Reduced Rank Mixed Effects Models for Spatially Correlated Hierarchical Functional Data
Zhou, Lan
2010-03-01
Hierarchical functional data are widely seen in complex studies where sub-units are nested within units, which in turn are nested within treatment groups. We propose a general framework of functional mixed effects model for such data: within unit and within sub-unit variations are modeled through two separate sets of principal components; the sub-unit level functions are allowed to be correlated. Penalized splines are used to model both the mean functions and the principal components functions, where roughness penalties are used to regularize the spline fit. An EM algorithm is developed to fit the model, while the specific covariance structure of the model is utilized for computational efficiency to avoid storage and inversion of large matrices. Our dimension reduction with principal components provides an effective solution to the difficult tasks of modeling the covariance kernel of a random function and modeling the correlation between functions. The proposed methodology is illustrated using simulations and an empirical data set from a colon carcinogenesis study. Supplemental materials are available online.
Functional annotation of hierarchical modularity.
Directory of Open Access Journals (Sweden)
Kanchana Padmanabhan
Full Text Available In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology and the association of individual genes or proteins with these concepts (e.g., GO terms, our method will assign a Hierarchical Modularity Score (HMS to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our
Ono, Junichi; Takada, Shoji; Saito, Shinji
2015-06-07
An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.
Hierarchical Identity-Based Lossy Trapdoor Functions
Escala, Alex; Libert, Benoit; Rafols, Carla
2012-01-01
Lossy trapdoor functions, introduced by Peikert and Waters (STOC'08), have received a lot of attention in the last years, because of their wide range of applications in theoretical cryptography. The notion has been recently extended to the identity-based scenario by Bellare et al. (Eurocrypt'12). We provide one more step in this direction, by considering the notion of hierarchical identity-based lossy trapdoor functions (HIB-LTDFs). Hierarchical identity-based cryptography generalizes identitybased cryptography in the sense that identities are organized in a hierarchical way; a parent identity has more power than its descendants, because it can generate valid secret keys for them. Hierarchical identity-based cryptography has been proved very useful both for practical applications and to establish theoretical relations with other cryptographic primitives. In order to realize HIB-LTDFs, we first build a weakly secure hierarchical predicate encryption scheme. This scheme, which may be of independent interest, is...
Hierarchical modularity in human brain functional networks
Meunier, D; Fornito, A; Ersche, K D; Bullmore, E T; 10.3389/neuro.11.037.2009
2010-01-01
The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or "modules-within-modules") decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI) in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at ...
Generation of hierarchically correlated multivariate symbolic sequences
Tumminello, Mi; Mantegna, R N
2008-01-01
We introduce an algorithm to generate multivariate series of symbols from a finite alphabet with a given hierarchical structure of similarities. The target hierarchical structure of similarities is arbitrary, for instance the one obtained by some hierarchical clustering procedure as applied to an empirical matrix of Hamming distances. The algorithm can be interpreted as the finite alphabet equivalent of the recently introduced hierarchically nested factor model (M. Tumminello et al. EPL 78 (3) 30006 (2007)). The algorithm is based on a generating mechanism that is different from the one used in the mutation rate approach. We apply the proposed methodology for investigating the relationship between the bootstrap value associated with a node of a phylogeny and the probability of finding that node in the true phylogeny.
Hierarchical clustering using correlation metric and spatial continuity constraint
Stork, Christopher L.; Brewer, Luke N.
2012-10-02
Large data sets are analyzed by hierarchical clustering using correlation as a similarity measure. This provides results that are superior to those obtained using a Euclidean distance similarity measure. A spatial continuity constraint may be applied in hierarchical clustering analysis of images.
Hierarchical organization of brain functional network during visual task
Zhuo, Zhao; Fu, Zhong-Qian; Zhang, Jie
2011-01-01
In this paper, the brain functional networks derived from high-resolution synchronous EEG time series during visual task are generated by calculating the phase synchronization among the time series. The hierarchical modular organizations of these networks are systematically investigated by the fast Girvan-Newman algorithm. At the same time, the spatially adjacent electrodes (corresponding to EEG channels) are clustered into functional groups based on anatomical parcellation of brain cortex, and this clustering information are compared to that of the functional network. The results show that the modular architectures of brain functional network are in coincidence with that from the anatomical structures over different levels of hierarchy, which suggests that population of neurons performing the same function excite and inhibit in identical rhythms. The structure-function relationship further reveals that the correlations among EEG time series in the same functional group are much stronger than those in differe...
DEFF Research Database (Denmark)
Bysted, Tommy Kristensen; Hamila, R.; Gabbouj, M.
1998-01-01
A new correlation function called the Teager correlation function is introduced in this paper. The connection between this function, the Teager energy operator and the conventional correlation function is established. Two applications are presented. The first is the minimization of the Teager error...... norm and the second one is the use of the instantaneous Teager correlation function for simultaneous estimation of TDOA and FDOA (Time and Frequency Difference of Arrivals)....
Correlation Functions and Spin
Tyc, T
2000-01-01
The k-electron correlation function of a free chaotic electron beam is derived with the spin degree of freedom taken into account. It is shown that it can be expressed with the help of correlation functions for a polarized electron beam of all orders up to k and the degree of spin polarization. The form of the correlation function suggests that if the electron beam is not highly polarized, observing multi-particle correlations should be difficult. The result can be applied also to chaotic photon beams, the degree of spin polarization being replaced by the degree of polarization.
Higher-Order Hierarchical Legendre Basis Functions in Applications
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter;
2007-01-01
degree of orthogonality. The basis functions are well-suited for solution of complex electromagnetic problems involving multiple homogeneous or inhomogeneous dielectric regions, metallic surfaces, layered media, etc. This paper presents real-life complex antenna radiation problems modeled...... with electromagnetic simulation tools based on the higher-order hierarchical Legendre basis functions....
Pair Correlation Function Integrals
DEFF Research Database (Denmark)
Wedberg, Nils Hejle Rasmus Ingemar; O'Connell, John P.; Peters, Günther H.J.;
2011-01-01
numerical tests complementing previous results. Pure molecular fluids are here studied in the isothermal-isobaric ensemble with isothermal compressibilities evaluated from the total correlation function integrals and compared with values derived from volume fluctuations. For systems where the radial......We describe a method for extending radial distribution functions obtained from molecular simulations of pure and mixed molecular fluids to arbitrary distances. The method allows total correlation function integrals to be reliably calculated from simulations of relatively small systems. The long......, and J. Abildskov, Mol. Simul. 36, 1243 (2010); Fluid Phase Equilib. 302, 32 (2011)], but describe here its theoretical basis more thoroughly and derive long-distance approximations for the direct correlation functions. We describe the numerical implementation of the method in detail, and report...
A Catalog of Self-Affine Hierarchical Entropy Functions
Directory of Open Access Journals (Sweden)
John Kieffer
2011-11-01
Full Text Available For fixed k ≥ 2 and fixed data alphabet of cardinality m, the hierarchical type class of a data string of length n = kj for some j ≥ 1 is formed by permuting the string in all possible ways under permutations arising from the isomorphisms of the unique finite rooted tree of depth j which has n leaves and k children for each non-leaf vertex. Suppose the data strings in a hierarchical type class are losslessly encoded via binary codewords of minimal length. A hierarchical entropy function is a function on the set of m-dimensional probability distributions which describes the asymptotic compression rate performance of this lossless encoding scheme as the data length n is allowed to grow without bound. We determine infinitely many hierarchical entropy functions which are each self-affine. For each such function, an explicit iterated function system is found such that the graph of the function is the attractor of the system.
Song, Linze; Shi, Qiang
2015-11-21
Based on recent findings in the hierarchical equations of motion (HEOM) for correlated initial state [Y. Tanimura, J. Chem. Phys. 141, 044114 (2014)], we propose a new stochastic method to obtain the initial conditions for the real time HEOM propagation, which can be used further to calculate the equilibrium correlation functions and symmetrized correlation functions. The new method is derived through stochastic unraveling of the imaginary time influence functional, where a set of stochastic imaginary time HEOM are obtained. The validity of the new method is demonstrated using numerical examples including the spin-Boson model, and the Holstein model with undamped harmonic oscillator modes.
Chen, Yongsheng; Persaud, Bhagwant
2014-09-01
Crash modification factors (CMFs) for road safety treatments are developed as multiplicative factors that are used to reflect the expected changes in safety performance associated with changes in highway design and/or the traffic control features. However, current CMFs have methodological drawbacks. For example, variability with application circumstance is not well understood, and, as important, correlation is not addressed when several CMFs are applied multiplicatively. These issues can be addressed by developing safety performance functions (SPFs) with components of crash modification functions (CM-Functions), an approach that includes all CMF related variables, along with others, while capturing quantitative and other effects of factors and accounting for cross-factor correlations. CM-Functions can capture the safety impact of factors through a continuous and quantitative approach, avoiding the problematic categorical analysis that is often used to capture CMF variability. There are two formulations to develop such SPFs with CM-Function components - fully specified models and hierarchical models. Based on sample datasets from two Canadian cities, both approaches are investigated in this paper. While both model formulations yielded promising results and reasonable CM-Functions, the hierarchical model was found to be more suitable in retaining homogeneity of first-level SPFs, while addressing CM-Functions in sub-level modeling. In addition, hierarchical models better capture the correlations between different impact factors.
GPCRTree: online hierarchical classification of GPCR function
Directory of Open Access Journals (Sweden)
Timmis Jon
2008-08-01
Full Text Available Abstract Background G protein-coupled receptors (GPCRs play important physiological roles transducing extracellular signals into intracellular responses. Approximately 50% of all marketed drugs target a GPCR. There remains considerable interest in effectively predicting the function of a GPCR from its primary sequence. Findings Using techniques drawn from data mining and proteochemometrics, an alignment-free approach to GPCR classification has been devised. It uses a simple representation of a protein's physical properties. GPCRTree, a publicly-available internet server, implements an algorithm that classifies GPCRs at the class, sub-family and sub-subfamily level. Conclusion A selective top-down classifier was developed which assigns sequences within a GPCR hierarchy. Compared to other publicly available GPCR prediction servers, GPCRTree is considerably more accurate at every level of classification. The server has been available online since March 2008 at URL: http://igrid-ext.cryst.bbk.ac.uk/gpcrtree/.
Hexagonalization of Correlation Functions
Fleury, Thiago
2016-01-01
We propose a nonperturbative framework to study general correlation functions of single-trace operators in $\\mathcal{N}=4$ supersymmetric Yang-Mills theory at large $N$. The basic strategy is to decompose them into fundamental building blocks called the hexagon form factors, which were introduced earlier to study structure constants using integrability. The decomposition is akin to a triangulation of a Riemann surface, and we thus call it hexagonalization. We propose a set of rules to glue the hexagons together based on symmetry, which naturally incorporate the dependence on the conformal and the R-symmetry cross ratios. Our method is conceptually different from the conventional operator product expansion and automatically takes into account multi-trace operators exchanged in OPE channels. To illustrate the idea in simple set-ups, we compute four-point functions of BPS operators of arbitrary lengths and correlation functions of one Konishi operator and three short BPS operators, all at one loop. In all cases,...
Spontaneous and Hierarchical Segmentation of Non-functional Events
DEFF Research Database (Denmark)
Nielbo, Kristoffer Laigaard
2012-01-01
The dissertation, Spontaneous and Hierarchical Segmentation of Non-functional Events (SHSNE henceforth), explores and tests human perception of so-called non-functional events (i.e., events or action sequences that lack a necessary link between sub-actions and sequence goal), which typically...... ritual behavior. Part 1 concludes with five primary theoretical hypotheses: I) non-functional events will increase the human event segmentation rate; II) transitions between events will increase the cognitive prediction error signal independent of event type, but this signal will be chronically high......, consisting of four experiments in total, and four computer simulations. The first set of experiments shows that the event segmentation rate increases for human participants that observe non-functional events compared to functional events. Furthermore, it appears that context information does not have...
Functionalized periodic mesoporous organosilicas: Hierarchical and chiral materials
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The integration of organic and inorganic fragments within the pore walls of the periodic mesoporous organosilicas (PMOs) represents one of the recent breakthroughs in material science. The resulting PMOs are promising materials for applications in such areas as catalysis, adsorption, separation and drug-delivery. We summarize here the recent progress made in the synthesis of PMOs with hierarchical structures and large functional groups, with special emphasis on the chiral mesoporous organosilicas and their potential applications as novel chiral solids in heterogeneous asymmetric catalysis.
Regulator Loss Functions and Hierarchical Modeling for Safety Decision Making.
Hatfield, Laura A; Baugh, Christine M; Azzone, Vanessa; Normand, Sharon-Lise T
2017-07-01
Regulators must act to protect the public when evidence indicates safety problems with medical devices. This requires complex tradeoffs among risks and benefits, which conventional safety surveillance methods do not incorporate. To combine explicit regulator loss functions with statistical evidence on medical device safety signals to improve decision making. In the Hospital Cost and Utilization Project National Inpatient Sample, we select pediatric inpatient admissions and identify adverse medical device events (AMDEs). We fit hierarchical Bayesian models to the annual hospital-level AMDE rates, accounting for patient and hospital characteristics. These models produce expected AMDE rates (a safety target), against which we compare the observed rates in a test year to compute a safety signal. We specify a set of loss functions that quantify the costs and benefits of each action as a function of the safety signal. We integrate the loss functions over the posterior distribution of the safety signal to obtain the posterior (Bayes) risk; the preferred action has the smallest Bayes risk. Using simulation and an analysis of AMDE data, we compare our minimum-risk decisions to a conventional Z score approach for classifying safety signals. The 2 rules produced different actions for nearly half of hospitals (45%). In the simulation, decisions that minimize Bayes risk outperform Z score-based decisions, even when the loss functions or hierarchical models are misspecified. Our method is sensitive to the choice of loss functions; eliciting quantitative inputs to the loss functions from regulators is challenging. A decision-theoretic approach to acting on safety signals is potentially promising but requires careful specification of loss functions in consultation with subject matter experts.
Directory of Open Access Journals (Sweden)
Jin Shuxins
2016-01-01
Full Text Available Different highway safety life protection engineering decision-making have important meaning. The achieving goals and optimal highway safety life protection engineering scheme can not only improve the function of the highway facilities and service level, still can reduce the traffic accident, which caused by the imperfect highway facilities. Different highway safety life protection engineering decision-making is a multiple targets, multi-layers and multi-schemes system evaluation problem. With regard to lack of concrete data on multiple targets, multi-layers and multi-schemes system evaluation problem, make analytical hierarchy process combined with the entropy value analysis into the grey relational comprehensive evaluation method, and then get entropy-hierarchical grey correlation analysis method. This method is a qualitative and quantitative decision method, which combine comparison principle of analytic hierarchy process (AHP and the entropy principle of entropy value analysis method to determine the relative weight of various indexes between factors layer-by-layer. Then using grey relational analysis by low-layer to high-layer step by step in the possible scheme and referenced scheme. Finally, calculating the comprehensive correlation degree between the possible scheme and referenced scheme, the best plan which has maximum grey correlation degree can be selected.
Enhancing the Color Set Partitioning in Hierarchical Tree (SPIHT Algorithm Using Correlation Theory
Directory of Open Access Journals (Sweden)
a a a
2011-01-01
Full Text Available Problem statement: Efficient color image compression algorithm is essential for mass storage and the transmission of the image. The compression efficiency of the Set Partitioning in Hierarchical Tree (SPIHT coding algorithm for color images is improved by using correlation theory. Approach: In this study the correlation between the color channels are used to propose the new algorithm. The correlation between the color channels are analyzed in various color spaces and the color space CIE-UVW in which the color channels are highly correlated is taken. The most correlated U channel is considered as base color and compressed by using the wavelet filter and the SPIHT algorithm. The linear approximation of the two of the color components (V and W based on the primary color component U is used to code subordinate color components. The image is divided into N*N blocks in each color channels. The linear approximation coefficients are calculated for each block of the subordinate colors V and W as functions of the base color. Only these coefficients of each block are coded and send to the receiver along with the SPIHT coding of the base color. Results: By using this algorithm, a significant (4 dB mean value Peak Signal to Noise Ratio (PSNR improvement is obtained compared to the traditional coding scheme for the same compression rate and reduces the coding and decoding time. Also the proposed compression algorithm reduces the complexity in coding and decoding algorithms. Conclusion: This algorithm allows the reduction of complexity for both coding and decoding of color images. It is concluded that a significant PSNR gain and visual quality improvement is obtained. It is found that in color image coding, this algorithm is superior to the traditional de-correlation based methods and reduces the coding and decoding time.
Raykov, Tenko
2011-01-01
Interval estimation of intraclass correlation coefficients in hierarchical designs is discussed within a latent variable modeling framework. A method accomplishing this aim is outlined, which is applicable in two-level studies where participants (or generally lower-order units) are clustered within higher-order units. The procedure can also be…
Hierarchical organization of functional connectivity in the mouse brain: a complex network approach
Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano
2016-08-01
This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.
Gene function prediction based on the Gene Ontology hierarchical structure.
Cheng, Liangxi; Lin, Hongfei; Hu, Yuncui; Wang, Jian; Yang, Zhihao
2014-01-01
The information of the Gene Ontology annotation is helpful in the explanation of life science phenomena, and can provide great support for the research of the biomedical field. The use of the Gene Ontology is gradually affecting the way people store and understand bioinformatic data. To facilitate the prediction of gene functions with the aid of text mining methods and existing resources, we transform it into a multi-label top-down classification problem and develop a method that uses the hierarchical relationships in the Gene Ontology structure to relieve the quantitative imbalance of positive and negative training samples. Meanwhile the method enhances the discriminating ability of classifiers by retaining and highlighting the key training samples. Additionally, the top-down classifier based on a tree structure takes the relationship of target classes into consideration and thus solves the incompatibility between the classification results and the Gene Ontology structure. Our experiment on the Gene Ontology annotation corpus achieves an F-value performance of 50.7% (precision: 52.7% recall: 48.9%). The experimental results demonstrate that when the size of training set is small, it can be expanded via topological propagation of associated documents between the parent and child nodes in the tree structure. The top-down classification model applies to the set of texts in an ontology structure or with a hierarchical relationship.
Topology of the correlation networks among major currencies using hierarchical structure methods
Keskin, Mustafa; Deviren, Bayram; Kocakaplan, Yusuf
2011-02-01
We studied the topology of correlation networks among 34 major currencies using the concept of a minimal spanning tree and hierarchical tree for the full years of 2007-2008 when major economic turbulence occurred. We used the USD (US Dollar) and the TL (Turkish Lira) as numeraires in which the USD was the major currency and the TL was the minor currency. We derived a hierarchical organization and constructed minimal spanning trees (MSTs) and hierarchical trees (HTs) for the full years of 2007, 2008 and for the 2007-2008 period. We performed a technique to associate a value of reliability to the links of MSTs and HTs by using bootstrap replicas of data. We also used the average linkage cluster analysis for obtaining the hierarchical trees in the case of the TL as the numeraire. These trees are useful tools for understanding and detecting the global structure, taxonomy and hierarchy in financial data. We illustrated how the minimal spanning trees and their related hierarchical trees developed over a period of time. From these trees we identified different clusters of currencies according to their proximity and economic ties. The clustered structure of the currencies and the key currency in each cluster were obtained and we found that the clusters matched nicely with the geographical regions of corresponding countries in the world such as Asia or Europe. As expected the key currencies were generally those showing major economic activity.
Olfactory functions are mediated by parallel and hierarchical processing.
Savic, I; Gulyas, B; Larsson, M; Roland, P
2000-06-01
How the human brain processes the perception, discrimination, and recognition of odors has not been systematically explored. Cerebral activations were therefore studied with PET during five different olfactory tasks: monorhinal smelling of odorless air (AS), single odors (OS), discrimination of odor intensity (OD-i), discrimination of odor quality (OD-q), and odor recognition memory (OM). OS activated amygdala-piriform, orbitofrontal, insular, and cingulate cortices and right thalamus. OD-i and OD-q both engaged left insula and right cerebellum. OD-q also involved other areas, including right caudate and subiculum. OM did not activate the insula, but instead, the piriform cortex. With the exception of caudate and subiculum, it shared the remaining activations with the OD-q, and engaged, in addition, the temporal and parietal cortices. These findings indicate that olfactory functions are organized in a parallel and hierarchical manner.
Loss Function Based Ranking in Two-Stage, Hierarchical Models
Lin, Rongheng; Louis, Thomas A.; Paddock, Susan M.; Ridgeway, Greg
2009-01-01
Performance evaluations of health services providers burgeons. Similarly, analyzing spatially related health information, ranking teachers and schools, and identification of differentially expressed genes are increasing in prevalence and importance. Goals include valid and efficient ranking of units for profiling and league tables, identification of excellent and poor performers, the most differentially expressed genes, and determining “exceedances” (how many and which unit-specific true parameters exceed a threshold). These data and inferential goals require a hierarchical, Bayesian model that accounts for nesting relations and identifies both population values and random effects for unit-specific parameters. Furthermore, the Bayesian approach coupled with optimizing a loss function provides a framework for computing non-standard inferences such as ranks and histograms. Estimated ranks that minimize Squared Error Loss (SEL) between the true and estimated ranks have been investigated. The posterior mean ranks minimize SEL and are “general purpose,” relevant to a broad spectrum of ranking goals. However, other loss functions and optimizing ranks that are tuned to application-specific goals require identification and evaluation. For example, when the goal is to identify the relatively good (e.g., in the upper 10%) or relatively poor performers, a loss function that penalizes classification errors produces estimates that minimize the error rate. We construct loss functions that address this and other goals, developing a unified framework that facilitates generating candidate estimates, comparing approaches and producing data analytic performance summaries. We compare performance for a fully parametric, hierarchical model with Gaussian sampling distribution under Gaussian and a mixture of Gaussians prior distributions. We illustrate approaches via analysis of standardized mortality ratio data from the United States Renal Data System. Results show that SEL
Correlation Functions and Power Spectra
DEFF Research Database (Denmark)
Larsen, Jan
2006-01-01
The present lecture note is a supplement to the textbook Digital Signal Processing by J. Proakis and D.G. Manolakis used in the IMM/DTU course 02451 Digital Signal Processing and provides an extended discussion of correlation functions and power spectra. The definitions of correlation functions...... and spectra for discrete-time and continuous-time (analog) signals are pretty similar. Consequently, we confine the discussion mainly to real discrete-time signals. The Appendix contains detailed definitions and properties of correlation functions and spectra for analog as well as discrete-time signals....... It is possible to define correlation functions and associated spectra for aperiodic, periodic and random signals although the interpretation is different. Moreover, we will discuss correlation functions when mixing these basic signal types. In addition, the note include several examples for the purpose...
Billiards correlation functions
Pedro, G; Pedro, Garrido; Giovanni, Gallavotti
1993-01-01
Abstract: We discuss various experiments on the time decay of velocity autocorrelation functions in billiards. We perform new experiments and find results which are compatible with an exponential mixing hypothesis, first put forward by [FM]: they do not seem compatible with the stretched exponentials believed, in spite of [FM], to describe the mixing. The analysis led us to several byproducts: we obtain information about the normal diffusive nature of the motion and we consider the probability distribution of the number of collisions in time $t_m$ (as $t_m\\to\\io$) finding a strong dependence on some geometric characteristics of the locus of the billiards obstacles.
Billiards correlation functions
Energy Technology Data Exchange (ETDEWEB)
Garrido, P.L. [Universidad de Granada (Spain); Gallavotti, G. [Universita di Roma (Italy)
1994-07-01
We discuss various experiments on the time decay of velocity autocorrelation functions in billiards. We perform new experiments and find results which are compatible with an exponential mixing hypothesis first put forward by Friedman and Martin (GM): they do not seem compatible with the stretched exponentials believed, in spite of FM and more recently of Chernov, to describe the mixing. The analysis leads to several byproducts: we obtain information about the normal diffusive nature of the motion and we consider the probability distribution of the number of collisions in time t{sub m} (as t{sub m} {yields} {infinity}), finding a strong dependence on some geometric characteristics of the locus of the billiard obstacles.
Scaled density functional theory correlation functionals.
Ghouri, Mohammed M; Singh, Saurabh; Ramachandran, B
2007-10-18
We show that a simple one-parameter scaling of the dynamical correlation energy estimated by the density functional theory (DFT) correlation functionals helps increase the overall accuracy for several local and nonlocal functionals. The approach taken here has been described as the "scaled dynamical correlation" (SDC) method [Ramachandran, J. Phys. Chem. A 2006, 110, 396], and its justification is the same as that of the scaled external correlation (SEC) method of Brown and Truhlar. We examine five local and five nonlocal (hybrid) DFT functionals, the latter group including three functionals developed specifically for kinetics by the Truhlar group. The optimum scale factors are obtained by use of a set of 98 data values consisting of molecules, ions, and transition states. The optimum scale factors, found with a linear regression relationship, are found to differ from unity with a high degree of correlation in nearly every case, indicating that the deviation of calculated results from the experimental values are systematic and proportional to the dynamic correlation energy. As a consequence, the SDC scaling of dynamical correlation decreases the mean errors (signed and unsigned) by significant amounts in an overwhelming majority of cases. These results indicate that there are gains to be realized from further parametrization of several popular exchange-correlation functionals.
Hierarchical structures induce long-range dynamical correlations in written texts.
Alvarez-Lacalle, E; Dorow, B; Eckmann, J-P; Moses, E
2006-05-23
Thoughts and ideas are multidimensional and often concurrent, yet they can be expressed surprisingly well sequentially by the translation into language. This reduction of dimensions occurs naturally but requires memory and necessitates the existence of correlations, e.g., in written text. However, correlations in word appearance decay quickly, while previous observations of long-range correlations using random walk approaches yield little insight on memory or on semantic context. Instead, we study combinations of words that a reader is exposed to within a "window of attention," spanning about 100 words. We define a vector space of such word combinations by looking at words that co-occur within the window of attention, and analyze its structure. Singular value decomposition of the co-occurrence matrix identifies a basis whose vectors correspond to specific topics, or "concepts" that are relevant to the text. As the reader follows a text, the "vector of attention" traces out a trajectory of directions in this "concept space." We find that memory of the direction is retained over long times, forming power-law correlations. The appearance of power laws hints at the existence of an underlying hierarchical network. Indeed, imposing a hierarchy similar to that defined by volumes, chapters, paragraphs, etc. succeeds in creating correlations in a surrogate random text that are identical to those of the original text. We conclude that hierarchical structures in text serve to create long-range correlations, and use the reader's memory in reenacting some of the multidimensionality of the thoughts being expressed.
A study of hierarchical structure on South China industrial electricity-consumption correlation
Yao, Can-Zhong; Lin, Ji-Nan; Liu, Xiao-Feng
2016-02-01
Based on industrial electricity-consumption data of five southern provinces of China from 2005 to 2013, we study the industrial correlation mechanism with MST (minimal spanning tree) and HT (hierarchical tree) models. First, we comparatively analyze the industrial electricity-consumption correlation structure in pre-crisis and after-crisis period using MST model and Bootstrap technique of statistical reliability test of links. Results exhibit that all industrial electricity-consumption trees of five southern provinces of China in pre-crisis and after-crisis time are in formation of chain, and the "center-periphery structure" of those chain-like trees is consistent with industrial specialization in classical industrial chain theory. Additionally, the industrial structure of some provinces is reorganized and transferred in pre-crisis and after-crisis time. Further, the comparative analysis with hierarchical tree and Bootstrap technique demonstrates that as for both observations of GD and overall NF, the industrial electricity-consumption correlation is non-significant clustered in pre-crisis period, whereas it turns significant clustered in after-crisis time. Therefore we propose that in perspective of electricity-consumption, their industrial structures are directed to optimized organization and global correlation. Finally, the analysis of distance of HTs verifies that industrial reorganization and development may strengthen market integration, coordination and correlation of industrial production. Except GZ, other four provinces have a shorter distance of industrial electricity-consumption correlation in after-crisis period, revealing a better performance of regional specialization and integration.
Correlation functions on conical defects
Smolkin, Michael
2015-01-01
We explore the new technique developed recently in \\cite{Rosenhaus:2014woa} and suggest a correspondence between the $N$-point correlation functions on spacetime with conical defects and the $(N+1)$-point correlation functions in regular Minkowski spacetime. This correspondence suggests a new systematic way to evaluate the correlation functions on spacetimes with conical defects. We check the correspondence for the expectation value of a scalar operator and of the energy momentum tensor in a conformal field theory and obtain the exact agreement with the earlier derivations for cosmic string spacetime. We then use this correspondence and do the computations for a generic scalar operator and a conserved vector current. For generic unitary field theory we compute the expectation value of the energy momentum tensor using the known spectral representation of the $2$-point correlators of stress-energy tensor in Minkowski spacetime.
Sojoudi, Alireza; Goodyear, Bradley G
2016-12-01
Spontaneous fluctuations of blood-oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) signals are highly synchronous between brain regions that serve similar functions. This provides a means to investigate functional networks; however, most analysis techniques assume functional connections are constant over time. This may be problematic in the case of neurological disease, where functional connections may be highly variable. Recently, several methods have been proposed to determine moment-to-moment changes in the strength of functional connections over an imaging session (so called dynamic connectivity). Here a novel analysis framework based on a hierarchical observation modeling approach was proposed, to permit statistical inference of the presence of dynamic connectivity. A two-level linear model composed of overlapping sliding windows of fMRI signals, incorporating the fact that overlapping windows are not independent was described. To test this approach, datasets were synthesized whereby functional connectivity was either constant (significant or insignificant) or modulated by an external input. The method successfully determines the statistical significance of a functional connection in phase with the modulation, and it exhibits greater sensitivity and specificity in detecting regions with variable connectivity, when compared with sliding-window correlation analysis. For real data, this technique possesses greater reproducibility and provides a more discriminative estimate of dynamic connectivity than sliding-window correlation analysis. Hum Brain Mapp 37:4566-4580, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Data with hierarchical structure: impact of intraclass correlation and sample size on type-I error.
Musca, Serban C; Kamiejski, Rodolphe; Nugier, Armelle; Méot, Alain; Er-Rafiy, Abdelatif; Brauer, Markus
2011-01-01
Least squares analyses (e.g., ANOVAs, linear regressions) of hierarchical data leads to Type-I error rates that depart severely from the nominal Type-I error rate assumed. Thus, when least squares methods are used to analyze hierarchical data coming from designs in which some groups are assigned to the treatment condition, and others to the control condition (i.e., the widely used "groups nested under treatment" experimental design), the Type-I error rate is seriously inflated, leading too often to the incorrect rejection of the null hypothesis (i.e., the incorrect conclusion of an effect of the treatment). To highlight the severity of the problem, we present simulations showing how the Type-I error rate is affected under different conditions of intraclass correlation and sample size. For all simulations the Type-I error rate after application of the popular Kish (1965) correction is also considered, and the limitations of this correction technique discussed. We conclude with suggestions on how one should collect and analyze data bearing a hierarchical structure.
Data with hierarchical structure: impact of intraclass correlation and sample size on Type-I error
Directory of Open Access Journals (Sweden)
Serban C Musca
2011-04-01
Full Text Available Least squares analyses (e.g., ANOVAs, linear regressions of hierarchical data leads to Type-I error rates that depart severely from the nominal Type-I error rate assumed. Thus, when least squares methods are used to analyze hierarchical data coming from designs in which some groups are assigned to the treatment condition, and others to the control condition (i.e., the widely used "groups nested under treatment" experimental design, the Type-I error rate is seriously inflated, leading too often to the incorrect rejection of the null hypothesis (i.e., the incorrect conclusion of an effect of the treatment. To highlight the severity of the problem, we present simulations showing how the Type-I error rate is affected under different conditions of intraclass correlation and sample size. For all simulations the Type-I error rate after application of the popular Kish (1965 correction is also considered, and the limitations of this correction technique discussed. We conclude with suggestions on how one should collect and analyze data bearing a hierarchical structure.
Hierarchical organization of segmentation in non-functional action sequences
DEFF Research Database (Denmark)
Nielbo, Kristoffer Laigaard; Schjødt, Uffe; Sørensen, Jesper
2013-01-01
Both folk and scientific taxonomies of behavior distinguish between instrumental and ritual behavior. Recent studies indicate that behaviors dominated by ritual features tend to increase cognitive load by focusing attentional and working memory resources on low-level perceptual details and psycho......-physics. In contrast to the general consensus in anthropology and the study of religion, one study did not find any modulation effect of expectations (e.g., cultural information or priors) on cognitive load. It has, therefore, been suggested that the increase reflects a perceptual mechanism that drives categorization...... of ritual behavior. The present study investigated how an increase in cognitive load elicited by ritual behavior can influence hierarchically-related representations of actions and if expectation can modulate such hierarchical action representations. The study found that hierarchical alignment during...
Phase-transient hierarchical turbulence as an energy correlation generator of blazar light curves
Honda, Mitsuru
2008-01-01
Hierarchical turbulent structure constituting a jet is considered to reproduce energy-dependent variability in blazars, particularly, the correlation between X- and gamma-ray light curves measured in the TeV blazar Markarian 421. The scale-invariant filaments are featured by the ordered magnetic fields that involve hydromagnetic fluctuations serving as electron scatterers for diffusive shock acceleration, and the spatial size scales are identified with the local maximum electron energies, which are reflected in the synchrotron spectral energy distribution (SED) above the near-infrared/optical break. The structural transition of filaments is found to be responsible for the observed change of spectral hysteresis.
Correlation Degree and Correlation Coefficient of Multi- Output Functions
Institute of Scientific and Technical Information of China (English)
JU Gui-zhi; ZHAO Ya-qun
2005-01-01
We present definitions of the correlation degree and correlation coefficient of multi-output functions. Two relationships about the correlation degree of multi-output functions are proved. One is between the correlation degree and independency,the other is between the correlation degree and balance. Especially the paper discusses the correlation degree of affine multioutput functions. We demonstrate properties of the correlation coefficient of multi-output functions. One is the value range of the correlation coefficient, one is the relationship between the correlation coefficient and independency, and another is the sufficient and necessary condition that two multi-output functions are equivalent to each other.
Higher Order Hierarchical Legendre Basis Functions for Electromagnetic Modeling
DEFF Research Database (Denmark)
Jørgensen, Erik; Volakis, John L.; Meincke, Peter
2004-01-01
This paper presents a new hierarchical basis of arbitrary order for integral equations solved with the Method of Moments (MoM). The basis is derived from orthogonal Legendre polynomials which are modified to impose continuity of vector quantities between neighboring elements while maintaining mos...
Higher Order Hierarchical Legendre Basis Functions for Electromagnetic Modeling
DEFF Research Database (Denmark)
Jørgensen, Erik; Volakis, John L.; Meincke, Peter
2004-01-01
This paper presents a new hierarchical basis of arbitrary order for integral equations solved with the Method of Moments (MoM). The basis is derived from orthogonal Legendre polynomials which are modified to impose continuity of vector quantities between neighboring elements while maintaining mos...
Automatic Contrast Enhancement of Brain MR Images Using Hierarchical Correlation Histogram Analysis.
Chen, Chiao-Min; Chen, Chih-Cheng; Wu, Ming-Chi; Horng, Gwoboa; Wu, Hsien-Chu; Hsueh, Shih-Hua; Ho, His-Yun
Parkinson's disease is a progressive neurodegenerative disorder that has a higher probability of occurrence in middle-aged and older adults than in the young. With the use of a computer-aided diagnosis (CAD) system, abnormal cell regions can be identified, and this identification can help medical personnel to evaluate the chance of disease. This study proposes a hierarchical correlation histogram analysis based on the grayscale distribution degree of pixel intensity by constructing a correlation histogram, that can improves the adaptive contrast enhancement for specific objects. The proposed method produces significant results during contrast enhancement preprocessing and facilitates subsequent CAD processes, thereby reducing recognition time and improving accuracy. The experimental results show that the proposed method is superior to existing methods by using two estimation image quantitative methods of PSNR and average gradient values. Furthermore, the edge information pertaining to specific cells can effectively increase the accuracy of the results.
Hierarchical structures of correlations networks among Turkey’s exports and imports by currencies
Kocakaplan, Yusuf; Deviren, Bayram; Keskin, Mustafa
2012-12-01
We have examined the hierarchical structures of correlations networks among Turkey’s exports and imports by currencies for the 1996-2010 periods, using the concept of a minimal spanning tree (MST) and hierarchical tree (HT) which depend on the concept of ultrametricity. These trees are useful tools for understanding and detecting the global structure, taxonomy and hierarchy in financial markets. We derived a hierarchical organization and build the MSTs and HTs during the 1996-2001 and 2002-2010 periods. The reason for studying two different sub-periods, namely 1996-2001 and 2002-2010, is that the Euro (EUR) came into use in 2001, and some countries have made their exports and imports with Turkey via the EUR since 2002, and in order to test various time-windows and observe temporal evolution. We have carried out bootstrap analysis to associate a value of the statistical reliability to the links of the MSTs and HTs. We have also used the average linkage cluster analysis (ALCA) to observe the cluster structure more clearly. Moreover, we have obtained the bidimensional minimal spanning tree (BMST) due to economic trade being a bidimensional problem. From the structural topologies of these trees, we have identified different clusters of currencies according to their proximity and economic ties. Our results show that some currencies are more important within the network, due to a tighter connection with other currencies. We have also found that the obtained currencies play a key role for Turkey’s exports and imports and have important implications for the design of portfolio and investment strategies.
Directory of Open Access Journals (Sweden)
Ramon D. Castillo
2015-05-01
Full Text Available In order to make sense of a scene, a person must pay attention to several levels of nested order, ranging from the most differentiated details of the display to the integrated whole. In adults, research shows that the processes of integration and differentiation have the signature of self-organization. Does the same hold for children? The current study addresses this question with children between 6 and 9 years of age, using two tasks that require attention to hierarchical displays. A group of adults were tested as well, for control purposes. To get at the question of self-organization, reaction time data were submitted to a detrended fluctuation analysis and a recurrence quantification analysis. Hurst exponents shows a long-range correlations (1/f noise, and recurrence measures (percent determinism, maximum line, entropy, and trend, show a deterministic structure of variability being characteristic of self-organizing systems. Findings are discussed in terms of organism-environment coupling that gives rise to fluid attention to hierarchical displays.
Liang, Rong; Zhou, Shu-dong; Li, Li-xia; Zhang, Jun-guo; Gao, Yan-hui
2013-09-01
This paper aims to achieve Bootstraping in hierarchical data and to provide a method for the estimation on confidence interval(CI) of intraclass correlation coefficient(ICC).First, we utilize the mixed-effects model to estimate data from ICC of repeated measurement and from the two-stage sampling. Then, we use Bootstrap method to estimate CI from related ICCs. Finally, the influences of different Bootstraping strategies to ICC's CIs are compared. The repeated measurement instance show that the CI of cluster Bootsraping containing the true ICC value. However, when ignoring the hierarchy characteristics of data, the random Bootsraping method shows that it has the invalid CI. Result from the two-stage instance shows that bias observed between cluster Bootstraping's ICC means while the ICC of the original sample is the smallest, but with wide CI. It is necessary to consider the structure of data as important, when hierarchical data is being resampled. Bootstrapping seems to be better on the higher than that on lower levels.
Selver, M Alper; Güzeliş, Cüneyt
2009-01-01
As being a tool that assigns optical parameters used in interactive visualization, Transfer Functions (TF) have important effects on the quality of volume rendered medical images. Unfortunately, finding accurate TFs is a tedious and time consuming task because of the trade off between using extensive search spaces and fulfilling the physician's expectations with interactive data exploration tools and interfaces. By addressing this problem, we introduce a semi-automatic method for initial generation of TFs. The proposed method uses a Self Generating Hierarchical Radial Basis Function Network to determine the lobes of a Volume Histogram Stack (VHS) which is introduced as a new domain by aligning the histograms of slices of a image series. The new self generating hierarchical design strategy allows the recognition of suppressed lobes corresponding to suppressed tissues and representation of the overlapping regions which are parts of the lobes but can not be represented by the Gaussian bases in VHS. Moreover, approximation with a minimum set of basis functions provides the possibility of selecting and adjusting suitable units to optimize the TF. Applications on different CT and MR data sets show enhanced rendering quality and reduced optimization time in abdominal studies.
Directory of Open Access Journals (Sweden)
Tülin Acar
2012-01-01
Full Text Available The aim of this research is to compare the result of the differential item functioning (DIF determining with hierarchical generalized linear model (HGLM technique and the results of the DIF determining with logistic regression (LR and item response theory–likelihood ratio (IRT-LR techniques on the test items. For this reason, first in this research, it is determined whether the students encounter DIF with HGLM, LR, and IRT-LR techniques according to socioeconomic status (SES, in the Turkish, Social Sciences, and Science subtest items of the Secondary School Institutions Examination. When inspecting the correlations among the techniques in terms of determining the items having DIF, it was discovered that there was significant correlation between the results of IRT-LR and LR techniques in all subtests; merely in Science subtest, the results of the correlation between HGLM and IRT-LR techniques were found significant. DIF applications can be made on test items with other DIF analysis techniques that were not taken to the scope of this research. The analysis results, which were determined by using the DIF techniques in different sample sizes, can be compared.
Boundary Anomalies and Correlation Functions
Huang, Kuo-Wei
2016-01-01
It was shown recently that boundary terms of conformal anomalies recover the universal contribution to the entanglement entropy and also play an important role in the boundary monotonicity theorem of odd-dimensional quantum field theories. Motivated by these results, we investigate relationships between boundary anomalies and the stress tensor correlation functions in conformal field theories. In particular, we focus on how the conformal Ward identity and the renormalization group equation are modified by boundary central charges. Renormalized stress tensors induced by boundary Weyl invariants are also discussed, with examples in spherical and cylindrical geometries.
Hierarchical alteration of brain structural and functional networks in female migraine sufferers.
Directory of Open Access Journals (Sweden)
Jixin Liu
Full Text Available BACKGROUND: Little is known about the changes of brain structural and functional connectivity networks underlying the pathophysiology in migraine. We aimed to investigate how the cortical network reorganization is altered by frequent cortical overstimulation associated with migraine. METHODOLOGY/PRINCIPAL FINDINGS: Gray matter volumes and resting-state functional magnetic resonance imaging signal correlations were employed to construct structural and functional networks between brain regions in 43 female patients with migraine (PM and 43 gender-matched healthy controls (HC by using graph theory-based approaches. Compared with the HC group, the patients showed abnormal global topology in both structural and functional networks, characterized by higher mean clustering coefficients without significant change in the shortest absolute path length, which indicated that the PM lost optimal topological organization in their cortical networks. Brain hubs related to pain-processing revealed abnormal nodal centrality in both structural and functional networks, including the precentral gyrus, orbital part of the inferior frontal gyrus, parahippocampal gyrus, anterior cingulate gyrus, thalamus, temporal pole of the middle temporal gyrus and the inferior parietal gyrus. Negative correlations were found between migraine duration and regions with abnormal centrality. Furthermore, the dysfunctional connections in patients' cortical networks formed into a connected component and three dysregulated modules were identified involving pain-related information processing and motion-processing visual networks. CONCLUSIONS: Our results may reflect brain alteration dynamics resulting from migraine and suggest that long-term and high-frequency headache attacks may cause both structural and functional connectivity network reorganization. The disrupted information exchange between brain areas in migraine may be reshaped into a hierarchical modular structure progressively.
Estimation of Correlation Functions by Random Decrement
DEFF Research Database (Denmark)
Asmussen, J. C.; Brincker, Rune
This paper illustrates how correlation functions can be estimated by the random decrement technique. Several different formulations of the random decrement technique, estimating the correlation functions are considered. The speed and accuracy of the different formulations of the random decrement...... and the length of the correlation functions. The accuracy of the estimates with respect to the theoretical correlation functions and the modal parameters are both investigated. The modal parameters are extracted from the correlation functions using the polyreference time domain technique....
Correlation functions in stochastic inflation
Energy Technology Data Exchange (ETDEWEB)
Vennin, Vincent [University of Portsmouth, Institute of Cosmology and Gravitation, Portsmouth (United Kingdom); Starobinsky, Alexei A. [L.D. Landau Institute for Theoretical Physics RAS, Moscow (Russian Federation); Utrecht University, Department of Physics and Astronomy, Institute for Theoretical Physics, Utrecht (Netherlands)
2015-09-15
Combining the stochastic and δ N formalisms, we derive non-perturbative analytical expressions for all correlation functions of scalar perturbations in single-field, slow-roll inflation. The standard, classical formulas are recovered as saddle-point limits of the full results. This yields a classicality criterion that shows that stochastic effects are small only if the potential is sub-Planckian and not too flat. The saddle-point approximation also provides an expansion scheme for calculating stochastic corrections to observable quantities perturbatively in this regime. In the opposite regime, we show that a strong suppression in the power spectrum is generically obtained, and we comment on the physical implications of this effect. (orig.)
Hierarchical Functional Modularity in the Resting-State Human Brain
Ferrarini, Luca; Veer, Ilya M.; Baerends, Evelinda; van Tol, Marie-Jose; Renken, Remco J.; van der Wee, Nic J. A.; Veltman, Dirk. J.; Aleman, Andre; Zitman, Frans G.; Penninx, Brenda W. J. H.; van Buchem, Mark A.; Reiber, Johan H. C.; Rombouts, Serge A. R. B.; Milles, Julien
2009-01-01
Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a mor
Tang, Binhua; Hsu, Hang-Kai; Hsu, Pei-Yin; Bonneville, Russell; Chen, Su-Shing; Huang, Tim H-M; Jin, Victor X
2012-01-01
Recent genome-wide profiling reveals highly complex regulation networks among ERα and its targets. We integrated estrogen (E2)-stimulated time-series ERα ChIP-seq and gene expression data to identify the ERα-centered transcription factor (TF) hubs and their target genes, and inferred the time-variant hierarchical network structures using a Bayesian multivariate modeling approach. With its recurrent motif patterns, we determined three embedded regulatory modules from the ERα core transcriptional network. The GO analyses revealed the distinct biological function associated with each of three embedded modules. The survival analysis showed the genes in each module were able to render a significant survival correlation in breast cancer patient cohorts. In summary, our Bayesian statistical modeling and modularity analysis not only reveals the dynamic properties of the ERα-centered regulatory network and associated distinct biological functions, but also provides a reliable and effective genomic analytical approach for the analysis of dynamic regulatory network for any given TF.
Astionenko, I. O.; Litvinenko, O. I.; Osipova, N. V.; Tuluchenko, G. Ya.; Khomchenko, A. N.
2016-10-01
Recently the interpolation bases of the hierarchical type have been used for the problem solving of the approximation of multiple arguments functions (such as in the finite-element method). In this work the cognitive graphical method of constructing of the hierarchical form bases on the serendipity finite elements is suggested, which allowed to get the alternative bases on a biquadratic finite element from the serendipity family without internal knots' inclusion. The cognitive-graphic method allowed to improve the known interpolation procedure of Taylor and to get the modified elements with irregular arrangement of knots. The proposed procedures are universal and are spread in the area of finite-elements.
Kourmpetis, Y.I.A.; Burgt, van der A.; Bink, M.C.A.M.; Braak, ter C.J.F.; Ham, van R.C.H.J.
2007-01-01
The Gene Ontology (GO) is a widely used controlled vocabulary for the description of gene function. In this study we quantify the usage of multiple and hierarchically independent GO terms in the curated genome annotations of seven well-studied species. In most genomes, significant proportions (6 -
Directory of Open Access Journals (Sweden)
Zahra Sharafi
2017-01-01
Full Text Available Background. The purpose of this study was to evaluate the effectiveness of two methods of detecting differential item functioning (DIF in the presence of multilevel data and polytomously scored items. The assessment of DIF with multilevel data (e.g., patients nested within hospitals, hospitals nested within districts from large-scale assessment programs has received considerable attention but very few studies evaluated the effect of hierarchical structure of data on DIF detection for polytomously scored items. Methods. The ordinal logistic regression (OLR and hierarchical ordinal logistic regression (HOLR were utilized to assess DIF in simulated and real multilevel polytomous data. Six factors (DIF magnitude, grouping variable, intraclass correlation coefficient, number of clusters, number of participants per cluster, and item discrimination parameter with a fully crossed design were considered in the simulation study. Furthermore, data of Pediatric Quality of Life Inventory™ (PedsQL™ 4.0 collected from 576 healthy school children were analyzed. Results. Overall, results indicate that both methods performed equivalently in terms of controlling Type I error and detection power rates. Conclusions. The current study showed negligible difference between OLR and HOLR in detecting DIF with polytomously scored items in a hierarchical structure. Implications and considerations while analyzing real data were also discussed.
Development and testing of new exchange correlation functionals
DEFF Research Database (Denmark)
Lundgård, Keld Troen
, selectivity or similar of current chemical processes, or to make new technologies economical feasible. Kohn-Sham density functional theory (KS-DFT) has proven to be a powerful theory to find trends in current catalytic materials, which can empower a more informed search for better alternatives. KS-DFT relies...... generally applicable models; a robust MM-estimator loss function, for ensuring resistance to outliers in data; and a hierarchical bootstrap resampling estimating prediction error validation method, for selecting the model complexity that provide best transferability outside the training data. Three new semi...... on accurate and efficient approximations to the exchange correlation functional, yet these functional approximations have lacked a systematic way to estimate the underlying uncertainties. A Bayesian error estimation approach provides a mechanism for calculating approximative uncertainties, and so accurate...
Ecological Correlates of Family Functioning.
Meyers, Steven A.; Varkey, Soji; Aguirre, Angela M.
2002-01-01
Explores how parents' psychological functioning, social relationships, and demographic characteristics relate to family functioning with a sample of 197 participants. Significant associations between predictor variables and family functioning were found as rated by mothers, caseworkers, and coders of family interaction tasks. (JDM)
Directory of Open Access Journals (Sweden)
Victor I Spoormaker
2012-05-01
Full Text Available Frontal and parietal regions are associated with some of the most complex cognitive functions, and several frontoparietal resting-state networks can be observed in wakefulness. We used functional magnetic resonance imaging (fMRI data acquired in polysomnographically validated wakefulness, light sleep and slow-wave sleep to examine the hierarchical structure of a low-frequency functional brain network, and to examine whether frontoparietal connectivity would disintegrate in sleep. Whole-brain analyses with hierarchical cluster analysis on predefined atlases were performed, as well as regression of inferior parietal lobules seeds against all voxels in the brain, and an evaluation of the integrity of voxel time-courses in subcortical regions-of-interest. We observed that frontoparietal functional connectivity disintegrated in sleep stage 1 and was absent in deeper sleep stages. Slow-wave sleep was characterized by strong hierarchical clustering of local submodules. Frontoparietal connectivity between inferior parietal lobules and superior medial and right frontal gyrus was lower in sleep stages than in wakefulness. Moreover, thalamus voxels showed maintained integrity in sleep stage 1, making intrathalamic desynchronization an unlikely source of reduced thalamocortical connectivity in this sleep stage. Our data suggest a transition from a globally integrated functional brain network in wakefulness to a disintegrated network consisting of local submodules in slow-wave sleep, in which frontoparietal inter-modular nodes may play a crucial role, possibly in combination with the thalamus.
Fast methods for spatially correlated multilevel functional data
Staicu, A.-M.
2010-01-19
We propose a new methodological framework for the analysis of hierarchical functional data when the functions at the lowest level of the hierarchy are correlated. For small data sets, our methodology leads to a computational algorithm that is orders of magnitude more efficient than its closest competitor (seconds versus hours). For large data sets, our algorithm remains fast and has no current competitors. Thus, in contrast to published methods, we can now conduct routine simulations, leave-one-out analyses, and nonparametric bootstrap sampling. Our methods are inspired by and applied to data obtained from a state-of-the-art colon carcinogenesis scientific experiment. However, our models are general and will be relevant to many new data sets where the object of inference are functions or images that remain dependent even after conditioning on the subject on which they are measured. Supplementary materials are available at Biostatistics online.
Schmitt, Sophia; Silvestre, Martin; Tsotsalas, Manuel; Winkler, Anna-Lena; Shahnas, Artak; Grosjean, Sylvain; Laye, Fabrice; Gliemann, Hartmut; Lahann, Joerg; Bräse, Stefan; Franzreb, Matthias; Wöll, Christof
2015-01-01
The controlled synthesis of hierarchically functionalized core/multishell particles is highly desirable for applications in medicine, catalysis, and separation. Here, we describe the synthesis of hierarchically structured metal-organic framework multishells around magnetic core particles (magMOFs) via layer-by-layer (LbL) synthesis. The LbL deposition enables the design of multishell systems, where each MOF shell can be modified to install different functions. Here, we used this approach to create controlled release capsules, in which the inner shell serves as a reservoir and the outer shell serves as a membrane after postsynthetic conversion of the MOF structure to a polymer network. These capsules enable the controlled release of loaded dye molecules, depending on the surrounding media.
Two-dimensional finite element neutron diffusion analysis using hierarchic shape functions
Energy Technology Data Exchange (ETDEWEB)
Carpenter, D.C.
1997-04-01
Recent advances have been made in the use of p-type finite element method (FEM) for structural and fluid dynamics problems that hold promise for reactor physics problems. These advances include using hierarchic shape functions, element-by-element iterative solvers and more powerful mapping techniques. Use of the hierarchic shape functions allows greater flexibility and efficiency in implementing energy-dependent flux expansions and incorporating localized refinement of the solution space. The irregular matrices generated by the p-type FEM can be solved efficiently using element-by-element conjugate gradient iterative solvers. These solvers do not require storage of either the global or local stiffness matrices and can be highly vectorized. Mapping techniques based on blending function interpolation allow exact representation of curved boundaries using coarse element grids. These features were implemented in a developmental two-dimensional neutron diffusion program based on the use of hierarchic shape functions (FEM2DH). Several aspects in the effective use of p-type analysis were explored. Two choices of elemental preconditioning were examined--the proper selection of the polynomial shape functions and the proper number of functions to use. Of the five shape function polynomials tested, the integral Legendre functions were the most effective. The serendipity set of functions is preferable over the full tensor product set. Two global preconditioners were also examined--simple diagonal and incomplete Cholesky. The full effectiveness of the finite element methodology was demonstrated on a two-region, two-group cylindrical problem but solved in the x-y coordinate space, using a non-structured element grid. The exact, analytic eigenvalue solution was achieved with FEM2DH using various combinations of element grids and flux expansions.
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav
2007-01-01
is applied to transform the VSIE into a system of linear equations. The higher-order MoM provides significant reduction in the number of unknowns in comparison with standard MoM formulations using low-order basis functions, such as RWG functions. Due to the orthogonal nature of the higher-order Legendre......The problem of electromagnetic scattering by composite metallic and dielectric objects is solved using the coupled volume-surface integral equation (VSIE). The method of moments (MoM) based on higher-order hierarchical Legendre basis functions and higher-order curvilinear geometrical elements...
RECONSTRUCTING THE SHAPE OF THE CORRELATION FUNCTION
Energy Technology Data Exchange (ETDEWEB)
Huffenberger, K. M.; Galeazzi, M.; Ursino, E. [Department of Physics, University of Miami, Coral Gables, FL 33146 (United States)
2013-06-01
We develop an estimator for the correlation function which, in the ensemble average, returns the shape of the correlation function, even for signals that have significant correlations on the scale of the survey region. Our estimator is general and works in any number of dimensions. We develop versions of the estimator for both diffuse and discrete signals. As an application, we apply them to Monte Carlo simulations of X-ray background measurements. These include a realistic, spatially inhomogeneous population of spurious detector events. We discuss applying the estimator to the averaging of correlation functions evaluated on several small fields, and to other cosmological applications.
Reconstructing the shape of the correlation function
Huffenberger, K M; Ursino, E
2012-01-01
We develop an estimator for the angular correlation function which, in the ensemble average, returns the shape of the correlation function, even for signals that have significant correlations on the scale of the survey region. We develop versions of the estimator for both diffuse and discrete signals, and apply them to Monte Carlo simulations of the diffuse X-ray background that include spatially inhomogeneous detector background events. The estimator is applied to data from the Chandra X-ray observatory in a companion paper, Galeazzi et al. 2012. We discuss applying the estimator to the averaging of correlation functions evaluated on several small fields, and to other cosmological applications.
Energy Technology Data Exchange (ETDEWEB)
Makeechev, V.A. [Industrial Power Company, Krasnopresnenskaya Naberejnaya 12, 123610 Moscow (Russian Federation); Soukhanov, O.A. [Energy Systems Institute, 1 st Yamskogo Polya Street 15, 125040 Moscow (Russian Federation); Sharov, Y.V. [Moscow Power Engineering Institute, Krasnokazarmennaya Street 14, 111250 Moscow (Russian Federation)
2008-07-15
This paper presents foundations of the optimization method intended for solution of power systems operation problems and based on the principles of functional modeling (FM). This paper also presents several types of hierarchical FM algorithms for economic dispatch in these systems derived from this method. According to the FM method a power system is represented by hierarchical model consisting of systems of equations of lower (subsystem) levels and higher level system of connection equations (SCE), in which only boundary variables of subsystems are present. Solution of optimization problem in accordance with the FM method consists of the following operations: (1) solution of optimization problem for each subsystem (values of boundary variables for subsystems should be determined on the higher level of model); (2) calculation of functional characteristic (FC) of each subsystem, pertaining to state of subsystem on current iteration (these two steps are carried out on the lower level of the model); (3) formation and solution of the higher level system of equations (SCE), which gives values of boundary and supplementary boundary variables on current iteration. The key elements in the general structure of the FM method are FCs of subsystems, which represent them on the higher level of the model as ''black boxes''. Important advantage of hierarchical FM algorithms is that results obtained with them on each iteration are identical to those of corresponding basic one level algorithms. (author)
Energy Technology Data Exchange (ETDEWEB)
Sumida, S. [U-shin Ltd., Tokyo (Japan); Nagamatsu, M.; Maruyama, K. [Hokkaido Institute of Technology, Sapporo (Japan); Hiramatsu, S. [Mazda Motor Corp., Hiroshima (Japan)
1997-10-01
A new approach on modeling is put forward in order to compose the virtual prototype which is indispensable for fully computer integrated concurrent development of automobile product. A basic concept of the hierarchical functional model is proposed as the concrete form of this new modeling technology. This model is used mainly for explaining and simulating functions and efficiencies of both the parts and the total product of automobile. All engineers who engage themselves in design and development of automobile can collaborate with one another using this model. Some application examples are shown, and usefulness of this model is demonstrated. 5 refs., 5 figs.
Directory of Open Access Journals (Sweden)
Paul Schüler
Full Text Available The shells/coats of nuts and seeds are often very hard to crack. This is particularly the case with Macadamia seed coats, known to exhibit astoundingly high strength and toughness. We performed an extensive materials science characterization of the complex hierarchical structure of these coats, using light and scanning electron microscopy in 2D as well as microCT for 3D characterization. We differentiate nine hierarchical levels that characterize the structure ranging from the whole fruit on the macroscopic scale down to the molecular scale. From a biological viewpoint, understanding the hierarchical structure may elucidate why it is advantageous for these seed coats to be so difficult to break. From an engineering viewpoint, microstructure characterization is important for identifying features that contribute to the high strength and cracking resistance of these objects. This is essential for revealing the underlying structure-function-relationships. Such information will help us develop engineering materials and lightweight-structures with improved fracture and puncture resistance.
Integration of relational and hierarchical network information for protein function prediction
Directory of Open Access Journals (Sweden)
Jiang Xiaoyu
2008-08-01
Full Text Available Abstract Background In the current climate of high-throughput computational biology, the inference of a protein's function from related measurements, such as protein-protein interaction relations, has become a canonical task. Most existing technologies pursue this task as a classification problem, on a term-by-term basis, for each term in a database, such as the Gene Ontology (GO database, a popular rigorous vocabulary for biological functions. However, ontology structures are essentially hierarchies, with certain top to bottom annotation rules which protein function predictions should in principle follow. Currently, the most common approach to imposing these hierarchical constraints on network-based classifiers is through the use of transitive closure to predictions. Results We propose a probabilistic framework to integrate information in relational data, in the form of a protein-protein interaction network, and a hierarchically structured database of terms, in the form of the GO database, for the purpose of protein function prediction. At the heart of our framework is a factorization of local neighborhood information in the protein-protein interaction network across successive ancestral terms in the GO hierarchy. We introduce a classifier within this framework, with computationally efficient implementation, that produces GO-term predictions that naturally obey a hierarchical 'true-path' consistency from root to leaves, without the need for further post-processing. Conclusion A cross-validation study, using data from the yeast Saccharomyces cerevisiae, shows our method offers substantial improvements over both standard 'guilt-by-association' (i.e., Nearest-Neighbor and more refined Markov random field methods, whether in their original form or when post-processed to artificially impose 'true-path' consistency. Further analysis of the results indicates that these improvements are associated with increased predictive capabilities (i.e., increased
On the measurability of quantum correlation functions
Energy Technology Data Exchange (ETDEWEB)
Lima Bernardo, Bertúlio de, E-mail: bertulio.fisica@gmail.com; Azevedo, Sérgio; Rosas, Alexandre
2015-05-15
The concept of correlation function is widely used in classical statistical mechanics to characterize how two or more variables depend on each other. In quantum mechanics, on the other hand, there are observables that cannot be measured at the same time; the so-called incompatible observables. This prospect imposes a limitation on the definition of a quantum analog for the correlation function in terms of a sequence of measurements. Here, based on the notion of sequential weak measurements, we circumvent this limitation by introducing a framework to measure general quantum correlation functions, in principle, independently of the state of the system and the operators involved. To illustrate, we propose an experimental configuration to obtain explicitly the quantum correlation function between two Pauli operators, in which the input state is an arbitrary mixed qubit state encoded on the polarization of photons.
Uncertainty propagation with functionally correlated quantities
Giordano, Mosè
2016-01-01
Many uncertainty propagation software exist, written in different programming languages, but not all of them are able to handle functional correlation between quantities. In this paper we review one strategy to deal with uncertainty propagation of quantities that are functionally correlated, and introduce a new software offering this feature: the Julia package Measurements.jl. It supports real and complex numbers with uncertainty, arbitrary-precision calculations, mathematical and linear algebra operations with matrices and arrays.
Correlation Functions for Lattice Integrable Models
Directory of Open Access Journals (Sweden)
F. Smirnov
2008-01-01
Full Text Available In this lectures I consider the problem of calculating the correlation functions for XXZ spin chain. First, I explain in details the free fermion case. Then I show that for generic coupling constant the fermionic operators acting on the space of quasi-local fields can be introduced. In the basis generated by these fermionic operators the correlation functions are given by determinants as in the free fermion case.
Inequalities for electron-field correlation functions
Tyc, T
2000-01-01
I show that there exists a class of inequalities between correlation functions of different orders of a chaotic electron field. These inequalities lead to the antibunching effect and are a consequence of the fact that electrons are fermions -- indistinguishable particles with antisymmetric states. The derivation of the inequalities is based on the known form of the correlation functions for the chaotic state and on the properties of matrices and determinants.
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Debasis [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Elsaidi, Sameh K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia Alexandria 21321 Egypt; Aguila, Briana [Department of Chemistry, University of South Florida, USA; Li, Baiyan [Department of Chemistry, University of South Florida, USA; Kim, Dongsang [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Schweiger, Michael J. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Kruger, Albert A. [US Department of Energy, Office of River Protection, Richland WA 99352 USA; Doonan, Christian J. [Department of Chemistry, The University of Adelaide, Adelaide South Australia 5005 Australia; Ma, Shengqian [Department of Chemistry, University of South Florida, USA; Thallapally, Praveen K. [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA
2016-10-20
Efficient and cost-effective removal of radioactive pertechnetate anions from nuclear waste is a key challenge to mitigate long-term nuclear waste storage issues. Traditional materials such as resins and layered double hydroxides (LDHs) were evaluated for their pertechnetate or perrhenate (the non-radioactive surrogate) removal capacity, but there is room for improvement in terms of capacity, selectivity and kinetics. A series of functionalized hierarchical porous frameworks were evaluated for their perrhenate removal capacity in the presence of other competing anions.
Multitime correlation functions in nonclassical stochastic processes
Krumm, F.; Sperling, J.; Vogel, W.
2016-06-01
A general method is introduced for verifying multitime quantum correlations through the characteristic function of the time-dependent P functional that generalizes the Glauber-Sudarshan P function. Quantum correlation criteria are derived which identify quantum effects for an arbitrary number of points in time. The Magnus expansion is used to visualize the impact of the required time ordering, which becomes crucial in situations when the interaction problem is explicitly time dependent. We show that the latter affects the multi-time-characteristic function and, therefore, the temporal evolution of the nonclassicality. As an example, we apply our technique to an optical parametric process with a frequency mismatch. The resulting two-time-characteristic function yields full insight into the two-time quantum correlation properties of such a system.
Energy Technology Data Exchange (ETDEWEB)
Xu, Ting; Zhao, Xin; Zhang, Junxian; Dong, Jie; Zhang, Qinghua, E-mail: qhzhang@dhu.edu.cn
2016-04-30
Highlights: • PS/PDA with well-defined core/shell structures was prepared in aqueous solution. • Au NPs were coated on PS/PDA by in-situ reduction and self-assembly approach. • PS/PDA/Au had homogeneous and dense Au coatings with different shape. • Hierarchical spheres exhibited a well-defined core/shell structure maintaining the spherical morphology. - Abstract: Two kinds of ternary hybrids were prepared by anchoring different shapes and loadings of Au nanoparticles (NPs) on poly(dopamine) (PDA) functionalized polystyrene (PS) microspheres with two different strategies, i.e., in situ reduction and self-assembly approach. PDA coatings were firstly introduced to functionalize the hydrophobic PS surface with sufficient amino and hydroxyl groups, which enhanced the interaction between Au NPs and the polymer spheres. Thus, Au NPs could be easily immobilized onto the surface of the PDA/PS microspheres, and the hierarchical composite microspheres exhibited a well-defined core/shell structure without sacrificing the spherical PS morphology. PS/PDA/Au-R and PS/PDA/Au-A microspheres fabricated by in situ reduction and self-assembly approach showed different distinct Au nano-shell morphology with the corresponding optical, catalytic and electrochemical properties. Field emission scanning electron microscopy and transmission electronic microscopy verified these hierarchical structures with the ultrathin PDA film incorporating between the inner PS core and the outer Au NPs shell. X-ray diffraction and X-ray photoelectron spectroscopy confirmed the presence of PDA and Au layer on the surface of the composite particles. These green and facile methods with mild experimental conditions can extend to fabricate other polymer or inorganic substrates coated by various noble metals.
Evolution of the Luminosity-Metallicity-Stellar Mass correlation in a hierarchical scenario
De Rossi, M E; Scannapieco, C; Rossi, Maria Emilia De; Tissera, Patricia Beatriz; Scannapieco, Cecilia
2006-01-01
We study the evolution of the Stellar Mass-Metallicity Relation and the Luminosity-Metallicity Relation by performing numerical simulations in a cosmological framework. We find that the slope and the zero point of the Luminosity-Metallicity Relation evolve in such a way that, at a given metallicity, systems were ~3 mag brighter at z=3 compared to galaxies in the local universe, which is consistent with the observational trend. The local Stellar Mass-Metallicity Relation shows also a good agreement with recent observations. We identify a characteristic stellar mass M_c ~ 10^(10.2) M_sun/h at which the slope of the Stellar Mass-Metallicity Relation decreases for larger stellar masses. Our results indicate that M_c arises naturally as a consequence of the hierarchical building up of the structure.
Xu, Ting; Zhao, Xin; Zhang, Junxian; Dong, Jie; Zhang, Qinghua
2016-04-01
Two kinds of ternary hybrids were prepared by anchoring different shapes and loadings of Au nanoparticles (NPs) on poly(dopamine) (PDA) functionalized polystyrene (PS) microspheres with two different strategies, i.e., in situ reduction and self-assembly approach. PDA coatings were firstly introduced to functionalize the hydrophobic PS surface with sufficient amino and hydroxyl groups, which enhanced the interaction between Au NPs and the polymer spheres. Thus, Au NPs could be easily immobilized onto the surface of the PDA/PS microspheres, and the hierarchical composite microspheres exhibited a well-defined core/shell structure without sacrificing the spherical PS morphology. PS/PDA/Au-R and PS/PDA/Au-A microspheres fabricated by in situ reduction and self-assembly approach showed different distinct Au nano-shell morphology with the corresponding optical, catalytic and electrochemical properties. Field emission scanning electron microscopy and transmission electronic microscopy verified these hierarchical structures with the ultrathin PDA film incorporating between the inner PS core and the outer Au NPs shell. X-ray diffraction and X-ray photoelectron spectroscopy confirmed the presence of PDA and Au layer on the surface of the composite particles. These green and facile methods with mild experimental conditions can extend to fabricate other polymer or inorganic substrates coated by various noble metals.
Hard X-ray spectroscopic nano-imaging of hierarchical functional materials at work.
Andrews, Joy C; Weckhuysen, Bert M
2013-11-11
Heterogeneous catalysts often consist of an active metal (oxide) in close contact with a support material and various promoter elements. Although macroscopic properties, such as activity, selectivity and stability, can be assessed with catalyst performance testing, the development of relevant, preferably quantitative structure-performance relationships require the use of advanced characterisation methods. Spectroscopic imaging in the hard X-ray region with nanometer-scale resolution has very recently emerged as a powerful approach to elucidate the hierarchical structure and related chemistry of catalytic solids in action under realistic reaction conditions. This X-ray-based chemical imaging method benefits from the combination of high resolution (∼30 nm) with large X-ray penetration and depth of focus, and the possibility for probing large areas with mosaic imaging. These capabilities make it possible to obtain spatial and temporal information on chemical changes in catalytic solids as well as a wide variety of other functional materials, such as fuel cells and batteries, in their full complexity and integrity. In this concept article we provide details on the method and setup of full-field hard X-ray spectroscopic imaging, illustrate its potential for spatiotemporal chemical imaging by making use of recent showcases, outline the pros and cons of this experimental approach and discuss some future directions for hierarchical functional materials research.
Triplet correlation functions in liquid water
Energy Technology Data Exchange (ETDEWEB)
Dhabal, Debdas; Chakravarty, Charusita, E-mail: charus@chemistry.iitd.ac.in [Department of Chemistry, Indian Institute of Technology-Delhi, New Delhi 110016 (India); Singh, Murari [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Wikfeldt, Kjartan Thor [Science Institute, University of Iceland, 107 Reykjavik (Iceland)
2014-11-07
Triplet correlations have been shown to play a crucial role in the transformation of simple liquids to anomalous tetrahedral fluids [M. Singh, D. Dhabal, A. H. Nguyen, V. Molinero, and C. Chakravarty, Phys. Rev. Lett. 112, 147801 (2014)]. Here we examine triplet correlation functions for water, arguably the most important tetrahedral liquid, under ambient conditions, using configurational ensembles derived from molecular dynamics (MD) simulations and reverse Monte Carlo (RMC) datasets fitted to experimental scattering data. Four different RMC data sets with widely varying hydrogen-bond topologies fitted to neutron and x-ray scattering data are considered [K. T. Wikfeldt, M. Leetmaa, M. P. Ljungberg, A. Nilsson, and L. G. M. Pettersson, J. Phys. Chem. B 113, 6246 (2009)]. Molecular dynamics simulations are performed for two rigid-body effective pair potentials (SPC/E and TIP4P/2005) and the monatomic water (mW) model. Triplet correlation functions are compared with other structural measures for tetrahedrality, such as the O–O–O angular distribution function and the local tetrahedral order distributions. In contrast to the pair correlation functions, which are identical for all the RMC ensembles, the O–O–O triplet correlation function can discriminate between ensembles with different degrees of tetrahedral network formation with the maximally symmetric, tetrahedral SYM dataset displaying distinct signatures of tetrahedrality similar to those obtained from atomistic simulations of the SPC/E model. Triplet correlations from the RMC datasets conform closely to the Kirkwood superposition approximation, while those from MD simulations show deviations within the first two neighbour shells. The possibilities for experimental estimation of triplet correlations of water and other tetrahedral liquids are discussed.
DEFF Research Database (Denmark)
Øjelund, Henrik; Sadegh, Payman
2000-01-01
, constraints are introduced to ensure the conformity of the estimates to a gien global structure. Hierarchical models are then utilized as a tool to ccomodate global model uncertainties via parametric variabilities within the structure. The global parameters and their associated uncertainties are estimated...... simultaneously with the (local estimates of) function values. The approach is applied to modelling of a linear time variant dynamic system under prior linear time invariant structure where local regression fails as a result of high dimensionality.......Local function approximations concern fitting low order models to weighted data in neighbourhoods of the points where the approximations are desired. Despite their generality and convenience of use, local models typically suffer, among others, from difficulties arising in physical interpretation...
Learning invariant object recognition from temporal correlation in a hierarchical network.
Lessmann, Markus; Würtz, Rolf P
2014-06-01
Invariant object recognition, which means the recognition of object categories independent of conditions like viewing angle, scale and illumination, is a task of great interest that humans can fulfill much better than artificial systems. During the last years several basic principles were derived from neurophysiological observations and careful consideration: (1) Developing invariance to possible transformations of the object by learning temporal sequences of visual features that occur during the respective alterations. (2) Learning in a hierarchical structure, so basic level (visual) knowledge can be reused for different kinds of objects. (3) Using feedback to compare predicted input with the current one for choosing an interpretation in the case of ambiguous signals. In this paper we propose a network which implements all of these concepts in a computationally efficient manner which gives very good results on standard object datasets. By dynamically switching off weakly active neurons and pruning weights computation is sped up and thus handling of large databases with several thousands of images and a number of categories in a similar order becomes possible. The involved parameters allow flexible adaptation to the information content of training data and allow tuning to different databases relatively easily. Precondition for successful learning is that training images are presented in an order assuring that images of the same object under similar viewing conditions follow each other. Through an implementation with sparse data structures the system has moderate memory demands and still yields very good recognition rates.
Non-Parametric Estimation of Correlation Functions
DEFF Research Database (Denmark)
Brincker, Rune; Rytter, Anders; Krenk, Steen
In this paper three methods of non-parametric correlation function estimation are reviewed and evaluated: the direct method, estimation by the Fast Fourier Transform and finally estimation by the Random Decrement technique. The basic ideas of the techniques are reviewed, sources of bias are pointed...... out, and methods to prevent bias are presented. The techniques are evaluated by comparing their speed and accuracy on the simple case of estimating auto-correlation functions for the response of a single degree-of-freedom system loaded with white noise....
Semiclassical approximations to quantum time correlation functions
Egorov, S. A.; Skinner, J. L.
1998-09-01
Over the last 40 years several ad hoc semiclassical approaches have been developed in order to obtain approximate quantum time correlation functions, using as input only the corresponding classical time correlation functions. The accuracy of these approaches has been tested for several exactly solvable gas-phase models. In this paper we test the accuracy of these approaches by comparing to an exactly solvable many-body condensed-phase model. We show that in the frequency domain the Egelstaff approach is the most accurate, especially at high frequencies, while in the time domain one of the other approaches is more accurate.
Locality of correlation in density functional theory.
Burke, Kieron; Cancio, Antonio; Gould, Tim; Pittalis, Stefano
2016-08-07
The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that EC → -AC ZlnZ + BCZ as Z → ∞, where Z is the atomic number, AC is known, and we estimate BC to be about 37 mhartree. The local density approximation yields AC exactly, but a very incorrect value for BC, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with BC a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed.
Green's function formalism for highly correlated systems
Directory of Open Access Journals (Sweden)
F.Mancini
2006-01-01
Full Text Available We present the Composite Operator Method (COM as a modern approach to the study of strongly correlated electronic systems, based on the equation of motion and Green's function method. COM uses propagators of composite operators as building blocks at the basis of approximate calculations and algebra constrains to fix the representation of Green's functions in order to maintain the algebraic and symmetry properties.
Runtime Verification of Pacemaker Functionality Using Hierarchical Fuzzy Colored Petri-nets.
Majma, Negar; Babamir, Seyed Morteza; Monadjemi, Amirhassan
2017-02-01
Today, implanted medical devices are increasingly used for many patients and in case of diverse health problems. However, several runtime problems and errors are reported by the relevant organizations, even resulting in patient death. One of those devices is the pacemaker. The pacemaker is a device helping the patient to regulate the heartbeat by connecting to the cardiac vessels. This device is directed by its software, so any failure in this software causes a serious malfunction. Therefore, this study aims to a better way to monitor the device's software behavior to decrease the failure risk. Accordingly, we supervise the runtime function and status of the software. The software verification means examining limitations and needs of the system users by the system running software. In this paper, a method to verify the pacemaker software, based on the fuzzy function of the device, is presented. So, the function limitations of the device are identified and presented as fuzzy rules and then the device is verified based on the hierarchical Fuzzy Colored Petri-net (FCPN), which is formed considering the software limits. Regarding the experiences of using: 1) Fuzzy Petri-nets (FPN) to verify insulin pumps, 2) Colored Petri-nets (CPN) to verify the pacemaker and 3) To verify the pacemaker by a software agent with Petri-network based knowledge, which we gained during the previous studies, the runtime behavior of the pacemaker software is examined by HFCPN, in this paper. This is considered a developing step compared to the earlier work. HFCPN in this paper, compared to the FPN and CPN used in our previous studies reduces the complexity. By presenting the Petri-net (PN) in a hierarchical form, the verification runtime, decreased as 90.61% compared to the verification runtime in the earlier work. Since we need an inference engine in the runtime verification, we used the HFCPN to enhance the performance of the inference engine.
Predicting gene function using hierarchical multi-label decision tree ensembles
Directory of Open Access Journals (Sweden)
Kocev Dragi
2010-01-01
Full Text Available Abstract Background S. cerevisiae, A. thaliana and M. musculus are well-studied organisms in biology and the sequencing of their genomes was completed many years ago. It is still a challenge, however, to develop methods that assign biological functions to the ORFs in these genomes automatically. Different machine learning methods have been proposed to this end, but it remains unclear which method is to be preferred in terms of predictive performance, efficiency and usability. Results We study the use of decision tree based models for predicting the multiple functions of ORFs. First, we describe an algorithm for learning hierarchical multi-label decision trees. These can simultaneously predict all the functions of an ORF, while respecting a given hierarchy of gene functions (such as FunCat or GO. We present new results obtained with this algorithm, showing that the trees found by it exhibit clearly better predictive performance than the trees found by previously described methods. Nevertheless, the predictive performance of individual trees is lower than that of some recently proposed statistical learning methods. We show that ensembles of such trees are more accurate than single trees and are competitive with state-of-the-art statistical learning and functional linkage methods. Moreover, the ensemble method is computationally efficient and easy to use. Conclusions Our results suggest that decision tree based methods are a state-of-the-art, efficient and easy-to-use approach to ORF function prediction.
Hydrodynamic correlation functions in nematic liquid crystals
Lekkerkerker, H.N.W.; Carle, D.; Laidlaw, W.G.
1976-01-01
The result, recently discovered by Forster, that the strength factors of the nonpropagating modes in certain hydrodynamic correlation functions in nematic liquid crystals are not fully determined by the hydrodynamic matrix is reconsidered. Using time reversal and space inversion symmetry one finds t
Hydrodynamic correlation functions in nematic liquid crystals
Lekkerkerker, H.N.W.; Carle, D.; Laidlaw, W.G.
1976-01-01
The result, recently discovered by Forster, that the strength factors of the nonpropagating modes in certain hydrodynamic correlation functions in nematic liquid crystals are not fully determined by the hydrodynamic matrix is reconsidered. Using time reversal and space inversion symmetry one finds t
Binary Aggregations in Hierarchical Galaxy Formation The Evolution of the Galaxy Luminosity Function
Menci, N; Fontana, A; Giallongo, E; Poli, F
2002-01-01
We develop a semi-analytic model of hierarchical galaxy formation with an improved treatment of the evolution of galaxies inside dark matter haloes. We take into account not only dynamical friction processes building up the central dominant galaxy, but also binary aggregations of satellite galaxies inside a common halo described using the kinetic Smoluchowski equation. The description of gas cooling, star formation and evolution, and Supernova feedback follows the standard prescriptions widely used in semi-analytic modelling. We find that binary aggregations are effective in depleting the number of small/intermediate mass galaxies over the redshift range 1-16. We compare our predicted luminosity functions with those obtained from deep multicolor surveys in the rest-frame B and UV bands for the redshift ranges 01 and even more at z ~ 3 by the effect of binary aggregations. The predictions from our dynamical model are discussed and compared with the effects of complementary processes which may conspire in affec...
Dries, M; Koopmans, L V E
2016-01-01
Recent studies based on the integrated light of distant galaxies suggest that the initial mass function (IMF) might not be universal. Variations of the IMF with galaxy type and/or formation time may have important consequences for our understanding of galaxy evolution. We have developed a new stellar population synthesis (SPS) code specifically designed to reconstruct the IMF. We implement a novel approach combining regularization with hierarchical Bayesian inference. Within this approach we use a parametrized IMF prior to regulate a direct inference of the IMF. This direct inference gives more freedom to the IMF and allows the model to deviate from parametrized models when demanded by the data. We use Markov Chain Monte Carlo sampling techniques to reconstruct the best parameters for the IMF prior, the age, and the metallicity of a single stellar population. We present our code and apply our model to a number of mock single stellar populations with different ages, metallicities, and IMFs. When systematic unc...
Neuwald, Andrew F
2016-06-01
The availability of vast amounts of protein sequence data facilitates detection of subtle statistical correlations due to imposed structural and functional constraints. Recent breakthroughs using Direct Coupling Analysis (DCA) and related approaches have tapped into correlations believed to be due to compensatory mutations. This has yielded some remarkable results, including substantially improved prediction of protein intra- and inter-domain 3D contacts, of membrane and globular protein structures, of substrate binding sites, and of protein conformational heterogeneity. A complementary approach is Bayesian Partitioning with Pattern Selection (BPPS), which partitions related proteins into hierarchically-arranged subgroups based on correlated residue patterns. These correlated patterns are presumably due to structural and functional constraints associated with evolutionary divergence rather than to compensatory mutations. Hence joint application of DCA- and BPPS-based approaches should help sort out the structural and functional constraints contributing to sequence correlations.
Towards reliable calculations of the correlation function
Maj, Radoslaw; 10.1142/S0218301307009221
2008-01-01
The correlation function of two identical pions interacting via Coulomb potential is computed for a general case of anisotropic particle's source of finite life time. The effect of halo is taken into account as an additional particle's source of large spatial extension. Due to the Coulomb interaction, the effect of halo is not limited to very small relative momenta but it influences the correlation function in a relatively large domain. The relativistic effects are discussed in detail and it is argued that the calculations have to be performed in the center-of-mass frame of particle's pair where the (nonrelativistic) wave function of particle's relative motion is meaningful. The Bowler-Sinyukov procedure to remove the Coulomb interaction is tested and it is shown to significantly underestimate the source's life time.
Exact four-spinon dynamical correlation function
Abada, A; Si-Lakhal, B; Seba, S; Abada, As
1998-01-01
We discuss some properties of the exact four-spinon dynamical correlation function in the antiferromagnetic spin 1/2 XXX-model the expression of which we derived recently. We show that the region in which it is not identically zero is different from and larger than the spin-wave continuum. We discuss its behavior as a function of the neutron momentum transfer $k$ for fixed values of the neutron energy $\\omega$ and compare it to the one corresponding to the exact two-spinon dynamical correlation function. We show that the overall shapes are quite similar but there are differences that we discuss. Particular is the fact that the symmetry about the axis $k=\\pi$ present in the two-spinon case seems to be lost in the four-spinon one. We finish with concluding remarks.
Habibi, Meisam K; Samaei, Arash T; Gheshlaghi, Behnam; Lu, Jian; Lu, Yang
2015-04-01
As one of the most renewable resources on Earth, bamboo has recently attracted increasing interest for its promising applications in sustainable structural purposes. Its superior mechanical properties arising from the unique functionally-graded (FG) hierarchical structure also make bamboo an excellent candidate for bio-mimicking purposes in advanced material design. However, despite its well-documented, impressive mechanical characteristics, the intriguing asymmetry in flexural behavior of bamboo, alongside its underlying mechanisms, has not yet been fully understood. Here, we used multi-scale mechanical characterizations assisted with advanced environmental scanning electron microscopy (ESEM) to investigate the asymmetric flexural responses of natural bamboo (Phyllostachys edulis) strips under different loading configurations, during "elastic bending" and "fracture failure" stages, with their respective deformation mechanisms at microstructural level. Results showed that the gradient distribution of the vascular bundles along the thickness direction is mainly responsible for the exhibited asymmetry, whereas the hierarchical fiber/parenchyma cellular structure plays a critical role in alternating the dominant factors for determining the distinctly different failure mechanisms. A numerical model has been likewise adopted to validate the effective flexural moduli of bamboo strips as a function of their FG parameters, while additional experiments on uniaxial loading of bamboo specimens were performed to assess the tension-compression asymmetry, for further understanding of the microstructure evolution of bamboo's outer and innermost layers under different bending states. This work could provide insights to help the processing of novel bamboo-based composites and enable the bio-inspired design of advanced structural materials with desired flexural behavior.
Correlated Strength in Nuclear Spectral Function
Rohe, D; Asaturyan, R; Baker, O K; Bültmann, S; Carasco, C C; Day, D; Ent, R; Fenker, H C; Garrow, K; Gasparian, A; Gueye, P; Hauger, M; Honegger, A; Jourdan, J; Keppel, C E; Kubon, G; Lindgren, R; Lung, A; Mack, D J; Mitchell, J H; Mkrtchyan, H G; Mocelj, D; Normand, K; Petitjean, T; Rondon, Oscar A; Segbefia, E; Sick, I; Stepanyan, S; Tang, L; Tiefenbacher, F; Vulcan, W F; Warren, G; Wood, S A; Yuan, L; Zeier, M; Zhu, H; Zihlmann, B
2004-01-01
We have carried out an (e,e'p) experiment at high momentum transfer and in parallel kinematics to measure the strength of the nuclear spectral function S(k,E) at high nucleon momenta k and large removal energies E. This strength is related to the presence of short-range and tensor correlations, and was known hitherto only indirectly and with considerable uncertainty from the lack of strength in the independent-particle region. This experiment confirms by direct measurement the correlated strength predicted by theory.
Correlated Strength in the Nuclear Spectral Function
Energy Technology Data Exchange (ETDEWEB)
D. Rohe; C. S. Armstrong; R. Asaturyan; O. K. Baker; S. Bueltmann; C. Carasco; D. Day; R. Ent; H. C. Fenker; K. Garrow; A. Gasparian; P. Gueye; M. Hauger; A. Honegger; J. Jourdan; C. E. Keppel; G. Kubon; R. Lindgren; A. Lung; D. J. Mack; J. H. Mitchell; H. Mkrtchyan; D. Mocelj; K. Normand; T. Petitjean; O. Rondon; E. Segbefia; I. Sick; S. Stepanyan; L. Tang; F. Tiefenbacher; W. F. Vulcan; G. Warren; S. A. Wood; L. Yuan; M. Zeier; H. Zhu; B. Zihlmann
2004-10-01
We have carried out an (e,ep) experiment at high momentum transfer and in parallel kinematics to measure the strength of the nuclear spectral function S(k,E) at high nucleon momenta k and large removal energies E. This strength is related to the presence of short-range and tensor correlations, and was known hitherto only indirectly and with considerable uncertainty from the lack of strength in the independent-particle region. This experiment locates by direct measurement the correlated strength predicted by theory.
Correlation functions in theories with Lifshitz scaling
Keranen, Ville; Szepietowski, Phillip; Thorlacius, Larus
2016-01-01
The 2+1 dimensional quantum Lifshitz model can be generalised to a class of higher dimensional free field theories that exhibit Lifshitz scaling. When the dynamical critical exponent equals the number of spatial dimensions, equal time correlation functions of scaling operators in the generalised quantum Lifshitz model are given by a d-dimensional higher-derivative conformal field theory. Autocorrelation functions in the generalised quantum Lifshitz model in any number of dimensions can on the other hand be expressed in terms of autocorrelation functions of a two-dimensional conformal field theory. This also holds for autocorrelation functions in a strongly coupled Lifshitz field theory with a holographic dual of Einstein-Maxwell-dilaton type. The map to a two-dimensional conformal field theory extends to autocorrelation functions in thermal states and out- of-equilbrium states preserving symmetry under spatial translations and rotations in both types of Lifshitz models. Furthermore, the spectrum of quasinorma...
Structure function relationship in complex brain networks expressed by hierarchical synchronization
Zhou, Changsong; Zemanová, Lucia; Zamora-López, Gorka; Hilgetag, Claus C.; Kurths, Jürgen
2007-06-01
The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.
Zhao, Lingzhou; Mei, Shenglin; Chu, Paul K; Zhang, Yumei; Wu, Zhifen
2010-07-01
Hierarchical hybrid micro/nano-textured titanium surface topographies with titania nanotubes were produced by simple acid etching followed by anodization to mimic the hierarchical structure of bone tissues. Primary rat osteoblasts were used to evaluate the bioactivity. The microtopography formed by acid etching of titanium induced inconsistent osteoblast functions with initial cell adhesion and osteogenesis-related gene expression being dramatically enhanced while other cell behaviors such as proliferation, intracellular total protein synthesis and alkaline phosphatase activity, collagen secretion, and extracellular matrix mineralization being depressed. In comparison, addition of nanotubes to the microtopography led to enhancement of multiple osteoblast functions. Nearly all the cell functions investigated in this study were retained or promoted. Compared to a microtopography, the enhancement of multiple cell functions observed from the hierarchical micro/nano-textured surfaces is expected to lead to faster bone maturation around the titanium implants without compromising the bone mass. In addition, the hierarchical micro/nano-textured surfaces still retain the mechanical interlocking ability of the microtopography thereby boding well for osseointegration. Our study reveals a synergistic role played by the micro and nanotopographies in osteoblast functions and provides insight to the design of better biomedical implant surfaces.
Directory of Open Access Journals (Sweden)
Iman eKamali Sarvestani
2011-03-01
Full Text Available Based on known anatomy and physiology, we present a hypothesis where the basal gangliamotor loop is hierarchically organized in two main subsystems: the arbitration system andthe extension system. The arbitration system, comprised of the subthalamic nucleus, globuspallidus, and pedunculopontine nucleus, serves the role of selecting one out of several candidateactions as they are ascending from various brain stem motor regions and aggregated in thecentromedian thalamus or descending from the extension system or from the cerebral cortex.This system is an action-input/action-output system whose winner-take-all mechanism findsthe strongest response among several candidates to execute. This decision is communicatedback to the brain stem by facilitating the desired action via cholinergic/glutamatergic projectionsand suppressing conflicting alternatives via GABAergic connections. The extension system,comprised of the striatum and, again, globus pallidus, can extend the repertoire of responsesby learning to associate novel complex states to certain actions. This system is a state-input/action-output system, whose organization enables it to encode arbitrarily complex Booleanlogic rules using striatal neurons that only fire given specific constellations of inputs (BooleanAND and pallidal neurons that are silenced by any striatal input (Boolean OR. We demonstratethe capabilities of this hierarchical system by a computational model where a simulatedgeneric animal interacts with an environment by selecting direction of movement basedon combinations of sensory stimuli, some being appetitive, others aversive or neutral. Whilethe arbitration system can autonomously handle conflicting actions proposed by brain stemmotor nuclei, the extension system is required to execute learned actions not suggested byexternal motor centers. Being precise in the functional role of each component of the system,this hypothesis generates several readily testable predictions.
Multiple Soft Limits of Cosmological Correlation Functions
Joyce, Austin; Simonović, Marko
2015-01-01
We derive novel identities satisfied by inflationary correlation functions in the limit where two external momenta are taken to be small. We derive these statements in two ways: using background-wave arguments and as Ward identities following from the fixed-time path integral. Interestingly, these identities allow us to constrain some of the O(q^2) components of the soft limit, in contrast to their single-soft analogues. We provide several nontrivial checks of our identities both in the context of resonant non-Gaussianities and in small sound speed models. Additionally, we extend the relation at lowest order in external momenta to arbitrarily many soft legs, and comment on the many-soft extension at higher orders in the soft momentum. Finally, we consider how higher soft limits lead to identities satisfied by correlation functions in large-scale structure.
Multiple soft limits of cosmological correlation functions
Energy Technology Data Exchange (ETDEWEB)
Joyce, Austin [Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Khoury, Justin [Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Simonović, Marko, E-mail: ajoy@uchicago.edu, E-mail: jkhoury@sas.upenn.edu, E-mail: msimonov@sissa.it [SISSA, via Bonomea 265, 34136, Trieste (Italy)
2015-01-01
We derive novel identities satisfied by inflationary correlation functions in the limit where two external momenta are taken to be small. We derive these statements in two ways: using background-wave arguments and as Ward identities following from the fixed-time path integral. Interestingly, these identities allow us to constrain some of the O(q{sup 2}) components of the soft limit, in contrast to their single-soft analogues. We provide several nontrivial checks of our identities both in the context of resonant non-Gaussianities and in small sound speed models. Additionally, we extend the relation at lowest order in external momenta to arbitrarily many soft legs, and comment on the many-soft extension at higher orders in the soft momentum. Finally, we consider how higher soft limits lead to identities satisfied by correlation functions in large-scale structure.
Equilibrium time correlation functions in open systems
Zhu, Jinglong; Agarwal, Animesh; Site, Luigi Delle
2014-01-01
We study equilibrium time correlation functions for liquid water at room temperature employing the Molecular Dynamics (MD) adaptive resolution method AdResS in its Grand Canonical formulation (GC-AdResS). This study introduces two technical innovations: the employment of a local thermostat that acts only in the reservoir and the consequent construction of an "ideal" Grand Canonical reservoir of particles and energy. As a consequence the artificial action of a thermostat in the calculation of equilibrium time correlation functions of standard NVT simulations is efficiently removed. The success of the technical innovation provides the basis for formulating a profound conceptual problem, that is the extension of Liouville theorem to open systems (Grand Canonical ensemble), a question, so far, treated neither in MD nor (in general) in statistical physics.
DEFF Research Database (Denmark)
Zhou, Min; Jørgensen, Erik; Kim, Oleksiy S.;
2012-01-01
, thus providing the flexibility required in the analysis of printed reflectarrays. A comparison to DTU-ESA Facility measurements of a reference offset reflectarray shows that higher-order hierarchical Legendre basis functions produce results of the same accuracy as those obtained using singular basis...
Norros, Veera; Laine, Marko; Lignell, Risto; Thingstad, Frede
2017-10-01
Methods for extracting empirically and theoretically sound parameter values are urgently needed in aquatic ecosystem modelling to describe key flows and their variation in the system. Here, we compare three Bayesian formulations for mechanistic model parameterization that differ in their assumptions about the variation in parameter values between various datasets: 1) global analysis - no variation, 2) separate analysis - independent variation and 3) hierarchical analysis - variation arising from a shared distribution defined by hyperparameters. We tested these methods, using computer-generated and empirical data, coupled with simplified and reasonably realistic plankton food web models, respectively. While all methods were adequate, the simulated example demonstrated that a well-designed hierarchical analysis can result in the most accurate and precise parameter estimates and predictions, due to its ability to combine information across datasets. However, our results also highlighted sensitivity to hyperparameter prior distributions as an important caveat of hierarchical analysis. In the more complex empirical example, hierarchical analysis was able to combine precise identification of parameter values with reasonably good predictive performance, although the ranking of the methods was less straightforward. We conclude that hierarchical Bayesian analysis is a promising tool for identifying key ecosystem-functioning parameters and their variation from empirical datasets.
Directory of Open Access Journals (Sweden)
Jonathan Witztum
Full Text Available The availability of many complete, annotated proteomes enables the systematic study of the relationships between protein conservation and functionality. We explore this question based solely on the presence or absence of protein homologues (a.k.a. conservation profiles. We study 18 metazoans, from two distinct points of view: the human's and the fly's. Using the GOrilla gene ontology (GO analysis tool, we explore functional enrichment of the "universal proteins", those with homologues in all 17 other species, and of the "non-universal proteins". A large number of GO terms are strongly enriched in both human and fly universal proteins. Most of these functions are known to be essential. A smaller number of GO terms, exhibiting markedly different properties, are enriched in both human and fly non-universal proteins. We further explore the non-universal proteins, whose conservation profiles are consistent with the "tree of life" (TOL consistent, as well as the TOL inconsistent proteins. Finally, we applied Quantum Clustering to the conservation profiles of the TOL consistent proteins. Each cluster is strongly associated with one or a small number of specific monophyletic clades in the tree of life. The proteins in many of these clusters exhibit strong functional enrichment associated with the "life style" of the related clades. Most previous approaches for studying function and conservation are "bottom up", studying protein families one by one, and separately assessing the conservation of each. By way of contrast, our approach is "top down". We globally partition the set of all proteins hierarchically, as described above, and then identify protein families enriched within different subdivisions. While supporting previous findings, our approach also provides a tool for discovering novel relations between protein conservation profiles, functionality, and evolutionary history as represented by the tree of life.
Yu, Rongjie; Abdel-Aty, Mohamed
2013-07-01
The Bayesian inference method has been frequently adopted to develop safety performance functions. One advantage of the Bayesian inference is that prior information for the independent variables can be included in the inference procedures. However, there are few studies that discussed how to formulate informative priors for the independent variables and evaluated the effects of incorporating informative priors in developing safety performance functions. This paper addresses this deficiency by introducing four approaches of developing informative priors for the independent variables based on historical data and expert experience. Merits of these informative priors have been tested along with two types of Bayesian hierarchical models (Poisson-gamma and Poisson-lognormal models). Deviance information criterion (DIC), R-square values, and coefficients of variance for the estimations were utilized as evaluation measures to select the best model(s). Comparison across the models indicated that the Poisson-gamma model is superior with a better model fit and it is much more robust with the informative priors. Moreover, the two-stage Bayesian updating informative priors provided the best goodness-of-fit and coefficient estimation accuracies. Furthermore, informative priors for the inverse dispersion parameter have also been introduced and tested. Different types of informative priors' effects on the model estimations and goodness-of-fit have been compared and concluded. Finally, based on the results, recommendations for future research topics and study applications have been made.
Automatic Curve Fitting Based on Radial Basis Functions and a Hierarchical Genetic Algorithm
Directory of Open Access Journals (Sweden)
G. Trejo-Caballero
2015-01-01
Full Text Available Curve fitting is a very challenging problem that arises in a wide variety of scientific and engineering applications. Given a set of data points, possibly noisy, the goal is to build a compact representation of the curve that corresponds to the best estimate of the unknown underlying relationship between two variables. Despite the large number of methods available to tackle this problem, it remains challenging and elusive. In this paper, a new method to tackle such problem using strictly a linear combination of radial basis functions (RBFs is proposed. To be more specific, we divide the parameter search space into linear and nonlinear parameter subspaces. We use a hierarchical genetic algorithm (HGA to minimize a model selection criterion, which allows us to automatically and simultaneously determine the nonlinear parameters and then, by the least-squares method through Singular Value Decomposition method, to compute the linear parameters. The method is fully automatic and does not require subjective parameters, for example, smooth factor or centre locations, to perform the solution. In order to validate the efficacy of our approach, we perform an experimental study with several tests on benchmarks smooth functions. A comparative analysis with two successful methods based on RBF networks has been included.
Significance of input correlations in striatal function.
Directory of Open Access Journals (Sweden)
Man Yi Yim
2011-11-01
Full Text Available The striatum is the main input station of the basal ganglia and is strongly associated with motor and cognitive functions. Anatomical evidence suggests that individual striatal neurons are unlikely to share their inputs from the cortex. Using a biologically realistic large-scale network model of striatum and cortico-striatal projections, we provide a functional interpretation of the special anatomical structure of these projections. Specifically, we show that weak pairwise correlation within the pool of inputs to individual striatal neurons enhances the saliency of signal representation in the striatum. By contrast, correlations among the input pools of different striatal neurons render the signal representation less distinct from background activity. We suggest that for the network architecture of the striatum, there is a preferred cortico-striatal input configuration for optimal signal representation. It is further enhanced by the low-rate asynchronous background activity in striatum, supported by the balance between feedforward and feedback inhibitions in the striatal network. Thus, an appropriate combination of rates and correlations in the striatal input sets the stage for action selection presumably implemented in the basal ganglia.
The correlation function of radio sources
Loan, A J; Lahav, O
1996-01-01
We investigate the large-scale clustering of radio sources in the Green Bank and Parkes-MIT-NRAO 4.85 GHz surveys by measuring the angular two-point correlation function w(\\theta). Excluding contaminated areas, the two surveys together cover 70 per cent of the whole sky. We find both surveys to be reasonably complete above 50 mJy. On the basis of previous studies, the radio sources are galaxies and radio-loud quasars lying at redshifts up to z \\sim 4, with a median redshift z \\sim 1. This provides the opportunity to probe large-scale structures in a volume far larger than that within the reach of present optical and infrared surveys. We detect a clustering signal w(\\theta) correlation function in comoving coordinates \\xi(r_c,z) = ( r_c / r_0 )^{-\\gamma} (1+z)^{\\gamma-(3+\\epsilon)}, where \\gamma = 1.8, and the redshift distribution N(z) of the radio galaxies, we constrain the r_0--\\epsilon parameter space. For `stable clustering' (\\epsilon = 0), we find the correlation length r_0 \\approx 18 Mpc/h, larger than ...
Tian, Qiwei
2016-02-05
Direct synthesis of hierarchical zeolites currently relies on the use of surfactant-based templates to produce mesoporosity by the random stacking of 2D zeolite sheets or the agglomeration of tiny zeolite grains. The benefits of using nonsurfactant polymers as dual-function templates in the fabrication of hierarchical zeolites are demonstrated. First, the minimal intermolecular interactions of nonsurfactant polymers impose little interference on the crystallization of zeolites, favoring the formation of 3D continuous zeolite frameworks with a long-range order. Second, the mutual interpenetration of the polymer and the zeolite networks renders disordered but highly interconnected mesopores in zeolite crystals. These two factors allow for the synthesis of single-crystalline, mesoporous zeolites of varied compositions and framework types. A representative example, hierarchial aluminosilicate (meso-ZSM-5), has been carefully characterized. It has a unique branched fibrous structure, and far outperforms bulk aluminosilicate (ZSM-5) as a catalyst in two model reactions: conversion of methanol to aromatics and catalytic cracking of canola oil. Third, extra functional groups in the polymer template can be utilized to incorporate desired functionalities into hierarchical zeolites. Last and most importantly, polymer-based templates permit heterogeneous nucleation and growth of mesoporous zeolites on existing surfaces, forming a continuous zeolitic layer. In a proof-of-concept experiment, unprecedented core-shell-structured hierarchical zeolites are synthesized by coating mesoporous zeolites on the surfaces of bulk zeolites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New angles on energy correlation functions
Moult, Ian; Necib, Lina; Thaler, Jesse
2016-12-01
Jet substructure observables, designed to identify specific features within jets, play an essential role at the Large Hadron Collider (LHC), both for searching for signals beyond the Standard Model and for testing QCD in extreme phase space regions. In this paper, we systematically study the structure of infrared and collinear safe substructure observables, defining a generalization of the energy correlation functions to probe n-particle correlations within a jet. These generalized correlators provide a flexible basis for constructing new substructure observables optimized for specific purposes. Focusing on three major targets of the jet substructure community — boosted top tagging, boosted W/Z/H tagging, and quark/gluon discrimination — we use power-counting techniques to identify three new series of powerful discriminants: M i , N i , and U i . The M i series is designed for use on groomed jets, providing a novel example of observables with improved discrimination power after the removal of soft radiation. The N i series behave parametrically like the N -subjettiness ratio observables, but are defined without respect to subjet axes, exhibiting improved behavior in the unresolved limit. Finally, the U i series improves quark/gluon discrimination by using higher-point correlators to simultaneously probe multiple emissions within a jet. Taken together, these observables broaden the scope for jet substructure studies at the LHC.
Computing a Function of Correlated Sources
Sefidgaran, Milad
2011-01-01
A receiver wants to compute a function f of two correlated sources X and Y and side information Z. What is the minimum number of bits that needs to be communicated by each transmitter? In this paper, we derive inner and outer bounds to the rate region of this problem which coincide in the cases where f is partially invertible and where the sources are independent given the side information. From the former case we recover the Slepian-Wolf rate region and from the latter case we recover Orlitsky and Roche's single source result.
Van Hove correlation functions for identical fermions
Macke, Wilhelm; Miesenböck, Helga M.; Hingerl, Kurt; Bachlechner, Martina E.
1989-02-01
For a quantum system of identical fermions a partition of the density-density correlation function in its ``self'' and ``distinct'' part is presented. These quantities show different properties than their classical counterparts, e.g., they violate the ``detailed balance'' and are not necessarily real. Nevertheless it can be expected that they will provide a good tool for a better description of the self-motion in many-particle systems and are therefore investigated in second-order perturbation theory of the interparticle potential.
Nuclear correlation functions in lattice QCD
Detmold, William
2012-01-01
We consider the problem of calculating the large number of Wick contractions necessary to compute states with the quantum numbers of many baryons in lattice QCD. We consider a constructive approach and a determinant-based approach and show that these methods allow the required contractions to be performed in computationally manageable amount of time for certain choices of interpolating operators. Examples of correlation functions computed using these techniques are shown for the quantum numbers of the light nuclei, He, Be, C, O and Si.
Meson's Correlation Functions in a Nuclear Medium
Park, Chanyong
2016-01-01
We investigate meson's spectrum, decay constant and form factor in a nuclear medium through holographic two- and three-point correlation functions. To describe a nuclear medium composed of protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show that due to the isospin interaction with a nuclear medium, there exist splittings of the meson's spectrum, decay constant and form factor relying on the isospin charge. In addition, we show that the rho-meson's form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density increases, while the interaction with a longitudinal part of an axial vector meson increases.
Meson's correlation functions in a nuclear medium
Park, Chanyong
2016-09-01
We investigate meson's spectrum, decay constant and form factor in a nuclear medium through holographic two- and three-point correlation functions. To describe a nuclear medium composed of protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show that due to the isospin interaction with a nuclear medium, there exist splittings of the meson's spectrum, decay constant and form factor relying on the isospin charge. In addition, we show that the ρ-meson's form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density increases, while the interaction with a longitudinal part of an axial vector meson increases.
Pair correlation function for spin glasses
Fernández, Julio F.; Alonso, Juan J.
2012-10-01
We extract a pair correlation function (PCF) from probability distributions of the spin-overlap parameter q. The distributions come from Monte Carlo simulations. A measure, w, of the thermal fluctuations of magnetic patterns follows from the PCFs. We also obtain rms deviations (over different system samples) δp away from average probabilities for q. For the linear system sizes L that we have studied, w and δp are independent of L in the Edwards-Anderson model but scale as 1/L and L, respectively, in the Sherrington-Kirkpatrick model.
Detecting correlations among functional-sequence motifs
Pirino, Davide; Rigosa, Jacopo; Ledda, Alice; Ferretti, Luca
2012-06-01
Sequence motifs are words of nucleotides in DNA with biological functions, e.g., gene regulation. Identification of such words proceeds through rejection of Markov models on the expected motif frequency along the genome. Additional biological information can be extracted from the correlation structure among patterns of motif occurrences. In this paper a log-linear multivariate intensity Poisson model is estimated via expectation maximization on a set of motifs along the genome of E. coli K12. The proposed approach allows for excitatory as well as inhibitory interactions among motifs and between motifs and other genomic features like gene occurrences. Our findings confirm previous stylized facts about such types of interactions and shed new light on genome-maintenance functions of some particular motifs. We expect these methods to be applicable to a wider set of genomic features.
Matrix elements from moments of correlation functions
Bouchard, Chris; Orginos, Kostas; Richards, David
2016-01-01
Momentum-space derivatives of matrix elements can be related to their coordinate-space moments through the Fourier transform. We derive these expressions as a function of momentum transfer $Q^2$ for asymptotic in/out states consisting of a single hadron. We calculate corrections to the finite volume moments by studying the spatial dependence of the lattice correlation functions. This method permits the computation of not only the values of matrix elements at momenta accessible on the lattice, but also the momentum-space derivatives, providing {\\it a priori} information about the $Q^2$ dependence of form factors. As a specific application we use the method, at a single lattice spacing and with unphysically heavy quarks, to directly obtain the slope of the isovector form factor at various $Q^2$, whence the isovector charge radius. The method has potential application in the calculation of any hadronic matrix element with momentum transfer, including those relevant to hadronic weak decays.
Matrix elements from moments of correlation functions
Energy Technology Data Exchange (ETDEWEB)
Chang, Chia Cheng [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bouchard, Chris [College of William and Mary, Williamsburg, VA (United States); Orginos, Konstantinos [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-10-01
Momentum-space derivatives of matrix elements can be related to their coordinate-space moments through the Fourier transform. We derive these expressions as a function of momentum transfer Q2 for asymptotic in/out states consisting of a single hadron. We calculate corrections to the finite volume moments by studying the spatial dependence of the lattice correlation functions. This method permits the computation of not only the values of matrix elements at momenta accessible on the lattice, but also the momentum-space derivatives, providing {\\it a priori} information about the Q2 dependence of form factors. As a specific application we use the method, at a single lattice spacing and with unphysically heavy quarks, to directly obtain the slope of the isovector form factor at various Q2, whence the isovector charge radius. The method has potential application in the calculation of any hadronic matrix element with momentum transfer, including those relevant to hadronic weak decays.
Dries, M.; Trager, S. C.; Koopmans, L. V. E.
2016-11-01
Recent studies based on the integrated light of distant galaxies suggest that the initial mass function (IMF) might not be universal. Variations of the IMF with galaxy type and/or formation time may have important consequences for our understanding of galaxy evolution. We have developed a new stellar population synthesis (SPS) code specifically designed to reconstruct the IMF. We implement a novel approach combining regularization with hierarchical Bayesian inference. Within this approach, we use a parametrized IMF prior to regulate a direct inference of the IMF. This direct inference gives more freedom to the IMF and allows the model to deviate from parametrized models when demanded by the data. We use Markov chain Monte Carlo sampling techniques to reconstruct the best parameters for the IMF prior, the age and the metallicity of a single stellar population. We present our code and apply our model to a number of mock single stellar populations with different ages, metallicities and IMFs. When systematic uncertainties are not significant, we are able to reconstruct the input parameters that were used to create the mock populations. Our results show that if systematic uncertainties do play a role, this may introduce a bias on the results. Therefore, it is important to objectively compare different ingredients of SPS models. Through its Bayesian framework, our model is well suited for this.
Directory of Open Access Journals (Sweden)
M. Safish Mary
2012-04-01
Full Text Available Classification of large amount of data is a time consuming process but crucial for analysis and decision making. Radial Basis Function networks are widely used for classification and regression analysis. In this paper, we have studied the performance of RBF neural networks to classify the sales of cars based on the demand, using kernel density estimation algorithm which produces classification accuracy comparable to data classification accuracy provided by support vector machines. In this paper, we have proposed a new instance based data selection method where redundant instances are removed with help of a threshold thus improving the time complexity with improved classification accuracy. The instance based selection of the data set will help reduce the number of clusters formed thereby reduces the number of centers considered for building the RBF network. Further the efficiency of the training is improved by applying a hierarchical clustering technique to reduce the number of clusters formed at every step. The paper explains the algorithm used for classification and for conditioning the data. It also explains the complexities involved in classification of sales data for analysis and decision-making.
New Angles on Energy Correlation Functions
Moult, Ian; Thaler, Jesse
2016-01-01
Jet substructure observables, designed to identify specific features within jets, play an essential role at the Large Hadron Collider (LHC), both for searching for signals beyond the Standard Model and for testing QCD in extreme phase space regions. In this paper, we systematically study the structure of infrared and collinear safe substructure observables, defining a generalization of the energy correlation functions to probe $n$-particle correlations within a jet. These generalized correlators provide a flexible basis for constructing new substructure observables optimized for specific purposes. Focusing on three major targets of the jet substructure community---boosted top tagging, boosted $W/Z/H$ tagging, and quark/gluon discrimination---we use power-counting techniques to identify three new series of powerful discriminants: $M_i$, $N_i$, and $U_i$. The $M_i$ series is designed for use on groomed jets, providing a novel example of observables with improved discrimination power after the removal of soft ra...
Meson's correlation functions in a nuclear medium
Directory of Open Access Journals (Sweden)
Chanyong Park
2016-09-01
Full Text Available We investigate meson's spectrum, decay constant and form factor in a nuclear medium through holographic two- and three-point correlation functions. To describe a nuclear medium composed of protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show that due to the isospin interaction with a nuclear medium, there exist splittings of the meson's spectrum, decay constant and form factor relying on the isospin charge. In addition, we show that the ρ-meson's form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density increases, while the interaction with a longitudinal part of an axial vector meson increases.
Sum rule of the correlation function
Maj, R; Maj, Radoslaw; Mrowczynski, Stanislaw
2004-01-01
We discuss a sum rule satisfied by the correlation function of two particles with small relative momenta. The sum rule, which results from the completeness condition of the quantum states of the two particles, is first derived and then we check how it works in practice. The sum rule is shown to be trivially satisfied by free particle pair, and then there are considered three different systems of interacting particles. We discuss a pair of neutron and proton in the s-wave approximation and the case of the so-called hard spheres with the phase shifts taken into account up to l=4. Finally, the Coulomb system of two charged particles is analyzed.
Directory of Open Access Journals (Sweden)
Flávia Melo Rodrigues
1998-06-01
Full Text Available Geographic structure of genetic distances among local populations within species, based on allozyme data, has usually been evaluated by estimating genetic distances clustered with hierarchical algorithms, such as the unweighted pair-group method by arithmetic averages (UPGMA. The distortion produced in the clustering process is estimated by the cophenetic correlation coefficient. This hierarchical approach, however, can fail to produce an accurate representation of genetic distances among populations in a low dimensional space, especially when continuous (clinal or reticulate patterns of variation exist. In the present study, we analyzed 50 genetic distance matrices from the literature, for animal taxa ranging from Platyhelminthes to Mammalia, in order to determine in which situations the UPGMA is useful to understand patterns of genetic variation among populations. The cophenetic correlation coefficients, derived from UPGMA based on three types of genetic distance coefficients, were correlated with other parameters of each matrix, including number of populations, loci, alleles, maximum geographic distance among populations, relative magnitude of the first eigenvalue of covariance matrix among alleles and logarithm of body size. Most cophenetic correlations were higher than 0.80, and the highest values appeared for Nei's and Rogers' genetic distances. The relationship between cophenetic correlation coefficients and the other parameters analyzed was defined by an "envelope space", forming triangles in which higher values of cophenetic correlations are found for higher values in the parameters, though low values do not necessarily correspond to high cophenetic correlations. We concluded that UPGMA is useful to describe genetic distances based on large distance matrices (both in terms of elevated number of populations or alleles, when dimensionality of the system is low (matrices with large first eigenvalues or when local populations are separated
FUNCTIONAL CORRELATION OF FP AND DC METHODS
Directory of Open Access Journals (Sweden)
Marin Kaluža
2013-02-01
Full Text Available Most of organizations today use information-communication technologies (ICT for building an information system (IS. IS is assembled of hardware, software, network resources, organizational and human resources. In IS development process, complexity is crucial for evaluating quantities of resources needed (time, people, money, equipment. Complexity of an IS can be evaluated and/or measured in different phases of development. There are many methods for measuring complexity, but mostly used and thoroughly described method is Function Point Analysis (FP. The opposite method, Database Complexity (DC, does not measure all the aspects of IS, but it could evaluate system complexity depending on the database complexity. DC method is intended to be used for measuring semantic complexity of the IS database, and can be shown by counting attributes A and foreign keys F. This paper describes a very high correlation between FP and DC methods, and defines a function which can in 95% of accuracy express FP values from measured DC values.
Hierarchical Zeolites with Amine-Functionalized Mesoporous Domains for Carbon Dioxide Capture.
Nguyen, Tien Hoa; Kim, Sungjune; Yoon, Minyoung; Bae, Tae-Hyun
2016-03-08
To prepare materials with high CO2 adsorption, a series of hierarchical LTA zeolites possessing various mesopore spaces that are decorated with alkylamines was designed and synthesized. The highest CO2 uptake capacity was achieved when (3-aminopropyl)trimethoxysilane (APTMS) was grafted onto the hierarchical LTA zeolite having the largest mesopores. Owing to the contributions of both alkylamine groups grafted onto the mesopore surfaces and active sites in the LTA zeolites, the amount of CO2 that can be taken up on these materials is much higher than for conventional aminosilicas such SBA-15 and MCM-41. Furthermore, the adsorbent shows good CO2 uptake capacity and recyclability in dynamic flow conditions.
Energy Technology Data Exchange (ETDEWEB)
Giunta, G.; Belouettar, S. [Centre de Recherche Public Henri Tudor, 29, av. John F. Kennedy, L-1855, Luxembourg-Kirchberg, Luxembourg (Belgium)
2015-03-10
In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigations show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.
Shin, Nana; Vaughn, Brian E.; Kim, Mina; Krzysik, Lisa; Bost, Kelly K.; McBride, Brent; Santos, Antonio J.; Peceguina, Ines; Coppola, Gabrielle
2011-01-01
Achieving consensus on the definition and measurement of social competence (SC) for preschool children has proven difficult in the developmental sciences. We tested a hierarchical model in which SC is assumed to be a second-order latent variable by using longitudinal data (N = 345). We also tested the degree to which peer SC at Time 1 predicted…
Tools to estimate PM2.5 mass have expanded in recent years, and now include: 1) stationary monitor readings, 2) Community Multi-Scale Air Quality (CMAQ) model estimates, 3) Hierarchical Bayesian (HB) estimates from combined stationary monitor readings and CMAQ model output; and, ...
The Bloch-Okounkov correlation functions of negative levels
Cheng, Shun-Jen; Taylor, David G.; Wang, Weiqiang
2007-01-01
Bloch and Okounkov introduced an $n$-point correlation function on the fermionic Fock space and found a closed formula in terms of theta functions. This function affords several distinguished interpretations and in particular can be formulated as correlation functions on irreducible $\\hat{gl}_\\infty$-modules of level one. These correlation functions have been generalized for irreducible integrable modules of $\\hat{gl}_\\infty$ and its classical Lie subalgebras of positive levels by the authors...
Estimation of Correlation Functions by the Random Decrement Technique
DEFF Research Database (Denmark)
Brincker, Rune; Krenk, S.; Jensen, Jakob Laigaard
1993-01-01
The Random Decrement (RDD) Technique is a versatile technique for characterization of random signals in the time domain. In this paper a short review of the theoretical basis is given, and the technique is illustrated by estimating auto-correlation functions and cross-correlation functions on modal...... from smaller estimation errors than the corresponding FFT estimates. However, in the case of estimating cross-correlations functions for stochastic processes with low mutual correlation, the FFT technique might be more accurate....
Estimation of Correlation Functions by the Random Decrement Technique
DEFF Research Database (Denmark)
Brincker, Rune; Krenk, Steen; Jensen, Jakob Laigaard
The Random Decrement (RDD) Technique is a versatile technique for characterization of random signals in the time domain. In this paper a short review of the theoretical basis is given, and the technique is illustrated by estimating auto-correlation functions and cross-correlation functions on modal...... from smaller estimation errors than the corresponding FFT estimates. However, in the case of estimating cross-correlations functions for stochastic processes with low mutual correlation, the FFT technique might be more accurate....
Signatures of charmonium modification in spatial correlation functions
Karsch, F; Mukherjee, Swagato; Petreczky, P
2012-01-01
We study spatial correlation functions of charmonium in 2+1 flavor QCD using an improved staggered formulation. Contrary to the temporal correlation functions the spatial correlation functions exhibit a strong temperature dependence above the QCD transition temperature. Above this temperature they are sensitive to temporal boundary conditions. Both features become significant at a temperature close to 1.5 Tc and suggest corresponding modifications of charmonium spectral functions.
Role of Wigner function in studying quantum correlations
Siyouri, F.; El Baz, M.; Hassouni, Y.
2016-09-01
In this paper, we investigate the possibility to use the Wigner function to detect and quantify quantum correlations in general. We study these quantum correlations for two quasi-Werner states formed with two general bipartite superposed squeezed states. We find then that the Wigner function is not sensitive to all kinds of quantum correlations but it only witnesses entanglement.
Joubert, Daniel P.
2012-03-01
It is shown that the density-functional-theory exchange and correlation functionals satisfy 0=γEhx[ρN]+2Ecγ[ρN]-γEhx[ρN-1γ]-2Ecγ[ρN-1γ]+2∫d3r'[ρN-10(r)-ρN-1γ(r)]v0([ρN];r)+∫d3r'[ρN-10(r)-ρN-1γ(r)]r·∇v0([ρN];r)+∫d3r'ρN(r)r·∇vcγ([ρN];r)-∫d3r'ρN-1γ(r)r·∇vcγ([ρN-1γ];r)-∫d3r'fγ(r)r·∇vhxcγ([ρN];r)-2∫d3r'fγ(r)vhxcγ([ρN];r). In the derivation of this equation the adiabatic connection formulation is used, where the ground-state density of an N-electron system ρN is kept constant independent of the electron-electron coupling strength γ. Here Ehx[ρ] is the Hartree plus exchange energy, Ecγ[ρ] is the correlation energy, vhxcγ[ρ] is the Hartree plus exchange-correlation potential, vc[ρ] is the correlation potential, and v0[ρ]is the Kohn-Sham potential. The charge densities ρN and ρN-1γ are the N- and (N-1)-electron ground-state densities of the same Hamiltonian at electron-electron coupling strength γ. fγ(r)=ρN(r)-ρN-1γ(r) is the Fukui function. This equation can be useful in testing the internal self-consistency of approximations to the exchange and correlation functionals. As an example the identity is tested on the analytical Hooke's atom charge density for some frequently used approximate functionals.
Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U-Ser; Chen, Charn-Ying
2016-01-28
The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm(2). The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes.
Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U-Ser; Chen, Charn-Ying
2016-01-01
The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm2. The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes. PMID:26817585
Brochu, Eric; de Freitas, Nando
2010-01-01
We present a tutorial on Bayesian optimization, a method of finding the maximum of expensive cost functions. Bayesian optimization employs the Bayesian technique of setting a prior over the objective function and combining it with evidence to get a posterior function. This permits a utility-based selection of the next observation to make on the objective function, which must take into account both exploration (sampling from areas of high uncertainty) and exploitation (sampling areas likely to offer improvement over the current best observation). We also present two detailed extensions of Bayesian optimization, with experiments---active user modelling with preferences, and hierarchical reinforcement learning---and a discussion of the pros and cons of Bayesian optimization based on our experiences.
Institute of Scientific and Technical Information of China (English)
诸德超; 邓忠民; 王荇卫
2001-01-01
In the present paper, a series of hierarchical warping functions is developed to analyze the static and dynamic problems of thin walled composite laminated helicopter rotors composed of several layers with single closed cell. This ethod is the development and extension of the traditional constrained warping theory of thin walled metallic beams, which had been proved very successful since 1940s. The warping distribution along the perimeter of each layer is expanded into a series of successively corrective warping functions with the traditional warping function caused by free torsion or free bending as the first term, and is assumed to be piecewise linear along the thickness direction of layers. The governing equations are derived based upon the variational principle of minimum potential energy for static analysis and Rayleigh Quotient for free vibration analysis. Then the hierarchical finite element method is introduced to form a numerical algorithm. Both static and natural vibration problems of sample box beams are analyzed with the present method to show the main mechanical behavior of the thin walled composite laminated helicopter rotor.
Directory of Open Access Journals (Sweden)
Xiaowei Li
2017-01-01
Full Text Available A large number of studies demonstrated that major depressive disorder (MDD is characterized by the alterations in brain functional connections which is also identifiable during the brain’s “resting-state.” But, in the present study, the approach of constructing functional connectivity is often biased by the choice of the threshold. Besides, more attention was paid to the number and length of links in brain networks, and the clustering partitioning of nodes was unclear. Therefore, minimum spanning tree (MST analysis and the hierarchical clustering were first used for the depression disease in this study. Resting-state electroencephalogram (EEG sources were assessed from 15 healthy and 23 major depressive subjects. Then the coherence, MST, and the hierarchical clustering were obtained. In the theta band, coherence analysis showed that the EEG coherence of the MDD patients was significantly higher than that of the healthy controls especially in the left temporal region. The MST results indicated the higher leaf fraction in the depressed group. Compared with the normal group, the major depressive patients lost clustering in frontal regions. Our findings suggested that there was a stronger brain interaction in the MDD group and a left-right functional imbalance in the frontal regions for MDD controls.
Estimating purity in terms of correlation functions
Prosen, T; Znidaric, M; Prosen, Tomaz; Seligman, Thomas H.; Znidaric, Marko
2003-01-01
We prove a rigorous inequality estimating the purity of a reduced density matrix of a composite quantum system in terms of cross-correlation of the same state and an arbitrary product state. Various immediate applications of our result are proposed, in particular concerning Gaussian wave-packet propagation under classically regular dynamics.
Estimation of Correlation Functions by the Random Decrement Technique
DEFF Research Database (Denmark)
Brincker, Rune; Krenk, Steen; Jensen, Jacob Laigaard
1991-01-01
The Random Decrement (RDD) Technique is a versatile technique for characterization of random signals in the time domain. In this paper a short review of the theoretical basis is given, and the technique is illustrated by estimating auto-correlation functions and cross-correlation functions on modal...... suffer from smaller RDD auto-correlation estimation errors than the corresponding FFT estimates. However, in the case of estimating cross-correlation functions for the stochastic processes with low mutual correlation, the FFT tehcnique might be more accurate....
On the correlation function of 1/ f noise
Hooge, F. N.; Bobbert, P. A.
1997-02-01
The correlation function is derived of noise with a 1/ f spectrum between a low-frequency fl and a high-frequency h. The essential term in the correlation function is a - ln t term. The usual interpretation of 1/ f noise as a summation of Lorentzian spectra is discussed. The model of 1/ f noise from a random series of t - {1}/{2} pulses is correct. The - ln t correlation function is also derived from such a series.
Using correlation functions to describe complex multi-phase porous media structures
Karsanina, Marina; Sizonenko, Timofey; Korost, Dmitry; Gerke, Kirill
2017-04-01
Multi-scale flow and transport modelling relies on multi-scale image/property fusion techniques. Previusly we have rigorously addressed binary porous media description and stochastic reconstruction problems. However, numerous porous media have more than two, usually solids and pores, phases, e.g., clays, organic, heavy minerals and such. In this contribution we develop efficient approaches to utilize correlation functions to describe such muti-phase soil and rock structures using large sets of cluster, linear and probability functions, including cross-correlations. The approach is tested on numerous 3D images, which were segmented into 3 and more relevant phases. It is shown that multi-phase correlation functions are potentially a very powerful tool to describe any type of porous media at hand and this study also provides a basis for multi-phase stochastic reconstruction techniques, necessary for multi-phase image fusion to obtain large 3D images of hierarchical porous media based on, for example, macro and micro X-ray tomography scans and FIB/BIB-SEM and SEM. References: 1) Karsanina, M.V., Gerke, K.M., Skvortsova, E.B. and Mallants, D. (2015) Universal spatial correlation functions for describing and reconstructing soil microstructure. PLoS ONE 10(5), e0126515. 2) Gerke, K. M., & Karsanina, M. V. (2015). Improving stochastic reconstructions by weighting correlation functions in an objective function. EPL (Europhysics Letters),111(5), 56002. 3) Gerke, K. M., Karsanina, M. V., Vasilyev, R. V., & Mallants, D. (2014). Improving pattern reconstruction using directional correlation functions. EPL (Europhysics Letters), 106(6), 66002. 4) Gerke, K.M., Karsanina, M. V, Mallants, D., 2015. Universal Stochastic Multiscale Image Fusion: An Example Application for Shale Rock. Sci. Rep. 5, 15880. doi:10.1038/srep15880
He, Fang; Chen, Xi
2016-11-01
The accelerating accumulation and risk concentration of Chinese local financing platforms debts have attracted wide attention throughout the world. Due to the network of financial exposures among institutions, the failure of several platforms or regions of systemic importance will probably trigger systemic risk and destabilize the financial system. However, the complex network of credit relationships in Chinese local financing platforms at the state level remains unknown. To fill this gap, we presented the first complex networks and hierarchical cluster analysis of the credit market of Chinese local financing platforms using the ;bottom up; method from firm-level data. Based on balance-sheet channel, we analyzed the topology and taxonomy by applying the analysis paradigm of subdominant ultra-metric space to an empirical data in 2013. It is remarked that we chose to extract the network of co-financed financing platforms in order to evaluate the effect of risk contagion from platforms to bank system. We used the new credit similarity measure by combining the factor of connectivity and size, to extract minimal spanning trees (MSTs) and hierarchical trees (HTs). We found that: (1) the degree distributions of credit correlation backbone structure of Chinese local financing platforms are fat tailed, and the structure is unstable with respect to targeted failures; (2) the backbone is highly hierarchical, and largely explained by the geographic region; (3) the credit correlation backbone structure based on connectivity and size is significantly heterogeneous; (4) key platforms and regions of systemic importance, and contagion path of systemic risk are obtained, which are contributed to preventing systemic risk and regional risk of Chinese local financing platforms and preserving financial stability under the framework of macro prudential supervision. Our approach of credit similarity measure provides a means of recognizing ;systemically important; institutions and regions
Spontaneous symmetry breaking in correlated wave functions
Kaneko, Ryui; Tocchio, Luca F.; Valentí, Roser; Becca, Federico; Gros, Claudius
2016-03-01
We show that Jastrow-Slater wave functions, in which a density-density Jastrow factor is applied onto an uncorrelated fermionic state, may possess long-range order even when all symmetries are preserved in the wave function. This fact is mainly related to the presence of a sufficiently strong Jastrow term (also including the case of full Gutzwiller projection, suitable for describing spin models). Selected examples are reported, including the spawning of Néel order and dimerization in spin systems, and the stabilization of charge and orbital order in itinerant electronic systems.
Directory of Open Access Journals (Sweden)
Jae S. Ahn
2015-01-01
Full Text Available We introduce higher-order cylindrical shell element based on ESL (equivalent single-layer theory for the analysis of laminated composite shells. The proposed elements are formulated by the dimensional reduction technique from three-dimensional solid to two-dimensional cylindrical surface with plane stress assumption. It allows the first-order shear deformation and considers anisotropic materials due to fiber orientation. The element displacement approximation is established by the integrals of Legendre polynomials with hierarchical concept to ensure the C0-continuity at the interface between adjacent elements as well as C1-continuity at the interface between adjacent layers. For geometry mapping, cylindrical coordinate is adopted to implement the exact mapping of curved shell configuration with a constant curvature with respect to any direction in the plane. The verification and characteristics of the proposed element are investigated through the analyses of three cylindrical shell problems with different shapes, loadings, and boundary conditions.
Lashkari, Danial; Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polina
2012-01-16
Functional MRI studies have uncovered a number of brain areas that demonstrate highly specific functional patterns. In the case of visual object recognition, small, focal regions have been characterized with selectivity for visual categories such as human faces. In this paper, we develop an algorithm that automatically learns patterns of functional specificity from fMRI data in a group of subjects. The method does not require spatial alignment of functional images from different subjects. The algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to learn the patterns of functional specificity shared across the group, which we call functional systems, and estimate the number of these systems. Inference based on our model enables automatic discovery and characterization of dominant and consistent functional systems. We apply the method to data from a visual fMRI study comprised of 69 distinct stimulus images. The discovered system activation profiles correspond to selectivity for a number of image categories such as faces, bodies, and scenes. Among systems found by our method, we identify new areas that are deactivated by face stimuli. In empirical comparisons with previously proposed exploratory methods, our results appear superior in capturing the structure in the space of visual categories of stimuli.
Hierarchical parallelisation of functional renormalisation group calculations - hp-fRG
Rohe, Daniel
2016-10-01
The functional renormalisation group (fRG) has evolved into a versatile tool in condensed matter theory for studying important aspects of correlated electron systems. Practical applications of the method often involve a high numerical effort, motivating the question in how far High Performance Computing (HPC) can leverage the approach. In this work we report on a multi-level parallelisation of the underlying computational machinery and show that this can speed up the code by several orders of magnitude. This in turn can extend the applicability of the method to otherwise inaccessible cases. We exploit three levels of parallelisation: Distributed computing by means of Message Passing (MPI), shared-memory computing using OpenMP, and vectorisation by means of SIMD units (single-instruction-multiple-data). Results are provided for two distinct High Performance Computing (HPC) platforms, namely the IBM-based BlueGene/Q system JUQUEEN and an Intel Sandy-Bridge-based development cluster. We discuss how certain issues and obstacles were overcome in the course of adapting the code. Most importantly, we conclude that this vast improvement can actually be accomplished by introducing only moderate changes to the code, such that this strategy may serve as a guideline for other researcher to likewise improve the efficiency of their codes.
Hierarchical Parallelisation of Functional Renormalisation Group Calculations -- hp-fRG
Rohe, Daniel
2015-01-01
The functional renormalisation group (fRG) has become a powerful and widely used method to study correlated electron systems. This often involves a high numerical effort, motivating the question in how far High Performance Computing (HPC) platforms can leverage the approach. In this work we report on a multi-level parallelisation of the underlying computational machinery and show that this can speed up the code by several orders of magnitude. This in turn can extend the applicability of the method to otherwise inaccessible cases. We exploit three levels of parallelisation: Distributed computing by means of Message Passing (MPI), shared-memory computing using OpenMP, and vectorisation by means of SIMD units (single-instruction-multiple-data). Results are provided for two distinct High Performance Computing (HPC) platforms, namely the IBM-based BlueGene/Q system JUQUEEN and an Intel Sandy-Bridge-based development cluster. We discuss how certain issues and obstacles were overcome in the course of adapting the co...
Directory of Open Access Journals (Sweden)
Marinela eCapanu
2015-05-01
Full Text Available Identifying the small number of rare causal variants contributing to disease has beena major focus of investigation in recent years, but represents a formidable statisticalchallenge due to the rare frequencies with which these variants are observed. In thiscommentary we draw attention to a formal statistical framework, namely hierarchicalmodeling, to combine functional genomic annotations with sequencing data with theobjective of enhancing our ability to identify rare causal variants. Using simulations weshow that in all configurations studied, the hierarchical modeling approach has superiordiscriminatory ability compared to a recently proposed aggregate measure of deleteriousness,the Combined Annotation-Dependent Depletion (CADD score, supportingour premise that aggregate functional genomic measures can more accurately identifycausal variants when used in conjunction with sequencing data through a hierarchicalmodeling approach
Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations.
Neuwald, Andrew F; Altschul, Stephen F
2016-12-01
Over evolutionary time, members of a superfamily of homologous proteins sharing a common structural core diverge into subgroups filling various functional niches. At the sequence level, such divergence appears as correlations that arise from residue patterns distinct to each subgroup. Such a superfamily may be viewed as a population of sequences corresponding to a complex, high-dimensional probability distribution. Here we model this distribution as hierarchical interrelated hidden Markov models (hiHMMs), which describe these sequence correlations implicitly. By characterizing such correlations one may hope to obtain information regarding functionally-relevant properties that have thus far evaded detection. To do so, we infer a hiHMM distribution from sequence data using Bayes' theorem and Markov chain Monte Carlo (MCMC) sampling, which is widely recognized as the most effective approach for characterizing a complex, high dimensional distribution. Other routines then map correlated residue patterns to available structures with a view to hypothesis generation. When applied to N-acetyltransferases, this reveals sequence and structural features indicative of functionally important, yet generally unknown biochemical properties. Even for sets of proteins for which nothing is known beyond unannotated sequences and structures, this can lead to helpful insights. We describe, for example, a putative coenzyme-A-induced-fit substrate binding mechanism mediated by arginine residue switching between salt bridge and π-π stacking interactions. A suite of programs implementing this approach is available (psed.igs.umaryland.edu).
Cumulants and Correlation Functions vs the QCD phase diagram
Bzdak, Adam; Strodthoff, Nils
2016-01-01
In this note we discuss the relation of particle number cumulants and correlation functions related to them. It is argued that measuring couplings of the genuine correlation functions could provide cleaner information on possible non-trivial dynamics in heavy-ion collisions. We extract integrated multi-particle correlation functions from the presently available experimental data on proton cumulants. We find that the STAR data contain significant four-particle correlations, at least at the lower energies, with indication of changing dynamics in central collisions. We also find that these correlations are rather long-ranged in rapidity. Finally based on the signs of genuine correlation functions we provide exclusion plots for the QCD phase diagram.
Estimation of Correlation Functions by the Random Decrement Technique
DEFF Research Database (Denmark)
Brincker, Rune; Krenk, Steen; Jensen, Jacob Laigaard
1991-01-01
The Random Decrement (RDD) Technique is a versatile technique for characterization of random signals in the time domain. In this paper a short review of the theoretical basis is given, and the technique is illustrated by estimating auto-correlation functions and cross-correlation functions on mod...
Correlation functions in conformal Toda field theory II
Fateev, V A
2009-01-01
This is the second part of the paper 0709.3806v2. Here we show that three-point correlation function with one semi-degenerate field in Toda field theory as well as four-point correlation function with one completely degenerate and one semi-degenerate field can be represented by the finite dimensional integrals.
Correlation functions for a periodic box-ball system
Energy Technology Data Exchange (ETDEWEB)
Mada, Jun [College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba 275-8576 (Japan); Tokihiro, Tetsuji [Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Tokyo 153-8914 (Japan)
2010-04-02
We investigate correlation functions in a periodic box-ball system. For the two-point functions of short distance, we give explicit formulae obtained by combinatorial methods. We give expressions for general N-point functions in terms of ultradiscrete theta functions.
The Flux-Flux Correlation Function for Anharmonic Barriers
Goussev, Arseni; Waalkens, Holger; Wiggins, Stephen
2010-01-01
The flux-flux correlation function formalism is a standard and widely used approach for the computation of reaction rates. In this paper we introduce a method to compute the classical and quantum flux-flux correlation functions for anharmonic barriers essentially analytically through the use of the classical and quantum normal forms. In the quantum case we show that the quantum normal form reduces the computation of the flux-flux correlation function to that of an effective one dimensional anharmonic barrier. The example of the computation of the quantum flux-flux correlation function for a fourth order anharmonic barrier is worked out in detail, and we present an analytical expression for the quantum mechanical microcanonical flux-flux correlation function. We then give a discussion of the short-time and harmonic limits.
Landau gauge Yang-Mills correlation functions
Cyrol, Anton K.; Fister, Leonard; Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils
2016-09-01
We investigate Landau gauge S U (3 ) Yang-Mills theory in a systematic vertex expansion scheme for the effective action with the functional renormalization group. Particular focus is put on the dynamical creation of the gluon mass gap at nonperturbative momenta and the consistent treatment of quadratic divergences. The nonperturbative ghost and transverse gluon propagators as well as the momentum-dependent ghost-gluon, three-gluon and four-gluon vertices are calculated self-consistently with the classical action as the only input. The apparent convergence of the expansion scheme is discussed and within the errors, our numerical results are in quantitative agreement with available lattice results.
Generalized -deformed correlation functions as spectral functions of hyperbolic geometry
Bonora, L.; Bytsenko, A. A.; Guimarães, M. E. X.
2014-08-01
We analyze the role of vertex operator algebra and 2d amplitudes from the point of view of the representation theory of infinite-dimensional Lie algebras, MacMahon and Ruelle functions. By definition p-dimensional MacMahon function, with , is the generating function of p-dimensional partitions of integers. These functions can be represented as amplitudes of a two-dimensional c = 1 CFT, and, as such, they can be generalized to . With some abuse of language we call the latter amplitudes generalized MacMahon functions. In this paper we show that generalized p-dimensional MacMahon functions can be rewritten in terms of Ruelle spectral functions, whose spectrum is encoded in the Patterson-Selberg function of three-dimensional hyperbolic geometry.
Li, Yinhui; Zhang, Na; Chen, Jianxin; Li, Ruijuan; Li, Liang; Li, Kunyu
2016-02-01
The α-Fe2O3/TiO2 bi-functional composites with hierarchical and hollow structures are fabricated through a hydrothermal route. The adsorption performance and photocatalytic activity of the composites towards Pb2+ are investigated in this work. Different adsorption kinetics models and equilibrium models are used to explore the adsorption behavior of hierarchical α-Fe2O3/TiO2 hollow spheres. Experimental data show that adsorption kinetics of the hierarchical α-Fe2O3/TiO2 hollow spheres can be fitted well by the pseudo-second-order model, while the isothermal data can be perfectly described by the Langmuir adsorption model. The maximum adsorption capacity of the hierarchical α-Fe2O3/TiO2 hollow spheres is 32.36 mg g-1. Moreover, the hierarchical α-Fe2O3/TiO2 hollow spheres possess photocatalytic oxidation character under simulated solar light irradiation. The results demonstrate that the hierarchical α-Fe2O3/TiO2 hollow spheres, as effective and cheap materials, can be applied to the removal of heavy metal ions from wastewater.
Dahdah, Marie N; Hofmann, Melissa; Pretz, Christopher; An, Viktoriya; Barnes, Sunni A; Bennett, Monica; Dreer, Laura E; Bergquist, Thomas; Shafi, Shahid
To examine differences in patient outcomes across Traumatic Brain Injury Model Systems (TBIMS) rehabilitation centers and factors that influence these differences using hierarchical linear modeling (HLM). Sixteen TBIMS centers. A total of 2056 individuals 16 years or older with moderate to severe traumatic brain injury (TBI) who received inpatient rehabilitation. Multicenter observational cohort study using HLM to analyze prospectively collected data. Functional Independence Measure and Disability Rating Scale total scores at discharge and 1 year post-TBI. Duration of posttraumatic amnesia (PTA) demonstrated a significant inverse relationship with functional outcomes. However, the magnitude of this relationship (change in functional status for each additional day in PTA) varied among centers. Functional status at discharge from rehabilitation and at 1 year post-TBI could be predicted using the slope and intercept of each TBIMS center for the duration of PTA, by comparing it against the average slope and intercept. HLM demonstrated center effect due to variability in the relationship between PTA and functional outcomes of patients. This variability is not accounted for in traditional linear regression modeling. Future studies examining variations in patient outcomes between centers should utilize HLM to measure the impact of additional factors that influence patient rehabilitation functional outcomes.
Raposo, Ana; Mendes, Mafalda; Marques, J Frederico
2012-01-16
Research on the processing of objects at different hierarchical levels has suggested that understanding superordinate concepts (e.g. fruit), relative to basic level concepts (e.g. apple), requires greater semantic control demands. Yet, it is unclear which factors underlie this difference in executive processing. We built on previous research showing that superordinate concepts have less shared features among their members and therefore may involve higher semantic control requirements. To test this hypothesis, we developed an fMRI study in which we orthogonally manipulated feature sharedness (more shared vs. less shared) and concept level (superordinate vs. basic) in a sentence verification task. Sentences involving less shared features, relative to more shared features, significantly engaged the L lateral PFC. Importantly, sentences that included superordinate concepts, relative to those with basic level concepts, also revealed a stronger response in L lateral PFC, along with posterior temporal gyrus activation. There was also a significant interaction between feature sharedness and concept level in several PFC regions and L posterior temporal areas. The results suggest that relative to basic level concepts, processing superordinate concepts requires extra semantic control in L lateral PFC to coordinate information that is less shared by other members of the category level. These findings demonstrate that feature sharedness impacts the neural basis of semantic knowledge, and is a critical dimension in the processing of superordinate concepts.
Self-calibrated correlation imaging with k-space variant correlation functions.
Li, Yu; Edalati, Masoud; Du, Xingfu; Wang, Hui; Cao, Jie J
2017-07-07
Correlation imaging is a previously developed high-speed MRI framework that converts parallel imaging reconstruction into the estimate of correlation functions. The presented work aims to demonstrate this framework can provide a speed gain over parallel imaging by estimating k-space variant correlation functions. Because of Fourier encoding with gradients, outer k-space data contain higher spatial-frequency image components arising primarily from tissue boundaries. As a result of tissue-boundary sparsity in the human anatomy, neighboring k-space data correlation varies from the central to the outer k-space. By estimating k-space variant correlation functions with an iterative self-calibration method, correlation imaging can benefit from neighboring k-space data correlation associated with both coil sensitivity encoding and tissue-boundary sparsity, thereby providing a speed gain over parallel imaging that relies only on coil sensitivity encoding. This new approach is investigated in brain imaging and free-breathing neonatal cardiac imaging. Correlation imaging performs better than existing parallel imaging techniques in simulated brain imaging acceleration experiments. The higher speed enables real-time data acquisition for neonatal cardiac imaging in which physiological motion is fast and non-periodic. With k-space variant correlation functions, correlation imaging gives a higher speed than parallel imaging and offers the potential to image physiological motion in real-time. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
42 CFR 476.86 - Correlation of Title XI functions with Title XVIII functions.
2010-10-01
... 42 Public Health 4 2010-10-01 2010-10-01 false Correlation of Title XI functions with Title XVIII functions. 476.86 Section 476.86 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF...) Qio Review Functions § 476.86 Correlation of Title XI functions with Title XVIII functions. (a...
Fluctuation, time-correlation function and geometric Phase
Pati, A K
1999-01-01
We establish a fluctuation-correlation theorem by relating the quantum fluctuations in the generator of the parameter change to the time integral of the quantum correlation function between the projection operator and force operator of the ``fast'' system. By taking a cue from linear response theory we relate the quantum fluctuation in the generator to the generalised susceptibility. Relation between the open-path geometric phase, diagonal elements of the quantum metric tensor and the force-force correlation function is provided and the classical limit of the fluctuation-correlation theorem is also discussed.
Quantum Dynamics in Classical Time Evolution of Correlation Functions
Wetterich, C
1997-01-01
The time-dependence of correlation functions under the influence of cla= ssical equations of motion is described by an exact evolution equation. For conservative systems thermodynamic equilibrium is a fixed point of these equations. We show that this fixed point is not universally stable, since infinitely many conserved correlation functions obstruct the approach to equilibrium. Equilibrium can therefore be reached at most for suitably av= eraged quantities or for subsystems, similar to quantum statistics. The classica= l time evolution of correlation functions shows many dynamical features of quant= um mechanics.
Bikondoa, Oier
2017-04-01
Multi-time correlation functions are especially well suited to study non-equilibrium processes. In particular, two-time correlation functions are widely used in X-ray photon correlation experiments on systems out of equilibrium. One-time correlations are often extracted from two-time correlation functions at different sample ages. However, this way of analysing two-time correlation functions is not unique. Here, two methods to analyse two-time correlation functions are scrutinized, and three illustrative examples are used to discuss the implications for the evaluation of the correlation times and functional shape of the correlations.
Exact Correlation Functions in SU(2) N=2 Superconformal QCD
Baggio, Marco; Niarchos, Vasilis; Papadodimas, Kyriakos
2014-01-01
We report an exact solution of 2- and 3-point functions of chiral primary fields in SU(2) N = 2 super-Yang-Mills theory coupled to four hypermultiplets. It is shown that these correlation functions are nontrivial functions of the gauge coupling, obeying differential equations which take the form of
Exact correlation functions in SU(2) N=2 superconformal QCD
Baggio, Marco; Niarchos, Vasilis; Papadodimas, Kyriakos
2014-01-01
We report an exact solution of 2- and 3-point functions of chiral primary fields in SU(2) N=2 super-Yang-Mills theory coupled to four hypermultiplets. It is shown that these correlation functions are non-trivial functions of the gauge coupling, obeying differential equations which take the form of t
Energy momentum conservation effects on two-particle correlation functions
Bock, Nicolas
2011-01-01
Two particle correlations are used to extract information about the characteristic size of the system in proton-proton and heavy ion collisions. The size of the system can be extracted from the Bose-Einstein quantum mechanical effect for identical particles. However there are also long range correlations that shift the baseline of the correlation function from the expected flat behavior. A possible source of these correlations is the conservation of energy and momentum, especially for small systems, where the energy available for particle production is limited. A new technique, first used by the STAR collaboration, of quantifying these long range correlations using energy-momentum conservation considerations is presented in this talk. Using Monte Carlo simulations of proton-proton collisions at 900 GeV, it is shown that the baseline of the two particle correlation function can be described using this technique.
Correlation of Thyroid Functions with Severity and Outcome of ...
African Journals Online (AJOL)
Correlation of Thyroid Functions with Severity and Outcome of Pregnancy. ... Journal Home > Vol 3, No 1 (2013) > ... Aim: The present study was planned to study thyroid hormones in mild and severe preeclamptic women and normotensive ...
On the Statistics of Baryon Correlation Functions in Lattice QCD
Wagman, Michael L
2016-01-01
A systematic analysis of the structure of single-baryon correlation functions calculated with lattice QCD is performed, with a particular focus on characterizing the structure of the noise associated with quantum fluctuations. The signal-to-noise problem in these correlation functions is shown, as long suspected, to result from a sign problem. The log-magnitude and complex phase are found to be approximately described by normal and wrapped normal distributions respectively. Properties of circular statistics are used to understand the emergence of a late time noise region where standard energy measurements are unreliable. Power-law tails in the distribution of baryon correlation functions, associated with stable distributions and "Levy flights", are found to play a central role in their time evolution. A new method of analyzing correlation functions is considered for which the signal-to-noise ratio of energy measurements is constant at late times, rather than degrading exponentially; this permits a reliable ex...
Universality of Correlation Functions in Random Matrix Models of QCD
Jackson, A D; Verbaarschot, J J M
1997-01-01
We demonstrate the universality of the spectral correlation functions of a QCD inspired random matrix model that consists of a random part having the chiral structure of the QCD Dirac operator and a deterministic part which describes a schematic temperature dependence. We calculate the correlation functions analytically using the technique of Itzykson-Zuber integrals for arbitrary complex super-matrices. An alternative exact calculation for arbitrary matrix size is given for the special case of zero temperature, and we reproduce the well-known Laguerre kernel. At finite temperature, the microscopic limit of the correlation functions are calculated in the saddle point approximation. The main result of this paper is that the microscopic universality of correlation functions is maintained even though unitary invariance is broken by the addition of a deterministic matrix to the ensemble.
Signal/noise enhancement strategies for stochastically estimated correlation functions
Detmold, William
2014-01-01
We develop strategies for enhancing the signal/noise ratio for stochastically sampled correlation functions. The techniques are general and offer a wide range of applicability. We demonstrate the potential of the approach with a generic two-state system, and then explore the practical applicability of the method for single hadron correlators in lattice QCD.
Low-mode averaging for baryon correlation functions
Giusti, Leonardo; Giusti, Leonardo; Necco, Silvia
2005-01-01
The low-mode averaging technique is a powerful tool for reducing large fluctuations in correlation functions due to low-mode eigenvalues of the Dirac operator. In this work we propose a generalization to baryons and test our method on two-point correlation functions of left-handed nucleons, computed with quenched Neuberger fermions on a lattice with extension L=1.5 fm. We show that the statistical fluctuations can be reduced and the baryon signal significantly improved.
Generating function of correlators in the $sl_2$ Gaudin model
Sklyanin, E K
1997-01-01
For the sl_2 Gaudin model (degenerated quantum integrable XXX spin chain) an exponential generating function of correlators is calculated explicitely. The calculation relies on the Gauss decomposition for the SL_2 loop group. From the generating function a new explicit expression for the correlators is derived from which the determinant formulas for the norms of Bethe eigenfunctions due to Richardson and Gaudin are obtained.
Characterization of maximally random jammed sphere packings: Voronoi correlation functions.
Klatt, Michael A; Torquato, Salvatore
2014-11-01
We characterize the structure of maximally random jammed (MRJ) sphere packings by computing the Minkowski functionals (volume, surface area, and integrated mean curvature) of their associated Voronoi cells. The probability distribution functions of these functionals of Voronoi cells in MRJ sphere packings are qualitatively similar to those of an equilibrium hard-sphere liquid and partly even to the uncorrelated Poisson point process, implying that such local statistics are relatively structurally insensitive. This is not surprising because the Minkowski functionals of a single Voronoi cell incorporate only local information and are insensitive to global structural information. To improve upon this, we introduce descriptors that incorporate nonlocal information via the correlation functions of the Minkowski functionals of two cells at a given distance as well as certain cell-cell probability density functions. We evaluate these higher-order functions for our MRJ packings as well as equilibrium hard spheres and the Poisson point process. It is shown that these Minkowski correlation and density functions contain visibly more information than the corresponding standard pair-correlation functions. We find strong anticorrelations in the Voronoi volumes for the hyperuniform MRJ packings, consistent with previous findings for other pair correlations [A. Donev et al., Phys. Rev. Lett. 95, 090604 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.090604], indicating that large-scale volume fluctuations are suppressed by accompanying large Voronoi cells with small cells, and vice versa. In contrast to the aforementioned local Voronoi statistics, the correlation functions of the Voronoi cells qualitatively distinguish the structure of MRJ sphere packings (prototypical glasses) from that of not only the Poisson point process but also the correlated equilibrium hard-sphere liquids. Moreover, while we did not find any perfect icosahedra (the locally densest possible structure in which a
Efficient quantum algorithm for computing n-time correlation functions.
Pedernales, J S; Di Candia, R; Egusquiza, I L; Casanova, J; Solano, E
2014-07-11
We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.
Measurement of pd , pt , and dd correlation functions
Energy Technology Data Exchange (ETDEWEB)
Vlasov, A.V.; Degtyarenko, P.V.; Doroshkevich, E.A.; Kosov, M.V.; Leksin, G.A.; Stavinskii, A.V.; Khasanov, F.M.; Shvartsman, B.B. (Institute of Theoretical and Experimental Physics, State Commission on Use of Atomic Energy (SU))
1989-09-01
Binary correlation functions have been measured for cumulative baryons emitted from nuclei of C, Ti, and Pb bombarded by 7.5-GeV/{ital c} protons. Secondary particles (protons, deuterons, and tritium nuclei) were detected at polar angles close to 90{degree}. It was found that for a fixed value of the product of the momenta of two particles the correlation function does not depend on what kind of particles make up the pair. The data are consistent with the idea that the sizes of the sources determined from correlations of different particles are the same.
Two-point correlation functions in inhomogeneous and anisotropic cosmologies
Marcori, Oton H.; Pereira, Thiago S.
2017-02-01
Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation function in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N-point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.
Institute of Scientific and Technical Information of China (English)
ZHU Ping; CHEN Shi-Bo; MEI Dong-Cheng
2006-01-01
We investigate the intensity correlation function C(s) and its associated relaxation time Tc for a saturation model of single-mode laser with correlated noises.The expressions of C(s) and Tc are derived by means of the projection operator method,and effects of correlations between an additive noise and a multiplicative noise are discussed by numerical calculation.Based on the calculated results,it is found that the correlation strength λ between the additive noise and the multiplicative noise can enhance the fluctuation decay of the laser intensity.
Correlation Functions of the APM Clusters of Galaxies
Park, C; Park, Changbom; Lee, Sungho
1998-01-01
We have found that the two-point correlation function of the APM clusters of galaxies has an amplitude much higher than that claimed by the APM group. As the richness limit increases from R = 53 to 80, the correlation length increases from 17.5 to 28.9 h^{-1}Mpc. This indicates that the richness dependence of the APM cluster correlation function is also much stronger than what the APM group has reported. The richness dependence can be represented by a fitting formula r_0 = 0.53 d_c + 0.01, which is consistent with the Bahcall's formula r_0 = 0.4 d_c. We have tried to find the possible reason for discrepancies. However, our estimates for the APM cluster correlation function are found to be robust against variation of the method of calculation and of sample definition.
Correlation function as a measure of the structure
Buryak, O E
1995-01-01
Geometrical model of structure of the universe is examined to obtain analytical expression for the two points nonlinear correlation function. According to the model the objects (galaxies) are concentrated into two types of structure elements - filaments and sheets. We considered the filaments ( similar to galaxy filaments ) simply as straight lines and the sheets ( similar to superclusters of galaxies ) simply as planes. The homogeneously distributed objects are also taken into consideration. The spatial distribution of lines, planes and points is uncorrelated. The nonlinear correlation function depends on four parameters and is similar to the observed and simulated ones for different samples. It describes quite well the correlation of galaxies, clusters of galaxies and dark matter distribution. Possible interpretation of the parameters of nonlinear correlation function is discussed.
Design of exchange-correlation functionals through the correlation factor approach
Energy Technology Data Exchange (ETDEWEB)
Pavlíková Přecechtělová, Jana, E-mail: j.precechtelova@gmail.com, E-mail: Matthias.Ernzerhof@UMontreal.ca [Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7 (Canada); Institut für Chemie, Theoretische Chemie / Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany); Bahmann, Hilke; Kaupp, Martin [Institut für Chemie, Theoretische Chemie / Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany); Ernzerhof, Matthias, E-mail: j.precechtelova@gmail.com, E-mail: Matthias.Ernzerhof@UMontreal.ca [Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7 (Canada)
2015-10-14
The correlation factor model is developed in which the spherically averaged exchange-correlation hole of Kohn-Sham theory is factorized into an exchange hole model and a correlation factor. The exchange hole model reproduces the exact exchange energy per particle. The correlation factor is constructed in such a manner that the exchange-correlation energy correctly reduces to exact exchange in the high density and rapidly varying limits. Four different correlation factor models are presented which satisfy varying sets of physical constraints. Three models are free from empirical adjustments to experimental data, while one correlation factor model draws on one empirical parameter. The correlation factor models are derived in detail and the resulting exchange-correlation holes are analyzed. Furthermore, the exchange-correlation energies obtained from the correlation factor models are employed to calculate total energies, atomization energies, and barrier heights. It is shown that accurate, non-empirical functionals can be constructed building on exact exchange. Avenues for further improvements are outlined as well.
Modeling fractal structure of city-size distributions using correlation functions.
Directory of Open Access Journals (Sweden)
Yanguang Chen
Full Text Available Zipf's law is one the most conspicuous empirical facts for cities, however, there is no convincing explanation for the scaling relation between rank and size and its scaling exponent. Using the idea from general fractals and scaling, I propose a dual competition hypothesis of city development to explain the value intervals and the special value, 1, of the power exponent. Zipf's law and Pareto's law can be mathematically transformed into one another, but represent different processes of urban evolution, respectively. Based on the Pareto distribution, a frequency correlation function can be constructed. By scaling analysis and multifractals spectrum, the parameter interval of Pareto exponent is derived as (0.5, 1]; Based on the Zipf distribution, a size correlation function can be built, and it is opposite to the first one. By the second correlation function and multifractals notion, the Pareto exponent interval is derived as [1, 2. Thus the process of urban evolution falls into two effects: one is the Pareto effect indicating city number increase (external complexity, and the other the Zipf effect indicating city size growth (internal complexity. Because of struggle of the two effects, the scaling exponent varies from 0.5 to 2; but if the two effects reach equilibrium with each other, the scaling exponent approaches 1. A series of mathematical experiments on hierarchical correlation are employed to verify the models and a conclusion can be drawn that if cities in a given region follow Zipf's law, the frequency and size correlations will follow the scaling law. This theory can be generalized to interpret the inverse power-law distributions in various fields of physical and social sciences.
Modeling fractal structure of city-size distributions using correlation functions.
Chen, Yanguang
2011-01-01
Zipf's law is one the most conspicuous empirical facts for cities, however, there is no convincing explanation for the scaling relation between rank and size and its scaling exponent. Using the idea from general fractals and scaling, I propose a dual competition hypothesis of city development to explain the value intervals and the special value, 1, of the power exponent. Zipf's law and Pareto's law can be mathematically transformed into one another, but represent different processes of urban evolution, respectively. Based on the Pareto distribution, a frequency correlation function can be constructed. By scaling analysis and multifractals spectrum, the parameter interval of Pareto exponent is derived as (0.5, 1]; Based on the Zipf distribution, a size correlation function can be built, and it is opposite to the first one. By the second correlation function and multifractals notion, the Pareto exponent interval is derived as [1, 2). Thus the process of urban evolution falls into two effects: one is the Pareto effect indicating city number increase (external complexity), and the other the Zipf effect indicating city size growth (internal complexity). Because of struggle of the two effects, the scaling exponent varies from 0.5 to 2; but if the two effects reach equilibrium with each other, the scaling exponent approaches 1. A series of mathematical experiments on hierarchical correlation are employed to verify the models and a conclusion can be drawn that if cities in a given region follow Zipf's law, the frequency and size correlations will follow the scaling law. This theory can be generalized to interpret the inverse power-law distributions in various fields of physical and social sciences.
Raykov, Tenko; Marcoulides, George A.
2015-01-01
A latent variable modeling procedure that can be used to evaluate intraclass correlation coefficients in two-level settings with discrete response variables is discussed. The approach is readily applied when the purpose is to furnish confidence intervals at prespecified confidence levels for these coefficients in setups with binary or ordinal…
Vyboishchikov, Sergei F
2017-09-03
We propose a simple method of calculating the electron correlation energy density e_c(r) and the correlation potential V_c(r) from second-order Møller-Plesset amplitudes and its generalization for the case of a Configuration Interaction wavefunction, based on Nesbet's theorem. The correlation energy density obtained by this method for free and spherically confined Be and He atoms was employed to fit a local analytical density functional based on Wigner's functional. The functional is capable to reproduce a strong increase of the correlation energy with decreasing the confined radius for the Be atom. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Universal spatial correlation functions for describing and reconstructing soil microstructure.
Karsanina, Marina V; Gerke, Kirill M; Skvortsova, Elena B; Mallants, Dirk
2015-01-01
Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification
Determination of transfer function of COPE correlation interferometer instrument
Twitty, J.; Kindle, E. C.
1976-01-01
The comparison of theoretical and instrument response functions and its use as a procedure for determining the transfer function of the COPE correlation interferometer are summarized. Data show qualitative agreement can be obtained when discrepancies between theory and instrument are investigated and instrument components are analyzed in detail. Data were obtained using a set of calibration data and computer algorithms.
Correlation Function and Simplified TBA Equations for XXZ Chain
Directory of Open Access Journals (Sweden)
Minoru Takahashi
2011-01-01
Full Text Available The calculation of the correlation functions of Bethe ansatz solvable models is very difficult problem. Among these solvable models spin 1/2 XXX chain has been investigated for a long time. Even for this model only the nearest neighbor and the second neighbor correlations were known. In 1990's multiple integral formula for the general correlations is derived. But the integration of this formula is also very difficult problem. Recently these integrals are decomposed to products of one dimensional integrals and at zero temperature, zero magnetic field and isotropic case, correlation functions are expressed by log 2 and Riemann's zeta functions with odd integer argument ς(3,ς(5,ς(7,.... We can calculate density sub-matrix of successive seven sites. Entanglement entropy of seven sites is calculated. These methods can be extended to XXZ chain up to n=4. Correlation functions are expressed by the generalized zeta functions. Several years ago I derived new thermodynamic Bethe ansatz equation for XXZ chain. This is quite different with Yang-Yang type TBA equations and contains only one unknown function. This equation is very useful to get the high temperature expansion. In this paper we get the analytic solution of this equation at Δ=0.
External Source Method for Kubo-Transformed Quantum Correlation Functions
Horikoshi, Atsushi
2014-01-01
We revisit the external source method for Kubo-transformed quantum correlation functions recently proposed by Krishna and Voth. We derive an exact formula and show that the Krishna-Voth formula can be derived as an approximation of our formula. Some properties of this approximation are clarified through a model calculation of the position autocorrelation function for a one-dimensional harmonic oscillator. A key observation is that the Krishna-Voth correlation function has a term which behaves as the secular term in perturbation theory.
Steiner, Christian; Gebhardt, Julian; Ammon, Maximilian; Yang, Zechao; Heidenreich, Alexander; Hammer, Natalie; Görling, Andreas; Kivala, Milan; Maier, Sabine
2017-03-01
The fabrication of nanostructures in a bottom-up approach from specific molecular precursors offers the opportunity to create tailored materials for applications in nanoelectronics. However, the formation of defect-free two-dimensional (2D) covalent networks remains a challenge, which makes it difficult to unveil their electronic structure. Here we report on the hierarchical on-surface synthesis of nearly defect-free 2D covalent architectures with carbonyl-functionalized pores on Au(111), which is investigated by low-temperature scanning tunnelling microscopy in combination with density functional theory calculations. The carbonyl-bridged triphenylamine precursors form six-membered macrocycles and one-dimensional (1D) chains as intermediates in an Ullmann-type coupling reaction that are subsequently interlinked to 2D networks. The electronic band gap is narrowed when going from the monomer to 1D and 2D surface-confined π-conjugated organic polymers comprising the same building block. The significant drop of the electronic gap from the monomer to the polymer confirms an efficient conjugation along the triphenylamine units within the nanostructures.
A Partitioned Correlation Function Interaction approach for describing electron correlation in atoms
Verdebout, S; Jönsson, P; Gaigalas, G; Fischer, C Froese; Godefroid, M
2013-01-01
Traditional multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis (OB). For atoms with complicated shell structures, a large OB is needed to saturate all the electron correlation effects. The large OB leads to massive configuration state function (CSF) expansions that are difficult to handle. We show that it is possible to relax the orthonormality restriction on the OB and break down the originally large calculations to a set of smaller ones that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The mixing coefficients of the PCFs are fixed from a small generalized eigenvalue problem. The required matrices are computed using a biorthonormal transformation technique. The new method, called partitioned c...
Li, Peng; Zang, Weidong; Li, Yuhua; Xu, Feng; Wang, Jigang; Shi, Tieliu
2011-01-01
Protein interactions are involved in important cellular functions and biological processes that are the fundamentals of all life activities. With improvements in experimental techniques and progress in research, the overall protein interaction network frameworks of several model organisms have been created through data collection and integration. However, most of the networks processed only show simple relationships without boundary, weight or direction, which do not truly reflect the biological reality. In vivo, different types of protein interactions, such as the assembly of protein complexes or phosphorylation, often have their specific functions and qualifications. Ignorance of these features will bring much bias to the network analysis and application. Therefore, we annotate the Arabidopsis proteins in the AtPID database with further information (e.g. functional annotation, subcellular localization, tissue-specific expression, phosphorylation information, SNP phenotype and mutant phenotype, etc.) and interaction qualifications (e.g. transcriptional regulation, complex assembly, functional collaboration, etc.) via further literature text mining and integration of other resources. Meanwhile, the related information is vividly displayed to users through a comprehensive and newly developed display and analytical tools. The system allows the construction of tissue-specific interaction networks with display of canonical pathways. The latest updated AtPID database is available at http://www.megabionet.org/atpid/.
Cowell, Rosemary A.; Bussey, Timothy J.; Saksida, Lisa M.
2010-01-01
We examined the organization and function of the ventral object processing pathway. The prevailing theoretical approach in this field holds that the ventral object processing stream has a modular organization, in which visual perception is carried out in posterior regions and visual memory is carried out, independently, in the anterior temporal…
Correlation function of four spins in the percolation model
Dotsenko, Vladimir S.
2016-10-01
By using the Coulomb gas technics we calculate the four-spin correlation function in the percolation q → 1 limit of the Potts model. It is known that the four-point functions define the actual fusion rules of a particular model. In this respect, we find that fusion of two spins, of dimension Δσ =5/96, produce a new channel, in the 4-point function, which is due to the operator with dimension Δ = 5 / 8.
Li, Xin; Yu, Jiaguo; Jaroniec, Mietek
2016-05-01
As a green and sustainable technology, semiconductor-based heterogeneous photocatalysis has received much attention in the last few decades because it has potential to solve both energy and environmental problems. To achieve efficient photocatalysts, various hierarchical semiconductors have been designed and fabricated at the micro/nanometer scale in recent years. This review presents a critical appraisal of fabrication methods, growth mechanisms and applications of advanced hierarchical photocatalysts. Especially, the different synthesis strategies such as two-step templating, in situ template-sacrificial dissolution, self-templating method, in situ template-free assembly, chemically induced self-transformation and post-synthesis treatment are highlighted. Finally, some important applications including photocatalytic degradation of pollutants, photocatalytic H2 production and photocatalytic CO2 reduction are reviewed. A thorough assessment of the progress made in photocatalysis may open new opportunities in designing highly effective hierarchical photocatalysts for advanced applications ranging from thermal catalysis, separation and purification processes to solar cells.
Functional and hierarchical interactions among zebrafish vox/vent homeobox genes.
Gilardelli, Claudio N; Pozzoli, Ombretta; Sordino, Paolo; Matassi, Giorgio; Cotelli, Franco
2004-07-01
The vertebrate Vox/Vent family of transcription factors plays a crucial role in the establishment of the dorsoventral (DV) axis, by repressing organizer genes such as bozozok/dharma, goosecoid, and chordino. In Danio rerio (zebrafish), members of the vox/vent gene family (vox/vega1, vent/vega2, and ved) are thought to share expression patterns and functional properties. Bringing novel insights in the differential activity of the zebrafish vox/vent genes, we propose a critical role for the ved gene in DV patterning of vertebrate embryos. ved is not only expressed as a maternal gene, but it also appears to function as a repressor of dorsal factors involved in organizer formation. At early- and mid-gastrula stage, ved appears to be finely controlled by antagonist crosstalks in a complex regulatory network, involving gradients of bone morphogenetic protein (BMP) activity, dorsal factors, and vox/vent family members. We show that ved transcripts are ventrally restricted by BMP factors such as bmp2b, bmp7, smad5, and alk8, and by dorsal factors (chd and gsc). Alteration of ved expression in both vox and vent deletion mutants and vox and vent mRNAs-injected embryos, suggests that vox and vent function downstream of BMP signaling to negatively regulate ved expression. This inhibitory role is emphasized by a vox and vent redundant activity, compared with single gene effects.
Correlation Function Analysis of Fiber Networks: Implications for Thermal Conductivity
Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.
2011-01-01
The heat transport in highly porous fiber structures is investigated. The fibers are supposed to be thin, but long, so that the number of the inter-fiber connections along each fiber is large. We show that the effective conductivity of such structures can be found from the correlation length of the two-point correlation function of the local conductivities. Estimation of the parameters, determining the conductivity, from the 2D images of the structures is analyzed.
Correlation Functions in Open Quantum-Classical Systems
Directory of Open Access Journals (Sweden)
Chang-Yu Hsieh
2013-12-01
Full Text Available Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is difficult to carry out, approximations must often be made to compute these functions. We present a general scheme for the computation of correlation functions, which preserves the full quantum equilibrium structure of the system and approximates the time evolution with quantum-classical Liouville dynamics. Several aspects of the scheme are discussed, including a practical and general approach to sample the quantum equilibrium density, the properties of the quantum-classical Liouville equation in the context of correlation function computations, simulation schemes for the approximate dynamics and their interpretation and connections to other approximate quantum dynamical methods.
Two-Baryon Correlation Functions in 2-flavour QCD
Francis, Anthony; Rae, Thomas D; Wittig, Hartmut
2013-01-01
We present first results for two-baryon correlation functions, computed using $N_f=2$ flavours of O($a$) improved Wilson quarks, with the aim of explaining potential dibaryon bound states, specifically the H-dibaryon. In particular, we use a GEVP to isolate the groundstate using two-baryon (hyperon-hyperon) correlation functions $\\big(\\langle C_{XY}(t)C_{XY}(0) \\rangle$, where $XY=\\Lambda\\Lambda, \\Sigma\\Sigma, N\\Xi, \\cdots\\big)$, each of which has an overlap with the H-dibaryon. We employ a `blocking' algorithm to handle the large number of contractions, which may easily be extended to N-baryon correlation functions. We also comment on its application to the analysis of single baryon masses ($n$, $\\Lambda$, $\\Xi$, $\\cdots$). This study is performed on an isotropic lattice with $m_\\pi = 460$ MeV, $m_\\pi L = 4.7$ and $a = 0.063$ fm.
Monte Carlo studies of matrix theory correlation functions.
Hanada, Masanori; Nishimura, Jun; Sekino, Yasuhiro; Yoneya, Tamiaki
2010-04-16
We study correlation functions in (0+1)-dimensional maximally supersymmetric U(N) gauge theory, which represents the low-energy effective theory of D0-branes. In the large-N limit, the gauge-gravity duality predicts power-law behaviors in the infrared region for the two-point correlation functions of operators corresponding to supergravity modes. We evaluate such correlation functions on the gauge theory side by the Monte Carlo method. Clear power-law behaviors are observed at N=3, and the predicted exponents are confirmed consistently. Our results suggest that the agreement extends to the M-theory regime, where the supergravity analysis in 10 dimensions may not be justified a priori.
N=4 superconformal Ward identities for correlation functions
Directory of Open Access Journals (Sweden)
A.V. Belitsky
2016-03-01
Full Text Available In this paper we study the four-point correlation function of the energy–momentum supermultiplet in theories with N=4 superconformal symmetry in four dimensions. We present a compact form of all component correlators as an invariant of a particular abelian subalgebra of the N=4 superconformal algebra. This invariant is unique up to a single function of the conformal cross-ratios which is fixed by comparison with the correlation function of the lowest half-BPS scalar operators. Our analysis is independent of the dynamics of a specific theory, in particular it is valid in N=4 super Yang–Mills theory for any value of the coupling constant. We discuss in great detail a subclass of component correlators, which is a crucial ingredient for the recent study of charge-flow correlations in conformal field theories. We compute the latter explicitly and elucidate the origin of the interesting relations among different types of flow correlations previously observed in arXiv:1309.1424.
TFT construction of RCFT correlators IV: Structure constants and correlation functions
Fuchs, J; Schweigert, C; Runkel, Ingo; Schweigert, Christoph
2004-01-01
We compute the fundamental correlation functions in two-dimensional rational conformal field theory, from which all other correlators can be obtained by sewing: the correlators of three bulk fields on the sphere, one bulk and one boundary field on the disk, three boundary fields on the disk, and one bulk field on the cross cap. We also consider conformal defects and calculate the correlators of three defect fields on the sphere and of one defect field on the cross cap. Each of these correlators is presented as the product of a structure constant and the appropriate conformal two- or three-point block. The structure constants are expressed as invariants of ribbon graphs in three-manifolds.
Directory of Open Access Journals (Sweden)
Danlu Cai
2014-04-01
Full Text Available Research on global climate change requires plant functional type (PFT products. Although several PFT mapping procedures for remote sensing imagery are being used, none of them appears to be specifically designed to map and evaluate PFTs over broad mountainous areas which are highly relevant regions to identify and analyze the response of natural ecosystems. We present a methodology for generating soft classifications of PFTs from remotely sensed time series that are based on a hierarchical strategy by integrating time varying integrated NDVI and phenological information with topography: (i Temporal variability: a Fourier transform of a vegetation index (MODIS NDVI, 2006 to 2010. (ii Spatial partitioning: a primary image segmentation based on a small number of thresholds applied to the Fourier amplitude. (iii Classification by a supervised soft classification step is based on a normalized distance metric constructed from a subset of Fourier coefficients and complimentary altitude data from a digital elevation model. Applicability and effectiveness is tested for the eastern Tibetan Plateau. A classification nomenclature is determined from temporally stable pixels in the MCD12Q1 time series. Overall accuracy statistics of the resulting classification reveal a gain of about 7% from 64.4% compared to 57.7% by the MODIS PFT products.
Beck, Josh R; Rodriguez-Fernandez, Imilce A; de Leon, Jessica Cruz; Huynh, My-Hang; Carruthers, Vern B; Morrissette, Naomi S; Bradley, Peter J
2010-09-09
Apicomplexans employ a peripheral membrane system called the inner membrane complex (IMC) for critical processes such as host cell invasion and daughter cell formation. We have identified a family of proteins that define novel sub-compartments of the Toxoplasma gondii IMC. These IMC Sub-compartment Proteins, ISP1, 2 and 3, are conserved throughout the Apicomplexa, but do not appear to be present outside the phylum. ISP1 localizes to the apical cap portion of the IMC, while ISP2 localizes to a central IMC region and ISP3 localizes to a central plus basal region of the complex. Targeting of all three ISPs is dependent upon N-terminal residues predicted for coordinated myristoylation and palmitoylation. Surprisingly, we show that disruption of ISP1 results in a dramatic relocalization of ISP2 and ISP3 to the apical cap. Although the N-terminal region of ISP1 is necessary and sufficient for apical cap targeting, exclusion of other family members requires the remaining C-terminal region of the protein. This gate-keeping function of ISP1 reveals an unprecedented mechanism of interactive and hierarchical targeting of proteins to establish these unique sub-compartments in the Toxoplasma IMC. Finally, we show that loss of ISP2 results in severe defects in daughter cell formation during endodyogeny, indicating a role for the ISP proteins in coordinating this unique process of Toxoplasma replication.
Wittich, Walter; Overbury, Olga; Kapusta, Michael A; Watanabe, Donald H
2007-09-01
To examine acuity recovery rate after Macular Hole (MH) surgery, using Hierarchical Linear Modeling (HLM) with linear and curvilinear regression analysis. Preoperative MH diameter (OCT) and acuity (ETDRS) were recorded in 20 eyes. Acuities were tested during follow-up (6 to 23 months), with three to eight measurements per eye. The resulting 95 acuities were analyzed using HLM. Variability at the level of the person was explained by change over time, using a natural logarithm conversion. Across patients, MH diameter was used to predict slopes and intercepts at the level of the individual. MH diameter was able to account for significant amounts of variability in preoperative acuity (intercept) and significantly influenced rate of functional recovery (slope). A nonlinear approach to the data accounted for the largest amount of variance. Participants with larger MHs recovered relatively more acuity sooner while eyes with smaller MHs had better absolute acuity outcome. HLM provides important insight into the recovery process after MH surgery and is more flexible with follow-up data. In the context of MH treatment, most recuperation occurred during the initial 6 months.
Tumlinson, J
2006-01-01
I present a new Galactic chemical evolution model motivated by and grounded in the hierarchical theory of galaxy formation, as expressed by a halo merger history of the Galaxy. This model accurately reproduces the "metallicity distribution function" (MDF) for Population II stars residing today in the Galactic halo. The observed MDF and the apparent absence of true Population III stars from the halo strongly imply that there is some critical metallicity, Z_crit = 8 - 42 Msun. This mass range is similar to the masses predicted by models of primordial star formation that account for formation feedback. The model also implies that metal-poor halo stars below [Fe/H] <~ -3 had only 1 - 10 metal-free stars as their supernova precursors, such that the relative abundances in these halo stars exhibit IMF-weighted averages over the intrinsic yields of the first supernovae. This paper is the first part of a long term project to connect the high-redshift in situ indicators of early star formation with the low-z, old r...
Attwood, T K; Croning, M D R; Gaulton, A
2002-01-01
G protein-coupled receptors (GPCRs) constitute the largest known family of cell-surface receptors. With hundreds of members populating the rhodopsin-like GPCR superfamily and many more awaiting discovery in the human genome, they are of interest to the pharmaceutical industry because of the opportunities they afford for yielding potentially lucrative drug targets. Typical sequence analysis strategies for identifying novel GPCRs tend to involve similarity searches using standard primary database search tools. This will reveal the most similar sequence, generally without offering any insight into its family or superfamily relationships. Conversely, searches of most 'pattern' or family databases are likely to identify the superfamily, but not the closest matching subtype. Here we describe a diagnostic resource that allows identification of GPCRs in a hierarchical fashion, based principally upon their ligand preference. This resource forms part of the PRINTS database, which now houses approximately 250 GPCR-specific fingerprints (http://www.bioinf.man.ac.uk/dbbrowser/gpcrPRINTS/). This collection of fingerprints is able to provide more sensitive diagnostic opportunities than have been realized by related approaches and is currently the only diagnostic tool for assigning GPCR subtypes. Mapping such fingerprints on to three-dimensional GPCR models offers powerful insights into the structural and functional determinants of subtype specificity.
Directory of Open Access Journals (Sweden)
Josh R Beck
Full Text Available Apicomplexans employ a peripheral membrane system called the inner membrane complex (IMC for critical processes such as host cell invasion and daughter cell formation. We have identified a family of proteins that define novel sub-compartments of the Toxoplasma gondii IMC. These IMC Sub-compartment Proteins, ISP1, 2 and 3, are conserved throughout the Apicomplexa, but do not appear to be present outside the phylum. ISP1 localizes to the apical cap portion of the IMC, while ISP2 localizes to a central IMC region and ISP3 localizes to a central plus basal region of the complex. Targeting of all three ISPs is dependent upon N-terminal residues predicted for coordinated myristoylation and palmitoylation. Surprisingly, we show that disruption of ISP1 results in a dramatic relocalization of ISP2 and ISP3 to the apical cap. Although the N-terminal region of ISP1 is necessary and sufficient for apical cap targeting, exclusion of other family members requires the remaining C-terminal region of the protein. This gate-keeping function of ISP1 reveals an unprecedented mechanism of interactive and hierarchical targeting of proteins to establish these unique sub-compartments in the Toxoplasma IMC. Finally, we show that loss of ISP2 results in severe defects in daughter cell formation during endodyogeny, indicating a role for the ISP proteins in coordinating this unique process of Toxoplasma replication.
Semiclassical correlation functions of Wilson loops and local vertex operators
Hernandez, Rafael
2012-01-01
We analyze correlation functions of Wilson loop observables and local vertex operators within the strong-coupling regime of the AdS/CFT correspondence. When the local operator corresponds to a light string state with finite conserved charges the correlation function can be evaluated in the semiclassical approximation of large string tension, where the contribution from the light vertex can be neglected. We consider the cases where the Wilson loops are described by two concentric surfaces and the local vertices are the superconformal chiral primary scalar or a singlet massive scalar operator.
Uncertainties in the cluster-cluster correlation function
Energy Technology Data Exchange (ETDEWEB)
Ling, E.N.; Barrow, J.D.; Frenk, C.S.
1986-12-01
The bootstrap resampling technique is applied to estimate sampling errors and significance levels of the two-point correlation functions determined for a subset of the CfA redshift survey of galaxies and a redshift sample of 104 Abell clusters. The angular correlation functions is also calculated for a sample of 1664 Abell clusters. The standard errors for the Abell data are found to be considerably larger than quoted 'Poisson errors'. The enhancement of cluster clustering over galaxy clustering is statistically significant in the presence of resampling errors.
Indian Academy of Sciences (India)
Choong Yong Ung; Teow Chong Teoh
2014-06-01
DARPP-32 (dopamine and adenosine 3′,5′-monophosphate-regulated phosphoprotein of 32 kDa), which belongs to PPP1R1 gene family, is known to act as an important integrator in dopamine-mediated neurotransmission via the inhibition of protein phosphatase-1 (PP1). Besides its neuronal roles, this protein also behaves as a key player in pathological and pharmacological aspects. Use of bioinformatics and phylogenetics approaches to further characterize the molecular features of DARPP-32 can guide future works. Predicted phosphorylation sites on DARPP-32 show conservation across vertebrates. Phylogenetics analysis indicates evolutionary strata of phosphorylation site acquisition at the C-terminus, suggesting functional expansion of DARPP-32, where more diverse signalling cues may involve in regulating DARPP-32 in inhibiting PP1 activity. Moreover, both phylogenetics and synteny analyses suggest de novo origination of PPP1R1 gene family via chromosomal rearrangement and exonization.
The SWELLS survey - VI. Hierarchical inference of the initial mass functions of bulges and discs
DEFF Research Database (Denmark)
Brewer, Brendon J.; Marshal, Philip J.; Auger, Matthew W.
2014-01-01
The long-standing assumption that the stellar initial mass function (IMF) is universal has recently been challenged by a number of observations. Several studies have shown that a 'heavy' IMF (e.g. with a Salpeter-like abundance of low-mass stars and thus normalization) is preferred for massive...... early-type galaxies, while this IMF is inconsistent with the properties of less massive, later-type galaxies. These discoveries motivate the hypothesis that the IMF may vary (possibly very slightly) across galaxies and across components of individual galaxies (e.g. bulges versus discs). In this paper......, we use a sample of 19 late-type strong gravitational lenses from the Sloan WFC Edge-on Late-type Lens Survey (SWELLS) to investigate the IMFs of the bulges and discs in late-type galaxies. We perform a joint analysis of the galaxies' total masses (constrained by strong gravitational lensing...
Hierarchical functional connectivity between the core language system and the working memory system.
Makuuchi, Michiru; Friederici, Angela D
2013-10-01
Language processing inevitably involves working memory (WM) operations, especially for sentences with complex syntactic structures. Evidence has been provided for a neuroanatomical segregation between core syntactic processes and WM, but the dynamic relation between these systems still has to be explored. In the present functional magnetic resonance imaging (fMRI) study, we investigated the network dynamics of regions involved in WM operations which support sentence processing during reading, comparing a set of dynamic causal models (DCM) with different assumptions about the underlying connectional architecture. The DCMs incorporated the core language processing regions (pars opercularis and middle temporal gyrus), WM related regions (inferior frontal sulcus and intraparietal sulcus), and visual word form area (fusiform gyrus). The results indicate a processing hierarchy from the visual to WM to core language systems, and moreover, a clear increase of connectivity between WM regions and language regions as the processing load increases for syntactically complex sentences.
Correlating Expression Data with Gene Function Using Gene Ontology
Institute of Scientific and Technical Information of China (English)
LIU,Qi; DENG,Yong; WANG,Chuan; SHI,Tie-Liu; LI,Yi-Xue
2006-01-01
Clustering is perhaps one of the most widely used tools for microarray data analysis. Proposed roles for genes of unknown function are inferred from clusters of genes similarity expressed across many biological conditions.However, whether function annotation by similarity metrics is reliable or not and to what extent the similarity in gene expression patterns is useful for annotation of gene functions, has not been evaluated. This paper made a comprehensive research on the correlation between the similarity of expression data and of gene functions using Gene Ontology. It has been found that although the similarity in expression patterns and the similarity in gene functions are significantly dependent on each other, this association is rather weak. In addition, among the three categories of Gene Ontology, the similarity of expression data is more useful for cellular component annotation than for biological process and molecular function. The results presented are interesting for the gene functions prediction research area.
Correlation between thoracolumbar curvatures and respiratory function in older adults
Directory of Open Access Journals (Sweden)
Rahman NNAA
2017-03-01
Full Text Available Nor Najwatul Akmal Ab Rahman,1 Devinder Kaur Ajit Singh,1 Raymond Lee2 1Physiotherapy Programme, School of Rehabilitation Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia; 2School of Applied Sciences, London South Bank University, London, UK Abstract: Aging is associated with alterations in thoracolumbar curvatures and respiratory function. Research information regarding the correlation between thoracolumbar curvatures and a comprehensive examination of respiratory function parameters in older adults is limited. The aim of the present study was to examine the correlation between thoracolumbar curvatures and respiratory function in community-dwelling older adults. Thoracolumbar curvatures (thoracic and lumbar were measured using a motion tracker. Respiratory function parameters such as lung function, respiratory rate, respiratory muscle strength and respiratory muscle thickness (diaphragm and intercostal were measured using a spirometer, triaxial accelerometer, respiratory pressure meter and ultrasound imaging, respectively. Sixty-eight community-dwelling older males and females from Kuala Lumpur, Malaysia, with mean (standard deviation age of 66.63 (5.16 years participated in this cross-sectional study. The results showed that mean (standard deviation thoracic curvature angle and lumbar curvature angles were -46.30° (14.66° and 14.10° (10.58°, respectively. There was a significant negative correlation between thoracic curvature angle and lung function (forced expiratory volume in 1 second: r=-0.23, P<0.05; forced vital capacity: r=-0.32, P<0.05, quiet expiration intercostal thickness (r=-0.22, P<0.05 and deep expiration diaphragm muscle thickness (r=-0.21, P<0.05. The lumbar curvature angle had a significant negative correlation with respiratory muscle strength (r=-0.29, P<0.05 and diaphragm muscle thickness at deep inspiration (r=-0.22, P<0.05. However, respiratory rate
Explicitly correlated wave function for a boron atom
Puchalski, Mariusz; Pachucki, Krzysztof
2015-01-01
We present results of high-precision calculations for a boron atom's properties using wave functions expanded in the explicitly correlated Gaussian basis. We demonstrate that the well-optimized 8192 basis functions enable a determination of energy levels, ionization potential, and fine and hyperfine splittings in atomic transitions with nearly parts per million precision. The results open a window to a spectroscopic determination of nuclear properties of boron including the charge radius of the proton halo in the $^8$B nucleus.
Charmonium correlators and spectral functions at finite temperature
Ding, H -T; Karsch, F; Satz, H; Söldner, W
2009-01-01
We study charmonium correlators and spectral functions in quenched QCD, using Clover improved Wilson fermions on very fine (0.015 fm) isotropic lattices at 0.75 Tc and 1.5 Tc. We use a new approach to distinguish the zero mode contribution from the other contributions. Once this is removed, we find that the ratios of correlators to reconstructed correlators remain almost unity at all distances. The ground state peaks of spectral functions obtained at 0.75 Tc are reliable and robust. The present accuracy and limited number of points in the temporal direction at 1.5 Tc do not allow for a reliable conclusion about a possible melting of charmonium states in the QGP.
Correlation functions at small quark masses with overlap fermions
Energy Technology Data Exchange (ETDEWEB)
Giusti, L. [CNRS Luminy, Marseille (France). Centre de Physique Theorique; Hernandez, P. [Edificio Institutos Investigacion, Valencia (Spain). Dpto. Fisica Teorica and IFIC; Laine, M. [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Pena, C.; Wennekers, J.; Wittig, H.; Weisz, P. [Max-Planck-Institut fuer Physik, Muenchen (Germany)
2004-09-01
We report on recent work on the determination of low-energy constants describing {delta}S = 1 weak transitions, in order to investigate the origins of the {delta}I = 1/2 rule. We focus on numerical techniques designed to enhance the statistical signal in three-point correlation functions computed with overlap fermions near the chiral limit. (orig.)
Correlation functions at small quark masses with overlap fermions
Energy Technology Data Exchange (ETDEWEB)
Giusti, L. [Centre de Physique Theorique, CNRS Luminy, F-13288 Marseille Cedex 9 (France); Hernandez, P. [Dpto. Fisica Teorica and IFIC, Edificio Institutos Investigacion, E-46071 Valencia (Spain); Laine, M. [Faculty of Physics, University of Bielefeld, D-33501 Bielefeld (Germany); Pena, C. [Deutsches Elektronen-Synchrotron, DESY, Notkestr. 85, D-22603 Hamburg (Germany); Weisz, P. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Munich (Germany); Wennekers, J. [Deutsches Elektronen-Synchrotron, DESY, Notkestr. 85, D-22603 Hamburg (Germany); Wittig, H. [Deutsches Elektronen-Synchrotron, DESY, Notkestr. 85, D-22603 Hamburg (Germany)
2005-03-15
We report on recent work on the determination of low-energy constants describing {delta}S=1 weak transitions, in order to investigate the origins of the {delta}I=1/2 rule. We focus on numerical techniques designed to enhance the statistical signal in three-point correlation functions computed with overlap fermions near the chiral limit.
Correlation functions at small quark masses with overlap fermions
Giusti, Leonardo; Laine, Mikko; Peña, C; Weisz, P; Wennekers, J; Wittig, H
2005-01-01
We report on recent work on the determination of low-energy constants describing Delta{S}=1 weak transitions, in order to investigate the origins of the Delta{I}=1/2 rule. We focus on numerical techniques designed to enhance the statistical signal in three-point correlation functions computed with overlap fermions near the chiral limit.
Correlation functions formed by a femtosecond pulse interferometer
Cui, M.; Bhattacharya, N.; Urbach, H.P.; Van den berg, S.A.
2008-01-01
We experimentally demonstrate that a stabilized femtosecond frequency comb can be applied as a tool for distance measurement. The scheme is based on optical interference between individual pulses in a Michelson type interferometer. The cross-correlation functions between individual pulses with a dis
Equilibrium time correlation functions in the low density limit
Beijeren, H. van; Lanford, O.E.; Lebowitz, J.L.; Spohn, H.
1980-01-01
We consider a system of hard spheres in thermal equilibrium. Using Lanford's result about the convergence of the solutions of the BBGKY hierarchy to the solutions of the Boltzmann hierarchy, we show that in the low-density limit (Boltzmann-Grad limit): (i) the total time correlation function is
Unified Green’s Function Retrieval by Cross Correlation
Wapenaar, C.P.A.; Slob, E.C.; Snieder, R.
2006-01-01
It has been shown by many authors that the cross correlation of two recordings of a diffuse wave field at different receivers yields the Green’s function between these receivers. Recently the theory has been extended for situations where time-reversal invariance does not hold (e.g., in attenuating m
Fast estimation of polarization power spectra using correlation functions
Chon, G; Prunet, S; Hivon, E; Szapudi, I; Chon, Gayoung; Challinor, Anthony; Prunet, Simon; Hivon, Eric; Szapudi, Istvan
2003-01-01
We present a fast method for estimating the cosmic microwave background polarization power spectra using unbiased estimates of heuristically-weighted correlation functions. This extends the O(N_pix^(3/2)) method of Szapudi et al. (2001) to polarized data. If the sky coverage allows the correlation functions to be estimated over the full range of angular separations, they can be inverted directly with integral transforms and clean separation of the electric (E) and magnetic (B) modes of polarization is obtained exactly in the mean. We assess the level of E-B mixing that arises from apodized integral transforms when the correlation function can only be estimated for a subset of angular scales, and show that it is significant for small-area observations. We introduce new estimators to deal with this case on the spherical sky that preserve E-B separation; their construction requires an additional integration of the correlation functions but the computational cost is negligible. We illustrate our methods with appl...
Decay of fidelity in terms of correlation functions
Alicki, R.; Fannes, M.
2009-01-01
We consider, within the algebraic formalism, the time dependence of fidelity for qubits encoded in an open physical system. We relate the decay of fidelity to the evolution of correlation functions and, in the particular case of a Markovian dynamics, to the spectral gap of the generator of the semigroup. The results are applicable to the analysis of models of quantum memories.
The pair correlation function of spatial Hawkes processes
DEFF Research Database (Denmark)
Møller, Jesper; Torrisi, Giovanni Luca
2007-01-01
Spatial Hawkes processes can be considered as spatial versions of classical Hawkes processes. We derive the pair correlation function of stationary spatial Hawkes processes and discuss the connection to the Bartlett spectrum and other summary statistics. Particularly, results for Gaussian fertility...... rates and the extension to spatial Hawkes processes with random fertility rates are discussed....
Exact factorization of correlation functions in 2-D critical percolation
Simmons, Jacob J H; Ziff, Robert M
2007-01-01
By use of conformal field theory, we discover several exact factorizations of higher-order density correlation functions in critical two-dimensional percolation. Our formulas are valid in the upper half-plane, or any conformally equivalent region. We find excellent agreement of our results with high-precision computer simulations. There are indications that our formulas hold more generally.
Upper Limb Assessment in Tetraplegia: Clinical, Functional and Kinematic Correlations
Cacho, Enio Walker Azevedo; de Oliveira, Roberta; Ortolan, Rodrigo L.; Varoto, Renato; Cliquet, Alberto
2011-01-01
The aim of this study was to correlate clinical and functional evaluations with kinematic variables of upper limp reach-to-grasp movement in patients with tetraplegia. Twenty chronic patients were selected to perform reach-to-grasp kinematic assessment using a target placed at a distance equal to the arm's length. Kinematic variables (hand peak…
Signal/noise optimization strategies for stochastically estimated correlation functions
Detmold, William
2014-01-01
Numerical studies of quantum field theories usually rely upon an accurate determination of stochastically estimated correlation functions in order to extract information about the spectrum of the theory and matrix elements of operators. The reliable determination of such correlators is often hampered by an exponential degradation of signal/noise at late time separations. We demonstrate that it is sometimes possible to achieve significant enhancements of signal/noise by appropriately optimizing correlators with respect to the source and sink interpolating operators, and highlight the large range of possibilities that are available for this task. The ideas are discussed for both a toy model, and single hadron correlators in the context of quantum chromodynamics.
Galaxy Zoo: Chiral correlation function of galaxy spins
Slosar, Anze; Bamford, Steven; Lintott, Chris; Andreescu, Dan; Murray, Phil; Nichol, Robert; Raddick, M Jordan; Schawinski, Kevin; Szalay, Alex; Thomas, Daniel; Vandenberg, Jan
2008-01-01
Galaxy Zoo is the first study of nearby galaxies that contains reliable information about the spiral sense of rotation of galaxy arms for a sizeable number of galaxies. We measure the correlation function of spin chirality (the sense in which galaxies appear to be spinning) of face-on spiral galaxies in angular, real and projected spaces. Our results indicate a hint of positive correlation at separations less than ~0.5 Mpc at a statistical significance of 2-3 sigma. This is the first experimental evidence for chiral correlation of spins. Within tidal torque theory it indicates that the inertia tensors of nearby galaxies are correlated. This is complementary to the studies of nearby spin axis correlations that probe the correlations of the tidal field. Theoretical interpretation is made difficult by the small distances at which the correlations are detected, implying that substructure might play a significant role, and our necessary selection of face-on spiral galaxies, rather than a general volume-limited sam...
Neuroanatomical correlates of cognitive functioning in prodromal Huntington disease.
Harrington, Deborah L; Liu, Dawei; Smith, Megan M; Mills, James A; Long, Jeffrey D; Aylward, Elizabeth H; Paulsen, Jane S
2014-01-01
The brain mechanisms of cognitive impairment in prodromal Huntington disease (prHD) are not well understood. Although striatal atrophy correlates with some cognitive abilities, few studies of prHD have investigated whether cortical gray matter morphometry correlates in a regionally specific manner with functioning in different cognitive domains. This knowledge would inform the selection of cognitive measures for clinical trials that would be most sensitive to the target of a treatment intervention. In this study, random forest analysis was used to identify neuroanatomical correlates of functioning in five cognitive domains including attention and information processing speed, working memory, verbal learning and memory, negative emotion recognition, and temporal processing. Participants included 325 prHD individuals with varying levels of disease progression and 119 gene-negative controls with a family history of HD. In intermediate analyses, we identified brain regions that showed significant differences between the prHD and the control groups in cortical thickness and striatal volume. Brain morphometry in these regions was then correlated with cognitive functioning in each of the domains in the prHD group using random forest methods. We hypothesized that different regional patterns of brain morphometry would be associated with performances in distinct cognitive domains. The results showed that performances in different cognitive domains that are vulnerable to decline in prHD were correlated with regionally specific patterns of cortical and striatal morphometry. Putamen and/or caudate volumes were top-ranked correlates of performance across all cognitive domains, as was cortical thickness in regions related to the processing demands of each domain. The results underscore the importance of identifying structural magnetic resonance imaging (sMRI) markers of functioning in different cognitive domains, as their relative sensitivity depends on the extent to which
Density-functional formula for strongly correlated systems
Institute of Scientific and Technical Information of China (English)
WANG Huaiyu; HAN Rushan; CHEN Nanxian
2005-01-01
Density functional method is applied for strongly correlated systems. Based on the assumption that the systems are composed of electrons in singly-occupied orbitals and those in doubly-occupied orbitals, a set of self-consistent equations are obtained by standard variation procedure. The equations consist of two parts. One part is to solve the wave functions of the electrons in singly-occupied orbitals and the other is to solve the wave functions of the electrons in doubly-occupied orbitals. The physical meanings of the terms appearing in the equations are discussed.
Correlation of zeros of automorphic L-functions
Institute of Scientific and Technical Information of China (English)
2008-01-01
We compute the n-level correlation of normalized nontrivial zeros of a product of L-functions:L(s,π1)···L(s,πk), where πj, j=1,...,k, are automorphic cuspidal representations of GLmj(QA). Here the sizes of the groups GLmj(QA) are not necessarily the same. When these L(s,πj) are distinct, we prove that their nontrivial zeros are uncorrelated, as predicted by random matrix theory and verified numerically. When L(s,πj) are not necessarily distinct, our results will lead to a proof that the n-level correlation of normalized nontrivial zeros of the product L-function follows the superposition of Gaussian Unitary Ensemble (GUE) models of individual L-functions and products of lower rank GUEs. The results are unconditional when m1,...,mk 4,but are under Hypothesis H in other cases.
Correlation of zeros of automorphic L-functions
Institute of Scientific and Technical Information of China (English)
LIU JianYa; YE YangBo
2008-01-01
We compute the n-level correlation of normalized nontrivial zeros of a product of L-functions: L(s, π1)…L(s, πk), where πj, j=1,..., k, are automorphic cuspidal representations of GLmj(QA). Here the sizes of the groups GLmj(QA) are not necessarily the same. When these L(s, πj)are distinct, we prove that their nontrivial zeros are uncorrelated, as predicted by random matrix theory and verified numerically. When L(s, πj) are not necessarily distinct, our results will lead to a proof that the n-level correlation of normalized nontrivial zeros of the product L-function follows the superposition of Gaussian Unitary Ensemble (GUE)models of individual L-functions and products of lower rank GUEs. The results are unconditional when m1,..., mk≤4, but are under Hypothesis H in other cases.
Asymptotic Correction Schemes for Semilocal Exchange-Correlation Functionals
Pan, Chi-Ruei; Chai, Jeng-Da
2013-01-01
Aiming to remedy the incorrect asymptotic behavior of conventional semilocal exchange-correlation (XC) density functionals for finite systems, we propose an asymptotic correction scheme, wherein an exchange density functional whose functional derivative has the correct (-1/r) asymptote can be directly added to any semilocal density functional. In contrast to semilocal approximations, our resulting exchange kernel in reciprocal space exhibits the desirable singularity of the type O(-1/q^2) as q -> 0, which is a necessary feature for describing the excitonic effects in non-metallic solids. By applying this scheme to a popular semilocal density functional, PBE [J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)], the predictions of the properties that are sensitive to the asymptote are significantly improved, while the predictions of the properties that are insensitive to the asymptote remain essentially the same as PBE. Relative to the popular model XC potential scheme, our scheme is sig...
Hierarchical manifold learning.
Bhatia, Kanwal K; Rao, Anil; Price, Anthony N; Wolz, Robin; Hajnal, Jo; Rueckert, Daniel
2012-01-01
We present a novel method of hierarchical manifold learning which aims to automatically discover regional variations within images. This involves constructing manifolds in a hierarchy of image patches of increasing granularity, while ensuring consistency between hierarchy levels. We demonstrate its utility in two very different settings: (1) to learn the regional correlations in motion within a sequence of time-resolved images of the thoracic cavity; (2) to find discriminative regions of 3D brain images in the classification of neurodegenerative disease,
Correlation Functions in non critical (super) string theory
Abdalla, Elcio; Dalmazi, D; Harada, K
1992-01-01
We consider the correlation functions of the tachyon vertex operator of the super Liouville theory coupled to matter fields in the super Coulomb gas formulation, on world sheets with spherical topology. After integrating over the zero mode and assuming that the $s$ parameter takes an integer value, we subsequently continue it to an arbitrary real number and compute the correlators in a closed form. We also included an arbitrary number of screening charges and, as a result, after renormalizing them, as well as the external legs and the cosmological constant, the form of the final amplitudes do not modify. The result is remarkably parallel to the bosonic case. For completeness, we discussed the calculation of bosonic correlators including arbitrary screening charges.
Spatial Correlation Function of the Chandra Selected Active Galactic Nuclei
Yang, Y.; Mushotzky, R. F.; Barger, A. J.; Cowie, L. L.
2006-01-01
We present the spatial correlation function analysis of non-stellar X-ray point sources in the Chandra Large Area Synoptic X-ray Survey of Lockman Hole Northwest (CLASXS). Our 9 ACIS-I fields cover a contiguous solid angle of 0.4 deg(exp 2) and reach a depth of 3 x 10(exp -15) erg/square cm/s in the 2-8 keV band. We supplement our analysis with data from the Chandra Deep Field North (CDFN). The addition of this field allows better probe of the correlation function at small scales. A total of 233 and 252 sources with spectroscopic information are used in the study of the CLASXS and CDFN fields respectively. We calculate both redshift-space and projected correlation functions in co-moving coordinates, averaged over the redshift range of 0.1 tau(sub 0 = 8.1(sup +1.2 sub -2.2) Mpc, and gamma = 2.1 +/- 0.5 for the CLASXS field, and tau(sub 0) = 5.8(sup +.1.0 sub -1.5) Mpc, gamma = 1.38(sup +0.12 sub -0.14 for the CDFN field. By comparing the real- and redshift-space correlation functions in the combined CLASXS and CDFN samples, we are able to estimate the redshift distortion parameter Beta = 0.4 +/- 0.2 at an effective redshift z = 0.94. We compare the correlation functions for hard and soft spectra sources in the CLASXS field and find no significant difference between the two groups. We have also found that the correlation between X-ray luminosity and clustering amplitude is weak, which, however, is fully consistent with the expectation using the simplest relations between X-ray luminosity, black hole mass, and dark halo mass. We study the evolution of the AGN clustering by dividing the samples into 4 redshift bins over 0.1 Mpcestimate the evolution of the bias, and find that the bias increases rapidly with redshift (b(z = 0.45) = 0.95 +/- 0.15 and b(z = 2.07) = 3.03 +/- 0.83): The typical mass of the dark matter halo derived from the bias estimates show little change with redshift. The average halo mass is found to be log (M(sub halo)/M(sun))approximates 12.1. Subject
Ramos, J G G S; Barbosa, A L R; Carlson, B V; Frederico, T; Hussein, M S
2016-01-01
We derive analytical expressions for the correlation functions of the electronic conductance fluctuations of an open quantum dot under several conditions. Both the variation of energy and that of an external parameter, such as an applied perpendicular or parallel magnetic fields, are considered in the general case of partial openness. These expressions are then used to obtain the ensemble-averaged density of maxima, a measure recently suggested to contain invaluable information concerning the correlation widths of chaotic systems. The correlation width is then calculated for the case of energy variation, and a significant deviation from the Weisskopf estimate is found in the case of two terminals. The results are extended to more than two terminals. All of our results are analytical. The use of these results in other fields, such as nuclei, where the system can only be studied through a variation of the energy, is then discussed.
On the application of correlation function matrices in OMA
Brincker, Rune
2017-03-01
In this paper the theoretical solution for the correlation function matrix of the random response of a structural system is re-visited. It is shown that using the classical definition of the correlation functions, the row space is defined by the mode shapes of the system, whereas the column space is defined by the modal participation vectors. This means that only the rows can be used for unbiased modal identification in operational modal analysis and if the columns are used for identification, then bias will be introduced on the mode shape estimates. It is pointed out that the mode shape bias is strongly dependent on the frequency distance between the modes, i.e. bias will significantly increase in case of closely spaced modes. The identification errors on the estimated biased and unbiased mode shapes are studied in a simulation example.
Spatiotemporal velocity-velocity correlation function in fully developed turbulence
Canet, Léonie; Wschebor, Nicolás; Balarac, Guillaume
2016-01-01
Turbulence is an ubiquitous phenomenon in natural and industrial flows. Since the celebrated work of Kolmogorov in 1941, understanding the statistical properties of fully developed turbulence has remained a major quest. In particular, deriving the properties of turbulent flows from a mesoscopic description, that is from Navier-Stokes equation, has eluded most theoretical attempts. Here, we provide a theoretical prediction for the {\\it space and time} dependent velocity-velocity correlation function of homogeneous and isotropic turbulence from the field theory associated to Navier-Stokes equation with stochastic forcing. This prediction is the analytical fixed-point solution of Non-Perturbative Renormalisation Group flow equations, which are exact in a certain large wave-number limit. This solution is compared to two-point two-times correlation functions computed in direct numerical simulations. We obtain a remarkable agreement both in the inertial and in the dissipative ranges.
CFT correlation functions from AdS/CFT correspondence
Matusis, Alec
In this thesis we discuss correlation functions of N = 4, d = 4 Super-Yang-Mills theory in the strong coupling regime. Namely, the recent conjecture of the equivalence of the string theory in AdS5 x S5 background to the N = 4, d = 4 SYM theory with SU( N) gauge group allows to find correlation functions of the CFT in the limit of large t'Hooft coupling and at large N by evaluating relatively simple tree-level supergravity amplitudes. We discuss the basic ideas of the AdS supergravity computations, and establish the techniques for evaluating tree-level AdS supergravity scattering amplitudes with fixed rates of fall-offs of the fields as they approach AdS boundary. We translate these supergravity results into field theory language and learn several interesting things. First, at the level of the two-point correlation functions we learn about the necessity for the introduction of a cut-off in seemingly convergent AdS supergravity computations. Next, we find a non-renormalization property of certain 3-point functions. Finally, we find an explicit expression for certain 4-point functions, which deviate from free-field approximation in perturbation theory, thus providing some new non- perturbative information about SYM. We study various limits of these 4-point functions, with intention to give them an OPE interpretation. We find logarithmic singularities in all limits, and discuss their compatibility with existence of an OPE at strong coupling. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
Green functions and twist correlators for $N$ branes at angles
Pesando, Igor
2012-01-01
We compute the Green functions and correlator functions for N twist fields for branes at angles on T^2 and we show that there are N-2 different configurations labeled by an integer M which is roughly associated with the number of obtuse angles of the configuration. In order to perform this computation we use a SL(2,R) invariant formulation and geometric constraints instead of Pochammer contours. In particular the M=1 or M=N-1 amplitude can be expressed without using transcendental functions. We determine the amplitudes normalization from N -> N-1 reduction without using the factorization into the untwisted sector. Both the amplitudes normalization and the OPE of two twist fields are unique (up to one constant) when the \\epsilon 1-\\epsilon symmetry is imposed. For consistency we find also an infinite number of relations among Lauricella hypergeometric functions.
Correlation Function and Generalized Master Equation of Arbitrary Age
2007-11-02
Correlation function and generalized master equation of arbitrary age Paolo Allegrini,1 Gerardo Aquino,2,* Paolo Grigolini,2,3,4 Luigi Palatella,5...P.O. Box 311427, Denton, Texas 76203-1427, USA 3Dipartimento di Fisica dell’Università di Pisa and INFM, Via Buonarroti 2, 56127 Pisa, Italy 4Istituto...dei Processi Chimico Fisici del CNR Area della Ricerca di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy 5Dipartimento di Fisica and Istituto dei Sistemi
Charmonium correlators and spectral functions at finite temperature
Ding, H T; Karsch, F; Satz, H
2008-01-01
We present an operational approach to address the in-medium behavior of charmonium and analyze the reliability of maximum entropy method (MEM). We study the dependences of the ratio of correlators to the reconstructed one and the free one on the resonance's width and the continuum's threshold. Furthermore, we discuss the issue of the default model dependence of the spectral function obtained from MEM.
Correlation function as a measure of the structure
Buryak, O.; Doroshkevich, A.
1995-01-01
Geometrical model of structure of the universe is examined to obtain analytical expression for the two points nonlinear correlation function. According to the model the objects (galaxies) are concentrated into two types of structure elements - filaments and sheets. We considered the filaments ( similar to galaxy filaments ) simply as straight lines and the sheets ( similar to superclusters of galaxies ) simply as planes. The homogeneously distributed objects are also taken into consideration....
Correlation functions of one-dimensional bosons at low temperature
Energy Technology Data Exchange (ETDEWEB)
Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M. [CNRS, ENS Lyon (France). Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Institute, Moscow (Russian Federation)
2010-12-15
We consider the low-temperature limit of the long-distance asymptotic behavior of the finite temperature density-density correlation function in the one-dimensional Bose gas derived recently in the algebraic Bethe Ansatz framework. Our results confirm the predictions based on the Luttinger liquid and conformal field theory approaches. We also demonstrate that the amplitudes arising in this asymptotic expansion at low-temperature coincide with the amplitudes associated with the so-called critical form factors. (orig.)
Charmonium correlators and spectral functions at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Ding,H.T.; Kaczmarek, O.; Karsch, F.; Satz, H.
2008-09-01
We present an operational approach to address the in-medium behavior of charmonium and analyze the reliability of maximum entropy method (MEM). We study the dependences of the ratio of correlators to the reconstructed one and the free one on the resonance's width and the continuum's threshold. Furthermore, we discuss the issue of the default model dependence of the spectral function obtained from MEM.
Lifetimes and sizes from two-particle correlation functions
Heinz, Ulrich W; Wiedemann, Urs Achim; Wu Yuang Fang
1996-01-01
We discuss the Yano-Koonin-Podgoretsky (YKP) parametrization of the two-particle correlation function for azimuthally symmetric expanding sources. We derive model-independent expressions for the YKP fit parameters and discuss their physical interpretation. We use them to evaluate the YKP fit parameters and their momentum dependence for a simple model for the emission function and propose new strategies for extracting the source lifetime. Longitudinal expansion of the source can be seen directly in the rapidity dependence of the Yano-Koonin velocity.
Total Correlation Function Integrals and Isothermal Compressibilities from Molecular Simulations
DEFF Research Database (Denmark)
Wedberg, Rasmus; Peters, Günther H.j.; Abildskov, Jens
2008-01-01
Generation of thermodynamic data, here compressed liquid density and isothermal compressibility data, using molecular dynamics simulations is investigated. Five normal alkane systems are simulated at three different state points. We compare two main approaches to isothermal compressibilities: (1...... in approximately the same amount of time. This suggests that computation of total correlation function integrals is a route to isothermal compressibility, as accurate and fast as well-established benchmark techniques. A crucial step is the integration of the radial distribution function. To obtain sensible results...
Bonhomme, V; Boveroux, P; Brichant, J F; Laureys, S; Boly, M
2012-01-01
This paper reviews the current knowledge about the mechanisms of anesthesia-induced alteration of consciousness. It is now evident that hypnotic anesthetic agents have specific brain targets whose function is hierarchically altered in a dose-dependent manner. Higher order networks, thought to be involved in mental content generation, as well as sub-cortical networks involved in thalamic activity regulation seems to be affected first by increasing concentrations of hypnotic agents that enhance inhibitory neurotransmission. Lower order sensory networks are preserved, including thalamo-cortical connectivity into those networks, even at concentrations that suppress responsiveness, but cross-modal sensory interactions are inhibited. Thalamo-cortical connectivity into the consciousness networks decreases with increasing concentrations of those agents, and is transformed into an anti-correlated activity between the thalamus and the cortex for the deepest levels of sedation, when the subject is non responsive. Future will tell us whether these brain function alterations are also observed with hypnotic agents that mainly inhibit excitatory neurotransmission. The link between the observations made using fMRI and the identified biochemical targets of hypnotic anesthetic agents still remains to be identified.
An improved method for estimating the frequency correlation function
Chelli, Ali
2012-04-01
For time-invariant frequency-selective channels, the transfer function is a superposition of waves having different propagation delays and path gains. In order to estimate the frequency correlation function (FCF) of such channels, the frequency averaging technique can be utilized. The obtained FCF can be expressed as a sum of auto-terms (ATs) and cross-terms (CTs). The ATs are caused by the autocorrelation of individual path components. The CTs are due to the cross-correlation of different path components. These CTs have no physical meaning and leads to an estimation error. We propose a new estimation method aiming to improve the estimation accuracy of the FCF of a band-limited transfer function. The basic idea behind the proposed method is to introduce a kernel function aiming to reduce the CT effect, while preserving the ATs. In this way, we can improve the estimation of the FCF. The performance of the proposed method and the frequency averaging technique is analyzed using a synthetically generated transfer function. We show that the proposed method is more accurate than the frequency averaging technique. The accurate estimation of the FCF is crucial for the system design. In fact, we can determine the coherence bandwidth from the FCF. The exact knowledge of the coherence bandwidth is beneficial in both the design as well as optimization of frequency interleaving and pilot arrangement schemes. © 2012 IEEE.
Statistical Study of Turbulence: Spectral Functions and Correlation Coefficients
Frenkiel, Francois N.
1958-01-01
In reading the publications on turbulence of different authors, one often runs the risk of confusing the various correlation coefficients and turbulence spectra. We have made a point of defining, by appropriate concepts, the differences which exist between these functions. Besides, we introduce in the symbols a few new characteristics of turbulence. In the first chapter, we study some relations between the correlation coefficients and the different turbulence spectra. Certain relations are given by means of demonstrations which could be called intuitive rather than mathematical. In this way we demonstrate that the correlation coefficients between the simultaneous turbulent velocities at two points are identical, whether studied in Lagrange's or in Euler's systems. We then consider new spectra of turbulence, obtained by study of the simultaneous velocities along a straight line of given direction. We determine some relations between these spectra and the correlation coefficients. Examining the relation between the spectrum of the turbulence measured at a fixed point and the longitudinal-correlation curve given by G. I. Taylor, we find that this equation is exact only when the coefficient is very small.
Hierarchical materials: Background and perspectives
DEFF Research Database (Denmark)
2016-01-01
Hierarchical design draws inspiration from analysis of biological materials and has opened new possibilities for enhancing performance and enabling new functionalities and extraordinary properties. With the development of nanotechnology, the necessary technological requirements for the manufactur...
Aging of vestibular function evaluated using correlational vestibular autorotation test
Directory of Open Access Journals (Sweden)
Hsieh LC
2014-09-01
Full Text Available Li-Chun Hsieh,1,2 Hung-Ching Lin,2,3 Guo-She Lee4,5 1Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan; 2Department of Otolaryngology, Mackay Memorial Hospital, Taipei, Taiwan; 3Department of Audiology and Speech Language Pathology, Mackay Memorial Medical College, Taipei, Taiwan; 4Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; 5Department of Otolaryngology, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan Background: Imbalance from degeneration of vestibular end organs is a common problem in the elderly. However, the decline of vestibular function with aging was revealed in few vestibular function tests such as vestibular autorotation test (VAT. In the current VAT, there are drawbacks of poor test–retest reliability, slippage of the sensor at high-speed rotations, and limited data about the effect of aging. We developed a correlational-VAT (cVAT system that included a small, light sensor (less than 20 g with wireless data transmission technique to evaluate the aging of vestibular function. Material and methods: We enrolled 53 healthy participants aged between 25 and 75 years and divided them into five age groups. The test conditions were vertical and horizontal head autorotations of frequencies from 0 to 3 Hz with closed eyes or open eyes. The cross-correlation coefficient (CCC between eye velocity and head velocity was obtained for the head autorotations between 1 Hz and 3 Hz. The mean of the CCCs was used to represent the vestibular function. Results: Age was significantly and negatively correlated with the mean CCC for all test conditions, including horizontal or vertical autorotations with open eyes or closed eyes (P<0.05. The mean CCC with open eyes declined significantly at 55–65 years old and the mean CCC with closed eyes declined significantly at 65–75 years old.Conclusion: Vestibular function evaluated using mean CCC revealed a decline with
Haydon, Katherine C.; Collins, W. A.; Salvatore, Jessica E.; Simpson, Jeffry A.; Roisman, Glenn I.
2012-01-01
To test proposals regarding the hierarchical organization of adult attachment, this study examined developmental origins of generalized and romantic attachment representations and their concurrent associations with romantic functioning. Participants (N = 112) in a 35-year prospective study completed the Adult Attachment Interview (AAI) and Current…
Study on Correlation between Neuropeptide and Functional Hypothalamic Amenorrhea
Institute of Scientific and Technical Information of China (English)
陈晓燕; 吕淑兰; 曹缵孙; 毛文军; 宋青
2001-01-01
Objective To explore the correlation between neuropeptide and functional hypothalam ic amenorrhea (FHA)Materials & Methods The basic and GnRH-stimulated levels of serum FSH, LH and plasma β-endorphin (β-EP), somatostatin (SS) in 33 patients with FHA and 17 women with normal menstrual cycles were tested by RIA.Results β-EP level in FHA group was significantly higher than that in control group and had a negative correlation with FSH and LH. The basic SS level in FHA group had no significant difference compared with the control group, but it had negative correlation with LH and no correlation with FSH. β-EP level in FHA group decreased after being stimulated with GnRH, and reached its minimum value after 15 min, then gradually rose back to the basic level. β-EP level in control group had no regular changes. SS level in both group did not change obviously.Conclusion The increased level of β-EP may play an important role in FHA. GnRH can inhibit β-EP level to some extent, while the effect of SS on FHA deserve further research.
Influence of Noise on Time Evolution of Intensity Correlation Function
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Using the linear approximation method, we have studied how the correlation function C(t) of the laser intensity changes with time in the loss-noise model of the single-mode laser driven by the colored pump noise with signal modulation and the quantum noise with cross-correlation between the real and imaginary parts. We have found that when the pump noise self-correlation time τ changes, (I) in the case ofτ 1, the curve only exhibits periodically surging with descending envelope. When τ < 1 and τ does not change, with the increase of the pump noise intensity P, the curve experiences a repeated changing process, that is, from the monotonous descending to the appearance of a maximum, then to monotonous rise, and finally to the appearance of a maximum again. With the increase of the quantum noise intensity Q, the curve experiences a changing process from the monotonous rise to the appearance of a maximum, and finally to the monotonous descending. The increase of the quantum noise with cross-correlation between the real and imaginary parts will lead to the fall of the whole curve, but not affect the form of the time evolution of C(t).
Breuer, H P; Petruccione, F; Breuer, Heinz-Peter; Kappler, Bernd; Petruccione, Francesco
1997-01-01
Within the framework of probability distributions on projective Hilbert space a scheme for the calculation of multitime correlation functions is developed. The starting point is the Markovian stochastic wave function description of an open quantum system coupled to an environment consisting of an ensemble of harmonic oscillators in arbitrary pure or mixed states. It is shown that matrix elements of reduced Heisenberg picture operators and general time-ordered correlation functions can be expressed by time-symmetric expectation values of extended operators in a doubled Hilbert space. This representation allows the construction of a stochastic process in the doubled Hilbert space which enables the determination of arbitrary matrix elements and correlation functions. The numerical efficiency of the resulting stochastic simulation algorithm is investigated and compared with an alternative Monte Carlo wave function method proposed first by Dalibard et al. [Phys. Rev. Lett. {\\bf 68}, 580 (1992)]. By means of a stan...
Institute of Scientific and Technical Information of China (English)
HANLi-Bo; CAOLi; WUDa-Jin; WANGJun
2004-01-01
By using the linear approximation method, the intensity correlation function and the intensity correlation time are calculated in a gain-noise model of a single-mode laser driven by colored cross-correlated pump noise and quantum noise, each of which is colored. We detect that, when the cross-correlation between both noises is negative, the behavior of the intensity correlation function C(t) versus time t, in addition to decreasing monotonously, also exhibits several other cases, such as one maximum, one minimum, and two extrema (one maximum and one minimum), i.e., some parameters of the noises can greatly change the dependence of the intensity correlation function upon time. Moreover, we find that there is a minimum Tmin in the curve of the intensity correlation time versus the pump noise intensity, and the depth and position of Train strongly depend on the quantum noise self-correlation time T2 and cross-correlation time T3.
The 2pt+: an enhanced 2 point correlation function
Ave, M; Cronin, J; Neto, J R T de Mello; Olinto, A V; Pavlidou, V; Privitera, P; Siffert, B B; Schmidt, F; Venters, T
2009-01-01
We introduce a new method for testing departure from isotropy of points on a sphere based on an enhanced form of the two-point correlation function that we named 2pt+. This method uses information from the two extra variables that define the vector between two points on a sphere. We show that this is a powerful method to test departure from isotropy of a distribution of points on a sphere especially when the number of events is small. We apply the method to a few examples in astronomy and discuss the relevance for limited datasets, such as the case of ultra-high energy cosmic rays.
Correlation functions in a c=1 boundary conformal field theory
Kristjansson, K R; Kristjansson, Kristjan R.; Thorlacius, Larus
2005-01-01
We obtain exact results for correlation functions of primary operators in the two-dimensional conformal field theory of a scalar field interacting with a critical periodic boundary potential. Amplitudes involving arbitrary bulk discrete primary fields are given in terms of SU(2) rotation coefficients while boundary amplitudes involving discrete boundary fields are independent of the boundary interaction. Mixed amplitudes involving both bulk and boundary discrete fields can also be obtained explicitly. Two- and three-point boundary amplitudes involving fields at generic momentum are determined, up to multiplicative constants, by the band spectrum in the open-string sector of the theory.
Functional connectivity correlates of response inhibition impairment in anorexia nervosa.
Collantoni, Enrico; Michelon, Silvia; Tenconi, Elena; Degortes, Daniela; Titton, Francesca; Manara, Renzo; Clementi, Maurizio; Pinato, Claudia; Forzan, Monica; Cassina, Matteo; Santonastaso, Paolo; Favaro, Angela
2016-01-30
Anorexia nervosa (AN) is a disorder characterized by high levels of cognitive control and behavioral perseveration. The present study aims at exploring inhibitory control abilities and their functional connectivity correlates in patients with AN. Inhibitory control - an executive function that allows the realization of adaptive behavior according to environmental contingencies - has been assessed by means of the Stop-Signal paradigm. The study involved 155 patients with lifetime AN and 102 healthy women. A subsample underwent resting-state functional magnetic resonance imaging and was genotyped for COMT and 5-HTTLPR polymorphisms. AN patients showed an impaired response inhibition and a disruption of the functional connectivity of the ventral attention circuit, a neural network implicated in behavioral response when a stimulus occurs unexpected. The 5-HTTLPR genotype appears to significantly interact with the functional connectivity of ventral attention network in explaining task performance in both patients and controls, suggesting a role of the serotoninergic system in mechanisms of response selection. The disruption of the ventral attention network in patients with AN suggests lower efficiency of bottom-up signal filtering, which might be involved in difficulties to adapt behavioral responses to environmental needs. Our findings deserve further research to confirm their scientific and therapeutic implications.
FUNCTIONAL ANALYSIS AND GENOTYPE-PHENOTYPE CORRELATIONS IN WILSON DISEASE
Directory of Open Access Journals (Sweden)
Elena Scvortova
2013-10-01
Full Text Available Abstract: Knowledge of how mutations other than p.H1069Q translate into the basic defect in Wilson disease (WD is scarce due to the low incidence of homozygous index cases. A total of 12 homozygous mutations of ATP7B, were examined for their functional activity. Transfected Chinese hamster ovary cells (CHO-K1 exposed to elevated copper levels was used as a model for predicting the severity of different WD mutations. The results of this research have direct implications for WD diagnosis. Our data strongly confirms that phenotypic presentation of the patients is related to the ATP7B mutation, providing evidence for genotype - phenotype correlations and can explain in part the variable clinical features observed in patients with WD. The results we have provided help to highlight the information still needed for understanding the function and malfunction of ATP7B and its role in the disease.
Analytical correlation functions for motion through diffusivity landscapes.
Roosen-Runge, Felix; Bicout, Dominique J; Barrat, Jean-Louis
2016-05-28
Diffusion of a particle through an energy and diffusivity landscape is a very general phenomenon in numerous systems of soft and condensed matter. On the one hand, theoretical frameworks such as Langevin and Fokker-Planck equations present valuable accounts to understand these motions in great detail, and numerous studies have exploited these approaches. On the other hand, analytical solutions for correlation functions, as, e.g., desired by experimentalists for data fitting, are only available for special cases. We explore the possibility to use different theoretical methods in the specific picture of time-dependent switching between diffusive states to derive analytical functions that allow to link experimental and simulation results to theoretical calculations. In particular, we present a closed formula for diffusion switching between two states, as well as a general recipe of how to generalize the formula to multiple states.
Pair correlation functions of strongly coupled two-temperature plasma
Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.
2017-09-01
Using molecular dynamics simulations, we perform the first direct tests of three proposed models for the pair correlation functions of strongly coupled plasmas with species of unequal temperature. The models are all extensions of the Ornstein-Zernike/hypernetted-chain theory used to good success for equilibrium plasmas. Each theory is evaluated at several coupling strengths, temperature ratios, and mass ratios for a model plasma in which the electrons are positively charged. We show that the model proposed by Seuferling et al. [Phys. Rev. A 40, 323 (1989)] agrees well with molecular dynamics over a wide range of mass and temperature ratios, as well as over a range of coupling strength similar to that of the equilibrium hypernetted-chain (HNC) theory. The SVT model also correctly predicts the strength of interspecies correlations and exhibits physically reasonable long-wavelength limits of the static structure factors. Comparisons of the SVT model with the Yukawa one-component plasma (YOCP) model are used to show that ion-ion pair correlations are well described by the YOCP model up to Γe≈1 , beyond which it rapidly breaks down.
Pulmonary alveolar proteinosis: Quantitative CT and pulmonary functional correlations
Energy Technology Data Exchange (ETDEWEB)
Guan, Yubao, E-mail: yubaoguan@163.com [Department of Radiology, the First Affiliated Hospital of Guangzhou Medical College, Guangzhou 510120 (China); State Key Laboratory of Respiratory Disease, Guangzhou 510120 (China); Zeng, Qingsi [Department of Radiology, the First Affiliated Hospital of Guangzhou Medical College, Guangzhou 510120 (China); Yang, Haihong; Zheng, Jinping; Li, Shiyue; Gao, Yi [State Key Laboratory of Respiratory Disease, Guangzhou 510120 (China); Deng, Yu [Department of Radiology, the First Affiliated Hospital of Guangzhou Medical College, Guangzhou 510120 (China); Mei, Jiang [State Key Laboratory of Respiratory Disease, Guangzhou 510120 (China); He, Jianxing, E-mail: jianxing63@163.com [State Key Laboratory of Respiratory Disease, Guangzhou 510120 (China); Zhong, Nanshan, E-mail: nanshan@vip.163.com [State Key Laboratory of Respiratory Disease, Guangzhou 510120 (China)
2012-09-15
Objective: We assessed the relationship between quantitative computer tomography (qCT) and the pulmonary function test (PFT) or blood gas analysis in pulmonary alveolar proteinosis (PAP) patients, as well as the utility of these analyses to monitor responses to whole lung lavage (WLL) therapy. Methods: Thirty-eight PAP patients simultaneously received a CT scan and PFT. Fifteen of these patients, undergoing sequential WLL for a total of 20 lavages, also underwent chest CT scans and blood gas analysis before and after WLL, and 14 of 15 patients underwent simultaneous PFT analysis. Differences between the qCT and PFT results were analyzed by canonical correlation. Results: PAP patients with low predicted values for FVC, FEV1, D{sub LCO} and D{sub LCO}/VA indicated small airspace volume and mean lung inflation, low airspace volume/total lung volume ratio and high mean lung density. Correlation and regression analysis revealed a strong correlation between D{sub LCO} and PaO{sub 2} values with CT results. The qCT results indicated that WLL significantly decreased lung weights and mean lung densities, and improved the total airspace volume/total lung volume ratios and mean lung inflations. Conclusion: Quantitative CT may be a sensitive tool for measuring the response of PAP patients to medical interventions such as WLL.
A Pair Correlation Function Characterizing the Anisotropy of Force Networks
Institute of Scientific and Technical Information of China (English)
SUN Qi-Cheng; JI Shun-Ying
2011-01-01
Force networks may underlie the constitutive relations among granular solids and granular flows and inter-state transitions. However, it is difficult to effectively describe the anisotropy of force networks. We propose a new pair correlation Function g(r, 0) to describe the characteristic lengths and orientations of force chains that are composed of particles with contact forces greater than the threshold values. A formulation g(r,0) ? A(r)+b(r) cos 2(0 -n/2) is used to fit the g(r, 0) data. The characteristic lengths and orientations of force networks are then elucidated.%@@ Force networks may underlie the constitutive relations among granular solids and granular flows and inter-state transitions.However, it is difficult to effectively describe the anisotropy of force networks.We propose a new pair correlation function g(r,θ) to describe the characteristic lengths and orientations of force chains that are composed of particles with contact forces greater than the threshold values.A formulation g(r,θ)≈a(r) + b( r ) cos 2(θ-π/2) is used to fit the g(r,θ) data.The characteristic lengths and orientations of force networks are then elucidated.
Correlating Function and Imaging Measures of the Medial Longitudinal Fasciculus.
Directory of Open Access Journals (Sweden)
Ken Sakaie
Full Text Available To test the validity of diffusion tensor imaging (DTI measures of tissue injury by examining such measures in a white matter structure with well-defined function, the medial longitudinal fasciculus (MLF. Injury to the MLF underlies internuclear ophthalmoparesis (INO.40 MS patients with chronic INO and 15 healthy controls were examined under an IRB-approved protocol. Tissue integrity of the MLF was characterized by DTI parameters: longitudinal diffusivity (LD, transverse diffusivity (TD, mean diffusivity (MD and fractional anisotropy (FA. Severity of INO was quantified by infrared oculography to measure versional disconjugacy index (VDI.LD was significantly lower in patients than in controls in the medulla-pons region of the MLF (p < 0.03. FA was also lower in patients in the same region (p < 0.0004. LD of the medulla-pons region correlated with VDI (R = -0.28, p < 0.05 as did FA in the midbrain section (R = 0.31, p < 0.02.This study demonstrates that DTI measures of brain tissue injury can detect injury to a functionally relevant white matter pathway, and that such measures correlate with clinically accepted evaluation indices for INO. The results validate DTI as a useful imaging measure of tissue integrity.
On Form Factors and Correlation Functions in Twistor Space
Koster, Laura; Staudacher, Matthias; Wilhelm, Matthias
2016-01-01
In this paper, we continue our study of form factors and correlation functions of gauge-invariant local composite operators in the twistor-space formulation of N=4 super Yang-Mills theory. Using the vertices for these operators obtained in our recent papers arXiv:1603.04471 and arXiv:1604.00012, we show how to calculate the twistor-space diagrams for general N^kMHV form factors via the inverse soft limit, in analogy to the amplitude case. For general operators without $\\dot\\alpha$ indices, we then reexpress the NMHV form factors from the position-twistor calculation in terms of momentum twistors, deriving and expanding on a relation between the two twistor formalisms previously observed in the case of amplitudes. Furthermore, we discuss the calculation of generalized form factors and correlation functions as well as the extension to loop level, in particular providing an argument promised in arXiv:1410.6310.
Correlation between static balance and functional autonomy in elderly women.
de Noronha Ribeiro Daniel, Fernanda; de Souza Vale, Rodrigo Gomes; Giani, Tania Santos; Bacellar, Silvia; Escobar, Tatiane; Stoutenberg, Mark; Dantas, Estélio Henrique Martin
2011-01-01
The purpose of the present study was to verify the correlation between static balance and functional autonomy in elderly women. The sample was a random selection of 32 sedentary elderly women (mean age=67.47 ± 7.37 years, body mass index=BMI=27.30 ± 5.07 kg/m(2)), who live in the city of Teresina in the state of Piauí, Brazil. Static balance was analyzed by stabilometric assessment using an electronic baropodometer which measured the average of the amplitude of postural oscillations in the right (RLD) and left (LLD) lateral displacements, anterior (AD) and posterior (PD) displacements, and in the elliptical area (EA) formed by the body's center of gravity. Functional autonomy was evaluated by a battery of tests from the LADEG protocol which is composed of: a 10 m walk (10 mW), getting up from a seated position (GSP), getting up from the prone position (GPP), getting up from a chair and movement around the house (GCMH), and putting on and taking off a shirt (PTS). The Spearman's correlation coefficient (r) indicated a positive and significant correlation between GPP and LLD (r=0.382; p=0.031), GPP and PD (r=0.398; p=0.024) and GPP and EA (r=0.368; p=0.038). These results show that sedentary elderly women who spent the greatest amount of time performing the GPP test achieved the largest mean amplitude of displacement leading to greater levels of instability.
Correlation Function of Circular Wilson Loops at Strong Coupling
Dekel, Amit
2013-01-01
We study the correlation function of two circular Wilson loops at strong coupling in N=4 super Yang-Mills theory. Using the AdS/CFT correspondence, the problem maps to finding the minimal surface between two circles defined on the boundary of AdS, and the fluctuations around the classical solution in AdS_5 x S^5. At the classical level, we derive the string solution in H_3 x S^1 explicitly, and focus on properties such as stability and phase transition. Furthermore, a computation of the associated algebraic curve is given. At the quantum level, the one-loop partition function is constructed by introducing quadratic bosonic and fermionic fluctuations around the classical solution, embedded in AdS_5 x S^5. We find an analytic, formal expression for the partition function in terms of an infinite product by employing the Gel'fand-Yaglom method and supersymmetric regularization. We regulate the expression and evaluate the partition function numerically.
Functional correlates of distractor suppression during spatial working memory encoding.
Toepper, M; Gebhardt, H; Beblo, T; Thomas, C; Driessen, M; Bischoff, M; Blecker, C R; Vaitl, D; Sammer, G
2010-02-17
Executive working memory operations are related to prefrontal regions in the healthy brain. Moreover, neuroimaging data provide evidence for a functional dissociation of ventrolateral and dorsolateral prefrontal cortex. Most authors either suggest a modality-specific or a function-specific prefrontal cortex organization. In the present study we particularly aimed at the identification of different prefrontal cerebral areas that are involved in executive inhibitory processes during spatial working memory encoding. In an fMRI study (functional magnetic resonance imaging) we examined the neural correlates of spatial working memory processing by varying the amount of executive demands of the task. Twenty healthy volunteers performed the Corsi Block-Tapping test (CBT) during fMRI. The CBT requires the storage and reproduction of spatial target sequences. In a second condition, we presented an adapted version of the Block-Suppression-Test (BST). The BST is based on the original CBT but additionally requires the active suppression of visual distraction within the target sequences. In comparison to the CBT performance, particularly the left dorsolateral prefrontal cortex (BA 9) showed more activity during the BST condition. Our results show that the left dorsolateral prefrontal cortex plays a crucial role for executive controlled inhibition of spatial distraction. Furthermore, our findings are in line with the processing model of a functional dorsolateral-ventrolateral prefrontal cortex organization.
Modrzejewski, Marcin; Rajchel, Łukasz; Szczęśniak, Małgorzata M; Chałasiński, Grzegorz
2014-01-01
We present a physically motivated correlation functional belonging to the meta-generalized gradient approximation (meta-GGA) rung, which can be supplemented with long-range dispersion corrections without introducing double-counting of correlation contributions. The functional is derived by the method of constraint satisfaction, starting from an analytical expression for a real-space spin-resolved correlation hole. The model contains a position-dependent function that controls the range of the interelectronic correlations described by the semilocal functional. With minimal empiricism, this function may be adjusted so that the correlation model blends with a specific dispersion correction describing long-range contributions. For a preliminary assessment, our functional has been combined with the DFT-D3 dispersion correction and full Hartree-Fock (HF)-like exchange. Despite the HF-exchange approximation, its predictions compare favorably with reference interaction energies in an extensive set of non-covalently b...
Directory of Open Access Journals (Sweden)
O.V.Patsahan
2006-01-01
Full Text Available Based on the method of collective variables (CV with a reference system, the exact expression for the functional of the grand partition function of a m-component ionic model with charge and size asymmetry is found. Particular attention is paid to the n-th particle correlation functions of the reference system which is presented as a m-component system of "colour" hard spheres of the same diameter. A two-component model is considered in more detail. In this case the recurrence formulas for the correlation functions are found. A general case of a m-component inhomogeneous system of the "colour" hard spheres is also analysed.
Institute of Scientific and Technical Information of China (English)
Bing Wang; Xiuqing Wu
2008-01-01
@@ Considering a single-mode laser system with cross-correlated additive colored noise and multiplicative colored noise, we study the effects of correlation among noises on the normalized intensity correlation function C(s).C(s) is derived by means of the projection operator method.
Bedirian, Ricardo; Neves, Mario Fritsch; Oigman, Wille; Gismondi, Ronaldo Altenburg Odebrecht Curi; Pozzobon, Cesar Romaro; Ladeira, Marcia Cristina Boaventura; Castier, Marcia Bueno
2016-01-01
Background: Endothelial dysfunction may be involved in the pathophysiology of cardiac abnormalities in patients with diabetes mellitus (DM). A correlation between endothelial dysfunction and diastolic dysfunction in patients with type 1 DM has been demonstrated, but this relationship has not been well investigated in type 2 DM. Objective: Compare groups of patients with type 2 DM and hypertension with and without diastolic dysfunction using endothelial function indexes, and to assess whether correlations exist between the diastolic function and the endothelial function indexes. Method: This was a cross-sectional study of 34 men and women with type 2 DM and hypertension who were aged between 40 and 70 years and were categorized based on assessments of their Doppler echocardiographic parameters as having normal (14 patients) and abnormal (20 patients) diastolic function. Flow-mediated dilatation (FMD) assessments of the brachial artery evaluated the patients’ endothelial function. Results: The mean maximum FMD was 7.15 ± 2.80% for the patients with diastolic dysfunction and it was 11.85 ± 4.77% for the patients with normal diastolic function (p = 0.004). Correlations existed between the maximum FMD and the E/e' ratio (p = 0.040, r = -0.354) and the early wave velocity (e') at the lateral mitral annulus (p = 0.002, r = 0.509). Conclusion: The endothelial function assessed by FMD was worse in hypertensive diabetic patients with diastolic dysfunction. There were correlations between the diastolic function indexes and the endothelial function indexes in our sample. PMID:27867429
Institute of Scientific and Technical Information of China (English)
Bing Wang; Xiuqing Wu
2007-01-01
A single-mode laser system with colored cross-correlated additive and multiplicative noise terms is considered. By the means of projection operator method, we study the effects of the cross-correlation time τ and the cross-correlation intensity λ between noises on the normalized intensity correlation function C(s). It is found that if λ＞ 0 (λ＜ 0), the normalized intensity correlation function C(s) increases (decreases) with increasing the cross-correlation time τ, and at large value of τ, the variation of the normalized intensity correlation function C(s) becomes small. With the increase of the net gain a0, C(s) exhibits a maximum when λ is larger. However, a minimum and a maximum appear on C(s) curves with the increase of a0 when λ becomes smaller and smaller.
Relativistic Kinetic-Balance Condition for Explicitly Correlated Basis Functions
Simmen, Benjamin; Reiher, Markus
2015-01-01
This paper presents the derivation of a kinetic-balance condition for explicitly correlated basis functions employed in semi-classical relativistic calculations. Such a condition is important to ensure variational stability in algorithms based on the first-quantized Dirac theory of 1/2-fermions. We demonstrate that the kinetic-balance condition can be obtained from the row reduction process commonly applied to solve systems of linear equations. The resulting form of kinetic balance establishes a relation for the $4^N$ components of the spinor of an $N$-fermion system to the non-relativistic limit, which is in accordance with recent developments in the field of exact decoupling in relativistic orbital-based many-electron theory.
Charmonium correlation and spectral functions at finite temperature
Ding, H -T; Kaczmarek, O; Karsch, F; Satz, H; Soeldner, W
2010-01-01
We study the properties of charmonium states at finite temperature in quenched QCD on isotropic lattices. We measured charmonium correlators using non-perturbatively $\\cO(a)$ improved clover fermions on fine ($a=0.01$ fm) lattices with a relatively large size of $128^{3}\\times 96$, $128^3\\times48$, $128^3\\times32$ and $128^3\\times24$ at $0.73~T_c$, $1.46~T_c$, $2.20~T_c$ and $2.93~T_c$, respectively. Our analysis suggests that $\\Jpsi$ is melted already at $1.46~T_c$ and $\\eta_c$ starts to dissolve at $1.46~T_c$ and does not exist at higher temperatures. We also identify the heavy quark transport contribution at the spectral function level for the first time.
A marked correlation function for constraining modified gravity models
White, Martin
2016-01-01
Future large scale structure surveys will provide increasingly tight constraints on our cosmological model. These surveys will report results on the distance scale and growth rate of perturbations through measurements of Baryon Acoustic Oscillations and Redshift-Space Distortions. It is interesting to ask: what further analyses should become routine, so as to test as-yet-unknown models of cosmic acceleration? Models which aim to explain the accelerated expansion rate of the Universe by modifications to General Relativity often invoke screening mechanisms which can imprint a non-standard density dependence on their predictions. This suggests density-dependent clustering as a `generic' constraint. This paper argues that a density-marked correlation function provides a density-dependent statistic which is easy to compute and report and requires minimal additional infrastructure beyond what is routinely available to such survey analyses. We give one realization of this idea and study it using low order perturbati...
Functional Cortical Network in Alpha Band Correlates with Social Bargaining
Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco
2014-01-01
Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals’ alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts. PMID:25286240
[Correlations of consciousness and the default function of the brain].
Gyulaházi, Judit; Varga, Katalin
2014-01-30
Neural correlation with consciousness represents a main topic of neuroscience studies. New results of consciousness researches proved that based on a coherent function in between its components the default mode network activity is the condition for awake consciousness. The subject of consciousness is self. Tasks related with the self were proving a high default mode network activity. Using connections inside the network, results which were related with self, could be considered to represent a polymodal integration system are they are participating in fine processing of the highly integrated associative information. It could be a result of the convergence of cognitive binding. There is a strong connection between the level of consciousness and praecuneal activation. It was proved that the network activity is changing during sleeping (normal condition), trauma or under drug induced altered consciousness. The default network activity can be considered as the neural correlate of consciousness. Further researches are warranted to answer the question: is the activity of the network the cause or is just accompanying the development of human consciousness?
Hadronic correlation functions in the random instanton-dyon ensemble
Larsen, Rasmus; Shuryak, Edward
2017-08-01
It is known since the 1980s that the instanton-induced 't Hooft effective Lagrangian not only can solve the so-called U (1 )a problem, by making the η' meson heavy etc., but it can also lead to chiral symmetry breaking. In the 1990s it was demonstrated that, taken to higher orders, this Lagrangian correctly reproduces effective forces in a large set of hadronic channels, mesonic and baryonic ones. Recent progress in understanding gauge topology at finite temperatures is related with the so-called instanton-dyons, the constituents of the instantons. Some of them, called L -dyons, possess the antiperiodic fermionic zero modes, and thus form a new version of the 't Hooft effective Lagrangian. This paper is our first study of a wide set of hadronic correlation function. We found that, at the lowest temperatures at which this approach is expected to be applicable, those may be well compatible with what is known about them based on phenomenological and lattice studies, provided L and M type dyons are strongly correlated.
Using Hierarchical Structure Glowworm Swarm Algorithm for Function Optimization%用于函数优化的层次结构萤火虫群算法
Institute of Scientific and Technical Information of China (English)
李咏梅; 周永权; 韦军
2012-01-01
基于人工萤火虫群优化算法,参考人类社会商业组织中的分层管理模式,将人工萤火虫群随机地分布在一个层次结构中,并在过程中加入变异因子,改进基本人工萤火虫群优化算法,提出用于函数优化的层次结构人工萤火虫群优化算法.对4个标准函数的测试表明,层次结构萤火虫群算法在高维函数优化方面比基本人工萤火虫群优化算法性能更优.%Based on artificial glowworm swarm optimization algorithm and cooperation in hierarchical social organization, a new hierarchical glowworm swarm optimization (HGSO) is proposed. A mutation operator is added into the HGSO. Tests on four standard functions show that the HGSO algorithm in the high dimension function optimization has better performance than the basic artificial GSO algorithm.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yongxi; Ernzerhof, Matthias, E-mail: Matthias.Ernzerhof@UMontreal.ca [Département de Chimie, Université de Montréal, C.P. 6128, Succursale A, Montréal, Québec H3C 3J7 (Canada); Bahmann, Hilke [Department of Chemistry, Technische Universität Berlin, Strasse des 17 Juni, Berlin (Germany)
2015-09-28
Drawing on the adiabatic connection of density functional theory, exchange-correlation functionals of Kohn-Sham density functional theory are constructed which interpolate between the extreme limits of the electron-electron interaction strength. The first limit is the non-interacting one, where there is only exchange. The second limit is the strong correlated one, characterized as the minimum of the electron-electron repulsion energy. The exchange-correlation energy in the strong-correlation limit is approximated through a model for the exchange-correlation hole that is referred to as nonlocal-radius model [L. O. Wagner and P. Gori-Giorgi, Phys. Rev. A 90, 052512 (2014)]. Using the non-interacting and strong-correlated extremes, various interpolation schemes are presented that yield new approximations to the adiabatic connection and thus to the exchange-correlation energy. Some of them rely on empiricism while others do not. Several of the proposed approximations yield the exact exchange-correlation energy for one-electron systems where local and semi-local approximations often fail badly. Other proposed approximations generalize existing global hybrids by using a fraction of the exchange-correlation energy in the strong-correlation limit to replace an equal fraction of the semi-local approximation to the exchange-correlation energy in the strong-correlation limit. The performance of the proposed approximations is evaluated for molecular atomization energies, total atomic energies, and ionization potentials.
2012-08-23
hierarchical, primary particles, secondary particles, SANS, SAXS, rheology Dhairyashil P. Mohite, Zachary J. Larimore, H. Lu, Joseph T. Mang ...15. NUMBER OF PAGES 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM ELEMENT NUMBER 5b. GRANT NUMBER 5a. CONTRACT NUMBER...Zachary J. Larimore,† H. Lu,*,‡ Joseph T. Mang ,*,§ Chariklia Sotiriou-Leventis,*,† and Nicholas Leventis*,† †Department of Chemistry, Missouri
Correlation between thyroid function and nodular goiter accompanied with gallstone
Institute of Scientific and Technical Information of China (English)
Shihong Ma; Qinjiang Liu; Xiaofeng Hou
2014-01-01
The-purpose-of-the-study-wass-to-explore-the-correlation-between-thyroid-function-and-nodular-goiter-accompanied-with-gal-stone.-Methods:We-col-ected-120-cases-about-nodular-goiter-accompanied-with-gal-stone-and-128-cases-about-nodular-goiter-and-establish-50-healthy-control-groups.-Detected-t-level-of-hyrotropic-hormone-(TSH),-total-tri-o-dothyronine-(TT3),-total-thyroxine-in-the-peripheral-venous-blood-of-these-cases-in-the-three-groups-by-using-electrochemilu-minescence-immunoassay,-measure-level-of-total-cholesterol-(TC),-high-density-lipoprotein-cholesterol-(HDL-C),-low-density-lipoprotein-cholesterol-(LDL-C)-and-total-bile-acid-(TBA)-levels-by-using-enzymic-method,-and-observed-the-changes-of-thyroid-function-and-blood-lipid-among-the-three-groups.-Results:The-serum-TT3-level-in-nodular-goiter-accompanied-with-gal-stone-group-and-the-nodular-goiter-group-was-significantly-lower-than-that-in-control-group-(P0.05).-Accordingly,-TC-and-LDL-C-level-in-nodular-goiter-accompanied-with-gal-stone-group-was-significantly-higher-than-that-in-nodular-goiter-and-control-group-(P0.05).-The-HDL-C-level-in-nodular-goiter-accompanied-with-gal-stone-group-and-control-group-was-higher-than-that-in-simple-nodular-goiter-group-(P<0.01).-Conclusion:The-originating-etiologic-factor-of-nodular-goiter-accompanied-with-gal-stone-may-be-related-to-that-the-decreased-TT3-induced-sub-clinical-hypothyroidism.
Study of structure function correlation of chemokine receptor CXCR4
Institute of Scientific and Technical Information of China (English)
ZHENG Hong; Stephen C PEIPER; ZHU Xi-hua
2002-01-01
Objective: To explore the correlation between structure domains and functions of chemokine receptor CXCR4. Methods: After the establishment of wild type chemokine receptor CXCR4 and CXCR2 expressing cell lines, 5 CXCR4/CXCR2 chimeras, 2 CXCR4 mutants were stably expressed on CHO cell line.Binding activities of all variants with the ligand, recombinant human SDF-1β, signal transduction ability after stimulation and their function as coreceptor for HIV-1 were studied with ligand-binding assay, Cytosensor/microphysiometry and cell-cell reporter gene fusion assay. Results: Among all 7 changed CXCR4 receptors, 3 chimeras (2444a, 4442, 4122), and 1 mutant (CXCR4-Tr) bond with SDF-1β in varying degrees, of which only 2444a totally and CXCR4-Tr partially maintain signaling. All changed receptors except for 4222 could act as coreceptors for HIV-1(LAI) in varying degrees. Conclusion: Several structure domains of CXCR4 are involved in the binding with SDF-1β, among which, N-terminal extracellular domain has high affinity of binding with SDF-1β, and the 3rd extracellular loop contributes to the binding, too. Although the C-terminal intracellular domain has no association with the maintenance of the overall structure of the receptor and ligand binding capability, the signaling is decreased when this domain is truncated. For CXCR4 signaling, not only is the conserved motif DRY box needed, but also the characterized conformation of the whole molecule must be formed when activation is required. There are some overlaps between SDF-1β binding domains and coreceptor function domains in molecular structure of CXCR4.
Pearce, Dave; Walter, Anton; Lupton, W. F.; Warren-Smith, Rodney F.; Lawden, Mike; McIlwrath, Brian; Peden, J. C. M.; Jenness, Tim; Draper, Peter W.
2015-02-01
The Hierarchical Data System (HDS) is a file-based hierarchical data system designed for the storage of a wide variety of information. It is particularly suited to the storage of large multi-dimensional arrays (with their ancillary data) where efficient access is needed. It is a key component of the Starlink software collection (ascl:1110.012) and is used by the Starlink N-Dimensional Data Format (NDF) library (ascl:1411.023). HDS organizes data into hierarchies, broadly similar to the directory structure of a hierarchical filing system, but contained within a single HDS container file. The structures stored in these files are self-describing and flexible; HDS supports modification and extension of structures previously created, as well as functions such as deletion, copying, and renaming. All information stored in HDS files is portable between the machines on which HDS is implemented. Thus, there are no format conversion problems when moving between machines. HDS can write files in a private binary format (version 4), or be layered on top of HDF5 (version 5).
The Galaxy Count Correlation Function in Redshift Space Revisited
Campagne, J.-E.; Plaszczynski, S.; Neveu, J.
2017-08-01
In the near future, cosmology will enter the wide and deep galaxy survey era, enabling high-precision studies of the large-scale structure of the universe in three dimensions. To test cosmological models and determine their parameters accurately, it is necessary to use data with exact theoretical expectations expressed in observational parameter space (angles and redshift). The data-driven, galaxy number count fluctuations on redshift shells can be used to build correlation functions ξ (θ ,{z}1,{z}2) on and between shells to probe the baryonic acoustic oscillations and distance-redshift distortions, as well as gravitational lensing and other relativistic effects. To obtain a numerical estimation of ξ (θ ,{z}1,{z}2) from a cosmological model, it is typical to use either a closed form derived from a tripolar spherical expansion or to compute the power spectrum {C}{\\ell }({z}1,{z}2) and perform a Legendre polynomial {P}{\\ell }(\\cos θ ) expansion. Here, we present a new derivation of a ξ (θ ,{z}1,{z}2) closed form using the spherical harmonic expansion and proceeding to an infinite sum over multipoles thanks to an addition theorem. We demonstrate that this new expression is perfectly compatible with the existing closed forms but is simpler to establish and manipulate. We provide formulas for the leading density and redshift-space contributions, but also show how Doppler-like and lensing terms can be easily included in this formalism. We have implemented and made publicly available software for computing those correlations efficiently, without any Limber approximation, and validated this software with the CLASSgal code. It is available at https://gitlab.in2p3.fr/campagne/AngPow.
Transport through correlated systems with density functional theory
Kurth, S.; Stefanucci, G.
2017-10-01
We present recent advances in density functional theory (DFT) for applications in the field of quantum transport, with particular emphasis on transport through strongly correlated systems. We review the foundations of the popular Landauer–Büttiker(LB) + DFT approach. This formalism, when using approximations to the exchange-correlation (xc) potential with steps at integer occupation, correctly captures the Kondo plateau in the zero bias conductance at zero temperature but completely fails to capture the transition to the Coulomb blockade (CB) regime as the temperature increases. To overcome the limitations of LB + DFT, the quantum transport problem is treated from a time-dependent (TD) perspective using TDDFT, an exact framework to deal with nonequilibrium situations. The steady-state limit of TDDFT shows that in addition to an xc potential in the junction, there also exists an xc correction to the applied bias. Open shell molecules in the CB regime provide the most striking examples of the importance of the xc bias correction. Using the Anderson model as guidance we estimate these corrections in the limit of zero bias. For the general case we put forward a steady-state DFT which is based on one-to-one correspondence between the pair of basic variables, steady density on and steady current across the junction and the pair local potential on and bias across the junction. Like TDDFT, this framework also leads to both an xc potential in the junction and an xc correction to the bias. Unlike TDDFT, these potentials are independent of history. We highlight the universal features of both xc potential and xc bias corrections for junctions in the CB regime and provide an accurate parametrization for the Anderson model at arbitrary temperatures and interaction strengths, thus providing a unified DFT description for both Kondo and CB regimes and the transition between them.
Temporal discrimination, a cervical dystonia endophenotype: penetrance and functional correlates.
Kimmich, Okka; Molloy, Anna; Whelan, Robert; Williams, Laura; Bradley, David; Balsters, Joshua; Molloy, Fiona; Lynch, Tim; Healy, Daniel G; Walsh, Cathal; O'Riordan, Seán; Reilly, Richard B; Hutchinson, Michael
2014-05-01
The pathogenesis of adult-onset primary dystonia remains poorly understood. There is variable age-related and gender-related expression of the phenotype, the commonest of which is cervical dystonia. Endophenotypes may provide insight into underlying genetic and pathophysiological mechanisms of dystonia. The temporal discrimination threshold (TDT)-the shortest time interval at which two separate stimuli can be detected as being asynchronous-is abnormal both in patients with cervical dystonia and in their unaffected first-degree relatives. Functional magnetic resonance imaging (fMRI) studies have shown that putaminal activation positively correlates with the ease of temporal discrimination between two stimuli in healthy individuals. We hypothesized that abnormal temporal discrimination would exhibit similar age-related and gender-related penetrance as cervical dystonia and that unaffected relatives with an abnormal TDT would have reduced putaminal activation during a temporal discrimination task. TDTs were examined in a group of 192 healthy controls and in 158 unaffected first-degree relatives of 84 patients with cervical dystonia. In 24 unaffected first-degree relatives, fMRI scanning was performed during a temporal discrimination task. The prevalence of abnormal TDTs in unaffected female relatives reached 50% after age 48 years; whereas, in male relatives, penetrance of the endophenotype was reduced. By fMRI, relatives who had abnormal TDTs, compared with relatives who had normal TDTs, had significantly less activation in the putamina and in the middle frontal and precentral gyri. Only the degree of reduction of putaminal activity correlated significantly with worsening of temporal discrimination. These findings further support abnormal temporal discrimination as an endophenotype of cervical dystonia involving disordered basal ganglia circuits. © 2014 International Parkinson and Movement Disorder Society.
Rogers, Jeremy D.
2016-03-01
Numerous methods have been developed to quantify the light scattering properties of tissue. These properties are of interest in diagnostic and screening applications due to sensitivity to changes in tissue ultrastructure and changes associated with disease such as cancer. Tissue is considered a weak scatterer because that the mean free path is much larger than the correlation length. When this is the case, all scattering properties can be calculated from the refractive index correlation function Bn(r). Direct measurement of Bn(r) is challenging because it requires refractive index measurement at high resolution over a large tissue volume. Instead, a model is usually assumed. One particularly useful model, the Whittle-Matern function includes several realistic function types such as mass fractal and exponential. Optical scattering properties for weakly scattering media can be determined analytically from Bn(r) by applying the Rayleigh-Gans-Debye (RGD) or Born Approximation, and so measured scattering properties are used to fit parameters of the model function. Direct measurement of Bn(r) would provide confirmation that the function is a good representation of tissue or help in identifying the length scale at which changes occur. The RGD approximation relates the scattering phase function to the refractive index correlation function through a Fourier transform. This can be inverted without approximation, so goniometric measurement of the scattering can be converted to Bn(r). However, geometric constraints of the measurement of the phase function, angular resolution, and wavelength result in a band limited measurement of Bn(r). These limits are discussed and example measurements are described.
Hine, N D M; Haynes, P D; Mostofi, A A; Payne, M C
2010-09-21
We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.
Determinant representations for correlation functions of spin-1/2 Heisenberg XXZ magnets
Essler, F H L; Izergin, A G; Korepin, V E
1994-01-01
We consider correlation functions of the spin-\\half XXX and XXZ Heisenberg chains in a magnetic field. Starting from the algebraic Bethe Ansatz we derive representations for various correlation functions in terms of determinants of Fredholm integral operators.
Directory of Open Access Journals (Sweden)
Feng-Hsiang Chung
Full Text Available Gene-set-based analysis (GSA, which uses the relative importance of functional gene-sets, or molecular signatures, as units for analysis of genome-wide gene expression data, has exhibited major advantages with respect to greater accuracy, robustness, and biological relevance, over individual gene analysis (IGA, which uses log-ratios of individual genes for analysis. Yet IGA remains the dominant mode of analysis of gene expression data. The Connectivity Map (CMap, an extensive database on genomic profiles of effects of drugs and small molecules and widely used for studies related to repurposed drug discovery, has been mostly employed in IGA mode. Here, we constructed a GSA-based version of CMap, Gene-Set Connectivity Map (GSCMap, in which all the genomic profiles in CMap are converted, using gene-sets from the Molecular Signatures Database, to functional profiles. We showed that GSCMap essentially eliminated cell-type dependence, a weakness of CMap in IGA mode, and yielded significantly better performance on sample clustering and drug-target association. As a first application of GSCMap we constructed the platform Gene-Set Local Hierarchical Clustering (GSLHC for discovering insights on coordinated actions of biological functions and facilitating classification of heterogeneous subtypes on drug-driven responses. GSLHC was shown to tightly clustered drugs of known similar properties. We used GSLHC to identify the therapeutic properties and putative targets of 18 compounds of previously unknown characteristics listed in CMap, eight of which suggest anti-cancer activities. The GSLHC website http://cloudr.ncu.edu.tw/gslhc/ contains 1,857 local hierarchical clusters accessible by querying 555 of the 1,309 drugs and small molecules listed in CMap. We expect GSCMap and GSLHC to be widely useful in providing new insights in the biological effect of bioactive compounds, in drug repurposing, and in function-based classification of complex diseases.
Atmospheric stellar parameters from cross-correlation functions
Malavolta, L.; Lovis, C.; Pepe, F.; Sneden, C.; Udry, S.
2017-08-01
The increasing number of spectra gathered by spectroscopic sky surveys and transiting exoplanet follow-up has pushed the community to develop automated tools for atmospheric stellar parameters determination. Here we present a novel approach that allows the measurement of temperature (Teff), metallicity ([Fe/H]) and gravity (log g) within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, our technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. We use literature stellar parameters of high signal-to-noise (SNR), high-resolution HARPS spectra of FGK main-sequence stars to calibrate Teff, [Fe/H] and log g as a function of CCF parameters. Our technique is validated using low-SNR spectra obtained with the same instrument. For FGK stars we achieve a precision of σ _{{T_eff}} = 50 K, σlog g = 0.09 dex and σ _{{{[Fe/H]}}} =0.035 dex at SNR = 50, while the precision for observation with SNR ≳ 100 and the overall accuracy are constrained by the literature values used to calibrate the CCFs. Our approach can easily be extended to other instruments with similar spectral range and resolution or to other spectral range and stars other than FGK dwarfs if a large sample of reference stars is available for the calibration. Additionally, we provide the mathematical formulation to convert synthetic equivalent widths to CCF parameters as an alternative to direct calibration. We have made our tool publicly available.
Conservation Laws in Quantum-Correlation-Function Dynamics
Directory of Open Access Journals (Sweden)
Wei Wang
2010-01-01
Full Text Available For a complete and lucid discussion of quantum correlation, we introduced two new first-order correlation tensors defined as linear combinations of the general coherence tensors of the quantized fields and derived the associated coherence potentials governing the propagation of quantum correlation. On the basis of these quantum optical coherence tensors, we further introduced new concepts of scalar, vector and tensor densities and presented some related properties, such as conservation laws and the wave-particle duality for quantum correlation, which provide new insights into photon statistics and quantum correlation.
Finite volume form factors and correlation functions at finite temperature
Pozsgay, Balázs
2009-01-01
In this thesis we investigate finite size effects in 1+1 dimensional integrable QFT. In particular we consider matrix elements of local operators (finite volume form factors) and vacuum expectation values and correlation functions at finite temperature. In the first part of the thesis we give a complete description of the finite volume form factors in terms of the infinite volume form factors (solutions of the bootstrap program) and the S-matrix of the theory. The calculations are correct to all orders in the inverse of the volume, only exponentially decaying (residual) finite size effects are neglected. We also consider matrix elements with disconnected pieces and determine the general rule for evaluating such contributions in a finite volume. The analytic results are tested against numerical data obtained by the truncated conformal space approach in the Lee-Yang model and the Ising model in a magnetic field. In a separate section we also evaluate the leading exponential correction (the $\\mu$-term) associate...
Atlas-based diffusion tensor imaging correlates of executive function
Nowrangi, Milap A.; Okonkwo, Ozioma; Lyketsos, Constantine; Oishi, Kenichi; Mori, Susumu; Albert, Marilyn; Mielke, Michelle M.
2015-01-01
Impairment in executive function (EF) is commonly found in Alzheimer’s Dementia (AD) and Mild Cognitive Impairment (MCI). Atlas-based Diffusion Tensor Imaging (DTI) methods may be useful in relating regional integrity to EF measures in MCI and AD. 66 participants (25 NC, 22 MCI, and 19 AD) received DTI scans and clinical evaluation. DTI scans were applied to a pre-segmented atlas and fractional anisotropy (FA) and mean diffusivity (MD) were calculated. ANOVA was used to assess group differences in frontal, parietal, and cerebellar regions. For regions differing between groups (p<0.01), linear regression examined the relationship between EF scores and regional FA and MD. Anisotropy and diffusivity in frontal and parietal lobe white matter (WM) structures were associated with EF scores in MCI and only frontal lobe structures in AD. EF was more strongly associated with FA than MD. The relationship between EF and anisotropy and diffusivity was strongest in MCI. These results suggest that regional WM integrity is compromised in MCI and AD and that FA may be a better correlate of EF than MD. PMID:25318544
Integrable dissipative exclusion process: Correlation functions and physical properties
Crampe, N.; Ragoucy, E.; Rittenberg, V.; Vanicat, M.
2016-09-01
We study a one-parameter generalization of the symmetric simple exclusion process on a one-dimensional lattice. In addition to the usual dynamics (where particles can hop with equal rates to the left or to the right with an exclusion constraint), annihilation and creation of pairs can occur. The system is driven out of equilibrium by two reservoirs at the boundaries. In this setting the model is still integrable: it is related to the open XXZ spin chain through a gauge transformation. This allows us to compute the full spectrum of the Markov matrix using Bethe equations. We also show that the stationary state can be expressed in a matrix product form permitting to compute the multipoints correlation functions as well as the mean value of the lattice and the creation-annihilation currents. Finally, the variance of the lattice current is computed for a finite-size system. In the thermodynamic limit, it matches the value obtained from the associated macroscopic fluctuation theory.
On Soft Limits of Large-Scale Structure Correlation Functions
Ben-Dayan, Ido; Porto, Rafael A; Sagunski, Laura
2014-01-01
We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we re-derive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literature: The time-flow formalism, and a background method where the soft mode is absorbed into a locally curved cosmology. The latter has been recently used to set up (angular averaged) `equal-time consistency relations'. We explicitly demonstrate that the time-flow relations and `equal-time consistency conditions' are only fulfilled at the linear level, and fail at next-to-leading order for an Einstein de-Sitter universe. While applied to the velocities both proposals break down beyond leading order, we find that the `equal-...
On soft limits of large-scale structure correlation functions
Energy Technology Data Exchange (ETDEWEB)
Ben-Dayan, Ido; Konstandin, Thomas; Porto, Rafael A.; Sagunski, Laura [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group
2014-11-15
We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we rederive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literature: The time-flow formalism, and a background method where the soft mode is absorbed into a locally curved cosmology. The latter has been recently used to set up (angular averaged) 'equal-time consistency relations'. We explicitly demonstrate that the time-flow relations and 'equal-time consistency conditions' are only fulfilled at the linear level, and fail at next-to-leading order for an Einstein de-Sitter universe. While applied to the velocities both proposals break down beyond leading order, we find that the 'equal-time consistency conditions' quantitatively approximates the perturbative results for the density contrast. Thus, we generalize the background method to properly incorporate the effect of curvature in the density and velocity fluctuations on short scales, and discuss the reasons behind this discrepancy. We conclude with a few comments on practical implementations and future directions.
Chao Zhu; Yantao Shi; Chun Cheng; Lin Wang; Kwok Kwong Fung; Ning Wang
2012-01-01
We report an effective method for mass production of ZnO hierarchical flowers (HFs) that are constructed by interlaced single crystalline ZnO nanosheets with dominant surfaces of {112¯0} and {11¯00}. The size of ZnO HFs, thickness and parking density of the nanosheets, and HF inner porosity can be tuned by changing the synthesis conditions. The HFs containing porous inner structures showed an excellent performance as the photoanode material in quasi-solid (using polymer gel electrolytes) dye-...
Energy Technology Data Exchange (ETDEWEB)
Li, Yinhui, E-mail: lillian09281@hotmail.com; Zhang, Na; Chen, Jianxin, E-mail: chjx2000@126.com; Li, Ruijuan; Li, Liang; Li, Kunyu [Hebei University of Technology, School of Marine Science and Engineering, Engineering Research Center of Seawater Utilization Technology, Ministry of Education (China)
2016-02-15
The α-Fe{sub 2}O{sub 3}/TiO{sub 2} bi-functional composites with hierarchical and hollow structures are fabricated through a hydrothermal route. The adsorption performance and photocatalytic activity of the composites towards Pb{sup 2+} are investigated in this work. Different adsorption kinetics models and equilibrium models are used to explore the adsorption behavior of hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres. Experimental data show that adsorption kinetics of the hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres can be fitted well by the pseudo-second-order model, while the isothermal data can be perfectly described by the Langmuir adsorption model. The maximum adsorption capacity of the hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres is 32.36 mg g{sup −1}. Moreover, the hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres possess photocatalytic oxidation character under simulated solar light irradiation. The results demonstrate that the hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres, as effective and cheap materials, can be applied to the removal of heavy metal ions from wastewater.
Mattsson, Ann E.; Wills, John M.
2013-03-01
The inability to computationally describe the physics governing the properties of actinides and their alloys is the poster child of failure of existing Density Functional Theory exchange-correlation functionals. The intricate competition between localization and delocalization of the electrons, present in these materials, exposes the limitations of functionals only designed to properly describe one or the other situation. We will discuss the manifestation of this competition in real materials and propositions on how to construct a functional able to accurately describe properties of these materials. I addition we will discuss both the importance of using the Dirac equation to describe the relativistic effects in these materials, and the connection to the physics of transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
On soft limits of large-scale structure correlation functions
Energy Technology Data Exchange (ETDEWEB)
Sagunski, Laura
2016-08-15
Large-scale structure surveys have the potential to become the leading probe for precision cosmology in the next decade. To extract valuable information on the cosmological evolution of the Universe from the observational data, it is of major importance to derive accurate theoretical predictions for the statistical large-scale structure observables, such as the power spectrum and the bispectrum of (dark) matter density perturbations. Hence, one of the greatest challenges of modern cosmology is to theoretically understand the non-linear dynamics of large-scale structure formation in the Universe from first principles. While analytic approaches to describe the large-scale structure formation are usually based on the framework of non-relativistic cosmological perturbation theory, we pursue another road in this thesis and develop methods to derive generic, non-perturbative statements about large-scale structure correlation functions. We study unequal- and equal-time correlation functions of density and velocity perturbations in the limit where one of their wavenumbers becomes small, that is, in the soft limit. In the soft limit, it is possible to link (N+1)-point and N-point correlation functions to non-perturbative 'consistency conditions'. These provide in turn a powerful tool to test fundamental aspects of the underlying theory at hand. In this work, we first rederive the (resummed) consistency conditions at unequal times by using the so-called eikonal approximation. The main appeal of the unequal-time consistency conditions is that they are solely based on symmetry arguments and thus are universal. Proceeding from this, we direct our attention to consistency conditions at equal times, which, on the other hand, depend on the interplay between soft and hard modes. We explore the existence and validity of equal-time consistency conditions within and beyond perturbation theory. For this purpose, we investigate the predictions for the soft limit of the
Ivantsov, Ilya; Ferraz, Alvaro; Kochetov, Evgenii
2016-01-01
We perform quantum Monte Carlo simulations of the itinerant-localized periodic Kondo-Heisenberg model for the underdoped cuprates to calculate the associated spin correlation functions. The strong electron correlations are shown to play a key role in the abrupt destruction of the quasi long-range antiferromagnetic order in the lightly doped regime.
Ivantsov, Ilya; Ferraz, Alvaro; Kochetov, Evgenii
2016-12-01
We perform quantum Monte Carlo simulations of the itinerant-localized periodic Kondo-Heisenberg model for the underdoped cuprates to calculate the associated spin correlation functions. The strong electron correlations are shown to play a key role in the abrupt destruction of the quasi-long-range antiferromagnetic order in the lightly doped regime.
Zhu, Yang; Morisato, Kei; Li, Wenyan; Kanamori, Kazuyoshi; Nakanishi, Kazuki
2013-03-01
Silver nanoparticles (Ag NPs) have been homogeneously introduced into hierarchically porous monolithic silica columns with well-defined macropores and SBA-15-type hexagonally ordered mesopores by using ethanol as the mild reductant. Within the cylindrical silica mesopores treated with aminopropyl groups as the host, monocrystalline Ag NPs and nanorods are obtained after being treated in silver nitrate/ethanol solution at room temperature for different durations of reducing time. The loading of Ag NPs in the monolith can be increased to 33 wt % by the repetitive treatment, which also led to the formation of polycrystalline Ag nanorods in the mesopores. Although the bare silica column cannot separate aromatic hydrocarbons, good separation of those molecules by noncharged Ag NPs confined in the porous structure of the monolith has been for the first time demonstrated with the Ag NP-embedded silica column. The NP-embedded monolithic silica would be a powerful separation tool for hydrocarbons with different number, position, and configuration of unsaturated bonds.
Institute of Scientific and Technical Information of China (English)
Bing Wang; Shaoping Yan
2009-01-01
Considering an optical bistable system with cross-correlated additive white noise and multiplicative colored noise,we study the effects of correlation between the noises on the correlation function C(s)using the unified colored noise approximation and the Stratonovich decoupling ansatz formalism.The effects of the self-correlation time T of the multiplicative colored noise and the correlation intensity A between the two noises are studied with numerical calculation.It is found that C(s)increases with the increase of the self-correlation time r,but decreases with the increase of the correlation intensity A.At large value of T,there is almost no change for C(s)when T changes.
Lee, Byeongyong; Lee, Chongmin; Liu, Tianyuan; Eom, Kwangsup; Chen, Zhongming; Noda, Suguru; Fuller, Thomas F.; Jang, Hee Dong; Lee, Seung Woo
2016-06-01
Crumpled graphene is known to have a strong aggregation-resistive property due to its unique 3D morphology, providing a promising solution to prevent the restacking issue of graphene based electrode materials. Here, we demonstrate the utilization of redox-active oxygen functional groups on the partially reduced crumpled graphene oxide (r-CGO) for electrochemical energy storage applications. To effectively utilize the surface redox reactions of the functional groups, hierarchical networks of electrodes including r-CGO and functionalized few-walled carbon nanotubes (f-FWNTs) are assembled via a vacuum-filtration process, resulting in a 3D porous structure. These composite electrodes are employed as positive electrodes in Li-cells, delivering high gravimetric capacities of up to ~170 mA h g-1 with significantly enhanced rate-capability compared to the electrodes consisting of conventional 2D reduced graphene oxide and f-FWNTs. These results highlight the importance of microstructure design coupled with oxygen chemistry control, to maximize the surface redox reactions on functionalized graphene based electrodes.Crumpled graphene is known to have a strong aggregation-resistive property due to its unique 3D morphology, providing a promising solution to prevent the restacking issue of graphene based electrode materials. Here, we demonstrate the utilization of redox-active oxygen functional groups on the partially reduced crumpled graphene oxide (r-CGO) for electrochemical energy storage applications. To effectively utilize the surface redox reactions of the functional groups, hierarchical networks of electrodes including r-CGO and functionalized few-walled carbon nanotubes (f-FWNTs) are assembled via a vacuum-filtration process, resulting in a 3D porous structure. These composite electrodes are employed as positive electrodes in Li-cells, delivering high gravimetric capacities of up to ~170 mA h g-1 with significantly enhanced rate-capability compared to the electrodes
Conformal Window and Correlation Functions in Lattice Conformal QCD
Iwasaki, Y.
We discuss various aspects of Conformal Field Theories on the Lattice. We mainly investigate the SU(3) gauge theory with Nf degenerate fermions in the fundamental representation, employing the one-plaquette gauge action and the Wilson fermion action. First we make a brief review of our previous works on the phase structure of lattice gauge theories in terms of the gauge coupling constant and the quark mass. We thereby clarify the reason why we conjecture that the conformal window is 7 ≤ Nf ≤ 16. Secondly, we introduce a new concept, "conformal theories with IR cutof" and point out that any numerical simulation on a lattice is bounded by an IR cutoff ∧IR. Then we make predictions that when Nf is within the conformal window, the propagator of a meson G(t) behaves at large t, as G(t) = c exp (-mHt)/tα, that is, a modified Yukawa-type decay form, instead of the usual exponential decay form exp (-mHt), in the small quark mass region. This holds on an any lattice for any coupling constant g, as far as g is between 0 and g*, where g* is the IR fixed point. We verify that numerical results really satisfy the predictions for the Nf = 7 case and the Nf = 16 case. Thirdly, we discuss small number of flavors (Nf = 2 ˜ 6) QCD at finite temperatures. We point out theoretically and verify numerically that the correlation functions at T/Tc > 1 exhibit the characteristics of the conformal function with IR cutoff, an exponential decay with power correction. Investigating our numerical data by a new method which we call the "local-analysis" of propagators, we observe that the Nf = 7 case and the Nf = 2 at T ˜ 2Tc case are similar to each other, while the Nf = 16 case and the Nf = 2 at T = 102 ˜ 105Tc cases are similar to each other. Further, we observe our data are consistent with the picture that the Nf = 7 case and the Nf = 2 at T ˜ 2Tc case are close to the meson unparticle model. On the other hand, the Nf = 16 case and the Nf = 2 at T = 102 ˜ 105Tc cases are close to
State-dependent Jastrow correlation functions for $^{4}He$ nuclei
Guardiola, R
1998-01-01
We calculate the ground-state energy for the nucleus 4He with V4 nucleon interactions, making use of a Jastrow description of the corresponding wavefunction with state-dependent correlation factors. The effect related to the state dependence of the correlation is quite important, lowering the upper bound for the ground-state energy by some 2 MeV.
DEFF Research Database (Denmark)
Thomadsen, Tommy
2005-01-01
of different types of hierarchical networks. This is supplemented by a review of ring network design problems and a presentation of a model allowing for modeling most hierarchical networks. We use methods based on linear programming to design the hierarchical networks. Thus, a brief introduction to the various....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...... linear programming based methods is included. The thesis is thus suitable as a foundation for study of design of hierarchical networks. The major contribution of the thesis consists of seven papers which are included in the appendix. The papers address hierarchical network design and/or ring network...
Institute of Scientific and Technical Information of China (English)
ZHAO Yaqun; WANG Jue
2006-01-01
Orthomorphic permutations have good characteristics in cryptosystems. In this paper, by using of knowledge about relation between orthomorphic permutations and multi-output functions, and conceptions of the generalized Walsh spectrum of multi-output functions and the auto-correlation function of multi-output functions to investigate the Walsh spectral characteristics and the auto-correlation function characteristics of orthormophic permutations, several results are obtained.
Directory of Open Access Journals (Sweden)
Chao Zhu
2012-01-01
Full Text Available We report an effective method for mass production of ZnO hierarchical flowers (HFs that are constructed by interlaced single crystalline ZnO nanosheets with dominant surfaces of {112¯0} and {11¯00}. The size of ZnO HFs, thickness and parking density of the nanosheets, and HF inner porosity can be tuned by changing the synthesis conditions. The HFs containing porous inner structures showed an excellent performance as the photoanode material in quasi-solid (using polymer gel electrolytes dye-sensitized solar cells (DSCs because of their superior optical and electrical properties. The high current density (10.26 mA cm−2 and efficiency (4.93% of the HF-based DSCs indicate a great potential for the development of high-efficient quasi-solid DSCs.
Exact Exchange-Correlation Functional for the Infinitely Stretched Hydrogen Molecule
Matito, Eduard; Lopez, Xabier; Ugalde, Jesus M
2016-01-01
The exchange-correlation hole density of the infinitely stretched (dissociated) hydrogen molecule can be cast into a closed analytical form by using its exact wave function. This permits to obtain an explicit exchange-correlation energy functional of the electron density which allows for its functional derivation to yield the corresponding Kohh-Sham effective exchange-correlation potential. We have shown that this exchange-correlation functional is exact for the dissociated hydrogen molecule, yields its dissociation energy correctly, and its corresponding exchange-correlation potential has the correct $-1/r$ asymptotic behavior.
Space-time ambiguity of two- and three-fragment reduced velocity correlation functions
Energy Technology Data Exchange (ETDEWEB)
Glasmacher, T.; Phair, L.; Bowman, D.R.; Gelbke, C.K.; Gong, W.G.; Kim, Y.D.; Lisa, M.A.; Lynch, W.G.; Peaslee, G.F.; de Souza, R.T.; Tsang, M.B.; Zhu, F. [National Superconducting Cyclotron Laboratory and Department of Physics Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States)
1995-06-01
Reduced-velocity correlation functions between two and three intermediate mass fragments are compared for central {sup 36}Ar+{sup 197}Ar collisions at {ital E}/{ital A}=50 MeV. Previously published {ital N}-body Coulomb-trajectory calculations, capable of reproducing the measured two-fragment reduced velocity-correlation function, describe the measured three-fragment correlation function equally well. Moreover, ambiguities between source size and lifetime observed in the analysis of two-fragment correlations remain unresolved in the three-fragment correlation function.
Pair-correlation function in disordered β-brass as studied by neutron diffraction
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Dietrich, O.W.
1967-01-01
Critical neutron scattering around a superlattice reflection above Tc yields information on the pair correlation function for occupation of lattice sites. The Ornstein-Zernike correlation function e-k 1 r/r is proved to fit the data excellently, and at 8.9deg K above Tc the inverse correlation ra...
Short-range spin- and pair-correlations : a variational wave-function
van der Marel, D
2004-01-01
A many-body wave-function is postulated, which is sufficiently general to describe superconducting pair-correlations, and/or spin-correlations, which can occur either as long-range order or as finite-range correlations. The proposed wave-function appears to summarize some of the more relevant aspect
Hierarchical Multiagent Reinforcement Learning
2004-01-25
In this paper, we investigate the use of hierarchical reinforcement learning (HRL) to speed up the acquisition of cooperative multiagent tasks. We...introduce a hierarchical multiagent reinforcement learning (RL) framework and propose a hierarchical multiagent RL algorithm called Cooperative HRL. In
A Stochastic Wave Model Interpretation of Correlation Functions for Turbulent Shear Flows.
narrow band (frequency filtered) correlation function data. Next, the power spectral density function is identified as the appropriate frequency weighting... density function which agrees with the observed data is taken to be the superposition of a strong, unorganized background turbulence (Markoff noise...function with which to synthesize the broad band (unfiltered) from the narrow band correlation functions. The functional form of the power spectral
I/O correlation properties of bent functions
Institute of Scientific and Technical Information of China (English)
张宝东; 吕述望
2000-01-01
Let f( x1, x2, …, xn) be a Boolean bent function with n variables. The mutual information between the output variable and m linearly independent affine functions with respect to x1, x2, …, xn is studied. The results show that the mutual information depends mainly on m and n, but little on the structure of function f.
CSIR Research Space (South Africa)
Kok, S
2012-07-01
Full Text Available is considered in this paper, but the main result of Zimmermann [2] is disproved. 2 Kriging fundamentals A response y(x) is considered to consist of a deterministic contribution f(x) and a stochastic component Z(x), i.e. y(x) = f(x) + Z(x). (1...) and is symmetric by definition. In computer experiment applications, the Gaussian correlation function is particularly popular. In this case, R is given by R(xi, xj) = m? k=1 e??k|x i k?x j k|2 , (4) where m is the number of design variables (i.e...
Analytic height correlation function of rough surfaces derived from light scattering
Zamani, M; Fazeli, S M; Downer, M C; Jafari, G R
2015-01-01
We obtain an analytic expression for the height correlation function of a rough surface based on the inverse wave scattering method of Kirchhoff theory. The expression directly relates the height correlation function to diffuse scattered intensity. We test the solution by measuring the angular distribution of light scattered from rough silicon surfaces, solving for the height correlation functions, and comparing them to functions derived from AFM measurements. The results show good agreement. The advantages of this method are its accurate analytical equation for the height correlation function and the simplicity of the experimental setup required to measure it.
Kashikawa, N; Shimasaku, K; Nagashima, M; Yahagi, H; Ouchi, M; Matsuda, Y; Malkan, M A; Doi, M; Iye, M; Kashikawa, Nobunari; Yoshida, Makiko; Shimasaku, Kazuhiro; Nagashima, Masahiro; Yahagi, Hideki; Ouchi, Masami; Matsuda, Yuichi; Malkan, Matthew A.; Doi, Mamoru; Iye, Masanori; SDF team
2006-01-01
We explored the clustering properties of Lyman Break Galaxies (LBGs) at z=4 and 5 by angular two-point correlation function on the basis of the very deep and wide Subaru Deep Field data. We found an apparent dependence of the correlation function slope on UV luminosity for LBGs at both z=4 and 5. More luminous LBGs have a steeper correlation function. To compare these observational results, we constructed numerical mock LBG catalogs based on a semi-analytic model of hierarchical clustering combined with high-resolution N-body simulation, carefully mimicking the observational selection effects. The luminosity functions for LBGs predicted by this mock catalog were found to be almost consistent with the observation. Moreover, the overall correlation functions of LBGs were reproduced reasonably well. The observed dependence of the clustering on UV luminosity was not reproduced by the model, unless subsamples of distinct halo mass were considered. That is, LBGs belonging to more massive dark haloes had steeper and...
Kagami, Masayo; O'Sullivan, Maureen J; Green, Andrew J; Watabe, Yoshiyuki; Arisaka, Osamu; Masawa, Nobuhide; Matsuoka, Kentarou; Fukami, Maki; Matsubara, Keiko; Kato, Fumiko; Ferguson-Smith, Anne C; Ogata, Tsutomu
2010-06-17
Human chromosome 14q32.2 harbors the germline-derived primary DLK1-MEG3 intergenic differentially methylated region (IG-DMR) and the postfertilization-derived secondary MEG3-DMR, together with multiple imprinted genes. Although previous studies in cases with microdeletions and epimutations affecting both DMRs and paternal/maternal uniparental disomy 14-like phenotypes argue for a critical regulatory function of the two DMRs for the 14q32.2 imprinted region, the precise role of the individual DMR remains to be clarified. We studied an infant with upd(14)pat body and placental phenotypes and a heterozygous microdeletion involving the IG-DMR alone (patient 1) and a neonate with upd(14)pat body, but no placental phenotype and a heterozygous microdeletion involving the MEG3-DMR alone (patient 2). The results generated from the analysis of these two patients imply that the IG-DMR and the MEG3-DMR function as imprinting control centers in the placenta and the body, respectively, with a hierarchical interaction for the methylation pattern in the body governed by the IG-DMR. To our knowledge, this is the first study demonstrating an essential long-range imprinting regulatory function for the secondary DMR.
Directory of Open Access Journals (Sweden)
Masayo Kagami
2010-06-01
Full Text Available Human chromosome 14q32.2 harbors the germline-derived primary DLK1-MEG3 intergenic differentially methylated region (IG-DMR and the postfertilization-derived secondary MEG3-DMR, together with multiple imprinted genes. Although previous studies in cases with microdeletions and epimutations affecting both DMRs and paternal/maternal uniparental disomy 14-like phenotypes argue for a critical regulatory function of the two DMRs for the 14q32.2 imprinted region, the precise role of the individual DMR remains to be clarified. We studied an infant with upd(14pat body and placental phenotypes and a heterozygous microdeletion involving the IG-DMR alone (patient 1 and a neonate with upd(14pat body, but no placental phenotype and a heterozygous microdeletion involving the MEG3-DMR alone (patient 2. The results generated from the analysis of these two patients imply that the IG-DMR and the MEG3-DMR function as imprinting control centers in the placenta and the body, respectively, with a hierarchical interaction for the methylation pattern in the body governed by the IG-DMR. To our knowledge, this is the first study demonstrating an essential long-range imprinting regulatory function for the secondary DMR.
Directory of Open Access Journals (Sweden)
Natalia A Iutaka
2017-01-01
Conclusion: VFI showed a strong correlation with MD and PSD but demonstrated a weak correlation with structural measures. It can possibly be used as a marker for functional impairment severity in patients with glaucoma.
Optimisation by hierarchical search
Zintchenko, Ilia; Hastings, Matthew; Troyer, Matthias
2015-03-01
Finding optimal values for a set of variables relative to a cost function gives rise to some of the hardest problems in physics, computer science and applied mathematics. Although often very simple in their formulation, these problems have a complex cost function landscape which prevents currently known algorithms from efficiently finding the global optimum. Countless techniques have been proposed to partially circumvent this problem, but an efficient method is yet to be found. We present a heuristic, general purpose approach to potentially improve the performance of conventional algorithms or special purpose hardware devices by optimising groups of variables in a hierarchical way. We apply this approach to problems in combinatorial optimisation, machine learning and other fields.
Two Point Correlation Functions for a Periodic Box-Ball System
Directory of Open Access Journals (Sweden)
Jun Mada
2011-03-01
Full Text Available We investigate correlation functions in a periodic box-ball system. For the second and the third nearest neighbor correlation functions, we give explicit formulae obtained by combinatorial methods. A recursion formula for a specific N-point functions is also presented.
On the relation between the echo-peak shift and Brownian-oscillator correlation function
de Boeij, W.P.; Pshenichnikov, M.S; Wiersma, D. A.
1996-01-01
We show that for systems that exhibit bimodal dynamics in their system-bath correlation function the shift of the stimulated photon-echo maximum as a function of waiting time reflects fairly well the long time part of the correlation function. For early times this correspondence breaks down due to a
Hierarchical organization versus self-organization
Busseniers, Evo
2014-01-01
In this paper we try to define the difference between hierarchical organization and self-organization. Organization is defined as a structure with a function. So we can define the difference between hierarchical organization and self-organization both on the structure as on the function. In the next two chapters these two definitions are given. For the structure we will use some existing definitions in graph theory, for the function we will use existing theory on (self-)organization. In the t...
Estimation of purity in terms of correlation functions
Prosen, Tomaž; Seligman, Thomas H.; Žnidarič, Marko
2003-06-01
We prove a rigorous inequality that estimates the purity of a reduced density matrix of a composite quantum system in terms of cross correlation of the same state and an arbitrary product state. Various immediate applications of our result are proposed, in particular, concerning Gaussian wave-packet propagation under classically regular dynamics.
Volume Functions of Historical Texts and the Amplitude Correlation Principle.
Fomenko, Anatoliy T.; Rachev, Svetlozar T.
1990-01-01
Proposes an empirico-statistical model to differentiate dependent and independent historical texts. Formulates a regard for information principle and an amplitude correlation principle. Experimentally examines and validates the model and both principles using specific historical texts. Includes tables and graphs. Appends further discussion of the…
DEFF Research Database (Denmark)
Thomadsen, Tommy
2005-01-01
Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...... the clusters. The design of hierarchical networks involves clustering of nodes, hub selection, and network design, i.e. selection of links and routing of ows. Hierarchical networks have been in use for decades, but integrated design of these networks has only been considered for very special types of networks....... The thesis investigates models for hierarchical network design and methods used to design such networks. In addition, ring network design is considered, since ring networks commonly appear in the design of hierarchical networks. The thesis introduces hierarchical networks, including a classification scheme...
Correlation function of four spins in the percolation model
Directory of Open Access Journals (Sweden)
Vladimir S. Dotsenko
2016-10-01
It is known that the four-point functions define the actual fusion rules of a particular model. In this respect, we find that fusion of two spins, of dimension Δσ=596, produce a new channel, in the 4-point function, which is due to the operator with dimension Δ=5/8.
Directory of Open Access Journals (Sweden)
Arsić Slađana
2016-01-01
Full Text Available Introduction. It has been assumed that there is causality of the achieved level of functional independence with the degree of preservation of cognitive function in stroke patients. Demographic characteristics may be important for monitoring the achieved level of functional independence. Objective. The aim of this study was to examine the relationship of demographic characteristics and functional independence in regard to the level of cognitive impairment in stroke patients. Methods. The study included 50 stroke patients after rehabilitation, as well as age- and gender-matched 50 subjects selected randomly, according to the demographic characteristics of the studied sample, who in their medical history had no neurological disorders. For the assessment of functional independence, the Functional Independence Measure (FIM test was used. The general cognition was estimated by the Mini-Mental State Examination (MMSE test. The statistical analyses included the Mann-Whitney test, for two independent samples, measures of canonical correlation, and χ2 test. Results. There was a statistically significant difference between the groups in relation to risk factors, hypertension and diabetes mellitus type II (p<0.001; There was a statistically significant difference within the groups in relation to the cognitive impairment in all the examined demographic characteristics (p<0.001; the differences within the groups in relation to the cognitive impairment are present on all subscales of the FIM test (p<0.05; the differences within the groups in relation to handedness, hemiparesis, show that mild cognitive impairment is more common among left hemiparesis, while a more severe one is more common among right-sided hemiparesis (p<0.05; More severe cognitive impairment is common among women, the elderly and in persons with lower education (p<0.05. Conclusion. By prevention of risk factors, and prevention of possible cognitive impairment, consequences of stroke can be
Structure of the correlation function at the accumulation points of the logistic map
Karamanos, K.; Mistakidis, I. S.; Mistakidis, S. I.
2017-03-01
The correlation function of the trajectory exactly at the Feigenbaum point of the logistic map is investigated and checked by numerical experiments. Taking advantage of recent closed analytical results on the symbol-to-symbol correlation function of the generating partition, we are in position to justify the deep algorithmic structure of the correlation function apart from numerical constants. A generalization is given for arbitrary $m\\cdot 2^{\\infty}$ Feigenbaum attractors.
A nonlinear correlation function for selecting the delay time in dynamical reconstructions
Aguirre, Luis Antonio
1995-02-01
Numerical results discussed in this paper suggest that a function which detects nonlinear correlations in time series usually indicates shorter correlation times than the linear autocorrelation function which is often used for this purpose. The nonlinear correlation function can also detect changes in the data which cannot be distinguished by the linear counterpart. This affects a number of approaches for the selection of the delay time used in the reconstruction of nonlinear dynamics from a single time series based on time delay coordinates.
A canonical correlation neural network for multicollinearity and functional data.
Gou, Zhenkun; Fyfe, Colin
2004-03-01
We review a recent neural implementation of Canonical Correlation Analysis and show, using ideas suggested by Ridge Regression, how to make the algorithm robust. The network is shown to operate on data sets which exhibit multicollinearity. We develop a second model which not only performs as well on multicollinear data but also on general data sets. This model allows us to vary a single parameter so that the network is capable of performing Partial Least Squares regression (at one extreme) to Canonical Correlation Analysis (at the other)and every intermediate operation between the two. On multicollinear data, the parameter setting is shown to be important but on more general data no particular parameter setting is required. Finally, we develop a second penalty term which acts on such data as a smoother in that the resulting weight vectors are much smoother and more interpretable than the weights without the robustification term. We illustrate our algorithms on both artificial and real data.
Killgore, William D S
2013-11-01
Prior research suggests that sleep deprivation is associated with declines in some aspects of emotional intelligence and increased severity on indices of psychological disturbance. Sleep deprivation is also associated with reduced prefrontal-amygdala functional connectivity, potentially reflecting impaired top-down modulation of emotion. It remains unknown whether this modified connectivity may be observed in relation to more typical levels of sleep curtailment. We examined whether self-reported sleep duration the night before an assessment would be associated with these effects. Participants documented their hours of sleep from the previous night, completed the Bar-On Emotional Quotient Inventory (EQ-i), Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT), and Personality Assessment Inventory (PAI), and underwent resting-state functional magnetic resonance imaging (fMRI). Outpatient neuroimaging center at a private psychiatric hospital. Sixty-five healthy adults (33 men, 32 women), ranging in age from 18-45 y. N/A. Greater self-reported sleep the preceding night was associated with higher scores on all scales of the EQ-i but not the MSCEIT, and with lower symptom severity scores on half of the psychopathology scales of the PAI. Longer sleep was also associated with stronger negative functional connectivity between the right ventromedial prefrontal cortex and amygdala. Moreover, greater negative connectivity between these regions was associated with higher EQ-i and lower symptom severity on the PAI. Self-reported sleep duration from the preceding night was negatively correlated with prefrontal-amygdala connectivity and the severity of subjective psychological distress, while positively correlated with higher perceived emotional intelligence. More sleep was associated with higher emotional and psychological strength.
O'Regan, L M; Farina, F R; Hussey, I; Roche, R A P
2015-03-02
This research aimed to explore the neural correlates of relational learning by recording high-density EEG during a behavioural task involving derivation levels of varying complexity. A total of 15 participants (5 male; age range 18-23 years; mean age=20.0 years) completed contextual cue training, relational learning, function training and a derivation task while 128-channel event-related potentials (ERPs) were recorded from the scalp (Background). Differences in response latencies were observed between the two derived (symmetry and equivalence) and directly trained relations, with longest latencies found for equivalence and shortest for the directly trained relations. This pattern failed to reach statistical significance. Importantly, ERPs revealed an early P3a positivity (from 230 to 350ms) over right posterior scalp sites. Significantly larger mean amplitudes were found at three channels (P6, E115 and E121) for the equivalence relations compared to the two other types (Results). We believe this may constitute a first demonstration of differences in brain electrophysiology in the transformation of stimulus functions through derived relations of hierarchical levels of complexity (Conclusions). Copyright © 2014 Elsevier B.V. All rights reserved.
Ignoring Functionality as a Correlate of the Underutilization of ...
African Journals Online (AJOL)
Grounded on the propositions of the Total Cost of Ownership (TCO) model, this study ... of cost components that pertain to the functionality of the technologies. ... the managers of the institutions should also increase expenditure on training ...
Structural properties of prokaryotic promoter regions correlate with functional features.
Meysman, Pieter; Collado-Vides, Julio; Morett, Enrique; Viola, Roberto; Engelen, Kristof; Laukens, Kris
2014-01-01
The structural properties of the DNA molecule are known to play a critical role in transcription. In this paper, the structural profiles of promoter regions were studied within the context of their diversity and their function for eleven prokaryotic species; Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, Pseudomonas auroginosa, Geobacter sulfurreducens Helicobacter pylori, Chlamydophila pneumoniae, Synechocystis sp., Synechoccocus elongates, Bacillus anthracis, and the archaea Sulfolobus solfataricus. The main anchor point for these promoter regions were transcription start sites identified through high-throughput experiments or collected within large curated databases. Prokaryotic promoter regions were found to be less stable and less flexible than the genomic mean across all studied species. However, direct comparison between species revealed differences in their structural profiles that can not solely be explained by the difference in genomic GC content. In addition, comparison with functional data revealed that there are patterns in the promoter structural profiles that can be linked to specific functional loci, such as sigma factor regulation or transcription factor binding. Interestingly, a novel structural element clearly visible near the transcription start site was found in genes associated with essential cellular functions and growth in several species. Our analyses reveals the great diversity in promoter structural profiles both between and within prokaryotic species. We observed relationships between structural diversity and functional features that are interesting prospects for further research to yet uncharacterized functional loci defined by DNA structural properties.
Structural properties of prokaryotic promoter regions correlate with functional features.
Directory of Open Access Journals (Sweden)
Pieter Meysman
Full Text Available The structural properties of the DNA molecule are known to play a critical role in transcription. In this paper, the structural profiles of promoter regions were studied within the context of their diversity and their function for eleven prokaryotic species; Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, Pseudomonas auroginosa, Geobacter sulfurreducens Helicobacter pylori, Chlamydophila pneumoniae, Synechocystis sp., Synechoccocus elongates, Bacillus anthracis, and the archaea Sulfolobus solfataricus. The main anchor point for these promoter regions were transcription start sites identified through high-throughput experiments or collected within large curated databases. Prokaryotic promoter regions were found to be less stable and less flexible than the genomic mean across all studied species. However, direct comparison between species revealed differences in their structural profiles that can not solely be explained by the difference in genomic GC content. In addition, comparison with functional data revealed that there are patterns in the promoter structural profiles that can be linked to specific functional loci, such as sigma factor regulation or transcription factor binding. Interestingly, a novel structural element clearly visible near the transcription start site was found in genes associated with essential cellular functions and growth in several species. Our analyses reveals the great diversity in promoter structural profiles both between and within prokaryotic species. We observed relationships between structural diversity and functional features that are interesting prospects for further research to yet uncharacterized functional loci defined by DNA structural properties.
Alonso, D; Alonso, Daniel; Vega, In\\'es de
2004-01-01
Multiple time correlation functions are found in the dynamical description of different phenomena. They encode and describe the fluctuations of the dynamical variables of a system. In this paper we formulate a theory of non-Markovian multiple-time correlation functions (MTCF) for a wide class of systems. We derive the dynamical equation of the {\\it reduced propagator}, an object that evolve state vectors of the system conditioned to the dynamics of its environment, which is not necessarily at the vacuum state at the initial time. Such reduced propagator is the essential piece to obtain multiple-time correlation functions. An average over the different environmental histories of the reduced propagator permits us to obtain the evolution equations of the multiple-time correlation functions. We also study the evolution of MTCF within the weak coupling limit and it is shown that the multiple-time correlation function of some observables satisfy the Quantum Regression Theorem (QRT), whereas other correlations do no...
Maximum-likelihood analysis of the COBE angular correlation function
Seljak, Uros; Bertschinger, Edmund
1993-01-01
We have used maximum-likelihood estimation to determine the quadrupole amplitude Q(sub rms-PS) and the spectral index n of the density fluctuation power spectrum at recombination from the COBE DMR data. We find a strong correlation between the two parameters of the form Q(sub rms-PS) = (15.7 +/- 2.6) exp (0.46(1 - n)) microK for fixed n. Our result is slightly smaller than and has a smaller statistical uncertainty than the 1992 estimate of Smoot et al.
Zeng, Yuze; Flores, Jose F.; Shao, Yu-Cheng; Guo, Jinghua; Chuang, Yi-De; Lu, Jennifer Q.
2016-06-01
We report a new method to reproducibly fabricate functional 3D carbon structures directly on a current collector, e.g. stainless steel. The 3D carbon platform is formed by direct growth of upright arrays of carbon nanofiber bundles on a roughened surface of stainless steel via the seed-assisted approach. Each bundle consists of about 30 individual carbon nanofibers with a diameter of 18 nm on average. We have found that this new platform offers adequate structural integrity. As a result, no reduction of the surface area during downstream chemical functionalization was observed. With a fixed and reproducible 3D structure, the effect of the chemistry of the grafted species on the oxygen reduction reaction has been systematically investigated. This investigation reveals for the first time that non-conductive Si with an appropriate electronic structure distorts the carbon electronic structure and consequently enhances ORR electrocatalysis. The strong interface provides excellent electron connectivity according to electrochemical analysis. This highly reproducible and stable 3D platform can serve as a stepping-stone for the investigation of the effect of carbon surface functionalization on electrochemical reactions in general.We report a new method to reproducibly fabricate functional 3D carbon structures directly on a current collector, e.g. stainless steel. The 3D carbon platform is formed by direct growth of upright arrays of carbon nanofiber bundles on a roughened surface of stainless steel via the seed-assisted approach. Each bundle consists of about 30 individual carbon nanofibers with a diameter of 18 nm on average. We have found that this new platform offers adequate structural integrity. As a result, no reduction of the surface area during downstream chemical functionalization was observed. With a fixed and reproducible 3D structure, the effect of the chemistry of the grafted species on the oxygen reduction reaction has been systematically investigated. This
Energy Technology Data Exchange (ETDEWEB)
Sabundjian, Gaiane [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). E-mail: gdjian@net.ipen.br; Cabral, Eduardo Lobo Lustosa [Sao Paulo Univ., SP (Brazil). Escola Politecnica. E-mail: elcabral@usp.br
2000-07-01
This work applied of the expansion of the variables in hierarchical functions for the solution of the Navier-Stokes equations for incompressible fluids in two dimensions in laminar flow. This work is based on the finite element method. The used expansion functions are based on Legendre polynomials, adjusted in the rectangular elements in a such a way that corner, side and area functions are defined. The order of the expansion functions associated with the sides and with the area of the elements can be adjusted to the necessary or desire degree. This method is denominated by Hierarchical Expansion Method. In order to validate the proposed numeric method three well-known problems of the literature are analyze. The results show the method capacity in supplying precise results. (author)
Conservation Laws in the Hierarchical Model
Beijeren, H. van; Gallavotti, G.; Knops, H.
1974-01-01
An exposition of the renormalization-group equations for the hierarchical model is given. Attention is drawn to some properties of the spin distribution functions which are conserved under the action of the renormalization group.
Hierarchical Affinity Propagation
Givoni, Inmar; Frey, Brendan J
2012-01-01
Affinity propagation is an exemplar-based clustering algorithm that finds a set of data-points that best exemplify the data, and associates each datapoint with one exemplar. We extend affinity propagation in a principled way to solve the hierarchical clustering problem, which arises in a variety of domains including biology, sensor networks and decision making in operational research. We derive an inference algorithm that operates by propagating information up and down the hierarchy, and is efficient despite the high-order potentials required for the graphical model formulation. We demonstrate that our method outperforms greedy techniques that cluster one layer at a time. We show that on an artificial dataset designed to mimic the HIV-strain mutation dynamics, our method outperforms related methods. For real HIV sequences, where the ground truth is not available, we show our method achieves better results, in terms of the underlying objective function, and show the results correspond meaningfully to geographi...
Aldegunde, Manuel; Kermode, James R.; Zabaras, Nicholas
2016-04-01
This paper presents the development of a new exchange-correlation functional from the point of view of machine learning. Using atomization energies of solids and small molecules, we train a linear model for the exchange enhancement factor using a Bayesian approach which allows for the quantification of uncertainties in the predictions. A relevance vector machine is used to automatically select the most relevant terms of the model. We then test this model on atomization energies and also on bulk properties. The average model provides a mean absolute error of only 0.116 eV for the test points of the G2/97 set but a larger 0.314 eV for the test solids. In terms of bulk properties, the prediction for transition metals and monovalent semiconductors has a very low test error. However, as expected, predictions for types of materials not represented in the training set such as ionic solids show much larger errors.
Statistical functions and relevant correlation coefficients of clearness index
Pavanello, Diego; Zaaiman, Willem; Colli, Alessandra; Heiser, John; Smith, Scott
2015-08-01
This article presents a statistical analysis of the sky conditions, during years from 2010 to 2012, for three different locations: the Joint Research Centre site in Ispra (Italy, European Solar Test Installation - ESTI laboratories), the site of National Renewable Energy Laboratory in Golden (Colorado, USA) and the site of Brookhaven National Laboratories in Upton (New York, USA). The key parameter is the clearness index kT, a dimensionless expression of the global irradiance impinging upon a horizontal surface at a given instant of time. In the first part, the sky conditions are characterized using daily averages, giving a general overview of the three sites. In the second part the analysis is performed using data sets with a short-term resolution of 1 sample per minute, demonstrating remarkable properties of the statistical distributions of the clearness index, reinforced by a proof using fuzzy logic methods. Successively some time-dependent correlations between different meteorological variables are presented in terms of Pearson and Spearman correlation coefficients, and introducing a new one.
Probing quantum correlation functions through energy-absorption interferometry
Withington, S.; Thomas, C. N.; Goldie, D. J.
2017-08-01
An interferometric technique is described for determining the spatial forms of the individual degrees of freedom through which a many-body system can absorb energy from its environment. The method separates out the spatial forms of the coherent excitations present at any single frequency; it is not necessary to sweep the frequency and then infer the spatial forms of possible excitations from resonant absorption features. The system under test is excited with two external sources, which create generalized forces, and the fringe in the total power dissipated is measured as the relative phase between the sources is varied. If the complex fringe visibility is measured for different pairs of source locations, the anti-Hermitian part of the complex-valued nonlocal correlation tensor can be determined, which can then be decomposed to give the natural dynamical modes of the system and their relative responsivities. If each source in the interferometer creates a different kind of force, the spatial forms of the individual excitations that are responsible for cross-correlated response can be found. The technique is related to holography, but measures the state of coherence to which the system is maximally sensitive. It can be applied across a wide range of wavelengths, in a variety of ways, to homogeneous media, thin films, patterned structures, and components such as sensors, detectors, and energy-harvesting absorbers.
Hierarchically Nanostructured Materials for Sustainable Environmental Applications
Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian
2013-11-01
This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.
Hierarchically nanostructured materials for sustainable environmental applications
Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian
2013-01-01
This review presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions, and multiple functionalities toward water remediation, biosensing, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing, and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology. PMID:24790946
Hierarchically Nanostructured Materials for Sustainable Environmental Applications
Directory of Open Access Journals (Sweden)
Zheng eRen
2013-11-01
Full Text Available This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.
Brain reorganization after experimental stroke: functional and structural MRI correlates
van Meer, M.P.A.
2011-01-01
Ischemic stroke is a major cause of death and long-term disability in the Western society. The disease leads to debilitating effects like neuronal death, loss of anatomical connections between neurons and subsequent loss of function. Although such ischemic stroke damage can be devastating, many pati
Brain reorganization after experimental stroke: functional and structural MRI correlates
van Meer, M.P.A.
2011-01-01
Ischemic stroke is a major cause of death and long-term disability in the Western society. The disease leads to debilitating effects like neuronal death, loss of anatomical connections between neurons and subsequent loss of function. Although such ischemic stroke damage can be devastating, many
Time correlation functions for the one-dimensional Lorentz gas
Mazo, R.M.; Beijeren, H. van
1983-01-01
The velocity autocorrelation function and related quantities are investigated for the one-dimensional deterministic Lorentz gas, consisting of randomly distributed fixed scatterers and light particles moving back and forth between two of these at a constant given speed. An expansion for the velocity
The MATRICS Consensus Cognitive Battery (MCCB): performance and functional correlates.
Lystad, June Ullevoldsæter; Falkum, Erik; Mohn, Christine; Haaland, Vegard Øksendal; Bull, Helen; Evensen, Stig; Rund, Bjørn Rishovd; Ueland, Torill
2014-12-30
Neurocognitive impairment is a core feature in psychotic disorders and the MATRICS Consensus Cognitive Battery (MCCB) is now widely used to assess neurocognition in this group. The MATRICS has been translated into several languages, including Norwegian; although this version has yet to be investigated in an adult clinical population. Further, the relationship between the MATRICS and different measures of functioning needs examination. The purpose of this study was to describe neurocognition assessed with the Norwegian version of the MATRICS battery in a sample of patients with psychotic disorders compared to age and gender matched healthy controls and to examine the association with educational-, occupational- and social-functioning in the patient group. One hundred and thirty one patients and 137 healthy controls completed the battery. The Norwegian version of the MATRICS was sensitive to the magnitude of neurocognitive impairments in patients with psychotic disorders, with patients displaying significant impairments on all domains relative to healthy controls. Neurocognition was also related to both self-rated and objective functional measures such as social functioning, educational- and employment-history.
Johnson, Don H
2008-01-01
We derive conditions under which alternating renewal processes can be used to construct correlated Poisson processes. The pairwise correlation function is also derived, showing that the resulting correlations can be negative. The technique and the analysis can be extended to the generation of two or more dependent renewal processes.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
1 Results Facing the important global warming,the exhaustion of crude materials and oil,the super-consumption of energy and the recent and constant sharp increase in the price of crude oil,new materials with advanced properties and multi-functionality can be once again the driving force and the motor to find some issues of these important challenges of our modern society and human life.Recent interest has been devoted to the development of synthesis and processing procedures for preparing porous materia...
Correlates of Social Functioning in Autism Spectrum Disorder: The Role of Social Cognition.
Bishop-Fitzpatrick, Lauren; Mazefsky, Carla A; Eack, Shaun M; Minshew, Nancy J
2017-03-01
Individuals with autism spectrum disorder (ASD) experience marked challenges with social function by definition, but few modifiable predictors of social functioning in ASD have been identified in extant research. This study hypothesized that deficits in social cognition and motor function may help to explain poor social functioning in individuals with ASD. Cross-sectional data from 108 individuals with ASD and without intellectual disability ages 9 through 27.5 were used to assess the relationship between social cognition and motor function, and social functioning. Results of hierarchical multiple regression analyses revealed that greater social cognition, but not motor function, was significantly associated with better social functioning when controlling for sex, age, and intelligence quotient. Post-hoc analyses revealed that, better performance on second-order false belief tasks was associated with higher levels of socially adaptive behavior and lower levels of social problems. Our findings support the development and testing of interventions that target social cognition in order to improve social functioning in individuals with ASD. Interventions that teach generalizable skills to help people with ASD better understand social situations and develop competency in advanced perspective taking have the potential to create more durable change because their effects can be applied to a wide and varied set of situations and not simply a prescribed set of rehearsed situations.
Correlations in Many-Body systems from two-time Greens functions
Energy Technology Data Exchange (ETDEWEB)
Morawetz, K. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Kohler, H.S. [Arizona Univ., Tucson, AZ (United States). Dept. of Physics
2000-07-01
The Kadanoff-Baym (KB) equations are solved numerically for infinite nuclear matter. In particular we calculate correlation energies and correlation times. Approximating the Green's functions in the KB collision kernel by the free Green's functions the Levinson equation is obtained. This approximation is valid for weak interactions and/or low densities. It relates to the extended quasi-particle approximation for the spectral function. The Levinson correlation energy reduces for large times to a second order Born approximation for the energy. Comparing the Levinson, Born and KB calculations allows for an estimate of higher order spectral corrections to the correlations. (authors)
Galaxy Redshifts from Discrete Optimization of Correlation Functions
Lee, Benjamin C. G.; Budavári, Tamás; Basu, Amitabh; Rahman, Mubdi
2016-12-01
We propose a new method of constraining the redshifts of individual extragalactic sources based on celestial coordinates and their ensemble statistics. Techniques from integer linear programming (ILP) are utilized to optimize simultaneously for the angular two-point cross- and autocorrelation functions. Our novel formalism introduced here not only transforms the otherwise hopelessly expensive, brute-force combinatorial search into a linear system with integer constraints but also is readily implementable in off-the-shelf solvers. We adopt Gurobi, a commercial optimization solver, and use Python to build the cost function dynamically. The preliminary results on simulated data show potential for future applications to sky surveys by complementing and enhancing photometric redshift estimators. Our approach is the first application of ILP to astronomical analysis.
Galaxy Redshifts from Discrete Optimization of Correlation Functions
Lee, Benjamin C G; Basu, Amitabh
2016-01-01
We propose a new method of constraining the redshifts of individual extragalactic sources based on their celestial coordinates. Techniques from integer linear programming are utilized to optimize simultaneously for the angular two-point cross- and autocorrelation functions. Our novel formalism introduced here not only transforms the otherwise hopelessly expensive, brute-force combinatorial search into a linear system with integer constraints but is also readily implementable in off-the-shelf solvers. We adopt Gurobi and use Python to dynamically build the cost function. The preliminary results on simulated data show great promise for future applications to sky surveys by complementing and enhancing photometric redshift estimators. Our approach is the first use of linear programming in astronomy.
Imai, Shin-ichiro
2009-10-01
For the past couple of decades, aging science has been rapidly evolving, and powerful genetic tools have identified a variety of evolutionarily conserved regulators and signaling pathways for the control of aging and longevity in model organisms. Nonetheless, a big challenge still remains to construct a comprehensive concept that could integrate many distinct layers of biological events into a systemic, hierarchical view of aging. The "heterochromatin island" hypothesis was originally proposed 10 years ago to explain deterministic and stochastic aspects of cellular and organismal aging, which drove the author to the study of evolutionarily conserved Sir2 proteins. Since a surprising discovery of their NAD-dependent deacetylase activity, Sir2 proteins, now called "sirtuins," have been emerging as a critical epigenetic regulator for aging. In this review, I will follow the process of conceptual development from the heterochromatin island hypothesis to a novel, comprehensive concept of a systemic regulatory network for mammalian aging, named "NAD World," summarizing recent studies on the mammalian NAD-dependent deacetylase Sirt1 and nicotinamide phosphoribosyltransferase (Nampt)-mediated systemic NAD biosynthesis. This new concept of the NAD World provides critical insights into a systemic regulatory mechanism that fundamentally connects metabolism and aging and also conveys the ideas of functional hierarchy and frailty for the regulation of aging in mammals.
Qureshi, Muhammad Naveed Iqbal; Oh, Jooyoung; Min, Beomjun; Jo, Hang Joon; Lee, Boreom
2017-01-01
Structural and functional MRI unveil many hidden properties of the human brain. We performed this multi-class classification study on selected subjects from the publically available attention deficit hyperactivity disorder ADHD-200 dataset of patients and healthy children. The dataset has three groups, namely, ADHD inattentive, ADHD combined, and typically developing. We calculated the global averaged functional connectivity maps across the whole cortex to extract anatomical atlas parcellation based features from the resting-state fMRI (rs-fMRI) data and cortical parcellation based features from the structural MRI (sMRI) data. In addition, the preprocessed image volumes from both of these modalities followed an ANOVA analysis separately using all the voxels. This study utilized the average measure from the most significant regions acquired from ANOVA as features for classification in addition to the multi-modal and multi-measure features of structural and functional MRI data. We extracted most discriminative features by hierarchical sparse feature elimination and selection algorithm. These features include cortical thickness, image intensity, volume, cortical thickness standard deviation, surface area, and ANOVA based features respectively. An extreme learning machine performed both the binary and multi-class classifications in comparison with support vector machines. This article reports prediction accuracy of both unimodal and multi-modal features from test data. We achieved 76.190% (p multi-class settings as well as 92.857% (p multi-modal group analysis approach with multi-measure features may improve the accuracy of the ADHD differential diagnosis.
Therapeutic Hypothermia Following Traumatic Spinal Injury: Morphological and Functional Correlates.
1999-01-01
BROWN, F., FLORES, C, and JORIS, JA A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia . Pain 32:77-88. 21...utilized, such as the response to paw pinch and reflex righting (Gale et al, 1985). Recently tests of sensory function including mechanical and thermal ...used); and (4) thermal paw flick - this test measures the response of an individual paw to varying intensities of thermal stimuli. Due to time
Brain structural and functional correlates of resilience to Bipolar Disorder
Directory of Open Access Journals (Sweden)
Sophia eFrangou
2012-01-01
Full Text Available Background: Resilient adaptation can be construed in different ways, but as used here it refers to the adaptive brain changes associated with avoidance of psychopathology despite familiar risk for Bipolar Disorder (BD. Although family history of BD is associated with elevated risk of affective morbidity a significant proportion of first-degree relatives of BD patients remains free of psychopathology. Examination of brain structure and function in these individuals may inform on adaptive changes that may pre-empt disease expression. Methods: Data presented here are derived from the Vulnerability to Bipolar Disorders (VIBES study which includes patients with BD, asymptomatic relatives and healthy controls. Participants underwent extensive investigations including brain structural (sMRI and functional magnetic resonance imaging (fMRI. The data presented here focus on sMRI voxel-based-morphometry and on conventional and connectivity analyses of fMRI data obtained during the Stroop Colour Word Test (SCWT, a task of cognitive control during conflict resolution. All analyses were implemented in SPM (www.fil.ion.ucl.ac.uk/spm. Resilience in relatives was operationalized as the absence of clinical-range symptoms.Results: Resilient relatives of BD patients expressed structural, functional and connectivity changes reflecting the effect of genetic risk on the brain. These included increased insular volume, decreased activation within the posterior and inferior parietal regions involved in selective attention during the SCWT, and reduced fronto-insular and fronto-cingulate connectivity.Resilience was associated with increased cerebellar vermal volume and enhanced functional coupling between the dorsal and the ventral prefrontal cortex. Conclusions: Our findings suggests the presence of biological mechanisms associated with resilient adaptation of brain networks and pave the way for the identification of outcome-specific trajectories given a particular
IVBT-documented platelet function correlates with flow cytometric data.
Hoffmann, J; Bonacker, G; Kretschmer, V; Schulzki, T; Heimanns, J
1996-12-01
Thrombocytopenic patients with identical platelet counts often show different bleeding tendencies owing to significant differences in the platelet function. This could be demonstrated by the in vitro bleeding test (IVBT). Using flow cytometry, we tried to find characteristics of platelet antigen expression in order to explain these differences in function. Thirty patients with bone marrow hypoplasia receiving 65 platelet transfusions (mainly from a cell separator) were observed for 3 to 29 days. Size, granulation and fluorescence of platelet-rich plasma (n = 522 samples) were evaluated using monoclonal antibodies against GP IIIb (collagen receptor), GP IIb/IIIa (fibrinogen receptor) and GP Ib (thrombin receptor). We defined separate gates for each antibody using the results from 50 normals and by laying an orthograde cross over the gate to divide the gate into four equal quadrants. The platelet populations were divided into four different groups according to the occlusion time (OT) of the IVBT and the Simplate time (ST). The thrombocytes with the most impaired function (OT > or = 485 s/ST > 30 min) had significantly less platelet fluorescence when marked with antibodies against GP IIIb and GP Ib than those with short OT and ST (OT platelet fluorescence when marked with anti-GP IIIb and anti-GP Ib than thrombocytopenic patients, who had a spontaneous platelet rise beyond 30,000 platelets/microliters a few days later. One day after platelet transfusion, significantly more platelets with high GP IIIb and Ib expression could be found. We were also able to document better transfusion efficacy of platelet concentrates with high GP IIIb and Ib expression. Finally, patients with high bleeding scores showed less GP Ib expression on the platelets than patients with low bleeding scores. In summary, the IVBT-documented platelet function clearly corresponded to an increased expression of the collagen receptor and the thrombin receptor of platelets.
Functional neural correlates of reduced physiological falls risk
Directory of Open Access Journals (Sweden)
Hsu Chun
2011-08-01
Full Text Available Abstract Background It is currently unclear whether the function of brain regions associated with executive cognitive processing are independently associated with reduced physiological falls risk. If these are related, it would suggest that the development of interventions targeted at improving executive neurocognitive function would be an effective new approach for reducing physiological falls risk in seniors. Methods We performed a secondary analysis of 73 community-dwelling senior women aged 65 to 75 years old who participated in a 12-month randomized controlled trial of resistance training. Functional MRI data were acquired while participants performed a modified Eriksen Flanker Task - a task of selective attention and conflict resolution. Brain volumes were obtained using MRI. Falls risk was assessed using the Physiological Profile Assessment (PPA. Results After accounting for baseline age, experimental group, baseline PPA score, and total baseline white matter brain volume, baseline activation in the left frontal orbital cortex extending towards the insula was negatively associated with reduced physiological falls risk over the 12-month period. In contrast, baseline activation in the paracingulate gyrus extending towards the anterior cingulate gyrus was positively associated with reduced physiological falls risk. Conclusions Baseline activation levels of brain regions underlying response inhibition and selective attention were independently associated with reduced physiological falls risk. This suggests that falls prevention strategies may be facilitated by incorporating intervention components - such as aerobic exercise - that are specifically designed to induce neurocognitive plasticity. Trial Registration ClinicalTrials.gov Identifier: NCT00426881
Correlation between accelerated presbycusis and decreased immune functions.
Iwai, Hiroshi; Lee, Shinryu; Inaba, Muneo; Sugiura, Kikuya; Baba, Susumu; Tomoda, Koichi; Yamashita, Toshio; Ikehara, Susumu
2003-03-01
The aim of the current study is to analyze the relationship between presbycusis and the immune system, which is affected by pathogenic environments, and to devise a strategy for the prevention of presbycusis using the SAMP1 mouse, an animal model for accelerated senescence that shows both immunological dysfunction and hearing loss caused by the impairment of spiral ganglion cells in the cochlea. When these mice were bred in different pathogenic environments, we found that the development of age-related diseases such as presbycusis was delayed in the mice bred under clean conditions. Prednisolone administration showed no significant prevention of the development of presbycusis in the mice, suggesting that autoimmune mechanisms are not involved in the acceleration of presbycusis. It is conceivable that pathogen-induced infections impose a severe stress on the host, impairing the host's immune functions. A reduction in the number of pathogens may therefore prevent the acceleration of the aging process. These findings suggest that not only the gene backgrounds but also immune functions affect the development of presbycusis in SAMP1 mice. Further studies into the relationship between systemic immune functions and the neuro-generation system may provide additional information about the treatment for age-related diseases.
Boundary Correlation Functions of the gl(1|1) Supersymmetric Vertex Model
Institute of Scientific and Technical Information of China (English)
ZHANG Chen-Jun; ZHOU Jian-Hua; YUE Rui-Hong
2008-01-01
The gl(1|1) supersymmetric vertex model with domain wall boundary conditions (DWBC) on an N×N square lattice is considered.We derive the reduction formulae for the one-point boundary correlation functions of the model.The determinant representation for the boundary correlation functions is also obtained.
Determinant representation for a quantum correlation function of the lattice sine-Gordon model
Essler, F H L; Korepin, V E
1995-01-01
We consider a completely integrable lattice regularization of the sine--Gordon model with discrete space and continuous time. We derive a determinant representation for a correlation function which in the continuum limit turns into the correlation function of local fields.
Phase fluctuations and first-order correlation functions of dissipative Bose-Einstein condensates
De Leeuw, A. W.; Stoof, H. T C; Duine, R. A.
2014-01-01
We investigate the finite-lifetime effects on first-order correlation functions of dissipative Bose-Einstein condensates. By taking into account the phase fluctuations up to all orders, we show that the finite-lifetime effects are negligible for the spatial first-order correlation functions, but hav
Hormonal regulation of alveolarization: structure-function correlation
Directory of Open Access Journals (Sweden)
Godinez Marye H
2006-03-01
Full Text Available Abstract Background Dexamethasone (Dex limits and all-trans-retinoic acid (RA promotes alveolarization. While structural changes resulting from such hormonal exposures are known, their functional consequences are unclear. Methods Neonatal rats were treated with Dex and/or RA during the first two weeks of life or were given RA after previous exposure to Dex. Morphology was assessed by light microscopy and radial alveolar counts. Function was evaluated by plethysmography at d13, pressure volume curves at d30, and exercise swim testing and arterial blood gases at both d15 and d30. Results Dex-treated animals had simplified lung architecture without secondary septation. Animals given RA alone had smaller, more numerous alveoli. Concomitant treatment with Dex + RA prevented the Dex-induced changes in septation. While the results of exposure to Dex + RA were sustained, the effects of RA alone were reversed two weeks after treatment was stopped. At d13, Dex-treated animals had increased lung volume, respiratory rate, tidal volume, and minute ventilation. On d15, both RA- and Dex-treated animals had hypercarbia and low arterial pH. By d30, the RA-treated animals resolved this respiratory acidosis, but Dex-treated animals continued to demonstrate blood gas and lung volume abnormalities. Concomitant RA treatment improved respiratory acidosis, but failed to normalize Dex-induced changes in pulmonary function and lung volumes. No differences in exercise tolerance were noted at either d15 or d30. RA treatment after the period of alveolarization also corrected the effects of earlier Dex exposure, but the structural changes due to RA alone were again lost two weeks after treatment. Conclusion We conclude that both RA- and corticosteroid-treatments are associated with respiratory acidosis at d15. While RA alone-induced changes in structure andrespiratory function are reversed, Dex-treated animals continue to demonstrate increased respiratory rate, minute
Ground state of medium-heavy doubly-closed shell nuclei in correlated basis function theory
Bisconti, C; Có, G; Fabrocini, A
2006-01-01
The correlated basis function theory is applied to the study of medium-heavy doubly closed shell nuclei with different wave functions for protons and neutrons and in the jj coupling scheme. State dependent correlations including tensor correlations are used. Realistic two-body interactions of Argonne and Urbana type, together with three-body interactions have been used to calculate ground state energies and density distributions of the 12C, 16O, 40Ca, 48Ca and 208Pb nuclei.
On 3D Reconstruction of Porous Media by Using Spatial Correlation Functions
Directory of Open Access Journals (Sweden)
G.A. Papakostas
2015-11-01
Full Text Available The challenging process of 3D porous media reconstruction from a single 2D image is investigated in this paper. The reconstruction of the 3D model is based on the statistical information derived from a 2D thin image of the material, by applying a spatial correlation function. For the first time, this paper reviews the commonly used auto-correlation functions for material characterization and discusses their properties making them useful for 3D porous media reconstruction. A set of experiments is conducted in order to analyze the reconstruction capabilities of the studied correlation functions, while some useful conclusions are drawn. Finally, by taking into account the reconstruction performance of the existed correlation functions, some desirable properties that need to be satisfied by an ideal correlation function towards the improvement of the reconstruction accuracy are determined.
Persi, Erez; Horn, David
2013-01-01
We present a novel analysis of compositional order (CO) based on the occurrence of Frequent amino-acid Triplets (FTs) that appear much more than random in protein sequences. The method captures all types of proteomic compositional order including single amino-acid runs, tandem repeats, periodic structure of motifs and otherwise low complexity amino-acid regions. We introduce new order measures, distinguishing between ‘regularity’, ‘periodicity’ and ‘vocabulary’, to quantify these phenomena and to facilitate the identification of evolutionary effects. Detailed analysis of representative species across the tree-of-life demonstrates that CO proteins exhibit numerous functional enrichments, including a wide repertoire of particular patterns of dependencies on regularity and periodicity. Comparison between human and mouse proteomes further reveals the interplay of CO with evolutionary trends, such as faster substitution rate in mouse leading to decrease of periodicity, while innovation along the human lineage leads to larger regularity. Large-scale analysis of 94 proteomes leads to systematic ordering of all major taxonomic groups according to FT-vocabulary size. This is measured by the count of Different Frequent Triplets (DFT) in proteomes. The latter provides a clear hierarchical delineation of vertebrates, invertebrates, plants, fungi and prokaryotes, with thermophiles showing the lowest level of FT-vocabulary. Among eukaryotes, this ordering correlates with phylogenetic proximity. Interestingly, in all kingdoms CO accumulation in the proteome has universal characteristics. We suggest that CO is a genomic-information correlate of both macroevolution and various protein functions. The results indicate a mechanism of genomic ‘innovation’ at the peptide level, involved in protein elongation, shaped in a universal manner by mutational and selective forces. PMID:24278003
Persi, Erez; Horn, David
2013-01-01
We present a novel analysis of compositional order (CO) based on the occurrence of Frequent amino-acid Triplets (FTs) that appear much more than random in protein sequences. The method captures all types of proteomic compositional order including single amino-acid runs, tandem repeats, periodic structure of motifs and otherwise low complexity amino-acid regions. We introduce new order measures, distinguishing between 'regularity', 'periodicity' and 'vocabulary', to quantify these phenomena and to facilitate the identification of evolutionary effects. Detailed analysis of representative species across the tree-of-life demonstrates that CO proteins exhibit numerous functional enrichments, including a wide repertoire of particular patterns of dependencies on regularity and periodicity. Comparison between human and mouse proteomes further reveals the interplay of CO with evolutionary trends, such as faster substitution rate in mouse leading to decrease of periodicity, while innovation along the human lineage leads to larger regularity. Large-scale analysis of 94 proteomes leads to systematic ordering of all major taxonomic groups according to FT-vocabulary size. This is measured by the count of Different Frequent Triplets (DFT) in proteomes. The latter provides a clear hierarchical delineation of vertebrates, invertebrates, plants, fungi and prokaryotes, with thermophiles showing the lowest level of FT-vocabulary. Among eukaryotes, this ordering correlates with phylogenetic proximity. Interestingly, in all kingdoms CO accumulation in the proteome has universal characteristics. We suggest that CO is a genomic-information correlate of both macroevolution and various protein functions. The results indicate a mechanism of genomic 'innovation' at the peptide level, involved in protein elongation, shaped in a universal manner by mutational and selective forces.
Directory of Open Access Journals (Sweden)
Erez Persi
Full Text Available We present a novel analysis of compositional order (CO based on the occurrence of Frequent amino-acid Triplets (FTs that appear much more than random in protein sequences. The method captures all types of proteomic compositional order including single amino-acid runs, tandem repeats, periodic structure of motifs and otherwise low complexity amino-acid regions. We introduce new order measures, distinguishing between 'regularity', 'periodicity' and 'vocabulary', to quantify these phenomena and to facilitate the identification of evolutionary effects. Detailed analysis of representative species across the tree-of-life demonstrates that CO proteins exhibit numerous functional enrichments, including a wide repertoire of particular patterns of dependencies on regularity and periodicity. Comparison between human and mouse proteomes further reveals the interplay of CO with evolutionary trends, such as faster substitution rate in mouse leading to decrease of periodicity, while innovation along the human lineage leads to larger regularity. Large-scale analysis of 94 proteomes leads to systematic ordering of all major taxonomic groups according to FT-vocabulary size. This is measured by the count of Different Frequent Triplets (DFT in proteomes. The latter provides a clear hierarchical delineation of vertebrates, invertebrates, plants, fungi and prokaryotes, with thermophiles showing the lowest level of FT-vocabulary. Among eukaryotes, this ordering correlates with phylogenetic proximity. Interestingly, in all kingdoms CO accumulation in the proteome has universal characteristics. We suggest that CO is a genomic-information correlate of both macroevolution and various protein functions. The results indicate a mechanism of genomic 'innovation' at the peptide level, involved in protein elongation, shaped in a universal manner by mutational and selective forces.
On Landau gauge Yang-Mills correlation functions
Cyrol, Anton K; Mitter, Mario; Pawlowski, Jan M; Strodthoff, Nils
2016-01-01
We investigate Landau gauge $SU(3)$ Yang-Mills theory in a systematic vertex expansion scheme for the effective action with the functional renormalisation group. Particular focus is put on the dynamical creation of the gluon mass gap at non-perturbative momenta and the consistent treatment of quadratic divergences. The non-perturbative ghost and transverse gluon propagators as well as the momentum-dependent ghost-gluon, three-gluon and four-gluon vertices are calculated self-consistently with the classical action as only input. The apparent convergence of the expansion scheme is discussed and within the errors, our numerical results are in quantitative agreement with available lattice results.
Patching the Exchange-Correlation Potential in Density Functional Theory.
Huang, Chen
2016-05-10
A method for directly patching exchange-correlation (XC) potentials in materials is derived. The electron density of a system is partitioned into subsystem densities by dividing its Kohn-Sham (KS) potential among the subsystems. Inside each subsystem, its projected KS potential is required to become the total system's KS potential. This requirement, together with the nearsightedness principle of electronic matters, ensures that the electronic structures inside subsystems can be good approximations to the total system's electronic structure. The nearsightedness principle also ensures that subsystem densities could be well localized in their regions, making it possible to use high-level methods to invert the XC potentials for subsystem densities. Two XC patching methods are developed. In the local XC patching method, the total system's XC potential is improved in the cluster region. We show that the coupling between a cluster and its environment is important for achieving a fast convergence of the electronic structure in the cluster region. In the global XC patching method, we discuss how to patch the subsystem XC potentials to construct the XC potential in the total system, aiming to scale up high-level quantum mechanics simulations of materials. Proof-of-principle examples are given.
Correlation between videogame mechanics and executive functions through EEG analysis.
Mondéjar, Tania; Hervás, Ramón; Johnson, Esperanza; Gutierrez, Carlos; Latorre, José Miguel
2016-10-01
This paper addresses a different point of view of videogames, specifically serious games for health. This paper contributes to that area with a multidisciplinary perspective focus on neurosciences and computation. The experiment population has been pre-adolescents between the ages of 8 and 12 without any cognitive issues. The experiment consisted in users playing videogames as well as performing traditional psychological assessments; during these tasks the frontal brain activity was evaluated. The main goal was to analyse how the frontal lobe of the brain (executive function) works in terms of prominent cognitive skills during five types of game mechanics widely used in commercial videogames. The analysis was made by collecting brain signals during the two phases of the experiment, where the signals were analysed with an electroencephalogram neuroheadset. The validated hypotheses were whether videogames can develop executive functioning and if it was possible to identify which kind of cognitive skills are developed during each kind of typical videogame mechanic. The results contribute to the design of serious games for health purposes on a conceptual level, particularly in support of the diagnosis and treatment of cognitive-related pathologies.
Physiological Correlates and Predictors of Functional Recovery After Chiasmal Decompression.
Raz, Noa; Bick, Atira S; Klistorner, Alexander; Spektor, Sergey; Reich, Daniel S; Ben-Hur, Tamir; Levin, Netta
2015-12-01
The intrinsic abilities and limits of the nervous system to repair itself after damage may be assessed using a model of optic chiasmal compression, before and after a corrective surgical procedure. Visual fields (VFs), multifocal visual evoked potentials (mfVEP), retinal nerve fiber layer (RNFL) thickness, and diffusion tensor imaging were used to evaluate a patient before and after removal of a meningioma compressing the chiasm. Normally sighted individuals served as controls. The advantage of each modality to document visual function and predict postoperative outcome (2-year follow-up) was evaluated. Postsurgery visual recovery was best explained by critical mass of normally conducting fibers and not associated with average conduction amplitudes. Recovered VF was observed in quadrants in which more than 50% of fibers were identified, characterized by intact mfVEP latencies, but severely reduced amplitudes. Recovery was evident despite additional reduction of RNFL thickness and abnormal optic tract diffusivity. The critical mass of normally conducting fibers was also the best prognostic indicator for functional outcome 2 years later. Our results highlight the ability of the remaining normally conductive axons to predict visual recovery after decompression of the optic chiasm. The redundancy in anterior visual pathways may be explained, neuroanatomically, by overlapping receptive fields.
Directory of Open Access Journals (Sweden)
Joyce S. Sabari
2014-01-01
Full Text Available Objectives. (1 To develop two independent measurement scales for use as items assessing hand movements and hand activities within the Motor Assessment Scale (MAS, an existing instrument used for clinical assessment of motor performance in stroke survivors; (2 To examine the psychometric properties of these new measurement scales. Design. Scale development, followed by a multicenter observational study. Setting. Inpatient and outpatient occupational therapy programs in eight hospital and rehabilitation facilities in the United States and Canada. Participants. Patients (N=332 receiving stroke rehabilitation following left (52% or right (48% cerebrovascular accident; mean age 64.2 years (sd 15; median 1 month since stroke onset. Intervention. Not applicable. Main Outcome Measures. Data were tested for unidimensionality and reliability, and behavioral criteria were ordered according to difficulty level with Rasch analysis. Results. The new scales assessing hand movements and hand activities met Rasch expectations of unidimensionality and reliability. Conclusion. Following a multistep process of test development, analysis, and refinement, we have redesigned the two scales that comprise the hand function items on the MAS. The hand movement scale contains an empirically validated 10-behavior hierarchy and the hand activities item contains an empirically validated 8-behavior hierarchy.
Macroscopic pair correlation of the Riemann zeroes for smooth test functions
Rodgers, Brad
2012-01-01
On the assumption of the Riemann hypothesis, we show that over a class of sufficiently smooth test functions, a measure conjectured by Bogolomony and Keating coincides to a very small error with the actual pair correlation measure for zeroes of the Riemann zeta function. Our result extends the well known result of Montgomery that over the same class of test functions the pair correlation measure coincides (to a larger error term) with that of the Gaussian Unitary Ensemble (GUE). The restriction of test functions remains stringent, but we are nonetheless able to detect, at a microscopically blurred resolution, macroscopic troughs in the pair correlation measure.
Binocular function in unilateral aphakia. Correlation with aniseikonia and stereoacuity.
Katsumi, O; Miyanaga, Y; Hirose, T; Okuno, H; Asaoka, I
1988-08-01
Aniseikonia and stereoacuity were measured in patients with unilateral aphakia, most of whom were postoperative senile cataract cases. The New Aniseikonia test was used to evaluate aniseikonia and the Titmus Stereotest to measure stereoacuity. Ninety cases were studied, 57 (63.3%) of which had intraocular lens (IOL) implants; 27 (30%) had extended-wear soft contact lenses; and six (6.7%) had spectacle lenses. In the IOL group, aniseikonia averaged 2.8%, and 39 patients (68.4%) had good stereoacuity. In the contact lens group, aniseikonia averaged 4.6%, and 11 (40.7%) had good stereoacuity. In the spectacle lens group, aniseikonia averaged 17.8%; none of the patients had good stereoacuity. The authors concluded that in cases with unilateral aphakia, correction with an IOL implant is superior to the other alternatives in achieving good binocular function.
Correlation function and electronic spectral line broadening in relativistic plasmas
Directory of Open Access Journals (Sweden)
Douis S.
2013-01-01
Full Text Available The electrons dynamics and the time autocorrelation function Cee(t for the total electric microfield of the electrons on positive charge impurity embedded in a plasma are considered when the relativistic dynamic of the electrons is taken into account. We have, at first, built the effective potential governing the electrons dynamics. This potential obeys a nonlinear integral equation that we have solved numerically. Regarding the electron broadening of the line in plasma, we have found that when the plasma parameters change, the amplitude of the collision operator changes in the same way as the time integral of Cee(t. The electron-impurity interaction is taken at first time as screened Deutsh interaction and at the second time as Kelbg interaction. Comparisons of all interesting quantities are made with respect to the previous interactions as well as between classical and relativistic dynamics of electrons.
Partition and Correlation Functions of a Freely Crossed Network Using Ising Model-Type Interactions
Saito, Akira
2016-01-01
We set out to determine the partition and correlation functions of a network under the assumption that its elements are freely connected, with an Ising model-type interaction energy associated with each connection. The partition function is obtained from all combinations of loops on the free network, while the correlation function between two elements is obtained based on all combinations of routes between these points, as well as all loops on the network. These functions allow measurement of the dynamics over the whole of any network, regardless of its form. Furthermore, even as parts are added to the network, the partition and correlation functions can still be obtained. As an example, we obtain the partition and correlation functions in a crystal system under the repeated addition of fixed parts.
The correlation function for density perturbations in an expanding universe. II - Nonlinear theory
Mcclelland, J.; Silk, J.
1977-01-01
A formalism is developed to find the two-point and higher-order correlation functions for a given distribution of sizes and shapes of perturbations which are randomly placed in three-dimensional space. The perturbations are described by two parameters such as central density and size, and the two-point correlation function is explicitly related to the luminosity function of groups and clusters of galaxies
Energy Technology Data Exchange (ETDEWEB)
Salini, K. [School of Physics, IISER TVM, CET Campus, Thiruvananthapuram, Kerala 695 016 (India); Prabhu, R.; Sen, Aditi [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Sen, Ujjwal, E-mail: ujjwal@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India)
2014-09-15
Monogamy of quantum correlation measures puts restrictions on the sharability of quantum correlations in multiparty quantum states. Multiparty quantum states can satisfy or violate monogamy relations with respect to given quantum correlations. We show that all multiparty quantum states can be made monogamous with respect to all measures. More precisely, given any quantum correlation measure that is non-monogamic for a multiparty quantum state, it is always possible to find a monotonically increasing function of the measure that is monogamous for the same state. The statement holds for all quantum states, whether pure or mixed, in all finite dimensions and for an arbitrary number of parties. The monotonically increasing function of the quantum correlation measure satisfies all the properties that are expected for quantum correlations to follow. We illustrate the concepts by considering a thermodynamic measure of quantum correlation, called the quantum work deficit.
Directory of Open Access Journals (Sweden)
Huang Jinglian
2016-01-01
Full Text Available We put forward an efficient method to study the algebraic immunity of H Boolean functions with Hamming weight of 2n-1 + 2n-2, getting the existence of the higher-order algebraic immunity functions with correlation immunity. We also prove the existing problem of the above 2-order algebraic immunity functions and the optimal algebraic immunity functions. Meanwhile, we solve the compatibility of algebraic immunity and correlation immunity. What is more, the main theoretical results are verified through the examples and are revealed to be correct. Such researches are important in cryptographic primitive designs, and have significance and role in the theory and application range of cryptosystems.
Fractional Brownian motions: memory, diffusion velocity, and correlation functions
Fuliński, A.
2017-02-01
Fractional Brownian motions (FBMs) have been observed recently in the measured trajectories of individual molecules or small particles in the cytoplasm of living cells and in other dense composite systems, among others. Various types of FBMs differ in a number of ways, including the strength, range and type of damping of the memory encoded in their definitions, but share several basic characteristics: distributions, non-ergodic properties, and scaling of the second moment, which makes it difficult to determine which type of Brownian motion (fractional or normal) the measured trajectory belongs to. Here, we show, by introducing FBMs with regulated range and strength of memory, that it is the structure of memory which determines their physical properties, including mean velocity of diffusion; therefore, the course and kinetics of several processes (including coagulation and some chemical reactions). We also show that autocorrelation functions possess characteristic features which enable identification of an observed FBM, and of the type of memory governing its trajectory. In memoriam Marian Smoluchowski, on the 100th anniversary of the publication of his seminal papers on Brownian motion and diffusion-limited kinetics.
Correlations between motor and sensory functions in upper limb chronic hemiparetics after stroke
Directory of Open Access Journals (Sweden)
Thais Botossi Scalha
2011-08-01
Full Text Available OBJECTIVE: Describe the somatosensory function of the affected upper limb of hemiparetic stroke patients and investigate the correlations between measurements of motor and sensory functions in tasks with and without visual deprivation. METHOD: We applied the Fugl-Meyer Assessment (FMA, Nottingham Sensory Assessment (NSA, and several motor and sensory tests: Paper manipulation (PM, Motor Sequences (MS, Reaching and grasping (RG Tests Functional (TF, Tactile Discrimination (TD, Weight Discrimination (WD and Tactile Recognition of Objects (RO. RESULTS: We found moderate correlations between the FMA motor subscale and the tactile sensation score of the NSA. Additionally, the FMA sensitivity was correlated with the NSA total; and performance on the WD test items correlated with the NSA. CONCLUSION: There was a correlation between the sensory and motor functions of the upper limb in chronic hemiparetic stroke patients. Additionally, there was a greater reliance on visual information to compensate for lost sensory-motor skills.
Cross-Correlation-Function-Based Multipath Mitigation Method for Sine-BOC Signals
Directory of Open Access Journals (Sweden)
H. H. Chen
2012-06-01
Full Text Available Global Navigation Satellite Systems (GNSS positioning accuracy indoor and urban canyons environments are greatly affected by multipath due to distortions in its autocorrelation function. In this paper, a cross-correlation function between the received sine phased Binary Offset Carrier (sine-BOC modulation signal and the local signal is studied firstly, and a new multipath mitigation method based on cross-correlation function for sine-BOC signal is proposed. This method is implemented to create a cross-correlation function by designing the modulated symbols of the local signal. The theoretical analysis and simulation results indicate that the proposed method exhibits better multipath mitigation performance compared with the traditional Double Delta Correlator (DDC techniques, especially the medium/long delay multipath signals, and it is also convenient and flexible to implement by using only one correlator, which is the case of low-cost mass-market receivers.
Hierarchical Clustering and Active Galaxies
Hatziminaoglou, E; Manrique, A
2000-01-01
The growth of Super Massive Black Holes and the parallel development of activity in galactic nuclei are implemented in an analytic code of hierarchical clustering. The evolution of the luminosity function of quasars and AGN will be computed with special attention paid to the connection between quasars and Seyfert galaxies. One of the major interests of the model is the parallel study of quasar formation and evolution and the History of Star Formation.
Afanasiev, Ie.
2016-04-01
We consider asymptotics of the correlation functions of characteristic polynomials corresponding to random weighted G(n, p/n) Erdős-Rényi graphs with Gaussian weights in the case of finite p and also when p rightarrow infty . It is shown that for finite p the second correlation function demonstrates a kind of transition: when p 2 there appears an interval (-λ _*(p), λ _*(p)) such that for λ _0 in (-λ _*(p), λ _*(p)) the second correlation function behaves like that for Gaussian unitary ensemble (GUE), while for λ _0 outside the interval the second correlation function is still factorized. For p rightarrow infty there is also a threshold in the behavior of the second correlation function near λ _0 = ± 2: for p ≪ n^{2/3} the second correlation function factorizes, whereas for p ≫ n^{2/3} it behaves like that for GUE. For any rate of p rightarrow infty the asymptotics of correlation functions of any even order for λ _0 in (-2, 2) coincide with that for GUE.
Energy Technology Data Exchange (ETDEWEB)
Mentel, Ł. M.; Meer, R. van; Gritsenko, O. V. [Section Theoretical Chemistry, VU University, Amsterdam (Netherlands); Pohang University of Science and Technology, Pohang (Korea, Republic of); Baerends, E. J. [Section Theoretical Chemistry, VU University, Amsterdam (Netherlands); Pohang University of Science and Technology, Pohang (Korea, Republic of); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)
2014-06-07
For chemistry an accurate description of bond weakening and breaking is vital. The great advantage of density matrix functionals, as opposed to density functionals, is their ability to describe such processes since they naturally cover both nondynamical and dynamical correlation. This is obvious in the Löwdin-Shull functional, the exact natural orbital functional for two-electron systems. We present in this paper extensions of this functional for the breaking of a single electron pair bond in N-electron molecules, using LiH, BeH{sup +}, and Li{sub 2} molecules as prototypes. Attention is given to the proper formulation of the functional in terms of not just J and K integrals but also the two-electron L integrals (K integrals with a different distribution of the complex conjugation of the orbitals), which is crucial for the calculation of response functions. Accurate energy curves are obtained with extended Löwdin-Shull functionals along the complete dissociation coordinate using full CI calculations as benchmark.
Some insights in the structure of correlation functions in Liouville and Toda field theories
Dutta, Parikshit
2014-01-01
We discuss some aspects of Liouville field theory, starting from operator equation of motion in presence of two screening charges and re-derive the dual zero mode Schwinger Dyson equations for the two screening charges from the path integral. Using functional methods we show the familiar pole structure of Liouville correlation function using the partition function. Next we discuss a generalized structure of the correlation functions obtained from the zero mode functional equations. From this structure we infer the use of the Barnes double Gamma functions to construct a part of the denominator of the correlators and also use Weyl symmetry of the theory to deduce more information about the rest. We similarly extend these arguments in the case of Toda field theories where we make a general statement about the denominator of the three point function and Sine-Liouvile field theory where we only obtain an infinite product structure.
Correlation functions of XX0 Heisenberg chain, q-binomial determinants, and random walks
Energy Technology Data Exchange (ETDEWEB)
Bogoliubov, N.M.; Malyshev, C.
2014-02-15
The XX0 Heisenberg model on a cyclic chain is considered. The representation of the Bethe wave functions via the Schur functions allows to apply the well-developed theory of the symmetric functions to the calculation of the thermal correlation functions. The determinantal expressions of the form-factors and of the thermal correlation functions are obtained. The q-binomial determinants enable the connection of the form-factors with the generating functions both of boxed plane partitions and of self-avoiding lattice paths. The asymptotical behavior of the thermal correlation functions is studied in the limit of low temperature provided that the characteristic parameters of the system are large enough.
Correlation Functions of XX0 Heisenberg Chain, q-Binomial Determinants, and Random Walks
Bogoliubov, N M
2014-01-01
The XX0 Heisenberg model on a cyclic chain is considered. The representation of the Bethe wave functions via the Schur functions allows to apply the well-developed theory of the symmetric functions to the calculation of the thermal correlation functions. The determinantal expressions of the form-factors and of the thermal correlation functions are obtained. The q-binomial determinants enable the connection of the form-factors with the generating functions both of boxed plane partitions and of self-avoiding lattice paths. The asymptotical behavior of the thermal correlation functions is studied in the limit of low temperature provided that the characteristic parameters of the system are large enough.
Towards efficient orbital-dependent density functionals for weak and strong correlation
Zhang, Igor Ying; Perdew, John P; Scheffler, Matthias
2016-01-01
We present a new paradigm for the design of exchange-correlation functionals in density-functional theory. Electron pairs are correlated explicitly by means of the recently developed second order Bethe-Goldstone equation (BGE2) approach. Here we propose a screened BGE2 (sBGE2) variant that efficiently regulates the coupling of a given electron pair. sBGE2 correctly dissociates H$_2$ and H$_2^+$, a problem that has been regarded as a great challenge in density-functional theory for a long time. The sBGE2 functional is then taken as a building block for an orbital-dependent functional, termed ZRPS, which is a natural extension of the PBE0 hybrid functional. While worsening the good performance of sBGE2 in H$_2$ and H$_2^{+}$, ZRPS yields a remarkable and consistent improvement over other density functionals across various chemical environments from weak to strong correlation.
Correlation functions of the energy-momentum tensor in SU(2) gauge theory at finite temperature
DEFF Research Database (Denmark)
Huebner, K.; Karsch, F.; Pica, Claudio
2008-01-01
We calculate correlation functions of the energy-momentum tensor in the vicinity of the deconfinement phase transition of (3+1)-dimensional SU(2) gauge theory and discuss their critical behavior in the vicinity of the second order deconfinement transition. We show that correlation functions...... of the trace of the energy momentum tensor diverge uniformly at the critical point in proportion to the specific heat singularity. Correlation functions of the pressure, on the other hand, stay finite at the critical point. We discuss the consequences of these findings for the analysis of transport...... coefficients, in particular the bulk viscosity, in the vicinity of a second order phase transition point....
Determinant representation for a quantum correlation function of the lattice sine-Gordon model
Energy Technology Data Exchange (ETDEWEB)
Essler, Fabian H.L. [Department of Physics, Theoretical Physics, Oxford (United Kingdom); Frahm, Holger [Institut fuer Theoretische Physik, Universitaet Hannover, Hannover (Germany); Its, Alexander R. [Department of Mathematical Sciences, Indiana University-Purdue University at Indianapolis (IUPUI), Indianapolis, IN (United States); Korepin, Vladimir E. [Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY (United States); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto (Japan); St. Petersburg Department of Mathematical Institute of Academy of Sciences of Russia, St. Petersburg (Russian Federation)
1997-01-07
We consider a completely integrable lattice regularization of the sine-Gordon model with discrete space and continuous time. We derive a determinant representation for a correlation function which in the continuum limit turns into the correlation function of local fields. The determinant is then embedded into a system of integrable integro-differential equations. The leading asymptotic behaviour of the correlation function is described in terms of the solution of a Riemann-Hilbert Problem (RHP) related to the system of integro-differential equations. The leading term in the asymptotical decomposition of the solution of the RHP is obtained. (author)
Correlation functions of the energy-momentum tensor in SU(2) gauge theory at finite temperature
Huebner, K; Pica, C
2008-01-01
We calculate correlation functions of the energy-momentum tensor in the vicinity of the deconfinement phase transition of (3+1)-dimensional SU(2) gauge theory and discuss their critical behavior in the vicinity of the second order deconfinement transition. We show that correlation functions of the trace of the energy momentum tensor diverge uniformly at the critical point in proportion to the specific heat singularity. Correlation functions of the pressure, on the other hand, stay finite at the critical point. We discuss the consequences of these findings for the analysis of transport coefficients, in particular the bulk viscosity, in the vicinity of a second order phase transition point.
The negativity of Wigner function as a measure of quantum correlations
Siyouri, F.; El Baz, M.; Hassouni, Y.
2016-10-01
In this paper, we study comparatively the behaviors of Wigner function and quantum correlations for two quasi-Werner states formed with two general bipartite superposed coherent states. We show that the Wigner function can be used to detect and quantify the quantum correlations. However, we show that it is in fact not sensitive to all kinds of quantum correlations but only to entanglement. Then, we analyze the measure of non-classicality of quantum states based on the volume occupied by the negative part of the Wigner function.
Correlation functions of scattering matrix elements in microwave cavities with strong absorption
Energy Technology Data Exchange (ETDEWEB)
Schaefer, R [Fachbereich Physik, Philipps-Universitaet Marburg, Renthof 5, D-35032 Marburg (Germany); Gorin, T [Theoretische Quantendynamik, Fakultaet fuer Physik, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Seligman, T H [Centro de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Campus Morelos, CP 62251, Cuernavaca, Morelos (Mexico); Stoeckmann, H-J [Fachbereich Physik, Philipps-Universitaet Marburg, Renthof 5, D-35032 Marburg (Germany)
2003-03-28
The scattering matrix was measured for microwave cavities with two antennae. It was analysed in the regime of overlapping resonances. The theoretical description in terms of a statistical scattering matrix and the rescaled Breit-Wigner approximation has been applied to this regime. The experimental results for the auto-correlation function show that the absorption in the cavity walls yields an exponential decay. This behaviour can only be modelled using a large number of weakly coupled channels. In comparison to the auto-correlation functions, the cross-correlation functions of the diagonal S-matrix elements display a more pronounced difference between regular and chaotic systems.
Correlation functions of scattering matrix elements in microwave cavities with strong absorption
Schäfer, R.; Gorin, T.; Seligman, T. H.; Stöckmann, H.-J.
2003-03-01
The scattering matrix was measured for microwave cavities with two antennae. It was analysed in the regime of overlapping resonances. The theoretical description in terms of a statistical scattering matrix and the rescaled Breit-Wigner approximation has been applied to this regime. The experimental results for the auto-correlation function show that the absorption in the cavity walls yields an exponential decay. This behaviour can only be modelled using a large number of weakly coupled channels. In comparison to the auto-correlation functions, the cross-correlation functions of the diagonal S-matrix elements display a more pronounced difference between regular and chaotic systems.
Hierarchical Reverberation Mapping
Brewer, Brendon J
2013-01-01
Reverberation mapping (RM) is an important technique in studies of active galactic nuclei (AGN). The key idea of RM is to measure the time lag $\\tau$ between variations in the continuum emission from the accretion disc and subsequent response of the broad line region (BLR). The measurement of $\\tau$ is typically used to estimate the physical size of the BLR and is combined with other measurements to estimate the black hole mass $M_{\\rm BH}$. A major difficulty with RM campaigns is the large amount of data needed to measure $\\tau$. Recently, Fine et al (2012) introduced a new approach to RM where the BLR light curve is sparsely sampled, but this is counteracted by observing a large sample of AGN, rather than a single system. The results are combined to infer properties of the sample of AGN. In this letter we implement this method using a hierarchical Bayesian model and contrast this with the results from the previous stacked cross-correlation technique. We find that our inferences are more precise and allow fo...
Rodriguez Manso, A.
2015-01-01
The measurement of charge-dependent correlations between positively and negatively charged particles as a function of pseudorapidity and azimuthal angle, known as the \\emph{balance functions}, provide insight to the properties of matter created in high-energy collisions. The balance functions are ar
Cerveri, P; Forlani, C; Pedotti, A; Ferrigno, G
2003-03-01
Global polynomial (GP) methods have been widely used to correct geometric image distortion of small-size (up to 30 cm) X-ray image intensifiers (XRIIs). This work confirms that this kind of approach is suitable for 40 cm XRIIs (now increasingly used). Nonetheless, two local methods, namely 3rd-order local un-warping polynomials (LUPs) and hierarchical radial basis function (HRBF) networks are proposed as alternative solutions. Extensive experimental tests were carried out to compare these methods with classical low-order local polynomial and GP techniques, in terms of residual error (RMSE) measured at points not used for parameter estimation. Simulations showed that the LUP and HRBF methods had accuracies comparable with that attained using GP methods. In detail, the LUP method (0.353 microm) performed worse than HRBF (0.348 microm) only for small grid spacing (15 x 15 control points); the accuracy of both HRBF (0.157 microm) and LUP (0.160 microm) methods was little affected by local distortions (30 x 30 control points); weak local distortions made the GP method poorer (0.320 microm). Tests on real data showed that LUP and HRBF had accuracies comparable with that of GP for both 30 cm (GP: 0.238 microm; LUP: 0.240 microm; HRBF: 0.238 microm) and 40 cm (GP: 0.164 microm; LUP: 0.164 microm; HRBF: 0.164 microm) XRIIs. The LUP-based distortion correction was implemented in real time for image correction in digital tomography applications.
Equal-time two-point correlation functions in Coulomb gauge Yang-Mills theory
Campagnari, D; Reinhardt, H; Astorga, F; Schleifenbaum, W
2009-01-01
We apply a new functional perturbative approach to the calculation of the equal-time two-point correlation functions and the potential between static color charges to one-loop order in Coulomb gauge Yang-Mills theory. The functional approach proceeds through a solution of the Schroedinger equation for the vacuum wave functional to order g^2 and derives the equal-time correlation functions from a functional integral representation via new diagrammatic rules. We show that the results coincide with those obtained from the usual Lagrangian functional integral approach, extract the beta function and determine the anomalous dimensions of the equal-time gluon and ghost two-point functions and the static potential under the assumption of multiplicative renormalizability to all orders.
Correlation functions of small-scale fluctuations of the interplanetary magnetic field
Németh, Z; Lucek, E A
2010-01-01
The Interplanetary Magnetic Field shows complex spatial and temporal variations. Single spacecraft measurements reveal only a one dimensional section of this rich four dimensional phenomenon. Multi-point measurements of the four Cluster spacecraft provide a unique tool to study the spatiotemporal structure of the field. Using Cluster data we determined three dimensional correlation functions of the fluctuations. By means of the correlation function one can describe and measure field variations. Our results can be used to verify theoretical predictions, to understand the formation and nature of solar wind turbulence. We found that the correlation length varies over almost six orders of magnitude. The IMF turbulence shows significant anisotropy with two distinct populations. In certain time intervals the ratio of the three axes of the correlation ellipse is 1/2.2/6 while in the remaining time we found extremely high correlation along one axis. We found favoured directions in the orientation of the correlation e...
DEFF Research Database (Denmark)
Xu, Chunsheng; Zhang, Dongfeng; Tian, Xiaocao
2017-01-01
Although the correlation between cognition and physical function has been well studied in the general population, the genetic and environmental nature of the correlation has been rarely investigated. We conducted a classical twin analysis on cognitive and physical function, including forced...... expiratory volume in one second (FEV1), forced vital capacity (FVC), handgrip strength, five-times-sit-to-stand test (FTSST), near visual acuity, and number of teeth lost in 379 complete twin pairs. Bivariate twin models were fitted to estimate the genetic and environmental correlation between physical...... and cognitive function. Bivariate analysis showed mildly positively genetic correlations between cognition and FEV1, r G = 0.23 [95% CI: 0.03, 0.62], as well as FVC, r G = 0.35 [95% CI: 0.06, 1.00]. We found that FTSST and cognition presented very high common environmental correlation, r C = -1.00 [95% CI: -1...
Sum Rule Constraints and the Quality of Approximate Kubo-Transformed Correlation Functions.
Hernández de la Peña, Lisandro
2016-02-11
In this work, a general protocol for evaluating the quality of approximate Kubo correlation functions of nontrivial systems in many dimensions is discussed. We first note that the generalized deconvolution of the Kubo transformed correlation function onto a time correlation function at a given value τ in imaginary time, such that 0 function and whose iterative extension allows us to link derivatives of different order in the corresponding correlation functions. We focus on the case when τ = βℏ/2, for which all deconvolution kernels become real valued functions and their asymptotic behavior at long times exhibits a polynomial divergence. It is then shown that thermally symmetrized static averages, and the averages of the corresponding time derivatives, are ideally suited to investigate the quality of approximate Kubo correlation functions at successively larger (and up to arbitrarily long) times. This overall strategy is illustrated analytically for a harmonic system and numerically for a multidimensional double-well potential and a Lennard-Jones fluid. The analysis includes an assessment of RPMD position autocorrelation results as a function of the number of dimensions in a double-well potential and of the RPMD velocity autocorrelation function of liquid neon at 30 K.
Long-distance behavior of temperature correlation functions in the one-dimensional Bose gas
Energy Technology Data Exchange (ETDEWEB)
Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M. [UMR 5672 du CNRS, ENS Lyon (France). Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Institute, Moscow (Russian Federation)
2010-12-15
We describe a Bethe ansatz based method to derive, starting from a multiple integral representation, the long-distance asymptotic behavior at finite temperature of the density-density correlation function in the interacting onedimensional Bose gas. We compute the correlation lengths in terms of solutions of non-linear integral equations of the thermodynamic Bethe ansatz type. Finally, we establish a connection between the results obtained in our approach with the correlation lengths stemming from the quantum transfer matrix method. (orig.)
The boundary states and correlation functions of the tricritical Ising model
Balaska, S
2006-01-01
We consider the minimal model describing the tricritical Ising model on the upper half plane or equivalently on an infinite strip of finite width and we determine its consistents boundary states as well as its 1-point correlation functions.
Detection of a periodic structure embedded in surface roughness, for various correlation functions
Indian Academy of Sciences (India)
V C Vani; S Chatterjee
2011-10-01
This paper deals with surface proﬁlometry, where we try to detect a periodic structure, hidden in randomness using the matched ﬁlter method of analysing the intensity of light, scattered from the surface. From the direct problem of light scattering from a composite rough surface of the above type, we ﬁnd that the detectability of the periodic structure can be hindered by the randomness, being dependent on the correlation function of the random part. In our earlier works, we had concentrated mainly on the Cauchy-type correlation function for the rough part. In the present work, we show that this technique can determine the periodic structure of different kinds of correlation functions of the roughness, including Cauchy, Gaussian etc. We study the detection by the matched ﬁlter method as the nature of the correlation function is varied.
Craig, Ian R; Manolopoulos, David E
2004-08-22
We propose an approximate method for calculating Kubo-transformed real-time correlation functions involving position-dependent operators, based on path integral (Parrinello-Rahman) molecular dynamics. The method gives the exact quantum mechanical correlation function at time zero, exactly satisfies the quantum mechanical detailed balance condition, and for correlation functions of the form C(Ax)(t) and C(xB)(t) it gives the exact result for a harmonic potential. It also works reasonably well at short times for more general potentials and correlation functions, as we illustrate with some example calculations. The method provides a consistent improvement over purely classical molecular dynamics that is most apparent in the low-temperature regime.
Experimental verification of compressive reconstruction of correlation functions in Ambiguity space
Tian, Lei; Oh, Se Baek; Barbastathis, George
2011-01-01
Phase space tomography estimates correlation functions entirely from multiple snapshots in the evolution of the system, rather than traditional interferometric methods requiring measurement of multiple two-point correlations. However, as in every tomographic formulation, undersampling poses a severe limitation. In the context of quantum correlation function measurements, a new theory utilizing compressive sensing was recently established [D. Gross et al. Phys. Rev. Lett. 105, 150401 (2010), M. Cramer et al. Nat. Comm. 1, 149 (2010)] whereby both measurement and post-processing dimensionality are reduced without giving up reconstruction fidelity. Here we present the first, to our knowledge, experimental demonstration of compressive reconstruction of the classical optical correlation function, i.e. the mutual intensity function which is of course the analogue to a conservative quantum state. We show that using explicitly physics-based assumptions we obtain substantial quantitative improvements in the reconstruc...
Mapping the current–current correlation function near a quantum critical point
Energy Technology Data Exchange (ETDEWEB)
Prodan, Emil, E-mail: prodan@yu.edu [Department of Physics, Yeshiva University, New York, NY 10016 (United States); Bellissard, Jean [School of Mathematics and School of Physics, Georgia Institute of Technology, Atlanta, GA (United States)
2016-05-15
The current–current correlation function is a useful concept in the theory of electron transport in homogeneous solids. The finite-temperature conductivity tensor as well as Anderson’s localization length can be computed entirely from this correlation function. Based on the critical behavior of these two physical quantities near the plateau–insulator or plateau–plateau transitions in the integer quantum Hall effect, we derive an asymptotic formula for the current–current correlation function, which enables us to make several theoretical predictions about its generic behavior. For the disordered Hofstadter model, we employ numerical simulations to map the current–current correlation function, obtain its asymptotic form near a critical point and confirm the theoretical predictions.
Four-point correlation function of stress-energy tensors in N=4 superconformal theories
Korchemsky, G P
2015-01-01
We derive the explicit expression for the four-point correlation function of stress-energy tensors in four-dimensional N=4 superconformal theory. We show that it has a remarkably simple and suggestive form allowing us to predict a large class of four-point correlation functions involving the stress-energy tensor and other conserved currents. We then apply the obtained results on the correlation functions to computing the energy-energy correlations, which measure the flow of energy in the final states created from the vacuum by a source. We demonstrate that they are given by a universal function independent of the choice of the source. Our analysis relies only on N=4 superconformal symmetry and does not use the dynamics of the theory.
Rainfall interstation correlation functions derived for a class of generalized storm models
Stol, P.T.
1983-01-01
The complete derivation and solution of the rainfall interstation correlation function is described. The report emphasizes the mathematical treatment and the way in which the analytical solution can be obtained by calculus
Logarithmic two-Point Correlation Functions from a z = 2 Lifshitz Model
Zingg, T.
2013-01-01
The Einstein-Proca action is known to have asymptotically locally Lifshitz spacetimes as classical solutions. For dynamical exponent z=2, two-point correlation functions for fluctuations around such a geometry are derived analytically. It is found that the retarded correlators are stable in the sens
Hierarchical structure of biological systems
Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M
2014-01-01
A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and functioning of the biological system. Our thermodynamical approach of hierarchical character can be applied to biological systems of varying sizes through some general principles, based on the exchange of energy information and/or mass from and within the systems. PMID:24145961
Hierarchical Formation of Galactic Clusters
Elmegreen, B G
2006-01-01
Young stellar groupings and clusters have hierarchical patterns ranging from flocculent spiral arms and star complexes on the largest scale to OB associations, OB subgroups, small loose groups, clusters and cluster subclumps on the smallest scales. There is no obvious transition in morphology at the cluster boundary, suggesting that clusters are only the inner parts of the hierarchy where stars have had enough time to mix. The power-law cluster mass function follows from this hierarchical structure: n(M_cl) M_cl^-b for b~2. This value of b is independently required by the observation that the summed IMFs from many clusters in a galaxy equals approximately the IMF of each cluster.
Hierarchical matrices algorithms and analysis
Hackbusch, Wolfgang
2015-01-01
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...
Correlation functions of the antiferromagnetic Heisenberg model using a modified Lanczos method
Gagliano, Eduardo R.; Dagotto, Elbio; Moreo, Adriana; Alcaraz, Francisco C.
1986-08-01
Using a modified Lanczos algorithm, we study the correlation functions in the ground state of the one-dimensional antiferromagnetic Heisenberg model. We obtain numerical results for rings up to 24 sites. There are no indications of the anomalous behavior of these correlation functions recently observed in chains with 16 sites. We also present a pedagogical description of the hashing technique which is an efficient algorithm for searching and storage purposes.
Current correlation functions of ideal Fermi gas at ﬁnite temperature
Indian Academy of Sciences (India)
R P Kaur; K Tankeshwar; K N Pathak
2002-04-01
Expressions for transverse and longitudinal current–current correlation functions of an ideal Fermi gas describing the current ﬂuctuations induced in the electron system by external probe perpendicular and parallel to the propagation of electron wave, have been obtained at ﬁnite temperature. The results obtained for transverse and longitudinal functions are presented for different values of wavelength and frequency at different temperatures. The diamagnetic susceptibility as a function of temperature has also been obtained from transverse current correlation function as its long wavelength and static limit, which smoothly cross over from known quantum values to the classical limit with increase in temperature.
The role of exchange and correlation in time-dependent density-functional theory for photoionization
Stener, M.; Decleva, P.; Görling, A.
2001-05-01
Atomic photoionization cross sections are calculated by time-dependent density-functional (TDDF) methods using different exchange-correlation potentials including the exact one. The exchange-correlation kernel is treated in the adiabatic local density approximation (ALDA). Results for the exact full and the exact exchange-only Kohn-Sham (KS) potential are very similar, the calculated photo cross section agree very well with experimental data. Thus the exact correlation potential seems to have no influence on photoionization and the ALDA for the exchange-correlation kernel seems to be sufficient for most features of the cross sections. The TDDF method employing the exact exchange-only KS potential in combination with the ALDA exchange-correlation kernel therefore is a promising approach to describe photoionization. Deviations from experiment are observed for the widths and shape of the autoionization resonances and have to be attributed to deficiencies of the ALDA exchange-correlation kernel. The calculation of widths and shapes of autoionization resonances therefore may serve as a severe test for new approximate exchange-correlation density-functionals. The asymptotically exact exchange-correlation potential of van Leeuwen and Baerends also leads to quite good photo cross section, which, however, shows deficiencies close to the ionization threshold and in the energetic position of the autoionization resonances. Supplementation of the exact exchange potential with the LDA correlation potential leads to a worsening of the photo cross section because the LDA correlation potential is too attractive.
3d and 5d gauge theory partition functions as q-deformed CFT correlators
Nieri, Fabrizio; Passerini, Filippo
2015-01-01
3d N=2 partition functions on the squashed three-sphere and on the twisted product S2xS1 have been shown to factorize into sums of squares of solid tori partition functions, the so-called holomorphic blocks. The same set of holomorphic blocks realizes squashed three-sphere and S2xS1 partition functions but the two cases involve different inner products, the S-pairing and the id-pairing respectively. We define a class of q-deformed CFT correlators where conformal blocks are controlled by a deformation of Virasoro symmetry and are paired by S-pairing and id-pairing respectively. Applying the bootstrap approach to a class of degenerate correlators we are able to derive three-point functions. We show that degenerate correlators can be mapped to 3d partition functions while the crossing symmetry of CFT correlators corresponds to the flop symmetry of 3d gauge theories. We explore how non-degenerate q-deformed correlators are related to 5d partition functions. We argue that id-pairing correlators are associated to t...
Kim, DeokJu
2016-01-01
[Purpose] This study aimed to assess the quality of life of elderly people related to physical function, cognitive function, and health, and devised methods to enhance their health-related quality of life. [Subjects and Methods] This study was conducted from November 2014 to January 2015 in 140 people over 65 registered at welfare centers. Those with a functional psychological disorder or difficulty communicating were excluded. Data were collected for physical function, cognitive function, an...
Institute of Scientific and Technical Information of China (English)
程传福; 刘曼; 滕树云; 宋洪胜; 陈建平; 徐至展
2003-01-01
A method for the extracting the correlation functions of random surfaces is proposed by using the image speckle intensity. Theoretically, we analyse the integral expression of average intensity of the image speckles, and compare it with the pair of Fourier-Bessel-transform-and-the-inversion of the exponential function of the height-height correlation function of the random surfaces. Then the algorithm is proposed numerically to complement the lacking Bessel function factor in the expression of the average speckle intensity, which changes the intensity data into the pair of the Fourier-Bessel-transform. Experimentally, we measure the average image speckle intensities versus the radius of the filtering aperture in the 4 f system and extract the height-height correlation function by using the proposed algorithm. The results of the practical measurements for three surface samples and the comparison with those by atomic force microscopy validate the feasibility of this method.
Micromechanics of hierarchical materials
DEFF Research Database (Denmark)
Mishnaevsky, Leon, Jr.
2012-01-01
A short overview of micromechanical models of hierarchical materials (hybrid composites, biomaterials, fractal materials, etc.) is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized, among them, 3D FE model of hybrid composites...... with nanoengineered matrix, fiber bundle model of UD composites with hierarchically clustered fibers and 3D multilevel model of wood considered as a gradient, cellular material with layered composite cell walls. The main areas of research in micromechanics of hierarchical materials are identified, among them......, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, of the possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects. The main future directions...
Hierarchical auxetic mechanical metamaterials.
Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I; Azzopardi, Keith M; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N
2015-02-11
Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.
Introduction into Hierarchical Matrices
Litvinenko, Alexander
2013-12-05
Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.
Hierarchical Auxetic Mechanical Metamaterials
Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I.; Azzopardi, Keith M.; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N.
2015-02-01
Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.
Applied Bayesian Hierarchical Methods
Congdon, Peter D
2010-01-01
Bayesian methods facilitate the analysis of complex models and data structures. Emphasizing data applications, alternative modeling specifications, and computer implementation, this book provides a practical overview of methods for Bayesian analysis of hierarchical models.
Programming with Hierarchical Maps
DEFF Research Database (Denmark)
Ørbæk, Peter
This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....
Catalysis with hierarchical zeolites
DEFF Research Database (Denmark)
Holm, Martin Spangsberg; Taarning, Esben; Egeblad, Kresten
2011-01-01
Hierarchical (or mesoporous) zeolites have attracted significant attention during the first decade of the 21st century, and so far this interest continues to increase. There have already been several reviews giving detailed accounts of the developments emphasizing different aspects of this research...... topic. Until now, the main reason for developing hierarchical zeolites has been to achieve heterogeneous catalysts with improved performance but this particular facet has not yet been reviewed in detail. Thus, the present paper summaries and categorizes the catalytic studies utilizing hierarchical...... zeolites that have been reported hitherto. Prototypical examples from some of the different categories of catalytic reactions that have been studied using hierarchical zeolite catalysts are highlighted. This clearly illustrates the different ways that improved performance can be achieved with this family...
Correlation Function Approach for Estimating Thermal Conductivity in Highly Porous Fibrous Materials
Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.
2011-01-01
Heat transport in highly porous fiber networks is analyzed via two-point correlation functions. Fibers are assumed to be long and thin to allow a large number of crossing points per fiber. The network is characterized by three parameters: the fiber aspect ratio, the porosity and the anisotropy of the structure. We show that the effective thermal conductivity of the system can be estimated from knowledge of the porosity and the correlation lengths of the correlation functions obtained from a fiber structure image. As an application, the effects of the fiber aspect ratio and the network anisotropy on the thermal conductivity is studied.
DEFF Research Database (Denmark)
Xu, Chunsheng; Zhang, Dongfeng; Tian, Xiaocao
2017-01-01
expiratory volume in one second (FEV1), forced vital capacity (FVC), handgrip strength, five-times-sit-to-stand test (FTSST), near visual acuity, and number of teeth lost in 379 complete twin pairs. Bivariate twin models were fitted to estimate the genetic and environmental correlation between physical......Although the correlation between cognition and physical function has been well studied in the general population, the genetic and environmental nature of the correlation has been rarely investigated. We conducted a classical twin analysis on cognitive and physical function, including forced...
Neural Correlates of Associative Memory in the Elderly: A Resting-State Functional MRI Study.
Ren, Weicong; Li, Rui; Zheng, Zhiwei; Li, Juan
2015-01-01
The neural correlates of associative memory in healthy older adults were investigated by examining the correlation of associative memory performance with spontaneous brain oscillations. Eighty healthy older adults underwent a resting-state functional MRI and took a paired-associative learning test (PALT). Correlations between the amplitude of low-frequency fluctuations (ALFF) as well as fractional ALFF (fALFF) in the whole brain and PALT scores were calculated. We found that spontaneous activity as indexed by both ALFF and fALFF in the parahippocampal gyrus (PHG) was significantly positively correlated with associative memory performance, suggesting that the PHG plays a critical role in associative memory in older people.
Hierarchical Nanoceramics for Industrial Process Sensors
Energy Technology Data Exchange (ETDEWEB)
Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang
2011-07-15
This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.
DEFF Research Database (Denmark)
Lacevic, N.; Starr, F. W.; Schrøder, Thomas
2003-01-01
two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...... simulations of a binary Lennard-Jones mixture approaching the mode coupling temperature from above. We find that the correlations between particles measured by g4(r,t) and S4(q,t) become increasingly pronounced on cooling. The corresponding dynamical correlation length xi4(t) extracted from the small......-q behavior of S4(q,t) provides an estimate of the range of correlated particle motion. We find that xi4(t) has a maximum as a function of time t, and that the value of the maximum of xi4(t) increases steadily from less than one particle diameter to a value exceeding nine particle diameters in the temperature...
Sridhar, Srivatsan; Maurogordato, Sophie; Benoist, Christophe; Cappi, Alberto; Marulli, Federico
2017-04-01
Context. The next generation of galaxy surveys will provide cluster catalogues probing an unprecedented range of scales, redshifts, and masses with large statistics. Their analysis should therefore enable us to probe the spatial distribution of clusters with high accuracy and derive tighter constraints on the cosmological parameters and the dark energy equation of state. However, for the majority of these surveys, redshifts of individual galaxies will be mostly estimated by multiband photometry which implies non-negligible errors in redshift resulting in potential difficulties in recovering the real-space clustering. Aims: We investigate to which accuracy it is possible to recover the real-space two-point correlation function of galaxy clusters from cluster catalogues based on photometric redshifts, and test our ability to detect and measure the redshift and mass evolution of the correlation length r0 and of the bias parameter b(M,z) as a function of the uncertainty on the cluster redshift estimate. Methods: We calculate the correlation function for cluster sub-samples covering various mass and redshift bins selected from a 500 deg2 light-cone limited to H z=0)=\\frac{σz{1+z_c} = 0.005,0.010,0.030} and 0.050, in order to cover the typical values expected in forthcoming surveys. The correlation function in real-space is then computed through estimation and deprojection of wp(rp). Four mass ranges (from Mhalo > 2 × 1013h-1M⊙ to Mhalo > 2 × 1014h-1M⊙) and six redshift slices covering the redshift range [0, 2] are investigated, first using cosmological redshifts and then for the four photometric redshift configurations. Results: From the analysis of the light-cone in cosmological redshifts we find a clear increase of the correlation amplitude as a function of redshift and mass. The evolution of the derived bias parameter b(M,z) is in fair agreement with theoretical expectations. We calculate the r0-d relation up to our highest mass, highest redshift sample
Mo, Yuxiang; Tao, Jianmin
2016-01-01
Recently, Tao and Mo proposed an accurate meta-generalized gradient approximation for the exchange-correlation energy. The exchange part is derived from the density matrix expansion, while the correlation part is obtained by improving the TPSS correlation in the low-density limit. To better understand this exchange functional, in this work, we combine the TM exchange with the original TPSS correlation, which we call TMTPSS, and make a systematic assessment on molecular properties. The test sets include the 223 G3/99 enthalpies of formation, 58 electron affinities, 8 proton affinities, 96 bond lengths, 82 harmonic frequencies, and 10 hydrogen-bonded molecular complexes. Our calculations show that the TMTPSS functional is competitive with or even more accurate than TM functional for some properties. In particular, it is the most accurate nonempirical semilocal DFT for the enthalpies of formation and harmonic vibrational frequencies, suggesting the robustness of TM exchange.
Exchange-correlation functionals via local interpolation along the adiabatic connection
Vuckovic, Stefan; Savin, Andreas; Teale, Andrew M; Gori-Giorgi, Paola
2016-01-01
The construction of density-functional approximations is explored by modeling the adiabatic connection em locally, using energy densities defined in terms of the electrostatic potential of the exchange-correlation hole. These local models are more amenable to the construction of size-consistent approximations than their global counterparts. In this work we use accurate input local ingredients to assess the accuracy of range of local interpolation models against accurate exchange-correlation energy densities. The importance of the strictly-correlated electrons (SCE) functional describing the strong coupling limit is emphasized, enabling the corresponding interpolated functionals to treat strong correlation effects. In addition to exploring the performance of such models numerically for the helium and beryllium isoelectronic series and the dissociation of the hydrogen molecule, an approximate analytic model is presented for the initial slope of the local adiabatic connection. Comparisons are made with approache...
Tan, Bo; Zhao, Lili; FaweiHE, Fawei
2016-08-01
The aim of this study to investigate the correlation of the peripheral concentrations of one representative estrogen, E2 estradiol, with various indicators reflecting different aspects of cardiac structures and functions. A total of 84 typical patients with hypertrophic cardiomyopathy (HCM) and 77 healthy subjects were enrolled. Venous blood samples were taken to test E2 estradiol contents. Echocardiographic imaging was performed to record various indices of cardiac structures and functions. Concentrations of peripheral E2 estradiol were decreased in female HCM patients, compared to female normal controls; after medical treatment, peripheral E2 estradiol levels were elevated, nearly to normal levels. Peripheral E2 estradiol concentrations were negatively correlated with LAV (r2=0.5078, Pnegatively correlated with ventricular diastolic functions and this correlation was gender-dependent. Our study could provide clues to explore the molecular mechanisms of HCM, and clinic evidence for the diagnosis and prognostic management of HCM patients, as well as medical intervening for HCM.
Correlation functions of the one-dimensional random field Ising model at zero temperature
Farhi, E; Farhi, Edward; Gutmann, Sam
1993-01-01
We consider the one-dimensional random field Ising model, where the spin-spin coupling, $J$, is ferromagnetic and the external field is chosen to be $+h$ with probability $p$ and $-h$ with probability $1-p$. At zero temperature, we calculate an exact expression for the correlation length of the quenched average of the correlation function $\\langle s_0 s_n \\rangle - \\langle s_0 \\rangle \\langle s_n \\rangle$ in the case that $2J/h$ is not an integer. The result is a discontinuous function of $2J/h$. When $p = {1 \\over 2}$, we also place a bound on the correlation length of the quenched average of the correlation function $\\langle s_0 s_n \\rangle$.
Xu, Chunsheng; Zhang, Dongfeng; Tian, Xiaocao; Wu, Yili; Pang, Zengchang; Li, Shuxia; Tan, Qihua
2017-02-01
Although the correlation between cognition and physical function has been well studied in the general population, the genetic and environmental nature of the correlation has been rarely investigated. We conducted a classical twin analysis on cognitive and physical function, including forced expiratory volume in one second (FEV1), forced vital capacity (FVC), handgrip strength, five-times-sit-to-stand test (FTSST), near visual acuity, and number of teeth lost in 379 complete twin pairs. Bivariate twin models were fitted to estimate the genetic and environmental correlation between physical and cognitive function. Bivariate analysis showed mildly positively genetic correlations between cognition and FEV1, r G = 0.23 [95% CI: 0.03, 0.62], as well as FVC, r G = 0.35 [95% CI: 0.06, 1.00]. We found that FTSST and cognition presented very high common environmental correlation, r C = -1.00 [95% CI: -1.00, -0.57], and low but significant unique environmental correlation, r E = -0.11 [95% CI: -0.22, -0.01], all in the negative direction. Meanwhile, near visual acuity and cognition also showed unique environmental correlation, r E = 0.16 [95% CI: 0.03, 0.27]. We found no significantly genetic correlation for cognition with handgrip strength, FTSST, near visual acuity, and number of teeth lost. Cognitive function was genetically related to pulmonary function. The FTSST and cognition shared almost the same common environmental factors but only part of the unique environmental factors, both with negative correlation. In contrast, near visual acuity and cognition may positively share part of the unique environmental factors.
Gould, Tim; Dobson, John F.
2013-01-01
By exploiting freedoms in the definitions of "correlation," "exchange," and "Hartree" physics in ensemble systems, we better generalise the notion of "exact exchange" (EXX) to systems with fractional occupations of the frontier orbitals, arising in the dissociation limit of some molecules. We introduce the linear EXX ("LEXX") theory whose pair distribution and energy are explicitly piecewise linear in the occupations f^{σ }i. We provide explicit expressions for these functions for frontier s and p shells. Used in an optimised effective potential (OEP) approach the LEXX yields energies bounded by the piecewise linear "ensemble EXX" (EEXX) energy and standard fractional optimised EXX energy: EEEXX ⩽ ELEXX ⩽ EEXX. Analysis of the LEXX explains the success of standard OEP methods for diatoms at large spacing, and why they can fail when both spins are allowed to be non-integer so that "ghost" Hartree interactions appear between opposite spin electrons in the usual formula. The energy ELEXX contains a cancellation term for the spin ghost case. It is evaluated for H, Li, and Na fractional ions with clear derivative discontinuities for all cases. The p-shell form reproduces accurate correlation-free energies of B-F and Al-Cl. We further test LEXX plus correlation energy calculations on fractional ions of C and F and again we find both derivative discontinuities and good agreement with exact results.
Gould, Tim; Dobson, John F
2013-01-07
By exploiting freedoms in the definitions of "correlation," "exchange," and "Hartree" physics in ensemble systems, we better generalise the notion of "exact exchange" (EXX) to systems with fractional occupations of the frontier orbitals, arising in the dissociation limit of some molecules. We introduce the linear EXX ("LEXX") theory whose pair distribution and energy are explicitly piecewise linear in the occupations f(i)(σ). We provide explicit expressions for these functions for frontier s and p shells. Used in an optimised effective potential (OEP) approach the LEXX yields energies bounded by the piecewise linear "ensemble EXX" (EEXX) energy and standard fractional optimised EXX energy: E(EEXX) ≤ E(LEXX) ≤ E(EXX). Analysis of the LEXX explains the success of standard OEP methods for diatoms at large spacing, and why they can fail when both spins are allowed to be non-integer so that "ghost" Hartree interactions appear between opposite spin electrons in the usual formula. The energy E(LEXX) contains a cancellation term for the spin ghost case. It is evaluated for H, Li, and Na fractional ions with clear derivative discontinuities for all cases. The p-shell form reproduces accurate correlation-free energies of B-F and Al-Cl. We further test LEXX plus correlation energy calculations on fractional ions of C and F and again we find both derivative discontinuities and good agreement with exact results.
Tunesi, Luca; Armbruster, Philippe
2004-02-01
The objective of this paper is to demonstrate a suitable hierarchical networking solution to improve capabilities and performances of space systems, with significant recurrent costs saving and more efficient design & manufacturing flows. Classically, a satellite can be split in two functional sub-systems: the platform and the payload complement. The platform is in charge of providing power, attitude & orbit control and up/down-link services, whereas the payload represents the scientific and/or operational instruments/transponders and embodies the objectives of the mission. One major possibility to improve the performance of payloads, by limiting the data return to pertinent information, is to process data on board thanks to a proper implementation of the payload data system. In this way, it is possible to share non-recurring development costs by exploiting a system that can be adopted by the majority of space missions. It is believed that the Modular and Scalable Payload Data System, under development by ESA, provides a suitable solution to fulfil a large range of future mission requirements. The backbone of the system is the standardised high data rate SpaceWire network http://www.ecss.nl/. As complement, a lower speed command and control bus connecting peripherals is required. For instance, at instrument level, there is a need for a "local" low complexity bus, which gives the possibility to command and control sensors and actuators. Moreover, most of the connections at sub-system level are related to discrete signals management or simple telemetry acquisitions, which can easily and efficiently be handled by a local bus. An on-board hierarchical network can therefore be defined by interconnecting high-speed links and local buses. Additionally, it is worth stressing another important aspect of the design process: Agencies and ESA in particular are frequently confronted with a big consortium of geographically spread companies located in different countries, each one
Automatic determination of important mode-mode correlations in many-mode vibrational wave functions.
König, Carolin; Christiansen, Ove
2015-04-14
We introduce new automatic procedures for parameterizing vibrational coupled cluster (VCC) and vibrational configuration interaction wave functions. Importance measures for individual mode combinations in the wave function are derived based on upper bounds to Hamiltonian matrix elements and/or the size of perturbative corrections derived in the framework of VCC. With a threshold, this enables an automatic, system-adapted way of choosing which mode-mode correlations are explicitly parameterized in the many-mode wave function. The effect of different importance measures and thresholds is investigated for zero-point energies and infrared spectra for formaldehyde and furan. Furthermore, the direct link between important mode-mode correlations and coordinates is illustrated employing water clusters as examples: Using optimized coordinates, a larger number of mode combinations can be neglected in the correlated many-mode vibrational wave function than with normal coordinates for the same accuracy. Moreover, the fraction of important mode-mode correlations compared to the total number of correlations decreases with system size. This underlines the potential gain in efficiency when using optimized coordinates in combination with a flexible scheme for choosing the mode-mode correlations included in the parameterization of the correlated many-mode vibrational wave function. All in all, it is found that the introduced schemes for parameterizing correlated many-mode vibrational wave functions lead to at least as systematic and accurate calculations as those using more standard and straightforward excitation level definitions. This new way of defining approximate calculations offers potential for future calculations on larger systems.
The Geriatric Hand: Correlation of Hand-Muscle Function and Activity Restriction in Elderly
Incel, Nurgul Arinci; Sezgin, Melek; As, Ismet; Cimen, Ozlem Bolgen; Sahin, Gunsah
2009-01-01
On the basis of the importance of hand manipulation in activities of daily living (ADL), deterioration of hand function because of various factors reduces quality and independence of life of the geriatric population. The aim of this study was to identify age-induced changes in manual function and to quantify the correlations between hand-muscle…
Description of correlated densities for few-electron atoms by simple functional forms
Energy Technology Data Exchange (ETDEWEB)
Porras, I.; Arias de Saavedra, F. [Univ. de Granada (Spain). Dept. de Fisica Moderna
1999-02-20
Simple analytical functional forms for the electron density of two- and three-electron atoms which reproduce fairly the correlated (exact) values are presented. The procedure is based on the fitting of an auxiliary f(r) function which has adequate properties for this purpose and can be extended to more complex atoms.
Pulmonary function tests correlated with thoracic volumes in adolescent idiopathic scoliosis.
Ledonio, Charles Gerald T; Rosenstein, Benjamin E; Johnston, Charles E; Regelmann, Warren E; Nuckley, David J; Polly, David W
2017-01-01
Scoliosis deformity has been linked with deleterious changes in the thoracic cavity that affect pulmonary function. The causal relationship between spinal deformity and pulmonary function has yet to be fully defined. It has been hypothesized that deformity correction improves pulmonary function by restoring both respiratory muscle efficiency and increasing the space available to the lungs. This research aims to correlate pulmonary function and thoracic volume before and after scoliosis correction. Retrospective correlational analysis between thoracic volume modeling from plain x-rays and pulmonary function tests was conducted. Adolescent idiopathic scoliosis patients enrolled in a multicenter database were sorted by pre-operative Total Lung Capacities (TLC) % predicted values from their Pulmonary Function Tests (PFT). Ten patients with the best and ten patients with the worst TLC values were included. Modeled thoracic volume and TLC values were compared before and 2 years after surgery. Scoliosis correction resulted in an increase in the thoracic volume for patients with the worst initial TLCs (11.7%) and those with the best initial TLCs (12.5%). The adolescents with the most severe pulmonary restriction prior to surgery strongly correlated with post-operative change in total lung capacity and thoracic volume (r(2) = 0.839; p pulmonary function, but no correlation was found in cases with normal pulmonary function. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:175-182, 2017.
Directory of Open Access Journals (Sweden)
Serge B. Provost
2015-07-01
Full Text Available This paper provides a simplified representation of the exact density function of R, the sample correlation coefficient. The odd and even moments of R are also obtained in closed forms. Being expressed in terms of generalized hypergeometric functions, the resulting representations are readily computable. Some numerical examples corroborate the validity of the results derived herein.
Gegenfurtner, Andreas; Kok, Ellen M.; van Geel, Koos; de Bruin, Anique B. H.; Sorger, Bettina
2017-01-01
Functional neuroimaging is a useful approach to study the neural correlates of visual perceptual expertise. The purpose of this paper is to review the functional-neuroimaging methods that have been implemented in previous research in this context. First, we will discuss research questions typically addressed in visual expertise research. Second,…
Usui, Kouta
2012-01-01
It will be proved that a model of lattice field theories which satisfies (A1) Hermiticity, (A2) translational invariance, (A3) reflection positivity, and (A4) polynomial boundedness of correlations, permits the Kallen-Lehmann representation of two point correlation functions with positive spectral density function. Then, we will also argue that positivity of spectral density functions is necessary for a lattice theory to satisfy conditions (A1) - (A4). As an example, a lattice overlap scalar boson model will be discussed. We will find that the overlap scalar boson violates the reflection positivity.
Fiebig, H R
2002-01-01
We study various aspects of extracting spectral information from time correlation functions of lattice QCD by means of Bayesian inference with an entropic prior, the maximum entropy method (MEM). Correlator functions of a heavy-light meson-meson system serve as a repository for lattice data with diverse statistical quality. Attention is given to spectral mass density functions, inferred from the data, and their dependence on the parameters of the MEM. We propose to employ simulated annealing, or cooling, to solve the Bayesian inference problem, and discuss practical issues of the approach.
DEFF Research Database (Denmark)
Cornaton, Y.; Stoyanova, A.; Jensen, Hans Jørgen Aagaard;
2013-01-01
An alternative separation of short-range exchange and correlation energies is used in the framework of second-order range-separated density-functional perturbation theory. This alternative separation was initially proposed by Toulouse and relies on a long-range-interacting wave function instead...... expression when expanded in perturbation theory. In contrast to the usual RSDH functionals, RSDHf describes the coupling between long- and short-range correlations as an orbital-dependent contribution. Calculations on the first four noble-gas dimers show that this coupling has a significant effect...
Assessing Accuracy of Exchange-Correlation Functionals for the Description of Atomic Excited States
Makowski, Marcin; Hanas, Martyna
2016-09-01
The performance of exchange-correlation functionals for the description of atomic excitations is investigated. A benchmark set of excited states is constructed and experimental data is compared to Time-Dependent Density Functional Theory (TDDFT) calculations. The benchmark results show that for the selected group of functionals good accuracy may be achieved and the quality of predictions provided is competitive to computationally more demanding coupled-cluster approaches. Apart from testing the standard TDDFT approaches, also the role of self-interaction error plaguing DFT calculations and the adiabatic approximation to the exchange-correlation kernels is given some insight.
Energy Technology Data Exchange (ETDEWEB)
Fa, Kwok Sau, E-mail: kwok@dfi.uem.br
2015-02-15
An integro-differential diffusion equation with linear force, based on the continuous time random walk model, is considered. The equation generalizes the ordinary and fractional diffusion equations, which includes short, intermediate and long-time memory effects described by the waiting time probability density function. Analytical expression for the correlation function is obtained and analyzed, which can be used to describe, for instance, internal motions of proteins. The result shows that the generalized diffusion equation has a broad application and it may be used to describe different kinds of systems. - Highlights: • Calculation of the correlation function. • The correlation function is connected to the survival probability. • The model can be applied to the internal dynamics of proteins.
Lee, Lloyd L
2013-10-21
We develop the potential distributions of several test particles to obtain a hierarchy of the nonuniform singlet direct correlation functions (s-DCFs). These correlation functions are interpreted as the segmental chemical potentials or works of insertion of successive test particles in a classical fluid. The development has several interesting consequences: (i) it extends the Widom particle insertion formula to higher-order theorems, the first member gives the chemical potential as in the original theorem, the second member gives the incremental energy for dimer formation, with higher members giving the energies for forming trimers, tetramers, etc. (ii) The second and third order s-DCFs can be related to the cavity distribution functions y((2)) and y((3)) in the liquid-state theory. Thus we can express the triplet cavity function y((3)) in terms of these s-DCFs in an exact form. This enables us to calculate, as an illustration of the above theoretical developments, the numerical values of the s-DCFs via Monte Carlo (MC) simulation data on hard spheres. We use these data to critically analyze the commonly used approximations, the Kirkwood superposition (KSA) and the linear approximation (LA) for triplet correlation functions. An improved rule over KSA and LA is proposed for triplet hard spheres in the rolling-contact configurations. (iii) The s-DCFs are naturally suited for analyzing the chain-incremental Ansatz or hypothesis in the calculation of the chemical potentials of polymeric chain molecules. The first few segments of a polymer chain have been shown from extensive Monte Carlo simulations to not obey this Ansatz. By examining the insertion energies of successive segments through the s-DCFs, we are able to quantitatively decipher the decay of the segmental chemical potentials for at least the first three segments. Comparison with MC data on 4-mer and 8-mer hard-sphere fluids shows commensurate behavior with the s-DCFs. In addition, an analytical density
Correlations between motor and sensory functions in upper limb chronic hemiparetics after stroke
Thais Botossi Scalha; Erica Miyasaki; Núbia Maria Freire Vieira Lima; Guilherme Borges
2011-01-01
OBJECTIVE: Describe the somatosensory function of the affected upper limb of hemiparetic stroke patients and investigate the correlations between measurements of motor and sensory functions in tasks with and without visual deprivation. METHOD: We applied the Fugl-Meyer Assessment (FMA), Nottingham Sensory Assessment (NSA), and several motor and sensory tests: Paper manipulation (PM), Motor Sequences (MS), Reaching and grasping (RG) Tests Functional (TF), Tactile Discrimination (TD), Weight Di...
Schneider-Hassloff, Henriette; Zwönitzer, Annabel; Künster, Anne K.; Mayer, Carmen; Ziegenhain, Ute; Kiefer, Markus
2016-01-01
Executive functions (EFs) – a set of cognitive control abilities – mediate resilience to stress and are associated with academic achievement and health throughout life. They are crucially linked to prefrontal cortex function as well as to other cortical and subcortical brain functions, which are maturing throughout childhood at different rates. Recent behavioral research suggested that children’s EFs were related to parenting quality and child attachment security, but the neural correlates of...
Four-point correlation functions in the AdS/CFT correspondence.
Energy Technology Data Exchange (ETDEWEB)
Chalmers, G.; Schalm, K.
1999-02-09
We examine correlation functions within the correspondence between gauged supergravity on anti-de Sitter space and N = 4 super Yang-Mills theory in Minkowski space. The imaginary parts of four-point functions in momentum space are computed, in addition to particular examples of three-point functions. Exchange diagrams for gravitons are included. The results indicate additional structure in N = 4 super Yang-Mills theory at strong 't Hooft coupling and in the large N limit.
Mantini, Dante; Hasson, Uri; Betti, Viviana; Perrucci, Mauro G; Romani, Gian Luca; Corbetta, Maurizio; Orban, Guy A; Vanduffel, Wim
2012-02-05
Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. For cases in which functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assessed similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by temporal correlation. Using natural vision data, we revealed regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models.
Correlations of RMT Characteristic Polynomials and Integrability: Hermitean Matrices
Osipov, Vladimir Al
2010-01-01
Integrable theory is formulated for correlation functions of characteristic polynomials associated with invariant non-Gaussian ensembles of Hermitean random matrices. By embedding the correlation functions of interest into a more general theory of tau-functions, we (i) identify a zoo of hierarchical relations satisfied by tau-functions in an abstract infinite-dimensional space, and (ii) present a technology to translate these relations into hierarchically structured nonlinear differential equations describing the correlation functions of characteristic polynomials in the physical, spectral space. Implications of this formalism for fermionic, bosonic, and supersymmetric variations of zero-dimensional replica field theories are discussed at length. A particular emphasis is placed on the phenomenon of fermionic-bosonic factorisation of random-matrix-theory correlation functions.
Institute of Scientific and Technical Information of China (English)
丁锋; 杨家本; 徐用懋
2001-01-01
The hierarchical identification principle is stated, and the hierarchical stochastic gradient (HSG) algorithm for the transfer function matrix (TFM) model for multivariable systems is presented. In the hierarchical identification, the system parameters are divided into the parameter vector, which includes the coefficients of the characteristic polynomial of the system, and the parameter matrix, which includes the coefficients of the numerators of the TFM polynomials, respectively. The convergence analysis, using martingale hyperconvergence theorem, shows that the parameter estimation error (PEE) given by the HSG algorithm is consistently bounded, and that PEE consistently converges to zero under the persistent excitation condition. Hierarchical identification has a small amount of calculation and is easy to be realized.%阐述了递阶辨识原理,提出了传递函数阵模型参数的递阶随机梯度(HSG)辨识方法.在递阶辨识中,系统参数被分解为参数向量和参数矩阵.前者是由系统的特征多项式的系数构成的,后者是由传递函数矩阵分子多项式的系数构成的.借助于鞅超收敛定理的收敛性分析表明,HSG算法的参数估计误差一致有界;当持续激励条件成立时,参数估计误差一致收敛于零.递阶辨识方法具有计算量小和容易实现等特点.
Kojima, Takeo
2009-01-01
We study the time and temperature dependent correlation functions for an impenetrable Bose gas with Neumann or Dirichlet boundary conditions $\\langle \\psi(x_1,0)\\psi^\\dagger(x_2,t)\\rangle _{\\pm,T}$. We derive the Fredholm determinant formulae for the correlation functions, by means of the Bethe Ansatz. For the special case $x_1=0$, we express correlation functions with Neumann boundary conditions $\\langle\\psi(0,0)\\psi^\\dagger(x_2,t)\\rangle _{+,T}$, in terms of solutions of nonlinear partial differential equations which were introduced in \\cite{kojima:Sl} as a generalization of the nonlinear Schr\\"odinger equations. We generalize the Fredholm minor determinant formulae of ground state correlation functions $\\langle\\psi(x_1)\\psi^\\dagger(x_2)\\rangle _{\\pm,0}$ in \\cite{kojima:K}, to the Fredholm determinant formulae for the time and temperature dependent correlation functions $\\langle\\psi(x_1,0)\\psi^\\dagger(x_2,t)\\rangle _{\\pm,T}$, $t \\in {\\bf R}$, $T \\geq 0$.
Evaluating Hierarchical Structure in Music Annotations.
McFee, Brian; Nieto, Oriol; Farbood, Morwaread M; Bello, Juan Pablo
2017-01-01
Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for "flat" descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.
Evaluating Hierarchical Structure in Music Annotations
Directory of Open Access Journals (Sweden)
Brian McFee
2017-08-01
Full Text Available Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR, it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.
СREATION OF CORRELATION FUNCTIONS OF LINEAR CONTINUOUS SYSTEMS BASED ON THEIR FUNDAMENTAL MATRICES
Directory of Open Access Journals (Sweden)
N. A. Vunder
2015-11-01
Full Text Available The paper presents a method of creating correlation matrices and functions of the state vectors and outputs of the linear continuous systems functioning under the conditions of stochastic stationary, in a broad sense, effects. Fundamental matrices form the basis of the method. We have shown that for the linear continuous systems with single dimensional input and single dimensional output the correlation output function of such system can be found as the free movement of this system generated by its initial state. This state is constructed from the variance matrix of the state vector and the transposed output matrix. We have elucidated that when a continuous system belongs to a class of multi-dimensional input – multi-dimensional output systems, the following options are available for solving the problem of creation of the correlation function of a linear system. The first option is to partition the system into separate channels. Then the approach developed for systems with onedimensional input and one-dimensional output is applied to each of the separate channels. The second option is used to preserve the vector nature of the stochastic external influence. It consists in partition of output vector to scalar components by separating output matrix into separate rows with subsequent formation of the correlation function according to the scheme for single dimensional input and single dimensional output type systems. The third option is based on the scalarization of matrix correlation output function by applying the singular value decomposition to it. That gives the possibility to form scalar majorant and minorant of correlation output functions. We have established that a key component of a computational procedure of creating the correlation function of continuous linear system is a variance matrix of the system state vector. In the case of functioning under an exogenous stochastic effect like "white noise" the variance matrix is calculated by
Yu, Haoyu S; Zhang, Wenjing; Verma, Pragya; He, Xiao; Truhlar, Donald G
2015-05-14
The goal of this work is to develop a gradient approximation to the exchange-correlation functional of Kohn-Sham density functional theory for treating molecular problems with a special emphasis on the prediction of quantities important for homogeneous catalysis and other molecular energetics. Our training and validation of exchange-correlation functionals is organized in terms of databases and subdatabases. The key properties required for homogeneous catalysis are main group bond energies (database MGBE137), transition metal bond energies (database TMBE32), reaction barrier heights (database BH76), and molecular structures (database MS10). We also consider 26 other databases, most of which are subdatabases of a newly extended broad database called Database 2015, which is presented in the present article and in its ESI. Based on the mathematical form of a nonseparable gradient approximation (NGA), as first employed in the N12 functional, we design a new functional by using Database 2015 and by adding smoothness constraints to the optimization of the functional. The resulting functional is called the gradient approximation for molecules, or GAM. The GAM functional gives better results for MGBE137, TMBE32, and BH76 than any available generalized gradient approximation (GGA) or than N12. The GAM functional also gives reasonable results for MS10 with an MUE of 0.018 Å. The GAM functional provides good results both within the training sets and outside the training sets. The convergence tests and the smooth curves of exchange-correlation enhancement factor as a function of the reduced density gradient show that the GAM functional is a smooth functional that should not lead to extra expense or instability in optimizations. NGAs, like GGAs, have the advantage over meta-GGAs and hybrid GGAs of respectively smaller grid-size requirements for integrations and lower costs for extended systems. These computational advantages combined with the relatively high accuracy for all
Filatov, M; Cremer, D
2005-01-01
It is demonstrated that the LYP correlation functional is not suited to be used for the calculation of electron spin resonance hyperfine structure (HFS) constants, nuclear magnetic resonance spin-spin coupling constants, magnetic, shieldings and other properties that require a balanced account of
Correlation functions in resonance fluorescence with spectral resolution: Signal-processing approach
Shatokhin, Vyacheslav N.; Kilin, Sergei Ya.
2016-09-01
In the framework of the signal processing approach to single-atom resonance fluorescence with spectral resolution, we diagrammatically derive an analytical formula for arbitrary-order spectral correlation functions of the scattered fields that pass through Fabry-Perot interferometers. Our general expression is then applied to study correlation signals in the limit of well separated spectral lines of the resonance fluorescence spectrum. In particular, we study the normalized second-order temporal intensity correlation functions in the case of the interferometers tuned to the components of the spectrum and obtain interferential corrections to the approximate results derived in the secular limit. In addition, we explore purely spectral correlations and show that they can fully be understood in terms of the two-photon cascades down the dressed state ladder.
Cross-correlation function based multipath mitigation technique for cosine-BOC signals
Institute of Scientific and Technical Information of China (English)
Huihua Chen; Weimin Jia; Minli Yao
2013-01-01
We propose a new multipath mitigation technique based on cross-correlation function for the new cosine phased binary off-set carrier (cosine-BOC) modulated signals, which wil most likely be employed in both European Galileo system and Chinese Com-pass system. This technique is implemented to create an optimum cross-correlation function via designing the modulated symbols of the local signal. And the structure of the code tracking loop for cosine-BOC signals is quite simple including only two real correla-tors. Results demonstrate that the technique efficiently eliminates the ranging errors in the medium and long multipath regions with respect to the conventional receiver correlation techniques.
Long-range correlation energy calculated from coupled atomic response functions
Ambrosetti, Alberto; DiStasio, Robert A; Tkatchenko, Alexandre
2013-01-01
An accurate determination of the electron correlation energy is essential for describing the structure, stability, and function in a wide variety of systems, ranging from gas-phase molecular assemblies to condensed matter and organic/inorganic interfaces. Even small errors in the correlation energy can have a large impact on the description of chemical and physical properties in the systems of interest. In this context, the development of efficient approaches for the accurate calculation of the long-range correlation energy (and hence dispersion) is the main challenge. In the last years a number of methods have been developed to augment density functional approximations via dispersion energy corrections, but most of these approaches ignore the intrinsic many-body nature of correlation effects, leading to inconsistent and sometimes even qualitatively incorrect predictions. Here we build upon the recent many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the co...
Parallel hierarchical radiosity rendering
Energy Technology Data Exchange (ETDEWEB)
Carter, M.
1993-07-01
In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.
Adebanji, Atinuke; Asamoah-Boaheng, Michael; Osei-Tutu, Olivia
2016-01-01
This study investigates the asymptotic performance of the Quadratic Discriminant Function (QDF) under correlated and uncorrelated normal training samples. This paper specifically examines the effect of correlation, uncorrelation considering different sample size ratios, number of variables and varying group centroid separators ([Formula: see text], [Formula: see text]) on classification accuracy of the QDF using simulated data from three populations ([Formula: see text]). The three populations differs with respect to their mean vector and covariance matrices. The results show the correlated normal distribution exhibits high coefficient of variation as [Formula: see text] increased. The QDF performed better when the training samples were correlated than when they were under uncorrelated normal distribution. The QDF performed better resulting in the reduction in misclassification error rates as group centroid separator increases with non increasing sample size under correlated training samples.
Brorsen, Kurt R; Yang, Yang; Pak, Michael V; Hammes-Schiffer, Sharon
2017-05-04
The development of approximate exchange-correlation functionals is critical for modern density functional theory. A recent analysis of atomic systems suggested that some modern functionals are straying from the path toward the exact functional because electron densities are becoming less accurate while energies are becoming more accurate since the year 2000. To investigate this trend for more chemically relevant systems, the electron densities in the bonding regions and the atomization energies are analyzed for a series of diatomic molecules with 90 different functionals. For hybrid generalized gradient approximation functionals developed since the year 2000, the errors in densities and atomization energies are decoupled; the accuracy of the energies remains relatively consistent while the accuracy of the densities varies significantly. Such decoupling is not observed for generalized gradient and meta-generalized gradient approximation functionals. Analysis of electron densities in bonding regions is found to be important for the evaluation of functionals for chemical systems.