation in radiation therapy. We consider integration with the CyberKnife and study whether the kinematic redundancy of a seven-degrees-of-freedom robot allows for acceptable plan quality for prostate treatments. Reference treatment plans were generated for ten prostate cancer cases previously treated with the CyberKnife. Considering transducer and prostate motion by different safety margins, ten different robot poses, and three different elbow configurations, we removed all beams colliding with robot or transducer. For each combination, plans were generated using the same strict dose constraints and the objective to maximize the target coverage. Additionally, plans for the union of all unblocked beams were generated. In nine cases the planning target coverage with the ultrasound robot was within 1.1 percentage points of the reference coverage. It was 1.7 percentage points for one large prostate. For one preferable robot position, kinematic redundancy decreased the average number of blocked beam directions from 23.1 to 14.5. The impact of beam blocking can largely be offset by treatment planning and using a kinematically redundant robot. Plan quality can be maintained by carefully choosing the ultrasound robot position and pose. For smaller planning target volumes the difference in coverage is negligible for safety margins of up to 35 mm. Advances in Knowledge: Integrating a robot for online intra-fractional image guidance based on ultrasound can be realized while maintaining acceptable plan quality for prostate cancer treatments with the CyberKnife.

  4. A clinico-radiographic analysis of sagittal condylar guidance determined by protrusive interocclusal registration and panoramic radiographic images in humans

    OpenAIRE

    Krishna Prasad, D.; Namrata Shah; Chethan Hegde

    2012-01-01

    Purpose: To evaluate the correlation between sagittal condylar guidance obtained by protrusive interocclusal records and panoramic radiograph tracing methods in human dentulous subjects. Materials and Methods: The sagittal condylar guidance was determined in 75 dentulous subjects by protrusive interocclusal records using Aluwax through a face bow transfer (HANAU™ Spring Bow, Whip Mix Corporation, USA) to a semi-adjustable articulator (HANAU™ Wide-Vue Articulator, Whip Mix Corporation, USA). I...

  5. Known-component 3D-2D registration for image guidance and quality assurance in spine surgery pedicle screw placement

    Science.gov (United States)

    Uneri, A.; Stayman, J. W.; De Silva, T.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Wolinsky, J.-P.; Gokaslan, Z. L.; Siewerdsen, J. H.

    2015-03-01

    Purpose. To extend the functionality of radiographic / fluoroscopic imaging systems already within standard spine surgery workflow to: 1) provide guidance of surgical device analogous to an external tracking system; and 2) provide intraoperative quality assurance (QA) of the surgical product. Methods. Using fast, robust 3D-2D registration in combination with 3D models of known components (surgical devices), the 3D pose determination was solved to relate known components to 2D projection images and 3D preoperative CT in near-real-time. Exact and parametric models of the components were used as input to the algorithm to evaluate the effects of model fidelity. The proposed algorithm employs the covariance matrix adaptation evolution strategy (CMA-ES) to maximize gradient correlation (GC) between measured projections and simulated forward projections of components. Geometric accuracy was evaluated in a spine phantom in terms of target registration error at the tool tip (TREx), and angular deviation (TREΦ) from planned trajectory. Results. Transpedicle surgical devices (probe tool and spine screws) were successfully guided with TREx30° (easily accommodated on a mobile C-arm). QA of the surgical product based on 3D-2D registration demonstrated the detection of pedicle screw breach with TRExConclusions. 3D-2D registration combined with 3D models of known surgical components provides a novel method for near-real-time guidance and quality assurance using a mobile C-arm without external trackers or fiducial markers. Ongoing work includes determination of optimal views based on component shape and trajectory, improved robustness to anatomical deformation, and expanded preclinical testing in spine and intracranial surgeries.

  6. Image guidance quality assurance of a G4 CyberKnife robotic stereotactic radiosurgery system

    Energy Technology Data Exchange (ETDEWEB)

    Pantelis, E; Antypas, C [CyberKnife center, Iatropolis-Magnitiki Tomografia, Ethnikis Antistaseos 54-56, Chalandri, 152 31, Athens (Greece); Petrokokkinos, L [University of Athens, Physics Department, Nuclear and Particle Section, Panepistimioupolis, Ilisia, Athens (Greece)], E-mail: vpantelis@phys.uoa.gr

    2009-05-15

    The image guidance of a CyberKnife robotic radiosurgery system was quality controlled, including the overall performance of the target locating subsystem and the performance of the x-ray generators and flat panel digital cameras subcomponents. Accuracy and precision of the kV and exposure time settings of the x-ray generators, linearity of the x-ray output, spatial resolution and geometrical distortion of the acquired x-ray images were measured. Total accuracy and precision of the target locating subsystem in defining the position of an anthropomorphic head and neck phantom placed on treatment couch was also measured. Accuracy and precision of the kV as well as exposure time settings and linearity of the x-ray output were found within the acceptance limits suggested in diagnostic radiology. The acquired x-ray images were found to depict the shapes of the imaging objects without any geometrical distortion, being able to resolve differences in the features of imaging objects with critical frequency of 1.3 lp/mm and 1.5 lp/mm for camera A and B, respectively. Total target locating system accuracy was found within 0.2 mm and 0.2 deg. in translations and rotations, respectively. Corresponding precision was found lower than 0.5%. These findings render the target locating subsystem of the CyberKnife capable of accurately registering the patient to treatment position and monitoring patient's movement during treatment delivery.

  7. Image guidance quality assurance of a G4 CyberKnife robotic stereotactic radiosurgery system

    Science.gov (United States)

    Pantelis, E.; Petrokokkinos, L.; Antypas, C.

    2009-05-01

    The image guidance of a CyberKnife robotic radiosurgery system was quality controlled, including the overall performance of the target locating subsystem and the performance of the x-ray generators and flat panel digital cameras subcomponents. Accuracy and precision of the kV and exposure time settings of the x-ray generators, linearity of the x-ray output, spatial resolution and geometrical distortion of the acquired x-ray images were measured. Total accuracy and precision of the target locating subsystem in defining the position of an anthropomorphic head and neck phantom placed on treatment couch was also measured. Accuracy and precision of the kV as well as exposure time settings and linearity of the x-ray output were found within the acceptance limits suggested in diagnostic radiology. The acquired x-ray images were found to depict the shapes of the imaging objects without any geometrical distortion, being able to resolve differences in the features of imaging objects with critical frequency of 1.3 lp/mm and 1.5 lp/mm for camera A and B, respectively. Total target locating system accuracy was found within 0.2 mm and 0.2° in translations and rotations, respectively. Corresponding precision was found lower than 0.5%. These findings render the target locating subsystem of the CyberKnife capable of accurately registering the patient to treatment position and monitoring patient's movement during treatment delivery.

  8. Placement of thoracic transvertebral pedicle screws using 3D image guidance.

    Science.gov (United States)

    Nottmeier, Eric W; Pirris, Stephen M

    2013-05-01

    Transvertebral pedicle screws have successfully been used in the treatment of high-grade L5-S1 spondylolisthesis. An advantage of transvertebral pedicle screws is the purchase of multiple cortical layers across 2 vertebrae, thereby increasing the stability of the construct. At the lumbosacral junction, transvertebral pedicle screws have been shown to be biomechanically superior to pedicle screws placed in the standard fashion. The use of transvertebral pedicle screws at spinal levels other than L5-S1 has not been reported in the literature. The authors describe their technique of transvertebral pedicle screw placement in the thoracic spine using 3D image guidance. Twelve patients undergoing cervicothoracic or thoracolumbar fusion had 41 thoracic transvertebral pedicle screws placed across 26 spinal levels using this technique. Indications for placement of thoracic transvertebral pedicle screws in earlier cases included osteoporosis and pedicle screw salvage. However, in subsequent cases screws were placed in patients undergoing multilevel thoracolumbar fusion without osteoporosis, particularly near the top of the construct. Image guidance in this study was accomplished using the Medtronic StealthStation S7 image guidance system used in conjunction with the O-arm. All patients were slated to undergo postoperative CT scanning at approximately 4-6 months for fusion assessment, which also allowed for grading of the transvertebral pedicle screws. No thoracic transvertebral pedicle screw placed in this study had to be replaced or repositioned after intraoperative review of the cone beam CT scans. Review of the postoperative CT scans revealed all transvertebral screws to be across the superior disc space with the tips in the superior vertebral body. Six pedicle screws were placed using the in-out-in technique in patients with narrow pedicles, leaving 35 screws that underwent breach analysis. No pedicle breach was noted in 34 of 35 screws. A Grade 1 (fusion was observed

  9. An image-guidance system for dynamic dose calculation in prostate brachytherapy using ultrasound and fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Nathanael, E-mail: nkuo8@jhmi.edu; Prince, Jerry L. [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Dehghan, Ehsan [Philips Research North America, Briarcliff Manor, New York 10510 (United States); Deguet, Anton [Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Mian, Omar Y.; Le, Yi; Song, Danny Y. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21231 (United States); Burdette, E. Clif [Acoustic MedSystems Inc., Savoy, Illinois 61974 (United States); Fichtinger, Gabor [School of Computing, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Lee, Junghoon [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218 and Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21231 (United States)

    2014-09-15

    Purpose: Brachytherapy is a standard option of care for prostate cancer patients but may be improved by dynamic dose calculation based on localized seed positions. The American Brachytherapy Society states that the major current limitation of intraoperative treatment planning is the inability to localize the seeds in relation to the prostate. An image-guidance system was therefore developed to localize seeds for dynamic dose calculation. Methods: The proposed system is based on transrectal ultrasound (TRUS) and mobile C-arm fluoroscopy, while using a simple fiducial with seed-like markers to compute pose from the nonencoded C-arm. Three or more fluoroscopic images and an ultrasound volume are acquired and processed by a pipeline of algorithms: (1) seed segmentation, (2) fiducial detection with pose estimation, (3) seed matching with reconstruction, and (4) fluoroscopy-to-TRUS registration. Results: The system was evaluated on ten phantom cases, resulting in an overall mean error of 1.3 mm. The system was also tested on 37 patients and each algorithm was evaluated. Seed segmentation resulted in a 1% false negative rate and 2% false positive rate. Fiducial detection with pose estimation resulted in a 98% detection rate. Seed matching with reconstruction had a mean error of 0.4 mm. Fluoroscopy-to-TRUS registration had a mean error of 1.3 mm. Moreover, a comparison of dose calculations between the authors’ intraoperative method and an independent postoperative method shows a small difference of 7% and 2% forD{sub 90} and V{sub 100}, respectively. Finally, the system demonstrated the ability to detect cold spots and required a total processing time of approximately 1 min. Conclusions: The proposed image-guidance system is the first practical approach to dynamic dose calculation, outperforming earlier solutions in terms of robustness, ease of use, and functional completeness.

  10. A clinico-radiographic analysis of sagittal condylar guidance determined by protrusive interocclusal registration and panoramic radiographic images in humans

    Directory of Open Access Journals (Sweden)

    D Krishna Prasad

    2012-01-01

    Full Text Available Purpose: To evaluate the correlation between sagittal condylar guidance obtained by protrusive interocclusal records and panoramic radiograph tracing methods in human dentulous subjects. Materials and Methods: The sagittal condylar guidance was determined in 75 dentulous subjects by protrusive interocclusal records using Aluwax through a face bow transfer (HANAU™ Spring Bow, Whip Mix Corporation, USA to a semi-adjustable articulator (HANAU™ Wide-Vue Articulator, Whip Mix Corporation, USA. In the same subjects, the sagittal outline of the articular eminence and glenoid fossa was traced in panoramic radiographs. The sagittal condylar path inclination was constructed by joining the heights of curvature in the glenoid fossa and the corresponding articular eminence. This was then related to the constructed Frankfurt′s horizontal plane to determine the radiographic angle of sagittal condylar guidance. Results: A strong positive correlation existed between right and left condylar guidance by the protrusive interocclusal method (P 0.000 and similarly by the radiographic method (P 0.013. The mean difference between the condylar guidance obtained using both methods were 1.97° for the right side and 3.18° for the left side. This difference between the values by the two methods was found to be highly significant for the right (P 0.003 and left side (P 0.000, respectively. The sagittal condylar guidance obtained from both methods showed a significant positive correlation on right (P 0.000 and left side (P 0.015, respectively. Conclusion: Panoramic radiographic tracings of the sagittal condylar path guidance may be made relative to the Frankfurt′s horizontal reference plane and the resulting condylar guidance angles used to set the condylar guide settings of semi-adjustable articulators.

  11. Correlation of Condylar Guidance Determined by Panoramic Radiographs to One Determined by Conventional Methods

    Science.gov (United States)

    Godavarthi, A Sowjanya; Sajjan, M C Suresh; Raju, A V Rama; Rajeshkumar, P; Premalatha, Averneni; Chava, Narayana

    2015-01-01

    Background: To evaluate the feasibility of using panoramic radiographs as an alternative to an interocclusal recording method for determining the condylar guidance in dentate and edentulous conditions. Materials and Methods: 20 dentulous individuals with an age range of 20-30 years and 20 edentulous patients of 40-65 years were selected. An interocclusal bite registration was done in protrusive position for all the subjects. Orthopantomographs were made for all patients in open mouth position. Hanau articulator was modified to record the angulations to the accuracy of 1°. Tracing of glenoid fossa on radiograph was done to measure the condylar guidance angles. Readings were recorded and analyzed by Freidman’s test and t-test. Results: Condylar guidance values obtained by the interocclusal method and radiographic method in dentate individuals on the right side and left side 40.55°, and 37.1°, and 40.15°, and 34.75°, respectively. In the edentulous individuals, the values on the right side and left side was 36.7° and 36.1° and 35.95° and 33.6,° respectively. The difference was statistically significant (P = < 0.001) in dentate group and was not statistically significant (P = 0.6493) in edentulous group. Conclusion: Panoramic radiograph can be used as an alternative to interocclusal technique only in edentulous patients. Further studies comparing panoramic radiograph to jaw tracking devices would substantiate the results of this study. PMID:26464554

  12. Self-calibrated correlation imaging with k-space variant correlation functions.

    Science.gov (United States)

    Li, Yu; Edalati, Masoud; Du, Xingfu; Wang, Hui; Cao, Jie J

    2017-07-07

    Correlation imaging is a previously developed high-speed MRI framework that converts parallel imaging reconstruction into the estimate of correlation functions. The presented work aims to demonstrate this framework can provide a speed gain over parallel imaging by estimating k-space variant correlation functions. Because of Fourier encoding with gradients, outer k-space data contain higher spatial-frequency image components arising primarily from tissue boundaries. As a result of tissue-boundary sparsity in the human anatomy, neighboring k-space data correlation varies from the central to the outer k-space. By estimating k-space variant correlation functions with an iterative self-calibration method, correlation imaging can benefit from neighboring k-space data correlation associated with both coil sensitivity encoding and tissue-boundary sparsity, thereby providing a speed gain over parallel imaging that relies only on coil sensitivity encoding. This new approach is investigated in brain imaging and free-breathing neonatal cardiac imaging. Correlation imaging performs better than existing parallel imaging techniques in simulated brain imaging acceleration experiments. The higher speed enables real-time data acquisition for neonatal cardiac imaging in which physiological motion is fast and non-periodic. With k-space variant correlation functions, correlation imaging gives a higher speed than parallel imaging and offers the potential to image physiological motion in real-time. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Rapidly-steered single-element ultrasound for real-time volumetric imaging and guidance

    Science.gov (United States)

    Stauber, Mark; Western, Craig; Solek, Roman; Salisbury, Kenneth; Hristov, Dmitre; Schlosser, Jeffrey

    2016-03-01

    Volumetric ultrasound (US) imaging has the potential to provide real-time anatomical imaging with high soft-tissue contrast in a variety of diagnostic and therapeutic guidance applications. However, existing volumetric US machines utilize "wobbling" linear phased array or matrix phased array transducers which are costly to manufacture and necessitate bulky external processing units. To drastically reduce cost, improve portability, and reduce footprint, we propose a rapidly-steered single-element volumetric US imaging system. In this paper we explore the feasibility of this system with a proof-of-concept single-element volumetric US imaging device. The device uses a multi-directional raster-scan technique to generate a series of two-dimensional (2D) slices that were reconstructed into three-dimensional (3D) volumes. At 15 cm depth, 90° lateral field of view (FOV), and 20° elevation FOV, the device produced 20-slice volumes at a rate of 0.8 Hz. Imaging performance was evaluated using an US phantom. Spatial resolution was 2.0 mm, 4.7 mm, and 5.0 mm in the axial, lateral, and elevational directions at 7.5 cm. Relative motion of phantom targets were automatically tracked within US volumes with a mean error of -0.3+/-0.3 mm, -0.3+/-0.3 mm, and -0.1+/-0.5 mm in the axial, lateral, and elevational directions, respectively. The device exhibited a mean spatial distortion error of 0.3+/-0.9 mm, 0.4+/-0.7 mm, and -0.3+/-1.9 in the axial, lateral, and elevational directions. With a production cost near $1000, the performance characteristics of the proposed system make it an ideal candidate for diagnostic and image-guided therapy applications where form factor and low cost are paramount.

  14. An image guidance system for positioning robotic cochlear implant insertion tools

    Science.gov (United States)

    Bruns, Trevor L.; Webster, Robert J.

    2017-03-01

    Cochlear implants must be inserted carefully to avoid damaging the delicate anatomical structures of the inner ear. This has motivated several approaches to improve the safety and efficacy of electrode array insertion by automating the process with specialized robotic or manual insertion tools. When such tools are used, they must be positioned at the entry point to the cochlea and aligned with the desired entry vector. This paper presents an image guidance system capable of accurately positioning a cochlear implant insertion tool. An optical tracking system localizes the insertion tool in physical space while a graphical user interface incorporates this with patient- specific anatomical data to provide error information to the surgeon in real-time. Guided by this interface, novice users successfully aligned the tool with an mean accuracy of 0.31 mm.

  15. EPA guidance on how to improve the image of psychiatry and of the psychiatrist.

    Science.gov (United States)

    Bhugra, D; Sartorius, N; Fiorillo, A; Evans-Lacko, S; Ventriglio, A; Hermans, M H M; Vallon, P; Dales, J; Racetovic, G; Samochowiec, J; Roca Bennemar, M; Becker, T; Kurimay, T; Gaebel, W

    2015-03-01

    Stigma against mental illness and the mentally ill is well known. However, stigma against psychiatrists and mental health professionals is known but not discussed widely. Public attitudes and also those of other professionals affect recruitment into psychiatry and mental health services. The reasons for this discriminatory attitude are many and often not dissimilar to those held against mentally ill individuals. In this Guidance paper we present some of the factors affecting the image of psychiatry and psychiatrists which is perceived by the public at large. We look at the portrayal of psychiatry, psychiatrists in the media and literature which may affect attitudes. We also explore potential causes and explanations and propose some strategies in dealing with negative attitudes. Reduction in negative attitudes will improve recruitment and retention in psychiatry. We recommend that national psychiatric societies and other stakeholders, including patients, their families and carers, have a major and significant role to play in dealing with stigma, discrimination and prejudice against psychiatry and psychiatrists.

  16. Physics aspects of prostate tomotherapy: Planning optimization and image-guidance issues

    Energy Technology Data Exchange (ETDEWEB)

    Fiorino, Claudio; Alongi, Filippo; Broggi, Sara (Medical Physics, S. Raffaele Inst., Milano (Italy)) (and others)

    2008-08-15

    Purpose. To review planning and image-guidance aspects of more than 3 years experience in the treatment of prostate cancer with Helical Tomotherapy (HT). Methods and materials. Planning issues concerning two Phase I-II clinical studies were addressed: in the first one, 58 Gy in 20 fractions were delivered to the prostatic bed for post-prostatectomy patients: in the second one, a simultaneous integrated boost (SIB) approach was applied for radical treatment, delivering 71.4-74.2 Gy to the prostate in 28 fractions. On-line daily MVCT image guidance was applied: bone match was used for post-operative patients while prostate match was applied for radically treated patients. MVCT data of a large sample of both categories of patients were reviewed. Results. At now, more than 250 patients were treated. Planning data show the ability of HT in creating highly homogeneous dose distributions within PTVs. Organs at risk (OAR) sparing also showed to be excellent. HT was also found to favorably compare to inversely-optimized IMAT in terms of PTVs coverage and dose distribution homogeneity. In the case of pelvic nodes irradiation, a large sparing of bowel was evident compared to 3DCRT and conventional 5-fields IMRT. The analysis of MVCT data showed a limited motion of the prostate (about 5% of the fractions show a deviation =3 mm in posterior-anterior direction), due to the careful application of rectal emptying procedures. Based on phantom measurements and on the comparison with intra-prostatic calcification-based match, direct visualization prostate match seems to be sufficiently reliable in assessing shifts =3 mm. Conclusions. HT offers excellent planning solutions for prostate cancer, showing to be highly efficient in a SIB scenario. Daily MVCT information showed evidence of a limited motion of the prostate in the context of rectal filling control obtained by instructing patients in self-administrating a rectal enema

  17. Mobile C-arm cone-beam CT for guidance of spine surgery: Image quality, radiation dose, and integration with interventional guidance

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, S.; Nithiananthan, S.; Mirota, D. J.; Uneri, A.; Stayman, J. W.; Zbijewski, W.; Schmidgunst, C.; Kleinszig, G.; Khanna, A. J.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Siemens Healthcare XP Division, Erlangen (Germany); Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland 21239 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2011-08-15

    Purpose: A flat-panel detector based mobile isocentric C-arm for cone-beam CT (CBCT) has been developed to allow intraoperative 3D imaging with sub-millimeter spatial resolution and soft-tissue visibility. Image quality and radiation dose were evaluated in spinal surgery, commonly relying on lower-performance image intensifier based mobile C-arms. Scan protocols were developed for task-specific imaging at minimum dose, in-room exposure was evaluated, and integration of the imaging system with a surgical guidance system was demonstrated in preclinical studies of minimally invasive spine surgery. Methods: Radiation dose was assessed as a function of kilovolt (peak) (80-120 kVp) and milliampere second using thoracic and lumbar spine dosimetry phantoms. In-room radiation exposure was measured throughout the operating room for various CBCT scan protocols. Image quality was assessed using tissue-equivalent inserts in chest and abdomen phantoms to evaluate bone and soft-tissue contrast-to-noise ratio as a function of dose, and task-specific protocols (i.e., visualization of bone or soft-tissues) were defined. Results were applied in preclinical studies using a cadaveric torso simulating minimally invasive, transpedicular surgery. Results: Task-specific CBCT protocols identified include: thoracic bone visualization (100 kVp; 60 mAs; 1.8 mGy); lumbar bone visualization (100 kVp; 130 mAs; 3.2 mGy); thoracic soft-tissue visualization (100 kVp; 230 mAs; 4.3 mGy); and lumbar soft-tissue visualization (120 kVp; 460 mAs; 10.6 mGy) - each at (0.3 x 0.3 x 0.9 mm{sup 3}) voxel size. Alternative lower-dose, lower-resolution soft-tissue visualization protocols were identified (100 kVp; 230 mAs; 5.1 mGy) for the lumbar region at (0.3 x 0.3 x 1.5 mm{sup 3}) voxel size. Half-scan orbit of the C-arm (x-ray tube traversing under the table) was dosimetrically advantageous (prepatient attenuation) with a nonuniform dose distribution ({approx}2 x higher at the entrance side than at isocenter

  18. Geometrical Correlation and Matching of 2d Image Shapes

    Science.gov (United States)

    Vizilter, Y. V.; Zheltov, S. Y.

    2012-07-01

    The problem of image correspondence measure selection for image comparison and matching is addressed. Many practical applications require image matching "just by shape" with no dependence on the concrete intensity or color values. Most popular technique for image shape comparison utilizes the mutual information measure based on probabilistic reasoning and information theory background. Another approach was proposed by Pytiev (so called "Pytiev morphology") based on geometrical and algebraic reasoning. In this framework images are considered as piecewise-constant 2D functions, tessellation of image frame by the set of non-intersected connected regions determines the "shape" of image and the projection of image onto the shape of other image is determined. Morphological image comparison is performed using the normalized morphological correlation coefficients. These coefficients estimate the closeness of one image to the shape of other image. Such image analysis technique can be characterized as an ""ntensity-to-geometry" matching. This paper generalizes the Pytiev morphological approach for obtaining the pure "geometry-to-geometry" matching techniques. The generalized intensity-geometrical correlation coefficient is proposed including the linear correlation coefficient and the square of Pytiev correlation coefficient as its partial cases. The morphological shape correlation coefficient is proposed based on the statistical averaging of images with the same shape. Centered morphological correlation coefficient is obtained under the condition of intensity centering of averaged images. Two types of symmetric geometrical normalized correlation coefficients are proposed for comparison of shape-tessellations. The technique for correlation and matching of shapes with ordered intensities is proposed with correlation measures invariant to monotonous intensity transformations. The quality of proposed geometrical correlation measures is experimentally estimated in the task of

  19. Accurate positioning for head and neck cancer patients using 2D and 3D image guidance

    Science.gov (United States)

    Kang, Hyejoo; Lovelock, Dale M.; Yorke, Ellen D.; Kriminiski, Sergey; Lee, Nancy; Amols, Howard I.

    2011-01-01

    Our goal is to determine an optimized image-guided setup by comparing setup errors determined by two-dimensional (2D) and three-dimensional (3D) image guidance for head and neck cancer (HNC) patients immobilized by customized thermoplastic masks. Nine patients received weekly imaging sessions, for a total of 54, throughout treatment. Patients were first set up by matching lasers to surface marks (initial) and then translationally corrected using manual registration of orthogonal kilovoltage (kV) radiographs with DRRs (2D-2D) on bony anatomy. A kV cone beam CT (kVCBCT) was acquired and manually registered to the simulation CT using only translations (3D-3D) on the same bony anatomy to determine further translational corrections. After treatment, a second set of kVCBCT was acquired to assess intrafractional motion. Averaged over all sessions, 2D-2D registration led to translational corrections from initial setup of 3.5 ± 2.2 (range 0–8) mm. The addition of 3D-3D registration resulted in only small incremental adjustment (0.8 ± 1.5 mm). We retrospectively calculated patient setup rotation errors using an automatic rigid-body algorithm with 6 degrees of freedom (DoF) on regions of interest (ROI) of in-field bony anatomy (mainly the C2 vertebral body). Small rotations were determined for most of the imaging sessions; however, occasionally rotations > 3° were observed. The calculated intrafractional motion with automatic registration was < 3.5 mm for eight patients, and < 2° for all patients. We conclude that daily manual 2D-2D registration on radiographs reduces positioning errors for mask-immobilized HNC patients in most cases, and is easily implemented. 3D-3D registration adds little improvement over 2D-2D registration without correcting rotational errors. We also conclude that thermoplastic masks are effective for patient immobilization. PMID:21330971

  20. Liver biopsy for parenchymal liver disease - is routine real time image guidance unnecessary?

    Science.gov (United States)

    John, Anil; Al Kaabi, Saad; Soofi, Madiha Emran; Mohannadi, Muneera; Kandath, Salva Manam; Derbala, Moataz; Yakoub, Rafie; Al-Ahdal, Esra Mohammed; Sharma, Manik; Wani, Hamid; Dweik, Nazeeh; John, Anjum; Butt, Mohammed Tariq

    2014-01-01

    Liver biopsy even today remains the standard of care for grading and staging chronic hepatitis despite advances in noninvasive markers of liver fibrosis. Literature suggests an expanding role for real-time image guided liver biopsy and declining trend for blind liver biopsies. In our center, where we perform around 400 liver biopsies per year, we performed a prospective clinical audit of our practice of blind outpatient percutaneous liver biopsies. Patients requiring histological grading and staging of chronic hepatitis routinely undergo blind outpatient percutaneous liver biopsies in our endoscopy unit unless there is a definite indication for real-time image guidance. All procedures were assessed for safety, and all specimens were evaluated by a specimen quality grading score for adequacy for grading and staging of chronic hepatitis. Of the 446 patients referred for histological grading and staging of chronic hepatitis C by liver biopsy, only 42 patients (9.5 %) required real-time ultrasound for liver biopsy. The remaining 404 patients underwent blind outpatient percutaneous liver biopsies which were found to be extremely safe with no major complications, yielding adequate liver tissue with high specimen quality score allowing optimal grading and staging of chronic hepatitis.

  1. Digital Image Correlation for Performance Monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Palaviccini, Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herzberg, Michael [National Security Campus, Kansas City, MO (United States)

    2016-02-01

    Evaluating the health of a mechanism requires more than just a binary evaluation of whether an operation was completed. It requires analyzing more comprehensive, full-field data. Health monitoring is a process of nondestructively identifying characteristics that indicate the fitness of an engineered component. In order to monitor unit health in a production setting, an automated test system must be created to capture the motion of mechanism parts in a real-time and non-intrusive manner. One way to accomplish this is by using high-speed video (HSV) and Digital Image Correlation (DIC). In this approach, individual frames of the video are analyzed to track the motion of mechanism components. The derived performance metrics allow for state-of-health monitoring and improved fidelity of mechanism modeling. The results are in-situ state-of-health identification and performance prediction. This paper introduces basic concepts of this test method, and discusses two main themes: the use of laser marking to add fiducial patterns to mechanism components, and new software developed to track objects with complex shapes, even as they move behind obstructions. Finally, the implementation of these tests into an automated tester is discussed.

  2. Spatial Correlation Coefficient Images for Ultrasonic Detection (Preprint)

    Science.gov (United States)

    2006-07-01

    for image formation and detection based on the similarity of adjacent signals. Signal similarity is quantified in terms of the correlation coefficient calculated...between A-scans digitized at adjacent measurement positions. Correlation coefficient images are introduced for visualizing the similarity...beam field with the defect. Correlation coefficient and C-scan images are shown to demonstrate flat-bottom-hole detection in a stainless steel annular

  3. Sub-Rayleigh limit imaging via intensity correlation measurements

    Institute of Scientific and Technical Information of China (English)

    姚旭日; 李龙珍; 刘雪峰; 俞文凯; 翟光杰

    2015-01-01

    We demonstrate sub-Rayleigh limit imaging of an object via intensity correlation measurements. The image com-pletely unaffected by the disturbance of diffraction-limit is achieved under the condition that the imaging system has an appropriate field of view. The resolution of this sub-Rayleigh limit imaging system is only tied to the lateral resolution of the illumination light.

  4. Strategies of dose escalation in the treatment of locally advanced non-small cell lung cancer: image guidance and beyond

    Directory of Open Access Journals (Sweden)

    Alexander eChi

    2014-06-01

    Full Text Available Radiation dose in the setting of chemo-radiation for locally advanced non-small cell lung cancer (NSCLC has been historically limited by the risk of normal tissue toxicity and this has been hypothesized to correlate with the poor results in regard to local tumor recurrences. Dose escalation, as a means to improve local control, with concurrent chemotherapy has been shown to be feasible with three-dimensional conformal radiotherapy in early phase studies with good clinical outcome. However, the potential superiority of moderate dose escalation to 74 Gy has not been shown in phase III randomized studies. In this review, the limitations in target volume definition in previous studies; and the factors that may be critical to safe dose escalation in the treatment of locally advanced NSCLC, such as respiratory motion management, image guidance, intensity modulation, FDG-PET incorporation in the treatment planning process, and adaptive radiotherapy, are discussed. These factors, along with novel treatment approaches that have emerged in recent years, are proposed to warrant further investigation in future trials in a more comprehensive and integrated fashion.

  5. Placement of an intrathecal catheter through a bony fusion mass using 3D image guidance: a case report.

    Science.gov (United States)

    Candler, Shawn A; Osborne, Michael D; Derr, Michael J; Nottmeier, Eric W

    2013-11-01

    We describe the 3-dimensional (3D) image-guided placement technique for a lumbar intrathecal catheter through a dorsal fusion mass. This is the first time this technique has been reported. A patient with 6 prior spine surgeries and chronic pain syndrome presented with a challenging large dorsal fusion mass. The use of 3D cone beam computed tomography-based image guidance proved advantageous for the placement of an intrathecal drug delivery system (IDDS). Under general anesthesia, image guidance was accomplished with the Medtronic Stealth S7 image guidance system, used in conjunction with the O-ARM (Medtronic Inc.). Using an image-guided probe over the skin surface, we navigated the dorsal fusion mass to identify a thin area at the L4-L5 level. A small incision was made and the image-guided probe was used to target the selected thin area and drill an adequate opening in the fusion mass. We inserted a Tuohy needle through the bony defect for passage of the intrathecal catheter. We confirmed adequate catheter placement using free flowing cerebrospinal fluid and fluoroscopy. The remainder of the IDDS implant proceeded per routine. The patient tolerated the procedure well and had no complications. The morphine IDDS improved his overall pain and function with minimal side effects. This is the first case report using 3D cone beam computed tomography-based image guidance for the placement of an intrathecal catheter through a bony fusion mass. This technique appears to be a viable option for IDDS implantation in patients with difficult anatomy.

  6. Implementation of adaptive radiation therapy for urinary bladder carcinoma - Imaging, planning and image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Tuomikoski, Laura; Collan, Juhani; Keyrilaeinen, Jani; Saarilahti, Kauko; Tenhunen, Mikko [Dept. of Oncology, Helsinki Univ. Central Hospital, Helsinki (Finland)], e-mail: laura.tuomikoski@hus.fi; Korhonen, Juha [Dept. of Oncology, Helsinki Univ. Central Hospital, Helsinki (Finland); Clinical Research Inst. Helsinki Univ. Central Hospital Ltd, Helsinki (Finland); Visapaeae, Harri [Dept. of Oncology, Helsinki Univ. Central Hospital, Helsinki (Finland); Dept. of Urology, Helsinki Univ. Central Hospital, Helsinki (Finland); Sairanen, Jukka [Dept. of Urology, Helsinki Univ. Central Hospital, Helsinki (Finland)

    2013-10-15

    Background: Adaptive radiation therapy (ART) for urinary bladder cancer has emerged as a promising alternative to conventional RT with potential to minimize radiation-induced toxicity to healthy tissues. In this work we have studied bladder volume variations and their effect on healthy bladder dose sparing and intra fractional margins, in order to refine our ART strategy. Material and methods: An online ART treatment strategy was followed for five patients with urinary bladder cancer with the tumors demarcated using Lipiodol. A library of 3-4 predefined treatment plans for each patient was created based on four successive computed tomography (CT) scans. Cone beam CT (CBCT) images were acquired before each treatment fraction and after the treatment at least weekly. In partial bladder treatment the sparing of the healthy part of the bladder was investigated. The bladder wall displacements due to bladder filling were determined in three orthogonal directions (CC, AP, DEX-SIN) using the treatment planning CT scans. An ellipsoidal model was applied in order to find the theoretical maximum values for the bladder wall displacements. Moreover, the actual bladder filling rate during treatment was evaluated using the CBCT images. Results: In partial bladder treatment the volume of the bladder receiving high absorbed doses was generally smaller with a full than empty bladder. The estimation of the bladder volume and the upper limit for the intra fractional movement of the bladder wall could be represented with an ellipsoidal model with a reasonable accuracy. Observed maximum growth of bladder dimensions was less than 10 mm in all three orthogonal directions during 15 minute interval. Conclusion: The use of Lipiodol contrast agent enables partial bladder treatment with reduced irradiation of the healthy bladder volume. The ellipsoidal bladder model can be used for the estimation of the bladder volume changes and the upper limit of the bladder wall movement during the treatment

  7. Imaging Guidance Improves the Results of Viscosupplementation with HANOX-M-XL in Patients with Ankle Osteoarthritis: Results of a Clinical Survey in 50 Patients Treated in Daily Practice

    Science.gov (United States)

    Bossert, Marie; Boublil, Daniel; Parisaux, Jean-Marc; Bozgan, Ana-Maria; Richelme, Emmanuel; Conrozier, Thierry

    2016-01-01

    BACKGROUND The objective of this survey was to assess retrospectively the interest of performing viscosupplementation using imaging guidance in patients suffering from ankle osteoarthritis (OA). PATIENTS AND METHODS This is a multicenter retrospective survey using a standardized questionnaire. Fifty patients suffering from ankle OA and treated, in daily clinical practice, with a single intra-articular injection of a novel viscosupplement made of a combination of a non-animal cross-linked hyaluronan and mannitol, HANOX M-XL, were included in the survey. The injection procedure (imaging or landmark guidance), demographic data, patient’s self-evaluation of pain, satisfaction, treatment efficacy, and tolerability were collected. Predictive factors of both efficacy and patient’s satisfaction were investigated. RESULTS The percentages of patients very satisfied/satisfied and not really satisfied/dissatisfied with the treatment were 68% and 32%, respectively. Efficacy was rated as very good, good, moderate, and poor by 38%, 30%, 12%, and 20% of the cases, respectively. Efficacy was unrelated to gender and age and was highly correlated with pain score (P steroidal anti-inflammatory drugs was >75% in 64% of the cases. Efficacy was significantly different with regard to imaging guidance. There was a statistically significant difference in efficacy and satisfaction between landmark-guided and imaging-guided injections (P = 0.02). The success rate was 2.3 times higher in the imaging-guided group than in the landmark-guided group. No significant difference was found between patients injected under fluoroscopy or ultrasound guidance, despite a trend favoring ultrasound (P = 0.09). Tolerability was rated as very good/good in 47 patients, moderate in two, and poor in one and was unrelated to the type of guidance. CONCLUSION This preliminary study suggests that the use of imaging guidance significantly optimizes the success rate of ankle viscosupplementation. No safety concern

  8. Magnetic Resonance Imaging of Cerebral Aspergillosis: Imaging and Pathological Correlations

    Science.gov (United States)

    Sabou, Marcela; Lannes, Béatrice; Cotton, François; Meyronet, David; Galanaud, Damien; Cottier, Jean-Philippe; Grand, Sylvie; Desal, Hubert; Kreutz, Julie; Schenck, Maleka; Meyer, Nicolas; Schneider, Francis; Dietemann, Jean-Louis; Koob, Meriam

    2016-01-01

    Cerebral aspergillosis is associated with a significant morbidity and mortality rate. The imaging data present different patterns and no full consensus exists on typical imaging characteristics of the cerebral lesions. We reviewed MRI findings in 21 patients with cerebral aspergillosis and correlated them to the immune status of the patients and to neuropathological findings when tissue was available. The lesions were characterized by their number, topography, and MRI signal. Dissemination to the brain resulted from direct spread from paranasal sinuses in 8 patients, 6 of them being immunocompetent. Hematogenous dissemination was observed in 13 patients, all were immunosuppressed. In this later group we identified a total of 329 parenchymal abscesses involving the whole brain with a predilection for the corticomedullary junction. More than half the patients had a corpus callosum lesion. Hemorrhagic lesions accounted for 13% and contrast enhancement was observed in 61% of the lesions. Patients with hematogenous dissemination were younger (p = 0.003), had more intracranial lesions (p = 0.0004) and had a higher 12-week mortality rate (p = 0.046) than patients with direct spread from paranasal sinuses. Analysis of 12 aneurysms allowed us to highlight two distinct situations. In case of direct spread from the paranasal sinuses, aneurysms are saccular and located on the proximal artery portions, while the hematogenous dissemination in immunocompromised patients is more frequently associated with distal and fusiform aneurysms. MRI is the exam of choice for cerebral aspergillosis. Number and type of lesions are different according to the mode of dissemination of the infection. PMID:27097323

  9. Fusion of intraoperative cortical images with preoperative models for neurosurgical planning and guidance

    Science.gov (United States)

    Wang, An; Mirsattari, Seyed M.; Parrent, Andrew G.; Peters, Terry M.

    2009-02-01

    During surgery for epilepsy it is important for the surgeon to correlate the preoperative cortical morphology (from preoperative images) with the intraoperative environment. We extend our visualization method presented earlier, to achieves this goal by fusing a direct (photographic) view of the surgical field with the 3D patient model. To correlate the preoperative plan with the intraoperative surgical scene, an intensity-based perspective 3D-2D registration was employed for camera pose estimation. The 2D photographic image was then texture-mapped onto the 3D preoperative model using the solved camera pose. In the proposed method, we employ direct volume rendering to obtain a perspective view of the brain image using GPU-accelerated ray-casting. This is advantageous compared to the point-based or other feature-based registration since no intermediate processing is required. To validate our registration algorithm, we used a point-based 3D-2D registration, that was validated using ground truth from simulated data, and then the intensity-based 3D-2D registration method was validated using the point-based registration result as the gold standard. The registration error of the intensity-based 3D- 2D method was around 3mm when the initial pose is close to the gold standard. Application of the proposed method for correlating fMRI maps with intraoperative cortical stimulation is shown for surgical planning in an epilepsy patient.

  10. Image-guided radiofrequency ablation of hepatocellular carcinoma (HCC): Is MR guidance more effective than CT guidance?

    Energy Technology Data Exchange (ETDEWEB)

    Clasen, Stephan, E-mail: stephan.clasen@med.uni-tuebingen.de [University Hospital, Department of Diagnostic and Interventional Radiology, Hoppe-Seyler Str. 3, 72076 Tübingen (Germany); Rempp, Hansjörg, E-mail: hansjoerg.rempp@med.uni-tuebingen.de [University Hospital, Department of Diagnostic and Interventional Radiology, Hoppe-Seyler Str. 3, 72076 Tübingen (Germany); Hoffmann, Rüdiger, E-mail: ruediger.hoffmann@med.uni-tuebingen.de [University Hospital, Department of Diagnostic and Interventional Radiology, Hoppe-Seyler Str. 3, 72076 Tübingen (Germany); Graf, Hansjörg, E-mail: hansjoerg.graf@med.uni-tuebingen.de [University Hospital, Department of Diagnostic and Interventional Radiology, Section of Experimental Radiology, Hoppe-Seyler Str. 3, 72076 Tübingen (Germany); Pereira, Philippe L., E-mail: Philippe.Pereira@slk-kliniken.de [SLK Clinic Heilbronn, Clinic for Radiology, Minimal-invasive Therapies, and Nuclear Medicine, Am Gesundbrunnen 20-26, 74078 Heilbronn (Germany); Claussen, Claus D., E-mail: claus.claussen@med.uni-tuebingen.de [University Hospital, Department of Diagnostic and Interventional Radiology, Hoppe-Seyler Str. 3, 72076 Tübingen (Germany)

    2014-01-15

    Objectives: The purpose of the study was to retrospectively compare technique effectiveness of computed tomography (CT)-guided versus magnetic resonance (MR)-guided radiofrequency (RF) ablation of hepatocellular carcinoma (HCC). Materials and methods: In 35 consecutive patients 53 CT-guided (n = 29) or MR-guided (n = 24) ablation procedures were performed in the treatment of 56 (CT: 29; MR: 27) HCC. The entire ablation procedure was performed at a multislice CT-scanner or an interventional 0.2-Tesla MR-scanner. Assessment of treatment response was based on dynamic MR imaging at 1.5 Tesla. The mean follow-up was 22.9 months. Primary technique effectiveness was assessed 4 months after ablation therapy. Secondary technique effectiveness was assessed 4 months after a facultative second ablation procedure. Primary and secondary technique effectiveness of CT-guided and MR-guided RF ablation was compared by using Chi-Square (likelihood ratio) test. Results: Primary technique effectiveness after a single session was achieved in 26/27 (96.3%) HCC after MR-guided RF ablation and 23/29 (79.3%) HCC after CT-guided RF ablation (Chi-Square: p = 0.04). Secondary technique effectiveness was achieved in 26/27 (96.3%) HCC after MR-guided RF ablation and in 26/29 (89.7%) HCC after CT-guided RF ablation (Chi-Square: p = 0.32). A local tumor progression was detected in 8/52 (15.4%) tumors after initial technique effectiveness. Major complications were detected after 3/53 (5.7%) ablation procedures. Conclusions: CT-guided and MR-guided RF ablations are locally effective therapies in the treatment of HCC. Due to a higher rate of primary technique effectiveness MR-guided RF ablation may reduce the number of required sessions for complete tumor treatment.

  11. A study of correlation technique on pyramid processed images

    Indian Academy of Sciences (India)

    M Sankar Kishore; K Veerabhadra Rao

    2000-02-01

    The pyramid algorithm is potentially a powerful tool for advanced television image processing and for pattern recognition. An attempt is made to design and develop both hardware and software for a system which performs decomposition and reconstruction of digitized images by implementing the Burt pyramid algorithm. In this work, an attempt is also made to study correlation performance on reconstructed images. That is, the reference image is taken from the original image and correlation is performed on expanded images of the same size. Similarly, correlation performance study is carried out on different pyramid- processed levels. In this paper results are presented in terms of RMS error between original and expanded images. Only still images are considered, and the hardware is designed around an i486 processor and software is developed in PL/M 86.

  12. Volumetric Image Guidance Using Carina vs Spine as Registration Landmarks for Conventionally Fractionated Lung Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Le, Lisa W. [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario, M5G 2M9 (Canada); Sun, Alexander; Brade, Anthony; Hope, Andrew; Cho, John [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Bezjak, Andrea, E-mail: andrea.bezjak@rmp.uhn.on.ca [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada)

    2012-12-01

    Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumor (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors {>=}5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.

  13. MR imaging-guided laser ablation of osteoid osteomas with use of optical instrument guidance at 0.23 T

    Energy Technology Data Exchange (ETDEWEB)

    Sequeiros, Roberto Blanco; Jyrkinen, Lasse; Ojala, Risto; Klemola, Rauli; Tervonen, Osmo [Department of Radiology, Oulu University Hospital, PL 50, 90029, Oulu (Finland); Hyvoenen, Pekka [Department of Orthopedics and Surgery, Oulu University Hospital, PL 50, 90029, Oulu (Finland); Sequeiros, Alberto Blanco [Finnish Meteorological Institute, Rovaniemi (Finland); Vaara, Teuvo [Philips Medical Systems MR Technologies Finland Inc., Vantaa (Finland)

    2003-10-01

    The purpose of this study was to determine the feasibility and features of low-field MR imaging in performing interstitial laser ablation of osteoid osteomas. Between September 2001 and April 2002, five consecutive patients with clinical and imaging findings suggesting osteoid osteoma and referred for removal of osteoid osteoma were treated with interstitial laser treatment. A low-field open-configuration MRI scanner (0.23 T, Outlook Proview, Philips Medical Systems, Finland) with optical instrument guidance hardware and software was used. Laser device used was of ND-Yag type (Fibertom medilas, Dornier Medizin Technik, Germany). A bare laser fiber (Dornier Medizin Technik, Germany) with a diameter of 400 {mu}m was used. Completely balanced steady-state (CBASS; true fast imaging with steady precession) imaging was used for lesion localization, instrument guidance, and thermal monitoring. A 14-G (Cook Medical, USA) bone biopsy drill was used for initial approach. Laser treatment was conducted through the biopsy canal. All the lesions were successfully localized, targeted, and treated under MRI guidance. All the patients were symptom free 3 weeks and 3 months after the treatment. There was one recurrence reported during follow-up (6 months). The MRI-guided percutaneous interstitial laser ablation of osteoid osteomas seems to be a feasible treatment mode. (orig.)

  14. Characterization of SEM speckle pattern marking and imaging distortion by Digital Image Correlation

    OpenAIRE

    Guery, Adrien; Latourte, Felix; Hild, François; Roux, Stéphane

    2014-01-01

    International audience; Surface patterning by e-beam lithography and SEM imaging distortions are studied via digital image correlation. The global distortions from the reference pattern, which has been numerically generated, are first quantified from a digital image correlation procedure between the (virtual) reference pattern and the actual SEM image both in secondary and backscattered electron imaging modes. These distortions result from both patterning and imaging techniques. These two con...

  15. Virtual reality imaging with real-time ultrasound guidance for facet joint injection: a proof of concept.

    Science.gov (United States)

    Clarke, Collin; Moore, John; Wedlake, Christopher; Lee, Donald; Ganapathy, Su; Salbalbal, Maher; Wilson, Timothy; Peters, Terry; Bainbridge, Daniel

    2010-05-01

    Facet interventions continue to be used in pain management. Computed tomographic (CT) images can be registered into a virtual world that includes images generated by an ultrasound (US) probe tracked in real time, permitting guidance of tracked needles. We acquired CT-generated 3-dimensional (3D) images of 2 models and a cadaver. Three-dimensional representations of a US probe and needle were generated. A magnetic system tracked the needle and US probe. Using the US, 3D CT images were registered to the model/cadaver. Images were fused on a single interface. Facet injections were performed in the models and cadaver with radio-opaque markers. A postprocedure CT image determined appropriate placement. The virtual reality system described demonstrates technical innovations that may lead to future advancements in the area of percutaneous interventions in the management of pain.

  16. SU-E-P-41: Imaging Coordination of Cone Beam CT, On-Board Image Conjunction with Optical Image Guidance for SBRT Treatment with Respiratory Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Campbell, J [INTEGRIS Cancer Institute of Oklahoma, Oklahoma City, OK (United States)

    2015-06-15

    Purpose: To spare normal tissue for SBRT lung/liver patients, especially for patients with significant tumor motion, image guided respiratory motion management has been widely implemented in clinical practice. The purpose of this study was to evaluate imaging coordination of cone beam CT, on-board X-ray image conjunction with optical image guidance for SBRT treatment with motion management. Methods: Currently in our clinic a Varian Novlis Tx was utilized for treating SBRT patients implementing CBCT. A BrainLAB X-ray ExacTrac imaging system in conjunction with optical guidance was primarily used for SRS patients. CBCT and X-ray imaging system were independently calibrated with 1.0 mm tolerance. For SBRT lung/liver patients, the magnitude of tumor motion was measured based-on 4DCT and the measurement was analyzed to determine if patients would be beneficial with respiratory motion management. For patients eligible for motion management, an additional CT with breath holding would be scanned and used as primary planning CT and as reference images for Cone beam CT. During the SBRT treatment, a CBCT with pause and continuing technology would be performed with patients holding breath, which may require 3–4 partially scanned CBCT to combine as a whole CBCT depending on how long patients capable of holding breath. After patients being setup by CBCT images, the ExactTrac X-ray imaging system was implemented with patients’ on-board X-ray images compared to breath holding CT-based DRR. Results: For breath holding patients SBRT treatment, after initially localizing patients with CBCT, we then position patients with ExacTrac X-ray and optical imaging system. The observed deviations of real-time optical guided position average at 3.0, 2.5 and 1.5 mm in longitudinal, vertical and lateral respectively based on 35 treatments. Conclusion: The respiratory motion management clinical practice improved our physician confidence level to give tighter tumor margin for sparing normal

  17. Algorithm for image fusion via gradient correlation and difference statistics

    Science.gov (United States)

    Han, Jing; Wang, Li-juan; Zhang, Yi; Bai, Lian-fa; Mao, Ningjie

    2016-10-01

    In order to overcome the shortcoming of traditional image fusion based on discrete wavelet transform (DWT), a novel image fusion algorithm based on gradient correlation and difference statistics is proposed in this paper. The source images are decomposed into low-frequency coefficients and high-frequency coefficients by DWT: the former are fused by a local gradient correlation based scheme to extract the local feature information in source images; the latter are fused by a neighbor difference statistics based scheme to reserve the conspicuous edge information. Finally, the fused image is reconstructed by inverse DWT. Experimental results show that the proposed method performs better than other methods in reserving details.

  18. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid

    Energy Technology Data Exchange (ETDEWEB)

    Stankovic, Uros; Herk, Marcel van; Ploeger, Lennert S.; Sonke, Jan-Jakob, E-mail: j.sonke@nki.nl [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX (Netherlands)

    2014-06-15

    Purpose: Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. Methods: The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different

  19. Image automatic mosaics based on contour phase correlation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing; HU Zhiping; LIU Zhitai; OU Zongying

    2007-01-01

    The image planar mosaics is studied,and an image automatic mosaics algorithm on the basis of contour phase correlation is proposed in this paper.To begin with,by taking into account mere translations and rotations between images,a contour phase correlation algorithm is used to realize the preliminary alignments of images,and the initial projective transformation matrices are obtained.Then,an optimization algorithm is used to optimize the initial projective transformation matrices,and complete the precise image mosaics.The contour phase correlation is an improvement on the conventional phase correlation in two aspects:First,the contours of images are extracted,and the phase correlation is applied to the contours of images instead of the whole original images;Second,when there are multiple peak values approximate to the maximum peak value in the δ function array,their corresponding translations can be regarded as candidate translations and calculated separately,and the best translation can be determined by the optimization of conformability of two images in the overlapping area.The running results show that the proposed algorithm can consistently yield high-quality mosaics,even in the cases of poor or differential lighting conditions,existences of minor rotations,and other complicated displacements between images.

  20. Compressive optical image watermarking using joint Fresnel transform correlator architecture

    Science.gov (United States)

    Li, Jun; Zhong, Ting; Dai, Xiaofang; Yang, Chanxia; Li, Rong; Tang, Zhilie

    2017-02-01

    A new optical image watermarking technique based on compressive sensing using joint Fresnel transform correlator architecture has been presented. A secret scene or image is first embedded into a host image to perform optical image watermarking by use of joint Fresnel transform correlator architecture. Then, the watermarked image is compressed to much smaller signal data using single-pixel compressive holographic imaging in optical domain. At the received terminal, the watermarked image is reconstructed well via compressive sensing theory and a specified holographic reconstruction algorithm. The preliminary numerical simulations show that it is effective and suitable for optical image security transmission in the coming absolutely optical network for the reason of the completely optical implementation and largely decreased holograms data volume.

  1. Application of the progressive wavelet correlation for image recognition and retrieval from the collection of images

    OpenAIRE

    Stojanovic, Igor; Markovski, Smile; Martinovska, Cveta; Mileva, Aleksandra

    2012-01-01

    An algorithm for recognition and retrieval of image from image collection is developed. Basis of the algorithm is the progressive wavelet correlation. The final result is the recognition and retrieval of the wanted image, if it is in the image collection. Instructions for the choice of correlation threshold value for obtaining desired results are defined. To increase efficiency is presented two phases solution. The first phase uses well known methods of image retrieving by descriptors based o...

  2. Confocal laser scanning microscopy image correlation for nanoparticle flow velocimetry

    CERN Document Server

    Jun, Brian; Yang, Haisheng; Main, Russell; Vlachos, Pavlos

    2016-01-01

    We present a new particle image correlation technique for resolving nanoparticle flow velocity using confocal laser scanning microscopy (CLSM). The two primary issues that complicate nanoparticle scanning laser image correlation (SLIC) based velocimetry are (1) the use of diffusion dominated nanoparticles as flow tracers, which introduce a random decorrelating error into the velocity estimate, and (2) the effects of the scanning laser image acquisition, which introduces a bias error. To date, no study has quantified these errors or demonstrated a means to deal with them in SLIC velocimetry. In this work, we build upon the robust phase correlation (RPC) and existing methods of SLIC to quantify and mitigate these errors. First, we implement an ensemble RPC instead of using an ensemble standard cross correlation, and develop an SLIC optimal filter that maximizes the correlation strength in order to reliably and accurately detect the correlation peak representing the most probable average displacement of the nano...

  3. Changing image of correlation optics: introduction

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Desyatnikov, Anton S.; Gbur, Gregory J.;

    2016-01-01

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and illustrating current trends in vector singular optics, internal energy flows at light fields, optical science of materials, and new biomedical applications of lasers. (C)...

  4. Changing image of correlation optics: introduction.

    Science.gov (United States)

    Angelsky, Oleg V; Desyatnikov, Anton S; Gbur, Gregory J; Hanson, Steen G; Lee, Tim; Miyamoto, Yoko; Schneckenburger, Herbert; Wyant, James C

    2016-04-20

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and illustrating current trends in vector singular optics, internal energy flows at light fields, optical science of materials, and new biomedical applications of lasers.

  5. Changing image of correlation optics: introduction

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Desyatnikov, Anton S.; Gbur, Gregory J.

    2016-01-01

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and illustrating current trends in vector singular optics, internal energy flows at light fields, optical science of materials, and new biomedical applications of lasers. (C...

  6. Exploring underwater target detection by imaging polarimetry and correlation techniques.

    Science.gov (United States)

    Dubreuil, M; Delrot, P; Leonard, I; Alfalou, A; Brosseau, C; Dogariu, A

    2013-02-10

    Underwater target detection is investigated by combining active polarization imaging and optical correlation-based approaches. Experiments were conducted in a glass tank filled with tap water with diluted milk or seawater and containing targets of arbitrary polarimetric responses. We found that target estimation obtained by imaging with two orthogonal polarization states always improves detection performances when correlation is used as detection criterion. This experimental study illustrates the potential of polarization imaging for underwater target detection and opens interesting perspectives for the development of underwater imaging systems.

  7. Hybrid echo and x-ray image guidance for cardiac catheterization procedures by using a robotic arm: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yingliang; Penney, Graeme P; Razavi, Reza; Rhode, Kawal S [Division of Imaging Sciences, King' s College, London SE1 7EH (United Kingdom); Bos, Dennis; Frissen, Peter [Philips Applied Technologies, High Tech. Campus 7, 5656 AE Eindhoven (Netherlands); Rinaldi, C Aldo, E-mail: y.ma@kcl.ac.u [Department of Cardiology, Guy' s and St Thomas' NHS Foundation Trust, London SE1 7EH (United Kingdom)

    2010-07-07

    We present a feasibility study on hybrid echocardiography (echo) and x-ray image guidance for cardiac catheterization procedures. A self-tracked, remotely operated robotic arm with haptic feedback was developed that attached to a standard x-ray table. This was used to safely manipulate a three-dimensional (3D) trans-thoracic echo probe during simultaneous x-ray fluoroscopy and echo acquisitions. By a combination of calibration and tracking of the echo and x-ray systems, it was possible to register the 3D echo images with the 2D x-ray images. Visualization of the combined data was achieved by either overlaying triangulated surfaces extracted from segmented echo data onto the x-ray images or by overlaying volume rendered 3D echo data. Furthermore, in order to overcome the limited field of view of the echo probe, it was possible to create extended field of view (EFOV) 3D echo images by co-registering multiple tracked echo data to generate larger roadmaps for procedure guidance. The registration method was validated using a cross-wire phantom and showed a 2D target registration error of 3.5 mm. The clinical feasibility of the method was demonstrated during two clinical cases for patients undergoing cardiac pacing studies. The EFOV technique was demonstrated using two healthy volunteers. (note)

  8. Correlation image velocimetry: a spectral approach

    Science.gov (United States)

    Roux, Stéphane; Hild, François; Berthaud, Yves

    2002-01-01

    A method, believed to be new, is introduced to evaluate displacement fields from the analysis of a deformed image compared with a reference image. In contrast to standard methods, which determine a piecewise constant displacement field, the present method gives direct access to spectral decomposition of the displacement field. A minimization procedure is derived and used twice: first, to determine an affine displacement field and, then, the spectral components of the residual displacement. Although the method is applicable to any space dimension, only cases dealing with one-dimensional signals are reported: First, a purely synthetic example is discussed to estimate the intrinsic performance of the method, and a second case deals with a profile extracted from a sample of compressed glass wool.

  9. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    Energy Technology Data Exchange (ETDEWEB)

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek; Holdsworth, David W.; Lacefield, James C.; Fenster, Aaron [Biomedical Engineering Graduate Program and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Department of Medical Biophysics and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Biomedical Engineering Graduate Program, Department of Medical Biophysics, Department of Medical Imaging, Department of Surgery, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Biomedical Engineering Graduate Program, Department of Electrical and Computer Engineering, Department of Medical Biophysics, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Biomedical Engineering Graduate Program, Department of Medical Biophysics, Department of Medical Imaging, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)

    2010-04-15

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 {mu}m tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 {mu}m, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154{+-}113 {mu}m. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  10. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions.

    Science.gov (United States)

    Waspe, Adam C; McErlain, David D; Pitelka, Vasek; Holdsworth, David W; Lacefield, James C; Fenster, Aaron

    2010-04-01

    Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 microm tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 microm, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154 +/- 113 microm. The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  11. Color-image retrieval based on fuzzy correlation

    Institute of Scientific and Technical Information of China (English)

    ZHAI Hongchen; LIANG Yanmei; MU Guoguang

    2004-01-01

    We report a method of color-image retrieval based on fuzzy correlation, in which α-cut relations in fuzzy set theory are applied to defining color match and height match of color peaks for synthesizing fuzzy correlation of two color histograms, and RGB space is partitioned into six sub-regions in the experiment for the regional color comparisons. Experimental results show that the efficiency of the color-image retrieval can be effectively improved by this approach.

  12. Added value of contrast-enhanced ultrasound on biopsies of focal hepatic lesions invisible on fusion imaging guidance

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tae Wook; Lee, Min Woo; Song, Kyoung Doo; Kim, Mimi; Kim, Seung Soo; Kim, Seong Hyun; Ha, Sang Yun [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2017-01-15

    To assess whether contrast-enhanced ultrasonography (CEUS) with Sonazoid can improve the lesion conspicuity and feasibility of percutaneous biopsies for focal hepatic lesions invisible on fusion imaging of real-time ultrasonography (US) with computed tomography/magnetic resonance images, and evaluate its impact on clinical decision making. The Institutional Review Board approved this retrospective study. Between June 2013 and January 2015, 711 US-guided percutaneous biopsies were performed for focal hepatic lesions. Biopsies were performed using CEUS for guidance if lesions were invisible on fusion imaging. We retrospectively evaluated the number of target lesions initially invisible on fusion imaging that became visible after applying CEUS, using a 4-point scale. Technical success rates of biopsies were evaluated based on histopathological results. In addition, the occurrence of changes in clinical decision making was assessed. Among 711 patients, 16 patients (2.3%) were included in the study. The median size of target lesions was 1.1 cm (range, 0.5–1.9 cm) in pre-procedural imaging. After CEUS, 15 of 16 (93.8%) focal hepatic lesions were visualized. The conspicuity score was significantly increased after adding CEUS, as compared to that on fusion imaging (p < 0.001). The technical success rate of biopsy was 87.6% (14/16). After biopsy, there were changes in clinical decision making for 11 of 16 patients (68.8%). The addition of CEUS could improve the conspicuity of focal hepatic lesions invisible on fusion imaging. This dual guidance using CEUS and fusion imaging may affect patient management via changes in clinical decision-making.

  13. Three-dimensional correlation of MR images to muscle tissue response for interventional MRI thermal ablation

    Science.gov (United States)

    Breen, Michael S.; Lazebnik, Roee S.; Lewin, Jonathan S.; Wilson, David L.

    2003-05-01

    Solid tumors and other pathologies are being treated using radio-frequency (RF) ablation under interventional magnetic resonance imaging (iMRI) guidance. In animal experiments, we are investigating the ability of MR to monitor ablation treatments by comparing MR images of thermal lesions to histologically assayed cellular damage. We developed a new methodology using three-dimensional registration for making spatial correlations. A low-field, open MRI system was used to guide an ablation probe into the thigh muscle of 10 rabbits and acquire MR volumes post ablation. After the in vivo MR and histology images were aligned with a registration accuracy of 1.32 +/- 0.39 mm (mean +/- SD), a boundary of necrosis identified in histology images was compared with manually segmented boundaries of the elliptical hyperintense region in MR images. For 14 MR images, we determined that the outer boundary of the hyperintense region in MR closely corresponds to the region of cell death, with a mean absolute distance between boundaries of 0.97 mm. Since this distance may be less than our ability to measure such differences, boundaries may match perfectly. This is good evidence that MR lesion images can localize the region of cell death during RF ablation treatments.

  14. correlation of magnetic resonance imaging findings with arthroscopy ...

    African Journals Online (AJOL)

    clinically diagnosed rotator cuff disease based upon the radiologist's interpretation with actual intra- operative arthroscopic ... invasively display high definition anatomy images ... surgical correlation (4) enough to guide on the treatment ..... Sex. Pearson. Correlation. 0.251. -0.182. -0.182. 0.156. -0.289. 0.061. 0.156. -0.052.

  15. Multi-modal registration for correlative microscopy using image analogies.

    Science.gov (United States)

    Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-08-01

    Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Placement of thoracolumbar pedicle screws using three-dimensional image guidance: experience in a large patient cohort.

    Science.gov (United States)

    Nottmeier, Eric W; Seemer, Will; Young, Phillip M

    2009-01-01

    The goal of this study was to analyze the placement accuracy and complications of thoracolumbar pedicle screws (PSs) inserted using 3D image guidance in a large patient cohort. The authors reviewed the charts of 220 consecutive patients undergoing posterior spinal fusion using 3D image guidance for instrumentation placement. A total of 1084 thoracolumbar PSs were placed using either the BrainLAB Vector Vision (BrainLAB, Inc.) or Medtronic StealthStation Treon (Medtronic, Inc.) image guidance systems. Postoperative CT scanning was performed in 184 patients, allowing for 951 screws to be graded by an independent radiologist for bone breach. All complications resulting from instrumentation placement were noted. Using the intraoperative planning function of the image-guided system, the largest diameter screw possible in each particular case was placed. The screw diameter of instrumentation placed into the L3-S1 levels was noted. No vascular or visceral complications occurred as a result of screw placement. Two nerve root injuries occurred in 1084 screws placed, resulting in a 0.2% per screw incidence and a 0.9% patient incidence of nerve root injury. Neither nerve root injury was associated with a motor deficit. The breach rate was 7.5%. Grade 1 and minor anterolateral "tip out" breaches accounted for 90% of the total breaches. Patients undergoing revision surgery accounted for 46% of the patients in this study. Accordingly, 154 screws placed through previous fusion mass could be evaluated using postoperative CT scanning. The breach rate in this specific cohort was 7.8%. A total of 765 PSs were placed into the L3-S1 levels in this study; 546 (71%) of these screws were > or = 7.5 mm in diameter. No statistical difference in breach rate was noted in PSs placed through revision spinal levels versus nonrevision spinal levels (p = 0.499). Additionally, no increase in breach rate was noted with placement of 7.5-mm-diameter screws. Three-dimensional image guidance is a useful

  17. Cholangiocarcinoma: Correlation between Molecular Profiling and Imaging Phenotypes.

    Directory of Open Access Journals (Sweden)

    Eran Sadot

    Full Text Available To investigate associations between imaging features of cholangiocarcinoma by visual assessment and texture analysis, which quantifies heterogeneity in tumor enhancement patterns, with molecular profiles based on hypoxia markers.The institutional review board approved this HIPAA-compliant retrospective study of CT images of intrahepatic cholangiocarcinoma, obtained before surgery. Immunostaining for hypoxia markers (EGFR, VEGF, CD24, P53, MDM2, MRP-1, HIF-1α, CA-IX, and GLUT1 was performed on pre-treatment liver biopsies. Quantitative imaging phenotypes were determined by texture analysis with gray level co-occurrence matrixes. The correlations between quantitative imaging phenotypes, qualitative imaging features (measured by radiographic inspection alone, and expression levels of the hypoxia markers from the 25 tumors were assessed.Twenty-five patients were included with a median age of 62 years (range: 54-84. The median tumor size was 10.2 cm (range: 4-14, 10 (40% were single tumors, and 90% were moderately differentiated. Positive immunostaining was recorded for VEGF in 67% of the cases, EGFR in 75%, and CD24 in 55%. On multiple linear regression analysis, quantitative imaging phenotypes correlated significantly with EGFR and VEGF expression levels (R2 = 0.4, p<0.05 and R2 = 0.2, p<0.05, respectively, while a trend was demonstrated with CD24 expression (R2 = 0.33, p = 0.1. Three qualitative imaging features correlated with VEGF and CD24 expression (P<0.05, however, none of the qualitative features correlated with the quantitative imaging phenotypes.Quantitative imaging phenotypes, as defined by texture analysis, correlated with expression of specific markers of hypoxia, regardless of conventional imaging features.

  18. Visualization of biological texture using correlation coefficient images.

    Science.gov (United States)

    Sviridov, Alexander P; Ulissi, Zachary; Chernomordik, Victor; Hassan, Moinuddin; Gandjbakhche, Amir H

    2006-01-01

    Subsurface structural features of biological tissue are visualized using polarized light images. The technique of Pearson correlation coefficient analysis is used to reduce blurring of these features by unpolarized backscattered light and to visualize the regions of high statistical similarities within the noisy tissue images. It is shown that under certain conditions, such correlation coefficient maps are determined by the textural character of tissues and not by the chosen region of interest, providing information on tissue structure. As an example, the subsurface texture of a demineralized tooth sample is enhanced from a noisy polarized light image.

  19. Cone beam computed tomography and its image guidance technology during percutaneous nucleoplasty procedures at L5/S1 lumbar level

    Energy Technology Data Exchange (ETDEWEB)

    Ierardi, Anna Maria; Piacentino, Filippo; Giorlando, Francesca [University of Insubria, Unit of Interventional Radiology, Department of Radiology, Varese (Italy); Magenta Biasina, Alberto; Carrafiello, Gianpaolo [University of Milan, San Paolo Hospital, Department of Diagnostic and Interventional Radiology, Milan (Italy); Bacuzzi, Alessandro [University of Insubria, Anaesthesia and Palliative Care, Varese (Italy); Novario, Raffaele [University of Insubria, Medical Physics Department, Varese (Italy)

    2016-12-15

    To demonstrate the feasibility of percutaneous nucleoplasty procedures at L5/S1 level using cone beam CT (CBCT) and its associated image guidance technology for the treatment of lumbar disc herniation (LDH). We retrospectively reviewed 25 cases (20 men, 5 women) of LDH at L5/S1 levels. CBCT as guidance imaging was chosen after a first unsuccessful fluoroscopy attempt that was related to complex anatomy (n = 15), rapid pathological changes due to degenerative diseases (n = 7) or both (n = 3). Technical success, defined as correct needle positioning in the target LDH, and safety were evaluated; overall procedure time and radiation dose were registered. A visual analog scale (VAS) was used to evaluate pain and discomfort pre-intervention after 1 week and 1, 3, and 6 months after the procedure. Technical success was 100 %; using CBCT as guidance imaging the needle was correctly positioned at the first attempt in 20 out of 25 patients. Neither major nor minor complications were registered during or after the procedure. The average procedure time was 11 min and 56 s (range, 9-15 min), whereas mean procedural radiation dose was 46.25 Gy.cm{sup 2} (range 38.10-52.84 Gy.cm{sup 2}), and mean fluoroscopy time was 5 min 34 s (range 3 min 40 s to 6 min 55 s). The VAS pain score decreased significantly from 7.6 preoperatively to 3.9 at 1 week, 2.8 at 1 month, 2.1 at 3 months, and 1.6 at 6 months postoperatively. CBCT-guided percutaneous nucleoplasty is a highly effective technique for LDH with acceptable procedure time and radiation dose. (orig.)

  20. Improved image guidance technique for minimally invasive mitral valve repair using real-time tracked 3D ultrasound

    Science.gov (United States)

    Rankin, Adam; Moore, John; Bainbridge, Daniel; Peters, Terry

    2016-03-01

    In the past ten years, numerous new surgical and interventional techniques have been developed for treating heart valve disease without the need for cardiopulmonary bypass. Heart valve repair is now being performed in a blood-filled environment, reinforcing the need for accurate and intuitive imaging techniques. Previous work has demonstrated how augmenting ultrasound with virtual representations of specific anatomical landmarks can greatly simplify interventional navigation challenges and increase patient safety. These techniques often complicate interventions by requiring additional steps taken to manually define and initialize virtual models. Furthermore, overlaying virtual elements into real-time image data can also obstruct the view of salient image information. To address these limitations, a system was developed that uses real-time volumetric ultrasound alongside magnetically tracked tools presented in an augmented virtuality environment to provide a streamlined navigation guidance platform. In phantom studies simulating a beating-heart navigation task, procedure duration and tool path metrics have achieved comparable performance to previous work in augmented virtuality techniques, and considerable improvement over standard of care ultrasound guidance.

  1. Quantum Multi-Image Encryption Based on Iteration Arnold Transform with Parameters and Image Correlation Decomposition

    Science.gov (United States)

    Hu, Yiqun; Xie, Xinwen; Liu, Xingbin; Zhou, Nanrun

    2017-07-01

    A novel quantum multi-image encryption algorithm based on iteration Arnold transform with parameters and image correlation decomposition is proposed, and a quantum realization of the iteration Arnold transform with parameters is designed. The corresponding low frequency images are obtained by performing 2-D discrete wavelet transform on each image respectively, and then the corresponding low frequency images are spliced randomly to one image. The new image is scrambled by the iteration Arnold transform with parameters, and the gray-level information of the scrambled image is encoded by quantum image correlation decomposition. For the encryption algorithm, the keys are iterative times, added parameters, classical binary and orthonormal basis states. The key space, the security and the computational complexity are analyzed, and all of the analyses show that the proposed encryption algorithm could encrypt multiple images simultaneously with lower computational complexity compared with its classical counterparts.

  2. Traffic Sign Recognition System based on Cambridge Correlator Image Comparator

    Directory of Open Access Journals (Sweden)

    J. Turan

    2012-06-01

    Full Text Available Paper presents basic information about application of Optical Correlator (OC, specifically Cambridge Correlator, in system to recognize of traffic sign. Traffic Sign Recognition System consists of three main blocks, Preprocessing, Optical Correlator and Traffic Sign Identification. The Region of Interest (ROI is defined and chosen in preprocessing block and then goes to Optical Correlator, where is compared with database of Traffic Sign. Output of Optical Correlation is correlation plane, which consist of highly localized intensities, know as correlation peaks. The intensity of spots provides a measure of similarity and position of spots, how images (traffic signs are relatively aligned in the input scene. Several experiments have been done with proposed system and results and conclusion are discussed.

  3. An edge-adaptive demosaicking method based on image correlation

    Institute of Scientific and Technical Information of China (English)

    贾晓芬; 赵佰亭; 周孟然; 陈兆权

    2015-01-01

    To reduce the cost, size and complexity, a consumer digital camera usually uses a single sensor overlaid with a color filter array (CFA) to sample one of the red−green−blue primary color values, and uses demosaicking algorithm to estimate the missing color values at each pixel. A novel image correlation and support vector machine (SVM) based edge-adaptive algorithm was proposed, which can reduce edge artifacts and false color artifacts, effectively. Firstly, image pixels were separated into edge region and smooth region with an edge detection algorithm. Then, a hybrid approach switching between a simple demosaicking algorithm on the smooth region and SVM based demosaicking algorithm on the edge region was performed. Image spatial and spectral correlations were employed to create middle planes for the interpolation. Experimental result shows that the proposed approach produced visually pleasing full-color result images and obtained higher CPSNR and smaller S-CIELAB *abDE than other conventional demosaicking algorithms.

  4. Shape determination of unidimensional objects: the virtual image correlation method

    Directory of Open Access Journals (Sweden)

    Auradou H.

    2010-06-01

    Full Text Available The proposed method, named Virtual Image Correlation, allows one to identify an analytical expression of the shape of a curvilinear object from its image. It uses a virtual beam, whose curvature field is expressed as a truncated mathematical series. The virtual beam width only needs to be close to the physical one; its gray level (in the transverse direction is bell-shaped. The method consists in finding the coefficients of the series for which the correlation between physical and virtual beams is the best. The accuracy and the robustness of the method is shown by the mean of two examples. The first details a Young’s modulus identification from a cantilever beam image. The second is relative to a thermal plume image, that have a weak contrast and a lot of noise.

  5. Shape determination of unidimensional objects: the virtual image correlation method

    Science.gov (United States)

    Francois, M.; Semin, B.; Auradou, H.; Vatteville, J.

    2010-06-01

    The proposed method, named Virtual Image Correlation, allows one to identify an analytical expression of the shape of a curvilinear object from its image. It uses a virtual beam, whose curvature field is expressed as a truncated mathematical series. The virtual beam width only needs to be close to the physical one; its gray level (in the transverse direction) is bell-shaped. The method consists in finding the coefficients of the series for which the correlation between physical and virtual beams is the best. The accuracy and the robustness of the method is shown by the mean of two examples. The first details a Young’s modulus identification from a cantilever beam image. The second is relative to a thermal plume image, that have a weak contrast and a lot of noise.

  6. Dye-conjugated single-walled carbon nanotubes induce photothermal therapy under the guidance of near-infrared imaging.

    Science.gov (United States)

    Liang, Xiaoyuan; Shang, Wenting; Chi, Chongwei; Zeng, Chaoting; Wang, Kun; Fang, Chihua; Chen, Qingshan; Liu, Huiyu; Fan, Yingfang; Tian, Jie

    2016-12-28

    Recently, photothermal therapy (PTT) has become viewed as an ideal auxiliary therapeutic treatment for cancers. However, the development of safe, convenient, and highly effective photothermal agents remains a great challenge. In this study, we prepared single-walled carbon nanotubes (SWNTs) for PTT against breast tumors under the guidance of infrared fluorescent cyanines. Tumors were accurately located using near-infrared imaging (NIR) and then exposed to laser irradiation. Both the in vivo and in vitro results showed that the SWNTs have high stability and low cytotoxicity. Introducing polyethylene glycol into our nanoparticles increased the blood-circulation time. Our in vivo results further showed that Cy5.5-conjugated SWNTs mediated PTT, resulting in efficient tumor suppression in mice under the guidance of near-infrared imaging. Due to the small amount of absorption at 808-nm, Cy5.5 increased the efficiency of PTT. Breast tumors significantly shrunk after irradiation under the 808-nm near-infrared laser. The treated mice developed scabs, but otherwise recovered after 15 days, and their physical conditions restored gradually. These data indicate that our unique photothermal-responsive SWNT-Cy5.5-based theranostic agent can serve as a promising candidate for PTT. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Evaluation of left ventricular scar identification from contrast enhanced magnetic resonance imaging for guidance of ventricular catheter ablation therapy

    Science.gov (United States)

    Rettmann, M. E.; Lehmann, H. I.; Johnson, S. B.; Packer, D. L.

    2016-03-01

    Patients with ventricular arrhythmias typically exhibit myocardial scarring, which is believed to be an important anatomic substrate for reentrant circuits, thereby making these regions a key target in catheter ablation therapy. In ablation therapy, a catheter is guided into the left ventricle and radiofrequency energy is delivered into the tissue to interrupt arrhythmic electrical pathways. Low bipolar voltage regions are typically localized during the procedure through point-by-point construction of an electroanatomic map by sampling the endocardial surface with the ablation catheter and are used as a surrogate for myocardial scar. This process is time consuming, requires significant skill, and has the potential to miss low voltage sites. This has led to efforts to quantify myocardial scar preoperatively using delayed, contrast-enhanced MRI. In this paper, we evaluate the utility of left ventricular scar identification from delayed contrast enhanced magnetic resonance imaging for guidance of catheter ablation of ventricular arrhythmias. Myocardial infarcts were created in three canines followed by a delayed, contrast enhanced MRI scan and electroanatomic mapping. The left ventricle and myocardial scar is segmented from preoperative MRI images and sampled points from the procedural electroanatomical map are registered to the segmented endocardial surface. Sampled points with low bipolar voltage points visually align with the segmented scar regions. This work demonstrates the potential utility of using preoperative delayed, enhanced MRI to identify myocardial scarring for guidance of ventricular catheter ablation therapy.

  8. Video stabilization with sub-image phase correlation

    Institute of Scientific and Technical Information of China (English)

    Juanjuan Zhu; Baolong Guo

    2006-01-01

    @@ A fast video stabilization method is presented,which consists of sub-image phase correlation based global motion estimation,Kalman filtering based motion smoothing and motion modification based compensation.Global motion is decided using phase correlation in four sub-images.Then,the motion vectors are accumulated to be Kalman filtered for smoothing.The ordinal motion compensation is applied to each frame with modification to prevent error propagation.Experimental results show that this stabilization system can remove unwanted translational jitter of video sequences and follow intentional scan at real-time speed.

  9. Shape determination of unidimensional objects: the virtual image correlation method

    OpenAIRE

    Auradou H.; Vatteville J.; Semin B.; Francois M.

    2010-01-01

    The proposed method, named Virtual Image Correlation, allows one to identify an analytical expression of the shape of a curvilinear object from its image. It uses a virtual beam, whose curvature field is expressed as a truncated mathematical series. The virtual beam width only needs to be close to the physical one; its gray level (in the transverse direction) is bell-shaped. The method consists in finding the coefficients of the series for which the correlation between physical and virtual ...

  10. In Situ Correlated Molecular Imaging of Chemically Communicating Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Paul W. [Univ. of Notre Dame, IN (United States); Shrout, J. D. [Univ. of Notre Dame, IN (United States); Sweedler, J. V. [Univ. of Illinois, Urbana-Champaign, IL (United States); Farrand, S. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-01-25

    This document constitutes the final technical report for DE-SC0006642, In Situ Correlated Molecular Imaging of Chemically Communicating Microbial Communities, a project carried out collaboratively by investigators at Notre Dame and UIUC. The work carried out under DOE support in this project produced advances in two areas: development of new highly sophisticated correlated imaging approaches and the application of these new tools to the growth and differentiation of microbial communities under a variety of environmental conditions. A significant effort involved the creation of technical enhancements and sampling approaches to allow us to advance heterocorrelated mass spectrometry imaging (MSI) and correlated Raman microscopy (CRM) from bacterial cultures and biofilms. We then exploited these measurement advances in heterocorrelated MS/CRM imaging to determine relationship of signaling molecules and excreted signaling molecules produced by P. aeruginosa to conditions relevant to the rhizosphere. In particular, we: (1) developed a laboratory testbed mimic for the rhizosphere to enable microbial growth on slides under controlled conditions; (2) integrated specific measurements of (a) rhamnolipids, (b) quinolone/quinolones, and (c) phenazines specific to P. aeruginosa; and (3) utilized the imaging tools to probe how messenger secretion, quorum sensing and swarming behavior are correlated with behavior.

  11. Effect of Body Mass Index on Magnitude of Setup Errors in Patients Treated With Adjuvant Radiotherapy for Endometrial Cancer With Daily Image Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Lilie L., E-mail: lin@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA (United States); Hertan, Lauren; Rengan, Ramesh; Teo, Boon-Keng Kevin [Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA (United States)

    2012-06-01

    Purpose: To determine the impact of body mass index (BMI) on daily setup variations and frequency of imaging necessary for patients with endometrial cancer treated with adjuvant intensity-modulated radiotherapy (IMRT) with daily image guidance. Methods and Materials: The daily shifts from a total of 782 orthogonal kilovoltage images from 30 patients who received pelvic IMRT between July 2008 and August 2010 were analyzed. The BMI, mean daily shifts, and random and systematic errors in each translational and rotational direction were calculated for each patient. Margin recipes were generated based on BMI. Linear regression and spearman rank correlation analysis were performed. To simulate a less-than-daily IGRT protocol, the average shift of the first five fractions was applied to subsequent setups without IGRT for assessing the impact on setup error and margin requirements. Results: Median BMI was 32.9 (range, 23-62). Of the 30 patients, 16.7% (n = 5) were normal weight (BMI <25); 23.3% (n = 7) were overweight (BMI {>=}25 to <30); 26.7% (n = 8) were mildly obese (BMI {>=}30 to <35); and 33.3% (n = 10) were moderately to severely obese (BMI {>=} 35). On linear regression, mean absolute vertical, longitudinal, and lateral shifts positively correlated with BMI (p = 0.0127, p = 0.0037, and p < 0.0001, respectively). Systematic errors in the longitudinal and vertical direction were found to be positively correlated with BMI category (p < 0.0001 for both). IGRT for the first five fractions, followed by correction of the mean error for all subsequent fractions, led to a substantial reduction in setup error and resultant margin requirement overall compared with no IGRT. Conclusions: Daily shifts, systematic errors, and margin requirements were greatest in obese patients. For women who are normal or overweight, a planning target margin margin of 7 to 10 mm may be sufficient without IGRT, but for patients who are moderately or severely obese, this is insufficient.

  12. Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio

    Science.gov (United States)

    Charonko, John J.; Vlachos, Pavlos P.

    2013-06-01

    Numerous studies have established firmly that particle image velocimetry (PIV) is a robust method for non-invasive, quantitative measurements of fluid velocity, and that when carefully conducted, typical measurements can accurately detect displacements in digital images with a resolution well below a single pixel (in some cases well below a hundredth of a pixel). However, to date, these estimates have only been able to provide guidance on the expected error for an average measurement under specific image quality and flow conditions. This paper demonstrates a new method for estimating the uncertainty bounds to within a given confidence interval for a specific, individual measurement. Here, cross-correlation peak ratio, the ratio of primary to secondary peak height, is shown to correlate strongly with the range of observed error values for a given measurement, regardless of flow condition or image quality. This relationship is significantly stronger for phase-only generalized cross-correlation PIV processing, while the standard correlation approach showed weaker performance. Using an analytical model of the relationship derived from synthetic data sets, the uncertainty bounds at a 95% confidence interval are then computed for several artificial and experimental flow fields, and the resulting errors are shown to match closely to the predicted uncertainties. While this method stops short of being able to predict the true error for a given measurement, knowledge of the uncertainty level for a PIV experiment should provide great benefits when applying the results of PIV analysis to engineering design studies and computational fluid dynamics validation efforts. Moreover, this approach is exceptionally simple to implement and requires negligible additional computational cost.

  13. Feasibility of in situ, high-resolution correlation of tracer uptake with histopathology by quantitative autoradiography of biopsy specimens obtained under 18F-FDG PET/CT guidance.

    Science.gov (United States)

    Fanchon, Louise M; Dogan, Snjezana; Moreira, Andre L; Carlin, Sean A; Schmidtlein, C Ross; Yorke, Ellen; Apte, Aditya P; Burger, Irene A; Durack, Jeremy C; Erinjeri, Joseph P; Maybody, Majid; Schöder, Heiko; Siegelbaum, Robert H; Sofocleous, Constantinos T; Deasy, Joseph O; Solomon, Stephen B; Humm, John L; Kirov, Assen S

    2015-04-01

    Core biopsies obtained using PET/CT guidance contain bound radiotracer and therefore provide information about tracer uptake in situ. Our goal was to develop a method for quantitative autoradiography of biopsy specimens (QABS), to use this method to correlate (18)F-FDG tracer uptake in situ with histopathology findings, and to briefly discuss its potential application. Twenty-seven patients referred for a PET/CT-guided biopsy of (18)F-FDG-avid primary or metastatic lesions in different locations consented to participate in this institutional review board-approved study, which complied with the Health Insurance Portability and Accountability Act. Autoradiography of biopsy specimens obtained using 5 types of needles was performed immediately after extraction. The response of autoradiography imaging plates was calibrated using dummy specimens with known activity obtained using 2 core-biopsy needle sizes. The calibration curves were used to quantify the activity along biopsy specimens obtained with these 2 needles and to calculate the standardized uptake value, SUVARG. Autoradiography images were correlated with histopathologic findings and fused with PET/CT images demonstrating the position of the biopsy needle within the lesion. Logistic regression analysis was performed to search for an SUVARG threshold distinguishing benign from malignant tissue in liver biopsy specimens. Pearson correlation between SUVARG of the whole biopsy specimen and average SUVPET over the voxels intersected by the needle in the fused PET/CT image was calculated. Activity concentrations were obtained using autoradiography for 20 specimens extracted with 18- and 20-gauge needles. The probability of finding malignancy in a specimen is greater than 50% (95% confidence) if SUVARG is greater than 7.3. For core specimens with preserved shape and orientation and in the absence of motion, one can achieve autoradiography, CT, and PET image registration with spatial accuracy better than 2 mm. The

  14. SU-D-BRF-07: Ultrasound and Fluoroscopy Based Intraoperative Image-Guidance System for Dynamic Dosimetry in Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, N; Le, Y; Deguet, A; Prince, J; Song, D; Lee, J [Johns Hopkins University, Baltimore, MD (United States); Dehghan, E [Philips Research North America, Briarcliff Manor, NY (United States); Burdette, E [Acoustic MedSystems Inc., Savoy, IL (United States); Fichtinger, G [Queen' s University, Kingston, ON (Canada)

    2014-06-01

    Purpose: Prostate brachytherapy is a common treatment method for low-risk prostate cancer patients. Intraoperative treatment planning is known to improve the treatment procedure and the outcome. The current limitation of intraoperative treatment planning is the inability to localize the seeds in relation to the prostate. We developed an image-guidance system to fulfill this need to achieve intraoperative dynamic dosimetry in prostate brachytherapy. Methods: Our system is based on standard imaging equipments available in the operating room, including the transrectal ultrasound (TRUS) and the mobile C-arm. A simple fiducial is added to compute the C-arm pose. Three fluoroscopic images and an ultrasound volume of the seeds and the prostate are acquired and processed by four image processing algorithms: seed segmentation, fiducial detection with pose estimation, seed reconstruction, and seeds-to-TRUS registration. The updated seed positions allow the physician to assess the quality of implantation and dynamically adjust the treatment plan during the course of surgery to achieve improved exit dosimetry. Results: The system was tested on 10 phantoms and 37 patients. Seed segmentation resulted in a 1% false negative and 2% false positive rates. Fiducial detection with pose estimation resulted in a detection rate of 98%. Seed reconstruction had a mean reconstruction error of 0.4 mm. Seeds-to-TRUS registration had a mean registration error of 1.3 mm. The total processing time from image acquisition to registration was approximately 1 minute. Conclusion: We present an image-guidance system for intraoperative dynamic dosimetry in prostate brachytherapy. Using standard imaging equipments and a simple fiducial, our system can be easily adopted in any clinics. Robust image processing algorithms enable accurate and fast computation of the delivered dose. Especially, the system enables detection of possible hot/cold spots during the surgery, allowing the physician to address these

  15. Microscopic resolution imaging and proteomics correlation at histogeographically identical location: point by point correlation between ex vivo tissue imaging with high field MRI and multiplex tissue immunoblotting for proteomics profiling

    Science.gov (United States)

    Matsuda, Kant M.; Chung, Joon-Yong; Ylaya, Kris; Dodd, Stephen; Fukunaga, Masaki; Hewitt, Stephen M.

    2010-03-01

    Histopathologic correlation is an essential component for validation of the radiological findings. There has been significant advancement in medical imaging technologies, including molecular imaging, such that, it is essential to establish the system beyond histopathologic correlation, to protein profiling that can be correlated with imaging at anatomically identical manner for accurate examination. Recently, a novel technology for proteomic profiling has been established, called "multiplex tissue immunoblotting (MTIB)" which can offer studying multiple protein expression from a single histology slide. Therefore, we attempted to establish the system to obtain an identical plane between high resolution imaging and histopathology at microscopic level so that proteomic profiling can be readily performed using MTIB. A variety of tissues were obtained from autopsy materials and initially scanned with high field MRI (14T) ex vivo along with the marker for tissue orientation. The histology slides were prepared from post-scanned tissue under the marker-guidance in order to obtain an identical plane with high resolution imaging. Subsequently, MTIB was carried out to study expression of proteins of interest and point by point correlation with high resolution imaging was performed at histogeographically identical manner.

  16. Composite pseudocolor images: a technique to enhance the visual correlation between ventilation-perfusion lung images

    Science.gov (United States)

    Vaz de Carvalho, Carlos; Costa, Antonio A.; Seixas, M.; Ferreira, F. N.; Guedes, M. A.; Amaral, I.

    1993-07-01

    Lung ventilation and perfusion raw nuclear medicine images obtained from a gamma camera can be difficult to analyze on a per si basis. A method to optimize the visual correlation between these images was established through the use of new combination images: Composite Pseudo-Color (CPC) images. The major topic of this study is the assessment of the usefulness of this method in the detection of lung malfunction.

  17. 4D cone-beam CT imaging for guidance in radiation therapy: setup verification by use of implanted fiducial markers

    Science.gov (United States)

    Jin, Peng; van Wieringen, Niek; Hulshof, Maarten C. C. M.; Bel, Arjan; Alderliesten, Tanja

    2016-03-01

    The use of 4D cone-beam computed tomography (CBCT) and fiducial markers for guidance during radiation therapy of mobile tumors is challenging due to the trade-off between image quality, imaging dose, and scanning time. We aimed to investigate the visibility of markers and the feasibility of marker-based 4D registration and manual respiration-induced marker motion quantification for different CBCT acquisition settings. A dynamic thorax phantom and a patient with implanted gold markers were included. For both the phantom and patient, the peak-to-peak amplitude of marker motion in the cranial-caudal direction ranged from 5.3 to 14.0 mm, which did not affect the marker visibility and the associated marker-based registration feasibility. While using a medium field of view (FOV) and the same total imaging dose as is applied for 3D CBCT scanning in our clinic, it was feasible to attain an improved marker visibility by reducing the imaging dose per projection and increasing the number of projection images. For a small FOV with a shorter rotation arc but similar total imaging dose, streak artifacts were reduced due to using a smaller sampling angle. Additionally, the use of a small FOV allowed reducing total imaging dose and scanning time (~2.5 min) without losing the marker visibility. In conclusion, by using 4D CBCT with identical or lower imaging dose and a reduced gantry speed, it is feasible to attain sufficient marker visibility for marker-based 4D setup verification. Moreover, regardless of the settings, manual marker motion quantification can achieve a high accuracy with the error <1.2 mm.

  18. High-speed image matching with coaxial holographic optical correlator

    Science.gov (United States)

    Ikeda, Kanami; Watanabe, Eriko

    2016-09-01

    A computation speed of more than 100 Gbps is experimentally demonstrated using our developed ultrahigh-speed optical correlator. To verify this high computation speed practically, the computation speeds of our optical correlator and conventional digital image matching are quantitatively compared. We use a population count function that achieves the fastest calculation speed when calculating binary matching by a central processing unit (CPU). The calculation speed of the optical correlator is dramatically faster than that using a CPU (2.40 GHz × 4) and 16 GB of random access memory, especially when the calculation data are large-scale.

  19. Development and testing of a new magnetic-tracking device for image guidance

    Science.gov (United States)

    Schneider, Mark; Stevens, Charles

    2007-03-01

    Optical tracking systems pioneered the use of position sensors in surgical navigation. The requirement to maintain a clear line-of-sight between the emitters and detectors, however, renders them unsuitable for tracking flexible invasive instruments. On the other hand, advances in electromagnetic tracking systems permit a key-enabling role in imageguided procedures. First-generation magnetic systems present a significant challenge for tracker designers to improve both performance and acceptance. Troublesome magnetic problems include inaccuracies due to the presence of metallic distorters in the tracking volume and to dynamic motion of the tracked object. A new magnetic tracker (3D Guidance TM), recently developed at Ascension Technology, seeks to address these problems. Employing third-generation pulsed-DC magnetic tracking technology and new signal processing techniques, the new tracker overcomes the distorting effects of non-magnetic conductive metals (300-series stainless steel, titanium and aluminum) and composite tables experienced by AC trackers. Ascension has developed a break-through flat transmitter that negates ferrous metal distortion emanating from procedural tables. The tracker development has also significantly advanced the state of the art in sensor miniaturization. The 3D Guidance TM features the world's smallest electromagnetic tracking sensors, opening the door to new applications for minimally invasive procedures. Finally, dynamic accuracy has been significantly improved with the implementation of Kalman based algorithms. Test results are reported.

  20. Imaging in scattering media using correlation image sensors and sparse convolutional coding

    KAUST Repository

    Heide, Felix

    2014-10-17

    Correlation image sensors have recently become popular low-cost devices for time-of-flight, or range cameras. They usually operate under the assumption of a single light path contributing to each pixel. We show that a more thorough analysis of the sensor data from correlation sensors can be used can be used to analyze the light transport in much more complex environments, including applications for imaging through scattering and turbid media. The key of our method is a new convolutional sparse coding approach for recovering transient (light-in-flight) images from correlation image sensors. This approach is enabled by an analysis of sparsity in complex transient images, and the derivation of a new physically-motivated model for transient images with drastically improved sparsity.

  1. Interventional guidance for cardiac resynchronization therapies: merging anatomic X-ray imaging with functional ultrasound imaging based on mutually-shared landmarks

    Energy Technology Data Exchange (ETDEWEB)

    Manzke, R.; Shechter, G.; Gutierrez, L.; Chan, R.C. [Philips Research North America, Briarcliff Manor, NY (United States); Tournoux, F.; Singh, J.; Picard, M. [Dept. of Cardiology, Massachusetts General Hospital, Harvard Medical School (United States); Brink, B. v.d.; Boomen, R. v.d. [Philips Medical System, Best (Netherlands); Gerard, O. [Philips Medical Systems, Paris (France)

    2007-06-15

    Detailed knowledge of cardiac anatomy and function is required for complex cardiac electrophysiology interventions. Cardiac resynchronization therapies (CRT), for example, requires information about coronary venous anatomy for left ventricular lead placement. In CRT, heart failure patients are equipped with dual-chamber pacemakers in order to improve cardiac output and heart failure symptoms. Cardiac function is mainly assessed with Ultrasound imaging. Fusion of complementary information from X-ray and ultrasound is an essential step towards fully utilizing all available information for CRT guidance. We present an approach for fusion of anatomical information (coronary vein structure) from X-ray with functional information (left ventricular deformation and dynamics) from ultrasound. We propose an image-based fusion approach based on mutually-shared landmarks which enable registration of both imaging spaces without the need for external tracking. (orig.)

  2. Occlusion of the middle cerebral artery Guidance by screen imaging using an EDA-H portable medium-soft electronic endoscope

    Institute of Scientific and Technical Information of China (English)

    Xingbao Zhu; Junli Luo; Song Liu; Dongping Li; Min Li; Quanshui Fan

    2011-01-01

    The present study aimed to verify the practicability of performing screen-based surgical operations under the guidance of a real-time viewing and recording system (RTVRS) using a portable medium-soft electronic endoscope (pmsEE). The middle cerebral artery in rats was occluded under screen-imaging guidance using a pmsEE RTVRS to reproduce an animal model of human cerebral infarction. The screen imaging of the pmsEE RTVRS was clear, life-like, stereoscopic and synchronous with the actual operation. Screen-imaging guidance led to an accurate, smooth, minimally invasive and comparatively easy surgical procedure. The surgical success rate, time of model establishment, neurological function scores, and infarct volume were similar to those using an operating microscope. These results indicate that the self-designed pmsEE RTVRS could be utilized for portable endoscopic screen-based surgical operations.

  3. Adaptive codebook selection schemes for image classification in correlated channels

    Science.gov (United States)

    Hu, Chia Chang; Liu, Xiang Lian; Liu, Kuan-Fu

    2015-09-01

    The multiple-input multiple-output (MIMO) system with the use of transmit and receive antenna arrays achieves diversity and array gains via transmit beamforming. Due to the absence of full channel state information (CSI) at the transmitter, the transmit beamforming vector can be quantized at the receiver and sent back to the transmitter by a low-rate feedback channel, called limited feedback beamforming. One of the key roles of Vector Quantization (VQ) is how to generate a good codebook such that the distortion between the original image and the reconstructed image is the minimized. In this paper, a novel adaptive codebook selection scheme for image classification is proposed with taking both spatial and temporal correlation inherent in the channel into consideration. The new codebook selection algorithm is developed to select two codebooks from the discrete Fourier transform (DFT) codebook, the generalized Lloyd algorithm (GLA) codebook and the Grassmannian codebook to be combined and used as candidates of the original image and the reconstructed image for image transmission. The channel is estimated and divided into four regions based on the spatial and temporal correlation of the channel and an appropriate codebook is assigned to each region. The proposed method can efficiently reduce the required information of feedback under the spatially and temporally correlated channels, where each region is adaptively. Simulation results show that in the case of temporally and spatially correlated channels, the bit-error-rate (BER) performance can be improved substantially by the proposed algorithm compared to the one with only single codebook.

  4. Multimodality imaging for patient evaluation and guidance of catheter ablation for atrial fibrillation - current status and future perspective.

    Science.gov (United States)

    Bhagirath, P; van der Graaf, A W M; Karim, R; van Driel, V J H M; Ramanna, H; Rhode, K S; de Groot, N M S; Götte, M J W

    2014-08-20

    Left atrial catheter ablation is an established non-pharmacological therapy for the treatment of atrial fibrillation. The importance of a noninvasive multimodality imaging approach is emphasized by the current guidelines for the various phases of the ablation work-up e.g. patient identification, therapy guidance and procedural evaluation. Advances in the capabilities of imaging modalities and the increasing cost of healthcare warrant a review of the multimodality approach. This review discusses the application of cardiac imaging for pulmonary vein and left atrial ablation divided into stages: pre-procedural stage (assessment of left atrial dimensions, left atrial appendage thrombus and pulmonary vein anatomy), peri-procedural stage (integration of anatomical and electrical information) and post-procedural stage (evaluation of efficacy by assessment of tissue properties). Each section is dedicated to one of the subtopics of a stage, allowing a thorough comparison to be made between the strengths and weaknesses of the different imaging modalities and the identification of one that exhibits the potential for a single technique approach.

  5. Development of a real time imaging-based guidance system of magnetic nanoparticles for targeted drug delivery

    Science.gov (United States)

    Zhang, Xingming; Le, Tuan-Anh; Yoon, Jungwon

    2017-04-01

    Targeted drug delivery using magnetic nanoparticles is an efficient technique as molecules can be directed toward specific tissues inside a human body. For the first time, we implemented a real-time imaging-based guidance system of nanoparticles using untethered electro-magnetic devices for simultaneous guiding and tracking. In this paper a low-amplitude-excitation-field magnetic particle imaging (MPI) is introduced. Based on this imaging technology, a hybrid system comprised of an electromagnetic actuator and MPI was used to navigate nanoparticles in a non-invasive way. The real-time low-amplitude-excitation-field MPI and electromagnetic actuator of this navigation system are achieved by applying a time-division multiplexing scheme to the coil topology. A one dimensional nanoparticle navigation system was built to demonstrate the feasibility of the proposed approach and it could achieve a 2 Hz navigation update rate with the field gradient of 3.5 T/m during the imaging mode and 8.75 T/m during the actuation mode. Particles with both 90 nm and 5 nm diameters could be successfully manipulated and monitored in a tube through the proposed system, which can significantly enhance targeting efficiency and allow precise analysis in a real drug delivery.

  6. Correlation of Magnetic Resonance Imaging Tumor Volume with Histopathology

    Science.gov (United States)

    Turkbey, Baris; Mani, Haresh; Aras, Omer; Rastinehad, Ardeshir R.; Shah, Vijay; Bernardo, Marcelino; Pohida, Thomas; Daar, Dagane; Benjamin, Compton; McKinney, Yolanda L.; Linehan, W. Marston; Wood, Bradford J.; Merino, Maria J.; Choyke, Peter L.; Pinto, Peter A.

    2017-01-01

    Purpose The biology of prostate cancer may be influenced by the index lesion. The definition of index lesion volume is important for appropriate decision making, especially for image guided focal treatment. We determined the accuracy of magnetic resonance imaging for determining index tumor volume compared with volumes derived from histopathology. Materials and Methods We evaluated 135 patients (mean age 59.3 years) with a mean prostate specific antigen of 6.74 ng/dl who underwent multiparametric 3T endorectal coil magnetic resonance imaging of the prostate and subsequent radical prostatectomy. Index tumor volume was determined prospectively and independently by magnetic resonance imaging and histopathology. The ellipsoid formula was applied to determine histopathology tumor volume, whereas manual tumor segmentation was used to determine magnetic resonance tumor volume. Histopathology tumor volume was correlated with age and prostate specific antigen whereas magnetic resonance tumor volume involved Pearson correlation and linear regression methods. In addition, the predictive power of magnetic resonance tumor volume, prostate specific antigen and age for estimating histopathology tumor volume (greater than 0.5 cm3) was assessed by ROC analysis. The same analysis was also conducted for the 1.15 shrinkage factor corrected histopathology data set. Results There was a positive correlation between histopathology tumor volume and magnetic resonance tumor volume (Pearson coefficient 0.633, p <0.0001), but a weak correlation between prostate specific antigen and histopathology tumor volume (Pearson coefficient 0.237, p=0.003). On linear regression analysis histopathology tumor volume and magnetic resonance tumor volume were correlated (r2=0.401, p <0.00001). On ROC analysis AUC values for magnetic resonance tumor volume, prostate specific antigen and age in estimating tumors larger than 0.5 cm3 at histopathology were 0.949 (p <0.0000001), 0.685 (p=0.001) and 0.627 (p=0

  7. Correlation and image compression for limited-bandwidth CCD.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Douglas G.

    2005-07-01

    As radars move to Unmanned Aerial Vehicles with limited-bandwidth data downlinks, the amount of data stored and transmitted with each image becomes more significant. This document gives the results of a study to determine the effect of lossy compression in the image magnitude and phase on Coherent Change Detection (CCD). We examine 44 lossy compression types, plus lossless zlib compression, and test each compression method with over 600 CCD image pairs. We also derive theoretical predictions for the correlation for most of these compression schemes, which compare favorably with the experimental results. We recommend image transmission formats for limited-bandwidth programs having various requirements for CCD, including programs which cannot allow performance degradation and those which have stricter bandwidth requirements at the expense of CCD performance.

  8. Imaging of brain tumors with histological correlations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, Antonios (ed.)

    2011-07-01

    This volume provides a deeper understanding of the diagnosis of brain tumors by correlating radiographic imaging features with the underlying pathological abnormalities. All modern imaging modalities are used to complete a diagnostic overview of brain tumors with emphasis on recent advances in diagnostic neuroradiology. High-quality illustrations depicting common and uncommon imaging characteristics of a wide range of brain tumors are presented and analysed, drawing attention to the ways in which these characteristics reflect different aspects of pathology. Important theoretical considerations are also discussed. Since the first edition, chapters have been revised and updated and new material has been added, including detailed information on the clinical application of functional MRI and diffusion tensor imaging. Radiologists and other clinicians interested in the current diagnostic approach to brain tumors will find this book to be an invaluable and enlightening clinical tool. (orig.)

  9. Incoherent Diffractive Imaging via Intensity Correlations of Hard X Rays

    Science.gov (United States)

    Classen, Anton; Ayyer, Kartik; Chapman, Henry N.; Röhlsberger, Ralf; von Zanthier, Joachim

    2017-08-01

    Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures, or even single molecules. While these techniques rely on coherent scattering, incoherent processes like fluorescence emission—often the predominant scattering mechanism—are generally considered detrimental for imaging applications. Here, we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D arrangement of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods.

  10. Imaged document information location and extraction using an optical correlator

    Science.gov (United States)

    Stalcup, Bruce W.; Dennis, Phillip W.; Dydyk, Robert B.

    1999-12-01

    Today, the paper document is fast becoming a thing of the past. With the rapid development of fast, inexpensive computing and storage devices, many government and private organizations are archiving their documents in electronic form (e.g., personnel records, medical records, patents, etc.). Many of these organizations are converting their paper archives to electronic images, which are then stored in a computer database. Because of this, there is a need to efficiently organize this data into comprehensive and accessible information resources and provide for rapid access to the information contained within these imaged documents. To meet this need, Litton PRC and Litton Data Systems Division are developing a system, the Imaged Document Optical Correlation and Conversion System (IDOCCS), to provide a total solution to the problem of managing and retrieving textual and graphic information from imaged document archives. At the heart of IDOCCS, optical correlation technology provide a means for the search and retrieval of information from imaged documents. IDOCCS can be used to rapidly search for key words or phrases within the imaged document archives and has the potential to determine the types of languages contained within a document. In addition, IDOCCS can automatically compare an input document with the archived database to determine if it is a duplicate, thereby reducing the overall resources required to maintain and access the document database. Embedded graphics on imaged pages can also be exploited, e.g., imaged documents containing an agency's seal or logo can be singled out. In this paper, we present a description of IDOCCS as well as preliminary performance results and theoretical projections.

  11. Photon-number correlation for quantum enhanced imaging and sensing

    Science.gov (United States)

    Meda, A.; Losero, E.; Samantaray, N.; Scafirimuto, F.; Pradyumna, S.; Avella, A.; Ruo-Berchera, I.; Genovese, M.

    2017-09-01

    In this review we present the potentialities and the achievements of the use of non-classical photon-number correlations in twin-beam states for many applications, ranging from imaging to metrology. Photon-number correlations in the quantum regime are easily produced and are rather robust against unavoidable experimental losses, and noise in some cases, if compared to the entanglement, where losing one photon can completely compromise the state and its exploitable advantages. Here, we will focus on quantum enhanced protocols in which only phase-insensitive intensity measurements (photon-number counting) are performed, which allow probing the transmission/absorption properties of a system, leading, for example, to innovative target detection schemes in a strong background. In this framework, one of the advantages is that the sources experimentally available emit a wide number of pair-wise correlated modes, which can be intercepted and exploited separately, for example by many pixels of a camera, providing a parallelism, essential in several applications, such as wide-field sub-shot-noise imaging and quantum enhanced ghost imaging. Finally, non-classical correlation enables new possibilities in quantum radiometry, e.g. the possibility of absolute calibration of a spatial resolving detector from the on-off single-photon regime to the linear regime in the same setup.

  12. Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance

    DEFF Research Database (Denmark)

    Korreman, S.S.; Boyer, A.L.; Juhler-Nøttrup, Trine

    2008-01-01

    for 17 lung cancer patients in separate protocols at Rigshospitalet and Stanford Cancer Center. Respiratory curves for external optical markers and implanted fiducials were collected using equipment based on the RPM system (Varian Medical Systems). A total of 861 respiratory curves represented external...... were described by medians and standard deviations (SDs) of position distributions of the markers. Gating windows (35% duty cycle) were retrospectively applied to the respiratory data for each session, mimicking the use of commercially available gating systems. Medians and SDs of gated data were......PURPOSE/OBJECTIVE: In radiotherapy of targets moving with respiration, beam gating is offered as a means of reducing the target motion. The purpose of this study is to evaluate the safe magnitude of margin reduction for respiratory gated beam delivery. MATERIALS/METHODS: The study is based on data...

  13. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a (60)Co Magnetic Resonance Image Guidance Radiation Therapy System

    DEFF Research Database (Denmark)

    Wooten, H Omar; Green, Olga; Yang, Min

    2015-01-01

    % prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range doses >20 Gy. The mean doses for all (60)Co plan OARs were within......PURPOSE: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating (60)Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. METHODS AND MATERIALS...... plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The (60)Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses...

  14. Automatic Tissue Differentiation Based on Confocal Endomicroscopic Images for Intraoperative Guidance in Neurosurgery

    Directory of Open Access Journals (Sweden)

    Ali Kamen

    2016-01-01

    Full Text Available Diagnosis of tumor and definition of tumor borders intraoperatively using fast histopathology is often not sufficiently informative primarily due to tissue architecture alteration during sample preparation step. Confocal laser microscopy (CLE provides microscopic information of tissue in real-time on cellular and subcellular levels, where tissue characterization is possible. One major challenge is to categorize these images reliably during the surgery as quickly as possible. To address this, we propose an automated tissue differentiation algorithm based on the machine learning concept. During a training phase, a large number of image frames with known tissue types are analyzed and the most discriminant image-based signatures for various tissue types are identified. During the procedure, the algorithm uses the learnt image features to assign a proper tissue type to the acquired image frame. We have verified this method on the example of two types of brain tumors: glioblastoma and meningioma. The algorithm was trained using 117 image sequences containing over 27 thousand images captured from more than 20 patients. We achieved an average cross validation accuracy of better than 83%. We believe this algorithm could be a useful component to an intraoperative pathology system for guiding the resection procedure based on cellular level information.

  15. Extracting flat-field images from scene-based image sequences using phase correlation

    Science.gov (United States)

    Caron, James N.; Montes, Marcos J.; Obermark, Jerome L.

    2016-06-01

    Flat-field image processing is an essential step in producing high-quality and radiometrically calibrated images. Flat-fielding corrects for variations in the gain of focal plane array electronics and unequal illumination from the system optics. Typically, a flat-field image is captured by imaging a radiometrically uniform surface. The flat-field image is normalized and removed from the images. There are circumstances, such as with remote sensing, where a flat-field image cannot be acquired in this manner. For these cases, we developed a phase-correlation method that allows the extraction of an effective flat-field image from a sequence of scene-based displaced images. The method uses sub-pixel phase correlation image registration to align the sequence to estimate the static scene. The scene is removed from sequence producing a sequence of misaligned flat-field images. An average flat-field image is derived from the realigned flat-field sequence.

  16. Tips and Tricks of Percutaneous Gastrostomy Under Image Guidance in Patients with Limited Access

    Energy Technology Data Exchange (ETDEWEB)

    Marcy, Pierre-Yves; Figl, Andrea; Thariat, Juliette [Sophia Antipolis University, Nice cedex (France); Lacout, Alexis [Centre Me' dico-Chirurgical, Aurillac (France)

    2011-10-15

    We read with great interest the article by Chan et al. (1) in the March issue of Korean Journal of Radiology on their experience of modified radiology-guided percutaneous gastrostomy (MRPG). The authors proposed a technique to access the stomach in patients with upper digestive tract obstruction (UDTO). Following marking a patient's left liver inferior margin and room air-colonography, the authors punctured the gastric area using a 21G fine needle under X-ray guidance and withdrew their syringe gradually while injecting contrast medium. We noted that the gastrostomy may be performed using a 0.0035-inch hydrophilic guide wire and a 6.5-Fr angled catheter in almost 100% of patients contraindicated for endoscopy gastrostomy, including those with tortuous or tight cervical stenosis (2). In patients with a collapsed stomach, orally administered effervescent sodium bicarbonate powder can produce sufficient gas in the stomach to allow for a percutaneous needle puncture. In UDTO patients, diatrizoate meglumine can be directly injected into the gastric lumen under ultrasound (US) guidance, as reported by Pugash et al. (3) in 1995. Since the stomach appears collapsed with apposed multi-layer walls and virtual lumen on US, the needle tip is hardly seen. In such circumstances, after having transfixed the stomach with a 21G Chiba needle, further gradual needle withdrawing is performed under fluoroscopic guidance while injecting small amounts of diatrizoate meglumine until a ruga pattern is seen. Moreover, a cancer patient's subcutaneous fat is often absent and the anterior gastric wall is close to the abdominal wall. High frequency US monitoring does improve needle visualization in such a circumstance. Conversely, in obese patients, back- and forth motions of the needle stylet under Doppler color US guidance clearly improves needle visualization. We noted that by using this technique we successfully performed percutaneous fluoroscopy gastrostomy (PFG) in two partially

  17. Fresnel incoherent correlation holography and its imaging properties

    Science.gov (United States)

    Wang, Zhipeng; Ma, Haotong; Ren, Ge; Xie, Zongliang; Yu, Huan

    2016-09-01

    The incoherent digital holography makes it possible to record holograms under incoherent illumination, which lowers requirement for the coherence of light sources and results in expanding its application to white-light and fluorescence illuminating circumstances. The Fresnel Incoherent Correlation Holography (FINCH) technology achieves diverging the incident beam and shifting phase by mounting phase masks on the phase modulator. Then it obtains holograms with phase difference and reconstructs the image. In this paper, we explain the principles of the FINCH technology, and introduce the n-step phase-shifting method which is utilized to eliminate the twin image and bias term in holograms. During the research, we studied what impact the term n may have on imaging performance, compared imaging performances when different phase masks are mounted on SLM, and established simulation system on imaging with which imaging performances are deeply inspected. At last, it is shown in the research that the FINCH technology could record holograms of objects, from which clear images could be reconstructed digitally.

  18. An extension of digital volume correlation for multimodality image registration

    Science.gov (United States)

    Tudisco, E.; Jailin, C.; Mendoza, A.; Tengattini, A.; Andò, E.; Hall, Stephen A.; Viggiani, Gioacchino; Hild, F.; Roux, S.

    2017-09-01

    The question of registering two images (or image volumes) acquired with different modalities, and thus exhibiting different contrast, at different positions is addressed based on an extension of global digital image (or volume) correlation. A specific comparison metric is introduced allowing the signature of the different phases to be related. A first solution consists of a Gaussian mixture to describe the joint distribution of gray levels, which not only provides a matching of both images, but also offers a natural segmentation indicator. A second ‘self-adapting’ solution does not include any postulated a priori model for the joint histogram and leads to a registration of the images based on their initial histograms. The algorithm is implemented with a pyramidal multiscale framework for the sake of robustness. The proposed multiscale technique is tested on two 3D images obtained from x-ray and neutron tomography respectively. The proposed approach brings the two images to coincidence with a sub-pixel accuracy and allows for a ‘natural’ segmentation of the different phases.

  19. Prevalence and correlates of body image dissatisfaction in postmenopausal women.

    Science.gov (United States)

    Ginsberg, Rebecca L; Tinker, Lesley; Liu, Jingmin; Gray, James; Sangi-Haghpeykar, Haleh; Manson, JoAnn E; Margolis, Karen L

    2016-01-01

    Dissatisfaction with one's body image is widespread and can have serious health consequences; however, research about its prevalence and correlates in older women is limited. We analyzed data from 75,256 women participating in the Women's Health Initiative Observational Study, a longitudinal study of postmenopausal women's health. Measures used in the study were collected at baseline and/or the third year of follow-up between 1993 and 2002. The majority of participants (83%) in this study were dissatisfied with their bodies because they perceived themselves as heavier than their ideal. Overall, the multiple and significant correlates of body image dissatisfaction explained 36.2% of the variance in the body image dissatisfaction score, with body mass index (BMI) and change in BMI being the two most important contributors to explaining the variance. The results of this study suggest future research should focus on the utility of interventions to reduce dissatisfaction with body image in postmenopausal women that target either maintenance of a lower BMI through diet and exercise, and/or body acceptance. Further, future research should aim to identify factors in addition to body size that drive body image dissatisfaction.

  20. Accurate measurement of curvilinear shapes by Virtual Image Correlation

    Science.gov (United States)

    Semin, B.; Auradou, H.; François, M. L. M.

    2011-10-01

    The proposed method allows the detection and the measurement, in the sense of metrology, of smooth elongated curvilinear shapes. Such measurements are required in many fields of physics, for example: mechanical engineering, biology or medicine (deflection of beams, fibers or filaments), fluid mechanics or chemistry (detection of fronts). Contrary to actual methods, the result is given in an analytical form of class C∞ (and not a finite set of locations or pixels) thus curvatures and slopes, often of great interest in science, are given with good confidence. The proposed Virtual Image Correlation (VIC) method uses a virtual beam, an image which consists in a lateral expansion of the curve with a bell-shaped gray level. This figure is deformed until it fits the best the physical image with a method issued from the Digital Image Correlation method in use in solid mechanics. The precision of the identification is studied in a benchmark and successfully compared to two state-of-the-art methods. Three practical examples are given: a bar bending under its own weight, a thin fiber transported by a flow within a fracture and a thermal front. The first allows a comparison with theoretical solution, the second shows the ability of the method to deal with complex shapes and crossings and the third deals with ill-defined image.

  1. An improved fast fractal image compression using spatial texture correlation

    Institute of Scientific and Technical Information of China (English)

    Wang Xing-Yuan; Wang Yuan-Xing; Yun Jiao-Jiao

    2011-01-01

    This paper utilizes a spatial texture correlation and the intelligent classification algorithm (ICA) search strategy to speed up the encoding process and improve the bit rate for fractal image compression.Texture features is one of the most important properties for the representation of an image.Entropy and maximum entry from co-occurrence matrices are used for representing texture features in an image.For a range block,concerned domain blocks of neighbouring range blocks with similar texture features can be searched.In addition,domain blocks with similar texture features are searched in the ICA search process.Experiments show that in comparison with some typical methods,the proposed algorithm significantly speeds up the encoding process and achieves a higher compression ratio,with a slight diminution in the quality of the reconstructed image; in comparison with a spatial correlation scheme,the proposed scheme spends much less encoding time while the compression ratio and the quality of the reconstructed image are almost the same.

  2. Digital Image Correlation: Metrological Characterization in Mechanical Analysis

    Science.gov (United States)

    Petrella, Orsola; Signore, Davide; Caramuta, Pietro; Toscano, Cinzia; Ferraiuolo, Michele

    2017-04-01

    The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a Metrological Characterization of the Digital Image Correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks

  3. Pose estimation quality assessment for intra-operative image guidance systems

    Science.gov (United States)

    Egli, Adrian; Kleinszig, Gerhard; John, Adrian; Fernandez, Alberto; Cardelino, Juan

    2013-03-01

    In trauma and orthopedic surgery screw assessment and trajectory prediction using two-dimensional X-ray images is very difficult due to projected 3D information. However screw assessment can be done with multiple X-ray images. If the X-ray image contains the projected implant geometry it can be used as global coordinate reference. Thereby multiple independent X-ray images can be synchronized by estimating the implant pose in each single image. Consequently high accuracy pose estimation is fundamental. To measure the outcome quality an evaluation process has been designed. The evaluation process investigates in its first step several clinical intra-operative anterior-posterior (AP) and medio-lateral (ML) X-ray images which have been analyzed using a manual pose estimation method. With the manual method the six 3D parameters of the implant pose are estimated. These parameters define as well the camera pose relative to the implant. Based on the pose parameters of all clinical cases the capturing range for typical AP and ML images is statistically defined. The implant was attached to a phantom with 16 steel balls which allows to calculate the ground truth pose. Afterwards several X-ray images of the phantom are taken within the statistically defined capturing range. With the known ground truth different pose estimation methods can be compared. For each method the estimation quality can be calculated. In addition this error calculation can be used to adjust the initial manually determined capturing range. This paper explains the error evaluation process and describes how to validate pose estimation methods for clinical applications.

  4. Analysis of correlation coefficient filtering in elasticity imaging.

    Science.gov (United States)

    Huang, Sheng-Wen; Rubin, Jonathan M; Xie, Hua; Witte, Russell S; Jia, Congxian; Olafsson, Ragnar; O'Donnell, Matthew

    2008-11-01

    Correlation-based speckle tracking methods are commonly used in elasticity imaging to estimate displacements. In the presence of local strain, a larger window size results in larger displacement error. To reduce tracking error, we proposed a short correlation window followed by a correlation coefficient filter. Although simulation and experimental results demonstrated the efficacy of the method, it was not clear why correlation coefficient filtering reduces tracking error since tracking error increases if normalization before filtering is not applied. In this paper, we analyzed tracking errors by estimating phase variances of the cross-correlation function and the correlation coefficient at the true time lag based on statistical properties of these functions' real and imaginary parts. The role of normalization is clarified by identifying the effect of the cross-correlation function's amplitude fluctuation on the function's imaginary part. Furthermore, we present analytic forms for predicting axial displacement error as a function of strain, system parameters (signal-to-noise ratio, center frequency, and signal and noise bandwidths), and tracking parameters (window and filter sizes) for cases with and without normalization before filtering. Simulation results correspond to theory well for both noise-free cases and general cases with an empirical correction term included for strains up to 4%.

  5. Study of size effect using digital image correlation

    Directory of Open Access Journals (Sweden)

    A. H. A. SANTOS

    Full Text Available Size effect is an important issue in concrete structures bearing in mind that it can influence many aspects of analysis such as strength, brittleness and structural ductility, fracture toughness and fracture energy, among others. Further this, ever more new methods are being developed to evaluate displacement fields in structures. In this paper an experimental evaluation of the size effect is performed applying Digital Image Correlation (DIC technique to measure displacements on the surface of beams. Three point bending tests were performed on three different size concrete beams with a notch at the midspan. The results allow a better understanding of the size effect and demonstrate the efficiency of Digital Image Correlation to obtain measures of displacements.

  6. Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains

    Directory of Open Access Journals (Sweden)

    Benjamin Pollard

    2016-04-01

    Full Text Available Intermolecular interactions and nanoscale phase separation govern the properties of many molecular soft-matter systems. Here, we combine infrared vibrational scattering scanning near-field optical microscopy (IR s-SNOM with force–distance spectroscopy for simultaneous characterization of both nanoscale optical and nanomechanical molecular properties through hybrid imaging. The resulting multichannel images and correlative analysis of chemical composition, spectral IR line shape, modulus, adhesion, deformation, and dissipation acquired for a thin film of a nanophase separated block copolymer (PS-b-PMMA reveal complex structural variations, in particular at domain interfaces, not resolved in any individual signal channel alone. These variations suggest that regions of multicomponent chemical composition, such as the interfacial mixing regions between microdomains, are correlated with high spatial heterogeneity in nanoscale material properties.

  7. Middle cerebellar peduncles:Magnetic resonance imaging and pathophysiologic correlate

    Institute of Scientific and Technical Information of China (English)

    Humberto Morales; Thomas Tomsick

    2015-01-01

    We describe common and less common diseases that can cause magnetic resonance signal abnormalities of middle cerebellar peduncles(MCP), offering a systematicapproach correlating imaging findings with clinical clues and pathologic mechanisms. Myelin abnormalities, different types of edema or neurodegenerative processes, can cause areas of abnormal T2 signal, variable enhancement, and patterns of diffusivity of MCP. Pathologies such as demyelinating disorders or certain neurodegenerative entities(e.g., multiple system atrophy or fragile X-associated tremor-ataxia syndrome) appear to have predilection for MCP. Careful evaluation of concomitant imaging findings in the brain or brainstem; and focused correlation with key clinical findings such as immunosuppression for progressive multifocal leukoencephalopahty; hypertension, post-transplant status or high dose chemotherapy for posterior reversible encephalopathy; electrolyte disorders for myelinolysis or suspected toxic-drug related encephalopathy; would yield an appropriate and accurate differential diagnosis in the majority of cases.

  8. Evaluation of Online/Offline Image Guidance/Adaptation Approaches for Prostate Cancer Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Qin, An [Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan (United States); Sun, Ying [Department of Radiotherapy, Cancer Center, Sun Yat-sen University, Guangzhou (China); Liang, Jian [Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan (United States); Yan, Di, E-mail: dyan@beaumont.edu [Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan (United States)

    2015-04-01

    Purpose: To evaluate online/offline image-guided/adaptive treatment techniques for prostate cancer radiation therapy with daily cone-beam CT (CBCT) imaging. Methods and Materials: Three treatment techniques were evaluated retrospectively using daily pre- and posttreatment CBCT images on 22 prostate cancer patients. Prostate, seminal vesicles (SV), rectal wall, and bladder were delineated on all CBCT images. For each patient, a pretreatment intensity modulated radiation therapy plan with clinical target volume (CTV) = prostate + SV and planning target volume (PTV) = CTV + 3 mm was created. The 3 treatment techniques were as follows: (1) Daily Correction: The pretreatment intensity modulated radiation therapy plan was delivered after online CBCT imaging, and position correction; (2) Online Planning: Daily online inverse plans with 3-mm CTV-to-PTV margin were created using online CBCT images, and delivered; and (3) Hybrid Adaption: Daily Correction plus an offline adaptive inverse planning performed after the first week of treatment. The adaptive plan was delivered for all remaining 15 fractions. Treatment dose for each technique was constructed using the daily posttreatment CBCT images via deformable image registration. Evaluation was performed using treatment dose distribution in target and critical organs. Results: Treatment equivalent uniform dose (EUD) for the CTV was within [85.6%, 100.8%] of the pretreatment planned target EUD for Daily Correction; [98.7%, 103.0%] for Online Planning; and [99.2%, 103.4%] for Hybrid Adaptation. Eighteen percent of the 22 patients in Daily Correction had a target dose deficiency >5%. For rectal wall, the mean ± SD of the normalized EUD was 102.6% ± 2.7% for Daily Correction, 99.9% ± 2.5% for Online Planning, and 100.6% ± 2.1% for Hybrid Adaptation. The mean ± SD of the normalized bladder EUD was 108.7% ± 8.2% for Daily Correction, 92.7% ± 8.6% for Online Planning, and 89.4% ± 10.8% for Hybrid

  9. Long-correlation image models for textures with circular and elliptical correlation structures.

    Science.gov (United States)

    Eom, K B

    2001-01-01

    A class of random field model having long-correlation characteristics is introduced. Unlike earlier approaches in long-correlation models, the correlation structure is isotropic or elliptical in this new class of random field model. The new model has an advantage of modeling diverse real textures with less than five model parameters. Further, the model parameters match with intuitive attributes of textures, such as smoothness, pattern size, elongation or orientation of patterns. The new long-correlation models are based on the fractional differencing of a two-dimensional (2-D) autoregressive polynomial defined by eight symmetric neighbors, and they are either persistent or periodic models depending whether the roots of the polynomial are real or imaginary. A comprehensive three-step algorithm for parameter estimation is developed, and the statistical properties of the estimators are also discussed. The validity of the new model in modeling textures is tested by synthesizing images from manually selected parameters as well as parameters estimated from real textures. It is shown that an image with desired attributes can be synthesized by selecting proper values of the parameters. Further, it is shown that the models introduced can be used in modeling wide range of textures by synthesizing images resembling real textures from estimated parameters.

  10. Image Processing in Optical Guidance for Autonomous Landing of Lunar Probe

    CERN Document Server

    Meng, Ding; Qing-xian, Wu; Zhen, Zhang

    2008-01-01

    Because of the communication delay between earth and moon, the GNC technology of lunar probe is becoming more important than ever. Current navigation technology is not able to provide precise motion estimation for probe landing control system Computer vision offers a new approach to solve this problem. In this paper, author introduces an image process algorithm of computer vision navigation for autonomous landing of lunar probe. The purpose of the algorithm is to detect and track feature points which are factors of navigation. Firstly, fixation areas are detected as sub-images and matched. Secondly, feature points are extracted from sub-images and tracked. Computer simulation demonstrates the result of algorithm takes less computation and fulfils requests of navigation algorithm.

  11. CORRELATION PROCESSING OF DIGITAL OPTICAL IMAGES FOR SOLVING CRIMINALISTIC PROBLEMS

    Directory of Open Access Journals (Sweden)

    V. L. Kozlov

    2015-01-01

    Full Text Available The correlation processing of optical digital images of expert research objects is promising to improve the quality, reliability and representativeness of the research. The development of computer algorithms for expert investigations by using correlation analysis methods for solving such problems of criminology, as a comparison of color-tone image parameters impressions of seals and stamps, and measurement of the rifling profile trace of the barrel on the bullet is the purpose of the work. A method and software application for measurement of linear, angular and altitude characteristics of the profile (micro relief of the rifling traces of the barrel on the bullet for judicial-ballistic tests is developed. Experimental results testify to a high overall performance of the developed program application and confirm demanded accuracy of spent measurements. Technique and specialized program application for the comparison of color-tone image parameters impressions of seals and stamps, reflecting degree and character of painting substance distribution in strokes has been developed. It improves presentation and objectivity of tests, and also allows to reduce their carrying out terms. The technique of expert interpretation of correlation analysis results has been offered. Reliability of the received results has been confirmed by experimental researches and has been checked up by means of other methods.

  12. Cross Correlation versus Mutual Information for Image Mosaicing

    Directory of Open Access Journals (Sweden)

    Sherin Ghannam

    2013-12-01

    Full Text Available This paper reviews the concept of image mosaicing and presents a comparison between two of the most common image mosaicing techniques. The first technique is based on normalized cross correlation (NCC for registering overlapping 2D images of a 3D scene. The second is based on mutual information (MI. The experimental results demonstrate that the two techniques have a similar performance in most cases but there are some interesting differences. The choice of a distinctive template is critical when working with NCC. On the other hand, when using MI, the registration procedure was able to provide acceptable performance even without distinctive templates. But generally the performance when using MI with large rotation angles was not accurate as with NCC.

  13. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.

    2013-07-23

    Interfacial delamination is a key reliability challenge in composites and micro-electronic systems due to (high-density) integration of dissimilar materials. Predictive finite element models are used to minimize delamination failures during design, but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical interface behavior from in-situ delamination experiments. Recently, a novel miniature delamination setup was presented that enables in-situ microscopic characterization of interface delamination while sensitively measuring global load-displacement curves for all mode mixities. Nevertheless, extraction of detailed mechanical interface behavior from measured images is challenging, because deformations are tiny and measurement noise large. Therefore, an advanced I-GDIC methodology is developed which correlates the image patterns by only deforming the images using kinematically-admissible \\'eigenmodes\\' that correspond to the few parameters controlling the interface tractions in an analytic description of the crack tip deformation field, thereby greatly enhancing accuracy and robustness. This method is validated on virtual delamination experiments, simulated using a recently developed self-adaptive cohesive zone (CZ) finite element framework. © The Society for Experimental Mechanics, Inc. 2014.

  14. Noise in laser speckle correlation and imaging techniques

    CERN Document Server

    Skipetrov, Sergey E; Cerbino, Roberto; Zakharov, Pavel; Weber, Bruno; Scheffold, Frank

    2010-01-01

    We study the noise of the intensity variance and of the intensity correlation and structure functions measured in light scattering from a random medium in the case when these quantities are obtained by averaging over a finite number N of pixels of a digital camera. We show that the noise scales as 1/N in all cases and that it is sensitive to correlations of signals corresponding to adjacent pixels as well as to the effective time averaging (due to the finite sampling time) and spatial averaging (due to the finite pixel size). Our results provide a guide to estimation of noise level in such applications as the multi-speckle dynamic light scattering, time-resolved correlation spectroscopy, speckle visibility spectroscopy, laser speckle imaging etc.

  15. Lesion area detection using source image correlation coefficient for CT perfusion imaging.

    Science.gov (United States)

    Fan Zhu; Rodriguez Gonzalez, David; Carpenter, Trevor; Atkinson, Malcolm; Wardlaw, Joanna

    2013-09-01

    Computer tomography (CT) perfusion imaging is widely used to calculate brain hemodynamic quantities such as cerebral blood flow, cerebral blood volume, and mean transit time that aid the diagnosis of acute stroke. Since perfusion source images contain more information than hemodynamic maps, good utilization of the source images can lead to better understanding than the hemodynamic maps alone. Correlation-coefficient tests are used in our approach to measure the similarity between healthy tissue time-concentration curves and unknown curves. This information is then used to differentiate penumbra and dead tissues from healthy tissues. The goal of the segmentation is to fully utilize information in the perfusion source images. Our method directly identifies suspected abnormal areas from perfusion source images and then delivers a suggested segmentation of healthy, penumbra, and dead tissue. This approach is designed to handle CT perfusion images, but it can also be used to detect lesion areas in magnetic resonance perfusion images.

  16. Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction

    Science.gov (United States)

    Kang, Jeeun; Chang, Jin Ho; Kim, Sun Mi; Lee, Hak Jong; Kim, Haemin; Wilson, Brian C.; Song, Tai-Kyong

    2017-01-01

    Precise sentinel lymph node (SLN) identification is crucial not only for accurate diagnosis of micro-metastases at an early stage of cancer progression but also for reducing the number of SLN biopsies (SLNB) to minimize their severe side effects. Furthermore, it is desirable that an SLNB guidance should be as safe as possible in routine clinical use. Although there are currently various SLNB guidance methods for pre-operative or intra-operative assessment, none are ideal. We propose a real-time SLNB guidance method using contrast-enhanced tri-modal images (i.e., ultrasound, photoacoustic, and fluorescence) acquired by a recently developed hand-held tri-modal probe. The major advantage of tri-modal imaging is demonstrated here through an in vivo study of the technically-difficult case of nodal obstruction that frequently leads to false-negative results in patients. The results in a tumor model in rabbits and normal controls showed that tri-modal imaging is capable of clearly identifying obstructed SLNs and of indicating their metastatic involvement. Based on these findings, we propose an SLNB protocol to help surgeons take full advantage of the complementary information obtained from tri-modal imaging, including for pre-operative localization, intra-operative biopsy guidance and post-operative analysis. PMID:28327582

  17. Re-evaluation of the role of image guidance in minimally invasive pituitary surgery: benefits and outcomes.

    Science.gov (United States)

    Patel, Samip N; Youssef, A Samy; Vale, Fernando L; Padhya, Tapan A

    2011-01-01

    To evaluate the utility of performing endonasal transsphenoidal pituitary surgery with computer-based neuronavigation, and to examine the efficacy of computer-based neuronavigation compared to fluoroscopy. We conducted a retrospective review of patients who underwent pituitary surgery between September 1998 and September 2008. Of 120 consecutive patients, 70 met inclusion criteria and were fully examined. The inclusion criteria were that patients had undergone endonasal transsphenoidal pituitary surgery performed by the same neurosurgeon at the same institution. Nineteen of the patients were treated using intraoperative fluoroscopy and 48 were treated using the BrainLAB VectorVision neuronavigation system. Preparation times, surgical times and associated complications were analyzed. Our results indicate that image guidance reduces the overall operating room time and complication rate. Average preparation time for fluoroscopy and computer-based neuronavigation was 70.3 and 67.3 min, respectively (p = 0.3299). Average surgical time with fluoroscopy and BrainLAB was 131 and 107.9 min, respectively (p = 0.0079). The results were also analyzed with regard to other parameters such as associated complications, age and diagnoses. Computer guided endoscopic endonasal transsphenoidal surgery provides a three-dimensional image to the surgeon, allowing for greater visual accuracy and surgical precision and a faster procedure without radiation exposure or the need for additional personnel.

  18. Digital image correlation based on a fast convolution strategy

    Science.gov (United States)

    Yuan, Yuan; Zhan, Qin; Xiong, Chunyang; Huang, Jianyong

    2017-10-01

    In recent years, the efficiency of digital image correlation (DIC) methods has attracted increasing attention because of its increasing importance for many engineering applications. Based on the classical affine optical flow (AOF) algorithm and the well-established inverse compositional Gauss-Newton algorithm, which is essentially a natural extension of the AOF algorithm under a nonlinear iterative framework, this paper develops a set of fast convolution-based DIC algorithms for high-efficiency subpixel image registration. Using a well-developed fast convolution technique, the set of algorithms establishes a series of global data tables (GDTs) over the digital images, which allows the reduction of the computational complexity of DIC significantly. Using the pre-calculated GDTs, the subpixel registration calculations can be implemented efficiently in a look-up-table fashion. Both numerical simulation and experimental verification indicate that the set of algorithms significantly enhances the computational efficiency of DIC, especially in the case of a dense data sampling for the digital images. Because the GDTs need to be computed only once, the algorithms are also suitable for efficiently coping with image sequences that record the time-varying dynamics of specimen deformations.

  19. Correlation of calculated CNR and signal detectability on MR images

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, Akio [Kyoto City Hospital (Japan); Higashida, Mitsuji; Yamazaki, Masaru; Inoue, Hiroshi

    1998-06-01

    To calculate the contrast-to-noise ratio (CNR) on magnetic resonance images, an equation selected to match each study is commonly used. The CNR values calculated using these equations may have their own characteristics. Therefore, the characteristics of four commonly calculated CNRs were evaluated in comparison with signal detectability. For the calculation of CNR, a phantom with five different solutions of CuSO{sub 4} was imaged using various scan sequences with different TR and NEX. These images, which had different levels of noise and contrast, were measured for averaged signal intensity and standard deviation of noise in the same ROIs (regions of interest). To define signal detectability, Burger`s phantom soaked in the CuSO{sub 4} solution was imaged with the same pulse sequences used to evaluate CNR. Burger`s phantom images were evaluated by five observers with a 50% confidence level. The characteristics of each CNR value were evaluated by correlating them with signal detectability. The results showed that some calculated CNRs indicated the noise element, but contrast element. From the point of view of signal detectability, the equation using the average of local variance and global variance with respect to coarse pixels was superior to others. (author)

  20. The role of Cobalt-60 in modern radiation therapy: Dose delivery and image guidance

    Directory of Open Access Journals (Sweden)

    Schreiner L

    2009-01-01

    Full Text Available The advances in modern radiation therapy with techniques such as intensity-modulated radiation therapy and image-guid-ed radiation therapy (IMRT and IGRT have been limited almost exclusively to linear accel-erators. Investigations of modern Cobalt-60 (Co-60 radiation delivery in the context of IMRT and IGRT have been very sparse, and have been limited mainly to computer-modeling and treatment-planning exercises. In this paper, we report on the results of experiments using a tomotherapy benchtop apparatus attached to a conventional Co-60 unit. We show that conformal dose delivery is possible and also that Co-60 can be used as the radiation source in megavoltage computed tomography imaging. These results complement our modeling studies of Co-60 tomotherapy and provide a strong motivation for continuing development of modern Cobalt-60 treatment devices.

  1. The design of the robot assisted magnetic resonance imaging guidance for minimally invasive surgery system

    Institute of Scientific and Technical Information of China (English)

    Shao Bing; Sun Lining; Du Zhijiang; Fu Lixin

    2005-01-01

    Robot assisted Minimally Invasive Surgery (MIS) is one of the rapidestdeveloping directions in the current surgical realm. Magnetic Resonance Imaging(MRI) is an optimal imaging modality which was applied in MIS in recent years. By combination of precise positioning to the target by intra-operative MRI guided surgery and dexterous motion by the robot, safe and smooth operation is expected to be performed. An overview of the MRI-guided robotic system for MIS is offered. The design of the intra-operative MR scanner system is described. The MR-compatible robotic system is carefully designed for safety and sterilization issues. This system unifies image information from open MRI, an optical endoscope and conventional vital-sign detectors. It helps and guides the surgeon and other medical staffs so they can make the right decisions. The high-performance manipulator can mimic the movement of the urgeon's hand precisely. And the analysis for active and passive interventional surgical instrument tracking is provided.

  2. The benefit of image guidance for the contralateral interhemispheric approach to the lateral ventricle.

    Science.gov (United States)

    Fronda, Chiara; Miller, Dorothea; Kappus, Christoph; Bertalanffy, Helmut; Sure, Ulrich

    2008-06-01

    Recently, neurosurgeons have increasingly faced small intracerebral lesions in asymptomatic or minimally symptomatic patients. Here, we evaluated a series of four patients with nearly asymptomatic intraventricular tumors close to the corpus callosum that had been treated with the aid of an image-guided transcallosal approach. Four consecutive patients suffering from left intra- and paraventricular tumors were operated on via a contralateral interhemispheric transcallosal approach with the aid of neuronavigation. Our image-guided system directed: (1) the skin incision, (2) the interhemispheric dissection, and (3) the incision of the corpus callosum. Using the image-guided contralateral interhemispheric transcallosal approach to the left ventricle all lesions have been completely resected without the risk of damage to the dominant hemisphere. The callosal incision was kept as limited as possible (1.2-2.1cm) depending on the size of the tumor. No postoperative neurological or neuropsychological deficit was observed in our series. Neuronavigation facilitates a safe and targeted contralateral interhemispheric transcallosal approach to the dominant hemisphere's lateral ventricle. Our technique minimizes the risk of damage to the dominant hemisphere and requires only a limited opening of the corpus callosum, which might decrease the risk of neuropsychological morbidity.

  3. TU-EF-210-00: Therapeutic Strategies and Image Guidance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.

  4. PET guidance in prostate cancer radiotherapy: Quantitative imaging to predict response and guide treatment.

    Science.gov (United States)

    Cattaneo, G M; Bettinardi, V; Mapelli, P; Picchio, M

    2016-03-01

    Positron emission tomography (PET) allows a monitoring and recording of the spatial and temporal distribution of molecular/cellular processes for diagnostic and therapeutic applications. The aim of this review is to describe the current applications and to explore the role of PET in prostate cancer management, mainly in the radiation therapy (RT) scenario. The state-of-the art of PET for prostate cancer will be presented together with the impact of new specific PET tracers and technological developments aiming at obtaining better imaging quality, increased tumor detectability and more accurate volume delineation. An increased number of studies have been focusing on PET quantification methods as predictive biomarkers capable of guiding individualized treatment and improving patient outcome; the sophisticated advanced intensity modulated and imaged guided radiation therapy techniques (IMRT/IGRT) are capable of boosting more radioresistant tumor (sub)volumes. The use of advanced feature analyses of PET images is an approach that holds great promise with regard to several oncological diseases, but needs further validation in managing prostate diseases.

  5. Uremic Encephalopathy: MR Imaging Findings and Clinical Correlation.

    Science.gov (United States)

    Kim, D M; Lee, I H; Song, C J

    2016-09-01

    Uremic encephalopathy is a metabolic disorder in patients with renal failure. The purpose of this study was to describe the MR imaging findings of uremic encephalopathy. This study retrospectively reviewed MR imaging findings in 10 patients with clinically proved uremic encephalopathy between May 2005 and December 2014. Parameters evaluated were lesion location and appearance; MR signal intensity of the lesions on T1WI, T2WI, and T2 fluid-attenuated inversion recovery images; the presence or absence of restricted diffusion on diffusion-weighted images and apparent diffusion coefficient maps; and the reversibility of documented signal-intensity abnormalities on follow-up MR imaging. MR imaging abnormalities accompanying marked elevation of serum creatinine (range, 4.3-11.7 mg/dL) were evident in the 10 patients. Nine patients had a history of chronic renal failure with expansile bilateral basal ganglia lesions, and 1 patient with acute renal failure had reversible largely cortical lesions. Two of 6 patients with available arterial blood gas results had metabolic acidosis. All basal ganglia lesions showed expansile high signal intensity (lentiform fork sign) on T2WI. Varied levels of restricted diffusion and a range of signal intensities on DWI were evident and were not correlated with serum Cr levels. All cortical lesions demonstrated high signal intensity on T2WI. Four patients with follow-up MR imaging after hemodialysis showed complete resolution of all lesions. The lentiform fork sign is reliable in the early diagnosis of uremic encephalopathy, regardless of the presence of metabolic acidosis. Cytotoxic edema and/or vasogenic edema on DWI/ADC maps may be associated with uremic encephalopathy. © 2016 by American Journal of Neuroradiology.

  6. Feasibility of transcranial photoacoustic imaging for interventional guidance of endonasal surgeries

    Science.gov (United States)

    Lediju Bell, Muyinatu A.; Ostrowski, Anastasia K.; Kazanzides, Peter; Boctor, Emad

    2014-03-01

    Endonasal surgeries to remove pituitary tumors incur the deadly risk of carotid artery injury due to limitations with real-time visualization of blood vessels surrounded by bone. We propose to use photoacoustic imaging to overcome current limitations. Blood vessels and surrounding bone would be illuminated by an optical fiber attached to the endonasal drill, while a transducer placed on the pterional region outside of the skull acquires images. To investigate feasibility, a plastisol phantom embedded with a spherical metal target was submerged in a water tank. The target was aligned with a 1-mm optical fiber coupled to a 1064nm Nd:YAG laser. An Ultrasonix L14-5W/60 linear transducer, placed approximately 1 cm above the phantom, acquired photoacoustic and ultrasound images of the target in the presence and absence of 2- and 4-mm-thick human adult cadaveric skull specimens. Though visualized at 18 mm depth when no bone was present, the target was not detectable in ultrasound images when the 4-mm thick skull specimen was placed between the transducer and phantom. In contrast, the target was visible in photoacoustic images at depths of 17-18 mm with and without the skull specimen. To mimic a clinical scenario where cranial bone in the nasal cavity reduces optical transmission prior to drill penetration, the 2-mm-thick specimen was placed between the phantom and optical fiber, while the 4-mm specimen remained between the phantom and transducer. In this case, the target was present at depths of 15-17 mm for energies ranging 9-18 mJ. With conventional delay-and-sum beamforming, the photoacoustic signal-tonoise ratios measured 15-18 dB and the contrast measured 5-13 dB. A short-lag spatial coherence beamformer was applied to increase signal contrast by 11-27 dB with similar values for SNR at most laser energies. Results are generally promising for photoacoustic-guided endonasal surgeries.

  7. Robust methods for automatic image-to-world registration in cone-beam CT interventional guidance

    Energy Technology Data Exchange (ETDEWEB)

    Dang, H.; Otake, Y.; Schafer, S.; Stayman, J. W.; Kleinszig, G.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Siemens Healthcare XP Division, Erlangen 91052 (Germany); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States)

    2012-10-15

    Purpose: Real-time surgical navigation relies on accurate image-to-world registration to align the coordinate systems of the image and patient. Conventional manual registration can present a workflow bottleneck and is prone to manual error and intraoperator variability. This work reports alternative means of automatic image-to-world registration, each method involving an automatic registration marker (ARM) used in conjunction with C-arm cone-beam CT (CBCT). The first involves a Known-Model registration method in which the ARM is a predefined tool, and the second is a Free-Form method in which the ARM is freely configurable. Methods: Studies were performed using a prototype C-arm for CBCT and a surgical tracking system. A simple ARM was designed with markers comprising a tungsten sphere within infrared reflectors to permit detection of markers in both x-ray projections and by an infrared tracker. The Known-Model method exercised a predefined specification of the ARM in combination with 3D-2D registration to estimate the transformation that yields the optimal match between forward projection of the ARM and the measured projection images. The Free-Form method localizes markers individually in projection data by a robust Hough transform approach extended from previous work, backprojected to 3D image coordinates based on C-arm geometric calibration. Image-domain point sets were transformed to world coordinates by rigid-body point-based registration. The robustness and registration accuracy of each method was tested in comparison to manual registration across a range of body sites (head, thorax, and abdomen) of interest in CBCT-guided surgery, including cases with interventional tools in the radiographic scene. Results: The automatic methods exhibited similar target registration error (TRE) and were comparable or superior to manual registration for placement of the ARM within {approx}200 mm of C-arm isocenter. Marker localization in projection data was robust across all

  8. Atlantoaxial subluxation. Radiography and magnetic resonance imaging correlated to myelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Y.; Takahashi, M.; Sakamoto, Y.; Kojima, R.

    Twenty-nine patients with atlantoaxial subluxation (18 with rheumatoid arthritis, 2 due to trauma, 4 with os odontoideum, and one each with polyarteritis nodosa, rheumatic fever, Klippel-Feil syndrome, achondroplasia, and cause unknown) were evaluated using a 0.22 tesla resistive MRI unit. Cord compression was classified into four grades according to the degree on magnetic resonance imaging. There were 7 patients with no thecal sac compression (grade 0), 10 with a minimal degree of subarachnoid space compression without cord compression (grade 1), 7 with mild cord compression (grade 2), and 5 with severe cord compression or cord atrophy (grade 3). Although the severity of myelopathy showed poor correlation with the atlantodental interval on conventional radiography, high correlation was observed between MR grading and the degree of myelopathy. The high signal intensity foci were observed in 7 or 12 patients with cord compression (grades 2 and 3) on T2 weighted images. Other frequently observed findings in rheumatoid arthritis included soft tissue masses of low to intermediate signal intensity in the paraodontoid space, erosions of the odontoid processes, and atlanto-axial impaction on T1 and T2 weighted images.

  9. Dynamic Approaches for Facial Recognition Using Digital Image Speckle Correlation

    Science.gov (United States)

    Rafailovich-Sokolov, Sara; Guan, E.; Afriat, Isablle; Rafailovich, Miriam; Sokolov, Jonathan; Clark, Richard

    2004-03-01

    Digital image analysis techniques have been extensively used in facial recognition. To date, most static facial characterization techniques, which are usually based on Fourier transform techniques, are sensitive to lighting, shadows, or modification of appearance by makeup, natural aging or surgery. In this study we have demonstrated that it is possible to uniquely identify faces by analyzing the natural motion of facial features with Digital Image Speckle Correlation (DISC). Human skin has a natural pattern produced by the texture of the skin pores, which is easily visible with conventional digital cameras of resolution greater than 4 mega pixels. Hence the application of the DISC method to the analysis of facial motion appears to be very straightforward. Here we demonstrate that the vector diagrams produced by this method for facial images are directly correlated to the underlying muscle structure which is unique for an individual and is not affected by lighting or make-up. Furthermore, we will show that this method can also be used for medical diagnosis in early detection of facial paralysis and other forms of skin disorders.

  10. Cell Matrix Remodeling Ability Shown by Image Spatial Correlation

    Directory of Open Access Journals (Sweden)

    Chi-Li Chiu

    2013-01-01

    Full Text Available Extracellular matrix (ECM remodeling is a critical step of many biological and pathological processes. However, most of the studies to date lack a quantitative method to measure ECM remodeling at a scale comparable to cell size. Here, we applied image spatial correlation to collagen second harmonic generation (SHG images to quantitatively evaluate the degree of collagen remodeling by cells. We propose a simple statistical method based on spatial correlation functions to determine the size of high collagen density area around cells. We applied our method to measure collagen remodeling by two breast cancer cell lines (MDA-MB-231 and MCF-7, which display different degrees of invasiveness, and a fibroblast cell line (NIH/3T3. We found distinct collagen compaction levels of these three cell lines by applying the spatial correlation method, indicating different collagen remodeling ability. Furthermore, we quantitatively measured the effect of Latrunculin B and Marimastat on MDA-MB-231 cell line collagen remodeling ability and showed that significant collagen compaction level decreases with these treatments.

  11. A new deconvolution approach to perfusion imaging exploiting spatial correlation

    Science.gov (United States)

    Orten, Burkay B.; Karl, W. Clem; Sahani, Dushyant V.; Pien, Homer

    2008-03-01

    The parts of the human body affected by a disease do not only undergo structural changes but also demonstrate significant physiological (functional) abnormalities. An important parameter that reveals the functional state of tissue is the flow of blood per unit tissue volume or perfusion, which can be obtained using dynamic imaging methods. One mathematical approach widely used for estimating perfusion from dynamic imaging data is based on a convolutional tissue-flow model. In these approaches, deconvolution of the observed data is necessary to obtain the important physiological parameters within a voxel. Although several alternatives have been proposed for deconvolution, all of them treat neighboring voxels independently and do not exploit the spatial correlation between voxels or the temporal correlation within a voxel over time. These simplistic approaches result in a noisy perfusion map with poorly defined region boundaries. In this paper, we propose a novel perfusion estimation method which incorporates spatial as well as temporal correlation into the deconvolution process. Performance of our method is compared to standard methods using independent voxel processing. Both simulated and real data experiments illustrate the potential of our method.

  12. State-correlated DC slice imaging of formaldehyde photodissociation

    Science.gov (United States)

    Suits, Arthur G.; Chambreau, Steven D.; Lahankar, Sridhar A.

    High-resolution slice imaging methods allow for detection of single product quantum states with sufficient velocity resolution to infer the full correlated product state distribution of the undetected fragment. This is a level of detail not available in previous studies of formaldehyde photodissociation, and in this application it reveals startling new aspects of unimolecular decomposition. The CO rotational distributions from near ultraviolet dissociation of formaldehyde are bimodal, and the imaging experiments allow us to decompose these into two dynamically distinct components: the conventional molecular dissociation over a high exit barrier, and a novel `roaming atom' reaction in which frustrated radical dissociation events lead to intramolecular H abstraction, bypassing the transition state entirely. In probing the dynamics of the conventional molecular dissociation over the barrier, we use the complete vH2-jCO correlation to model the exit channel dynamics in new detail. Furthermore, these state-correlated measurements provide insight into radical-radical reactions and the underlying dynamics and energy dependence of the roaming pathway.

  13. Quantifying the reliability of image replication studies: the image intraclass correlation coefficient (I2C2).

    Science.gov (United States)

    Shou, H; Eloyan, A; Lee, S; Zipunnikov, V; Crainiceanu, A N; Nebel, N B; Caffo, B; Lindquist, M A; Crainiceanu, C M

    2013-12-01

    This article proposes the image intraclass correlation (I2C2) coefficient as a global measure of reliability for imaging studies. The I2C2 generalizes the classic intraclass correlation (ICC) coefficient to the case when the data of interest are images, thereby providing a measure that is both intuitive and convenient. Drawing a connection with classical measurement error models for replication experiments, the I2C2 can be computed quickly, even in high-dimensional imaging studies. A nonparametric bootstrap procedure is introduced to quantify the variability of the I2C2 estimator. Furthermore, a Monte Carlo permutation is utilized to test reproducibility versus a zero I2C2, representing complete lack of reproducibility. Methodologies are applied to three replication studies arising from different brain imaging modalities and settings: regional analysis of volumes in normalized space imaging for characterizing brain morphology, seed-voxel brain activation maps based on resting-state functional magnetic resonance imaging (fMRI), and fractional anisotropy in an area surrounding the corpus callosum via diffusion tensor imaging. Notably, resting-state fMRI brain activation maps are found to have low reliability, ranging from .2 to .4. Software and data are available to provide easy access to the proposed methods.

  14. Precision Improvement of Photogrammetry by Digital Image Correlation

    Science.gov (United States)

    Shih, Ming-Hsiang; Sung, Wen-Pei; Tung, Shih-Heng; Hsiao, Hanwei

    2016-04-01

    The combination of aerial triangulation technology and unmanned aerial vehicle greatly reduces the cost and application threshold of the digital surface model technique. Based on the report in the literatures, the measurement error in the x-y coordinate and in the elevation lies between 8cm~15cm and 10cm~20cm respectively. The measurement accuracy for the geological structure survey already has sufficient value, but for the slope and structures in terms of deformation monitoring is inadequate. The main factors affecting the accuracy of the aerial triangulation are image quality, measurement accuracy of control point and image matching accuracy. In terms of image matching, the commonly used techniques are Harris Corner Detection and Scale Invariant Feature Transform (SIFT). Their pairing error is in scale of pixels, usually lies between 1 to 2 pixels. This study suggests that the error on the pairing is the main factor causing the aerial triangulation errors. Therefore, this study proposes the application of Digital Image Correlation (DIC) method instead of the pairing method mentioned above. DIC method can provide a pairing accuracy of less than 0.01 pixel, indeed can greatly enhance the accuracy of the aerial triangulation, to have sub-centimeter level accuracy. In this study, the effects of image pairing error on the measurement error of the 3-dimensional coordinate of the ground points are explored by numerical simulation method. It was confirmed that when the image matching error is reduced to 0.01 pixels, the ground three-dimensional coordinate measurement error can be controlled in mm level. A combination of DIC technique and the traditional aerial triangulation provides the potential of application on the deformation monitoring of slope and structures, and achieve an early warning of natural disaster.

  15. Correlations between diffusion-weighted imaging and breast cancer biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Martincich, Laura; Deantoni, Veronica; Bertotto, Ilaria; Liotti, Michele; Regge, Daniele [Unit of Radiology, Institute for Cancer Research and Treatment (IRCC), Candiolo, Turin (Italy); Redana, Stefania; Rossi, Valentina; Aglietta, Massimo; Montemurro, Filippo [Institute for Cancer Research and Treatment (IRCC), Division of Medical Oncology, Candiolo, Turin (Italy); Kubatzki, Franziska; Ponzone, Riccardo [Institute for Cancer Research and Treatment (IRCC), Division of Gynecological Oncology, Candiolo, Turin (Italy); Sarotto, Ivana [Unit of Pathology, Institute for Cancer Research and Treatment (IRCC), Candiolo, Turin (Italy)

    2012-07-15

    We evaluated whether the apparent diffusion coefficient (ADC) provided by diffusion-weighted imaging (DWI) varies according to biological features in breast cancer. DWI was performed in 190 patients undergoing dynamic contrast-enhanced magnetic resonance imaging (MRI) for local staging. For each of the 192 index cancers we studied the correlation between ADC and classical histopathological and immunohistochemical breast tumour features (size, histological type, grade, oestrogen receptor [ER] and Ki-67 expression, HER2 status). ADC was compared with immunohistochemical surrogates of the intrinsic subtypes (Luminal A; Luminal B; HER2-enriched; triple-negative). Correlations were analysed using the Mann-Whitney U and Kruskal-Wallis H tests. A weak, statistically significant correlation was observed between ADC values and the percentage of ER-positive cells (-0.168, P = 0.020). Median ADC values were significantly higher in ER-negative than in ER-positive tumours (1.110 vs 1.050 x 10{sup -3} mm{sup 2}/s, P = 0.015). HER2-enriched tumours had the highest median ADC value (1.190 x 10{sup -3} mm{sup 2}/s, range 0.950-2.090). Multiple comparisons showed that this value was significantly higher than that of Luminal A (1.025 x 10{sup -3} mm{sup 2}/s [0.700-1.340], P = 0.004) and Luminal B/HER2-negative (1.060 x 10{sup -3} mm{sup 2}/s [0.470-2.420], P = 0.008) tumours. A trend towards statistical significance (P = 0.018) was seen with Luminal B/HER2-positive tumours. ADC values vary significantly according to biological tumour features, suggesting that cancer heterogeneity influences imaging parameters. (orig.)

  16. A hybrid strategy of offline adaptive planning and online image guidance for prostate cancer radiotherapy

    Science.gov (United States)

    Lei, Yu; Wu, Qiuwen

    2010-04-01

    Offline adaptive radiotherapy (ART) has been used to effectively correct and compensate for prostate motion and reduce the required margin. The efficacy depends on the characteristics of the patient setup error and interfraction motion through the whole treatment; specifically, systematic errors are corrected and random errors are compensated for through the margins. In online image-guided radiation therapy (IGRT) of prostate cancer, the translational setup error and inter-fractional prostate motion are corrected through pre-treatment imaging and couch correction at each fraction. However, the rotation and deformation of the target are not corrected and only accounted for with margins in treatment planning. The purpose of this study was to investigate whether the offline ART strategy is necessary for an online IGRT protocol and to evaluate the benefit of the hybrid strategy. First, to investigate the rationale of the hybrid strategy, 592 cone-beam-computed tomography (CBCT) images taken before and after each fraction for an online IGRT protocol from 16 patients were analyzed. Specifically, the characteristics of prostate rotation were analyzed. It was found that there exist systematic inter-fractional prostate rotations, and they are patient specific. These rotations, if not corrected, are persistent through the treatment fraction, and rotations detected in early fractions are representative of those in later fractions. These findings suggest that the offline adaptive replanning strategy is beneficial to the online IGRT protocol with further margin reductions. Second, to quantitatively evaluate the benefit of the hybrid strategy, 412 repeated helical CT scans from 25 patients during the course of treatment were included in the replanning study. Both low-risk patients (LRP, clinical target volume, CTV = prostate) and intermediate-risk patients (IRP, CTV = prostate + seminal vesicles) were included in the simulation. The contours of prostate and seminal vesicles were

  17. A hybrid strategy of offline adaptive planning and online image guidance for prostate cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lei Yu [Department of Radiation Oncology, Wayne State University, 4100 John R, Detroit, MI 48201 (United States); Wu Qiuwen [Department of Radiation Oncology, William Beaumont Hospital, 3601 West 13 Mile Rd, Royal Oak, MI 48073 (United States)], E-mail: Qiuwen.Wu@Duke.edu

    2010-04-21

    Offline adaptive radiotherapy (ART) has been used to effectively correct and compensate for prostate motion and reduce the required margin. The efficacy depends on the characteristics of the patient setup error and interfraction motion through the whole treatment; specifically, systematic errors are corrected and random errors are compensated for through the margins. In online image-guided radiation therapy (IGRT) of prostate cancer, the translational setup error and inter-fractional prostate motion are corrected through pre-treatment imaging and couch correction at each fraction. However, the rotation and deformation of the target are not corrected and only accounted for with margins in treatment planning. The purpose of this study was to investigate whether the offline ART strategy is necessary for an online IGRT protocol and to evaluate the benefit of the hybrid strategy. First, to investigate the rationale of the hybrid strategy, 592 cone-beam-computed tomography (CBCT) images taken before and after each fraction for an online IGRT protocol from 16 patients were analyzed. Specifically, the characteristics of prostate rotation were analyzed. It was found that there exist systematic inter-fractional prostate rotations, and they are patient specific. These rotations, if not corrected, are persistent through the treatment fraction, and rotations detected in early fractions are representative of those in later fractions. These findings suggest that the offline adaptive replanning strategy is beneficial to the online IGRT protocol with further margin reductions. Second, to quantitatively evaluate the benefit of the hybrid strategy, 412 repeated helical CT scans from 25 patients during the course of treatment were included in the replanning study. Both low-risk patients (LRP, clinical target volume, CTV = prostate) and intermediate-risk patients (IRP, CTV = prostate + seminal vesicles) were included in the simulation. The contours of prostate and seminal vesicles were

  18. Incorporating breath holding and image guidance in the adjuvant gastric cancer radiotherapy: a dosimetric study

    Directory of Open Access Journals (Sweden)

    Hu Weigang

    2012-06-01

    Full Text Available Abstract Background The respiratory related target motion and setup error will lead to a large margin in the gastric radiotherapy. The purpose of this study is to investigate the dosimetric benefit and the possibility of incorporating the breath-hold (BH technique with online image-guided radiotherapy in the adjuvant gastric cancer radiotherapy. Methods Setup errors and target motions of 22 post-operative gastric cancer patients with surgical clips were analyzed. Clips movement was recorded using the digital fluoroscopics and the probability distribution functions (pdf of the target motions were created for both the free breathing (FB and BH treatment. For dosimetric comparisons, two intensity-modulated radiotherapy (IMRT treatment plans, i.e. the free breathing treatment plan (IMRTFB and the image-guided BH treatment plan (IMRTIGBH using the same beam parameters were performed among 6 randomly selected patients. Different margins for FB and BH plans were derived. The plan dose map was convoluted with various pdfs of the setup errors and the target motions. Target coverage and dose to organs at risk were compared and the dose-escalation probability was assessed. Results The mean setup errors were 1.2 mm in the superior-inferior (SI, 0.0 mm in the left-right (LR, and 1.4 mm in the anterior-posterior (AP directions. The mean target motion for the free breathing (vs. BH was 11.1 mm (vs. 2.2 mm, 1.9 mm (vs. 1.1 mm, and 5.5 mm (vs. 1.7 mm in the SI, LR, and AP direction, respectively. The target coverage was comparable for all the original plans. IMRTIGBH showed lower dose to the liver compared with IMRTFB (p = 0.01 but no significant difference in the kidneys. Convolved IMRTIGBH showed better sparing in kidneys (p  Conclusions Combining BH technique with online image guided IMRT can minimize the organ motion and improve the setup accuracy. The dosimetric comparison showed the dose could be escalated to 54 Gy without

  19. Novel rangefinding system using a correlation image sensor

    Science.gov (United States)

    Kimachi, Akira; Kurihara, Toru; Takamoto, Masao; Ando, Shigeru

    2000-12-01

    This paper proposes a 3D measurement principle for the correlation image sensor (CIS), which generates temporal correlation between light intensity and an external reference signal at each pixel. Another key of our system besides the CIS is amplitude-modulation of the scanning sheet beam, the phase of which relative to a reference signal is varied according to the scanning angle. After a scan within a frame, the phase is demodulated with a quadrature pair of reference signals and output by the CIS to compute the individual angle of the sheet bam at each pixel. By virtue of lock-in detection principle, the effects of background illumination and/or surface reflectance nonuniformity of the object are thoroughly removed. We implemented this system using our CMOS 64 by 64 pixel CIS, and successfully reconstructed a depth map under its frame rate.

  20. Full-field digital image correlation with Kriging regression

    Science.gov (United States)

    Wang, Dezhi; DiazDelaO, F. A.; Wang, Weizhuo; Mottershead, John E.

    2015-04-01

    A full-field Digital Image Correlation (DIC) method with integrated Kriging regression is presented in this article. The displacement field is formulated as a best linear unbiased model that includes the correlations between all the locations in the Region of Interest (RoI). A global error factor is employed to extend conventional Kriging interpolation to quantify displacement errors of the control points. An updating strategy for the self-adaptive control grid is developed on the basis of the Mean Squared Error (MSE) determined from the Kriging model. Kriging DIC is shown to outperform several other full-field DIC methods when using open-access experimental data. Numerical examples are used to demonstrate the robustness of Kriging DIC to different choices of initial control points and to speckle pattern variability. Finally Kriging DIC is tested on an experimental example.

  1. Multimodal imaging in cerebral gliomas and its neuropathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Gempt, Jens, E-mail: jens.gempt@lrz.tum.de [Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Soehngen, Eric [Abteilung für Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Abteilung für Neuropathologie des Instituts für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Förster, Stefan [Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Ryang, Yu-Mi [Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Schlegel, Jürgen [Abteilung für Neuropathologie des Instituts für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); and others

    2014-05-15

    Introduction: Concerning the preoperative clinical diagnostic work-up of glioma patients, tumor heterogeneity challenges the oncological therapy. The current study assesses the performance of a multimodal imaging approach to differentiate between areas in malignant gliomas and to investigate the extent to which such a combinatorial imaging approach might predict the underlying histology. Methods: Prior to surgical resection, patients harboring intracranial gliomas underwent MRIs (MR-S, PWI) and {sup 18}F-FET-PETs. Intratumoral and peritumoral biopsy targets were defined, by MRI only, by FET-PET only, and by MRI and FET-PET combined, and biopsied prior to surgical resection and which then received separate histopathological examinations. Results: In total, 38 tissue samples were acquired (seven glioblastomas, one anaplastic astrocytoma, one anaplastic oligoastrocytoma, one diffuse astrocytoma, and one oligoastrocytoma) and underwent histopathological analysis. The highest mean values of Mib1 and CD31 were found in the target point “T’ defined by MRI and FET-PET combined. A significant correlation between NAA/Cr and PET tracer uptake (−0.845, p < 0.05) as well as Cho/Cr ratio and cell density (0.742, p < 0.05) and NAA/Cr ratio and MIB-1 (−0761, p < 0.05) was disclosed for this target point, though not for target points defined by MRI and FET-PET alone. Conclusion: Multimodal-imaging-guided stereotactic biopsy correlated more with histological malignancy indices, such as cell density and MIB-1 labeling, than targets that were based solely on the highest amino acid uptake or contrast enhancement on MRI. The results of our study indicate that a combined PET-MR multimodal imaging approach bears potential benefits in detecting glioma heterogeneity.

  2. Treatment Planning and Image Guidance for Radiofrequency Ablations of Large Tumors

    Science.gov (United States)

    Ren, Hongliang; Campos-Nanez, Enrique; Yaniv, Ziv; Banovac, Filip; Abeledo, Hernan; Hata, Nobuhiko; Cleary, Kevin

    2014-01-01

    This article addresses the two key challenges in computer-assisted percutaneous tumor ablation: planning multiple overlapping ablations for large tumors while avoiding critical structures, and executing the prescribed plan. Towards semi-automatic treatment planning for image-guided surgical interventions, we develop a systematic approach to the needle-based ablation placement task, ranging from pre-operative planning algorithms to an intra-operative execution platform. The planning system incorporates clinical constraints on ablations and trajectories using a multiple objective optimization formulation, which consists of optimal path selection and ablation coverage optimization based on integer programming. The system implementation is presented and validated in phantom studies and on an animal model. The presented system can potentially be further extended for other ablation techniques such as cryotherapy. PMID:24235279

  3. Use of image guidance in endoscopic endonasal surgeries: a 5-year experience.

    Science.gov (United States)

    Farhadi, M; Jalessi, M; Sharifi, G; Khamesi, S; Bahrami, E; Hammami, M R; Behzadi, A H

    2011-01-01

    Endoscopic endonasal surgery (EES) is standard practice in sinonasal disease and is becoming more accepted in the performance of anterior skull base resections. We report our experience with image-guided surgery (IGS) in difficult cases of paranasal sinus (PNS) and skull base pathologies and discuss advantages and disadvantages of this technique. A retrospective chart review was performed for the period 2004-2009. Degree of PNS involvement, indication for IGS, incidence of major complications, need for revision surgery, and technical data regarding the system were gathered. Sixty-two of 86 patients were followed for at least one year and therefore included in the analysis. Indications for IGS were mostly revision surgery for polyposis (42%), chronic rhinosinusitis (CRS) of frontal and/or sphenoid sinuses (14.5%), skull base tumours (30.6%), and foreign body removal (4.8%). Revision rates after IGS in polyposis, CRS, and benign skull base tumours were 7.7%, 11.11%, and 7.1%, respectively. IGS is of particular benefit in the management of sinonasal polyposis, benign skull base tumours, palliative surgery, and foreign body removal. IGS may avoid trauma to the orbit and anterior skull base and reduces the rate of revision surgeries rendering more meticulous and complete operations possible. We also think it could be helpful for foreign body removal.

  4. Fluorescence lifetime technique for surgical imaging, guidance and augmented reality (Conference Presentation)

    Science.gov (United States)

    Marcu, Laura

    2017-02-01

    The surgeon's limited ability to accurately delineate the tumor margin during surgical interventions is one key challenge in clinical management of cancer. New methods for guiding tumor resection decisions are needed. Numerous studies have shown that tissue autofluorescence properties have the potential to asses biochemical features associates with distinct pathologies in tissue and to distinguish various cancers from normal tissues. However, despite these promising reports, autofluorescence techniques were sparsely adopted in clinical settings. Moreover, when adopted they were primarily used for pre-operative diagnosis rather than guiding interventions. To address this need, we have researched and engineered instrumentation that utilizes label-free fluorescence lifetime contrast to characterize tissue biochemical features in vivo in patients and methodologies conducive to real-time (few seconds) diagnosis of tissue pathologies during surgical procedures. This presentation overviews clinically-compatible multispectral fluorescence lifetime imaging techniques developed in our laboratory and their ability to operate as stand-alone tools, integrated in a biopsy needle and in conjunction with the da Vinci surgical robot. We present pre-clinical and clinical studies in patients that demonstrate the potential of these techniques for intraoperative assessment of brain tumors and head and neck cancer. Current results demonstrate that intrinsic fluorescence signals can provide useful contrast for delineation distinct types of tissues including tumors intraoperatively. Challenges and solutions in the clinical implementation of these techniques are discussed.

  5. Spine radiosurgery for the local treatment of spine metastases: Intensity-modulated radiotherapy, image guidance, clinical aspects and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Fabio Ynoe de; Neves-Junior, Wellington Furtado Pimenta; Hanna, Samir Abdallah; Carvalho, Heloisa de Andrade [Hospital Sirio-Libanes, Sao Paulo, SP (Brazil). Departamento de Radioterapia; Taunk, Neil Kanth; Yamada, Yoshiya [Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York, NY (United States); Laufer, Ilya, E-mail: fymoraes@gmail.com [Memorial Sloan Kettering Cancer Center, Department of Neurosurgery, New York, NY (United States)

    2016-02-15

    Many cancer patients will develop spinal metastases. Local control is important for preventing neurologic compromise and to relieve pain. Stereotactic body radiotherapy or spinal radiosurgery is a new radiation therapy technique for spinal metastasis that can deliver a high dose of radiation to a tumor while minimizing the radiation delivered to healthy, neighboring tissues. This treatment is based on intensity-modulated radiotherapy, image guidance and rigid immobilization. Spinal radiosurgery is an increasingly utilized treatment method that improves local control and pain relief after delivering ablative doses of radiation. Here, we present a review highlighting the use of spinal radiosurgery for the treatment of metastatic tumors of the spine. The data used in the review were collected from both published studies and ongoing trials. We found that spinal radiosurgery is safe and provides excellent tumor control (up to 94% local control) and pain relief (up to 96%), independent of histology. Extensive data regarding clinical outcomes are available; however, this information has primarily been generated from retrospective and non randomized prospective series. Currently, two randomized trials are enrolling patients to study clinical applications of fractionation schedules spinal Radiosurgery. Additionally, a phase I clinical trial is being conducted to assess the safety of concurrent stereotactic body radiotherapy and ipilimumab for spinal metastases. Clinical trials to refine clinical indications and dose fractionation are ongoing. The concomitant use of targeted agents may produce better outcomes in the future. (author)

  6. Correlating Function and Imaging Measures of the Medial Longitudinal Fasciculus.

    Directory of Open Access Journals (Sweden)

    Ken Sakaie

    Full Text Available To test the validity of diffusion tensor imaging (DTI measures of tissue injury by examining such measures in a white matter structure with well-defined function, the medial longitudinal fasciculus (MLF. Injury to the MLF underlies internuclear ophthalmoparesis (INO.40 MS patients with chronic INO and 15 healthy controls were examined under an IRB-approved protocol. Tissue integrity of the MLF was characterized by DTI parameters: longitudinal diffusivity (LD, transverse diffusivity (TD, mean diffusivity (MD and fractional anisotropy (FA. Severity of INO was quantified by infrared oculography to measure versional disconjugacy index (VDI.LD was significantly lower in patients than in controls in the medulla-pons region of the MLF (p < 0.03. FA was also lower in patients in the same region (p < 0.0004. LD of the medulla-pons region correlated with VDI (R = -0.28, p < 0.05 as did FA in the midbrain section (R = 0.31, p < 0.02.This study demonstrates that DTI measures of brain tissue injury can detect injury to a functionally relevant white matter pathway, and that such measures correlate with clinically accepted evaluation indices for INO. The results validate DTI as a useful imaging measure of tissue integrity.

  7. Correlation of proton MR spectroscopy and diffusion tensor imaging.

    Science.gov (United States)

    Irwan, Roy; Sijens, Paul E; Potze, Jan-Hendrik; Oudkerk, Matthijs

    2005-10-01

    Proton magnetic resonance spectroscopy ((1)H-MRS) provides indices of neuronal damage. Diffusion tensor imaging (DTI) relates to water diffusivity and fiber tract orientation. A method to compare (1)H-MRS and DTI findings was developed, tested on phantom and applied on normal brain. Point-resolved spectroscopy (T(R)/T(E)=1500/135) was used for chemical shift imaging of a supraventricular volume of interest of 8 x 8 x 2 cm(3) (64 voxels). In DTI, a segmental spin-echo sequence (T(R)/T(E)=5500/91) was used and slices were stacked to reproduce the slab used in MRS. The spatial distributions of choline and N-acetylaspartate (NAA) correlated to mean fractional anisotropy and apparent diffusion coefficient (ADC) for the inner 6 x 6=36 voxels defined in MRS, most notably NAA and ADC value (r=-.70, P<.00001; correlation across four subjects, 144 data pairs). This is the first association of neuron metabolite contents in volunteers with structure as indicated by DTI.

  8. Experimental analysis of image noise and interpolation bias in digital image correlation

    Science.gov (United States)

    Gao, Zeren; Xu, Xiaohai; Su, Yong; Zhang, Qingchuan

    2016-06-01

    The popularization of the digital image correlation (DIC) method has raised urgent needs to evaluate the accuracy of this method. However, there are still some problems to be solved. Among the problems, the effects of various factors, such as the image noise caused by the camera sensors, the employed interpolation algorithm, and the structure of the speckle patterns, have become a major concern. To experimentally measure the position-dependent systematic error (i.e. interpolation bias) caused by non-ideal interpolation algorithm is an important way to evaluate the quality of the speckle patterns in the correlation method, and remains unsolved. In this work, a novel, simple and convenient method is proposed to measure the interpolation bias. In the new method which can avoid the out-of-plane displacements and the mechanical errors of translation stages, integral-pixel shifts are applied to the image shown on the screen so that sub-pixel displacements can be realized in the images captured by the camera via proper experimental settings. Besides, the fluctuations of the image noise and the sub-pixel displacement errors caused by the image noise are experimentally analyzed by employing three types of cameras commonly used in the DIC measurements. Experimental results indicate that the fluctuations of the image noise are not only proportional to the image gray value, but also dependent on the type of the employed camera. On the basis of eliminating the image noise via the image averaging technique, high-precision interpolation bias curves more than one period are experimentally obtained by the proposed method.

  9. Plan robustness of simultaneous integrated boost radiotherapy of prostate and lymph nodes for different image-guidance and delivery techniques

    Energy Technology Data Exchange (ETDEWEB)

    Thoernqvist, Sara; Muren, Ludvig P. (Clinical Inst., Aarhus Univ., Aarhus (Denmark); Dept. of Medical Physics, Aarhus Univ. Hospital, Aarhus (Denmark); Dept. of Oncology, Aarhus Univ. Hospital, Aarhus (Denmark)), e-mail: sarathoe@rm.dk; Bentzen, Lise (Dept. of Oncology, Aarhus Univ. Hospital, Aarhus (Denmark)); Petersen, Joergen B. B. (Dept. of Medical Physics, Aarhus Univ. Hospital, Aarhus (Denmark)); Hysing, Liv B. (Dept. of Medical Physics, Univ. of Bergen/Haukeland Univ. Hospital, Bergen (Norway))

    2011-08-15

    Background and purpose. Uncorrelated motion of targets and large deformations of organs at risk represent challenges for image-guidance in simultaneous integrated boost (SIB) radiotherapy (RT) of pelvic tumour sites. This study aims to evaluate the robustness towards geometrical uncertainties in prostate cancer using two image-guided RT (IGRT) set-up strategies for two SIB delivery methods. Secondly, we evaluate the ability of geometrical parameters to predict when the applied margins are insufficient, resulting in target underdosage (TUD). Material and methods. The study included nine patients with eight to nine repeat computed tomography (CT)-scans evenly distributed throughout their treatment course. The prostate target (CTV-p) and the lymph node target including seminal vesicles (CTV-ln/sv) were delineated in all scans. SIB treatment plans for intensity-modulated RT and volumetric modulated arc therapy were generated on the planning CT and transferred to the repeat CTs for dose re-calculation using registration based on either anatomy or intra-prostatic fiducial markers. Receiving operator characteristic analysis was used to deduce the ability of the parameters to predict TUD. Results. The dosimetric differences between the two positioning strategies were small for all parameters evaluated and significant only for the dose to rectum. Anatomy based registration resulted in inferior target coverage with a larger number of TUDs, mostly seen in the seminal vesicles. For both targets the highest sensitivity and specificity of predicting TUD was seen for the relative volume and the lowest was found for the displacement vector. Conclusions. Positioning based on fiducials gave the best trade-off between coverage of the targets although resulting in the highest dose to rectum. Target underdosage occurred mostly in the seminal vesicles. For both targets, the best parameter to predict TUD was the relative volume

  10. Subcutaneous and musculoskeletal sparganosis: imaging characteristics and pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J.-H. [Department of Diagnostic Radiology, Ajou University, College of Medicine, Suwon (Korea)]|[Department of Diagnostic Radiology, Ajou University, Hospital a5 Wonchundong, Paldalgu, Suwon, Kyounggi (Korea); Lee, K.-B. [Department of Pathology, Ajou University, College of Medicine, Suwon (Korea); Yong, T.-S. [Department of Parasitology, Yonsei University, College of Medicine, Seoul (Korea); Kim, B.-S. [Department of Orthopedic Surgery, Ajou University, College of Medicine, Suwon (Korea); Park, H.-B. [Department of General Surgery, Ajou University, College of Medicine, Suwon (Korea); Ryu, K.-N. [Department of Radiology, Kyounghee University, College of Medicine, Seoul (Korea); Park, J. [Department of Radiology, Catholic University, College of Medicine, Seoul (Korea); Lee, S.-Y. [Department of Radiology, Chunnam University, College of Medicine, Jeonju (Korea); Suh, J.-S. [Department of Radiology, Yonsei University, College of Medicine, Seoul (Korea)

    2000-07-01

    Objective. To document the imaging characteristics of subcutaneous and musculoskeletal sparganosis.Design and patients. Ten patients with musculoskeletal sparganosis were examined, with a variety of imaging modalities including MRI (n=6), ultrasonography (n=8), plain radiography (n=7) and CT (n=1). Pathologic correlation was carried out in all cases.Results. Nine lesions involved soft tissues, of which seven were in the thigh, two in the trunk and one involved a vertebral body. The majority of the lesions in soft tissue were confined to the subcutaneous layer but two extended deep into underlying muscles. Sonography revealed low-echoic serpiginous tubular tracts (8/8), and an intraluminal echogenic structure (4/8). MRI revealed multiple serpiginous tubular tracts and peripheral rim enhancement. Two patients showed perilesional soft tissue edema. Pathologically, the lesion consisted of a larva surrounded by three layers of inflammation: an inner epithelioid granulomatous cell layer, middle chronic inflammatory cell layers, and an outer fibrous layer.Conclusion. The study suggests that if serpiginous tubular tracts are seen at imaging studies, musculoskeletal sparganosis should be included in the differential diagnosis. (orig.)

  11. WE-E-BRF-01: The ESTRO-AAPM Joint Symposium On Imaging for Proton Treatment Planning and Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Parodi, K [Ludwig-Maximilians-University Munich, Garching, Bavaria (Germany); Dauvergne, D [Institut de Physique Nucleaire de Lyon, Lyon (France); Kruse, J [Mayo Clinic, Rochester, MN (United States)

    2014-06-15

    beam scale for active proton beam delivery in homogenous targets. The development of gamma cameras, that has been studied by several groups worldwide over the last years, now reaches - for some of them - the stage of being applicable in clinical conditions, with real size prototypes and count rate capability matching the therapeutic beam intensities. We will review the different concepts of gamma cameras, the advantages and limitations of this method, and the main challenges that should still be overcome before the widespread of prompt gamma quality assurance for proton and hadrontherapy. Jon Kruse (Mayo Clinic, Rochester, MN, USA) Treatment simulation images for proton therapy are used to determine proton stopping power and range in the patient. This talk will discuss the careful control of CT numbers and conversion of CT number to stopping power required in proton therapy. Imaging for treatment guidance of proton therapy also presents unique challenges which will be addressed. Among them are the enhanced relationship between internal anatomy changes and dosimetry, the need for imaging to support adaptive planning protocols, and high operational efficiency. Learning Objectives: To learn about the possibilities of using activation products to determine the range of particle beams in a patient treatment setting To be informed on an alternative methodology using prompt gamma detectors To understand the impact of the accuracy of the knowledge of the patient information with respect to the delivered treatment.

  12. Imaging of compound palmar ganglion with pathologic correlation

    Directory of Open Access Journals (Sweden)

    Sourav Talukder

    2014-04-01

    Full Text Available Compound palmar ganglion, or chronic flexor tenosynovitis, most commonly of tuberculousorigin, is a rare extrapulmonary manifestation of tuberculosis (TB. The flexor synovialsheath is not a common site for TB but, once involved, causes rapid involvement of all flexortendons. We discuss the case of a 70-year-old farmer who presented to us with pain and progressive swelling of the palmar aspect of the wrist. On clinical examination, swelling both above and below the proximal wrist crease was found, with positive cross-fluctuation. Onultrasonography and magnetic resonance imaging, features suggestive of compound palmarganglion were present. The patient underwent surgical resection (extensive tenosynovectomyand chemotherapy. Post-operative histopatholgical findings correlated with the radiological features.

  13. Identification of the plastic zone using digital image correlation

    Directory of Open Access Journals (Sweden)

    M. Rossi

    2014-10-01

    Full Text Available In this paper Digital Image Correlation (DIC is used to study the evolution of the plastic zone close to a crack tip. A modified CT-specimen was used in order to fulfill the plane stress condition. The strain field around the crack tip was measured using two cameras and stereo DIC, so that out-of-plane movements are taken into account. Then, the Virtual Fields Method was used to identify the plastic zone, looking at the parts of the specimen which deviates from the linear elastic behavior. With such approach, it was possible to individuate the onset of plasticity close to the crack tip and follow its evolution. A comparison with FEM results is also provided.

  14. Posterolateral Complex Knee Injuries: Magnetic Resonance Imaging with Surgical Correlation

    Energy Technology Data Exchange (ETDEWEB)

    Theodorou, D.J. [Univ. of California, San Diego, CA (United States). Dept. of Radiology; Theodorou, S.J.; Fithian, D.C.; Garelick, D.H. [Southern California Permanente Medical Group, San Diego, CA (United States). Dept. of Orthopedic Surgery; Paxton, L.; Resnick, D. [Midwest Orthopedics, Chicago, IL (United States)

    2005-05-01

    Purpose: To describe the magnetic resonance imaging (MRI) findings of injuries of the posterolateral aspect of the knee and to evaluate the diagnostic capabilities of MRI in the assessment of these injuries. Material and Methods: The MRI studies of 14 patients (mean age 33 years) with trauma to the posterolateral aspect of the knee were retrospectively reviewed, and the imaging findings were correlated with those of surgery. Results: In all patients, MRI showed an intact iliotibial (ITB) band. MRI showed injury to the biceps tendon in 11 (79%), the gastrocnemius tendon in (7%), the popliteus tendon in 5 (36%), and the lateral collateral ligament (LCL) in 14 (100%) patients. Tear of the anterior cruciate ligament (ACL) was seen in1 (79%) patients and tear of the posterior cruciate ligament (PCL) in 4 (29%) patients. With routine MRI, visualization of the popliteofibular or fabellofibular ligaments was incomplete. On MRI, the lateral meniscus and the medial meniscus were torn with equal frequency ( n {approx} 4; 29%). Osteochondral defects were seen in 5 (36%) cases and joint effusion in all 14 (100%) cases on MRI. Using surgical findings as the standard for diagnosis, MRI proved 86% accurate in the detection of injury to the ITB band, the biceps tendon (93%),, the gastrocnemius tendon (100%), the popliteus tendon (86%), the LCL (100%), the ACL (79%), the PCL (86%), the lateral meniscus (90%), the medial meniscus (82%), and the osteochondral structures (79%). Surgical correlation confirmed the MRI findings of joint effusion in all cases. Conclusion: MRI is well suited for demonstrating the presence and extent of injuries of the major structures of the posterolateral complex of the knee, allowing characterization of the severity of injury.

  15. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a {sup 60}Co Magnetic Resonance Image Guidance Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, H. Omar, E-mail: hwooten@radonc.wustl.edu; Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H. Harold; Mutic, Sasa

    2015-07-15

    Purpose: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating {sup 60}Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. Methods and Materials: The ViewRay treatment planning system (Oakwood Village, OH) was used to create {sup 60}Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The {sup 60}Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. Results: All {sup 60}Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for {sup 60}Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all {sup 60}Co plan OARs were within clinical tolerances. Conclusions: A commercial {sup 60}Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system.

  16. A fast digital image correlation method for deformation measurement

    Science.gov (United States)

    Pan, Bing; Li, Kai

    2011-07-01

    Fast and high-accuracy deformation analysis using digital image correlation (DIC) has been increasingly important and highly demanded in recent years. In literature, the DIC method using the Newton-Rapshon (NR) algorithm has been considered as a gold standard for accurate sub-pixel displacement tracking, as it is insensitive to the relative deformation and rotation of the target subset and thus provides highest sub-pixel registration accuracy and widest applicability. A significant drawback of conventional NR-algorithm-based DIC method, however, is its extremely huge computational expense. In this paper, a fast DIC method is proposed deformation measurement by effectively eliminating the repeating redundant calculations involved in the conventional NR-algorithm-based DIC method. Specifically, a reliability-guided displacement scanning strategy is employed to avoid time-consuming integer-pixel displacement searching for each calculation point, and a pre-computed global interpolation coefficient look-up table is utilized to entirely eliminate repetitive interpolation calculation at sub-pixel locations. With these two approaches, the proposed fast DIC method substantially increases the calculation efficiency of the traditional NR-algorithm-based DIC method. The performance of proposed fast DIC method is carefully tested on real experimental images using various calculation parameters. Results reveal that the computational speed of the present fast DIC is about 120-200 times faster than that of the traditional method, without any loss of its measurement accuracy

  17. Early experience with multiparametric magnetic resonance imaging-targeted biopsies under visual transrectal ultrasound guidance in patients suspicious for prostate cancer undergoing repeated biopsy

    DEFF Research Database (Denmark)

    Boesen, Lars; Noergaard, Nis; Chabanova, Elizaveta

    2015-01-01

    -RADS) and Likert classification. All underwent repeated TRUS-bx (10 cores) and mp-MRI-bx under visual TRUS guidance of any mp-MRI-suspicious lesion not targeted by systematic TRUS-bx. RESULTS: PCa was found in 39 out of 83 patients (47%) and mp-MRI identified at least one lesion with some degree of suspicion...... in all 39 patients. Both PI-RADS and Likert scoring showed a high correlation between suspicion of malignancy and biopsy results (p

  18. Applications of three-dimensional image correlation in conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Van Herk, M.; Gilhuijs, K.; Kwa, S.; Lebesque, J.; Muller, S.; De Munck, J.; Touw, A. [Nederlands Kanker Inst. `Antoni van Leeuwenhoekhuis`, Amsterdam (Netherlands); Kooy, H. [Harvard Medical School, Boston, MA (United States)

    1995-12-01

    The development of techniques for the registration of CT, MRI and SPECT creates new possibilities for improved target volume definition and quantitative image analysis. The discussed technique is based on chamfer matching and is suitable for automatic 3-D matching of CT with CT, CT with MRI, CT with SPECT and MRI with SPECT. By integrating CT with MRI, the diagnostic qualities of MRI are combined with the geometric accuracy of the planning CT. Significant differences in the delineation of the target volume for brain, head and neck and prostate tumors were demonstrated when using integrated CT and MRI compared with using CT alone. In addition, integration of the planning CT with pre-operative scans improves knowledge of possible tumor extents. By first matching scans based on the bony anatomy and subsequently matching on an organ of study, relative motion of the organ is quantified accurately. In a study with 42 CT scans of 11 patients, magnitude and causes of prostate motion were analysed. The most important motion of the prostate is a forward-backward rotation around a point near the apex caused by rectal volume difference. Significant correlations were also found between motion of the legs and the prostate. By integrating functional images made before and after radiotherapy with the planning CT, the relation between local change of lung function and delivered dose has been quantified accurately. The technique of chamfer matching is a convenient and more accurate alternative for the use of external markers in a CT/SPECT lung damage study. Also, damage visible in diagnostic scans can be related to radiation dose, thereby improving follow-up diagnostics. It can be concluded that 3-D image integration plays an important role in assessing and improving the accuracy of radiotherapy and is therefore indispensable for conformal therapy. However, user-friendly implementation of these techniques remains to be done to facilitate clinical application on a large scale.

  19. Correlates of Body Image in Polish Weight Trainers

    Directory of Open Access Journals (Sweden)

    Guszkowska Monika

    2015-06-01

    Full Text Available Purpose. The purpose of this study was to determine body image and body satisfaction in Polish adult men involved in resistance training and to investigate their relationships with objective anthropometric and training characteristics. Methods. The study included 176 males aged 18-31 years with 1-14 years resistance training experience. The Figure Rating Scale, Body Satisfaction Scale and a self-designed questionnaire were administered. Results. Approximately 62% of the participants would like to be more muscular, only 29% accepted their appearance and 9% would like to be less muscular. The body selected as the personal ideal (M = 5.34 was less muscular than the body considered by the participants to be ideal by other men (normative body; M = 6.07 and was more muscular than the body thought to be most attractive to women (M = 5.10. Actual and ideal body muscularity correlated positively with age and body mass, height and BMI. Dissatisfaction with trunk and motor characteristics correlated positively with ideal body and the body considered most attractive to women as well as with the discrepancy indices between the above factors and the actual body. Conclusions. Men regularly involved in resistance training were found to strive for a muscular physique. The normative body, the physique believed to be desired by other men, was more muscular than what was considered preferential to women. However, the latter constitutes a stronger determinant of the level of body satisfaction in men engaged in resistance training.

  20. Human identification using correlation metrics of iris images

    Science.gov (United States)

    Celenk, Mehmet; Brown, Michael; Luo, Yi; Kaufman, Jason; Ma, Limin; Zhou, Qiang

    2005-01-01

    This paper presents work done based on second order statistical features including cross- and auto-correlations as well as co-occurrence matrices of iris images in an attempt to extract a simple, yet powerful, set of features of an iris as a biometric. Prior to our work, the most prevalent methods for iris identification include the frontier work based on the use of quadrature 2-D Gabor wavelets with the Hamming Distance-based classification [1,2], circular Gabor filters with a nearest feature line (NFL) classifier [3], dyadic wavelet transform with the zero-cross detectors [4], texture analysis [9] and transient signal [11], and independent component analysis (ICA) [7], and boundary localization [10]. Our method differs significantly from the earlier approaches to iris recognition in that it relies on the wide-sense stationary approximation to the texture and gray-level characteristics of irises, and aims to lend itself for a single-chip hardware implementation. Our preliminary results show that cross- and auto-correlators along with co-occurrence matrix features are highly likely to be prominent iris discriminators.

  1. Application of the progressive wavelet correlation for image recognition and retrieval from the collection of images - Thesis

    OpenAIRE

    Stojanovic, Igor

    2011-01-01

    An algorithm for recognition and retrieval of image from image collection is developed. Basis of the algorithm is the progressive wavelet correlation. The final result is the recognition and retrieval of the wanted image, if it is in the image collection. Instructions for the choice of correlation threshold value for obtaining desired results are defined. The areas where the algorithm can be applied are also discussed. To increase efficiency is presented two phases solution. The first phase u...

  2. Application of image cross-correlation to the measurement of glacier velocity using satellite image data

    Science.gov (United States)

    Scambos, Theodore A.; Dutkiewicz, Melanie J.; Wison, Jeremy C.; Bindschadler, Robert A.

    1992-01-01

    A high-resolution map of the velocity field of the central portion of Ice Stream E in West Antarctica, generated by the displacement-measuring technique, is presented. The use of cross-correlation software is found to be a significant improvement over previous manually based photogrammetric methods for velocity measurement, and is far more cost-effective than in situ methods in remote polar areas. A hue-intensity-saturation image of Ice Stream E and its velocity field is shown.

  3. Radar-Interferometric Asteroid Imaging Using a Flexible Software Correlator

    Science.gov (United States)

    Black, G.; Campbell, D. B.; Treacy, R.; Nolan, M. C.

    2005-12-01

    We've developed a technique to use a radio interferometer to image near earth objects (NEOs) during their close Earth approach when they can be illuminated by a ground-based radar system. There is great potential for this technique to yield detailed information that is complementary to other observational methods. We are using the NAIC's Arecibo Observatory's 1 MW 13 cm radar transmitter with the NRAO's Very Long Baseline Array (VLBA) as the receiving instrument. The VLBA, with antenna spacings of several thousands of kilometers, has a potential resolution on the order of milli-arcseconds; a couple of orders of magnitude smaller than typical ground-based telescopic observations, and sufficient to determine the gross shapes and orientations of spin vectors. Milli-arcsecond astrometry of these quickly moving objects can greatly improve their orbits and extend the span over which future Earth encounters can be predicted. The VLBA hardware correlator limits the frequency resolution and complicates incorporating a model of the near-field geometry. Typical target bandwidths are ˜1 Hz while the correlator's narrowest resolution is 120 Hz. To avoid these difficulties a specialized computer interface was designed to transfer the raw data to commercial PCs. We can now use this system to obtain the individual antenna data streams and subsequently correlate them in software, bypassing the hardware correlator entirely. Software processing permits synthesis of narrower frequency bins, plus easier access for iterations to improve the near field model or correct a poor ephemeris a posteriori. This system could also be used to achieve high time resolution on strong sources. We have recently used this system to observe near Earth asteroid (25143) Itokawa, a sub-kilometer sized object that passed within 0.013 AU of the Earth and is the target of the Japanese Hayabusa mission. The National Radio Astronomy Observatory is a facility of the NSF operated under cooperative agreement by

  4. Lifelong Guidance

    National Research Council Canada - National Science Library

    Noworol, Czesław

    2011-01-01

    .... Career guidance refers to services and activities intended to assist individuals, of any age and at any point throughout their lives, to make educational, training and occupational choices and to manage their careers...

  5. Damage Assessment of Composite Structures Using Digital Image Correlation

    Science.gov (United States)

    Caminero, M. A.; Lopez-Pedrosa, M.; Pinna, C.; Soutis, C.

    2014-02-01

    The steady increase of Carbon-Fiber Reinforced Polymer (CFRP) Structures in modern aircraft will reach a new dimension with the entry into service of the Boeing 787 and Airbus 350. Replacement of damaged parts will not be a preferable solution due to the high level of integration and the large size of the components involved. Consequently the need to develop repair techniques and processes for composite components is readily apparent. Bonded patch repair technologies provide an alternative to mechanically fastened repairs with significantly higher performance, especially for relatively thin skins. Carefully designed adhesively bonded patches can lead to cost effective and highly efficient repairs in comparison with conventional riveted patch repairs that cut fibers and introduce highly strained regions. In this work, the assessment of the damage process taking place in notched (open-hole) specimens under uniaxial tensile loading was studied. Two-dimensional (2D) and three-dimensional (3D) Digital Image Correlation (DIC) techniques were employed to obtain full-field surface strain measurements in carbon-fiber/epoxy T700/M21 composite plates with different stacking sequences in the presence of an open circular hole. Penetrant enhanced X-ray radiographs were taken to identify damage location and extent after loading around the hole. DIC strain fields were compared to finite element predictions. In addition, DIC techniques were used to characterise damage and performance of adhesively bonded patch repairs in composite panels under tensile loading. This part of work relates to strength/stiffness restoration of damaged composite aircraft that becomes more important as composites are used more extensively in the construction of modern jet airliners. The behaviour of bonded patches under loading was monitored using DIC full-field strain measurements. Location and extent of damage identified by X-ray radiography correlates well with DIC strain results giving confidence to

  6. Magnetic resonance imaging and histology correlation in Cushing's disease.

    Science.gov (United States)

    Masopust, Václav; Netuka, David; Beneš, Vladimír; Májovský, Martin; Belšán, Tomáš; Bradáč, Ondřej; Hořínek, Daniel; Kosák, Mikuláš; Hána, Václav; Kršek, Michal

    We continuously look for new techniques to improve the radicality of resection and to eliminate the negative effects of surgery. One of the methods that has been implemented in the perioperative management of Cushing's disease was the combination of three magnetic resonance imaging (MRI) sequences: SE, SPGR and fSPGR. We enrolled 41 patients (11 males, 30 females) diagnosed with Cushing's disease. A 3D tumour model with a navigation console was developed using each SPGR, fSPGR and SE sequence. The largest model was then used. In all cases, a standard four-handed, bi-nostril endoscopic endonasal technique was used. Endocrinological follow-up evaluation using morning cortisol sampling was performed for 6-34 months in our study. In total, 36 patients (88%) were disease-free following surgery. Our results indicate we achieved 100% sensitivity of MR. Overall, the conformity of at least one donor site, as compared with the places designated on MR, was in 78% of patients. We searched the place of compliance in individual locations. There is a consensus in individual locations in 63 of the 123 cases (or 56%). The correlation gamma function at a 5% significance level was then 0.27. The combination of MR sequences (SE, SPGR, fSPGR), neuronavigation system and iMRI led to increased sensitivity of up to 100%. Specificity reached 56% in our study. We found a high success rate in surgical procedure in terms of the correlation between MR findings and histology, which leads to remission of Cushing's disease. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  7. Distortion-Invariant Binary Image Recognition Based on Central Projection Correlation

    Institute of Scientific and Technical Information of China (English)

    WU Yaming; XIAO Yanping; SUN Fanghong; FANG Nian

    2001-01-01

    A method of central projection correlation which is invariant to distortion of shift, scale and rotation of the binary target image is proposed. A 2-D binary image is transformed into an 1-D central projection referring to the centroid of the binary image. The distortion-invariant central projection correlation is successfully performed by computer simulations and its optical implementation is presented.

  8. Traffic Sign Recognition System based on Cambridge Correlator Image Comparator

    OpenAIRE

    J. Turan; L. Ovsenik; T. Harasthy

    2012-01-01

    Paper presents basic information about application of Optical Correlator (OC), specifically Cambridge Correlator, in system to recognize of traffic sign. Traffic Sign Recognition System consists of three main blocks, Preprocessing, Optical Correlator and Traffic Sign Identification. The Region of Interest (ROI) is defined and chosen in preprocessing block and then goes to Optical Correlator, where is compared with database of Traffic Sign. Output of Optical Correlation is correlation plane, w...

  9. Evaluation of a real-time hybrid three-dimensional echo and X-ray imaging system for guidance of cardiac catheterisation procedures.

    Science.gov (United States)

    Housden, R J; Arujuna, A; Ma, Y; Nijhof, N; Gijsbers, G; Bullens, R; O'Neill, M; Cooklin, M; Rinaldi, C A; Gill, J; Kapetanakis, S; Hancock, J; Thomas, M; Razavi, R; Rhode, K S

    2012-01-01

    Minimally invasive cardiac surgery is made possible by image guidance technology. X-ray fluoroscopy provides high contrast images of catheters and devices, whereas 3D ultrasound is better for visualising cardiac anatomy. We present a system in which the two modalities are combined, with a trans-esophageal echo volume registered to and overlaid on an X-ray projection image in real-time. We evaluate the accuracy of the system in terms of both temporal synchronisation errors and overlay registration errors. The temporal synchronisation error was found to be 10% of the typical cardiac cycle length. In 11 clinical data sets, we found an average alignment error of 2.9 mm. We conclude that the accuracy result is very encouraging and sufficient for guiding many types of cardiac interventions. The combined information is clinically useful for placing the echo image in a familiar coordinate system and for more easily identifying catheters in the echo volume.

  10. Parametric image alignment using enhanced correlation coefficient maximization.

    Science.gov (United States)

    Evangelidis, Georgios D; Psarakis, Emmanouil Z

    2008-10-01

    In this work we propose the use of a modified version of the correlation coefficient as a performance criterion for the image alignment problem. The proposed modification has the desirable characteristic of being invariant with respect to photometric distortions. Since the resulting similarity measure is a nonlinear function of the warp parameters, we develop two iterative schemes for its maximization, one based on the forward additive approach and the second on the inverse compositional method. As it is customary in iterative optimization, in each iteration, the nonlinear objective function is approximated by an alternative expression for which the corresponding optimization is simple. In our case we propose an efficient approximation that leads to a closed-form solution (per iteration) which is of low computational complexity, the latter property being particularly strong in our inverse version. The proposed schemes are tested against the Forward Additive Lucas-Kanade and the Simultaneous Inverse Compositional (SIC) algorithm through simulations. Under noisy conditions and photometric distortions, our forward version achieves more accurate alignments and exhibits faster convergence whereas our inverse version has similar performance as the SIC algorithm but at a lower computational complexity.

  11. Atlas-based diffusion tensor imaging correlates of executive function

    Science.gov (United States)

    Nowrangi, Milap A.; Okonkwo, Ozioma; Lyketsos, Constantine; Oishi, Kenichi; Mori, Susumu; Albert, Marilyn; Mielke, Michelle M.

    2015-01-01

    Impairment in executive function (EF) is commonly found in Alzheimer’s Dementia (AD) and Mild Cognitive Impairment (MCI). Atlas-based Diffusion Tensor Imaging (DTI) methods may be useful in relating regional integrity to EF measures in MCI and AD. 66 participants (25 NC, 22 MCI, and 19 AD) received DTI scans and clinical evaluation. DTI scans were applied to a pre-segmented atlas and fractional anisotropy (FA) and mean diffusivity (MD) were calculated. ANOVA was used to assess group differences in frontal, parietal, and cerebellar regions. For regions differing between groups (p<0.01), linear regression examined the relationship between EF scores and regional FA and MD. Anisotropy and diffusivity in frontal and parietal lobe white matter (WM) structures were associated with EF scores in MCI and only frontal lobe structures in AD. EF was more strongly associated with FA than MD. The relationship between EF and anisotropy and diffusivity was strongest in MCI. These results suggest that regional WM integrity is compromised in MCI and AD and that FA may be a better correlate of EF than MD. PMID:25318544

  12. Dual in vivo Photoacoustic and Fluorescence Imaging of HER2 Expression in Breast Tumors for Diagnosis, Margin Assessment, and Surgical Guidance

    Directory of Open Access Journals (Sweden)

    Azusa Maeda

    2015-01-01

    Full Text Available Biomarker-specific imaging probes offer ways to improve molecular diagnosis, intraoperative margin assessment, and tumor resection. Fluorescence and photoacoustic imaging probes are of particular interest for clinical applications because the combination enables deeper tissue penetration for tumor detection while maintaining imaging sensitivity compared to a single optical imaging modality. Here we describe the development of a human epidermal growth factor receptor 2 (HER2-targeting imaging probe to visualize differential levels of HER2 expression in a breast cancer model. Specifically, we labeled trastuzumab with Black Hole Quencher 3 (BHQ3 and fluorescein for photoacoustic and fluorescence imaging of HER2 overexpression, respectively. The dual-labeled trastuzumab was tested for its ability to detect HER2 overexpression in vitro and in vivo. We demonstrated an over twofold increase in the signal intensity for HER2-overexpressing tumors in vivo, compared to low–HER2-expressing tumors, using photoacoustic imaging. Furthermore, we demonstrated the feasibility of detecting tumors and positive surgical margins by fluorescence imaging. These results suggest that multimodal HER2-specific imaging of breast cancer using the BHQ3-fluorescein trastuzumab enables molecular-level detection and surgical margin assessment of breast tumors in vivo. This technique may have future clinical impact for primary lesion detection, as well as intraoperative molecular-level surgical guidance in breast cancer.

  13. SU-D-BRF-05: A Novel System to Provide Real-Time Image-Guidance for Intrauterine Tandem Insertion and Placement

    Energy Technology Data Exchange (ETDEWEB)

    Price, M; Fontenot, J [pF Biomedical Solutions LLC, Baton Rouge, LA (United States)

    2014-06-01

    Purpose: To develop a system that provides real-time image-guidance for intrauterine tandem insertion and placement for brachytherapy. Methods: The conceptualized system consists of an intrauterine tandem with a transparent, lensed tip, a flexible miniature fiber optic scope, light source and interface for CCD coupling. The tandem tip was designed to act as a lens providing a wide field-of-view (FOV) with minimal image distortion and focus length appropriate for the application. The system is designed so that once inserted, the image-guidance component of the system can be removed and brachytherapy can be administered without interfering with source transport or disturbing tandem placement. Proof-of-principle studies were conducted to assess the conceptualized system's (1) lens functionality (clarity, focus and FOV) (2) and ability to visualize the cervical os of a female placed in the lithotomy position. Results: A prototype of this device was constructed using a commercial tandem modified to incorporate a transparent tip that internally coupled with a 1.9mm diameter fiber optic cable. The 900mm-long cable terminated at an interface that provided illumination as well as facilitated visualization of patient anatomy on a computer. The system provided a 23mm FOV with a focal length of 1cm and provided clear visualization of the cervix, cervical fornix and cervical os. The optical components of the system are easily removed without perturbing the position of a tandem placed in a common fixation clamp. Conclusion: Clinicians frequently encounter difficulty inserting an intrauterine tandem through the cervical os, circumventing fibrotic tissue or masses within the uterus, and positioning the tandem without perforating the uterus. To mitigate these challenges, we have designed and conducted proof-of- principle studies to discern the utility of a prototype device that provides real-time image-guidance for intrauterine tandem placement using fiber optic components.

  14. MR Imaging of Rotator Cuff Tears: Correlation with Arthroscopy

    Science.gov (United States)

    Bhandary, Sudarshan; Khandige, Ganesh; Kabra, Utkarsh

    2017-01-01

    Introduction Rotator cuff tears are quite common and can cause significant disability. Magnetic Resonance Imaging (MRI) has now emerged as the modality of choice in the preoperative evaluation of patients with rotator cuff injuries, in view of its improved inherent soft tissue contrast and resolution. Aim To evaluate the diagnostic accuracy of routine MRI in the detection and characterisation of rotator cuff tears, by correlating the findings with arthroscopy. Materials and Methods This prospective study was carried out between July 2014 and August 2016 at the AJ Institute of Medical Sciences, Mangalore, Karnataka, India. A total of 82 patients were diagnosed with rotator cuff injury on MRI during this period, out of which 45 patients who underwent further evaluation with arthroscopy were included in this study. The data collected was analysed for significant correlation between MRI diagnosis and arthroscopic findings using kappa statistics. The sensitivity, specificity, predictive value and accuracy of MRI for the diagnosis of full and partial thickness tears were calculated using arthroscopic findings as the reference standard. Results There were 27 males and 18 females in this study. The youngest patient was 22 years and the oldest was 74 years. Majority of rotator cuff tears (78%) were seen in patients above the age of 40 years. MRI showed a sensitivity of 89.6%, specificity of 100%, positive predictive value of 100% and negative predictive value of 83.3% for the diagnosis of full thickness rotator cuff tears. For partial thickness tears, MRI showed a sensitivity of 100%, specificity of 86.6%, positive predictive value of 78.9% and negative predictive value of 100%. The accuracy was 93.1% for full thickness tears and 91.1% for partial thickness tears. The p-value was less than 0.01 for both full and partial thickness tears. There was good agreement between the MRI and arthroscopic findings, with kappa value of 0.85 for full thickness tears and 0.81 for partial

  15. GEOMETRICAL CORRELATION AND MATCHING OF 2D IMAGE SHAPES

    OpenAIRE

    Y. V. Vizilter; S. Y. Zheltov

    2012-01-01

    The problem of image correspondence measure selection for image comparison and matching is addressed. Many practical applications require image matching "just by shape" with no dependence on the concrete intensity or color values. Most popular technique for image shape comparison utilizes the mutual information measure based on probabilistic reasoning and information theory background. Another approach was proposed by Pytiev (so called "Pytiev morphology") based on geometrical and algebraic r...

  16. Performance of third-order ghost imaging with second-order intensity correlation

    Institute of Scientific and Technical Information of China (English)

    Bin Cao; Chunxi Zhang; Pan Ou

    2011-01-01

    @@ The third-order ghost imaging with the second-order intensity correlation is theoretically and experimentally demonstrated.The resolution and visibility of the reconstructed image are discussed,and the relationship between resolution and visibility is analyzed.The theoretical results show that a tradeoff exists between the visibility and resolution of the reconstructed image; the better the image resolution,the worse the image visibility.%The third-order ghost imaging with the second-order intensity correlation is theoretically and experimentally demonstrated. The resolution and visibility of the reconstructed image are discussed, and the relationship between resolution and visibility is analyzed. The theoretical results show that a tradeoff exists between the visibility and resolution of the reconstructed image; the better the image resolution, the worse the image visibility. Numerical simulations are carried out to verify this theory, and a ghost imaging experiment is conducted to validate our calculations. The experimental results agree with the theoretical predictions.

  17. Correlation evaluation of intensity and color band images

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J.M.

    1996-02-01

    The purpose of this project is to determine which of the three color bands--red, green, or blue--to use in providing the best possible correlation and to determine the accuracy with which these color bands correlate in comparison with the correlation of the three color bands with the intensity model. To fulfill this purpose, the correlation technique of template matching is implemented using a correlator. Correlations are implemented with each of the individual color bands and also with the corresponding intensity model. The correlation coefficient resulting from a successful correlation ranges from 0.9 to 1. A coefficient of 1 demonstrates that the feature information varies identically. When analyzing the data collected from the correlations, the following results are obtained. The color band recommended for the most accurate correlation is the green color band. The correlation of the color bands with the intensity model was not as successful in determining the better color band because the correlation coefficients were very low in comparison to the correlation of the individual color bands.

  18. Simulation of improved active jam method against laser imaging guidance%改进的激光成像制导有源干扰仿真研究

    Institute of Scientific and Technical Information of China (English)

    王昊鹏; 刘泽乾

    2012-01-01

    At present, the laser imaging guidance as a new type of precision way, on the battlefield is playing the more and more major role. Its good detection performance, strong anti-jamming ability, and can work day and night, etc, make its development space more and more wide, threat on military targets are getting more and more serious. However, in view of the laser imaging guidance of interference methods is not ideal but the results, the specific performance: way passive, low success, interference effect is not obvious and so on. Therefore, it is necessary to improve the existing interference measures of laser imaging guidance of interference ability. For laser imaging guidance system of the input signal is active laser interference technology is put forward new way of interference in recent years. In this paper the research foundation, on the optical simulation, especially laser optical simulation for a more in-depth research, and puts forward an improved active laser jamming methods: use the intercept enemy laser detection signal related information, copy the laser signals as interference signals, laser imaging guidance system on enemy for interference, cover important military targets, with lower cost and advantages of active way, so as to improve the laser imaging guidance to the input signal interference ability.%目前,激光成像制导作为一种新型的精确制导方式,在战场上发挥着越来越大的作用。然而,针对激光成像制导的干扰方法效果却并不理想,具体表现为:方式被动、成功率低、干扰效果不明显等。针对激光成像制导系统输入信号的激光有源干扰技术是近几年提出的新型干扰方式。在其研究基础上,对光学仿真,特别是激光光学仿真进行了较为深入的研究,并提出了一种改进的激光有源干扰方式:利用截获的敌方激光探测信号相关信息,复制其激光信号作为干扰信号,对敌方激光成像制导系统进

  19. Snapping Sharks, Maddening Mindreaders, and Interactive Images: Teaching Correlation.

    Science.gov (United States)

    Mitchell, Mark L.

    Understanding correlation coefficients is difficult for students. A free computer program that helps introductory psychology students distinguish between positive and negative correlation, and which also teaches them to understand the differences between correlation coefficients of different size is described in this paper. The program is…

  20. Large range rotation distortion measurement for remote sensing images based on volume holographic optical correlator

    Science.gov (United States)

    Zheng, Tianxiang; Cao, Liangcai; Zhao, Tian; He, Qingsheng; Jin, Guofan

    2012-10-01

    Volume holographic optical correlator can compute the correlation results between images at a super-high speed. In the application of remote imaging processing such as scene matching, 6,000 template images have been angularly multiplexed in the photorefractive crystal and the 6,000 parallel processing channels are achieved. In order to detect the correlation pattern of images precisely and distinguishingly, an on-off pixel inverted technology of images is proposed. It can fully use the CCD's linear range for detection and expand the normalized correlation value differences as the target image rotates. Due to the natural characteristics of the remote sensing images, the statistical formulas between the rotation distortions and the correlation results can be estimated. The rotation distortion components can be estimated by curve fitting method with the data of correlation results. The intensities of the correlation spots are related to the distortion between the two images. The rotation distortion could be derived from the intensities in the post processing procedure. With 18 rotations of the input image and sending them into the volume holographic system, the detection of the rotation variation in the range of 180° can be fulfilled. So the large range rotation distortion detection is firstly realized. It offers a fast, large range rotation measurement method for image distortions.

  1. A 360-deg Digital Image Correlation system for materials testing

    Science.gov (United States)

    Genovese, K.; Cortese, L.; Rossi, M.; Amodio, D.

    2016-07-01

    The increasing research interest toward natural and advanced engineered materials demands new experimental protocols capable of retrieving highly dense sets of experimental data on the full-surface of samples under multiple loading conditions. Such information, in fact, would allow to capture the possible heterogeneity and anisotropy of the material by using up-to-date inverse characterization methods. Although the development of object-specific test protocols could represent the optimal choice to address this need, it is unquestionable that universal testing machines (UTM) remain the most widespread and versatile option to test materials and components in both academic and industrial contexts. A major limitation of performing standard material tests with UTM, however, consists in the scarce information obtainable with the commonly associated sensors since they provide only global (LVDTs, extensometers, 2D-video analyzers) or local (strain gages) measures of displacement and strain. This paper presents a 3D Digital Image Correlation (DIC) system developed to perform highly accurate full-surface 360-deg measurements on either standard or custom-shaped samples under complex loading within universal testing machines. To this aim, a low cost and easy to setup video rig was specifically designed to overcome the practical limitations entailed with the integration of a multi-camera system within an already existing loading frame. In particular, the proposed system features a single SLR digital camera moved through multiple positions around the specimen by means of a large rotation stage. A proper calibration and data-processing procedure allows to automatically merge the experimental data obtained from the multiple views with an accuracy of 10-2 m m . The results of a full benchmarking of the metrological performances of the system are here reported and discussed together with illustrative examples of full-360-deg shape and deformation measurements on a Grade X65 steel

  2. Investigation of MINACE composite filter capabilities for multicolor images correlation recognition purposes

    Science.gov (United States)

    Evtikhiev, N. N.; Zlokazov, E. Yu; Petrova, E. K.; Starikov, R. S.; Shaulskiy, D. V.

    2016-08-01

    Article represents the results of investigations in the area of distortion invariant images recognition using composite correlation filters. One of the most successive for application is a filter known as MINACE (minimum noise and average correlation energy). The capabilities of MINACE filter synthesis for multicolor image recognition problem are discussed.

  3. Image pre-filtering for measurement error reduction in digital image correlation

    Science.gov (United States)

    Zhou, Yihao; Sun, Chen; Song, Yuntao; Chen, Jubing

    2015-02-01

    In digital image correlation, the sub-pixel intensity interpolation causes a systematic error in the measured displacements. The error increases toward high-frequency component of the speckle pattern. In practice, a captured image is usually corrupted by additive white noise. The noise introduces additional energy in the high frequencies and therefore raises the systematic error. Meanwhile, the noise also elevates the random error which increases with the noise power. In order to reduce the systematic error and the random error of the measurements, we apply a pre-filtering to the images prior to the correlation so that the high-frequency contents are suppressed. Two spatial-domain filters (binomial and Gaussian) and two frequency-domain filters (Butterworth and Wiener) are tested on speckle images undergoing both simulated and real-world translations. By evaluating the errors of the various combinations of speckle patterns, interpolators, noise levels, and filter configurations, we come to the following conclusions. All the four filters are able to reduce the systematic error. Meanwhile, the random error can also be reduced if the signal power is mainly distributed around DC. For high-frequency speckle patterns, the low-pass filters (binomial, Gaussian and Butterworth) slightly increase the random error and Butterworth filter produces the lowest random error among them. By using Wiener filter with over-estimated noise power, the random error can be reduced but the resultant systematic error is higher than that of low-pass filters. In general, Butterworth filter is recommended for error reduction due to its flexibility of passband selection and maximal preservation of the allowed frequencies. Binomial filter enables efficient implementation and thus becomes a good option if computational cost is a critical issue. While used together with pre-filtering, B-spline interpolator produces lower systematic error than bicubic interpolator and similar level of the random

  4. Implementation of a Direct-Imaging and FX Correlator for the BEST-2 Array

    CERN Document Server

    Foster, Griffin; Magro, Alessio; Price, Danny C; Adami, Kristian Zarb

    2014-01-01

    A new digital backend has been developed for the BEST-2 array at Radiotelescopi di Medicina, INAF-IRA, Italy which allows concurrent operation of an FX correlator, and a direct-imaging correlator and beamformer. This backend serves as a platform for testing some of the spatial Fourier transform concepts which have been proposed for use in computing correlations on regularly gridded arrays. While spatial Fourier transform-based beamformers have been implemented previously, this is to our knowledge, the first time a direct-imaging correlator has been deployed on a radio astronomy array. Concurrent observations with the FX and direct-imaging correlator allows for direct comparison between the two architectures. Additionally, we show the potential of the direct-imaging correlator for time-domain astronomy, by passing a subset of beams though a pulsar and transient detection pipeline. These results provide a timely verification for spatial Fourier transform-based instruments that are currently in commissioning. Th...

  5. Myxoid Adrenocortical Adenoma: Magnetic resonance imaging and pathology correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Un [Dept. of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Kim, Suk; Lee, Jun Woo; Lee, Nam Kyung; Ha, Hong Koo; Park, Won Young [Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan (Korea, Republic of)

    2014-04-15

    We report a case of a 74-year-old female with myxoid adrenocortical adenoma which showed different magnetic resonance imaging findings compared to those of a typical adrenocortical adenoma. The myxoid change in the adrenocortical adenoma is a rare form of degeneration. It presents a considerable diagnostic challenge to both radiologists and clinicians because it can mimic other adrenal tumor types on imaging. The MRI findings of the presented case included a high signal intensity on T2-weighted images similar to that of fluid and delayed progressive enhancement.

  6. Pleasant/Unpleasant Filtering for Affective Image Retrieval Based on Cross-Correlation of EEG Features

    Directory of Open Access Journals (Sweden)

    Keranmu Xielifuguli

    2014-01-01

    Full Text Available People often make decisions based on sensitivity rather than rationality. In the field of biological information processing, methods are available for analyzing biological information directly based on electroencephalogram: EEG to determine the pleasant/unpleasant reactions of users. In this study, we propose a sensitivity filtering technique for discriminating preferences (pleasant/unpleasant for images using a sensitivity image filtering system based on EEG. Using a set of images retrieved by similarity retrieval, we perform the sensitivity-based pleasant/unpleasant classification of images based on the affective features extracted from images with the maximum entropy method: MEM. In the present study, the affective features comprised cross-correlation features obtained from EEGs produced when an individual observed an image. However, it is difficult to measure the EEG when a subject visualizes an unknown image. Thus, we propose a solution where a linear regression method based on canonical correlation is used to estimate the cross-correlation features from image features. Experiments were conducted to evaluate the validity of sensitivity filtering compared with image similarity retrieval methods based on image features. We found that sensitivity filtering using color correlograms was suitable for the classification of preferred images, while sensitivity filtering using local binary patterns was suitable for the classification of unpleasant images. Moreover, sensitivity filtering using local binary patterns for unpleasant images had a 90% success rate. Thus, we conclude that the proposed method is efficient for filtering unpleasant images.

  7. Analytical shape determination of fiber-like objects with Virtual Image Correlation

    OpenAIRE

    Semin, Benoit; François, Marc Louis Maurice; Auradou, Harold

    2010-01-01

    10 pages; International audience; This paper reports a method allowing for the determination of the shape of deformed fiber-like objects. Compared to existing methods, it provides analytical results including the local slope and curvature which are of first importance, for instance, in beam mechanics. The presented VIC (Virtual Image Correlation) method consists in looking for the best correlation between the image of the fiber-like object and a virtual beam image, using an algorithm close to...

  8. Imaging in scattering media via the second-order correlation of light field

    CERN Document Server

    Gong, Wenlin; Shen, Xia; Han, Shensheng

    2009-01-01

    Imaging with the second-order correlation of two light fields is a method to image an object by two-photon interference involving a joint detection of two photons at distant space-time points. We demonstrate for the first time that an image with high quality can still be obtained in the scattering media by applying the second-order correlation of illuminating light field. The scattering effect on the visibility of images is analyzed both theoretically and experimentally. Potential applications and the methods to further improve the visibility of the images in scattering media are also discussed.

  9. Multispectral image sharpening using wavelet transform techniques and spatial correlation of edges

    Science.gov (United States)

    Lemeshewsky, George P.; Schowengerdt, Robert A.

    2000-01-01

    Several reported image fusion or sharpening techniques are based on the discrete wavelet transform (DWT). The technique described here uses a pixel-based maximum selection rule to combine respective transform coefficients of lower spatial resolution near-infrared (NIR) and higher spatial resolution panchromatic (pan) imagery to produce a sharpened NIR image. Sharpening assumes a radiometric correlation between the spectral band images. However, there can be poor correlation, including edge contrast reversals (e.g., at soil-vegetation boundaries), between the fused images and, consequently, degraded performance. To improve sharpening, a local area-based correlation technique originally reported for edge comparison with image pyramid fusion is modified for application with the DWT process. Further improvements are obtained by using redundant, shift-invariant implementation of the DWT. Example images demonstrate the improvements in NIR image sharpening with higher resolution pan imagery.

  10. Multimodal Imaging and Clinicopathologic Correlation in Primary Uveal Lymphoma

    Directory of Open Access Journals (Sweden)

    Brandon Erickson

    2016-01-01

    Full Text Available Purpose: We report a rare case of primary uveal lymphoma and characterize it using histopathology and multimodal imaging. Patient and Methods: A 41-year-old male presented with a 2-year history of increasingly blurry vision in his right eye and no systemic symptoms. Examination revealed a retinal detachment and mass lesion in the right eye. Radiologic and histologic testing was performed. Results: Multimodal imaging localized the lesion to the choroid, and fine needle aspiration biopsy diagnosed the lesion as a low-grade B-cell lymphoma. The patient was treated with external beam radiation, resulting in regression of the mass and resolution of the retinal detachment. Conclusions: Primary uveal lymphoma is a rare, usually indolent tumor that carries a good prognosis. In this case, we show that primary uveal lymphoma has distinct findings via histopathology and multimodal imaging, and that imaging after radiation treatment documents disease regression.

  11. Correlates of Bio-Psychosocial Factors on Perceived Body Image ...

    African Journals Online (AJOL)

    DrNneka

    According to medical experts, individuals who are overweight (Body Mass ... exercise program improves physical health, enhance body image, raise ..... behavior in children and adolescents: what places youth at risk and how can these.

  12. Interfractional changes in tumour volume and position during entire radiotherapy courses for lung cancer with respiratory gating and image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Juhler-Noettrup, Trine; Korreman, Stine S.; Pedersen, Anders N.; Persson, Gitte F.; Aarup, Lasse R.; Nystroem, Haakan; Olsen, Mikael; Tarnavski, Nikolai; Specht, Lena (Dept. of Radiation Oncology, The Finsen Centre, Copenhagen (Denmark))

    2008-08-15

    Introduction. With the purpose of implementing gated radiotherapy for lung cancer patients, this study investigated the interfraction variations in tumour size and internal displacement over entire treatment courses. To explore the potential of image guided radiotherapy (IGRT) the variations were measured using a set-up strategy based on imaging of bony landmarks and compared to a strategy using in room lasers, skin tattoos and cupper landmarks. Materials and methods. During their six week treatment course of 60Gy in 2Gy fractions, ten patients underwent 3 respiratory gated CT scans. The tumours were contoured on each CT scan to evaluate the variations in volumes and position. The lung tumours and the mediastinal tumours were contoured separately. The positional variations were measured as 3D mobility vectors and correlated to matching of the scans using the two different strategies. Results. The tumour size was significantly reduced from the first to the last CT scan. For the lung tumours the reduction was 19%, p=0.03, and for the mediastinal tumours the reduction was 34%, p=0.0007. The mean 3D mobility vector and the SD for the lung tumours was 0.51cm (+-0.21) for matching using bony landmarks and 0.85cm (+-0.54) for matching using skin tattoos. For the mediastinal tumours the corresponding vectors and SD's were 0.55cm (+-0.19) and 0.72cm (+-0.43). The differences between the vectors were significant for the lung tumours p=0.004. The interfractional overlap of lung tumours was 80-87% when matched using bony landmarks and 70-76% when matched using skin tattoos. The overlap of the mediastinal tumours were 60-65% and 41-47%, respectively. Conclusions. Despite the use of gating the tumours varied considerably, regarding both position and volume. The variations in position were dependent on the set-up strategy. Set-up using IGRT was superior to set-up using skin tattoos.

  13. From interventionist imaging to intraoperative guidance: New perspectives by combining advanced tools and navigation with radio-guided surgery.

    Science.gov (United States)

    Vidal-Sicart, S; Valdés Olmos, R; Nieweg, O E; Faccini, R; Grootendorst, M R; Wester, H J; Navab, N; Vojnovic, B; van der Poel, H; Martínez-Román, S; Klode, J; Wawroschek, F; van Leeuwen, F W B

    2017-08-03

    The integration of medical imaging technologies into diagnostic and therapeutic approaches can provide a preoperative insight into both anatomical (e.g. using computed tomography (CT), magnetic resonance (MR) imaging, or ultrasound (US)), as well as functional aspects (e.g. using single photon emission computed tomography (SPECT), positron emission tomography (PET), lymphoscintigraphy, or optical imaging). Moreover, some imaging modalities are also used in an interventional setting (e.g. CT, US, gamma or optical imaging) where they provide the surgeon with real-time information during the procedure. Various tools and approaches for image-guided navigation in cancer surgery are becoming feasible today. With the development of new tracers and portable imaging devices, these advances will reinforce the role of interventional molecular imaging. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  14. Vector Velocity Imaging Using Cross-Correlation and Virtual Sources

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Kortbek, Jacob; Jensen, Jørgen Arendt

    2006-01-01

    Previous investigations have shown promising results in using the directional cross-correlation method to estimate velocity vectors. The velocity vector estimate provides information on both velocity direction and magnitude. The direction is estimated by beamforming signals along directions...

  15. Joint transform correlator fingerprint verification using complementary-reference and complementary-scene images

    Science.gov (United States)

    Kamal, Hussain A.; Cherri, Abdallah K.

    2009-04-01

    Being a popular choice among the biometric features, the fingerprint has long been used for identification and verification purposes by security agencies. In this paper, additional images are included in the input joint images in a joint transform correlator (JTC) to achieve a fast real-time fingerprint verification. In the proposed scheme, in addition to the reference and the target image, the input joint image has a complementary reference image and a complementary target image. At the correlation output of the JTC, the cross-correlation peak value between the reference and the complementary target image and the cross-correlation peak value between the complementary reference and the target images are used as the criteria to perform the recognition of the target in the input scene. It will be shown that these two cross-correlation peak values will be zero if and only if the input target matches the reference image. The scheme is employed to verify binary characters and binarized fingerprint images.

  16. Correlation between subjective and objective assessment of magnetic resonance (MR) images.

    Science.gov (United States)

    Chow, Li Sze; Rajagopal, Heshalini; Paramesran, Raveendran

    2016-07-01

    Medical Image Quality Assessment (IQA) plays an important role in assisting and evaluating the development of any new hardware, imaging sequences, pre-processing or post-processing algorithms. We have performed a quantitative analysis of the correlation between subjective and objective Full Reference - IQA (FR-IQA) on Magnetic Resonance (MR) images of the human brain, spine, knee and abdomen. We have created a MR image database that consists of 25 original reference images and 750 distorted images. The reference images were distorted with six types of distortions: Rician Noise, Gaussian White Noise, Gaussian Blur, DCT compression, JPEG compression and JPEG2000 compression, at various levels of distortion. Twenty eight subjects were chosen to evaluate the images resulting in a total of 21,700 human evaluations. The raw scores were then converted to Difference Mean Opinion Score (DMOS). Thirteen objective FR-IQA metrics were used to determine the validity of the subjective DMOS. The results indicate a high correlation between the subjective and objective assessment of the MR images. The Noise Quality Measurement (NQM) has the highest correlation with DMOS, where the mean Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are 0.936 and 0.938 respectively. The Universal Quality Index (UQI) has the lowest correlation with DMOS, where the mean PLCC and SROCC are 0.807 and 0.815 respectively. Student's T-test was used to find the difference in performance of FR-IQA across different types of distortion. The superior IQAs tested statistically are UQI for Rician noise images, Visual Information Fidelity (VIF) for Gaussian blur images, NQM for both DCT and JPEG compressed images, Peak Signal-to-Noise Ratio (PSNR) for JPEG2000 compressed images.

  17. Correlation Analysis of TEM Images of Nanocrystal Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine; Zanchet, Daniele; Alivisatos, A. Paul

    2008-05-21

    Quantitative characterizataion of images of naocrystals and nanostructures is a challenging but important task. The development and optimization of methods for the construction of complex nanostructures rely on imaging techniques. Computer programs were developed to quantify TEM images of nanocrystal/DNA nanostructures, and results are presented for heterodimers annd trimers of gold nanocrystals. The programs presented here have also been used to analyze more complex trimers and tetramers linked by branched DNA, as well as for structures made from attaching gold nanocrystals to CdSe/ZnS core-shell quantum dots. This work has the additional goal of enabling others to quickly and easily adapt the methods for their own use.

  18. Mesenchymal hamartoma of liver: Magnetic resonance imaging and histopathologic correlation

    Institute of Scientific and Technical Information of China (English)

    Bin-Bin Ye; Bing Hu; Li-Jun Wang; Hong-Sheng Liu; Yan Zou; Yu-Bin Zhou; Zhuang Kang

    2005-01-01

    AIM: To describe the imaging features of hepatic mesenchymal hamartoma with emphasis on magnetic resonance imaging (MRI) compared to histopathologic results.METHODS: Spin-echo sequence(SE),fast spin-echo sequence(FSE) were detected in 12 children (7 males, 5 females) with mesenchymal hamartoma of the liver (MHL), aged 1.2 months to 12 years,( mean age, 6.3 years) by axial, saggital, coronary plain imaging with an Elscint 2.0T MR equipment. Their main symptoms were abdominal mass (5 cases), enlarged liver (8 cases), abdominal pain (1 case) and anemia (2 cases),and negative alpha-fetoprotein. Dynamic enhancement examination was added in 2 cases.RESULTS: Six cases had single mass type of MHL, in which 3 cases had solid masses showing slight low-signal-intensity in T1WI, and irregular high-signal-intensity in T2WI, 1 case had a cystic-solid mixed mass showing several border-clear cysts in a solid mass, 2 cases had cystic masses with multi-septa. Five cases had diffuse and multifocal lesions type of MHL with its signal intensity being similar to that of the solid mass. One case had a combined diffuse and single cystic mass. In the early dynamic enhancement examination, the lesions were slightly circum-enhanced, and the center was enhanced in the later scan images. Inner hepatic vessels were compressed in 5 cases, vena cava and abdominal aortae were compressed in 3 cases. Pathological findings included fiber hyperplasia, hyaline degeneration, biliary duct hyperplasia, lobule-like array.CONCLUSION: MR imaging is a better way to differentiate and diagnose MHL. MHL may be recognized by its characteristic occurrence in infancy and MR imaging features.

  19. Digital Image Correlation of Flapping Wings for Micro-Technologies

    Science.gov (United States)

    2011-08-01

    and have served as a tutor for grade school students. I enjoy playing the tuba in the Georgia Tech Pep Band, playing classical piano , reading science...alternative that can be temporary, faster, and less expensive. DIC is a displacement measuring technique that uses a large number of images that are taken

  20. NDVI and Panchromatic Image Correlation Using Texture Analysis

    Science.gov (United States)

    2010-03-01

    18 Equation 4. Equations of the eight GLCM texture features (After Shi, 2003)....................21 Equation 5...analysis and image classification like the Grey Level Co-occurrence Matrix ( GLCM ) by Haralick, 1973. First-order and second-order texture measures on... GLCM consist of Standard Deviation, Range, Minimum, Maximum and Mean. The second order of texture measures includes Angular Second Moment, Contrast

  1. Correlation of proton MR spectroscopy and diffusion tensor imaging

    NARCIS (Netherlands)

    Irwan, R; Sijens, PE; Potze, JH; Oudkerk, M

    2005-01-01

    Proton magnetic resonance spectroscopy (H-1-MRS) provides indices of neuronal damage. Diffusion tensor imaging (DTI) relates to water diffusivity and fiber tract orientation. A method to compare H-1-MRS and DTI findings was developed, tested on phantom and applied on normal brain. Point-resolved spe

  2. Anti-tank missile TV guidance image processing system design%反坦克导弹电视制导图像处理系统设计

    Institute of Scientific and Technical Information of China (English)

    刘光灿; 白廷柱; 黄飞江

    2011-01-01

    Based on the function demand of the anti-tank missile TV guidance,the hardware of the image processing system, including a video signal pre-process module, a background subtraction circuit, a digital image processing module and other auxiliary modules, is designed. And all the functions of these modules are introduced. The software of the image processing system, including functions like image pre-process, image segmentation, target recognizing and tracking, is also designed. And especially expounded is the multimode threshold image segmentation algorithm and the image target recognizing &tracking algorithm. The experiment result shows the system that we designed can recognize and track anti-tank missile reliably.%根据反坦克导弹电视制导要求,设计了由视频预处理和背景减法电路模块、数字图像处理模块和其他辅助功能模块组成的图像处理系统硬件部分,介绍了这些模块的作用和功能;设计了包含图像预处理、目标分割、目标识别和目标跟踪等功能的图像处理系统软件部分,特别对图像目标的多模阈值分割和识别跟踪处理方法进行了阐述,给出了实验结果.实验结果表明,该系统能可靠识别和跟踪反坦克导弹.

  3. Motion de-blurring by second-order intensity-correlated imaging

    Institute of Scientific and Technical Information of China (English)

    Zunwang Bo; Wenlin Gong; Shensheng Han

    2016-01-01

    For a Hanbury Brown and Twiss system,the influence of relative motion between the object and the detection plane on the resolution of second-order intensity-correlated imaging is investigated.The analytical results,which are backed up by experiments,demonstrate that the amplitude and mode of the object's motion have no effect on the second-order intensity-correlated imaging and that high-resolution imaging can be always achieved by using a phase-retrieval method from the diffraction patterns.The use of motion de-blurring imaging for this approach is also discussed.

  4. Hip arthropathy in a patient with primary hemochromatosis: MR imaging findings with pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Papakonstantinou, Olympia [Veterans Affairs Medical Center, University of California, Department of Radiology, San Diego (United States); University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); Mohana-Borges, Aurea V.R.; Campell, Loretta; Trudell, Debra; Resnick, Donald [Veterans Affairs Medical Center, University of California, Department of Radiology, San Diego (United States); Haghighi, Parviz [Veterans Affairs Medical Center, University of California, Department of Pathology, San Diego, California (United States)

    2005-03-01

    Arthropathy is a major clinical manifestation in primary hemochromatosis, typically affecting the metacarpophalangeal joints. Hip arthropathy is not uncommon, with radiologic features resembling osteoarthritis or calcium pyrophosphate dihydrate (CPPD) crystal deposition disease. We describe the MR imaging findings of the hip in a patient with severe hip arthropathy and primary hemochromatosis and correlate them with the histopathologic findings. MR imaging showed severe degenerative changes, with large subchondral cysts and subchondral sclerosis in the femoral head and acetabulum. There was conspicuous correlation between MR imaging and pathologic findings of the resected femoral head. However, MR imaging failed to reveal intra-articular iron. (orig.)

  5. Detection of correlated fragments in a sequence of images by superimposed Fourier holograms

    Science.gov (United States)

    Pavlov, A. V.

    2016-08-01

    The problem of detecting correlated fragments in a sequence of images recorded by the superimposing holograms within the Fourier holography scheme with angular multiplication of a spatially modulated reference beam is considered. The approach to the solution of this problem is based on the properties of the variance of the image sum. It is shown that this problem can be solved by providing a constant distance between the signal and reference images when recording superimposed holograms and a partial mutual correlatedness of reference images. The detection efficiency is analysed from the point of view of estimated image data capacity, the degree of mutual correlation of reference images, and the hologram recording conditions. The results of a numerical experiment under the most complicated conditions (representation of images by realisations of homogeneous random fields) confirm the theoretical conclusions.

  6. Cystic synovial sarcomas: imaging features with clinical and histopathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Hirofumi; Araki, Nobuhito [Department of Orthopedic Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3, Nakamichi, Higashinari-Ku, 537-8511, Osaka (Japan); Sawai, Yuka [Department of Radiology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Kudawara, Ikuo [Department of Orthopedic Surgery, Osaka National Hospital, Osaka (Japan); Mano, Masayuki; Ishiguro, Shingo [Department of Pathology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Ueda, Takafumi; Yoshikawa, Hideki [Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka (Japan)

    2003-12-01

    To characterize the radiological and clinicopathologic features of cystic synovial sarcoma. Seven patients with primary cystic synovial sarcoma were evaluated. Computed tomography (CT) and magnetic resonance (MR) imaging were undertaken at the first presentation. The diagnosis of synovial sarcoma was made on the basis of histological examinations followed by molecular analysis. Radiological and clinicopathologic findings were reviewed. CT showed well-defined soft tissue mass without cortical bone erosion and invasion. Calcification was seen at the periphery of the mass in three cases. T2-weighted MR images showed multilocular inhomogeneous intensity mass in all cases, five of which showed fluid-fluid levels. On gross appearance, old and/or fresh hematomas were detected in six cases. In the one remaining case, microscopic hemorrhage in the cystic lumen was proven. Four cases had poorly differentiated areas. In five cases prominent hemangiopericytomatous vasculature was observed. Histologic grade was intermediate in one tumor and high in six. One case had a history of misdiagnosis for tarsal tunnel syndrome, one for lymphadenopathy, two for sciatica and two for hematoma. All cystic synovial sarcomas demonstrated multilocularity with well-circumscribed walls and internal septae. Synovial sarcoma should be taken into consideration in patients with deeply situated multicystic mass with triple signal intensity on T2-weighted MR imaging. (orig.)

  7. Renal cell carcinoma: histological classification and correlation with imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Muglia, Valdair F., E-mail: fmuglia@fmrp.usp.br [Universidade de Sao Paulo (CCIFM/FMRP/USP), Ribeirao Preto, SP (Brazil). Centro de Ciencias das Imagens e Fisica Medica. Faculdade de Medicina; Prando, Adilson [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Hospital Vera Cruz, Campinas, SP (Brazil). Dept. de Imaginologia

    2015-05-15

    Renal cell carcinoma (RCC) is the seventh most common histological type of cancer in the Western world and has shown a sustained increase in its prevalence. The histological classification of RCCs is of utmost importance, considering the significant prognostic and therapeutic implications of its histological subtypes. Imaging methods play an outstanding role in the diagnosis, staging and follow-up of RCC. Clear cell, papillary and chromophobe are the most common histological subtypes of RCC, and their preoperative radiological characterization, either followed or not by confirmatory percutaneous biopsy, may be particularly useful in cases of poor surgical condition, metastatic disease, central mass in a solitary kidney, and in patients eligible for molecular targeted therapy. New strategies recently developed for treating renal cancer, such as cryo and radiofrequency ablation, molecularly targeted therapy and active surveillance also require appropriate preoperative characterization of renal masses. Less common histological types, although sharing nonspecific imaging features, may be suspected on the basis of clinical and epidemiological data. The present study is aimed at reviewing the main clinical and imaging findings of histological RCC subtypes. (author)

  8. Nanoparticle flow velocimetry with image phase correlation for confocal laser scanning microscopy

    Science.gov (United States)

    Jun, Brian H.; Giarra, Matthew; Yang, Haisheng; Main, Russell; Vlachos, Pavlos P.

    2016-10-01

    We present a new particle image correlation technique for resolving nanoparticle flow velocity using confocal laser scanning microscopy (CLSM). The two primary issues that complicate nanoparticle scanning laser image correlation (SLIC)-based velocimetry are (1) the use of diffusion-dominated nanoparticles as flow tracers, which introduce a random decorrelating error into the velocity estimate, and (2) the effects of the scanning laser image acquisition, which introduces a bias error. To date, no study has quantified these errors or demonstrated a means to deal with them in SLIC velocimetry. In this work, we build upon the robust phase correlation (RPC) and existing methods of SLIC to quantify and mitigate these errors. First, we implement an ensemble RPC instead of using an ensemble standard cross-correlation, and develop a SLIC optimal filter that maximizes the correlation strength in order to reliably and accurately detect the correlation peak representing the most probable average displacement of the nanoparticles. Secondly, we developed an analytical model of the SLIC measurement bias error due to image scanning of diffusion-dominated tracer particles. We show that the bias error depends only on the ratio of the mean velocity of the tracer particles to that of the laser scanner and we use this model to correct the induced errors. We validated our technique using synthetic images and experimentally obtained SLIC images of nanoparticle flow through a micro-channel. Our technique reduced the error by up to a factor of ten compared to other SLIC algorithms for the images tested in this study. Moreover, our optimized RPC filter reduces the number of image pairs required for the convergence of the ensemble correlation by two orders of magnitude compared to the standard cross correlation. This feature has broader implications to ensemble correlation methods and should be further explored in depth in the future.

  9. Next Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer Tissue Specimens for Enhanced Clinical Guidance

    Science.gov (United States)

    2016-07-01

    AWARD NUMBER: W81XWH- 14-1-0192 TITLE: Next-Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer...DATES COVERED 4. TITLE AND SUBTITLE Next-Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer Tissue

  10. Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaowei; Servaes, Sabah; Darge, Kassa [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, The Perelman School of Medicine, Philadelphia, PA (United States); McCullough, William P. [University of Virginia Health System, Department of Radiology and Medical Imaging, Charlottesville, VA (United States); Mecca, Patricia [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2016-11-15

    Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash {sup registered} CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDI{sub vol}) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality by

  11. Diffusion-relaxation correlation spectroscopic imaging: A multidimensional approach for probing microstructure.

    Science.gov (United States)

    Kim, Daeun; Doyle, Eamon K; Wisnowski, Jessica L; Kim, Joong Hee; Haldar, Justin P

    2017-03-19

    To propose and evaluate a novel multidimensional approach for imaging subvoxel tissue compartments called Diffusion-Relaxation Correlation Spectroscopic Imaging. Multiexponential modeling of MR diffusion or relaxation data is commonly used to infer the many different microscopic tissue compartments that contribute signal to macroscopic MR imaging voxels. However, multiexponential estimation is known to be difficult and ill-posed. Observing that this ill-posedness is theoretically reduced in higher dimensions, diffusion-relaxation correlation spectroscopic imaging uses a novel multidimensional imaging experiment that jointly encodes diffusion and relaxation information, and then uses a novel constrained reconstruction technique to generate a multidimensional diffusion-relaxation correlation spectrum for every voxel. The peaks of the multidimensional spectrum are expected to correspond to the distinct tissue microenvironments that are present within each macroscopic imaging voxel. Using numerical simulations, experiment data from a custom-built phantom, and experiment data from a mouse model of traumatic spinal cord injury, diffusion-relaxation correlation spectroscopic imaging is demonstrated to provide substantially better multicompartment resolving power compared to conventional diffusion- and relaxation-based methods. The diffusion-relaxation correlation spectroscopic imaging approach provides powerful new capabilities for resolving the different components of multicompartment tissue models, and can be leveraged to significantly expand the insights provided by MRI in studies of tissue microstructure. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Are planets and debris correlated? Herschel imaging of 61 Vir.

    Science.gov (United States)

    Wyatt, M.; Kennedy, G. M.; Moro-Martín, A.

    2012-03-01

    Debris disk studies with Spitzer found no evidence of a correlation between (giant) exoplanets and circumsteallar dust. Since these studies were carried out, a new parameter space of fainter and colder debris disks has been opened up by the Herschel Space Observatory -- improving our knowledge of the disk frequency, in particular around cooler stars -- and simultaneously higher precision doppler surveys have allowed the detection of lower-mass planets, the frequency of which can now be characterized.Ê Here, we revisit the planet-debris disk correlation using Herschel data from the DEBRIS and DUNES surveys. We assess whether the frequency and properties of disks around stars with high-mass and low-mass planets are any different from a control sample, and if these differences can be used to shed light on planet formation mechanisms and to ÒpredictÓ the presence of planets around stars with certain disk characteristics.

  13. Parallax Measurement Using an Image Matched Filter Correlator

    Science.gov (United States)

    1975-04-01

    was also necessary to isolate the laser by installing rubber pads under it and by suspending the umbilical cord in order to eliminate vibrations...mirror. This assembly tended to vibrate and it proved necessary to remove it and replace the small mirror by a larger mirror clamped directly to...where a ^ b. Consider the situation in Figure A-l where a hologram is re- corded in plane H. The correlations are formed by lens Lj in

  14. On the loss-of-correlation due to PIV image noise

    Science.gov (United States)

    Scharnowski, Sven; Kähler, Christian J.

    2016-07-01

    The effect of image noise on the uncertainty of velocity fields measured with particle image velocimetry (PIV) is still an unsolved problem. Image noise reduces the correlation signal and thus affects the estimation of the particle image displacement. However, a systematic quantification of the effect of the noise level on the loss-of-correlation is missing. In this work, a new method is proposed to estimate the loss-of-correlation due to image noise F_{σ } from the autocorrelation function of PIV images. Furthermore, a new definition of the signal-to-noise ratio (SNR) for PIV images is suggested, which results in a bijective relation between F_{σ } and SNR. Based on the newly defined SNR, it becomes possible to estimate the signal level and the noise level itself. The presented method is very general because the estimation of F_{σ } and SNR works independently of various parameters, including the particle image intensity, the particle image density, the particle image size, the image noise distributions and the laser light-sheet profile. The findings lead to an extension of the fundamental PIV equation N=NI FI FO F_{Δ } and enable PIV users to optimize their measurement setup with respect to the image noise and not only based on the loss-of-correlation due to in-plane motion, out-of-plane motion and displacement gradients. Furthermore, the new definition of SNR allows for a characterization and comparison of PIV images. The new approaches are validated by using synthetic images, and the predictions are confirmed by using experimental data.

  15. Contrast-enhanced breast ultrasonography: imaging features with histopathologic correlation.

    Science.gov (United States)

    Liu, He; Jiang, Yu-Xin; Liu, Ji-Bin; Zhu, Qing-Li; Sun, Qiang; Chang, Xiao-Yan

    2009-07-01

    The purpose of this study was to identify histopathologic correlates for the varied appearances of breast masses on contrast-enhanced ultrasonography (CEUS). Contrast-enhanced ultrasonography was performed in 104 patients (age range, 19-86 years) after administration of a sulfur hexafluoride microbubble contrast agent, and enhancement patterns were classified as no enhancement, peripheral enhancement, homogeneous enhancement, regional enhancement, and heterogeneous enhancement. All patients' histologic slides were reviewed and correlated with CEUS findings. In malignant masses, heterogeneous enhancement corresponded to tumor cell cords or clusters in a variable amount of desmoplastic stroma. Homogeneous enhancement corresponded to hypercellularity in the whole mass, or ductal carcinoma in situ (DCIS) was predominant. Regional enhancement corresponded to a DCIS component. Peripheral enhancement corresponded to a DCIS component, hypercellularity or adenosis at the periphery, and low-degree cellularity, degeneration, fibrosis, or necrosis in the center. No enhancement was present in 1 case of low-grade DCIS. In benign masses, heterogeneous enhancement corresponded to loose cell proliferation in a more sclerotic stroma. Homogeneous enhancement corresponded to diffuse hypercellularity, an inflammatory cell infiltrate, or intraductal papilloma. Regional enhancement corresponded to focal hypercellularity or intraductal papilloma within a dilated duct. No enhancement corresponded to desmoplastic stroma. Peripheral enhancement was shown in 1 case of granulomatous mastitis with an inflammatory infiltrate at the periphery and necrosis in the center. Breast mass CEUS findings correlated with histologic features.

  16. Particle image velocimetry correlation signal-to-noise ratio metrics and measurement uncertainty quantification

    CERN Document Server

    Xue, Zhenyu; Vlachos, Pavlos P

    2014-01-01

    In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of the particle image pattern superimposed on a variety of noise sources. The signal-to-noise-ratio (SNR) strength governs the resulting PIV cross correlation and ultimately the accuracy and uncertainty of the resulting PIV measurement. Hence we posit that correlation SNR metrics calculated from the correlation plane can be used to quantify the quality of the correlation and the resulting uncertainty of an individual measurement. In this paper we present a framework for evaluating the correlation SNR using a set of different metrics, which in turn are used to develop models for uncertainty estimation. The SNR metrics and corresponding models presented herein are expanded to be applicable to both standard and filtered correlations. In addition, the notion of a valid measurement is redefined with respect to the correlation peak width in order to be consistent with uncertainty quantification principles and distinct ...

  17. The impact of breathing guidance and prospective gating during thoracic 4DCT imaging: an XCAT study utilizing lung cancer patient motion

    Science.gov (United States)

    Pollock, Sean; Kipritidis, John; Lee, Danny; Bernatowicz, Kinga; Keall, Paul

    2016-09-01

    Two interventions to overcome the deleterious impact irregular breathing has on thoracic-abdominal 4D computed tomography (4DCT) are (1) facilitating regular breathing using audiovisual biofeedback (AVB), and (2) prospective respiratory gating of the 4DCT scan based on the real-time respiratory motion. The purpose of this study was to compare the impact of AVB and gating on 4DCT imaging using the 4D eXtended cardiac torso (XCAT) phantom driven by patient breathing patterns. We obtained simultaneous measurements of chest and abdominal walls, thoracic diaphragm, and tumor motion from 6 lung cancer patients under two breathing conditions: (1) AVB, and (2) free breathing. The XCAT phantom was used to simulate 4DCT acquisitions in cine and respiratory gated modes. 4DCT image quality was quantified by artefact detection (NCCdiff), mean square error (MSE), and Dice similarity coefficient of lung and tumor volumes (DSClung, DSCtumor). 4DCT acquisition times and imaging dose were recorded. In cine mode, AVB improved NCCdiff, MSE, DSClung, and DSCtumor by 20% (p  =  0.008), 23% (p  cine acquisitions by 15 s and reduced respiratory gated acquisitions by 31 s. AVB increased imaging dose in cine mode by 10%. This was the first study to quantify the impact of breathing guidance and respiratory gating on 4DCT imaging. With the exception of DSCtumor in respiratory gated mode, AVB significantly improved 4DCT image analysis metrics in both cine and respiratory gated modes over free breathing. The results demonstrate that AVB and respiratory-gating can be beneficial interventions to improve 4DCT for cancer radiation therapy, with the biggest gains achieved when these interventions are used simultaneously.

  18. Detection and correction of blinking bias in image correlation transport measurements of quantum dot tagged macromolecules

    DEFF Research Database (Denmark)

    Durisic, Nela; Bachir, Alexia I; Kolin, David L;

    2007-01-01

    Semiconductor nanocrystals or quantum dots (QDs) are becoming widely used as fluorescent labels for biological applications. Here we demonstrate that fluorescence fluctuation analysis of their diffusional mobility using temporal image correlation spectroscopy is highly susceptible to systematic e...

  19. The many faces of pulmonary aspergillosis: Imaging findings with pathologic correlation

    Directory of Open Access Journals (Sweden)

    Prasad Panse

    2016-12-01

    Conclusion: In this article we correlate the radiologic findings of the various pulmonary manifestations of Aspergillus infection with their pathologic features to better understand the disease process and better comprehend the associated imaging patterns.

  20. Large Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum

    CERN Document Server

    Altman, A; Corndorf, E; Kumar, P; Barbosa, G A; Altman, Adam R.; K\\"{o}pr\\"{u}l\\"{u}, Kahraman G.; Corndorf, Eric; Kumar, Prem; Barbosa, Geraldo A.

    2004-01-01

    Through scanned coincidence counting, we probe the quantum image produced by parametric down conversion with a pump beam carrying orbital angular momentum. Nonlocal spatial correlations are manifested through splitting of the coincidence spot into two.

  1. Field methods to measure surface displacement and strain with the Video Image Correlation method

    Science.gov (United States)

    Maddux, Gary A.; Horton, Charles M.; Mcneill, Stephen R.; Lansing, Matthew D.

    1994-01-01

    The objective of this project was to develop methods and application procedures to measure displacement and strain fields during the structural testing of aerospace components using paint speckle in conjunction with the Video Image Correlation (VIC) system.

  2. MO-DE-210-06: Development of a Supercompounded 3D Volumetric Ultrasound Image Guidance System for Prone Accelerated Partial Breast Irradiation (APBI)

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Hrycushko, B; Zhao, B; Jiang, S; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: For early-stage breast cancer, accelerated partial breast irradiation (APBI) is a cost-effective breast-conserving treatment. Irradiation in a prone position can mitigate respiratory induced breast movement and achieve maximal sparing of heart and lung tissues. However, accurate dose delivery is challenging due to breast deformation and lumpectomy cavity shrinkage. We propose a 3D volumetric ultrasound (US) image guidance system for accurate prone APBI Methods: The designed system, set beneath the prone breast board, consists of a water container, an US scanner, and a two-layer breast immobilization cup. The outer layer of the breast cup forms the inner wall of water container while the inner layer is attached to patient breast directly to immobilization. The US transducer scans is attached to the outer-layer of breast cup at the dent of water container. Rotational US scans in a transverse plane are achieved by simultaneously rotating water container and transducer, and multiple transverse scanning forms a 3D scan. A supercompounding-technique-based volumetric US reconstruction algorithm is developed for 3D image reconstruction. The performance of the designed system is evaluated with two custom-made gelatin phantoms containing several cylindrical inserts filled in with water (11% reflection coefficient between materials). One phantom is designed for positioning evaluation while the other is for scaling assessment. Results: In the positioning evaluation phantom, the central distances between the inserts are 15, 20, 30 and 40 mm. The distances on reconstructed images differ by −0.19, −0.65, −0.11 and −1.67 mm, respectively. In the scaling evaluation phantom, inserts are 12.7, 19.05, 25.40 and 31.75 mm in diameter. Measured inserts’ sizes on images differed by 0.23, 0.19, −0.1 and 0.22 mm, respectively. Conclusion: The phantom evaluation results show that the developed 3D volumetric US system can accurately localize target position and determine

  3. Analytical shape determination of fiber-like objects with Virtual Image Correlation

    CERN Document Server

    Semin, Benoit; Auradou, Harold

    2010-01-01

    This paper reports a method allowing for the determination of the shape of deformed fiber-like objects. Compared to existing methods, it provides analytical results including the local slope and curvature which are of first importance, for instance, in beam mechanics. The presented VIC (Virtual Image Correlation) method consists in looking for the best correlation between the image of the fiber-like object and a virtual beam image, using an algorithm close to the Digital Image Correlation method developed in experimental solid mechanics. The computation only involves the part of the image in the vicinity of the fiber: the method is thus insensitive to the picture background and the computational cost remains low. Two examples are reported: the first proves the precision of the method, the second its ability to identify a complex shape with multiple loops.

  4. Rotational X-ray angiography: a method for intra-operative volume imaging of the left-atrium and pulmonary veins for atrial fibrillation ablation guidance

    Science.gov (United States)

    Manzke, R.; Zagorchev, L.; d'Avila, A.; Thiagalingam, A.; Reddy, V. Y.; Chan, R. C.

    2007-03-01

    Catheter-based ablation in the left atrium and pulmonary veins (LAPV) for treatment of atrial fibrillation in cardiac electrophysiology (EP) are complex and require knowledge of heart chamber anatomy. Electroanatomical mapping (EAM) is typically used to define cardiac structures by combining electromagnetic spatial catheter localization with surface models which interpolate the anatomy between EAM point locations in 3D. Recently, the incorporation of pre-operative volumetric CT or MR data sets has allowed for more detailed maps of LAPV anatomy to be used intra-operatively. Preoperative data sets are however a rough guide since they can be acquired several days to weeks prior to EP intervention. Due to positional and physiological changes, the intra-operative cardiac anatomy can be different from that depicted in the pre-operative data. We present an application of contrast-enhanced rotational X-ray imaging for CT-like reconstruction of 3D LAPV anatomy during the intervention itself. Depending on the heart size a single or two selective contrastenhanced rotational acquisitions are performed and CT-like volumes are reconstructed with 3D filtered back projection. In case of dual injection, the two volumes depicting the left and right portions of the LAPV are registered and fused. The data sets are visualized and segmented intra-procedurally to provide anatomical data and surface models for intervention guidance. Our results from animal and human experiments indicate that the anatomical information from intra-operative CT-like reconstructions compares favorably with preacquired imaging data and can be of sufficient quality for intra-operative guidance.

  5. Imaging Three Dimensional Two-Particle Correlations for Heavy-Ion Reaction Studies

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D; Enokizono, A; Heffner, M; Soltz, R; Danielewicz, P; Pratt, S

    2005-06-27

    The authors report an extension of the source imaging method for analyzing three-dimensional sources from three-dimensional correlations. The technique consists of expanding the correlation data and the underlying source function in spherical harmonics and inverting the resulting system of one-dimensional integral equations. With this strategy, they can image the source function quickly, even with the extremely large data sets common in three-dimensional analyses.

  6. Fungal splenic abscesses in the immunosuppressed patient. Correlation of imaging modalities

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, T.E.; Evans, D.G.; Schiffman, H.; Ashburn, W.L.

    1987-01-01

    A patient with fungal splenic abscesses is presented in whom multiple noninvasive diagnostic imaging modalities were available for correlation. Of the five imaging modalities, three (Gallium-67, ultrasound and computed tomography) were diagnostically useful, while two (liver-spleen scan and In-111 white blood cell scan) were not as useful. This case also stresses the use of repeated studies correlating with clinical impressions to obtain an accurate diagnosis in a potentially life-threatening condition such as splenic abscess.

  7. Submaximal delayed-onset muscle soreness: correlations between MR imaging findings and clinical measures

    Science.gov (United States)

    Evans, G. F.; Haller, R. G.; Wyrick, P. S.; Parkey, R. W.; Fleckenstein, J. L.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    PURPOSE: To assess correlations between muscle edema on magnetic resonance (MR) images and clinical indexes of muscle injury in delayed-onset muscle soreness (DOMS) produced by submaximal exercise protocols. MATERIALS AND METHODS: Sixteen subjects performed 36 elbow flexions ("biceps curls") at one of two submaximal workloads that emphasized eccentric contractions. Changes in MR imaging findings, plasma levels of creatine kinase, and pain scores were correlated. RESULTS: Both exercise protocols produced DOMS in all subjects. The best correlation was between change in creatine kinase level and volume of muscle edema on MR images, regardless of the workload. Correlations tended to be better with the easier exercise protocol. CONCLUSION: Whereas many previous studies of DOMS focused on intense exercise protocols to ensure positive results, the present investigation showed that submaximal workloads are adequate to produce DOMS and that correlations between conventionally measured indexes of injury may be enhanced at lighter exercise intensities.

  8. Correlation of diagnostic ultrasound and radionuclide imaging in scrotal disease

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.C.P.; Holder, L.E.; Kaplan, G.N.

    1984-01-01

    A retrospective study was performed to evaluate the usefulness of scrotal ultrasound imaging (SU) and radionuclide scrotal imaging (RSI) in 43 patients (pts), age: 16-75. Twenty-two of them complained of scrotal pain; 18 had a scrotal mass; and 4 had a history of trauma. The final diagnoses were conformed by surgery (n = 21) and long-term follow-up (n = 22) and included 4 late phase and 1 early testicular torsion (TT), 11 acute epididymitis (AE), 4 subacute epididymitis (SE), 5 malignant tumors, 3 testicular atrophy, 2 intratesticular hematomas, 10 hydroceles or other cystic lesions, and miscellaneous. In pts with scrotal pain, 3/4 with late phase TT were correctly diagnosed, while one pt with early TT and 11/15 with AE or SE were not diagnosed by SU. All of them were correctly diagnosed with RSI except one with scrotal cyst. SU was able to separate cystic masses (n = 10) from solid masses (n = 6), but cannot separate malignant from benign lesions. SU was excellent in detecting 19 hydroceles and 2 intratesticular hematomas, while 3 lesions < 1 cm. were not seen in RSI. The authors concluded that SU is useful in pts with scrotal mass to separate solid from cystic lesions. However, SU is unable to differentiate the acute epididymitis from early testicular torsion. In pts with acute scrotal pain, SU is not helpful and RSI should still be the first study performed.

  9. Correlative nanoscale imaging of actin filaments and their complexes.

    Science.gov (United States)

    Sharma, Shivani; Zhu, Huanqi; Grintsevich, Elena E; Reisler, Emil; Gimzewski, James K

    2013-07-01

    Actin remodeling is an area of interest in biology in which correlative microscopy can bring a new way to analyze protein complexes at the nanoscale. Advances in EM, X-ray diffraction, fluorescence, and single molecule techniques have provided a wealth of information about the modulation of the F-actin structure and its regulation by actin binding proteins (ABPs). Yet, there are technological limitations of these approaches to achieving quantitative molecular level information on the structural and biophysical changes resulting from ABPs interaction with F-actin. Fundamental questions about the actin structure and dynamics and how these determine the function of ABPs remain unanswered. Specifically, how local and long-range structural and conformational changes result in ABPs induced remodeling of F-actin needs to be addressed at the single filament level. Advanced, sensitive and accurate experimental tools for detailed understanding of ABP-actin interactions are much needed. This article discusses the current understanding of nanoscale structural and mechanical modulation of F-actin by ABPs at the single filament level using several correlative microscopic techniques, focusing mainly on results obtained by Atomic Force Microscopy (AFM) analysis of ABP-actin complexes.

  10. Research on the aero-thermal effects by 3D analysis model of the optical window of the infrared imaging guidance

    Science.gov (United States)

    Xu, Bo; Li, Lin; Zhu, Ying

    2014-11-01

    Researches on hypersonic vehicles have been a hotspot in the field of aerospace because of the pursuits for higher speed by human being. Infrared imaging guidance is playing a very important role in modern warfare. When an Infrared Ray(IR) imaging guided missile is flying in the air at high speed, its optical dome suffers from serious aero-optic effects because of air flow. The turbulence around the dome and the thermal effects of the optical window would cause disturbance to the wavefront from the target. Therefore, detected images will be biased, dithered and blurred, and the capabilities of the seeker for detecting, tracking and recognizing are weakened. In this paper, methods for thermal and structural analysis with Heat Transfer and Elastic Mechanics are introduced. By studying the aero-thermal effects and aero-thermal radiation effects of the optical window, a 3D analysis model of the optical window is established by using finite element method. The direct coupling analysis is employed as a solving strategy. The variation regularity of the temperature field is obtained. For light with different incident angles, the influence on the ray propagation caused by window deformation is analyzed with theoretical calculation and optical/thermal/structural integrated analysis method respectively.

  11. Diagnosing cysts with correlation coefficient images from 2-dimensional freehand elastography.

    Science.gov (United States)

    Booi, Rebecca C; Carson, Paul L; O'Donnell, Matthew; Richards, Michael S; Rubin, Jonathan M

    2007-09-01

    We compared the diagnostic potential of using correlation coefficient images versus elastograms from 2-dimensional (2D) freehand elastography to characterize breast cysts. In this preliminary study, which was approved by the Institutional Review Board and compliant with the Health Insurance Portability and Accountability Act, we imaged 4 consecutive human subjects (4 cysts, 1 biopsy-verified benign breast parenchyma) with freehand 2D elastography. Data were processed offline with conventional 2D phase-sensitive speckle-tracking algorithms. The correlation coefficient in the cyst and surrounding tissue was calculated, and appearances of the cysts in the correlation coefficient images and elastograms were compared. The correlation coefficient in the cysts was considerably lower (14%-37%) than in the surrounding tissue because of the lack of sufficient speckle in the cysts, as well as the prominence of random noise, reverberations, and clutter, which decorrelated quickly. Thus, the cysts were visible in all correlation coefficient images. In contrast, the elastograms associated with these cysts each had different elastographic patterns. The solid mass in this study did not have the same high decorrelation rate as the cysts, having a correlation coefficient only 2.1% lower than that of surrounding tissue. Correlation coefficient images may produce a more direct, reliable, and consistent method for characterizing cysts than elastograms.

  12. Application of strong zerotrees to compression of correlated MRI image sets

    Science.gov (United States)

    Soloveyko, Olexandr M.; Musatenko, Yurij S.; Kurashov, Vitalij N.; Dubikovskiy, Vladislav A.

    2001-08-01

    It is known that gainful interframe compression of magnetic resonance(MR) image set is quite difficult problem. Only few authors reported gain in performance of compressors like that comparing to separate compression of every MR image from the set (intraframe compression). Known reasons of such a situation are significant noise in MR images and presence of only low frequency correlations in images of the set. Recently we suggested new method of correlated image set compression based on Karhunen-Loeve(KL) transform and special EZW compression scheme with strong zerotrees(KLSEZW). KLSEZW algorithm showed good results in compression of video sequences with low and middle motion even without motion compensation. The paper presents successful application of the basic method and its modification to interframe MR image compression problem.

  13. A Generic and Efficient E-field Parallel Imaging Correlator for Next-Generation Radio Telescopes

    CERN Document Server

    Thyagarajan, Nithyanandan; Bowman, Judd D; Morales, Miguel F

    2015-01-01

    Modern radio telescopes are favoring densely packed array layouts consisting of large numbers of antennas ($N_\\textrm{a}\\gtrsim 1000$). Since the complexity of traditional correlators scales as $\\mathcal{O}(N_\\textrm{a}^2)$, there will be a steep cost for realizing the full imaging potential of these powerful instruments. Through our generic and efficient E-field Parallel Imaging Correlator (EPIC), we present the first software demonstration of a generalized direct imaging algorithm known as the Modular Optimal Frequency Fourier (MOFF) imager. It takes advantage of the multiplication-convolution theorem of Fourier transforms. Not only does it bring down the cost for dense layouts to $\\mathcal{O}(N_\\textrm{a}\\log_2 N_\\textrm{a})$ but can also image from irregularly arranged heterogeneous antenna arrays. EPIC is highly modular and parallelizable, implemented in object oriented Python, and publicly available. We have verified the images produced to be equivalent to those produced using traditional techniques. We...

  14. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications

    Science.gov (United States)

    O'Shea, Tuathan; Bamber, Jeffrey; Fontanarosa, Davide; van der Meer, Skadi; Verhaegen, Frank; Harris, Emma

    2016-04-01

    Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by

  15. Personality and individual difference correlates of positive body image.

    Science.gov (United States)

    Swami, Viren; Hadji-Michael, Maria; Furnham, Adrian

    2008-09-01

    In the present study, 101 women and 106 men from a community sample of British adults completed the Body Appreciation Scale (BAS), along with a battery of individual difference measures and demographics. Contrary to previous findings, there were no sex differences in BAS scores, either before or after controlling for individual differences in other measures. The results also showed that, moderating for participants' sex, self-assessed attractiveness, educational qualifications, neuroticism, extraversion, and BMI were all significant predictors of body appreciation. In addition, higher media consumption and higher (male-stereotypic) instrumentality were associated with, but did not predict, higher body appreciation. These results are discussed in relation to the extant work on body image.

  16. Fatigue Crack Closure Analysis Using Digital Image Correlation

    Science.gov (United States)

    Leser, William P.; Newman, John A.; Johnston, William M.

    2010-01-01

    Fatigue crack closure during crack growth testing is analyzed in order to evaluate the critieria of ASTM Standard E647 for measurement of fatigue crack growth rates. Of specific concern is remote closure, which occurs away from the crack tip and is a product of the load history during crack-driving-force-reduction fatigue crack growth testing. Crack closure behavior is characterized using relative displacements determined from a series of high-magnification digital images acquired as the crack is loaded. Changes in the relative displacements of features on opposite sides of the crack are used to generate crack closure data as a function of crack wake position. For the results presented in this paper, remote closure did not affect fatigue crack growth rate measurements when ASTM Standard E647 was strictly followed and only became a problem when testing parameters (e.g., load shed rate, initial crack driving force, etc.) greatly exceeded the guidelines of the accepted standard.

  17. An augmented parametric response map with consideration of image registration error: towards guidance of locally adaptive radiotherapy

    Science.gov (United States)

    Lausch, Anthony; Chen, Jeff; Ward, Aaron D.; Gaede, Stewart; Lee, Ting-Yim; Wong, Eugene

    2014-11-01

    Parametric response map (PRM) analysis is a voxel-wise technique for predicting overall treatment outcome, which shows promise as a tool for guiding personalized locally adaptive radiotherapy (RT). However, image registration error (IRE) introduces uncertainty into this analysis which may limit its use for guiding RT. Here we extend the PRM method to include an IRE-related PRM analysis confidence interval and also incorporate multiple graded classification thresholds to facilitate visualization. A Gaussian IRE model was used to compute an expected value and confidence interval for PRM analysis. The augmented PRM (A-PRM) was evaluated using CT-perfusion functional image data from patients treated with RT for glioma and hepatocellular carcinoma. Known rigid IREs were simulated by applying one thousand different rigid transformations to each image set. PRM and A-PRM analyses of the transformed images were then compared to analyses of the original images (ground truth) in order to investigate the two methods in the presence of controlled IRE. The A-PRM was shown to help visualize and quantify IRE-related analysis uncertainty. The use of multiple graded classification thresholds also provided additional contextual information which could be useful for visually identifying adaptive RT targets (e.g. sub-volume boosts). The A-PRM should facilitate reliable PRM guided adaptive RT by allowing the user to identify if a patient’s unique IRE-related PRM analysis uncertainty has the potential to influence target delineation.

  18. Fast correlation technique for glacier flow monitoring by digital camera and space-borne SAR images

    Directory of Open Access Journals (Sweden)

    Moreau Luc

    2011-01-01

    Full Text Available Abstract Most of the image processing techniques have been first proposed and developed on small size images and progressively applied to larger and larger data sets resulting from new sensors and application requirements. In geosciences, digital cameras and remote sensing images can be used to monitor glaciers and to measure their surface velocity by different techniques. However, the image size and the number of acquisitions to be processed to analyze time series become a critical issue to derive displacement fields by the conventional correlation technique. In this paper, a mathematical optimization of the classical normalized cross-correlation and its implementation are described to overcome the computation time and window size limitations. The proposed implementation is performed with a specific memory management to avoid most of the temporary result re-computations. The performances of the software resulting from this optimization are assessed by computing the correlation between optical images of a serac fall, and between Synthetic Aperture Radar (SAR images of Alpine glaciers. The optical images are acquired by a digital camera installed near the Argentière glacier (Chamonix, France and the SAR images are acquired by the high resolution TerraSAR-X satellite over the Mont-Blanc area. The results illustrate the potential of this implementation to derive dense displacement fields with a computational time compatible with the camera images acquired every 2 h and with the size of the TerraSAR-X scenes covering 30 × 50 km2.

  19. AN IMPROVED CROSS-CORRELATION METHOD FOR (DIGITAL) PARTICLE IMAGE VELOCIMETRY

    Institute of Scientific and Technical Information of China (English)

    翁文国; 范维澄; 廖光煊; 秦俊

    2001-01-01

    An improved method that brings enhancement in accuracy for the interrogation of (digital) PIV images is described in this paper. This method is based on cross-correlation with discrete window offset, which makes use of a translation of the second interrogation window and rebuilds it considering rotation and shear.The displacement extracted from PIV images is predicted and corrected by means of an iterative procedure. In addition, the displacement vectors are validated at each intermediate of the iteration process. The present improved cross-correlation method is compared with the conventional one in accuracy by interrogation of synthetic and real (digital) PIV images and the interrogation results are discussed.

  20. Metabolic brain imaging correlated with clinical features of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, J.; Alavi, A.; Dann, R.; Kushner, M.; Chawluk, J.; Powlis, W.; Reivich, M.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1 enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.

  1. Measure of Information Content of Remotely Sensed Images Accounting for Spatial Correlation

    Directory of Open Access Journals (Sweden)

    ZHANG Ying

    2015-10-01

    Full Text Available A measure is proposed based on the information theory and geostatistics to evaluate information content in remotely sensed images. The method is based on the additive noise model and maximum mutual information.These factors affecting the information content have been taken into account, such as noise, spatial correlation and so on. It is suitable for measuring the information content in optical images that have robust spatial correlation with different land cover types. An experiment was performed on a Landsat TM image with three different kinds of land cover types (city, farmland and mountain. The result shows that city has the most information content. It also proves that there is a log positive correlation between information content and the variance of the images.

  2. Development of a Dedicated Radiotherapy Unit with Real-Time Image Guidance and Motion Management for Accelerated Partial Breast Irradiation

    Science.gov (United States)

    2012-08-01

    Fudan Universtiy Cancer Hospital, Shanghai, Shanghai, CN, (2) UC San Francisco , San Francisco , CA Purpose: The accurate dose recalculation requires...amorphous silicon ( aSi ) flat panel detector (Varian Medical Systems) of an On-Board Imager (Varian Medical Systems) was modeled using BEAMnrc/EGSnrc

  3. Application of digital-image-correlation techniques in analysing cracked cylindrical pipes

    Indian Academy of Sciences (India)

    Shih-Heng Tung; Chung-Huan Sui

    2010-10-01

    Cracks induced by external excitation on a material that has defects may generate the stress concentration phenomenon. The stress concentration behaviour causes local buckling, which will induce the damage of the members made of this material. Thus, developing techniques to monitor the strain variation of a cracked member is an important study. The traditional technique (such as strain gauge) can only measure the average strain of a region. The strain variation within this region cannot be determined. Therefore, it cannot sufficiently reflect the mechanical behaviour surrounding the crack. The Digital image correlation technique recently developed is an image identification technique to be applied for measuring the object deformation. This technique is capable of correlating the digital images of an object before and after deformation and further determining the displacement and strain field of an object based on the corresponding position on the image. In this work, this technique is applied to analyse the mechanics of a cylindrical pipe experiencing crack destruction. The fixing device is used to avoid shaking the specimen during the pressurizing process. The image capture instruments are fixed on the stable frame to measure the deformation of specimen accurately. Through the cylindrical pipe cracking test, the capacity of the digital image correlation technique for surveying the strain variation in a tiny region is validated. Then, the experimental results obtained using the digital image correlation analysis is used to demonstrate the crack development tendency in defect materials and the stress concentration zone.

  4. Correlation of the same fields imaged in the TEM, confocal, LM, and microCT by image registration: from specimen preparation to displaying a final composite image.

    Science.gov (United States)

    Keene, Douglas R; Tufa, Sara F; Wong, Melissa H; Smith, Nicholas R; Sakai, Lynn Y; Horton, William A

    2014-01-01

    Correlated imaging is the process of imaging a specimen with two complementary modalities and then registering and overlaying the fields obtained in each modality to create a composite view. One of the images is made somewhat transparent, allowing detail in the underlying image to be visible and assisting in the registration of the two images. As an example, an image localizing a specific tissue component by fluorescence may be overlaid atop a TEM image of the same field. The resulting composite image would demonstrate specific ultrastructural features in the high-resolution TEM field, which are colorized in the overlay. Other examples include composites from MicroCT or soft X-ray images overlaid atop light microscopy or TEM images. Automated image registration may be facilitated by a variety of sophisticated computer programs utilized by high-throughput laboratories. This chapter is meant for the more occasional user wishing to align images manually. ImageJ is a public domain, image processing program developed at the National Institutes of Health and is available to anyone as a free download. ImageJ performs marvelously well for the purpose of image registration; therefore, step-by-step instructions are included here. Specimen handling, including fixation and choice of embedding media, is not straightforward for correlative imaging. A step-by-step description of the protocols which work in our laboratory is included for simultaneous localization in LM, EM and micro-CT, as well as maintaining GFP emission in tissue embedded for TEM. © 2014 Elsevier Inc. All rights reserved.

  5. A combined method for correlative 3D imaging of biological samples from macro to nano scale

    Science.gov (United States)

    Kellner, Manuela; Heidrich, Marko; Lorbeer, Raoul-Amadeus; Antonopoulos, Georgios C.; Knudsen, Lars; Wrede, Christoph; Izykowski, Nicole; Grothausmann, Roman; Jonigk, Danny; Ochs, Matthias; Ripken, Tammo; Kühnel, Mark P.; Meyer, Heiko

    2016-10-01

    Correlative analysis requires examination of a specimen from macro to nano scale as well as applicability of analytical methods ranging from morphological to molecular. Accomplishing this with one and the same sample is laborious at best, due to deformation and biodegradation during measurements or intermediary preparation steps. Furthermore, data alignment using differing imaging techniques turns out to be a complex task, which considerably complicates the interconnection of results. We present correlative imaging of the accessory rat lung lobe by combining a modified Scanning Laser Optical Tomography (SLOT) setup with a specially developed sample preparation method (CRISTAL). CRISTAL is a resin-based embedding method that optically clears the specimen while allowing sectioning and preventing degradation. We applied and correlated SLOT with Multi Photon Microscopy, histological and immunofluorescence analysis as well as Transmission Electron Microscopy, all in the same sample. Thus, combining CRISTAL with SLOT enables the correlative utilization of a vast variety of imaging techniques.

  6. Automatic localization of endoscope in intraoperative CT image: A simple approach to augmented reality guidance in laparoscopic surgery.

    Science.gov (United States)

    Bernhardt, Sylvain; Nicolau, Stéphane A; Agnus, Vincent; Soler, Luc; Doignon, Christophe; Marescaux, Jacques

    2016-05-01

    The use of augmented reality in minimally invasive surgery has been the subject of much research for more than a decade. The endoscopic view of the surgical scene is typically augmented with a 3D model extracted from a preoperative acquisition. However, the organs of interest often present major changes in shape and location because of the pneumoperitoneum and patient displacement. There have been numerous attempts to compensate for this distortion between the pre- and intraoperative states. Some have attempted to recover the visible surface of the organ through image analysis and register it to the preoperative data, but this has proven insufficiently robust and may be problematic with large organs. A second approach is to introduce an intraoperative 3D imaging system as a transition. Hybrid operating rooms are becoming more and more popular, so this seems to be a viable solution, but current techniques require yet another external and constraining piece of apparatus such as an optical tracking system to determine the relationship between the intraoperative images and the endoscopic view. In this article, we propose a new approach to automatically register the reconstruction from an intraoperative CT acquisition with the static endoscopic view, by locating the endoscope tip in the volume data. We first describe our method to localize the endoscope orientation in the intraoperative image using standard image processing algorithms. Secondly, we highlight that the axis of the endoscope needs a specific calibration process to ensure proper registration accuracy. In the last section, we present quantitative and qualitative results proving the feasibility and the clinical potential of our approach.

  7. Development of Image Guidance Techniques of Body Gamma Knife%体部伽玛刀图像引导技术的发展

    Institute of Scientific and Technical Information of China (English)

    付东山; 黎维娟

    2014-01-01

    体部立体定向放射治疗(SBRT)是立体定向放射外科(SRS)技术和临床应用的自然延伸,是一种在精确图像引导下的大剂量低分次的放射治疗方法。体部伽玛刀是中国自主研发的创新放疗设备,把伽玛射束治疗从头部延伸至体部。在近15年的技术发展和临床实践中,体部伽玛刀沿用了传统的体部框架定位模式,由于缺少足够定位精度,限制了其作为SBRT设备在临床上的广泛使用。近年来,图像引导定位技术开始应用于体部伽玛刀,将为体部伽玛刀SBRT规范治疗开启崭新一页。本文介绍了体部伽玛刀图像引导定位的原理、方法、试验和初步应用。%Stereotactic body radiation therapy (SBRT) derives naturally from stereotactic radiosurgery (SRS) technology and clinical application. Under very precise image guidance, SBRT delivers a very large dose to a well-deifned target in a small number of fractions. Body gamma knife is an innovative radiotherapy device that was independently conceptualized and designed in China, which extends Gamma-beam therapy from head to body. For nearly iffteen years of technology development and clinical practice, body gamma knife has been following the traditional body frame positioning mode, whose lack of position precision prevents the knife’s widespread application as a SBRT equipment. However, in recent years, image guidance technique begins to be applied in body gamma knife, which would initiate a new phase for its standard SBRT practice. This paper mainly introduces the principles, methods, experiments and preliminary results of an image-guided positioning system used in Body Gamma Knife.

  8. Correlated image set compression system based on new fast efficient algorithm of Karhunen-Loeve transform

    Science.gov (United States)

    Musatenko, Yurij S.; Kurashov, Vitalij N.

    1998-10-01

    The paper presents improved version of our new method for compression of correlated image sets Optimal Image Coding using Karhunen-Loeve transform (OICKL). It is known that Karhunen-Loeve (KL) transform is most optimal representation for such a purpose. The approach is based on fact that every KL basis function gives maximum possible average contribution in every image and this contribution decreases most quickly among all possible bases. So, we lossy compress every KL basis function by Embedded Zerotree Wavelet (EZW) coding with essentially different loss that depends on the functions' contribution in the images. The paper presents new fast low memory consuming algorithm of KL basis construction for compression of correlated image ensembles that enable our OICKL system to work on common hardware. We also present procedure for determining of optimal losses of KL basic functions caused by compression. It uses modified EZW coder which produce whole PSNR (bitrate) curve during the only compression pass.

  9. Correlation-based virtual source imaging in strongly scattering random media

    Science.gov (United States)

    Garnier, Josselin; Papanicolaou, George

    2012-07-01

    Array imaging in a strongly scattering medium is limited because coherent signals recorded at the array and coming from a reflector to be imaged are weak and dominated by incoherent signals coming from multiple scattering by the medium. If, however, an auxiliary passive array can be placed between the reflector to be imaged and the scattering medium then the cross correlations of the incoherent signals on this array can also be used to image the reflector. In this paper, we show both in the weakly scattering paraxial regime and in strongly scattering layered media that this cross-correlation approach produces images as if the medium between the sources and the passive array was homogeneous and the auxiliary passive array was an active one made up of both sources and receivers.

  10. MR imaging guidance and monitoring of focal thermotherapies. A review; Steuerung und Monitoring von fokalen Thermotherapien mit der Magnetresonanztomographie. Ein Ueberblick

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Lisse, U.G. [Muenchen Univ. (Germany). Inst. fuer Radiologische Diagnostik am Klinikum Grosshadern]|[California Univ., San Francisco, CA (United States). Dept. of Radiology; Heuck, A.F. [Muenchen Univ. (Germany). Inst. fuer Radiologische Diagnostik am Klinikum Grosshadern

    1998-03-01

    Minimally invasive thermotherapies for focal tissue destruction on the basis of laser-, microwave-, focused ultrasound-, or cryogeninduced changes of tissue temperature represent an alternative to surgical tissue ablation, particularly in the treatment of tumors. The thermotherapy modalities listed necessitate indirect guidance and monitoring, since they often do not lend themselves to immediate visual control. In the brain, in head and neck tumors, in the liver, and in the prostate, MRI reliably and accurately delineates both the positions of interstitial thermotherapy applicators and - in contrast-enhanced, T1-weighted images - the perfusion defects in tissue necrosis induced by thermotherapy. The transfer of results of in-vitro and in-vivo model studies to assess interstitial temperature and lesion development during thermotherapy to the actual treatment of patients, however, is still in an initial phase. Further development of both rapid MRI sequences and MRI scanners suited for interventions will show how far treatment systems and guidance systems can be adapted to one another. (orig.) [Deutsch] Minimal-invasive Thermotherapien zur oertlich begrenzten Gewebedestruktion auf der Basis von Laser-, Mikrowellen-, Ultraschall- oder Kryogen-induzierten Veraenderungen der Gewebetemperatur koennen insbesondere bei der Behandlung tumoroeser Erkrankungen eine Alternative zur chirurgischen Resektion darstellen. Die genannten Therapieverfahren beduerfen der indirekten Steuerung durch bildgebende Verfahren, da sie sich meist der unmittelbaren Sicht entziehen. Mit der MRT kann sowohl die Position geeigneter Thermoapplikatoren als auch - durch kontrastverstaerkte, T1-gewichteten Aufnahmen - der Perfusionsausfall in thermisch induzierten Gewebsnekrosen zuverlaessig und genau dargestellt werden. Entsprechende Ergebnisse liegen fuer MR-gesteuerte Thermotherapien im Bereich des Gehirns, der Kopf-Halsregion, der Leber und der Prostata vor. Die Ergebnisse von In-vitro- und In

  11. Pulmonary involvement in Kaposi sarcoma: correlation between imaging and pathology.

    Science.gov (United States)

    Gasparetto, Taisa Davaus; Marchiori, Edson; Lourenço, Sílvia; Zanetti, Gláucia; Vianna, Alberto Domingues; Santos, Alair A S M D; Nobre, Luiz Felipe

    2009-07-14

    Kaposi sarcoma is a low-grade mesenchymal tumor involving blood and lymphatic vessels. There are four variants of this disease, each presenting a different clinical manifestation: classic or sporadic, African or endemic, organ transplant-related or iatrogenic, and AIDS-related or epidemic. Kaposi sarcoma is the most common tumor among patients with HIV infection, occurring predominantly in homosexual or bisexual men. The pulmonary involvement in Kaposi sarcoma occurs commonly in critically immunosupressed patients who commonly have had preceding mucocutaneous or digestive involvement.The etiology of Kaposi sarcoma is not precisely established; genetic, hormonal, and immune factors, as well as infectious agents, have all been implicated. There is evidence from epidemiologic, serologic, and molecular studies that Kaposi sarcoma is associated with human herpes virus type 8 infection. The disease starts as a reactive polyclonal angioproliferative response towards this virus, in which polyclonal cells change to form oligoclonal cell populations that expand and undergo malignant transformation.The diagnosis of pulmonary involvement in Kaposi sarcoma usually can be made by a combination of clinical, radiographic, and laboratory findings, together with the results of bronchoscopy and transbronchial biopsy. Chest high-resolution computed tomography scans commonly reveal peribronchovascular and interlobular septal thickening, bilateral and symmetric ill-defined nodules in a peribronchovascular distribution, fissural nodularity, mediastinal adenopathies, and pleural effusions. Correlation between the high-resolution computed tomography findings and the pathology revealed by histopathological analysis demonstrate that the areas of central peribronchovascular infiltration represent tumor growth involving the bronchovascular bundles, with nodules corresponding to proliferations of neoplastic cells into the pulmonary parenchyma. The interlobular septal thickening may represent

  12. Pulmonary involvement in Kaposi sarcoma: correlation between imaging and pathology

    Directory of Open Access Journals (Sweden)

    Vianna Alberto

    2009-07-01

    Full Text Available Abstract Kaposi sarcoma is a low-grade mesenchymal tumor involving blood and lymphatic vessels. There are four variants of this disease, each presenting a different clinical manifestation: classic or sporadic, African or endemic, organ transplant-related or iatrogenic, and AIDS-related or epidemic. Kaposi sarcoma is the most common tumor among patients with HIV infection, occurring predominantly in homosexual or bisexual men. The pulmonary involvement in Kaposi sarcoma occurs commonly in critically immunosupressed patients who commonly have had preceding mucocutaneous or digestive involvement. The etiology of Kaposi sarcoma is not precisely established; genetic, hormonal, and immune factors, as well as infectious agents, have all been implicated. There is evidence from epidemiologic, serologic, and molecular studies that Kaposi sarcoma is associated with human herpes virus type 8 infection. The disease starts as a reactive polyclonal angioproliferative response towards this virus, in which polyclonal cells change to form oligoclonal cell populations that expand and undergo malignant transformation. The diagnosis of pulmonary involvement in Kaposi sarcoma usually can be made by a combination of clinical, radiographic, and laboratory findings, together with the results of bronchoscopy and transbronchial biopsy. Chest high-resolution computed tomography scans commonly reveal peribronchovascular and interlobular septal thickening, bilateral and symmetric ill-defined nodules in a peribronchovascular distribution, fissural nodularity, mediastinal adenopathies, and pleural effusions. Correlation between the high-resolution computed tomography findings and the pathology revealed by histopathological analysis demonstrate that the areas of central peribronchovascular infiltration represent tumor growth involving the bronchovascular bundles, with nodules corresponding to proliferations of neoplastic cells into the pulmonary parenchyma. The interlobular

  13. Spine Stereotactic Body Radiotherapy Utilizing Cone-Beam CT Image-Guidance With a Robotic Couch: Intrafraction Motion Analysis Accounting for all Six Degrees of Freedom

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Derek [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario (Canada); British Columbia Cancer Agency, The Sindi Hawkins Cancer Centre for the Southern Interior, Kelowna (Canada); Lochray, Fiona; Korol, Renee; Davidson, Melanie; Wong, C. Shun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario (Canada); Ma, Lijun [Department of Radiation Oncology, University of California San Francisco, San Francisco, CA (United States); Sahgal, Arjun, E-mail: Arjun.sahgal@rmp.uhn.on.ca [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario (Canada); Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto (Canada)

    2012-03-01

    Purpose: To evaluate the residual setup error and intrafraction motion following kilovoltage cone-beam CT (CBCT) image guidance, for immobilized spine stereotactic body radiotherapy (SBRT) patients, with positioning corrected for in all six degrees of freedom. Methods and Materials: Analysis is based on 42 consecutive patients (48 thoracic and/or lumbar metastases) treated with a total of 106 fractions and 307 image registrations. Following initial setup, a CBCT was acquired for patient alignment and a pretreatment CBCT taken to verify shifts and determine the residual setup error, followed by a midtreatment and posttreatment CBCT image. For 13 single-fraction SBRT patients, two midtreatment CBCT images were obtained. Initially, a 1.5-mm and 1 Degree-Sign tolerance was used to reposition the patient following couch shifts which was subsequently reduced to 1 mm and 1 Degree-Sign degree after the first 10 patients. Results: Small positioning errors after the initial CBCT setup were observed, with 90% occurring within 1 mm and 97% within 1 Degree-Sign . In analyzing the impact of the time interval for verification imaging (10 {+-} 3 min) and subsequent image acquisitions (17 {+-} 4 min), the residual setup error was not significantly different (p > 0.05). A significant difference (p = 0.04) in the average three-dimensional intrafraction positional deviations favoring a more strict tolerance in translation (1 mm vs. 1.5 mm) was observed. The absolute intrafraction motion averaged over all patients and all directions along x, y, and z axis ({+-} SD) were 0.7 {+-} 0.5 mm and 0.5 {+-} 0.4 mm for the 1.5 mm and 1 mm tolerance, respectively. Based on a 1-mm and 1 Degree-Sign correction threshold, the target was localized to within 1.2 mm and 0.9 Degree-Sign with 95% confidence. Conclusion: Near-rigid body immobilization, intrafraction CBCT imaging approximately every 15-20 min, and strict repositioning thresholds in six degrees of freedom yields minimal intrafraction motion

  14. Correlating hemodynamic magnetic resonance imaging with high-field intracranial vessel wall imaging in stroke.

    Science.gov (United States)

    Langdon, Weston; Donahue, Manus J; van der Kolk, Anja G; Rane, Swati; Strother, Megan K

    2014-06-01

    Vessel wall magnetic resonance imaging at ultra-high field (7 Tesla) can be used to visualize vascular lesions noninvasively and holds potential for improving stroke-risk assessment in patients with ischemic cerebrovascular disease. We present the first multi-modal comparison of such high-field vessel wall imaging with more conventional (i) 3 Tesla hemodynamic magnetic resonance imaging and (ii) digital subtraction angiography in a 69-year-old male with a left temporal ischemic infarct.

  15. Scintimammography and single-photon emission computed tomography for postoperative image guidance for radiation treatment planning in breast cancer patients.

    Science.gov (United States)

    Piperkova, E; Chavdarova, L; Garanina, Z; Gocheva, L; Parvanova, V; Tzonevska, A; Dimitrova, M

    2011-01-01

    To evaluate post-surgical tumor-metabolic regions outside of the computed tomography (CT)-defined volume for radiation therapy (RT) planning using functional imaging of scintimammography (SMG) ± single photon emission computerized tomography (SPECT) in breast cancer (BC) patients. 62 operated high-risk BC females, mean age 50.45 years, underwent SMG±SPECT before RT planning. Twenty-one and twelve patients with stage I and IIa respectively had lumpectomy (LT) with axillary lymph node dissection (ALND), and modified radical mastectomy (Patay) + ALND was realized in 29 stage IIb-III patients. All SMG images, positive for viable tumor tissue (VTT) or metastatically involved lymph nodes (LNs) were verified cytologically/ histologically. Three early planar and delayed images were acquired after i.v. administration of 550-740 MBq 99mTc- MIBI or 99mTc-TF. Uptake values (UV) > 1.65 revealed VTT. Data in 49 (79%) of 62 patients were characterized as true-negative (TN; UVVTT in scars, 1 newly defined BC in the contralateral breast and 18 regional LN metastases (6 axillary, 6 parasternal, 1 sub- and 5 supraclavicular). All 22 TP VTT lesions were imaged by scintigraphy using different tumor-seeking radiopharmaceuticals: 99mTc-MIBI - 17 (77%) and 99mTc- TF - 5 (23%) of the TP lesions. One false-positive (FP) (inflammation: UV>1.65) and one false-negative (FN) (UVVTT, LN metastases or altered biological activity in the scars after BC surgery and could modify the irradiated volume, optimizing the therapeutic effect and minimizing RT side effects.

  16. Neural correlates of monocular and binocular depth cues based on natural images: a LORETA analysis.

    Science.gov (United States)

    Fischmeister, Florian Ph S; Bauer, Herbert

    2006-10-01

    Functional imaging studies investigating perception of depth rely solely on one type of depth cue based on non-natural stimulus material. To overcome these limitations and to provide a more realistic and complete set of depth cues natural stereoscopic images were used in this study. Using slow cortical potentials and source localization we aimed to identify the neural correlates of monocular and binocular depth cues. This study confirms and extends functional imaging studies, showing that natural images provide a good, reliable, and more realistic alternative to artificial stimuli, and demonstrates the possibility to separate the processing of different depth cues.

  17. Digital Image Analysis of Ultrasound B-mode images of Carotid Atherosclerotic Plaque: Correlation with Histological Examination

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Rosendal, Kim; Grønholdt, Marie-Louise Moes

    1996-01-01

    This paper reports on a study of how well texture features extracted from B-mode images of atherosclerotic plaque correlates with histological results obtained from the same plaque after carotid endarterectomy. The study reveals that a few second order texture features (diagonal moment, standard...

  18. Correlative investigations of craniospinal anatomy and pathology with computed tomography, magnetic resonance imaging and cryomicrotomy.

    Science.gov (United States)

    Pech, P

    1988-01-01

    A correlative computed tomographic-anatomic method was applied to multiplanar anatomic studies. The method was particularly valuable for comparative anatomic investigations of complex regions of the central nervous system. The description of CT and MR anatomy in this thesis is based either on direct CT-anatomic correlation of the same specimen, or on indirect MR-anatomic correlation with cryosectional images from cadavers. In sagittal partial saturation MR images with short repetition times, the pituitary fossa in 41 normal volunteers appeared inhomogeneous. A postero-inferiorly located high intensity signal correlated with an intrasellar fat pad in sagittal cryosectional images. The height of the pituitary gland in 38 normal volunteers was usually less than 8 mm and its upper surface was flat or concave. The cavernous sinus anatomy was studied in coronal and axial MR planes in seven normal volunteers and 15 patients in correlation with cryosectional images. The intracavernous cranial nerves were best shown in the coronal plane, in partial saturation and inversion recovery sequences and displayed as foci of high signals intensity. MR signs of a parasellar mass included obliteration of intracavernous venous spaces, displacement of the intracavernous portion of the internal carotid artery and bulging of the lateral wall of the cavernous sinus. The topographic anatomy of the cervical neuroforamina was investigated in axial, sagittal, coronal and oblique planes in a correlative CT-anatomic investigation in 19 specimens. In four normal volunteers, the surface coil MR images of the cervical neuroforamina were correlated with cryosectional images. Surface coil MR images in a plane perpendicular to the cervical nerve roots allowed to determine their relationship to intraforaminal structures and the boundaries of the foramen. The dorsal and ventral nerve roots were demonstrated with both CT and MRI. They were located in the lower half of the foramen at and below the

  19. Two-dimensional confocal laser scanning microscopy image correlation for nanoparticle flow velocimetry

    Science.gov (United States)

    Jun, Brian; Giarra, Matthew; Golz, Brian; Main, Russell; Vlachos, Pavlos

    2016-11-01

    We present a methodology to mitigate the major sources of error associated with two-dimensional confocal laser scanning microscopy (CLSM) images of nanoparticles flowing through a microfluidic channel. The correlation-based velocity measurements from CLSM images are subject to random error due to the Brownian motion of nanometer-sized tracer particles, and a bias error due to the formation of images by raster scanning. Here, we develop a novel ensemble phase correlation with dynamic optimal filter that maximizes the correlation strength, which diminishes the random error. In addition, we introduce an analytical model of CLSM measurement bias error correction due to two-dimensional image scanning of tracer particles. We tested our technique using both synthetic and experimental images of nanoparticles flowing through a microfluidic channel. We observed that our technique reduced the error by up to a factor of ten compared to ensemble standard cross correlation (SCC) for the images tested in the present work. Subsequently, we will assess our framework further, by interrogating nanoscale flow in the cell culture environment (transport within the lacunar-canalicular system) to demonstrate our ability to accurately resolve flow measurements in a biological system.

  20. A novel technique combining laparoscopic and endovascular approaches using image fusion guidance for anterior embolization of type II endoleak

    Directory of Open Access Journals (Sweden)

    M. Mujeeb Zubair, MD

    2017-03-01

    Full Text Available Type II endoleak (T2E leading to aneurysm sac enlargement is one of the challenging complications associated with endovascular aneurysm repair. Recent guidelines recommend embolization of T2E associated with aneurysmal sac enlargement. Various percutaneous and endovascular techniques have been reported for embolization of T2E. We report a novel technique for T2E embolization combining laparoscopic and endovascular approaches using preoperative image fusion. We believe our technique provides a more direct access to the lumbar feeding vessels that is typically challenging with transarterial or translumbar embolization techniques.

  1. SU-E-J-34: Setup Accuracy in Spine SBRT Using CBCT 6D Image Guidance in Comparison with 6D ExacTrac

    Energy Technology Data Exchange (ETDEWEB)

    Han, Z; Yip, S; Lewis, J; Mannarino, E; Friesen, S; Wagar, M; Hacker, F [Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, MA (United States)

    2015-06-15

    Purpose Volumetric information of the spine captured on CBCT can potentially improve the accuracy in spine SBRT setup that has been commonly performed through 2D radiographs. This work evaluates the setup accuracy in spine SBRT using 6D CBCT image guidance that recently became available on Varian systems. Methods ExacTrac radiographs have been commonly used for Spine SBRT setup. The setup process involves first positioning patients with lasers followed by localization imaging, registration, and repositioning. Verification images are then taken providing the residual errors (ExacTracRE) before beam on. CBCT verification is also acquired in our institute. The availability of both ExacTrac and CBCT verifications allows a comparison study. 41 verification CBCT of 16 patients were retrospectively registered with the planning CT enabling 6D corrections, giving CBCT residual errors (CBCTRE) which were compared with ExacTracRE. Results The RMS discrepancies between CBCTRE and ExacTracRE are 1.70mm, 1.66mm, 1.56mm in vertical, longitudinal and lateral directions and 0.27°, 0.49°, 0.35° in yaw, roll and pitch respectively. The corresponding mean discrepancies (and standard deviation) are 0.62mm (1.60mm), 0.00mm (1.68mm), −0.80mm (1.36mm) and 0.05° (0.58°), 0.11° (0.48°), −0.16° (0.32°). Of the 41 CBCT, 17 had high-Z surgical implants. No significant difference in ExacTrac-to-CBCT discrepancy was observed between patients with and without the implants. Conclusion Multiple factors can contribute to the discrepancies between CBCT and ExacTrac: 1) the imaging iso-centers of the two systems, while calibrated to coincide, can be different; 2) the ROI used for registration can be different especially if ribs were included in ExacTrac images; 3) small patient motion can occur between the two verification image acquisitions; 4) the algorithms can be different between CBCT (volumetric) and ExacTrac (radiographic) registrations.

  2. Intrasubject correlation between static scan and distribution volume images for [{sup 11}C]flumazenil PET

    Energy Technology Data Exchange (ETDEWEB)

    Mishina, Masahiro [Nippon Medical School, Tokyo (Japan); Senda, Michio; Kimura, Yuichi [and others

    2000-06-01

    Accumulation of [{sup 11}C]flumazenil (FMZ) reflects central nervous system benzodiazepine receptor (BZR). We searched for the optimal time for a static PET scan with FMZ as semi-quantitative imaging of BZR distribution. In 10 normal subjects, a dynamic series of decay-corrected PET scans was performed for 60 minutes, and the arterial blood was sampled during the scan to measure radioactivity and labeled metabolites. We generated 13 kinds of ''static scan'' images from the dynamic scan in each subject, and analyzed the pixel correlation for these images versus distribution volume (DV) images. We also analyzed the time for the [{sup 11}C]FMZ in plasma and tissue to reach the equilibrium. The intra-subject pixel correlation demonstrated that the static scan'' images for the period centering around 30 minutes post-injection had the strongest linear correlation with the DV image. The ratio of radioactivity in the cortex to that in the plasma reached a peak at 40 minutes after injection. Considering the physical decay and patient burden, we conclude that the decay corrected static scan for [{sup 11}C]FMZ PET as semi-quantitative imaging of BZR distribution is to be optimally acquired from 20 to 40 minutes after injection. (author)

  3. Medulloblastoma: correlation among findings of conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Inst. de Radiologia]. E-mail: mvmfonte@uol.com.br; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Radiologia; Reed, Umbertina Conti [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Neurologia; Rosemberg, Sergio [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Dept. de Patologia

    2008-11-15

    To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)

  4. Dependence of Adaptive Cross-correlation Algorithm Performance on the Extended Scene Image Quality

    Science.gov (United States)

    Sidick, Erkin

    2008-01-01

    Recently, we reported an adaptive cross-correlation (ACC) algorithm to estimate with high accuracy the shift as large as several pixels between two extended-scene sub-images captured by a Shack-Hartmann wavefront sensor. It determines the positions of all extended-scene image cells relative to a reference cell in the same frame using an FFT-based iterative image-shifting algorithm. It works with both point-source spot images as well as extended scene images. We have demonstrated previously based on some measured images that the ACC algorithm can determine image shifts with as high an accuracy as 0.01 pixel for shifts as large 3 pixels, and yield similar results for both point source spot images and extended scene images. The shift estimate accuracy of the ACC algorithm depends on illumination level, background, and scene content in addition to the amount of the shift between two image cells. In this paper we investigate how the performance of the ACC algorithm depends on the quality and the frequency content of extended scene images captured by a Shack-Hatmann camera. We also compare the performance of the ACC algorithm with those of several other approaches, and introduce a failsafe criterion for the ACC algorithm-based extended scene Shack-Hatmann sensors.

  5. Non-invasive real-time imaging through scattering layers and around corners via speckle correlations

    CERN Document Server

    Katz, Ori; Fink, Mathias; Gigan, Sylvain

    2014-01-01

    Imaging with optical resolution through and inside complex samples is a difficult challenge with important applications in many fields. The fundamental problem is that inhomogeneous samples, such as biological tissues, randomly scatter and diffuse light, impeding conventional image formation. Despite many advancements, no current method enables to noninvasively image in real-time using diffused light. Here, we show that owing to the memory-effect for speckle correlations, a single image of the scattered light, captured with a standard high-resolution camera, encodes all the information that is required to image through the medium or around a corner. We experimentally demonstrate single-shot imaging through scattering media and around corners using incoherent light and various samples, from white paint to dynamic biological samples. Our lensless technique is simple, does not require laser sources, wavefront-shaping, nor time-gated detection, and is realized here using a camera-phone. It has the potential to en...

  6. Noise-assisted correlation algorithm for suppressing noise-induced artifacts in ultrasonic Nakagami images.

    Science.gov (United States)

    Tsui, Po-Hsiang; Yeh, Chih-Kuang; Huang, Chih-Chung

    2012-05-01

    Ultrasonic Nakagami images can complement conventional B-mode images for scatterer characterization. White noise in anechoic areas leads to artifacts that affect the Nakagami image to characterize tissues. Artifact removal requires rejection of the white noise without deforming the backscattered waveform. This study proposes a noise-assisted correlation algorithm (NCA) and carries out simulations, phantom experiments, and clinical measurements to validate its feasibility and practicality. The simulation results show that the NCA can reject white noise in an anechoic area without any deformation of the backscattered waveforms. The results obtained from phantoms and tissues further demonstrate that the proposed NCA can suppress a Nakagami image artifact without changing the texture of the Nakagami image of the scattering background. The NCA is an essential algorithm to construct artifact-free Nakagami image for correctly reflecting scatterer properties of biological tissues.

  7. Compensation of focal plane image motion perturbations with optical correlator in feedback loop

    Science.gov (United States)

    Janschek, Klaus; Tchernykh, Valerij; Dyblenko, Serguei; Flandin, Gregory; Harnisch, Bernd

    2004-11-01

    The paper presents a concept of a smart pushbroom imaging system with compensation of attitude instability effects. The compensation is performed by active opto-mechatronic stabilization of the focal plane image motion in a closed loop system with visual feedback on base of an auxiliary matrix image sensor and an onboard optical correlator. In this way the effects of the attitude instability, vibrations and micro shocks can be neutralized, the image quality improved and the requirements to satellite attitude stability reduced. To prove the feasibility and to estimate the effectiveness of the image motion stabilization, a performance model of the smart imaging system has been developed and a simulation experiment has been carried out. The description of the performance model and the results of the simulation experiment are also given.

  8. Gastrointestinal stromal tumours: Correlation of modified NIH risk stratification with diffusion-weighted MR imaging as an imaging biomarker

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tae Wook [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Kim, Seong Hyun, E-mail: kshyun@skku.edu [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Jang, Kyung Mi; Choi, Dongil [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Ha, Sang Yun; Kim, Kyoung-Mee [Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Kang, Won Ki [Division of Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Kim, Min Ji [Biostatics Unit, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 135-710 (Korea, Republic of)

    2015-01-15

    Highlights: • Except size and necrosis, conventional MR findings of GISTs were not significantly different according to the modified NIH criteria. • The ADC values of GISTs were negatively correlated with the modified NIH criteria. • The ADC value can be helpful for the determination of intermediate or high-risk GISTs. - Abstract: Purpose: To evaluate the correlation of risk grade of gastrointestinal stromal tumours (GISTs) based on modified National Institutes of Health (NIH) criteria with conventional magnetic resonance (MR) imaging and diffusion-weighted (DW) imaging. Methods: We included 22 patients with histopathologically proven GISTs in the stomach or small bowel who underwent pre-operative gadoxetic acid-enhanced MR imaging and DW imaging. We retrospectively assessed correlations between morphologic findings, qualitative (signal intensity, consensus from two observers) and quantitative (degree of dynamic enhancement using signal intensity of tumour/muscle ratio and apparent diffusion coefficient [ADC]) values, and the modified NIH criteria for risk stratification. Spearman partial correlation analysis was used to control for tumour size as a confounding factor. The optimal cut-off level of ADC values for intermediate or high risk GISTs was analyzed using a receiver operating characteristic analysis. Results: Except tumour size and necrosis, conventional MR imaging findings, including the degree of dynamic enhancement, were not significantly different according to the modified NIH criteria (p > 0.05). Tumour ADC values were negatively correlated with the modified NIH criteria, before and after adjustment of tumour size (ρ = −0.754; p < 0.001 and ρ = −0.513; p = 0.017, respectively). The optimal cut-off value for the determination of intermediate or high-risk GISTs was 1.279 × 10{sup −3} mm{sup 2}/s (100% sensitivity, 69.2% specificity, 81.8% accuracy). Conclusion: Except tumour size and necrosis, conventional MR imaging findings did not

  9. Digital image correlation involves an inverse problem: A regularization scheme based on subset size constraint

    Science.gov (United States)

    Zhan, Qin; Yuan, Yuan; Fan, Xiangtao; Huang, Jianyong; Xiong, Chunyang; Yuan, Fan

    2016-06-01

    Digital image correlation (DIC) is essentially implicated in a class of inverse problem. Here, a regularization scheme is developed for the subset-based DIC technique to effectively inhibit potential ill-posedness that likely arises in actual deformation calculations and hence enhance numerical stability, accuracy and precision of correlation measurement. With the aid of a parameterized two-dimensional Butterworth window, a regularized subpixel registration strategy is established, in which the amount of speckle information introduced to correlation calculations may be weighted through equivalent subset size constraint. The optimal regularization parameter associated with each individual sampling point is determined in a self-adaptive way by numerically investigating the curve of 2-norm condition number of coefficient matrix versus the corresponding equivalent subset size, based on which the regularized solution can eventually be obtained. Numerical results deriving from both synthetic speckle images and actual experimental images demonstrate the feasibility and effectiveness of the set of newly-proposed regularized DIC algorithms.

  10. The feasibility and application of gray scale adjustment method in high temperature digital image correlation

    Science.gov (United States)

    Wang, Shen; Yao, Xue Feng; Su, Yun Quan; Liu, Wei

    2017-02-01

    In this paper, the basic principle and application of linear gray scale adjustment method are investigated in high temperature digital image correlation (DIC) technology. First, the simple linear gray scale adjustment method is proposed, which can adjust the gray scale value of the saturated pixels and diminish the correlation error caused by the saturated pixels. Then, both the simulated high temperature images and DIC correlation results before and after the gray scale adjustment are provided and analyzed to verify its effectiveness, in which the displacement error decreased from 0.1 pixels to 0.04 pixels after the linear gray scale adjustment for high temperature images. Finally, the linear gray scale adjustment method is used to extract the displacement with high accuracy in high temperature experiment of SiC specimen, and the displacement error decreased from 0.5 pixels to 0.1 pixels after the linear gray scale adjustment.

  11. Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity

    DEFF Research Database (Denmark)

    Morsy, Hanan; Kamp, Søren; Thrane, Lars;

    2010-01-01

    Epidermal thickness (ET) has been suggested as a surrogate measure of psoriasis severity. Optical coherence tomography (OCT) is a recent imaging technology that provides real-time skin images to a depth of 1.8 mm with a micrometre resolution. OCT may provide an accurate in vivo measure of ET. It is...... with a stronger entrance signal, a serrated dermo-epidermal junction was found and a less signal intensity in the dermis as shown in OCT images. ET measured in untreated plaques was thicker reflecting epidermal hyperproliferation and inflammation. The changes were significantly correlated with the biopsy grading...... (r 2 = 0.41, p = 0.001) and ET significantly decreased with treatment (p = 0.0001). ET correlated significantly with self-reported measures of disease severity, but not with physician-assessed global PASI. The data suggest that OCT may be used to measure ET in psoriasis and the measurements correlate...

  12. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    Science.gov (United States)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  13. Optical Measurement of In-plane Elastic Waves in Mechanical Metamaterials Through Digital Image Correlation

    CERN Document Server

    Schaeffer, Marshall; Ruzzene, Massimo

    2016-01-01

    We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behavior, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centering image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subsequent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing ...

  14. Resolution of ghost imaging with entangled photons for different types of momentum correlation

    Science.gov (United States)

    Zhong, MaLin; Xu, Ping; Lu, LiangLiang; Zhu, ShiNing

    2016-07-01

    We present an analytical analysis of the spatial resolution of quantum ghost imaging implemented by entangled photons from a general, spontaneously parametric, down-conversion process. We find that the resolution is affected by both the pump beam waist and the nonlinear crystal length. Hence, we determined a method to improve the resolution for a certain imaging setup. It should be noted that the resolution is not uniquely related to the degree of entanglement of the photon pair since the resolution can be optimized for a certain degree of entanglement. For certain types of Einstein-Podolsky-Rosen (EPR) states——namely the momentum-correlated or momentum-positively correlated states——the resolution exhibits a simpler relationship with the pump beam waist and crystal length. Further, a vivid numerical simulation of ghost imaging is presented for different types of EPR states, which supports our analysis. This work discusses applicable references to the applications of quantum ghost imaging.

  15. Expectations Among Academic Clinicians of Inpatient Imaging Turnaround Time: Does it Correlate with Satisfaction?

    Science.gov (United States)

    Chan, Keith T; Carroll, Tamara; Linnau, Ken F; Lehnert, Bruce

    2015-11-01

    Imaging report turnaround time (RTAT) is an important measure of radiology performance and has become the leading priority in customer satisfaction surveys conducted among nonradiologists, who may not be familiar with the imaging workflow. Our aim was to assess physicians' expected RTAT for commonly ordered studies and determine if satisfaction correlates with met expectations. Retrospective review of inpatient imaging was conducted at a single academic institution, and RTAT for 18,414 studies was calculated. Examinations were grouped by study type, priority, and time of day. A cross-sectional survey instrument was completed by 48 internal medicine and surgery resident physicians with questions regarding RTAT and their level of satisfaction with various examinations. Actual RTAT ranged from 1.6 to 26.0 hours, with chest radiographs and computed tomographies generally faster than magnetic resonance images and ultrasounds. Urgent (STAT) examinations and those ordered during business hours have shorter RTAT. The time for image interpretation largely contributed to the RTAT because of the lack of night-time radiology coverage. Referring physician expectations were consistently shorter than actual RTAT, ranging from 30 minutes to 24 hours. Overall satisfaction scores were inversely correlated with RTAT, with a strong correlation to the time from study order to imaging (r(2) = 0.63) and a weak correlation to the image interpretation time (r(2) = 0.17). Satisfaction scores did not correlate with whether the actual RTAT met expectations (r(2) = 0.06). Referring physician satisfaction is likely multifactorial. Although RTAT has been reported as a priority, shortening turnaround time alone may not directly improve clinician satisfaction. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  16. Novel approach to improve molecular imaging research: Correlation between macroscopic and molecular pathological findings in patients

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Ingrid, E-mail: i.boehm@uni-bonn.de [Department of Diagnostic Radiology, ZARF Project, Center for Molecular Imaging Research MBMB, Philipps University of Marburg, Baldingerstrasse, 35039 Marburg (Germany)

    2011-09-15

    Purpose: Currently, clinical research approaches are sparse in molecular imaging studies. Moreover, possible links between imaging features and pathological laboratory parameters are unknown, so far. Therefore, the goal was to find a possible relationship between imaging features and peripheral blood cell apoptosis, and thereby to present a novel way to complement molecular imaging research. Materials and methods: The investigation has been done in systemic lupus erythematosus (SLE), a prototype of an autoimmune disease characterized by multiorgan involvement, autoantibody production, and disturbed apoptosis. Retrospectively, radiological findings have been compared to both autoantibody findings and percentage apoptotic blood cells. Results: Two SLE groups could be identified: patients with normal (annexin V binding < 20%), and with increased apoptosis (annexin V binding > 20%) of peripheral blood cells. The frequency of radiological examinations in SLE patients significantly correlated with an increased percentage of apoptotic cells (p < 0.005). In patients with characteristic imaging findings (e.g. lymph node swelling, pleural effusion) an elevated percentage of apoptotic cells was present. In contrast SLE-patients with normal imaging findings or uncharacteristic results of minimal severity had normal percentages of apoptotic blood cells. Conclusion: This correlation between radiographic findings and percentage of apoptotic blood cells provides (1) further insight into pathological mechanisms of SLE, (2) will offer the possibility to introduce apoptotic biomarkers as molecular probes for clinical molecular imaging approaches in future to early diagnose organ complaints in patients with SLE, and (3) is a plea to complement molecular imaging research by this clinical approach.

  17. Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis

    CERN Document Server

    Moon, Kevin R; Delouille, Veronique; De Visscher, Ruben; Watson, Fraser; Hero, Alfred O

    2015-01-01

    Complexity of an active region is related to its flare-productivity. Mount Wilson or McIntosh sunspot classifications measure such complexity but in a categorical way, and may therefore not use all the information present in the observations. Moreover, such categorical schemes hinder a systematic study of an active region's evolution for example. We propose fine-scale quantitative descriptors for an active region's complexity and relate them to the Mount Wilson classification. We analyze the local correlation structure within continuum and magnetogram data, as well as the cross-correlation between continuum and magnetogram data. We compute the intrinsic dimension, partial correlation, and canonical correlation analysis (CCA) of image patches of continuum and magnetogram active region images taken from the SOHO-MDI instrument. We use masks of sunspots derived from continuum as well as larger masks of magnetic active regions derived from the magnetogram to analyze separately the core part of an active region fr...

  18. Fast method of constructing image correlations to build a free network based on image multivocabulary trees

    Science.gov (United States)

    Zhan, Zongqian; Wang, Xin; Wei, Minglu

    2015-05-01

    In image-based three-dimensional (3-D) reconstruction, one topic of growing importance is how to quickly obtain a 3-D model from a large number of images. The retrieval of the correct and relevant images for the model poses a considerable technological challenge. The "image vocabulary tree" has been proposed as a method to search for similar images. However, a significant drawback of this approach is identified in its low time efficiency and barely satisfactory classification result. The method proposed is inspired by, and improves upon, some recent methods. Specifically, vocabulary quality is considered and multivocabulary trees are designed to improve the classification result. A marked improvement was, indeed, observed in our evaluation of the proposed method. To improve time efficiency, graphics processing unit (GPU) computer unified device architecture parallel computation is applied in the multivocabulary trees. The results of the experiments showed that the GPU was three to four times more efficient than the enumeration matching and CPU methods when the number of images is large. This paper presents a reliable reference method for the rapid construction of a free network to be used for the computing of 3-D information.

  19. Early Detection of Breast Cancer via Multi-plane Correlation Breast Imaging

    Science.gov (United States)

    2008-04-01

    changing the acquisi- tion scheme on the performance of CI and are expected to correlate with the base line detection performance of a clini- cian using...in this study may serve as guide- lines for optimizing the acquisition parameters and dose for any multiprojection imaging system. V. CONCLUSIONS In...improved detection of lung nodules,” Proc. SPIE 5030, 284–297 2003. 8E. Samei, S. A. Stebbins , J. T. Dobbins, and J. Y. Lo, “Multiprojection correlation

  20. Spatio-Chromatic Adaptation via Higher-Order Canonical Correlation Analysis of Natural Images

    OpenAIRE

    Gutmann, Michael U.; Valero Laparra; Aapo Hyvärinen; Jesús Malo

    2014-01-01

    Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes...

  1. Correlation of bone quality in radiographic images with clinical bone quality classification

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Woo; Huh, Kyung Hoe; Kim, Jeong Hwa; Yi, Won Jin; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul [Seoul National University, Seoul (Korea, Republic of); Park, Kwan Soo [Inje University, Seoul (Korea, Republic of)

    2006-03-15

    To investigate the validity of digital image processing on panoramic radiographs in estimating bone quality before endosseous dental implant installation by correlating bone quality in radiographic images with clinical bone quality classification. An experienced surgeon assessed and classified bone quality for implant sites with tactile sensation at the time of implant placement. Including fractal dimension eighteen morphologic features of trabecular pattern were examined in each anatomical sites on panoramic radiographs. Finally bone quality of 67 implant sites were evaluated in 42 patients. Pearson correlation analysis showed that three morphologic parameters had weak linear negative correlation with clinical bone quality classification showing correlation coefficients of -0.276, -0.280, and -0.289, respectively (p<0.05). And other three morphologic parameters had obvious linear negative correlation with clinical bone quality classification showing correlation coefficients of -0.346, -0.488, and -0.343 respectively (p<0.05). Fractal dimension also had a linear correlating with clinical bone quality classification with correlation coefficients -0.506 significantly (P<0.05). This study suggests that fractal and morphometric analysis using digital panoramic radiographs can be used to evaluate bone quality for implant recipient sites.

  2. Infantile fibromatosis in childhood: Findings on MR imaging and pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Joong Mo; Yoon, Hye-Kyung; Suh, Yeon-Lim; Kim, Eung Yeop; Han, Bokyung K.; Yoon, Jung Hwan; Kim, Seung Hoon; Cho Jae Min; Kim, Sung; Moon; Kang, Heung Sik

    2000-01-01

    AIM: The objective of this study was to analyse the MR imaging findings of infantile fibromatosis of childhood and to correlate them with histopathological features. MATERIALS AND METHODS: Seven patients with histologically proven infantile fibromatosis were included in this study. The findings on MR images were retrospectively evaluated and then correlated with the pathological features. Findings on MR imaging evaluated included signal intensity, extent of hyperintense area on T2-weighted images, margins of the lesion, the degree and pattern of enhancement and the presence of fatty tissue. Pathological features evaluated included cellularity, collagenization, and myxoid change. A five point scale was used for the evaluation of the extent of hyperintense area on MR imaging, and each of pathological features. RESULTS: On T1-weighted images, the lesions were iso-intense in two patients; iso- and hypointense in three; and iso-, hypo- and hyperintense in two. On T2-weighted images, iso-, hypo- and hyperintense areas were mixed in all patients, the hyperintense area being the largest portion of the lesion. The margins of the lesions were infiltrative in four patients (57%), smooth in two (29%) and mixed in one (14%). Enhancement was marked in five patients (72%) and diffuse in five (71%). Regardless of the hyperintense signal intensity on T2-weighted images, the grades of each pathologic feature were variable. CONCLUSION: Infantile fibromatosis on MR imaging causes an enhancing mass, that is largely hyperintense on T2-weighted images. Areas of high signal intensity on T2-weighted images corresponded to variable grades of cellularity, collagenization, or myxoid change. Ahn, J.M. (2000)

  3. Interfractional changes in tumour volume and position during entire radiotherapy courses for lung cancer with respiratory gating and image guidance

    DEFF Research Database (Denmark)

    Juhler-Nøttrup, Trine; Korreman, Stine Sofia; Pedersen, Anders N;

    2008-01-01

    measured using a set-up strategy based on imaging of bony landmarks and compared to a strategy using in room lasers, skin tattoos and cupper landmarks. MATERIALS AND METHODS: During their six week treatment course of 60Gy in 2Gy fractions, ten patients underwent 3 respiratory gated CT scans. The tumours...... landmarks and 0.85 cm (+/-0.54) for matching using skin tattoos. For the mediastinal tumours the corresponding vectors and SD's were 0.55 cm (+/-0.19) and 0.72 cm (+/-0.43). The differences between the vectors were significant for the lung tumours p=0.004. The interfractional overlap of lung tumours was 80......-87% when matched using bony landmarks and 70-76% when matched using skin tattoos. The overlap of the mediastinal tumours were 60-65% and 41-47%, respectively. CONCLUSIONS: Despite the use of gating the tumours varied considerably, regarding both position and volume. The variations in position were...

  4. Validation of Shape Context Based Image Registration Method Using Digital Image Correlation Measurement on a Rat Stomach

    DEFF Research Database (Denmark)

    Liao, Donghua; Wang, P; Zhao, Jingbo

    2014-01-01

    needs to be further verified by using a feature tracking measurement. Hence, the aim of this study was to verify the SC method-based calculation by using digital image correlation (DIC) measurement on a rat stomach. The rat stomach exposed to distension pressures 0.0, 0.2, 0.4, and 0.6 kPa were studied...... and quantitative agreement on the surfaces with small dissimilarity and small sample count difference between the reference surface and the target surface. In conclusion, this is the first study to validate the 3D SC-based image registration method by using unique tracking features measurement. The developed...

  5. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a ⁶⁰Co Magnetic Resonance Image Guidance Radiation Therapy System.

    Science.gov (United States)

    Wooten, H Omar; Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H Harold; Mutic, Sasa

    2015-07-15

    This work describes a commercial treatment planning system, its technical features, and its capabilities for creating (60)Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. The ViewRay treatment planning system (Oakwood Village, OH) was used to create (60)Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The (60)Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. All (60)Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for (60)Co was within 20 Gy. The mean doses for all (60)Co plan OARs were within clinical tolerances. A commercial (60)Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Manipulation of tumor oxygenation and radiosensitivity through modification of cell respiration. A critical review of approaches and imaging biomarkers for therapeutic guidance.

    Science.gov (United States)

    Gallez, Bernard; Neveu, Marie-Aline; Danhier, Pierre; Jordan, Bénédicte F

    2017-08-01

    Tumor hypoxia has long been considered as a detrimental factor for the response to irradiation. In order to improve the sensitivity of tumors cells to radiation therapy, tumor hypoxia may theoretically be alleviated by increasing the oxygen delivery or by decreasing the oxygen consumption by tumor cells. Mathematical modelling suggested that decreasing the oxygen consumption should be more efficient than increasing oxygen delivery in order to alleviate tumor hypoxia. In this paper, we review several promising strategies targeting the mitochondrial respiration for which alleviation of tumor hypoxia and increase in sensitivity to irradiation have been demonstrated. Because the translation of these approaches into the clinical arena requires the use of pharmacodynamics biomarkers able to identify shift in oxygen consumption and tumor oxygenation, we also discuss the relative merits of imaging biomarkers (Positron Emission Tomography and Magnetic Resonance) that may be used for therapeutic guidance. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Double-image encryption based on joint transform correlation and phase-shifting interferometry

    Institute of Scientific and Technical Information of China (English)

    Lina Shen; Jun Li; Hongsen Chang

    2007-01-01

    An image encryption method combining the joint transform correlator (JTC) architecture with phaseshifting interferometry to realize double random-phase encoding is proposed. The encrypted field and the decrypting key are registered as holograms by phase-shifting interferometry. This method can encrypt two images simultaneously to improve the encryption efficiency of the methods based on JTC architecture, and eliminate the system alignment constraint of the methods based on Mach-Zehnder interferometer (MZI)architecture. Its feasibility and validity are verified by computer simulations. Moreover, image encryption and decryption can be achieved at high speed optically or digitally. The encrypted data are suitable for Internet transmission.

  8. WE-EF-207-01: FEATURED PRESENTATION and BEST IN PHYSICS (IMAGING): Task-Driven Imaging for Cone-Beam CT in Interventional Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Gang, G; Stayman, J; Ouadah, S; Siewerdsen, J [Johns Hopkins University, Baltimore, MD (United States); Ehtiati, T [Siemens Healthcare AX Division, Erlangen, DE (Germany)

    2015-06-15

    Purpose: This work introduces a task-driven imaging framework that utilizes a patient-specific anatomical model, mathematical definition of the imaging task, and a model of the imaging system to prospectively design acquisition and reconstruction techniques that maximize task-based imaging performance. Utility of the framework is demonstrated in the joint optimization of tube current modulation and view-dependent reconstruction kernel in filtered-backprojection reconstruction and non-circular orbit design in model-based reconstruction. Methods: The system model is based on a cascaded systems analysis of cone-beam CT capable of predicting the spatially varying noise and resolution characteristics as a function of the anatomical model and a wide range of imaging parameters. Detectability index for a non-prewhitening observer model is used as the objective function in a task-driven optimization. The combination of tube current and reconstruction kernel modulation profiles were identified through an alternating optimization algorithm where tube current was updated analytically followed by a gradient-based optimization of reconstruction kernel. The non-circular orbit is first parameterized as a linear combination of bases functions and the coefficients were then optimized using an evolutionary algorithm. The task-driven strategy was compared with conventional acquisitions without modulation, using automatic exposure control, and in a circular orbit. Results: The task-driven strategy outperformed conventional techniques in all tasks investigated, improving the detectability of a spherical lesion detection task by an average of 50% in the interior of a pelvis phantom. The non-circular orbit design successfully mitigated photon starvation effects arising from a dense embolization coil in a head phantom, improving the conspicuity of an intracranial hemorrhage proximal to the coil. Conclusion: The task-driven imaging framework leverages a knowledge of the imaging task within

  9. Image Guided Clinical Correlation of CDH and Calve-Legg-Perthes Disease

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Herischi

    2011-05-01

    Full Text Available Background/Objective: Anatomic condition and"nvascularization of the femoral head leads to Calve-"nLegg-Perthes disease (avascular necrosis in children"nand primary condition of acetabulum and coverage"nof hip joint as a defect, cause CDH or congenital"ndislocation of the hip joint. Early diagnosis of these"ndiseases in clinic, confirmation by imaging (US, Xray,"nX-ray CT and MRI help better treatment and less"ncomplication or sequel."nPatients and Methods: By two decade evaluation and"ntreatment we used clinical assessments by pediatric"northopedic surgeons and radiologic examinations like"nfrog-leg, AP X-rays, ultrasound examinations, 2D"nand 3D X-ray CT and 1.5 tesla MR-machine images."nTreatments were with fixation (using cast and elizarov"nvariant fixators, surgery and controlling by imaging."nResults: Ultrasound and MRI were the best methods"nin diagnosis, image guided treatment (medical or"nsurgical and treatment controlling. Many patients"nare treated with minor complications. Complications"nare rare in CDH but some complications have been"nmentioned for CLP disease."nConclusion: Image guidance in diagnosis and treatment"nalso treatment control of pediatric CDH and CLP"ndisease give the pediatric orthopedic surgeon a good"noutcome of the disease and its treatment. Ultrasound"nand MRI using highly sophisticated probes, coils and"nprotocols with new machines gives us the best result"nin diagnosis, treatment and post-op controls.

  10. Correlation between Health Perception, Body Image, and Eating Habits in High School Students

    Directory of Open Access Journals (Sweden)

    Abdullah Ichsan

    2016-06-01

    Full Text Available Background: Mental disorders, including eating disorders, mostly begin during youth. Moreover, negative body image is found to cause unhealthy eating habits in the context of several cross-cultural settings. This study aimed to examine the correlation between health perception and body image with eating habits among high school students. Methods: A structured, anonymous questionnaire was distributed to students of a private high school in Bandung, Indonesia in June-October 2014. The questionnaire included questions about health perception, body image, eating habits, body weight and height, and also other demographic parameters. The school was selected as the study object through purposive sampling, and 140 high school students (72 male and 68 female were ramdomly selected. Results: Male and female did not show considerable differences in health perceptions. Out of 13 statements, 12 statements of male respondents showed better body image than female. While in eating habits statements, female respondents seemed to maintain healthier eating habits than male respondents. No significant correlation was observed between body image and eating habits (r=-0.015, p=0.858. There was significant correlation between health perception and eating habits (r=0.374, p<0.001. Correlation between sex and eating habits was found (p=0.020, there was not significant relationship between eating habits and Body Mass Index (BMI (p=0.368. Conclusions: The negative relationship between body image and eating habits is not significant. However there was a significant positive relationship between health perception and eating habits. Furthermore, there was correlation between sex and eating habits, while the positive relationship between eating habits and BMI was still not found.

  11. Theoretical design and evaluation of endoluminal ultrasound applicators for thermal therapy of pancreatic cancer under image guidance

    Science.gov (United States)

    Adams, Matthew; Scott, Serena; Salgaonkar, Vasant; Sommer, Graham; Diederich, Chris

    2017-03-01

    An image-guided endoluminal ultrasound applicator has been proposed for palliative and potential curative thermal therapy of pancreatic tumors. By considering a directional transducer array of planar, tubular, or curvilinear transducers, this design offers the potential for fast volumetric therapy and 3D spatial control over the energy deposition profile. Treatment of pancreatic tumor tissue would be performed in a minimally invasive fashion with the applicator positioned in the gastrointestinal (GI) lumen, and sparing of the luminal wall would be achieved with a water-cooled balloon surrounding the transducers. A theoretical evaluation of this design was performed by developing a 3D acoustic and bioheat transfer model, with temperature and thermal dose solutions obtained using a FEM solver (COMSOL Multiphysics). Parametric studies were performed on a generalized anatomical model of the pancreas, tumor, and adjacent luminal wall to determine preferred transducer configurations and frequencies for maximizing lesion volume and penetration while sparing the luminal wall. Patient-specific models of pancreatic tumors were generated from CT studies and used to assess the feasibility of performing thermal ablation or hyperthermia on small (˜2 cm diameter) pancreatic head tumors with an endoluminal applicator positioned within the duodenum. Simulation results indicate lower transducer operating frequencies (1-3 MHz) are necessary to mitigate damage to the luminal wall, and a tradeoff between penetration depth and lesion volume emerges as the degree of focusing increases. For patient-specific ablation modeling of tumors within 30 mm of the luminal wall, approximately 95% of the volume could be ablated within 15 min using a planar or lightly focused transducer configuration without duodenal damage. Over 90% of the volume could be elevated above 40°C at steady state for hyperthermia applications (e.g., radiation sensitization, drug delivery) using a tubular transducer. For

  12. NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures

    Directory of Open Access Journals (Sweden)

    Rivka Colen

    2014-10-01

    Full Text Available The National Cancer Institute (NCI Cancer Imaging Program organized two related workshops on June 26–27, 2013, entitled “Correlating Imaging Phenotypes with Genomics Signatures Research” and “Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems.” The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research.

  13. Optical image encryption based on a joint Fresnel transform correlator with double optical wedges.

    Science.gov (United States)

    Shen, Xueju; Dou, Shuaifeng; Lei, Ming; Chen, Yudan

    2016-10-20

    An optical cryptosystem based on the joint Fresnel transform correlator (JFTC) with double optical wedges is designed. The designed cryptosystem retains the two major advantages of JTC-based optical cryptosystems. First, the encrypted image is real-valued and therefore is easier to record and transmit. Second, the encryption process is simplified, since it doesn't require accurate alignment of optical elements or the generation of the complex conjugate of the key. Also, the designed optical cryptosystem can produce a decrypted image with higher quality than a JTC-based optical cryptosystem, because the original encrypted image is divided by the Fresnel transform power distribution of the key mask to generate the new encrypted image, which significantly reduces the noise during the decryption process. Simulation results showed that the correlation coefficient of the decrypted image and the original image can reach as large as 0.9819 after denoising and adequately selecting half-central interval a and encrypted image width w. Another improvement relative to JTC-based optical cryptosystems is that the attack resistibility gets enhanced due to the nonlinearity of the encryption process as well as the additional key parameter a, which enlarges the key space.

  14. A Correlated Microwave-Acoustic Imaging method for early-stage cancer detection.

    Science.gov (United States)

    Gao, Fei; Zheng, Yuanjin

    2012-01-01

    Microwave-based imaging technique shows large potential in detecting early-stage cancer due to significant dielectric contrast between tumor and surrounding healthy tissue. In this paper, we present a new way named Correlated Microwave-Acoustic Imaging (CMAI) of combining two microwave-based imaging modalities: confocal microwave imaging(CMI) by detecting scattered microwave signal, and microwave-induced thermo-acoustic imaging (TAI) by detecting induced acoustic signal arising from microwave energy absorption and thermal expansion. Necessity of combining CMI and TAI is analyzed theoretically, and by applying simple algorithm to CMI and TAI separately, we propose an image correlation approach merging CMI and TAI together to achieve better performance in terms of resolution and contrast. Preliminary numerical simulation shows promising results in case of low contrast and large variation scenarios. A UWB transmitter is designed and tested for future complete system implementation. This preliminary study inspires us to develop a new medical imaging modality CMAI to achieve real-time, high resolution and high contrast simultaneously.

  15. High-resolution MR imaging of the cutis and subcutis. Histological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Krug, B.; Kugel, H.; Krahe, T.; Lackner, K. [Koeln Univ. (Germany). Radiologisches Inst. und Poliklinik; Schulze, H.J. [Koeln Univ. (Germany). Klinik und Poliklinik fuer Dermatologie und Venerologie; Gieseke, J. [Philips Medical Systems, Hamburg (Germany)

    1998-09-01

    Objective: To determine whether the spatial resolution that can be achieved with currently available MR devices is adequate for the evaluation of skin disease. Material and Methods: We correlated high-resolution MR images of the skin with dermatohistopathology in 26 patients. The examinations were carried out on a 1.0 T imager using a commercially available surface coil (ID 7.5 cm) and optimized SE and GE sequences. Image quality was assessed by four readers on a questionnaire. Results: The visualization of the dermis, subcutaneous tissue, and muscle fascia allowed a pattern analysis that gave findings identical to those at dermatohistopathology. It was possible to distinguish septal from lobular panniculitis, and lipatrophia from sclerodermia. Images with contrast media infusion were useful in the differential diagnosis. Conclusion: High-resolution MR imaging may narrow down the differential diagnosis of various skin diseases and may help to reduce the number of skin biopsies on certain indications. (orig.)

  16. Minimum variance imaging based on correlation analysis of Lamb wave signals.

    Science.gov (United States)

    Hua, Jiadong; Lin, Jing; Zeng, Liang; Luo, Zhi

    2016-08-01

    In Lamb wave imaging, MVDR (minimum variance distortionless response) is a promising approach for the detection and monitoring of large areas with sparse transducer network. Previous studies in MVDR use signal amplitude as the input damage feature, and the imaging performance is closely related to the evaluation accuracy of the scattering characteristic. However, scattering characteristic is highly dependent on damage parameters (e.g. type, orientation and size), which are unknown beforehand. The evaluation error can degrade imaging performance severely. In this study, a more reliable damage feature, LSCC (local signal correlation coefficient), is established to replace signal amplitude. In comparison with signal amplitude, one attractive feature of LSCC is its independence of damage parameters. Therefore, LSCC model in the transducer network could be accurately evaluated, the imaging performance is improved subsequently. Both theoretical analysis and experimental investigation are given to validate the effectiveness of the LSCC-based MVDR algorithm in improving imaging performance.

  17. Efficient content-based low-altitude images correlated network and strips reconstruction

    Science.gov (United States)

    He, Haiqing; You, Qi; Chen, Xiaoyong

    2017-01-01

    The manual intervention method is widely used to reconstruct strips for further aerial triangulation in low-altitude photogrammetry. Clearly the method for fully automatic photogrammetric data processing is not an expected way. In this paper, we explore a content-based approach without manual intervention or external information for strips reconstruction. Feature descriptors in the local spatial patterns are extracted by SIFT to construct vocabulary tree, in which these features are encoded in terms of TF-IDF numerical statistical algorithm to generate new representation for each low-altitude image. Then images correlated network is reconstructed by similarity measure, image matching and geometric graph theory. Finally, strips are reconstructed automatically by tracing straight lines and growing adjacent images gradually. Experimental results show that the proposed approach is highly effective in automatically rearranging strips of lowaltitude images and can provide rough relative orientation for further aerial triangulation.

  18. Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation

    Science.gov (United States)

    Hild, Francois; Raka, Bumedijen; Baudequin, Maud; Roux, Stephane; Cantelaube, Florence

    2002-11-01

    We propose a multiscale approach to determine the displacement field by digital image correlation. The displacement field is first estimated on a coarse resolution image and progressively finer details are introduced in the analysis as the displacement is more and more securely and accurately determined. Such a scheme has been developed to increase the robustness, accuracy, and reliability of the image-matching algorithm. The procedure is used on two different types of examples. The first one deals with a representative image that is deformed precisely and purposefully to assess the intrinsic performances. In particular, the maximum measurable strain is determined. The second case deals with a series of pictures taken during compression experiments on mineral-wool samples. The different steps of the procedure are analyzed and their respective role is assessed. Both reflection and transmission images are tested.

  19. Observation of a cavitation cloud in tissue using correlation between ultrafast ultrasound images.

    Science.gov (United States)

    Prieur, Fabrice; Zorgani, Ali; Catheline, Stefan; Souchon, Rémi; Mestas, Jean-Louis; Lafond, Maxime; Lafon, Cyril

    2015-07-01

    The local application of ultrasound is known to improve drug intake by tumors. Cavitating bubbles are one of the contributing effects. A setup in which two ultrasound transducers are placed confocally is used to generate cavitation in ex vivo tissue. As the transducers emit a series of short excitation bursts, the evolution of the cavitation activity is monitored using an ultrafast ultrasound imaging system. The frame rate of the system is several thousands of images per second, which provides several tens of images between consecutive excitation bursts. Using the correlation between consecutive images for speckle tracking, a decorrelation of the imaging signal appears due to the creation, fast movement, and dissolution of the bubbles in the cavitation cloud. By analyzing this area of decorrelation, the cavitation cloud can be localized and the spatial extent of the cavitation activity characterized.

  20. Fermionic ghost imaging

    CERN Document Server

    Liu, Jianbin; Zheng, Huaibin; Chen, Hui; Li, Fu-li; Xu, Zhuo

    2016-01-01

    Ghost imaging with thermal fermions is calculated based on two-particle interference in Feynman's path integral theory. It is found that ghost imaging with thermal fermions can be simulated by ghost imaging with thermal bosons and classical particles. Photons in pseudothermal light are employed to experimentally study fermionic ghost imaging. Ghost imaging with thermal bosons and fermions is discussed based on the point-to-point (spot) correlation between the object and image planes. The employed method offers an efficient guidance for future ghost imaging with real thermal fermions, which may also be generalized to study other second-order interference phenomena with fermions.

  1. Tomography of correlation functions for ultracold atoms via time-of-flight images

    OpenAIRE

    ZHANG, WEI; Duan, L.-M.

    2009-01-01

    We propose to utilize density distributions from a series of time-of-flight images of an expanding cloud to reconstruct single-particle correlation functions of trapped ultra-cold atoms. In particular, we show how this technique can be used to detect off-diagonal correlations of atoms in a quasi-one-dimensional trap, where both real- and momentum- space correlations are extracted at a quantitative level. The feasibility of this method is analyzed with specific examples, taking into account fi...

  2. Dosimetric and geometric evaluation of a hybrid strategy of offline adaptive planning and online image guidance for prostate cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu Han; Wu Qiuwen, E-mail: Qiuwen.Wu@Duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2011-08-07

    For prostate cancer patients, online image-guided (IG) radiotherapy has been widely used in clinic to correct the translational inter-fractional motion at each treatment fraction. For uncertainties that cannot be corrected online, such as rotation and deformation of the target volume, margins are still required to be added to the clinical target volume (CTV) for the treatment planning. Offline adaptive radiotherapy has been implemented to optimize the treatment for each individual patient based on the measurements at early stages of treatment process. It has been shown that offline adaptive radiotherapy can effectively reduce the required margin. Recently a hybrid strategy of offline adaptive replanning and online IG was proposed and the geometric evaluation was performed. It was found that the planning margins can further be reduced by 1-2 mm compared to online IG only strategy. The purpose of this study was to investigate the dosimetric benefits of such a hybrid strategy on the target and organs at risk. A total of 420 repeated helical computed tomography scans from 28 patients were included in the study. Both low-risk patients (LRP, CTV = prostate) and intermediate-risk patients (IRP, CTV = prostate + seminal vesicles, SV) were included in the simulation. Two registration methods, based on center-of-mass shift of prostate only and prostate plus SV, were performed for IRP. The intensity-modulated radiotherapy was used in the simulation. Criteria on both cumulative and fractional doses were evaluated. Furthermore, the geometric evaluation was extended to investigate the optimal number of fractions necessary to construct the internal target volume (ITV) for the hybrid strategy. The dosimetric margin improvement was smaller than its geometric counterpart and was in the range of 0-1 mm. The optimal number of fractions necessary for the ITV construction is 2 for LRPs and 3-4 for IRPs in a hypofractionation protocol. A new cumulative index of target volume was proposed

  3. Dosimetric and geometric evaluation of a hybrid strategy of offline adaptive planning and online image guidance for prostate cancer radiotherapy

    Science.gov (United States)

    Liu, Han; Wu, Qiuwen

    2011-08-01

    For prostate cancer patients, online image-guided (IG) radiotherapy has been widely used in clinic to correct the translational inter-fractional motion at each treatment fraction. For uncertainties that cannot be corrected online, such as rotation and deformation of the target volume, margins are still required to be added to the clinical target volume (CTV) for the treatment planning. Offline adaptive radiotherapy has been implemented to optimize the treatment for each individual patient based on the measurements at early stages of treatment process. It has been shown that offline adaptive radiotherapy can effectively reduce the required margin. Recently a hybrid strategy of offline adaptive replanning and online IG was proposed and the geometric evaluation was performed. It was found that the planning margins can further be reduced by 1-2 mm compared to online IG only strategy. The purpose of this study was to investigate the dosimetric benefits of such a hybrid strategy on the target and organs at risk. A total of 420 repeated helical computed tomography scans from 28 patients were included in the study. Both low-risk patients (LRP, CTV = prostate) and intermediate-risk patients (IRP, CTV = prostate + seminal vesicles, SV) were included in the simulation. Two registration methods, based on center-of-mass shift of prostate only and prostate plus SV, were performed for IRP. The intensity-modulated radiotherapy was used in the simulation. Criteria on both cumulative and fractional doses were evaluated. Furthermore, the geometric evaluation was extended to investigate the optimal number of fractions necessary to construct the internal target volume (ITV) for the hybrid strategy. The dosimetric margin improvement was smaller than its geometric counterpart and was in the range of 0-1 mm. The optimal number of fractions necessary for the ITV construction is 2 for LRPs and 3-4 for IRPs in a hypofractionation protocol. A new cumulative index of target volume was proposed

  4. Correlation between subcutaneous knee fat thickness and chondromalacia patellae on magnetic resonance imaging of the knee.

    LENUS (Irish Health Repository)

    Kok, Hong Kuan

    2013-08-01

    Chondromalacia patellae is a common cause of anterior knee pain in young patients and can be detected noninvasively with magnetic resonance imaging (MRI). The purpose of our study was to evaluate the correlation between subcutaneous fat thickness around the knee joint on axial MRIs as a surrogate marker of obesity, with the presence or absence of chondromalacia patellae.

  5. Correlating signs and symptoms with pubovisceral muscle avulsions on magnetic resonance imaging

    NARCIS (Netherlands)

    Lammers, K.; Futterer, J.J.; Hout, J. in't; Prokop, M.; Vierhout, M.E.; Kluivers, K.B.

    2013-01-01

    OBJECTIVE: We sought to correlate signs and symptoms of pelvic organ prolapse (POP) with pubovisceral muscle avulsions on magnetic resonance imaging (MRI). STUDY DESIGN: In this retrospective cohort study of 189 women with recurrent POP or unexplained symptoms of pelvic floor dysfunction, we reviewe

  6. Fluorescence lifetime imaging by time-correlated single-photon counting

    NARCIS (Netherlands)

    Becker, W.; Bergmann, A.; Hink, M.A.; Konig, K.; Benndorf, K.; Biskup, C.

    2004-01-01

    We present a time-correlated single photon counting (TCPSC) technique that allows time-resolved multi-wavelength imaging in conjunction with a laser scanning microscope and a pulsed excitation source. The technique is based on a four-dimensional histogramming process that records the photon density

  7. Non-linearly weighted fuzzy correlation for color-image retrieval

    Institute of Scientific and Technical Information of China (English)

    Guoguang Mu(母国光); Hongchen Zhai(翟宏琛); Siyuan Zhang(张思远)

    2003-01-01

    An algorithm with non-linear weight factors in the summation process for fuzzy correlation of color his-tograms is presented, in which non-linear weights are assigned to some characteristic colors of interest.Experimental results show that this can improve the retrieval of color images with partial aberrations orwith local color characters.

  8. Anatomy-Correlated Breast Imaging and Visual Grading Analysis Using Quantitative Transmission Ultrasound™

    Directory of Open Access Journals (Sweden)

    John C. Klock

    2016-01-01

    Full Text Available Objectives. This study presents correlations between cross-sectional anatomy of human female breasts and Quantitative Transmission (QT Ultrasound, does discriminate classifier analysis to validate the speed of sound correlations, and does a visual grading analysis comparing QT Ultrasound with mammography. Materials and Methods. Human cadaver breasts were imaged using QT Ultrasound, sectioned, and photographed. Biopsies confirmed microanatomy and areas were correlated with QT Ultrasound images. Measurements were taken in live subjects from QT Ultrasound images and values of speed of sound for each identified anatomical structure were plotted. Finally, a visual grading analysis was performed on images to determine whether radiologists’ confidence in identifying breast structures with mammography (XRM is comparable to QT Ultrasound. Results. QT Ultrasound identified all major anatomical features of the breast, and speed of sound calculations showed specific values for different breast tissues. Using linear discriminant analysis overall accuracy is 91.4%. Using visual grading analysis readers scored the image quality on QT Ultrasound as better than on XRM in 69%–90% of breasts for specific tissues. Conclusions. QT Ultrasound provides accurate anatomic information and high tissue specificity using speed of sound information. Quantitative Transmission Ultrasound can distinguish different types of breast tissue with high resolution and accuracy.

  9. Anatomy-Correlated Breast Imaging and Visual Grading Analysis Using Quantitative Transmission Ultrasound™

    Science.gov (United States)

    Iuanow, Elaine; Malik, Bilal; Obuchowski, Nancy A.; Wiskin, James

    2016-01-01

    Objectives. This study presents correlations between cross-sectional anatomy of human female breasts and Quantitative Transmission (QT) Ultrasound, does discriminate classifier analysis to validate the speed of sound correlations, and does a visual grading analysis comparing QT Ultrasound with mammography. Materials and Methods. Human cadaver breasts were imaged using QT Ultrasound, sectioned, and photographed. Biopsies confirmed microanatomy and areas were correlated with QT Ultrasound images. Measurements were taken in live subjects from QT Ultrasound images and values of speed of sound for each identified anatomical structure were plotted. Finally, a visual grading analysis was performed on images to determine whether radiologists' confidence in identifying breast structures with mammography (XRM) is comparable to QT Ultrasound. Results. QT Ultrasound identified all major anatomical features of the breast, and speed of sound calculations showed specific values for different breast tissues. Using linear discriminant analysis overall accuracy is 91.4%. Using visual grading analysis readers scored the image quality on QT Ultrasound as better than on XRM in 69%–90% of breasts for specific tissues. Conclusions. QT Ultrasound provides accurate anatomic information and high tissue specificity using speed of sound information. Quantitative Transmission Ultrasound can distinguish different types of breast tissue with high resolution and accuracy.

  10. Increasing accuracy and precision of digital image correlation through pattern optimization

    Science.gov (United States)

    Bomarito, G. F.; Hochhalter, J. D.; Ruggles, T. J.; Cannon, A. H.

    2017-04-01

    The accuracy and precision of digital image correlation (DIC) is based on three primary components: image acquisition, image analysis, and the subject of the image. Focus on the third component, the image subject, has been relatively limited and primarily concerned with comparing pseudo-random surface patterns. In the current work, a strategy is proposed for the creation of optimal DIC patterns. In this strategy, a pattern quality metric is developed as a combination of quality metrics from the literature rather than optimization based on any single one of them. In this way, optimization produces a pattern which balances the benefits of multiple quality metrics. Specifically, sum of square of subset intensity gradients (SSSIG) was found to be the metric most strongly correlated to DIC accuracy and thus is the main component of the newly proposed pattern quality metric. A term related to the secondary auto-correlation peak height is also part of the proposed quality metric which effectively acts as a constraint upon SSSIG ensuring that a regular (e.g., checkerboard-type) pattern is not achieved. The combined pattern quality metric is used to generate a pattern that was on average 11.6% more accurate than a randomly generated pattern in a suite of numerical experiments. Furthermore, physical experiments were performed which confirm that there is indeed improvement of a similar magnitude in DIC measurements for the optimized pattern compared to a random pattern.

  11. Visualizing functional pathways in the human brain using correlation tensors and magnetic resonance imaging.

    Science.gov (United States)

    Ding, Zhaohua; Xu, Ran; Bailey, Stephen K; Wu, Tung-Lin; Morgan, Victoria L; Cutting, Laurie E; Anderson, Adam W; Gore, John C

    2016-01-01

    Functional magnetic resonance imaging usually detects changes in blood oxygenation level dependent (BOLD) signals from T2*-sensitive acquisitions, and is most effective in detecting activity in brain cortex which is irrigated by rich vasculature to meet high metabolic demands. We recently demonstrated that MRI signals from T2*-sensitive acquisitions in a resting state exhibit structure-specific temporal correlations along white matter tracts. In this report we validate our preliminary findings and introduce spatio-temporal functional correlation tensors to characterize the directional preferences of temporal correlations in MRI signals acquired at rest. The results bear a remarkable similarity to data obtained by diffusion tensor imaging but without any diffusion-encoding gradients. Just as in gray matter, temporal correlations in resting state signals may reflect intrinsic synchronizations of neural activity in white matter. Here we demonstrate that functional correlation tensors are able to visualize long range white matter tracts as well as short range sub-cortical fibers imaged at rest, and that evoked functional activities alter these structures and enhance the visualization of relevant neural circuitry. Furthermore, we explore the biophysical mechanisms underlying these phenomena by comparing pulse sequences, which suggest that white matter signal variations are consistent with hemodynamic (BOLD) changes associated with neural activity. These results suggest new ways to evaluate MRI signal changes within white matter. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Multilabel image classification via high-order label correlation driven active learning.

    Science.gov (United States)

    Zhang, Bang; Wang, Yang; Chen, Fang

    2014-03-01

    Supervised machine learning techniques have been applied to multilabel image classification problems with tremendous success. Despite disparate learning mechanisms, their performances heavily rely on the quality of training images. However, the acquisition of training images requires significant efforts from human annotators. This hinders the applications of supervised learning techniques to large scale problems. In this paper, we propose a high-order label correlation driven active learning (HoAL) approach that allows the iterative learning algorithm itself to select the informative example-label pairs from which it learns so as to learn an accurate classifier with less annotation efforts. Four crucial issues are considered by the proposed HoAL: 1) unlike binary cases, the selection granularity for multilabel active learning need to be fined from example to example-label pair; 2) different labels are seldom independent, and label correlations provide critical information for efficient learning; 3) in addition to pair-wise label correlations, high-order label correlations are also informative for multilabel active learning; and 4) since the number of label combinations increases exponentially with respect to the number of labels, an efficient mining method is required to discover informative label correlations. The proposed approach is tested on public data sets, and the empirical results demonstrate its effectiveness.

  13. Synthetic aperture radar image correlation by use of preprocessing for enhancement of scattering centers.

    Science.gov (United States)

    Khoury, J; Gianino, P D; Woods, C L

    2000-10-15

    We demonstrate that a significant improvement can be obtained in the recognition of complicated synthetic aperture radar images taken from the Moving and Stationary Target Acquisitions and Recognition database. These images typically have a low number of scattering centers and high noise. We first preprocess the images and the templates formed from them so that their scattering centers are enhanced. Our technique can produce high-quality performance in several correlation criteria. For realistic automatic target recognition systems, our approach should make it easy to implement optical recognition systems with binarized data for many different types of correlation filter and should have a great effect on feeding data-compressed (binarized) information into either digital or optical processors.

  14. MEASURING SEA ICE DRIFT VIA CROSS-CORRELATION OF RADAR ICE IMAGES

    Institute of Scientific and Technical Information of China (English)

    SUN He-quan; SHEN Yong-ming; Qiu Da-hong

    2004-01-01

    The motion of sea ice has a great effect on winter navigation, and oil field exploration in the Bohai Sea. It is very important to measure the ice drift accurately and efficiently. As a practical technique, radar imagery has been used for sea ice monitoring and forecasting for a long time. Combining with the radar imagery and cross-correlation technique, a new measurement method based on the cross-correlation of radar ice images is specified in this paper to obtain full field measurement of sea ice drift. The theory and fast implementation of cross-correlation are presented briefly in the paper, including the filtering method to modify the invalid vectors. To show deeply the validity of the present method, the velocity maps of sea ice drift are provided in the paper, which are calculated from the radar images grabbed in the Liaodong Gulf. The comparison with the traditional tracing method is also conducted.

  15. Vibration of low amplitude imaged in amplitude and phase by sideband versus carrier correlation digital holography

    CERN Document Server

    Verrier, N; Gross, M

    2015-01-01

    Sideband holography can be used to get fields images (E0 and E1) of a vibrating object for both the carrier (E0) and the sideband (E1) frequency with respect to vibration. We propose here to record E0 and E1 sequentially, and to image the correlation E1E * 0 . We show that this correlation is insensitive the phase related to the object roughness and directly reflect the phase of the mechanical motion. The signal to noise can be improved by averaging the correlation over neighbor pixel. Experimental validation is made with vibrating cube of wood and with a clarinet reed. At 2 kHz, vibrations of amplitude down to 0.01 nm are detected.

  16. Magnetic Resonance Imaging of Breast Cancer and Correlation with Prognostic Factors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yun-Woo; Kwon, Kui Hyang; Choi, Deuk Lin; Lee, Dong Wha; Lee, Min Hyuk (College of Medicine, Soonchunhyang Univ. Hospital, Seoul (Korea)); Lee, Hye Kyung (Dept. of Radiology, Soonchunhyang Bucheon Hospital, Kyonggi (Korea)); Yang, Seung Boo (Dept. of Radiology, Soonchunhyang Gumi Hospital, Kyungbook (Korea)); Kim, Yongbae (Dept. of Preventive Medicine, Soonchunhyang Univ., Chungnam (Korea)); Seo, Dae Young (Dept. of Computer Engineering (KO) Polytechnic Univ., Kyonggi (Korea))

    2009-11-15

    Background: Prognostic factors of breast cancer have been used for the prediction of clinical outcome or selection of patients for complementary treatment. Some of the imaging features of breast cancer, e.g. magnetic resonance imaging (MRI), are associated with these prognostic factors. Purpose: To evaluate the relationship between dynamic enhanced MR features and prognostic factors of clinical outcome of breast cancer. Material and Methods: A total of 136 patients with 151 breast cancers underwent 1.5T dynamic MR imaging with the use of a dynamic T1-weighted three-dimensional fast low-angle shot (FLASH) subtraction imaging technique. Morphological and kinetic analyses of MR features were evaluated using the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon. Pathological prognostic factors were correlated with MR imaging characteristics, including tumor size, histological grade, lymph node status, expression of estrogen receptor (ER), expression of progesterone receptor (PR), expression of c-erbB2, determination of Ki-67 index, and microvascular density (MVD), using univariate and multivariate statistical analyses. Results: Based on univariate and multivariate analyses, spiculated tumor margins correlated significantly with lower histological grade (I-II) and positive PR expression. Rim enhancement was significantly correlated with high histological grade, presence of axillary lymph node metastasis, large tumor size, increased Ki-67 index, and increased MVD. Early peak enhancement, as seen on the first scan after contrast medium injection, was correlated with negative ER expression. Conclusion: The presence of a lesion with a spiculated margin may predict a relatively good prognosis, and the presence of a lesion with rim enhancement may predict a relatively poor prognosis

  17. Fully phase color image encryption based on joint fractional Fourier transform correlator and phase retrieval algorithm

    Institute of Scientific and Technical Information of China (English)

    Ding Lu; Weimin Jin

    2011-01-01

    A novel fully phase color image encryption/decryption scheme based on joint fractional Fourier transform correlator (JFRTC) and phase retrieval algorithm (PRA) is proposed. The security of the system is enhanced by the fractional order as a new added key. This method takes full advantage of the parallel processing features of the optical system and could optically realize single-channel color image encryption.The system and operation procedures are simplified. The simulation results of a color image indicate that the new method provides efficient solutions with a strong sense of security.%@@ A novel fully phase color image encryption/decryption scheme based on joint fractional Fourier transform correlator (JFRTC) and phase retrieval algorithm (PRA) is proposed. The security of the system is enhanced by the fractional order as a new added key. This method takes full advantage of the parallel processing features of the optical system and could optically realize single-channel color image encryption. The system and operation procedures are simplified. The simulation results of a color image indicate that the new method provides efficient solutions with a strong sense of security.

  18. A novel fractal image compression scheme with block classification and sorting based on Pearson's correlation coefficient.

    Science.gov (United States)

    Wang, Jianji; Zheng, Nanning

    2013-09-01

    Fractal image compression (FIC) is an image coding technology based on the local similarity of image structure. It is widely used in many fields such as image retrieval, image denoising, image authentication, and encryption. FIC, however, suffers from the high computational complexity in encoding. Although many schemes are published to speed up encoding, they do not easily satisfy the encoding time or the reconstructed image quality requirements. In this paper, a new FIC scheme is proposed based on the fact that the affine similarity between two blocks in FIC is equivalent to the absolute value of Pearson's correlation coefficient (APCC) between them. First, all blocks in the range and domain pools are chosen and classified using an APCC-based block classification method to increase the matching probability. Second, by sorting the domain blocks with respect to APCCs between these domain blocks and a preset block in each class, the matching domain block for a range block can be searched in the selected domain set in which these APCCs are closer to APCC between the range block and the preset block. Experimental results show that the proposed scheme can significantly speed up the encoding process in FIC while preserving the reconstructed image quality well.

  19. Denervation syndromes of the shoulder girdle: MR imaging with electrophysiologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Bredella, M.A.; Wischer, T.K.; Stork, A.; Genant, H.K. [Dept. of Radiology, University of California, San Francisco (United States); Tirman, P.F.J. [San Francisco Magnetic Resonance Center, CA (United States); Fritz, R.C. [National Orthopaedic Imaging Associates, Greenbrae, CA (United States)

    1999-10-01

    Objective. To investigate the use of MR imaging in the characterization of denervated muscle of the shoulder correlated with electrophysiologic studies.Design and patients. We studied with MR imaging five patients who presented with shoulder weakness and pain and who underwent electrophysiologic studies. On MR imaging the distribution of muscle edema and fatty infiltration was recorded, as was the presence of masses impinging on a regional nerve.Results. Acute/subacute denervation was best seen on T2-weighted fast spin-echo images with fat saturation, showing increased SI related to neurogenic edema. Chronic denervation was best seen on T1-weighted spin-echo images, demonstrating loss of muscle bulk and diffuse areas of increased signal intensity within the muscle. Three patients showed MR imaging and electrophysiologic findings of Parsonage Turner syndrome. One patient demonstrated an arteriovenous malformation within the spinoglenoid notch, impinging on the suprascapular nerve with associated atrophy of the infraspinatus muscle. The fifth patient demonstrated fatty atrophy of the teres minor muscle caused by compression by a cyst of the axillary nerve and electrophysiologic findings of an incomplete axillary nerve block.Conclusion. MR imaging is useful in detecting and characterizing denervation atrophy and neurogenic edema in shoulder muscles. MR imaging can provide additional information to electrophysiologic studies by estimating the age (acute/chronic) and identifying morphologic causes for shoulder pain and atrophy. (orig.)

  20. Computational assessment of mammography accreditation phantom images and correlation with human observer analysis

    Science.gov (United States)

    Barufaldi, Bruno; Lau, Kristen C.; Schiabel, Homero; Maidment, D. A.

    2015-03-01

    Routine performance of basic test procedures and dose measurements are essential for assuring high quality of mammograms. International guidelines recommend that breast care providers ascertain that mammography systems produce a constant high quality image, using as low a radiation dose as is reasonably achievable. The main purpose of this research is to develop a framework to monitor radiation dose and image quality in a mixed breast screening and diagnostic imaging environment using an automated tracking system. This study presents a module of this framework, consisting of a computerized system to measure the image quality of the American College of Radiology mammography accreditation phantom. The methods developed combine correlation approaches, matched filters, and data mining techniques. These methods have been used to analyze radiological images of the accreditation phantom. The classification of structures of interest is based upon reports produced by four trained readers. As previously reported, human observers demonstrate great variation in their analysis due to the subjectivity of human visual inspection. The software tool was trained with three sets of 60 phantom images in order to generate decision trees using the software WEKA (Waikato Environment for Knowledge Analysis). When tested with 240 images during the classification step, the tool correctly classified 88%, 99%, and 98%, of fibers, speck groups and masses, respectively. The variation between the computer classification and human reading was comparable to the variation between human readers. This computerized system not only automates the quality control procedure in mammography, but also decreases the subjectivity in the expert evaluation of the phantom images.

  1. Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images.

    Directory of Open Access Journals (Sweden)

    Michael U Gutmann

    Full Text Available Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation.

  2. Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images.

    Science.gov (United States)

    Gutmann, Michael U; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesús

    2014-01-01

    Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation.

  3. Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity

    DEFF Research Database (Denmark)

    Morsy, Hanan; Kamp, Søren; Thrane, Lars

    2010-01-01

    Epidermal thickness (ET) has been suggested as a surrogate measure of psoriasis severity. Optical coherence tomography (OCT) is a recent imaging technology that provides real-time skin images to a depth of 1.8 mm with a micrometre resolution. OCT may provide an accurate in vivo measure of ET. It is......, therefore, speculated that OCT may be used in the assessment of psoriasis vulgaris. A total of 23 patients with psoriasis vulgaris were systematically evaluated by OCT imaging and skin biopsy during treatment. Biopsies were graded for disease severity, and additional evaluation was done by the physician via...... with a stronger entrance signal, a serrated dermo-epidermal junction was found and a less signal intensity in the dermis as shown in OCT images. ET measured in untreated plaques was thicker reflecting epidermal hyperproliferation and inflammation. The changes were significantly correlated with the biopsy grading...

  4. Magnetic resonance imaging for extramammary Paget's disease: radiological and pathological correlations

    Energy Technology Data Exchange (ETDEWEB)

    Akaike, Gensuke; Nozaki, Taiki; Matsusako, Masaki; Saida, Yukihisa [St. Luke' s International Hospital, Department of Radiology, Tokyo (Japan); Matsui, Mizuko; Ohtake, Naoyuki [St. Luke' s International Hospital, Department of Plastic Surgery and Reconstructive Surgery, Tokyo (Japan); Eto, Hikaru [St. Luke' s International Hospital, Department of Dermatology, Tokyo (Japan); Suzuki, Koyu [St. Luke' s International Hospital, Department of Pathology, Tokyo (Japan)

    2013-03-15

    Extramammary Paget's disease (EMPD) is a rare cutaneous neoplasm that is thought to represent intraepithelial adenocarcinoma developing in an area rich in apocrine glands. Magnetic resonance imaging (MRI) findings for this disease are not well established. We report three cases of pathologically confirmed EMPD in which MRI was performed before surgery. The lesions were widespread in the epidermis and the dermis. Lesions were sharply well enhanced on gadolinium-enhanced T1-weighted imaging and appeared hyperintense on diffusion-weighted imaging in all cases. Areas with enhancement in depth corresponded well with the pathological lesion. In addition, different malignant legions were found on the same images from MRI in two cases, indicating potential associations with other malignancies. We describe the MRI findings and their pathological correlation. MRI could be useful for preoperative evaluation of disease spread and detection of associated malignancies. (orig.)

  5. Multi-modal contrast of tissue anatomy enables correlative biomarker imaging

    Science.gov (United States)

    Garsha, Karl; Ventura, Franklin; Pestano, Gary; Otter, Michael; Nagy, Dea; Nagle, Ray B.; Roberts, Esteban; Barnes, Michael

    2015-03-01

    Optical imaging techniques are being developed that promise to increase the information content related to specific molecular reporters. Such modalities do not produce contrast in the structural context of the surrounding tissue, making it difficult to reconcile molecular information with morphological context. We report a solution that enables visualization of the tissue morphology on formalin-fixed, paraffin embedded sections prepared for analytical biomarker imaging. Our approach combines modes of transmitted darkfield and fluorescence contrast and computer visualization to produce 2-component image data analogous to the classical hematoxylin and eosin histological stain. An interferometric hyperspectral image capture mode enables measurement of multiplexed biomarkers in annotated anatomic regions. The system enables practical correlative analysis of molecular changes within areas of anatomic pathology.

  6. Imaging of peripheral nerve sheath tumors with pathologic correlation Pictorial review

    Energy Technology Data Exchange (ETDEWEB)

    Pilavaki, M.; Chourmouzi, D. E-mail: d.chourmouzi@ips.gr; Kiziridou, A.; Skordalaki, A.; Zarampoukas, T.; Drevelengas, A

    2004-12-01

    Peripheral neurogenic tumors include neurilemoma, neurinoma, and malignant peripheral nerve sheath tumors. All neurogenic tumors share common imaging features. Although differentiation between them is difficult, neurogenic origin can be suggested from their imaging appearances, including fusiform shape, relation to the nerve, 'split-fat' sign, associated muscle atrophy and intrinsic imaging characteristics including 'target sign' as well as from lesion location along a typical nerve distribution. Our purpose is to make an overview of imaging findings of each type of peripheral nerve sheath tumor with emphasis on characteristic signs and correlate with histologic features. Morton's neuroma and intraneural ganglion are also included as tumors of nerve origin.

  7. A Generic and Efficient E-field Parallel Imaging Correlator for Next-Generation Radio Telescopes

    Science.gov (United States)

    Thyagarajan, Nithyanandan; Beardsley, Adam P.; Bowman, Judd D.; Morales, Miguel F.

    2017-05-01

    Modern radio telescopes are favouring densely packed array layouts with large numbers of antennas (NA ≳ 1000). Since the complexity of traditional correlators scales as O(N_A^2), there will be a steep cost for realizing the full imaging potential of these powerful instruments. Through our generic and efficient E-field Parallel Imaging Correlator (epic), we present the first software demonstration of a generalized direct imaging algorithm, namely the Modular Optimal Frequency Fourier imager. Not only does it bring down the cost for dense layouts to O(N_A log _2N_A) but can also image from irregular layouts and heterogeneous arrays of antennas. epic is highly modular, parallelizable, implemented in object-oriented python, and publicly available. We have verified the images produced to be equivalent to those from traditional techniques to within a precision set by gridding coarseness. We have also validated our implementation on data observed with the Long Wavelength Array (LWA1). We provide a detailed framework for imaging with heterogeneous arrays and show that epic robustly estimates the input sky model for such arrays. Antenna layouts with dense filling factors consisting of a large number of antennas such as LWA, the Square Kilometre Array, Hydrogen Epoch of Reionization Array, and Canadian Hydrogen Intensity Mapping Experiment will gain significant computational advantage by deploying an optimized version of epic. The algorithm is a strong candidate for instruments targeting transient searches of fast radio bursts as well as planetary and exoplanetary phenomena due to the availability of high-speed calibrated time-domain images and low output bandwidth relative to visibility-based systems.

  8. A Generic and Efficient E-field Parallel Imaging Correlator for Next-Generation Radio Telescopes

    Science.gov (United States)

    Thyagarajan, Nithyanandan; Beardsley, Adam P.; Bowman, Judd D.; Morales, Miguel F.

    2017-01-01

    Modern radio telescopes are favouring densely packed array layouts with large numbers of antennas (NA ≳ 1000). Since the complexity of traditional correlators scales as O(N_{A}^2), there will be a steep cost for realizing the full imaging potential of these powerful instruments. Through our generic and efficient E-field Parallel Imaging Correlator (EPIC), we present the first software demonstration of a generalized direct imaging algorithm, namely, the Modular Optimal Frequency Fourier (MOFF) imager. Not only does it bring down the cost for dense layouts to O(N_{A} log _2N_{A}) but can also image from irregular layouts and heterogeneous arrays of antennas. EPIC is highly modular, parallelizable, implemented in object-oriented Python, and publicly available. We have verified the images produced to be equivalent to those from traditional techniques to within a precision set by gridding coarseness. We have also validated our implementation on data observed with the Long Wavelength Array (LWA1). We provide a detailed framework for imaging with heterogeneous arrays and show that EPIC robustly estimates the input sky model for such arrays. Antenna layouts with dense filling factors consisting of a large number of antennas such as LWA, the Square Kilometre Array, Hydrogen Epoch of Reionization Array, and Canadian Hydrogen Intensity Mapping Experiment will gain significant computational advantage by deploying an optimized version of EPIC. The algorithm is a strong candidate for instruments targeting transient searches of Fast Radio Bursts (FRB) as well as planetary and exoplanetary phenomena due to the availability of high-speed calibrated time-domain images and low output bandwidth relative to visibility-based systems.

  9. Disease activity in Graves' ophthalmopathy: diagnosis with orbital MR imaging and correlation with clinical score.

    Science.gov (United States)

    Tortora, Fabio; Cirillo, Mario; Ferrara, Marco; Belfiore, Maria Paola; Carella, Carlo; Caranci, Ferdinando; Cirillo, Sossio

    2013-10-01

    In Graves' ophthalmopathy (GO) it is important to distinguish acute inflammation at an early stage, responsive to immunosuppressive treatment, from inactive fibrotic end stage disease, unresponsive to the same treatment. The purpose of this study was to identify the most relevant signal intensities on orbital MR imaging with contrast administration both to classify patients according to their clinical activity score (defined by a cut-off value of 3) and to make a prediction of patient's CAS. Such threshold was considered as widely used in literature. Sixteen consecutive patients with a diagnosis of GO in different phases of thyroid disease based on clinical and orbital MR imaging signs, and six normal volunteers were examined. Orbital MR imaging was performed on a 1.5 Tesla MR Unit. MR scans were assessed by an experienced neuroradiologist, blinded to the clinical examinations. We found a statistical correlation between CAS and both STIR and contrast enhanced T1-weighted sequences. There was also a statistically significant correlation between STIR and contrast-enhanced T1 images disclosing the possibility of avoiding the injection of contrast medium. Our study proved that signal intensity values on STIR sequence increase in the inflammatory oedematous phase of disease. We confirmed the correlation between signal intensities on this sequence and CAS, showing an increase in signal intensity proportional to the CAS value. So we validated MRI use to establish the activity phase of disease more sensitively than CAS alone.

  10. Disease Activity in Graves' Ophthalmopathy: Diagnosis with Orbital MR Imaging and Correlation with Clinical Score

    Science.gov (United States)

    Tortora, Fabio; Cirillo, Mario; Ferrara, Marco; Belfiore, Maria Paola; Carella, Carlo; Caranci, Ferdinando; Cirillo, Sossio

    2013-01-01

    Summary In Graves' ophthalmopathy (GO) it is important to distinguish acute inflammation at an early stage, responsive to immunosuppressive treatment, from inactive fibrotic end stage disease, unresponsive to the same treatment. The purpose of this study was to identify the most relevant signal intensities on orbital MR imaging with contrast administration both to classify patients according to their clinical activity score (defined by a cut-off value of 3) and to make a prediction of patient's CAS. Such threshold was considered as widely used in literature. Sixteen consecutive patients with a diagnosis of GO in different phases of thyroid disease based on clinical and orbital MR imaging signs, and six normal volunteers were examined. Orbital MR imaging was performed on a 1.5 Tesla MR Unit. MR scans were assessed by an experienced neuroradiologist, blinded to the clinical examinations. We found a statistical correlation between CAS and both STIR and contrast enhanced T1-weighted sequences. There was also a statistically significant correlation between STIR and contrast-enhanced T1 images disclosing the possibility of avoiding the injection of contrast medium. Our study proved that signal intensity values on STIR sequence increase in the inflammatory oedematous phase of disease. We confirmed the correlation between signal intensities on this sequence and CAS, showing an increase in signal intensity proportional to the CAS value. So we validated MRI use to establish the activity phase of disease more sensitively than CAS alone. PMID:24199816

  11. CT and MR imaging findings of xanthogranulomatous cholecystitis: correlation with pathologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Shuto, R.; Kiyosue, H.; Komatsu, E.; Matsumoto, S.; Mori, H. [Oita Medical Univ. (Japan). Dept. of Radiology; Kawano, K. [Oita Medical Univ. (Japan). Dept. of First Surgery; Kondo, Y.; Yokoyama, S. [Oita Medical Univ. (Japan). Dept. of First Pathology

    2004-03-01

    The aim of this study was to evaluate CT and MRI findings in xanthogranulomatous cholecystitis (XGC) and to correlate the imaging findings with various pathologic parameters. The study included 13 patients with histopathologically confirmed XGC. The CT (n=13) and MRI (n=5) obtained in these patients were evaluated retrospectively. On CT, low-attenuation areas in the wall of XGC correlated with foam and inflammatory cells or necrosis and/or abscess in XGC. Areas of iso- to slightly high signal intensity on T2-weighted images, showing slight enhancement at early phase and strong enhancement at last phase on dynamic study, corresponded with areas of abundant xanthogranulomas. Areas with very high signal intensity on T2-weighted images without enhancement corresponded with necrosis and/or abscesses. Luminal surface enhancement (LSE) of gallbladder wall represented preservation of the epithelial layer. The early-enhanced areas of the liver bed on dynamic CT and MR images corresponded with accumulation of inflammatory cells and abundant fibrosis. Our results indicate that CT and MRI findings correlate well with the histopathologic findings of XGC.

  12. The potential role of respiratory motion management and image guidance in the reduction of severe toxicities following stereotactic ablative radiation therapy for patients with centrally located early stage non-small cell lung cancer or lung metastases

    Directory of Open Access Journals (Sweden)

    Alexander eChi

    2014-06-01

    Full Text Available Image guidance allows delivery of very high doses of radiation over a few fractions, known as stereotactic ablative radiotherapy (SABR. This treatment is associated with excellent outcome for early stage non-small cell lung cancer and metastases to the lungs. In the delivery of SABR, central location constantly poses a challenge due to the difficulty of adequately sparing critical thoracic structures that are immediately adjacent to the tumor if an ablative dose of radiation is to be delivered to the tumor target. As of current, various respiratory motion management and image guidance strategies can be used to ensure accurate tumor target localization prior and/ or during daily treatment, which allows for maximal and safe reduction of set up margins. The incorporation of both may lead to the most optimal normal tissue sparing and the most accurate SABR delivery. Here, the clinical outcome, treatment related toxicities, and the pertinent respiratory motion management/image guidance strategies reported in the current literature on SABR for central lung tumors are reviewed.

  13. Intravoxel Incoherent Motion MR Imaging in the Head and Neck: Correlation with Dynamic Contrast-Enhanced MR Imaging and Diffusion-Weighted Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiao Quan [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 (China); Choi, Young Jun; Sung, Yu Sub [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Yoon, Ra Gyoung [Department of Radiology, Catholic Kwandong University International St. Mary' s Hospital, Catholic Kwandong University College of Medicine, Incheon 22711 (Korea, Republic of); Jang, Seung Won; Park, Ji Eun [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Heo, Young Jin [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Department of Radiology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392 (Korea, Republic of); Baek, Jung Hwan; Lee, Jeong Hyun [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of)

    2016-11-01

    To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D{sup *}), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D{sup *} and model-free parameters from the DCE-MRI (wash-in, T{sub max}, E{sub max}, initial AUC{sub 60}, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. No correlation was found between f or D{sup *} and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D{sup *} (p > 0.05, respectively). Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck.

  14. Intravoxel incoehrent motion MR imaging in the head and neck: Correlation with dynamic contrast-enhanced MR imaging and diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiao Quan; Choi, Young Jun; Sung, Yu Sub; Jang, Seung Won; Park, Ji Eun; Heo, Young Jin; Beak, Jung Hwan; Lee, Jeong Hyun [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Yoon, Ra Gyoung [Dept. of Radiology, Catholic Kwandong University International St. Mary' s Hospital, Catholic Kwandong University College of Medicine, Incheon (Korea, Republic of)

    2016-09-15

    To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D{sup *}), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D{sup *} and model-free parameters from the DCE-MRI (wash-in, T{sub max}, E{sub max}, initial AUC{sub 60}, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. No correlation was found between f or D{sup *} and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D{sup *} (p > 0.05, respectively). Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck.

  15. Imaging diagnosis in relapsing polychondritis and correlation with clinical and serological data

    Energy Technology Data Exchange (ETDEWEB)

    Thaiss, W.M.; Nikolaou, K.; Horger, M. [Eberhard Karls University, Department of Radiology, Diagnostic and Interventional Radiology, Tuebingen (Germany); Spengler, W.; Xenitidis, T.; Henes, J. [Eberhard Karls University, Department of Internal Medicine II, Tuebingen (Germany); Spira, D. [Eberhard Karls University, Department of Radiology, Diagnostic and Interventional Radiology, Tuebingen (Germany); University Medical Center Heidelberg, Diagnostic and Interventional Radiology, Heidelberg (Germany)

    2016-03-15

    We hypothesize that imaging findings from CT and MRI correlate better with clinical markers for assessment of disease activity in patients with the rare relapsing polychondritis (RPC) than with serological inflammatory markers. Retrospective database search at our institution identified 28 patients (13 females; age 49.0 years ± 15.0 SD) with RP between September 2004 and March 2014. Institutional review board approval was obtained for this retrospective data analysis. All patients had clinically proven RPC with at least two episodes of active disease. Of those, 18 patients were examined with CT- and MRI and presented all morphologic features of RPC like bronchial/laryngeal/auricular cartilage thickness, contrast enhancement, increased T2-signal intensity. Imaging data was subsequently correlated with corresponding clinical symptoms like fever, dyspnea, stridor, uveitis, pain, hearing impairment as well as with acute-phase-inflammatory parameters like C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). The clinical parameters were in good agreement with imaging findings and clinical symptoms such as tracheal wall thickening and dyspnea (r =0.65 p = 0.05), joint synovitis on MRI and a higher McAdam score (r = 0.84 p < 0.001). No correlations were found between inflammatory laboratory markers, imaging findings and clinical features. Imaging diagnosis in RPC using CT and/or MRI delivers information about the degree of disease activity that correlates better with clinical features than unspecific inflammatory laboratory markers. Additionally, clinically unapparent cartilage involvement can be assessed adding value to the clinical diagnosis and therapy planning in this rare disease. (orig.)

  16. Partial correlation analyses of global diffusion tensor imaging-derived metrics in glioblastoma multiforme: Pilot study

    Institute of Scientific and Technical Information of China (English)

    David; Cortez-Conradis; Camilo; Rios; Sergio; Moreno-Jimenez; Ernesto; Roldan-Valadez; Ernesto; Roldan-Valadez

    2015-01-01

    AIM: To determine existing correlates among diffusion tensor imaging(DTI)-derived metrics in healthy brains and brains with glioblastoma multiforme(GBM). METHODS: Case-control study using DTI data from brain magnetic resonance imaging of 34 controls(mean, 41.47; SD, ± 21.94 years; range, 21-80 years) and 27 patients with GBM(mean, SD; 48.41 ± 15.18 years; range, 18-78 years). Image postprocessing using FSL software calculated eleven tensor metrics: fractional(FA) and relative anisotropy; pure isotropic(p) and anisotropic diffusions(q), total magnitude of diffusion(L); linear(Cl), planar(Cp) and spherical tensors(Cs); mean(MD), axial(AD) and radial diffusivities(RD). Partial correlation analyses(controlling the effect of ageand gender) and multivariate Mancova were performed.RESULTS: There was a normal distribution for all metrics. Comparing healthy brains vs brains with GBM, there were significant very strong bivariate correlations only depicted in GBM: [FA?Cl(+)], [FA?q(+)], [p?AD(+)], [AD?MD(+)], and [MD?RD(+)]. Among 56 pairs of bivariate correlations, only seven were significantly different. The diagnosis variable depicted a main effect [F-value(11, 23) = 11.842, P ≤ 0.001], with partial eta squared = 0.850, meaning a large effect size; age showed a similar result. The age also had a significant influence as a covariate [F(11, 23) = 10.523, P < 0.001], with a large effect size(partial eta squared = 0.834).CONCLUSION: DTI-derived metrics depict significant differences between healthy brains and brains with GBM, with specific magnitudes and correlations. This study provides reference data and makes a contribution to decrease the underlying empiricism in the use of DTI parameters in brain imaging.

  17. A Statistical Definition of Image Resolution Based on the Correlation of Pixels

    CERN Document Server

    Zhou, Jian-Feng

    2015-01-01

    Resolution, usually defined by the Rayleigh criterion or the Full Width at Half Maximum of a Point Spread Function, is a basic property of an image. Here, we present a new statistical definition of image resolution based on the cross-correlation properties of the pixels in an image. It is shown that the new definition of image resolution depends not only on the PSF of an imaging device, but also on the signal-to-noise ratio of the data and on the structures of an object. In an image, the resolution does not have to be uniform. Our new definition is also suitable for the interpretation of the result of a deconvolution. We illustrate this, in this paper, with a Wiener deconvolution. It is found that weak structures can be extracted from low signal-to-noise ratio data, but with low resolution; a high-resolution image was obtained from high signal-to-noise ratio data after a Wiener deconvolution. The new definition can also be used to compare various deconvolution algorithms on their processing effects, such as r...

  18. MR imaging findings of painful type II accessory navicular bone: correlation with surgical and pathologic studies

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Sun; Lee, Kyung Tai; Kim, Eun Kyung [Eulji Hospital, Eulji University School of Medicine, Daejeon (Korea, Republic of); Kang, Heung Sik [Seoul National University Bundang Hospital, Seoul (Korea, Republic of)

    2004-12-15

    To evaluate the MR imaging findings of painful type II accessory navicular bone and to correlate these with the surgical and pathologic findings. The MR images of 17 patients with medial foot pain and surgically proven type II accessory navicular abnormalities were reviewed. The changes of signal intensity in the accessory navicular, synchondrosis and adjacent soft tissue, the presence of synchondrosis widening, and posterior tibial tendon (PTT) pathology on the T1-weighted and fat-suppressed T2-weighted images were analyzed. The MR imaging findings were compared with the surgical and pathologic findings. The fat-suppressed T2-weighted images showed high signal intensity in the accessory navicular bones and synchondroses in all patients, and in the soft tissue in 11 (64.7%) of the 17 patients, as well as synchondrosis widening in 3 (17.6%) of the 17 patients. The MR images showed tendon pathology in 12 (75%) of the 16 patients with PTT dysfunction at surgery. The pathologic findings of 16 surgical specimens included areas of osteonecrosis with granulomatous inflammation, fibrosis and destruction of the cartilage cap. The MR imaging findings of painful type II accessory navicular bone are a persistent edema pattern in the accessory navicular bone and within the synchondrosis, indicating osteonecrosis, inflammation and destruction of the cartilage cap. Posterior tibial tendon dysfunction was clinically evident in most patients.

  19. Binocular Goggle Augmented Imaging and Navigation System provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping

    Science.gov (United States)

    B. Mondal, Suman; Gao, Shengkui; Zhu, Nan; Sudlow, Gail P.; Liang, Kexian; Som, Avik; Akers, Walter J.; Fields, Ryan C.; Margenthaler, Julie; Liang, Rongguang; Gruev, Viktor; Achilefu, Samuel

    2015-07-01

    The inability to identify microscopic tumors and assess surgical margins in real-time during oncologic surgery leads to incomplete tumor removal, increases the chances of tumor recurrence, and necessitates costly repeat surgery. To overcome these challenges, we have developed a wearable goggle augmented imaging and navigation system (GAINS) that can provide accurate intraoperative visualization of tumors and sentinel lymph nodes in real-time without disrupting normal surgical workflow. GAINS projects both near-infrared fluorescence from tumors and the natural color images of tissue onto a head-mounted display without latency. Aided by tumor-targeted contrast agents, the system detected tumors in subcutaneous and metastatic mouse models with high accuracy (sensitivity = 100%, specificity = 98% ± 5% standard deviation). Human pilot studies in breast cancer and melanoma patients using a near-infrared dye show that the GAINS detected sentinel lymph nodes with 100% sensitivity. Clinical use of the GAINS to guide tumor resection and sentinel lymph node mapping promises to improve surgical outcomes, reduce rates of repeat surgery, and improve the accuracy of cancer staging.

  20. Technical Note: Method to correlate whole-specimen histopathology of radical prostatectomy with diagnostic MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, Deirdre M., E-mail: d.mcgrath@sheffield.ac.uk; Lee, Jenny; Foltz, Warren D. [Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2M9 (Canada); Samavati, Navid [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9 (Canada); Jewett, Michael A. S. [Departments of Surgery (Urology) and Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Kwast, Theo van der [Pathology Department, University Health Network, Toronto, Ontario M5G 2C4 (Canada); Chung, Peter [Radiation Medicine Program, Princess Margaret Hospital, University Health Network and the University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Ménard, Cynthia [Radiation Medicine Program, Princess Margaret Hospital, University Health Network and the University of Toronto, Toronto, Ontario M5G 2M9, Canada and Centre Hospitalier de l’Université de Montréal, 1058 Rue Saint-Denis, Montréal, Québec H2X 3J4 (Canada); Brock, Kristy K. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48108 (United States)

    2016-03-15

    Purpose: Validation of MRI-guided tumor boundary delineation for targeted prostate cancer therapy is achieved via correlation with gold-standard histopathology of radical prostatectomy specimens. Challenges to accurate correlation include matching the pathology sectioning plane with the in vivo imaging slice plane and correction for the deformation that occurs between in vivo imaging and histology. A methodology is presented for matching of the histological sectioning angle and position to the in vivo imaging slices. Methods: Patients (n = 4) with biochemical failure following external beam radiotherapy underwent diagnostic MRI to confirm localized recurrence of prostate cancer, followed by salvage radical prostatectomy. High-resolution 3-D MRI of the ex vivo specimens was acquired to determine the pathology sectioning angle that best matched the in vivo imaging slice plane, using matching anatomical features and implanted fiducials. A novel sectioning device was developed to guide sectioning at the correct angle, and to assist the insertion of reference dye marks to aid in histopathology reconstruction. Results: The percentage difference in the positioning of the urethra in the ex vivo pathology sections compared to the positioning in in vivo images was reduced from 34% to 7% through slicing at the best match angle. Reference dye marks were generated, which were visible in ex vivo imaging, in the tissue sections before and after processing, and in histology sections. Conclusions: The method achieved an almost fivefold reduction in the slice-matching error and is readily implementable in combination with standard MRI technology. The technique will be employed to generate datasets for correlation of whole-specimen prostate histopathology with in vivo diagnostic MRI using 3-D deformable registration, allowing assessment of the sensitivity and specificity of MRI parameters for prostate cancer. Although developed specifically for prostate, the method is readily

  1. Triceps brachii tendon: anatomic-MR imaging study in cadavers with histologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Belentani, Clarissa [University of California, Department of Radiology, San Diego, CA (United States); Pastore, Daniel; Wangwinyuvirat, Mani; Dirim, Berna; Trudell, Debra J.; Resnick, Donald [University of California, Department of Radiology, San Diego, CA (United States); University of California, VA Medical Center, San Diego, CA (United States); Haghighi, Parviz [University of California, VA Medical Center, San Diego, CA (United States); University of California, Department of Histology, San Diego (United States)

    2009-02-15

    The purpose of this cadaveric study was to describe the normal MR anatomy of the triceps brachii tendon (TBT) insertion, to correlate the findings with those seen in anatomic sections and histopathologic analysis, and to review triceps tendon injuries. Twelve cadaveric elbows were used according to institution guidelines. T1-weighted spin-echo MR images were acquired in three planes. Findings on MR imaging were correlated with those derived from anatomic and histologic study. On MR images, the TBT had a bipartite appearance as it inserted on olecranon in all specimens. The insertion of the medial head was deeper than that of the long and lateral heads and was mainly muscular at its insertion, with a small amount of the tendon blending with the muscle distally, necessitating histologic analysis to determine if there was tendon blending with the muscle at the site of insertion and if the medial head inserted together with the common tendon or as a single unit. At histopathologic analysis, the three heads of the triceps tendon had a common insertion on the olecranon. The bipartite aspect of the tendon that was identified in the MR images was not seen by histologic study, indicating that there was a union of the medial and common tendons just before they inserted into bone. TBT has a bipartite appearance on MR images and inserts on olecranon as a single unit. (orig.)

  2. Correlative imaging of fluorescent proteins in resin-embedded plant material.

    Science.gov (United States)

    Bell, Karen; Mitchell, Steve; Paultre, Danae; Posch, Markus; Oparka, Karl

    2013-04-01

    Fluorescent proteins (FPs) were developed for live-cell imaging and have revolutionized cell biology. However, not all plant tissues are accessible to live imaging using confocal microscopy, necessitating alternative approaches for protein localization. An example is the phloem, a tissue embedded deep within plant organs and sensitive to damage. To facilitate accurate localization of FPs within recalcitrant tissues, we developed a simple method for retaining FPs after resin embedding. This method is based on low-temperature fixation and dehydration, followed by embedding in London Resin White, and avoids the need for cryosections. We show that a palette of FPs can be localized in plant tissues while retaining good structural cell preservation, and that the polymerized block face can be counterstained with cell wall probes. Using this method we have been able to image green fluorescent protein-labeled plasmodesmata to a depth of more than 40 μm beneath the resin surface. Using correlative light and electron microscopy of the phloem, we were able to locate the same FP-labeled sieve elements in semithin and ultrathin sections. Sections were amenable to antibody labeling, and allowed a combination of confocal and superresolution imaging (three-dimensional-structured illumination microscopy) on the same cells. These correlative imaging methods should find several uses in plant cell biology.

  3. A three-phase time-correlation image sensor using pinned photodiode active pixels

    Science.gov (United States)

    Han, Sangman; Iwahori, Tomohiro; Sawada, Tomonari; Kawahito, Shoji; Ando, Shigeru

    2010-01-01

    A time correlation (TC) image sensor is a device that produces 3-phase time-correlated signals between the incident light intensity and three reference signals. A conventional implementation of the TC image sensor using a standard CMOS technology works at low frequency and with low sensitivity. In order to achieve higher modulation frequency and high sensitivity, the TC image sensor with a dual potential structure using a pinned diode is proposed. The dual potential structure is created by changing the impurity doping concentration in the two different potential regions. In this structure, high-frequency modulation can be achieved, while maintaining a sufficient light receiving area. A prototype TC image sensor with 366×390pixels is implemented with 0.18-μm 1P4M CMOS image sensor technology. Each pixel with the size of 12μm×12μm has one pinned photodiode with the dual potential structure, 12 transistors and 3capacitors to implement three-parallel-output active pixel circuits. A fundamental operation of the implemented TC sensor is demonstrated.

  4. Full-field Measurement of Deformation and Vibration using Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Liang-Chih Chen

    2015-05-01

    Full Text Available The main intention of this study was to investigate the full-field measurement of de-formation and vibration using a program we developed for digital image correlation. Digital image correlation is a measuring method that can calculate the displacement of each point on an object by using recorded images. By capturing continuous images of the object in deformation or in motion, the displacements of feature points on the object can be tracked and used in calculations to determine the full-field deformation, strain and vibration of the object. We used the fast and simple algorithm in our program as the core, and conducted non-contact full-field displacement measurement by tracking feature points from images taken after motion. The measuring accuracy can be up to 0.1 pixel. Our experimental results show the technique to be very accurate and useful. We also applied this technique under conditions where an ordinary sensor could not be used.

  5. Correlation of diffusion tensor imaging parameters with neural status in Pott’s spine

    Directory of Open Access Journals (Sweden)

    Jain Nikhil

    2016-01-01

    Full Text Available Introduction: Diffusion tensor imaging (DTI has been used in cervical trauma and spondylotic myelopathy, and it has been found to correlate with neural deficit and prognosticate neural recovery. Such a correlation has not been studied in Pott’s spine with paraplegia. Hence, this prospective study has been used to find correlation of DTI parameters with neural deficit in these patients. Methods: Thirty-four patients of spinal TB were enrolled and DTI was performed before the start of treatment and after six months. Fractional anisotropy (FA, Mean diffusivity (MD, and Tractography were studied. Neurological deficit was graded by the Jain and Sinha scoring. Changes in FA and MD at and below the site of lesion (SOL were compared to above the SOL (control using the unpaired t-test. Pre-treatment and post-treatment values were also compared using the paired t-test. Correlation of DTI parameters with neurological score was done by Pearson’s correlation. Subjective assessment of Tractography images was done. Results: Mean average FA was not significantly decreased at the SOL in patients with paraplegia as compared to control. After six months of treatment, a significant decrease (p = 0.02 in mean average FA at the SOL compared to pre-treatment was seen. Moderate positive correlation (r = 0.49 between mean average FA and neural score after six months of treatment was found. Tractography images were not consistent with severity of paraplegia. Conclusion: Unlike spondylotic myelopathy and trauma, epidural collection and its organized inflammatory tissue in Pott’s spine precludes accurate assessment of diffusion characteristics of the compressed cord.

  6. Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis

    Science.gov (United States)

    Moon, Kevin R.; Li, Jimmy J.; Delouille, Véronique; De Visscher, Ruben; Watson, Fraser; Hero, Alfred O.

    2016-01-01

    Context. The flare productivity of an active region is observed to be related to its spatial complexity. Mount Wilson or McIntosh sunspot classifications measure such complexity but in a categorical way, and may therefore not use all the information present in the observations. Moreover, such categorical schemes hinder a systematic study of an active region's evolution for example. Aims: We propose fine-scale quantitative descriptors for an active region's complexity and relate them to the Mount Wilson classification. We analyze the local correlation structure within continuum and magnetogram data, as well as the cross-correlation between continuum and magnetogram data. Methods: We compute the intrinsic dimension, partial correlation, and canonical correlation analysis (CCA) of image patches of continuum and magnetogram active region images taken from the SOHO-MDI instrument. We use masks of sunspots derived from continuum as well as larger masks of magnetic active regions derived from magnetogram to analyze separately the core part of an active region from its surrounding part. Results: We find relationships between the complexity of an active region as measured by its Mount Wilson classification and the intrinsic dimension of its image patches. Partial correlation patterns exhibit approximately a third-order Markov structure. CCA reveals different patterns of correlation between continuum and magnetogram within the sunspots and in the region surrounding the sunspots. Conclusions: Intrinsic dimension has the potential to distinguish simple from complex active regions. These results also pave the way for patch-based dictionary learning with a view toward automatic clustering of active regions.

  7. Adaptive FPGA NoC-based Architecture for Multispectral Image Correlation

    CERN Document Server

    Zhang, Linlin; Fresse, Virginie; Fischer, Viktor

    2009-01-01

    An adaptive FPGA architecture based on the NoC (Network-on-Chip) approach is used for the multispectral image correlation. This architecture must contain several distance algorithms depending on the characteristics of spectral images and the precision of the authentication. The analysis of distance algorithms is required which bases on the algorithmic complexity, result precision, execution time and the adaptability of the implementation. This paper presents the comparison of these distance computation algorithms on one spectral database. The result of a RGB algorithm implementation was discussed.

  8. Symptomatic resolution of spinal osteoid osteoma with conservative management: imaging correlation

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Prakash [The Royal National Orthopaedic Hospital, Spinal Surgery, London (United Kingdom); The Whitehouse, Enfield, Middlesex (United Kingdom); Harish, S. [The Royal National Orthopaedic Hospital, Radiology, London (United Kingdom); Nnadi, Colin; Noordeen, Hilali [The Royal National Orthopaedic Hospital, Spinal Surgery, London (United Kingdom); Saifuddin, Asif [The Royal National Orthopaedic Hospital, Department of Imaging, London (United Kingdom)

    2007-06-15

    A 10-year-old girl presented with a history of painful scoliosis. Imaging performed, including computed tomography (CT) and magnetic resonance imaging (MRI), demonstrated a lesion with radiological features consistent with an osteoid osteoma (OO) of the 6th thoracic vertebra. The patient was treated conservatively with non-steroidal anti-inflammatory drugs (NSAIDs). Over eight months of clinical and radiological surveillance, she became entirely asymptomatic and demonstrated complete resolution of the scoliotic curve. The CT and MRI features of the osteoid osteoma during the period of surveillance are presented and are correlated with the corresponding clinical features. (orig.)

  9. Morphological characterization of keratoconus-affected human corneas by SHG imaging and correlation analysis

    Science.gov (United States)

    Mercatelli, R.; Ratto, F.; Tatini, F.; Rossi, F.; Menabuoni, L.; Nicoletti, R.; Pini, R.; Pavone, Frederick; Cicchi, R.

    2016-03-01

    Keratoconus is an ophthalmic disease in which the cornea acquires an abnormal conical shape that prevents the correct focusing on the retina, causing visual impairment. The late diagnosis of keratoconus is among the principal causes of corneal transplantation surgery. In this study, we characterize the morphology of keratoconic corneas by means of the correlation of SHG images, finding that keratoconus can be diagnosed by analyzing the inclination of lamellae below Bowman's membrane. In addition, imaging performed with both sagittal and "en face" geometry demonstrated that this morphological features can be highlighted both ex vivo and in vivo.

  10. AN ADVANCED COARSE-FINE SEARCH APPROACH FOR DIGITAL IMAGE CORRELATION APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Samo Simončič

    2016-04-01

    Full Text Available The paper presents a newly developed fine search algorithm used in the application of digital correlation. In order to evaluate its performance a special purpose application was developed using C# programming language. The algorithm was then tested on a pre-prepared set of the computer generated speckled images. It turned out to be much faster than the conventional fine search algorithm. Consequently, it is a major step forward in a never ending quest for a fast digital correlation execution with sub pixel accuracy.

  11. High Resolution Pulse Compression Imaging Using Super Resolution FM-Chirp Correlation Method (SCM)

    Science.gov (United States)

    Fujiwara, M.; Okubo, K.; Tagawa, N.

    This study addresses the issue of the super-resolution pulse compression technique (PCT) for ultrasound imaging. Time resolution of multiple ultrasonic echoes using the FM-Chirp PCT is limited by the bandwidth of the sweep-frequency. That is, the resolution depends on the sharpness of auto-correlation function. We propose the Super resolution FM-Chirp correlation Method (SCM) and evaluate its performance. This method is based on the multiple signal classification (MUSIC) algorithm. Our simulations were made for the model assuming multiple signals reflected from some scatterers. We confirmed that SCM detects time delay of complicated reflected signals successfully with high resolution.

  12. White matter correlates of cognitive domains in normal aging with diffusion tensor imaging

    Directory of Open Access Journals (Sweden)

    Efrat eSasson

    2013-03-01

    Full Text Available The ability to perform complex as well as simple cognitive tasks engages a network of brain regions that is mediated by the white matter fiber bundles connecting them. Different cognitive tasks employ distinctive white matter fiber bundles. The temporal lobe and its projections subserve a variety of key functions known to deteriorate during aging. In a cohort of 52 healthy subjects (ages 25-82 years, we performed voxel-wise regression analysis correlating performance in higher-order cognitive domains (executive function, information processing speed, and memory with white matter integrity, as measured by diffusion tensor imaging (DTI fiber tracking in the temporal lobe projections (uncinate fasciculus (UF, fornix, cingulum, inferior longitudinal fasciculus (ILF, and superior longitudinal fasciculus (SLF. The fiber tracts were spatially registered and statistical parametric maps were produced to spatially localize the significant correlations. Results showed that performance in the executive function domain is correlated with DTI parameters in the left SLF and right UF; performance in the information processing speed domain is correlated with fractional anisotropy (FA in the left cingulum, left fornix, right and left ILF and SLF; and the memory domain shows significant correlations with DTI parameters in the right fornix, right cingulum, left ILF, left SLF and right UF. These findings suggest that DTI tractography enables anatomical definition of region of interest for correlation of behavioral parameters with diffusion indices, and functionality can be correlated with white matter integrity.

  13. Knee joint examinations by magnetic resonance imaging: The correlation of pathology, age, and sex

    Directory of Open Access Journals (Sweden)

    Serhat Avcu

    2010-01-01

    Full Text Available Aims: The aim of our study was to investigate the incidence and coexistence of multiple knee joint pathologies and the distribution of knee joint pathologies according to age and sex. Patients and Methods: A retrospective analysis was performed using the clinical data of patients evaluated with magnetic resonance imaging (MRI of the knee joint. Data from 308 patients examined between August 2002 and July 2003 were included into this study. A Pearson correlation analysis was performed to examine the relationship between the pathological findings and the age and sex of the patients. Results: The ages of the patients ranged between 1 and 74 years (mean: 43.3 years. Age was significantly correlated with meniscal degeneration and tears, medial collateral ligament degeneration, parameniscal cyst, and chondromalacia patellae. There was a significant correlation between male gender and anterior cruciate ligament injury. Meniscal injury was significantly correlated with bursitis, as well as medial collateral ligament injury. Bone bruise was significantly correlated with medial collateral ligament injury, lateral collateral ligament injury, Baker′s cyst, and anterior cruciate ligament injury. Chondromalacia patellae was significantly correlated with anterior cruciate ligament injury, patellae alta, and osteochondral lesion. Bursitis (in 53.2% of the patients followed by grade-II meniscal degeneration (in 43% of the patients were the most common knee pathologies observed by MRI. Conclusions: MRI findings of select knee pathologies are significantly correlated with each other and the age and sex of the patient.

  14. Knee joint examinations by magnetic resonance imaging: The correlation of pathology, age, and sex

    Directory of Open Access Journals (Sweden)

    Serhat Avcu

    2010-04-01

    Full Text Available Aims: The aim of our study was to investigate the incidence and coexistence of multiple knee joint pathologies and the distribution of knee joint pathologies according to age and sex. Patients and Methods: A retrospective analysis was performed using the clinical data of patients evaluated with magnetic resonance imaging (MRI of the knee joint. Data from 308 patients examined between August 2002 and July 2003 were included into this study. A Pearson correlation analysis was performed to examine the relationship between the pathological findings and the age and sex of the patients. Results: The ages of the patients ranged between 1 and 74 years (mean: 43.3 years. Age was significantly correlated with meniscal degeneration and tears, medial collateral ligament degeneration, parameniscal cyst, and chondromalacia patellae. There was a significant correlation between male gender and anterior cruciate ligament injury. Meniscal injury was significantly correlated with bursitis, as well as medial collateral ligament injury. Bone bruise was significantly correlated with medial collateral ligament injury, lateral collateral ligament injury, Baker’s cyst, and anterior cruciate ligament injury. Chondromalacia patellae was significantly correlated with anterior cruciate ligament injury, patellae alta, and osteochondral lesion. Bursitis (in 53.2% of the patients followed by grade-II meniscal degeneration (in 43% of the patients were the most common knee pathologies observed by MRI. Conclusions: MRI findings of select knee pathologies are significantly correlated with each other and the age and sex of the patient.

  15. On guidance and volatility

    NARCIS (Netherlands)

    Billings, M.B.; Jennings, R.; Lev, B.

    2013-01-01

    Survey evidence suggests that managers voluntarily disclose information, particularly earnings guidance, with an aim toward dampening share price volatility. Yet, consultants and influential institutions advise against providing guidance — citing fears of litigation and market penalties associated w

  16. Graphic Turbulence Guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...

  17. Graphical Turbulence Guidance - Composite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...

  18. Distal insertions of the semimembranosus tendon: MR imaging with anatomic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Maeseneer, Michel de [Universitair Ziekenhuis Brussel, Department of Radiology, Jette, Brussels (Belgium); Vrije Universiteit Brussel, Department of Experimental Anatomy, Brussels (Belgium); Shahabpour, Maryam; Milants, Annemieke; Ridder, Filip de; Mey, Johan de [Universitair Ziekenhuis Brussel, Department of Radiology, Jette, Brussels (Belgium); Lenchik, Leon [Wake Forest University, Department of Radiology, Winston-Salem, NC (United States); Cattrysse, Erik [Vrije Universiteit Brussel, Department of Experimental Anatomy, Brussels (Belgium)

    2014-06-15

    The purpose of this study is to investigate the distal insertions of the semimembranosus tendon with MR imaging, correlated with findings in cadavers. Four fresh cadaveric specimens were studied with 3-T MR imaging. Sequences included proton density (PD) sequences (TE, 13; TR, 4957; FOV, 170 x 170; matrix, 424 x 413; NA, 2; slice thickness, 2.5 mm) in the axial, coronal, and sagittal planes and 3D fast field echo (FFE) sequences (TR 9.4; TE 6.9; FOV, 159 x 105; matrix, 200 x 211; NA, 2; slice thickness, 0.57 mm). One specimen was dissected and three specimens were sectioned with a bandsaw in the axial, coronal, and sagittal plane. The sections were photographed and correlated with MR images. To standardize the analysis, the semimembranosus muscle and tendon were assessed at seven levels for the axial sections, and at three levels for the coronal and sagittal sections. Anatomic dissection revealed six insertions of the distal semimembranosus tendon: direct arm, anterior arm, posterior oblique ligament extension, oblique popliteal ligament extension, distal tibial expansion (popliteus aponeurosis), and meniscal arm. Axial MR images showed five of six insertions: direct arm, anterior arm, oblique popliteal ligament extension, posterior oblique ligament extension, and distal tibial expansion. Sagittal MR images showed four of six insertions: direct arm, anterior arm, oblique popliteal ligament arm, and distal tibial expansion. Sagittal MR images were ideal for showing the direct arm insertion, but were less optimal than the axial images for showing the other insertions. The anterior arm was seen but volume averaging was present with the gracilis tendon. Coronal MR images optimally revealed the anterior arm, although magic angle artifact was present at its posterior aspect. The common semimembranosus tendon and meniscal arm were also well depicted. The division in anterior arm, direct arm, and oblique popliteal ligament arm was poorly seen on coronal images due to

  19. Optimized acquisition scheme for multi-projection correlation imaging of breast cancer

    Science.gov (United States)

    Chawla, Amarpreet S.; Samei, Ehsan; Saunders, Robert S.; Lo, Joseph Y.; Singh, Swatee

    2008-03-01

    We are reporting the optimized acquisition scheme of multi-projection breast Correlation Imaging (CI) technique, which was pioneered in our lab at Duke University. CI is similar to tomosynthesis in its image acquisition scheme. However, instead of analyzing the reconstructed images, the projection images are directly analyzed for pathology. Earlier, we presented an optimized data acquisition scheme for CI using mathematical observer model. In this article, we are presenting a Computer Aided Detection (CADe)-based optimization methodology. Towards that end, images from 106 subjects recruited for an ongoing clinical trial for tomosynthesis were employed. For each patient, 25 angular projections of each breast were acquired. Projection images were supplemented with a simulated 3 mm 3D lesion. Each projection was first processed by a traditional CADe algorithm at high sensitivity, followed by a reduction of false positives by combining geometrical correlation information available from the multiple images. Performance of the CI system was determined in terms of free-response receiver operating characteristics (FROC) curves and the area under ROC curves. For optimization, the components of acquisition such as the number of projections, and their angular span were systematically changed to investigate which one of the many possible combinations maximized the sensitivity and specificity. Results indicated that the performance of the CI system may be maximized with 7-11 projections spanning an angular arc of 44.8°, confirming our earlier findings using observer models. These results indicate that an optimized CI system may potentially be an important diagnostic tool for improved breast cancer detection.

  20. Artifact reduction of ultrasound Nakagami imaging by combining multifocus image reconstruction and the noise-assisted correlation algorithm.

    Science.gov (United States)

    Tsui, Po-Hsiang; Tsai, Yu-Wei

    2015-01-01

    Several studies have investigated Nakagami imaging to complement the B-scan in tissue characterization. The noise-induced artifact and the parameter ambiguity effect can affect performance of Nakagami imaging in the detection of variations in scatterer concentration. This study combined multifocus image reconstruction and the noise-assisted correlation algorithm (NCA) into the algorithm of Nakagami imaging to suppress the artifacts. A single-element imaging system equipped with a 5 MHz transducer was used to perform the brightness/depth (B/D) scanning of agar phantoms with scatterer concentrations ranging from 2 to 32 scatterers/mm(3). Experiments were also carried out on a mass with some strong point reflectors in a breast phantom using a commercial scanner with a 7.5 MHz linear array transducer operated at multifocus mode. The multifocus radiofrequency (RF) signals after the NCA process were used for Nakagami imaging. In the experiments on agar phantoms, an increasing scatterer concentration from 2 to 32 scatterers/mm(3) led to backscattered statistics ranging from pre-Rayleigh to Rayleigh distributions, corresponding to the increase in the Nakagami parameter measured in the focal zone from 0.1 to 0.8. However, the artifacts in the far field resulted in the Nakagami parameters of various scatterer concentrations to be close to 1 (Rayleigh distribution), making Nakagami imaging difficult to characterize scatterers. In the same scatterer concentration range, multifocus Nakagami imaging with the NCA simultaneously suppressed two types of artifacts, making the Nakagami parameter increase from 0.1 to 0.8 in the focal zone and from 0.18 to 0.7 in the far field, respectively. In the breast phantom experiments, the backscattered statistics of the mass corresponded to a high degree of pre-Rayleigh distribution. The Nakagami parameter of the mass before and after artifact reduction was 0.7 and 0.37, respectively. The results demonstrated that the proposed method for

  1. Validation of Shape Context Based Image Registration Method Using Digital Image Correlation Measurement on a Rat Stomach

    DEFF Research Database (Denmark)

    Liao, Donghua; Wang, P; Zhao, Jingbo

    2014-01-01

    Recently we developed analysis for 3D visceral organ deformation by combining the shape context (SC) method with a full-field strain (strain distribution on a whole 3D surface) analysis for calculating distension-induced rat stomach deformation. The surface deformation detected by the SC method...... needs to be further verified by using a feature tracking measurement. Hence, the aim of this study was to verify the SC method-based calculation by using digital image correlation (DIC) measurement on a rat stomach. The rat stomach exposed to distension pressures 0.0, 0.2, 0.4, and 0.6 kPa were studied...... using both 3D DIC system and SC-based image registration calculation. Three different surface sample counts between the reference and the target surfaces were usedto gauge the effect of the surface sample counts on the calculation. Each pair of the surface points between the DIC measured target surface...

  2. Detectability of Pore Defect in Wind Turbine Blade Composites Using Image Correlation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Il; Huh, Yong Hak; Lee, Gun Chang [Korea Research institute of Standard and Science, Daejeon (Korea, Republic of)

    2013-10-15

    Defects that occur during the manufacturing process or operation of a wind turbine blade have a great influence on its life and safety. Typically, defects such as delamination, pore, wrinkle and matrix crack are found in a blade. In this study, the detectability of the pores, a type of defect that frequently occur during manufacturing, was examined from the full field strain distribution determined with the image correlation technique. Pore defects were artificially introduced in four-ply laminated GFRP composites with 0 .deg/{+-}45 .deg fiber direction. The artificial pores were introduced in consideration of their size and location. Three different-sized pores with diameter of 1, 2 and 3 mm were located on the top and bottom surface and embedded. By applying static loads of 0-200 MPa, the strain distributions over the specimen with the pore defects were determined using image correlation technique. It was found the pores with diameter exceeding 2 mm can be detected in diameter.

  3. An Intermittent Model for Intracellular Motions of Gold Nanostars by k-Space Scattering Image Correlation.

    Science.gov (United States)

    Bouzin, Margaux; Sironi, Laura; Chirico, Giuseppe; D'Alfonso, Laura; Inverso, Donato; Pallavicini, Piersandro; Collini, Maddalena

    2015-12-01

    Anisotropic metallic nanoparticles have been devised as powerful potential tools for in vivo imaging, photothermal therapy, and drug delivery thanks to plasmon-enhanced absorption and scattering cross sections, ease in synthesis and functionalization, and controlled cytotoxicity. The rational design of all these applications requires the characterization of the nanoparticles intracellular trafficking pathways. In this work, we exploit live-cell time-lapse confocal reflectance microscopy and image correlation in both direct and reciprocal space to investigate the intracellular transport of branched gold nanostars (GNSs). Different transport mechanisms, spanning from pure Brownian diffusion to (sub-)ballistic superdiffusion, are revealed by temporal and spatio-temporal image correlation spectroscopy on the tens-of-seconds timescale. According to these findings, combined with numerical simulations and with a Bayesian (hidden Markov model-based) analysis of single particle tracking data, we ascribe the superdiffusive, subballistic behavior characterizing the GNSs dynamics to a two-state switching between Brownian diffusion in the cytoplasm and molecular motor-mediated active transport. For the investigation of intermittent-type transport phenomena, we derive an analytical theoretical framework for Fourier-space image correlation spectroscopy (kICS). At first, we evaluate the influence of all the dynamic and kinetic parameters (the diffusion coefficient, the drift velocity, and the transition rates between the diffusive and the active transport regimes) on simulated kICS correlation functions. Then we outline a protocol for data analysis and employ it to derive whole-cell maps for each parameter underlying the GNSs intracellular dynamics. Capable of identifying even simpler transport phenomena, whether purely diffusive or ballistic, our intermittent kICS approach allows an exhaustive investigation of the dynamics of GNSs and biological macromolecules.

  4. MR Imaging Findings of a Primary Cardiac Osteosarcoma and Its Bone Metastasis with Histopathologic Correlation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Se Jin; Choi, Jung Ah; Kang, Heung Sik [Seoul National University College of Medicine, Seoul (Korea, Republic of); Chun, Eun Ju; Choi, Sang Il; Chung, Jin Haeng [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Choi, Ho Cheol [Gyeongsang National University Hospital, Jinju (Korea, Republic of)

    2011-02-15

    An osteosarcoma of cardiac origin is extremely rare, and a comprehensive description of MR imaging (MRI) findings of cardiac osteosarcoma and its metastasis in the femur have not been reported in the literature. We present a case of cardiac osteosarcoma in a 47-year-old woman and its metastasis to the femur, focusing on the description of MRI findings of the cardiac and metastatic bony osteosarcoma with a histopathologic correlation

  5. Displacement and strain field assessment of PDMS using digital image correlation

    OpenAIRE

    Mendonça, B; Ribeiro, J. E.; Lopes, H.; martins, p; M. A. P. Vaz

    2013-01-01

    The main goal of this work is the characterization of the hyper-elastic mechanical behaviour of PDMS. The special specimens of PDMS (Sylgard® 184) were tested in a bi-axial tensile machine. The displacement and strain fields were measured using a commercial digital image correlation system (ARAMIS of GOM) during the tensile test. The experimental measurements are compared with numerical simulations, which use the most popular algorithms of constitutive models to characterize the hyper-elastic...

  6. Displacement and strain field assessment of PDMS using digital image correlation

    OpenAIRE

    Mendonça, B; Ribeiro, J. E.; Lopes, H.; martins, p; M. A. P. Vaz; Gomes, S.

    2013-01-01

    The main goal of this work is to characterize the hyper-elastic mechanical behaviour of PDMS. For that, were made-up special specimens of PDMS (Sylgard® 184) for test them in bi-axial tensile machine. During the tensile test was used a commercial digital image correlation system (ARAMIS of GOM) to obtain de displacement and strain fields. These measurements are compared with numerical simulations which uses the more popular algorithms of constitutive models.

  7. Depth imaging in highly scattering underwater environments using time-correlated single-photon counting

    Science.gov (United States)

    Maccarone, Aurora; McCarthy, Aongus; Halimi, Abderrahim; Tobin, Rachael; Wallace, Andy M.; Petillot, Yvan; McLaughlin, Steve; Buller, Gerald S.

    2016-10-01

    This paper presents an optical depth imaging system optimized for highly scattering environments such as underwater. The system is based on the time-correlated single-photon counting (TCSPC) technique and the time-of-flight approach. Laboratory-based measurements demonstrate the potential of underwater depth imaging, with specific attention given to environments with a high level of scattering. The optical system comprised a monostatic transceiver unit, a fiber-coupled supercontinuum laser source with a wavelength tunable acousto-optic filter (AOTF), and a fiber-coupled single-element silicon single-photon avalanche diode (SPAD) detector. In the optical system, the transmit and receive channels in the transceiver unit were overlapped in a coaxial optical configuration. The targets were placed in a 1.75 meter long tank, and raster scanned using two galvo-mirrors. Laboratory-based experiments demonstrate depth profiling performed with up to nine attenuation lengths between the transceiver and target. All of the measurements were taken with an average laser power of less than 1mW. Initially, the data was processed using a straightforward pixel-wise cross-correlation of the return timing signal with the system instrumental timing response. More advanced algorithms were then used to process these cross-correlation results. These results illustrate the potential for the reconstruction of images in highly scattering environments, and to permit the investigation of much shorter acquisition time scans. These algorithms take advantage of the data sparseness under the Discrete Cosine Transform (DCT) and the correlation between adjacent pixels, to restore the depth and reflectivity images.

  8. Phase conjugation, isotropic and anisotropic higher order diffraction generation, and image correlation using photorefractive barium titanate

    Science.gov (United States)

    Buranasiri, Prathan

    2005-04-01

    Using barium titanate as the photorefractive material, we demonstrate phase conjugation, beam coupling, higher diffraction order generation. At small incident angles less than 0.015 radian, both codirectional isotropic self-diffraction (CODIS) and contradirectional isotropic self-diffraction (CONDIS) are generated simultaneously. At bigger incident angles approximately more than 0.2094 radian, only codirectional anisotropic-self diffraction (CODAS) are generated. On going imaging correlation is also showing.

  9. Detecting correlation functions of ultracold atoms through fourier sampling of time-of-flight images.

    Science.gov (United States)

    Duan, L-M

    2006-03-17

    We propose a detection method for ultracold atoms which allows reconstruction of the full one-particle and two-particle correlation functions from the measurements. The method is based on Fourier sampling of the time-of-flight images through two consecutive impulsive Raman pulses. For applications of this method, we discuss a few examples, including detection of phase separation between superfluid and Mott insulators, various types of spin or superfluid orders, entanglement, exotic or fluctuating orders.

  10. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    Directory of Open Access Journals (Sweden)

    J. Schneider von Deimling

    2012-03-01

    Full Text Available Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast, modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. Up to the present, the extremely high data rate hampers water column backscatter investigations and more sophisticated visualization and processing techniques are needed. Here, we present water column backscatter data acquired with a 50 kHz prototype multibeam system over a period of 75 seconds. Display types are of swath-images as well as of a "re-sorted" singlebeam presentation. Thus, individual and/or groups of gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images, making it possible to estimate rise velocities. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. We apply a cross-correlation technique adapted from particle imaging velocimetry (PIV to the acoustic backscatter images. Temporal and spatial drift patterns of the bubbles are assessed and are shown to match very well to measured and theoretical rise patterns. The application of this processing to our field data gives clear results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main source of misinterpretations, i.e. fish-mediated echoes. Although image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, we present the first application of this technique as an acoustic bubble detector.

  11. Intra-field CDU map correlation between SEMs and aerial image characterization

    Science.gov (United States)

    Ning, Guoxiang; Philipp, Peter; Litt, Lloyd C.; Meusemann, Stefan; Thaler, Thomas; Schulz, Kristian; Tschinkl, Martin; Ackmann, Paul

    2014-09-01

    Reticle critical dimension uniformity (CDU) is one of the major sources of wafer CD variations which include both inter-field variations and intra-field variations. Generally, wafer critical dimension (CD) measurement sample size interfield is much less than intra-field. Intra-field CDU correction requires time-consumption of metrology. In order to improve wafer intra-field CDU, several methods can be applied such as intra-field dose correction to improve wafer intra-field CDU. Corrections can be based on CD(SEM) or aerial image metrology data from the reticle. Reticle CDU and wafer CDU maps are based on scanning electron microscope (SEM) metrology, while reticle inspection intensity mapping (NuFLare 6000) and wafer level critical dimension (WLCD) utilize aerial images or optical techniques. Reticle inspecton tools such as those from KLA and NuFlare, offer the ability to collect optical measurement data to produce an optical CDU map. WLCD of Zeiss has the advantage of using the same illumination condition as the scanner to measure the aerial images or optical CD. In this study, the intra-field wafer CDU map correlation between SEMs and aerial images are characterized. The layout of metrology structures is very important for the correlation between wafer intra-field CDU, measured by SEM, and the CDU determined by aerial images. The selection of metrology structures effects on the correlation to SEM CD to wafer is also demonstrated. Both reticle CDU, intensity CDU and WLCD are candidates for intra-field wafer CDU characterization and the advantages and limitations of each approach are discussed.

  12. DAMAGE AND FRACTURE EVALUATION OF GRANULAR COMPOSITE MATERIALS BY DIGITAL IMAGE CORRELATION METHOD

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jue; XIONG Chunyang; LI Hongju; LI Ming; WANG Jianxiang; FANG Jing

    2004-01-01

    This paper presents the applications of digital image correlation technique to the mesoscopic damage and fracture study of some granular based composite materials including steelfiber reinforced concrete, sandstone and crystal-polymer composite. The deformation fields of the composite materials resulted from stress localization were obtained by the correlation computation of the surface images with loading steps and thus the related damage prediction and fracture parameters were evaluated. The correlation searching could be performed either directly based on the gray levels of the digital images or from the wavelet transform (WT) coefficients of the transform spectrum. The latter was developed by the authors and showed higher resolution and sensitivity to the singularity detection.Because the displacement components came from the rough surfaces of the composite materials without any coats of gratings or fringes of optical interferometry, both surface profiles and the deformation fields of the composites were visualized which was helpful to compare each other to analyze the damage of those heterogeneous materials.

  13. Three-dimensional flow contrast imaging of deep tissue using noncontact diffuse correlation tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yu; Huang, Chong; Irwin, Daniel; He, Lian; Shang, Yu; Yu, Guoqiang, E-mail: guoqiang.yu@uky.edu [Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2014-03-24

    This study extended our recently developed noncontact diffuse correlation spectroscopy flowmetry system into noncontact diffuse correlation tomography (ncDCT) for three-dimensional (3-D) flow imaging of deep tissue. A linear array of 15 photodetectors and two laser sources connected to a mobile lens-focusing system enabled automatic and noncontact scanning of flow in a region of interest. These boundary measurements were combined with a finite element framework for DCT image reconstruction implemented into an existing software package. This technique was tested in computer simulations and using a tissue-like phantom with anomaly flow contrast design. The cylindrical tube-shaped anomaly was clearly reconstructed in both simulation and phantom. Recovered and assigned flow contrast changes in anomaly were found to be highly correlated: regression slope = 1.00, R{sup 2} = 1.00, and p < 10{sup −5} in simulation and regression slope ≥ 0.97, R{sup 2} ≥ 0.96, and p < 10{sup −3} in phantom. These results exhibit promise of our ncDCT technique for 3-D imaging of deep tissue blood flow heterogeneities.

  14. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, L. [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China); Fan, D.; Luo, S. N., E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China); Bie, B. X. [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China); School of Science, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Ran, X. X.; Qi, M. L., E-mail: qiml@whut.edu.cn [School of Science, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B. [School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); Fezzaa, K.; Sun, T. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Chen, W. [School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); School of Material Science Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Gong, X. L., E-mail: gongxl@ustc.edu.cn [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2014-07-15

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  15. Correlation-based imaging technique using ultrasonic transmit-receive array for Non-Destructive Evaluation.

    Science.gov (United States)

    Quaegebeur, Nicolas; Masson, Patrice

    2012-12-01

    This paper describes a novel array post-processing method for Non-Destructive Evaluation (NDE) using phased-array ultrasonic probes. The approach uses the capture and processing of the full matrix of all transmit-receive time-domain signals from a transducer array as in the case of the Total Focusing Method (TFM), referred as the standard of imaging algorithms. The proposed technique is based on correlation of measured signals with theoretical propagated signals computed over a given grid of points. In that case, real-time imaging can be simply implemented using discrete signal product. The advantage of the present technique is to take into account transducer directivity, dynamics and complex propagation patterns, such that the number of required array elements for a given imaging performance can be greatly reduced. Numerical and experimental application to contact inspection of isotropic structure is presented and real-time implementation issues are discussed.

  16. Denoising of PET images by context modelling using local neighbourhood correlation

    Science.gov (United States)

    Huerga, Carlos; Castro, Pablo; Corredoira, Eva; Coronado, Monica; Delgado, Victor; Guibelalde, Eduardo

    2017-01-01

    Positron emission tomography (PET) images are characterised by low signal-to-noise ratio and blurred edges when compared with other image modalities. It is therefore advisable to use noise reduction methods for qualitative and quantitative analyses. Given the importance of the maximum and mean uptake values, it is necessary to avoid signal loss, which could modify the clinical significance. This paper proposes a method of non-linear image denoising for PET. It is based on spatially adaptive wavelet-shrinkage and uses context modelling, which explicitly considers the correlation between neighbouring pixels. This context modelling is able to maintain the uptake values and preserve the edges in significant regions. The algorithm is proposed as an alternative to the usual filtering that is performed after reconstruction.

  17. Spontaneous rupture of the distal iliopsoas tendon: clinical and imaging findings, with anatomic correlations.

    Science.gov (United States)

    Lecouvet, Frederic E; Demondion, Xavier; Leemrijse, Thibaut; Vande Berg, Bruno C; Devogelaer, Jean-Pierre; Malghem, Jacques

    2005-11-01

    We report the clinical and imaging findings in two elderly female patients with spontaneous rupture of the distal iliopsoas tendon from the lesser trochanter of the femur. We emphasize the key contribution of magnetic resonance (MR) imaging to this diagnosis and provide an anatomic correlation. Spontaneous rupture of the distal iliopsoas tendon should be kept in mind in the differential diagnosis of acute groin pain in the elderly. MR imaging enables positive diagnosis, by showing mass effect on the anterior aspect of the hip joint, proximal muscle thickening, and abnormal signal intensity, and by demonstrating interruption of the psoas tendon, whereas the distal insertion of the lateral portion of the iliacus muscle remains muscular and is preserved.

  18. Spontaneous rupture of the distal iliopsoas tendon: clinical and imaging findings, with anatomic correlations

    Energy Technology Data Exchange (ETDEWEB)

    Lecouvet, Frederic E.; Vande Berg, Bruno C.; Malghem, Jacques [Universite Catholique de Louvain, Department of Radiology and Medical Imaging, Saint Luc University Hospital, Brussels (Belgium); Demondion, Xavier [Centre Hospitalier Universitaire de Lille, Department of Bone Radiology and Laboratory of Anatomy, Lille (France); Leemrijse, Thibaut [Universite Catholique de Louvain, Department of Orthopedic Surgery, Saint Luc University Hospital, Brussels (Belgium); Devogelaer, Jean-Pierre [Universite Catholique de Louvain, Department of Rheumatology, Saint Luc University Hospital, Brussels (Belgium)

    2005-11-01

    We report the clinical and imaging findings in two elderly female patients with spontaneous rupture of the distal iliopsoas tendon from the lesser trochanter of the femur. We emphasize the key contribution of magnetic resonance (MR) imaging to this diagnosis and provide an anatomic correlation. Spontaneous rupture of the distal iliopsoas tendon should be kept in mind in the differential diagnosis of acute groin pain in the elderly. MR imaging enables positive diagnosis, by showing mass effect on the anterior aspect of the hip joint, proximal muscle thickening, and abnormal signal intensity, and by demonstrating interruption of the psoas tendon, whereas the distal insertion of the lateral portion of the iliacus muscle remains muscular and is preserved. (orig.)

  19. Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation

    Science.gov (United States)

    Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo

    2017-02-01

    We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields.

  20. Dynamic MR imaging of internal derangements of the temporomandibular joint: correlation with clinical signs and symptoms

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Ah; Chun, Eun Ju; Kim, Yoo Kyung; Yoo, Jeong Hyun; Choi, Hae Young; Kim, Hyun Jin [Ewha Womans Univ. College of Medicine, Seoul (Korea, Republic of); Chung, Eun Chul [Sungkyunkwan Univ. College of Medicine, Seoul (Korea, Republic of)

    1999-01-01

    To evaluate the correlation between findings of dynamic magnetic resonance (MR) imaging of the temporomandibular joint (TMJ) and clinical findings in patients with internal derangement of the TMJ. Dynamic MR images of 130 joints of 65 patients (17 men and 48 women aged 14 to 74; mean age, 34) with internal derangement of the TMJ were obtained using a 1.5-T MR imaging system. MR findings of anterior displacement, disc deformity and degenerative change were correlated with clinical findings including joint pain, clicking sound, crepitation and maximal mouth opening (MMO). Among 62 joints with TMJ pain, 32 showed anterior displacement without reduction, 15 showed disc deformity and 19 showed degenerative change. Among 49 joints in which there was a clicking sound, 24, 8 and 12 joints, respectively, showed the above-mentioned findings, while in seven with crepitation, these same findings were evident in five, six and four joints, respectively. Bilateral and unilateral joint disorders were observed in 17 and five patients, respectively, among 22 with MMO less than 30mm and in 11 and 18 of 42 patients with MMO between 30mm and 60mm. On MR imaging, patients with MMO less than 30mm usually showed bilateral joint disorders and those with crepitation showed chronic change. This indicates that there is high association between clinical findings of internal derangement of TMJ and MR findings.

  1. Correlation of magnetic resonance imaging findings of spinal intradural extramedullary schwannomas with pathologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeo Ju; Park, In Suh; Yoon, Seung Hwan; Choi, Suk Jin; Kim, Youn Jeong; Kang, Young Hye; Lee, Ha Young; Kim, Woo Chul; Han, Jun Gu; Cho, Soon Gu [Inha University Hospital, Incheon (Korea, Republic of)

    2015-06-15

    To evaluate the magnetic resonance imaging (MRI) findings of spinal intradural extramedullary schwannomas with pathologic correlation and to determine whether these schwannomas share the imaging features of schwannomas in the peripheral nerves. The MRIs of 17 cases of pathologically proven spinal intradural extramedullary schwannomas were reviewed retrospectively, and cystic changes, enhancement, and intratumoral hemorrhage of the tumors were evaluated. Imaging features known to be common findings of schwannoma in the peripheral nerves, such as encapsulation, the target sign, the fascicular sign, and visualization of entering or exiting nerve rootlets, were also evaluated. The histopathology of the tumors was correlated with the MRI findings. Cystic changes were detected in 14 cases by MRI and in 16 cases by pathology. The most common pattern of enhancement was a thick peripheral septal pattern (70.59%). Intratumoral hemorrhage was detected in four cases on MRI, but in all cases on pathology. Encapsulation was observed in all cases. The fascicular sign was seen in only four cases, and thickening of an exiting rootlet was visualized in one case. None of the cases showed the target sign. Spinal intradural extramedullary schwannomas were typical encapsulated cystic tumors and had few imaging features of schwannomas in the peripheral nerves.

  2. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy

    Science.gov (United States)

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-03-01

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.