WorldWideScience

Sample records for correlated electronic states

  1. Correlated electron motion, flux states and superconductivity

    International Nuclear Information System (INIS)

    Lederer, P.; Poilblanc, D.; Rice, T.K.

    1989-01-01

    This paper discusses how, when the on-site correlation is strong, electrons can move by usual hopping only on to empty sites but they can exchange position with their neighbors by a correlated motion. The phase in the former process is fixed and it favors Bloch states. When the concentration of empty sites is small then the latter process dominates and one is free to introduce a phase provided it is chosen to be the same for ↑ and ↓-spin electrons. Since for a partly filled band of non-interacting electrons the introduction of a uniform commensurate flux lowers the energy, the correlated motion can lead to a physical mechanism to generate flux states. These states have a collective gauge variable which is the same for ↑ and ↓-spins and superconducting properties are obtained by expanding around the optimum gauge determined by the usual kinetic energy term. If this latter term has singularities at special fillings then these may affect the superconducting properties

  2. Electron correlations in solid state physics

    International Nuclear Information System (INIS)

    Freericks, J.K.

    1991-04-01

    Exactly solvable models of electron correlations in solid state physics are presented. These models include the spinless Falicov- Kimball model, the t-t'-J model, and the Hubbard model. The spinless Falicov-Kimball model is analyzed in one-dimension. Perturbation theory and numerical techniques are employed to determine the phase diagram at zero temperature. A fractal structure is found where the ground-state changes (discontinuously) at each rational electron filling. The t-t'-J model (strongly interacting limit of a Hubbard model) is studied on eight-site small clusters in the simple-cubic, body-centered-cubic, face-centered-cubic, and square lattices. Symmetry is used to simplify the problem and determine the exact many-body wavefunctions. Ground states are found that exhibit magnetic order or heavy-fermionic character. Attempts to extrapolate to the thermodynamic limit are also made. The Hubbard model is examined on an eight-site square-lattice cluster in the presence of and in the absence of a ''magnetic field'' that couples only to orbital motion. A new magnetic phase is discovered for the ordinary Hubbard model at half-filling. In the ''magnetic field'' case, it is found that the strongly frustrated Heisenberg model may be studied from adiabatic continuation of a tight-binding model (from weak to strong coupling) at one point. The full symmetries of the Hamiltonian are utilized to make the exact diagonalization feasibile. Finally, the presence of ''hidden'' extra symmetry for finite size clusters with periodic boundary conditions is analyzed for a variety of clusters. Moderately sized systems allow nonrigid transformations that map a lattice onto itself preserving its neighbor structure; similar operations are not present in smaller or larger systems. The additional symmetry requires particular representations of the space group to stick together explaining many puzzling degeneracies found in exact diagonalization studies

  3. Bound states in strongly correlated magnetic and electronic systems

    International Nuclear Information System (INIS)

    Trebst, S.

    2002-02-01

    A novel strong coupling expansion method to calculate two-particle spectra of quantum lattice models is developed. The technique can be used to study bosonic and fermionic models and in principle it can be applied to systems in any dimension. A number of strongly correlated magnetic and electronic systems are examined including the two-leg spin-half Heisenberg ladder, the dimerized Heisenberg chain with a frustrating next-nearest neighbor interaction, coupled Heisenberg ladders, and the one-dimensional Kondo lattice model. In the various models distinct bound states are found below the two-particle continuum. Quantitative calculations of the dispersion, coherence length and binding energy of these bound states are used to describe spectroscopic experiments on (Ca,La) 14 Cu 24 O 41 and NaV 2 O 5 . (orig.)

  4. Statistical electron correlation coefficients for the five lowest states of the heliumlike ions

    International Nuclear Information System (INIS)

    Thakkar, A.J.; Smith, V.H. Jr.

    1981-01-01

    Statistical correlation coefficients were introduced by Kutzelnigg, Del Re, and Berthier to provide overall measures of the difference between the electron pair density and the product of one-electron densities in atoms and molecules. Some properties of these coefficients are discussed, and it is shown that an angular correlation coefficient is experimentally accessible. Radial and angular correlation coefficients are computed from highly accurate wave functions for the 1 1 S, 2 3 S, 2 1 S, 2 3 P, and 2 1 P states of the heliumlike ions from He through Mg 10+ . It is found that positive angular correlation coefficients occur in the 2 1 P state of the two-electron positive ions but not in neutral helium. Moreover, the angular correlation coefficients for the 2 1 S and 2 3 S states of the positively charged two-electron ions show that a previously proposed reformulation of Hund's rule is incorrect

  5. Creation of paired electron states in the gap of semiconducting carbon nanotubes by correlated hydrogen adsorption

    International Nuclear Information System (INIS)

    Buchs, Gilles; Krasheninnikov, Arkady V; Ruffieux, Pascal; Groening, Pierangelo; Foster, Adam S; Nieminen, Risto M; Groening, Oliver

    2007-01-01

    The specific, local modification of the electronic structure of carbon nanomaterials is as important for novel electronic device fabrication as the doping in the case of silicon-based electronics. Here, we report low temperature scanning tunneling microscopy and spectroscopy study of semiconducting carbon nanotubes subjected to hydrogen-plasma treatment. We show that plasma treatment mostly results in the creation of paired electronic states in the nanotube band gap. Combined with extensive first-principle simulations, our results provide direct evidence that these states originate from correlated chemisorption of hydrogen adatoms on the tube surface. The energy splitting of the paired states is governed by the adatom-adatom interaction, so that controlled hydrogenation can be used for engineering the local electronic structure of nanotubes and other sp 2 -bonded nanocarbon systems

  6. Electronic correlation studies. III. Self-correlated field method. Application to 2S ground state and 2P excited state of three-electron atomic systems

    International Nuclear Information System (INIS)

    Lissillour, R.; Guerillot, C.R.

    1975-01-01

    The self-correlated field method is based on the insertion in the group product wave function of pair functions built upon a set of correlated ''local'' functions and of ''nonlocal'' functions. This work is an application to three-electron systems. The effects of the outer electron on the inner pair are studied. The total electronic energy and some intermediary results such as pair energies, Coulomb and exchange ''correlated'' integrals, are given. The results are always better than those given by conventional SCF computations and reach the same level of accuracy as those given by more laborious methods used in correlation studies. (auth)

  7. Electron-photon angular correlation measurements for the 2 1P state of helium

    International Nuclear Information System (INIS)

    Slevin, J.; Porter, H.Q.; Eminyan, M.; Defrance, A.; Vassilev, G.

    1980-01-01

    Electron-photon angular correlations have been measured by detecting in delayed coincidence, electrons inelastically scattered from helium and photons emitted in decays from the 2 1 P state at incident electron energies of 60 and 80 eV. Analysis of the data yields values for the ratio lambda of the differential cross sections for magnetic sublevel excitations and the phase difference X between the corresponding probability amplitudes. The measurements extend over the angular range 10-120 0 of electron scattering angles. The present data are in good agreement with the experimental results of Hollywood et al, (J. Phys. B.; 12: 819 (1979)), and show a marked discrepancy at large scattering angles with the recent data of Steph and Golde. (Phys. Rev.; A in press (1980)). The experimental results are compared with some recent theories. (author)

  8. Exact ground-state correlation functions of one-dimenisonal strongly correlated electron models with resonating-valence-bond ground state

    International Nuclear Information System (INIS)

    Yamanaka, Masanori; Honjo, Shinsuke; Kohmoto, Mahito

    1996-01-01

    We investigate one-dimensional strongly correlated electron models which have the resonating-valence-bond state as the exact ground state. The correlation functions are evaluated exactly using the transfer matrix method for the geometric representations of the valence-bond states. In this method, we only treat matrices with small dimensions. This enables us to give analytical results. It is shown that the correlation functions decay exponentially with distance. The result suggests that there is a finite excitation gap, and that the ground state is insulating. Since the corresponding noninteracting systems may be insulating or metallic, we can say that the gap originates from strong correlation. The persistent currents of the present models are also investigated and found to be exactly vanishing

  9. Theory of Correlated Pairs of Electrons Oscillating in Resonant Quantum States to Reach the Critical Temperature in a Metal

    OpenAIRE

    Aroche, Raúl Riera; Rosas-Cabrera, Rodrigo Arturo; Burgos, Rodrigo Arturo Rosas; Betancourt-Riera, René; Betancourt-Riera, Ricardo

    2017-01-01

    The formation of Correlated Electron Pairs Oscillating around the Fermi level in Resonant Quantum States (CEPO-RQS), when a metal is cooled to its critical temperature T=Tc, is studied. The necessary conditions for the existence of CEPO-RQS are analyzed. The participation of electron-electron interaction screened by an electron dielectric constant of the form proposed by Thomas Fermi is considered and a physical meaning for the electron-phonon-electron interaction in the formation of the CEPO...

  10. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model.

    Science.gov (United States)

    Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2012-11-13

    The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed.

  11. Correlated electron state in CeCu2Si2 controlled through Si to P substitution

    Science.gov (United States)

    Lai, Y.; Saunders, S. M.; Graf, D.; Gallagher, A.; Chen, K.-W.; Kametani, F.; Besara, T.; Siegrist, T.; Shekhter, A.; Baumbach, R. E.

    2017-08-01

    CeCu2Si2 is an exemplary correlated electron metal that features two domes of unconventional superconductivity in its temperature-pressure phase diagram. The first dome surrounds an antiferromagnetic quantum critical point, whereas the more exotic second dome may span the termination point of a line of f -electron valence transitions. This behavior has received intense interest, but what has been missing are ways to access the high pressure behavior under milder conditions. Here we study Si → P chemical substitution, which compresses the unit cell volume but simultaneously weakens the hybridization between the f - and conduction electron states and encourages complex magnetism. At concentrations that show magnetism, applied pressure suppresses the magnetic ordering temperature and superconductivity is recovered for samples with low disorder. These results reveal that the electronic behavior in this system is controlled by a nontrivial combination of effects from unit cell volume and electronic shell filling. Guided by this topography, we discuss prospects for uncovering a valence fluctuation quantum phase transition in the broader family of Ce-based ThCr2Si2 -type materials through chemical substitution.

  12. Holstein-Primakoff representation and supercoherent states for strongly correlated electron systems

    International Nuclear Information System (INIS)

    Azakov, S.

    1999-09-01

    First we show that the algebra of operators entering the Hamiltonian of the t-J model describing the strongly correlated electron system is graded spl(2.1) algebra. Then after a brief discussion of its atypical representations we construct the Holstein-Primakoff nonlinear realization of these operators which allows to carry out the systematic semiclassical approximation, similarly to the spin-wave theory of localized magnetism. The fact that the t-J model describes the itinerant magnetism is reflected in the presence of the spinless fermions. For the supersymmetric spl(2.1) algebra the supercoherent states are proposed and the partition function of the t-J model is represented as a path integral with the help of these states. (author)

  13. Subgap Two-Photon States in Polycyclic Aromatic Hydrocarbons: Evidence for Strong Electron Correlations

    OpenAIRE

    Aryanpour, K.; Roberts, A.; Sandhu, A.; Rathore, R.; Shukla, A.; Mazumdar, S.

    2013-01-01

    Strong electron correlation effects in the photophysics of quasi-one-dimensional $\\pi$-conjugated organic systems such as polyenes, polyacetylenes, polydiacetylenes, etc., have been extensively studied. Far less is known on correlation effects in two-dimensional $\\pi$-conjugated systems. Here we present theoretical and experimental evidence for moderate repulsive electron-electron interactions in a number of finite polycyclic aromatic hydrocarbon molecules with $D_{6h}$ symmetry. We show that...

  14. Spiral magnetic order, non-uniform states and electron correlations in the conducting transition metal systems

    Science.gov (United States)

    Igoshev, P. A.; Timirgazin, M. A.; Arzhnikov, A. K.; Antipin, T. V.; Irkhin, V. Yu.

    2017-10-01

    The ground-state magnetic phase diagram is calculated within the Hubbard and s-d exchange (Kondo) models for square and simple cubic lattices vs. band filling and interaction parameter. The difference of the results owing to the presence of localized moments in the latter model is discussed. We employ a generalized Hartree-Fock approximation (HFA) to treat commensurate ferromagnetic (FM), antiferromagnetic (AFM), and incommensurate (spiral) magnetic phases. The electron correlations are taken into account within the Hubbard model by using the Kotliar-Ruckenstein slave boson approximation (SBA). The main advantage of this approach is a correct qualitative description of the paramagnetic phase: its energy becomes considerably lower as compared with HFA, and the gain in the energy of magnetic phases is substantially reduced.

  15. Dynamical mean-field theory and path integral renormalisation group calculations of strongly correlated electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, D.B.

    2007-02-15

    The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)

  16. Dynamical mean-field theory and path integral renormalisation group calculations of strongly correlated electronic states

    International Nuclear Information System (INIS)

    Heilmann, D.B.

    2007-02-01

    The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)

  17. Angular correlation of autoionization electrons and photons emitted from collisionally aligned atomic states

    International Nuclear Information System (INIS)

    Eichler, J.; Fritsch, W.

    1976-01-01

    The angular correlation of autoionization electrons or of photons ejected from collisionally aligned excited atoms is calculated assuming unpolarized beam and target, and polarization-insensitive detectors. Starting from the two-step hypothesis for the formation and decay of the intermediate excited atoms, the angular correlation is expressed in terms of the density matrix describing the excited system. Using the symmetries of the density matrix, a minimal set of independent matrix elements is given and the conditions for which a complete determination of this set is experimentally possible are discussed. For the case of electron emission, simple examples are pointed out in which the angular correlation is independent of the reduced Coulomb matrix elements describing the decay. (author)

  18. Antidiabetic Theory of Superconducting State Transition: Phonons and Strong Electron Correlations the Old Physics and New Aspects

    International Nuclear Information System (INIS)

    Banacky, P.

    2010-01-01

    Complex electronic ground state of molecular and solid state system is analyzed on the ab initio level beyond the adiabatic Born-Oppenheimer approximation (BOA). The attention is focused on the band structure fluctuation (BSF) at Fermi level, which is induced by electron-phonon coupling in superconductors, and which is absent in the non-superconducting analogues. The BSF in superconductors results in breakdown of the adiabatic BOA. At these circumstances, chemical potential is substantially reduced and system is stabilized (effect of nuclear dynamics) in the anti adiabatic state at broken symmetry with a gap(s) in one-particle spectrum. Distorted nuclear structure has fluxional character and geometric degeneracy of the anti adiabatic ground state enables formation of mobile bipolarons in real space. It has been shown that an effective attractive e-e interaction (Cooper-pair formation) is in fact correction to electron correlation energy at transition from adiabatic into anti adiabatic ground electronic state. In this respect, Cooper-pair formation is not the primary reason for transition into superconducting state, but it is a consequence of anti adiabatic state formation. It has been shown that thermodynamic properties of system in anti adiabatic state correspond to thermodynamics of superconducting state. Illustrative application of the theory for different types of superconductors is presented.

  19. Superatom spectroscopy and the electronic state correlation between elements and isoelectronic molecular counterparts.

    Science.gov (United States)

    Peppernick, Samuel J; Gunaratne, K D Dasitha; Castleman, A W

    2010-01-19

    Detailed in the present investigation are results pertaining to the photoelectron spectroscopy of negatively charged atomic ions and their isoelectronic molecular counterparts. Experiments utilizing the photoelectron imaging technique are performed on the negative ions of the group 10 noble metal block (i.e. Ni-, Pd-, and Pt-) of the periodic table at a photon energy of 2.33 eV (532 nm). The accessible electronic transitions, term energies, and orbital angular momentum components of the bound electronic states in the atom are then compared with photoelectron images collected for isoelectronic early transition metal heterogeneous diatomic molecules, M-X- (M = Ti,Zr,W; X = O or C). A superposition principle connecting the spectroscopy between the atomic and molecular species is observed, wherein the electronic structure of the diatomic is observed to mimic that present in the isoelectronic atom. The molecular ions studied in this work, TiO-, ZrO-, and WC- can then be interpreted as possessing superatomic electronic structures reminiscent of the isoelectronic elements appearing on the periodic table, thereby quantifying the superatom concept.

  20. Electron-mediated relaxation following ultrafast pumping of strongly correlated materials: model evidence of a correlation-tuned crossover between thermal and nonthermal states.

    Science.gov (United States)

    Moritz, B; Kemper, A F; Sentef, M; Devereaux, T P; Freericks, J K

    2013-08-16

    We examine electron-electron mediated relaxation following ultrafast electric field pump excitation of the fermionic degrees of freedom in the Falicov-Kimball model for correlated electrons. The results reveal a dichotomy in the temporal evolution of the system as one tunes through the Mott metal-to-insulator transition: in the metallic regime relaxation can be characterized by evolution toward a steady state well described by Fermi-Dirac statistics with an increased effective temperature; however, in the insulating regime this quasithermal paradigm breaks down with relaxation toward a nonthermal state with a complicated electronic distribution as a function of momentum. We characterize the behavior by studying changes in the energy, photoemission response, and electronic distribution as functions of time. This relaxation may be observable qualitatively on short enough time scales that the electrons behave like an isolated system not in contact with additional degrees of freedom which would act as a thermal bath, especially when using strong driving fields and studying materials whose physics may manifest the effects of correlations.

  1. Effect of Temperature and Pressure on Correlation Energy in a Triplet State of a Two Electron Spherical Quantum Dot

    Directory of Open Access Journals (Sweden)

    A. Rejo Jeice

    2013-09-01

    Full Text Available The combined effect of hydrostatic pressure and temperature on correlation energy in a triplet state of two electron spherical quantum dot with square well potential is computed. The result is presented taking GaAs dot as an example. Our result shows the correlation energies are inegative in the triplet state contrast to the singlet state ii it increases with increase in pressure  iiifurther decreases due to the application  of temperature iv it approaches zero as dot size approaches infinity and v it contribute 10% decrement in total confined energy to the narrow dots. All the calculations have been carried out with finite models and the results are compared with existing literature.

  2. On the importance of excited state dynamic response electron correlation in polarizable embedding methods.

    Science.gov (United States)

    Eriksen, Janus J; Sauer, Stephan P A; Mikkelsen, Kurt V; Jensen, Hans J Aa; Kongsted, Jacob

    2012-09-30

    We investigate the effect of including a dynamic reaction field at the lowest possible ab inito wave function level of theory, namely the Hartree-Fock (HF) self-consistent field level within the polarizable embedding (PE) formalism. We formulate HF based PE within the linear response theory picture leading to the PE-random-phase approximation (PE-RPA) and bridge the expressions to a second-order polarization propagator approximation (SOPPA) frame such that dynamic reaction field contributions are included at the RPA level in addition to the static response described at the SOPPA level but with HF induced dipole moments. We conduct calculations on para-nitro-aniline and para-nitro-phenolate using said model in addition to dynamic PE-RPA and PE-CAM-B3LYP. We compare the results to recently published PE-CCSD data and demonstrate how the cost effective SOPPA-based model successfully recovers a great portion of the inherent PE-RPA error when the observable is the solvatochromic shift. We furthermore demonstrate that whenever the change in density resulting from the ground state-excited state electronic transition in the solute is not associated with a significant change in the electric field, dynamic response contributions formulated at the HF level of theory manage to capture the majority of the system response originating from derivative densities. Copyright © 2012 Wiley Periodicals, Inc.

  3. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    Energy Technology Data Exchange (ETDEWEB)

    Aryanpour, Karan [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); Shukla, Alok [Department of Physics, Indian Institute of Technology, Powai, Mumbai 400076 (India); Mazumdar, Sumit [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States)

    2014-03-14

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D{sub 6h} point group symmetry versus ovalene with D{sub 2h} symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D{sub 6h} group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D{sub 2h} ovalene but not in those with D{sub 6h} symmetry.

  4. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    International Nuclear Information System (INIS)

    Aryanpour, Karan; Shukla, Alok; Mazumdar, Sumit

    2014-01-01

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D 6h point group symmetry versus ovalene with D 2h symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D 6h group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D 2h ovalene but not in those with D 6h symmetry

  5. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: a peculiar role of geometry.

    Science.gov (United States)

    Aryanpour, Karan; Shukla, Alok; Mazumdar, Sumit

    2014-03-14

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D(6h) point group symmetry versus ovalene with D(2h) symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D(6h) group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D(2h) ovalene but not in those with D(6h) symmetry.

  6. Orthogonalization of correlated states

    International Nuclear Information System (INIS)

    Fantoni, S.; Pandharipande, V.R.

    1988-01-01

    A scheme for orthogonalizing correlated states while preserving the diagonal matrix elements of the Hamiltonian is developed. Conventional perturbation theory can be used with the orthonormal correlated basis obtained from this scheme. Advantages of using orthonormal correlated states in calculations of the response function and correlation energy are discussed

  7. Electron correlations in quantum dots

    International Nuclear Information System (INIS)

    Tipton, Denver Leonard John

    2001-01-01

    Quantum dot structures confine electrons in a small region of space. Some properties of semiconductor quantum dots, such as the discrete energy levels and shell filling effects visible in addition spectra, have analogies to those of atoms and indeed dots are sometimes referred to as 'artificial atoms'. However, atoms and dots show some fundamental differences due to electron correlations. For real atoms, the kinetic energy of electrons dominates over their mutual Coulomb repulsion energy and for this reason the independent electron approximation works well. For quantum dots the confining potential may be shallower than that of real atoms leading to lower electron densities and a dominance of mutual Coulomb repulsion over kinetic energy. In this strongly correlated regime the independent electron picture leads to qualitatively incorrect results. This thesis concentrates on few-electron quantum dots in the strongly correlated regime both for quasi-one-dimensional and two-dimensional dots in a square confining potential. In this so-called 'Wigner' regime the ground-state electronic charge density is localised near positions of classical electrostatic minima and the interacting electronic spectrum consists of well separated spin multiplets. In the strongly correlated regime the structure of low-energy multiplets is explained by mapping onto lattice models with extended-Hubbard and Heisenberg effective Hamiltonians. The parameters for these effective models are calculated within a Hartree approximation and are shown to reproduce well the exact results obtained by numerical diagonalisation of the full interacting Hamiltonian. Comparison is made between square dots and quantum rings with full rotational symmetry. In the very low-density regime, direct diagonalisation becomes impractical due to excessive computer time for convergence. In this regime a numerical renormalisation group method is applied to one-dimensional dots, enabling effective spin-interactions to be

  8. Low-energy measurements of electron-photon angular correlation in electron-impact excitation of the 21P state of helium

    International Nuclear Information System (INIS)

    Steph, N.C.; Golden, D.E.

    1983-01-01

    Electron-photon angular correlations between electrons which have excited the 2 1 P state of He and photons from the 2 1 P→1 1 S transition have been studied for 27-, 30-, 35-, and 40-eV incident electrons. Values of lambda and Vertical BarchiVertical Bar obtained from these measurements are compared to values obtained in distorted-wave and R-matrix calculations. The values of lambda and Vertical BarchiVertical Bar have been combined to examine the behavior of Vertical BarO 1 /sub -//sup colvertical-bar/ [lambda(1-lambda)sinVertical BarchiVertical Bar], the nonvanishing component of orientation. At 27 eV, a substantial decrease was observed in the values of lambda and Vertical BarO 1 /sub -//sup colvertical-bar/, compared with their values for E> or =30 eV

  9. Correlations in Werner States

    International Nuclear Information System (INIS)

    Luo Shunlong; Li Nan

    2008-01-01

    Werner states are paradigmatic examples of quantum states and play an innovative role in quantum information theory. In investigating the correlating capability of Werner states, we find the curious phenomenon that quantum correlations, as quantified by the entanglement of formation, may exceed the total correlations, as measured by the quantum mutual information. Consequently, though the entanglement of formation is so widely used in quantifying entanglement, it cannot be interpreted as a consistent measure of quantum correlations per se if we accept the folklore that total correlations are measured (or rather upper bounded) by the quantum mutual information.

  10. Electron correlation effect on radiative decay processes of the core-excited states of Be-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Cuicui, E-mail: sangcc@126.com [Department of Physics, Qinghai Normal University, Xining 810001 (China); Li, Kaikai [College of Forensic Science, People' s Public Security University of China, Beijing 100038 (China); Sun, Yan; Hu, Feng [School of Mathematic and Physical Science, Xuzhou Institute of Technology, Xuzhou 221400, Jiangsu (China)

    2016-07-15

    Highlights: • Radiative rates of the states 1s2s{sup 2}2p and 1s2p{sup 3} with Z = 8–54 are studied. • Electron correlation effect on the radiative transition rates is studied. • Forbidden transitions are explored. - Abstract: Energy levels and the radiative decay processes of the core-excited configurations 1s2s{sup 2}2p and 1s2p{sup 3} of Be-like ions with Z = 8–54 are studied. Electron correlation effect on the energy levels and the radiative transition rates are studied in detail. Except for E1 radiative transition rates, the E2, M1 and M2 forbidden transitions are also explored. Further relativistic corrections from the Breit interaction, quantum electrodynamics and the finite nuclear size are included in the calculations to make the results more precise. Good agreement is found between our results and other theoretical data.

  11. Electronic Correlation Strength of Pu

    DEFF Research Database (Denmark)

    Svane, A.; C. Albers, R.; E. Christensen, N.

    2013-01-01

    A new electronic quantity, the correlation strength, is defined as a necessary step for understanding the properties and trends in strongly correlated electronic materials. As a test case, this is applied to the different phases of elemental Pu. Within the GW approximation we have surprisingly...... found a "universal" scaling relationship, where the f-electron bandwidth reduction due to correlation effects is shown to depend only upon the local density approximation (LDA) bandwidth and is otherwise independent of crystal structure and lattice constant....

  12. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    make use of 'small' electrons packed to the highest possible density. These are by definition 'strongly correlated'. For example: good photovoltaics must be efficient optical absorbers, which means that photons will generate tightly bound electron-hole pairs (excitons) that must then be ionised at a heterointerface and transported to contacts; efficient solid state refrigeration depends on substantial entropy changes in a unit cell, with large local electrical or magnetic moments; efficient lighting is in a real sense the inverse of photovoltaics; the limit of an efficient battery is a supercapacitor employing mixed valent ions; fuel cells and solar to fuel conversion require us to understand electrochemistry on the scale of a single atom; and we already know that the only prospect for effective high temperature superconductivity involves strongly correlated materials. Even novel IT technologies are now seen to have value not just for novel function but also for efficiency. While strongly correlated electron systems continue to excite researchers and the public alike due to the fundamental science issues involved, it seems increasingly likely that support for the science will be leveraged by its impact on energy and sustainability. Strongly correlated electron systems contents Strongly correlated electron systemsSiddharth S Saxena and P B Littlewood Magnetism, f-electron localization and superconductivity in 122-type heavy-fermion metalsF Steglich, J Arndt, O Stockert, S Friedemann, M Brando, C Klingner, C Krellner, C Geibel, S Wirth, S Kirchner and Q Si High energy pseudogap and its evolution with doping in Fe-based superconductors as revealed by optical spectroscopyN L Wang, W Z Hu, Z G Chen, R H Yuan, G Li, G F Chen and T Xiang Structural investigations on YbRh2Si2: from the atomic to the macroscopic length scaleS Wirth, S Ernst, R Cardoso-Gil, H Borrmann, S Seiro, C Krellner, C Geibel, S Kirchner, U Burkhardt, Y Grin and F Steglich Confinement of chiral magnetic

  13. Comprehensive analysis of electron correlations in three-electron atoms

    International Nuclear Information System (INIS)

    Morishita, T.; Lin, C.D.

    1999-01-01

    We study the electron correlations in singly, doubly, and triply excited states of a three-electron atom. While electron correlation in general is weak for singly excited states, correlation plays major roles in determining the characteristics of doubly and triply excited states. Using the adiabatic approximation in hyperspherical coordinates, we show that the distinction between singly, doubly, and triply excited states is determined by the radial correlations, while finer distinctions within doubly or triply excited states lie in the angular correlations. Partial projections of the body-fixed frame wave functions are used to demonstrate the characteristic nodal surfaces which provide clues to the energy ordering of the states. We show that doubly excited states of a three-electron atom exhibit correlations that are similar to the doubly excited states of a two-electron atom. For the triply excited states, we show that the motion of the three electrons resemble approximately that of a symmetric top. copyright 1999 The American Physical Society

  14. The importance of spin-orbit coupling and electron correlation in the rationalization of the ground state of the CUO molecule

    NARCIS (Netherlands)

    Infante, I.A.C.; Visscher, L.

    2004-01-01

    The importance of electron correlation and spin-orbit coupling in the rationalization of the ground state of the CUO molecule is discussed. It was observed that SOC gave a consistent energy splitting of the triplet state contribution that does not depend much on the method used to compute a

  15. Correlated electrons and generalized statistics

    International Nuclear Information System (INIS)

    Wang, Q.A.

    2003-01-01

    Several important generalizations of Fermi-Dirac distribution are compared to numerical and experimental results for correlated electron systems. It is found that the quantum distributions based on incomplete information hypothesis can be useful for describing this kind of systems. We show that the additive incomplete fermion distribution gives very good description of weakly correlated electrons and that the non-additive one is suitable to very strong correlated cases. (author)

  16. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

  17. Ultrafast dynamics of correlated electrons

    International Nuclear Information System (INIS)

    Rettig, Laurenz

    2012-01-01

    This work investigates the ultrafast electron dynamics in correlated, low-dimensional model systems using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES) directly in the time domain. In such materials, the strong electron-electron (e-e) correlations or coupling to other degrees of freedom such as phonons within the complex many-body quantum system lead to new, emergent properties that are characterized by phase transitions into broken-symmetry ground states such as magnetic, superconducting or charge density wave (CDW) phases. The dynamical processes related to order like transient phase changes, collective excitations or the energy relaxation within the system allow deeper insight into the complex physics governing the emergence of the broken-symmetry state. In this work, several model systems for broken-symmetry ground states and for the dynamical charge balance at interfaces have been studied. In the quantum well state (QWS) model system Pb/Si(111), the charge transfer across the Pb/Si interface leads to an ultrafast energetic stabilization of occupied QWSs, which is the result of an increase of the electronic confinement to the metal film. In addition, a coherently excited surface phonon mode is observed. In antiferromagnetic (AFM) Fe pnictide compounds, a strong momentum-dependent asymmetry of electron and hole relaxation rates allows to separate the recovery dynamics of the AFM phase from electron-phonon (e-ph) relaxation. The strong modulation of the chemical potential by coherent phonon modes demonstrates the importance of e-ph coupling in these materials. However, the average e-ph coupling constant is found to be small. The investigation of the excited quasiparticle (QP) relaxation dynamics in the high-T c 4 superconductor Bi 2 Sr 2 CaCu 2 O 8+δ reveals a striking momentum and fluence independence of the QP life times. In combination with the momentum-dependent density of excited QPs, this demonstrates the suppression of momentum

  18. Ultrafast dynamics of correlated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, Laurenz

    2012-07-09

    This work investigates the ultrafast electron dynamics in correlated, low-dimensional model systems using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES) directly in the time domain. In such materials, the strong electron-electron (e-e) correlations or coupling to other degrees of freedom such as phonons within the complex many-body quantum system lead to new, emergent properties that are characterized by phase transitions into broken-symmetry ground states such as magnetic, superconducting or charge density wave (CDW) phases. The dynamical processes related to order like transient phase changes, collective excitations or the energy relaxation within the system allow deeper insight into the complex physics governing the emergence of the broken-symmetry state. In this work, several model systems for broken-symmetry ground states and for the dynamical charge balance at interfaces have been studied. In the quantum well state (QWS) model system Pb/Si(111), the charge transfer across the Pb/Si interface leads to an ultrafast energetic stabilization of occupied QWSs, which is the result of an increase of the electronic confinement to the metal film. In addition, a coherently excited surface phonon mode is observed. In antiferromagnetic (AFM) Fe pnictide compounds, a strong momentum-dependent asymmetry of electron and hole relaxation rates allows to separate the recovery dynamics of the AFM phase from electron-phonon (e-ph) relaxation. The strong modulation of the chemical potential by coherent phonon modes demonstrates the importance of e-ph coupling in these materials. However, the average e-ph coupling constant is found to be small. The investigation of the excited quasiparticle (QP) relaxation dynamics in the high-T{sub c}4 superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} reveals a striking momentum and fluence independence of the QP life times. In combination with the momentum-dependent density of excited QPs, this demonstrates the

  19. Electron-photon angular correlation measurements for excitation of the 2P state of hydrogen at 55 and 100 eV

    International Nuclear Information System (INIS)

    Slevin, J.; Eminyan, M.; Woolsey, J.M.; Vassilev, G.; Porter, H.Q.

    1980-01-01

    Electron-photon angular correlations have been measured for excitation of the 2P state of hydrogen at incident energies of 55 and 100 eV. The data presented extend the results of Weigold and co-workers (Flinders Univ. preprint (1980)) to smaller scattering angles and reveal the existence of a deep minimum in the parameter lambda thetasub(e) = 10 0 at and incident electron energy of 100 eV. (author)

  20. Electron Correlations and Two-Photon States in Polycyclic Aromatic Hydrocarbon Molecules: A Peculiar Role of Geometry

    OpenAIRE

    Aryanpour, K.; Shukla, A.; Mazumdar, S.

    2013-01-01

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene and circumcoronene, all possessing $D_{6h}$ point group symmetry versus ovalene with $D_{2h}$ symmetry, within the Pariser-Parr-Pople model of interacting $\\pi$-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitat...

  1. Correlation effects in electron-atom collisions

    International Nuclear Information System (INIS)

    Water, W. van de.

    1981-01-01

    This thesis deals with correlation effects occurring in the outer region of configuration space after an ionising collision. The motion of both escaping electrons in the external region is then fully determined by the long-range Coulomb forces. Firstly the threshold ionisation of hydrogen-like targets is studied. In that case two slow electrons attempt to escape from the Coulomb attraction of the residual ion. Secondly ionising collisions, with the formation of an autoionising state as an intermediate step, are considered. Such an autoionising state is in fact a quasi bound state of the neutral atom which lies imbedded in the ionisation continuum. The state decays after a certain lifetime by emission of an electron. Of all states to be formed in the reaction region only the autoionising state(s) under consideration is then relevant for this type of ionisation process. The energy positions of autoionising states usually are such that the electron to be ionised is ejected with a rather large velocity. The correlation in the outer region of configuration space then consists of the interaction of a fast ejected electron and, in case of threshold excitation of the autoionising state, a slow scattered electron. (Auth.)

  2. Effect of electron correlations and Breit interactions on ground-state fine-structures along the nitrogen-like isoelectronic sequence

    International Nuclear Information System (INIS)

    Wang Xiaolu; Lu Wenlai; Gao Xiang; Li Jiaming

    2009-01-01

    The accurate atomic data of nitrogen and nitrogen-like ions have an importance role in fusion plasma studies and astrophysics studies. The precise calculation of fine-structures is required to obtain such atomic data. Along the whole nitrogen isoelectronic sequence, the contributions of the electron correlations, the Breit interactions and the quantum electrodynamics corrections on the ground-state fine-structures are elucidated. When Z is low, the electron correlations are important, and the Breit interactions, which cannot be neglected cause interesting anomalous fine-structure splittings. When Z is high, the electron correlations are less important, and the Breit interactions are important in addition to spin-orbit interactions for precise calculations. (authors)

  3. Correlated Electrons in Reduced Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bonesteel, Nicholas E [Florida State Univ., Tallahassee, FL (United States)

    2015-01-31

    This report summarizes the work accomplished under the support of US DOE grant # DE-FG02-97ER45639, "Correlated Electrons in Reduced Dimensions." The underlying hypothesis of the research supported by this grant has been that studying the unique behavior of correlated electrons in reduced dimensions can lead to new ways of understanding how matter can order and how it can potentially be used. The systems under study have included i) fractional quantum Hall matter, which is realized when electrons are confined to two-dimensions and placed in a strong magnetic field at low temperature, ii) one-dimensional chains of spins and exotic quasiparticle excitations of topologically ordered matter, and iii) electrons confined in effectively ``zero-dimensional" semiconductor quantum dots.

  4. Correlated kinetic energy density functional of ground states of harmonically confined two-electron atoms for arbitrary interparticle interaction

    International Nuclear Information System (INIS)

    Amovilli, C; March, N H

    2012-01-01

    Utilizing the earlier work of Holas et al (2003 Phys. Lett. A 310 451) and the more recent contribution of Akbari et al (2009 Phys. Rev. A 80 032509), we construct an integral equation for the relative motion (RM) contribution t RM (r) to the correlated kinetic energy density for modelling two-electron atoms with harmonic confinement but arbitrary interparticle interaction. It is stressed that t RM = t RM [f(G)], where f(G) is the atomic scattering factor: the Fourier transform of the density ρ(r). As a simple illustrative example of this functional relation for the correlated kinetic energy density, the harmonic Moshinsky case is investigated, the scattering factor then having a Gaussian form. (paper)

  5. Electron impact excitation of helium: A ploarization correlation study of the 31P state at 40 eV incident energy

    International Nuclear Information System (INIS)

    Harris, C.L.; Dorio, L.A.; Neill, P.A.

    1996-01-01

    Recently the Convergent Close-Coupling calculations, (CCC), of Fursa and Bray have been very successful predicting the behavior of the electron impact coherence parameters (EICP) for electron impact excitation of helium. In the present experimental study the linear Stokes parameters P 1 and P 2 have been measured for He(3 1 P) excitation using the polarization correlation technique. Data will be presented for electron impact energies of 40eV and 50eV. At present no other experimental data is available at 40eV. At 50eV angular correlation data measured using the VUV 3 1 P-1 1 S photons are available only out to a maximum electron scattering angle of 85 degrees. Due to the disadvantageous differential cross section and 40:1 branching ratio in favor of the VUV decay, the uncertainties in the present data are large. However, at selected electron scattering angles they are sufficient to distinguish the lack of convergence of the CCC predictions for the 69 state calculations (CCC69) in comparison with the 75 state model (CCC75). In particular at 50 eV incident electron energy and 120 degrees scattering angle the charge cloud alignment angles predicted by the two calculations differ by 90 degrees

  6. Correlated electrons in quantum matter

    CERN Document Server

    Fulde, Peter

    2012-01-01

    An understanding of the effects of electronic correlations in quantum systems is one of the most challenging problems in physics, partly due to the relevance in modern high technology. Yet there exist hardly any books on the subject which try to give a comprehensive overview on the field covering insulators, semiconductors, as well as metals. The present book tries to fill that gap. It intends to provide graduate students and researchers a comprehensive survey of electron correlations, weak and strong, in insulators, semiconductors and metals. This topic is a central one in condensed matter and beyond that in theoretical physics. The reader will have a better understanding of the great progress which has been made in the field over the past few decades.

  7. Correlations in a partially degenerate electron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chihara, Junzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    The density-functional theory proves that an ion-electron mixture can be treated as a one-component liquid interacting only via a pairwise interaction in the evaluation of the ion-ion radial distribution function (RDF), and provides a set of integral equations: one is an integral equation for the ion-ion RDF and another for an effective ion-ion interaction, which depends on the ion-ion RDF. This formulation gives a set of integral equation to calculate plasma structures with combined use of the electron-electron correlations in a partially degenerate electron plasma. Therefore, it is important for this purpose to determine the electron-electron correlations at a arbitrary temperature. Here, they are calculated by the quantal version of the hypernetted chain (HNC) equation. On the basis of the jellium-vacancy model, the ionic and electronic structures of rubidium are calculated for the range from liquid metal to plasma states by increasing the temperature at the fixed density using the electron-correlation results. (author)

  8. Hartree-Fock implementation using a Laguerre-based wave function for the ground state and correlation energies of two-electron atoms.

    Science.gov (United States)

    King, Andrew W; Baskerville, Adam L; Cox, Hazel

    2018-03-13

    An implementation of the Hartree-Fock (HF) method using a Laguerre-based wave function is described and used to accurately study the ground state of two-electron atoms in the fixed nucleus approximation, and by comparison with fully correlated (FC) energies, used to determine accurate electron correlation energies. A variational parameter A is included in the wave function and is shown to rapidly increase the convergence of the energy. The one-electron integrals are solved by series solution and an analytical form is found for the two-electron integrals. This methodology is used to produce accurate wave functions, energies and expectation values for the helium isoelectronic sequence, including at low nuclear charge just prior to electron detachment. Additionally, the critical nuclear charge for binding two electrons within the HF approach is calculated and determined to be Z HF C =1.031 177 528.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  9. Electronic Structure of Strongly Correlated Materials

    CERN Document Server

    Anisimov, Vladimir

    2010-01-01

    Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.

  10. Correlates of self-reported exposure to advertising of tobacco products and electronic cigarettes across 28 European Union member states

    Science.gov (United States)

    Filippidis, Filippos T; Laverty, Anthony A; Fernandez, Esteve; Mons, Ute; Tigova, Olena; Vardavas, Constantine I

    2017-01-01

    Background Despite advertising bans in most European Union (EU) member states, outlets for promotion of tobacco products and especially e-cigarettes still exist. This study aimed to assess the correlates of self-reported exposure to tobacco products and e-cigarettee advertising in the EU. Methods We analysed data from wave 82.4 of the Eurobarometer survey (November–December 2014), collected through interviews in 28 EU member states (n=27 801 aged ≥15 years) and data on bans of tobacco advertising extracted from the Tobacco Control Scale (TCS, 2013). We used multilevel logistic regression to assess sociodemographic correlates of self-reported exposure to any tobacco and e-cigarette advertisements. Results 40% and 41.5% of the respondents reported having seen any e-cigarette and tobacco product advertisement respectively within the past year. Current smokers, males, younger respondents, those with financial difficulties, people who had tried e-cigarettes and daily internet users were more likely to report having seen an e-cigarette and a tobacco product advertisement. Respondents in countries with more comprehensive advertising bans were less likely to self-report exposure to any tobacco advertisements (OR 0.87; 95% CI 0.79 to 0.96 for one-unit increase in TCS advertising score), but not e-cigarette advertisements (OR 1.08; 95% CI 0.95 to 1.22). Conclusion Ten years after ratification of the Framework Convention for Tobacco Control, self-reported exposure to tobacco and e-cigarette advertising in the EU is higher in e-cigarette and tobacco users, as well as those with internet access. The implementation of the Tobacco Products Directive may result in significant changes in e-cigarette advertising, therefore improved monitoring of advertising exposure is required in the coming years. PMID:28607098

  11. Correlates of self-reported exposure to advertising of tobacco products and electronic cigarettes across 28 European Union member states.

    Science.gov (United States)

    Filippidis, Filippos T; Laverty, Anthony A; Fernandez, Esteve; Mons, Ute; Tigova, Olena; Vardavas, Constantine I

    2017-12-01

    Despite advertising bans in most European Union (EU) member states, outlets for promotion of tobacco products and especially e-cigarettes still exist. This study aimed to assess the correlates of self-reported exposure to tobacco products and e-cigarettee advertising in the EU. We analysed data from wave 82.4 of the Eurobarometer survey (November-December 2014), collected through interviews in 28 EU member states (n=27 801 aged ≥15 years) and data on bans of tobacco advertising extracted from the Tobacco Control Scale (TCS, 2013). We used multilevel logistic regression to assess sociodemographic correlates of self-reported exposure to any tobacco and e-cigarette advertisements. 40% and 41.5% of the respondents reported having seen any e-cigarette and tobacco product advertisement respectively within the past year. Current smokers, males, younger respondents, those with financial difficulties, people who had tried e-cigarettes and daily internet users were more likely to report having seen an e-cigarette and a tobacco product advertisement. Respondents in countries with more comprehensive advertising bans were less likely to self-report exposure to any tobacco advertisements (OR 0.87; 95% CI 0.79 to 0.96 for one-unit increase in TCS advertising score), but not e-cigarette advertisements (OR 1.08; 95% CI 0.95 to 1.22). Ten years after ratification of the Framework Convention for Tobacco Control, self-reported exposure to tobacco and e-cigarette advertising in the EU is higher in e-cigarette and tobacco users, as well as those with internet access. The implementation of the Tobacco Products Directive may result in significant changes in e-cigarette advertising, therefore improved monitoring of advertising exposure is required in the coming years. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Two electron Rydberg states

    International Nuclear Information System (INIS)

    Cooke, W.E.

    1981-01-01

    This paper addresses the study of two-electron Rydberg atoms. With Multichannel Quantum Defect Theory (MQDT), there is a technique for characterizing a spectra in terms of a small number of parameters. A survey of some important effects specific to two-electon Rydberg states, using primarily the alkaline earth atoms for examples, is made. The remainder of the paper deals with a discussion of the electron-electron interaction, including some of the basic points of MQDT. Energy exchange between two electrons is also addressed

  13. Electronic configurations and energies in some thermodynamically correlated laves compounds

    International Nuclear Information System (INIS)

    Campbell, G.M.

    1979-04-01

    The known electronic configurations of simple elements in Laves compounds are correlated with those of the more complex systems to determine their electronic configurations and gaseous state promotion energies

  14. Electron-gamma directional correlations; Correlations directionnelles electron-gamma

    Energy Technology Data Exchange (ETDEWEB)

    Gerholm, T R [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-10-01

    The theory of the angular correlation between conversion electrons and gamma rays is briefly outlined. The experimental methods used for the study of the electron-gamma correlation are described. The effects of the formation of a hole and the hyperfine structure magnetic coupling dependent on time are then considered. The experimental results showed that the attenuations found for different metallic media plainly conform to a simple quadrupolar interaction mechanism. For a source surrounded by an insulator, however, the results show that a rapidly disappearing coupling occurs as a supplement to the quadrupolar interaction mechanism. This coupling attenuates the angular correlation by about 75% of the non-perturbed value. It was concluded that for an intermediate half life of the level of the order of the nanosecond, the attenuations produced by the secondary effects of the hole formation can not be completely neglected. The metallic media considered were Ag, Au, Al, and Ga. In the study of E2 conversion processes, the radical matrix elements governing the E2 conversion process in the 412-KeV transition of {sup 198}Hg were determined. The results exclude the presence of dynamic contributions within the limits of experimental error. The values b{sub 2} (E2) and {alpha}-k (E2) obtained indirectly from the experimentally determined b{sub 4} particle parameter are in complete agreement with the theoretical values obtained by applying the corrections due to the shielding effect and to the finite dimension of the nucleus and excluding the dynamic contributions. The value for the internal conversion coefficient was also in good agreement. Experimental results from the intensity ratios between the peak and the continuum, however, seem to show significant deviations with respect to other experimental and theoretical values. There is good agreement between experimental and theoretical results on the internal conversion of {sup 203}Tl, {sup 201}Tl, and {sup 181}Ta. The theory

  15. Cluster expansion of the wavefunction. Calculation of electron correlations in ground and excited states by SAC and SAC CI theories

    International Nuclear Information System (INIS)

    Nakatsuji, H.

    1979-01-01

    The SAC and SAC CI theories are formulated for actual calculations of singlet ground states and their excited states of arbitrary spin multiplicity. Approximations are considered for the variational methods since time-consuming terms are involved. The results of test calculations for singlet states have shown, with much smaller numbers of variables (sizes of the matrices involved), excellent agreement with the full CI and close-to-full CI results. This shows the utility of the SAC theory for ground states and especially of the SAC CI theory for excited states, since the slow convergence of the CI theory is much more critical for excited states than for ground states. (Auth.)

  16. Angular correlation in the two-electron continuum

    International Nuclear Information System (INIS)

    Kheifets, A. S.; Bray, I.

    2006-01-01

    Following absorption of a single photon, angles of simultaneous emission of two electrons from a He(n 1 S) atom become more correlated with increasing n. We find that the strength of this correlation is due to the two-electron continuum of the electron-impact ionization of the He + (ns) ion. The strength is determined by the width of the momentum profile of the ionic ns state but not the strength of the electron correlation in the He initial state. This can explain the increasing (over He) angular correlation strength found in double photoionization of targets such as Be, Ne, and H 2

  17. Electron Correlation in the Ionization Continuum of Molecules: Photoionization of N2 in the Vicinity of the Hopfield Series of Autoionizing States.

    Science.gov (United States)

    Klinker, Markus; Marante, Carlos; Argenti, Luca; González-Vázquez, Jesús; Martín, Fernando

    2018-02-15

    Direct measurement of autoionization lifetimes by using time-resolved experimental techniques is a promising approach when energy-resolved spectroscopic methods do not work. Attosecond time-resolved experiments have recently provided the first quantitative determination of autoionization lifetimes of the lowest members of the well-known Hopfield series of resonances in N 2 . In this work, we have used the recently developed XCHEM approach to study photoionization of the N 2 molecule in the vicinity of these resonances. The XCHEM approach allows us to describe electron correlation in the molecular electronic continuum at a level similar to that provided by multireference configuration interaction methods in bound state calculations, a necessary condition to accurately describe autoionization, shakeup, and interchannel couplings occurring in this range of photon energies. Our results show that electron correlation leading to interchannel mixing is the main factor that determines the magnitude and shape of the N 2 photoionization cross sections, as well as the lifetimes of the Hopfield resonances. At variance with recent speculations, nonadiabatic effects do not seem to play a significant role. These conclusions are supported by the very good agreement between the calculated cross sections and those determined in synchrotron radiation and attosecond experiments.

  18. Electron correlations in narrow band systems

    International Nuclear Information System (INIS)

    Kishore, R.

    1983-01-01

    The effect of the electron correlations in narrow bands, such as d(f) bands in the transition (rare earth) metals and their compounds and the impurity bands in doped semiconductors is studied. The narrow band systems is described, by the Hubbard Hamiltonian. By proposing a local self-energy for the interacting electron, it is found that the results are exact in both atomic and band limits and reduce to the Hartree Fock results for U/Δ → 0, where U is the intra-atomic Coulomb interaction and Δ is the bandwidth of the noninteracting electrons. For the Lorentzian form of the density of states of the noninteracting electrons, this approximation turns out to be equivalent to the third Hubbard approximation. A simple argument, based on the mean free path obtained from the imaginary part of the self energy, shows how the electron correlations can give rise to a discontinous metal-nonmetal transition as proposed by Mott. The band narrowing and the existence of the satellite below the Fermi energy in Ni, found in photoemission experiments, can also be understood. (Author) [pt

  19. Correlation of interface states/border traps and threshold voltage shift on AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tian-Li, E-mail: Tian-Li.Wu@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, Leuven (Belgium); Marcon, Denis; De Jaeger, Brice; Lin, H. C.; Franco, Jacopo; Stoffels, Steve; Van Hove, Marleen; Decoutere, Stefaan [imec, Kapeldreef 75, 3001 Leuven (Belgium); Bakeroot, Benoit [imec, Kapeldreef 75, 3001 Leuven (Belgium); Centre for Microsystems Technology, Ghent University, 9052 Gent (Belgium); Roelofs, Robin [ASM, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-08-31

    In this paper, three electrical techniques (frequency dependent conductance analysis, AC transconductance (AC-g{sub m}), and positive gate bias stress) were used to evaluate three different gate dielectrics (Plasma-Enhanced Atomic Layer Deposition Si{sub 3}N{sub 4}, Rapid Thermal Chemical Vapor Deposition Si{sub 3}N{sub 4}, and Atomic Layer Deposition (ALD) Al{sub 2}O{sub 3}) for AlGaN/GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors. From these measurements, the interface state density (D{sub it}), the amount of border traps, and the threshold voltage (V{sub TH}) shift during a positive gate bias stress can be obtained. The results show that the V{sub TH} shift during a positive gate bias stress is highly correlated to not only interface states but also border traps in the dielectric. A physical model is proposed describing that electrons can be trapped by both interface states and border traps. Therefore, in order to minimize the V{sub TH} shift during a positive gate bias stress, the gate dielectric needs to have a lower interface state density and less border traps. However, the results also show that the commonly used frequency dependent conductance analysis technique to extract D{sub it} needs to be cautiously used since the resulting value might be influenced by the border traps and, vice versa, i.e., the g{sub m} dispersion commonly attributed to border traps might be influenced by interface states.

  20. Atomic electron correlations in intense laser fields

    International Nuclear Information System (INIS)

    DiMauro, L.F.; Sheehy, B.; Walker, B.; Agostini, P.A.

    1998-01-01

    This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although their ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear

  1. Towards a formal definition of static and dynamic electronic correlations.

    Science.gov (United States)

    Benavides-Riveros, Carlos L; Lathiotakis, Nektarios N; Marques, Miguel A L

    2017-05-24

    Some of the most spectacular failures of density-functional and Hartree-Fock theories are related to an incorrect description of the so-called static electron correlation. Motivated by recent progress in the N-representability problem of the one-body density matrix for pure states, we propose a method to quantify the static contribution to the electronic correlation. By studying several molecular systems we show that our proposal correlates well with our intuition of static and dynamic electron correlation. Our results bring out the paramount importance of the occupancy of the highest occupied natural spin-orbital in such quantification.

  2. Correlations in the electron gas

    International Nuclear Information System (INIS)

    Dabrowski, B.M.

    1987-01-01

    A frequency- and wave-vector-dependent local-field factor (LFF) which enters expressions for the dielectric function and the spin-susceptibility response function of an electron liquid are studied. An exact expression, the in q → O limit for the symmetric and the antisymmetric LFF, are derived by the sue of equations of motion for the spin densities. The proof that these LFF satisfy compressibility and susceptibility sum rules is based on the novel virial theorems for the two-component system. The relation of exact LFF to earlier approximations and to other exactly derived LFF and to spin-density functional theory is examined. A simple parametrized form for the symmetric dynamical LFF is proposed. The parametrization is such that it satisfies both low- and high-frequency limits exactly. The relation of such LFF to time-dependent local-density approximation is examined. The dynamic structure factor, the plasmon damping, and the stopping power of a homogeneous electron liquid are calculated with use of a proposed complex dynamic LFF. A low-order calculation of the off-shell self-energy of an electron is performed and its effects are calculated both on the dynamic structure factor of an electron liquid and the quasi-particle properties

  3. Excitation and decay of correlated atomic states

    International Nuclear Information System (INIS)

    Rau, A.R.P.

    1992-01-01

    Doubly excited states of atoms and ions in which two electrons are excited from the ground configuration display strong radial and angular electron correlations. They are prototypical examples of quantum-mechanical systems with strong coupling. Two distinguishing characteristics of these states are: (1) their organization into successive families, with only weak coupling between families, and (2) a hierarchical nature of this coupling, with states from one family decaying primarily to those in the next lower family. A view of the pair of electrons as a single entity, with the electron-electron repulsion between them divided into a adiabatic and nonadiabatic piece, accounts for many of the dominant features. The stronger, adiabatic part determines the family structure and the weaker, nonadiabatic part the excitation and decay between successive families. Similar considerations extend to three-electron atomic states, which group into five different classes. They are suggestive of composite models for quarks in elementary particle physics, which exhibit analogous groupings into families with a hierarchical arrangement of masses and electroweak decays. 49 refs., 6 figs., 2 tabs

  4. Probing electron correlation and nuclear dynamics in Momentum Space

    International Nuclear Information System (INIS)

    Deleuze, M S; Hajgato, B; Morini, F; Knippenberg, S

    2010-01-01

    Orbital imaging experiments employing Electron Momentum Spectroscopy are subject to many complications, such as distorted wave effects, conformational mobility in the electronic ground state, ultra-fast nuclear dynamics in the final state, or a dispersion of the ionization intensity over electronically excited (shake-up) configurations of the cation. The purpose of the present contribution is to illustrate how a proper treatment of these complications enables us to probe in momentum space the consequences of electron correlation and nuclear dynamics in neutral and cationic states.

  5. Attosecond-correlated dynamics of two electrons in argon

    Indian Academy of Sciences (India)

    2014-01-11

    Jan 11, 2014 ... 2Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany ... involving a highly correlated electronic transition state. ... laser is low, the recolliding electron can have a maximum energy of about 15 eV which.

  6. Correlation of the Auger electrons direction of movement with the internal electron conversion direction of movement

    International Nuclear Information System (INIS)

    Mitrokhovich, N.F.; Kupryashkin, V.T.; Sidorenko, L.P.

    2013-01-01

    On installation of coincidences of γ-quanta with electrons and with law energy electrons about zero area the spatial correlation of the direction emitting Auger-electrons and electron of internal conversion was investigated at the 152 Eu decay. Auger-electrons were registered on e 0 -electrons of the secondary electron emission (γ e IC e 0 -coincidences). It was established, that Auger-electrons of M-series, as well as electrons 'shake-off' at β-decay and internal conversion, are strongly correlated at the direction of movement with the direction of movement of basic particle (β -particle, conversion electron), moving together mainly in the forward hemisphere. The intensity of correlated M-Auger radiation in range energy 1000 - 1700 eV is equal to intensity of correlated radiation 'shake-off' electron from internal conversion in this range. The assumption, that the presence of spatial correlating Auger-electron and conversion electron caused by cur-rent components of electron-electron interaction of particles in the final state is made

  7. Electron correlation in highly-charged-ion collisions

    International Nuclear Information System (INIS)

    Hansen, J.P.; Taulbjerg, K.

    1992-01-01

    We have used the coupled-channel method to study the significance of electron correlation in the reaction mechanism for two-electron capture in C 5+ -He collisions. Two different sets of calculations were performed. While the static correlation energy was generally included in the calculations, further correlation effects were ignored in the first set of calculations. In the second set of calculations the so-called doubly excited symmetry basis (DESB) states were used to model the spatial electron correlation. The difference between the two sets of results is so profound that we can conclude that electron correlation plays an essential role in the reaction mechanism. The results of the DESB-based calculations are in good agreement with experimental data [Holt et al., Phys. Rev. A 43, 607 (1991)

  8. Electron correlation energy in confined two-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.L. [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Montgomery, H.E., E-mail: ed.montgomery@centre.ed [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Sen, K.D. [School of Chemistry, University of Hyderabad, Hyderabad 500 046 (India); Thompson, D.C. [Chemistry Systems and High Performance Computing, Boehringer Ingelheim Pharamaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877 (United States)

    2010-09-27

    Radial, angular and total correlation energies are calculated for four two-electron systems with atomic numbers Z=0-3 confined within an impenetrable sphere of radius R. We report accurate results for the non-relativistic, restricted Hartree-Fock and radial limit energies over a range of confinement radii from 0.05-10a{sub 0}. At small R, the correlation energies approach limiting values that are independent of Z while at intermediate R, systems with Z{>=}1 exhibit a characteristic maximum in the correlation energy resulting from an increase in the angular correlation energy which is offset by a decrease in the radial correlation energy.

  9. Electronic states of myricetin

    DEFF Research Database (Denmark)

    Vojta, Danijela; Karlsen, Eva; Spanget-Larsen, Jens

    2017-01-01

    Myricetin (3,3',4',5,5',7'-hexahydroxyflavone) was investigated by linear dichroism spectroscopy on molecular samples partially aligned in stretched poly(vinyl alcohol) (PVA). At least five electronic transitions in the range 40000 – 20000 cm–1 were characterized with respect to their wavenumbers......, relative intensities, and transition moment directions. The observed bands were assigned to electronic transitions predicted with TD-B3LYP/6-31+G(d,p)....

  10. Electron-phonon interactions in correlated systems

    International Nuclear Information System (INIS)

    Wysokinski, K.I.

    1996-01-01

    There exist attempts to describe the superconducting mechanism operating in HTS as based on antiferromagnetic fluctuations. It is not our intention to dwell on the superconducting mechanism, even though this is very a important issue. The main aim is to discuss the problem of interplay between electron-phonon and electron-electron interactions in correlated systems. We believe such analysis can be of importance for various materials and not only HTS'S. We shall however mainly refer to experiments on this last class of superconductors. Severe complications are to be expected by studying the problem. As is well known electron correlations are very important in narrow band systems, where the relevant electronic scale E F is quite small. In those circumstances, the phonon energy scale ω D is of comparable magnitude, with the ratio ω D /E F of order 1 signalling a possible break down of the Migdal - Eliashberg description of the electron-phonon interaction in metals. Here we shall assume the validity of the Migdal-Eliashberg approximation and concentrate on the mutual influence of electron and phonon subsystems. In the next section we shall discuss experimental motivation for and theoretical work related to the present problem. Section 3 contains a brief discussion of our theory. It is a self-consistent theory a la Migdal with strong correlations treated with an auxiliary boson technique. We conclude with results and their discussion. (orig.)

  11. Leading relativistic corrections for atomic P states calculated with a finite-nuclear-mass approach and all-electron explicitly correlated Gaussian functions

    Science.gov (United States)

    Stanke, Monika; Bralin, Amir; Bubin, Sergiy; Adamowicz, Ludwik

    2018-01-01

    In this work we report progress in the development and implementation of quantum-mechanical methods for calculating bound ground and excited states of small atomic systems. The work concerns singlet states with the L =1 total orbital angular momentum (P states). The method is based on the finite-nuclear-mass (non-Born-Oppenheimer; non-BO) approach and the use of all-particle explicitly correlated Gaussian functions for expanding the nonrelativistic wave function of the system. The development presented here includes derivation and implementation of algorithms for calculating the leading relativistic corrections for singlet states. The corrections are determined in the framework of the perturbation theory as expectation values of the corresponding effective operators using the non-BO wave functions. The method is tested in the calculations of the ten lowest 1P states of the helium atom and the four lowest 1P states of the beryllium atom.

  12. Role of electronic correlations in Ga

    KAUST Repository

    Zhu, Zhiyong

    2011-06-13

    An extended around mean field (AMF) functional for less localized pelectrons is developed to quantify the influence of electronic correlations in α-Ga. Both the local density approximation (LDA) and generalized gradient approximation are known to mispredict the Ga positional parameters. The extended AMF functional together with an onsite Coulomb interaction of Ueff=1.1 eV, as obtained from constraint LDA calculations, reduces the deviations by about 20%. The symmetry lowering coming along with the electronic correlations turns out to be in line with the Ga phase diagram.

  13. Superconductivity, Antiferromagnetism, and Kinetic Correlation in Strongly Correlated Electron Systems

    Directory of Open Access Journals (Sweden)

    Takashi Yanagisawa

    2015-01-01

    Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.

  14. Electron correlation and magnetism: a perspective

    International Nuclear Information System (INIS)

    Mishra, S.G.

    1995-01-01

    In this article, a panoramic view of the results on the correlation effects in metals is presented. In the first two sections the scope of the subject of magnetism and talk about the necessity of inclusion of correlation in the free electron theory of metals is given. Then introduce some minimal models of correlation and magnetism in solids is discussed. Finally a brief perspective of some old and recent results on the Hubbard model are presented. Among the system described includes helium 3 high temperature superconductors. (author). 21 refs

  15. Correlation of paramagnetic states and molecular structure in bacterial photosynthetic reaction centers: The symmetry of the primary electron donor in Rhodopseudomonas viridis and Rhodobacter sphaeroides R-26

    International Nuclear Information System (INIS)

    Norris, J.R.; Budil, D.E.; Gast, P.; Chang, C.H.; El-Kabbani, O.; Schiffer, M.

    1989-01-01

    The orientation of the principal axes of the primary electron donor triplet state measured in single crystals of photosynthetic reaction centers is compared to the x-ray structures of the bacteria Rhodobacter (Rb.) sphaeroides R-26 and Rhodopseudomonas (Rps.) viridis. The primary donor of Rps. viridis is significantly different from that of Rb. sphaeroides. The measured directions of the axes indicate that triplet excitation is almost completely localized on the L-subunit half of the dimer in Rps. viridis but is more symmetrically distributed on the dimeric donor in Rb. sphaeroides R-26. The large reduction of the zero field splitting parameters relative to monomeric bacteriochlorophyll triplet in vitro suggests significant participation of asymmetrical charge transfer electronic configurations in the special pair triplet state of both organisms

  16. Electron Correlation Models for Optical Activity

    DEFF Research Database (Denmark)

    Höhn, E. G.; O. E. Weigang, Jr.

    1968-01-01

    A two-system no-overlap model for rotatory strength is developed for electric-dipole forbidden as well as allowed transitions. General equations which allow for full utilization of symmetry in the chromophore and in the environment are obtained. The electron correlation terms are developed in full...

  17. Effective field theories for correlated electrons

    International Nuclear Information System (INIS)

    Wallington, J.P.

    1999-10-01

    In this thesis, techniques of functional integration are applied to the construction of effective field theories for models of strongly correlated electrons. This is accomplished by means of the Hubbard-Stratonovic transformation which maps a system of interacting fermions onto one of free fermions interacting, not with each other, but with bosonic fields representing the collective modes of the system. Different choices of transformation are investigated throughout the thesis. It is shown that there exists a new group of discrete symmetries and transformations of the Hubbard model. Using this new group, the problem of choosing a Hubbard-Stratonovic decomposition of the Hubbard interaction term is solved. In the context of the exotic doped barium bismuthates, an extended Hubbard model with on-site attraction and nearest neighbour repulsion is studied. Mean field and renormalisation group analyses show a 'pseudospin-flop' from charge density wave to superconductivity as a function of filling. The nearest neighbour attractive Hubbard model on a quasi-2D lattice is studied as a simple phenomenological model for the high-T c cuprates. Mean field theory shows a transition from pure d-wave to pure s-wave superconductivity, via a mixed symmetry s + id state. Using Gaussian fluctuations, the BCS-Bose crossover is examined and suggestions are made about the origin of the angle dependence of the pseudogap. The continuum delta-shell potential model is introduced for anisotropic superconductors. Its mean field phases are studied and found to have some unusual properties. The BCS-Bose crossover is examined and the results are compared with those of the lattice model. Quasi-2D (highly anisotropic 3D) systems are considered. The critical properties of a Bose gas are investigated as the degree of anisotropy is varied. A new 2D Bose condensate state is found. A renormalisation group analysis is used to investigate the crossover from 2D to 3D. (author)

  18. Accounting of inter-electron correlations in the model of mobile electron shells

    International Nuclear Information System (INIS)

    Panov, Yu.D.; Moskvin, A.S.

    2000-01-01

    One studied the basic peculiar features of the model for mobile electron shells for multielectron atom or cluster. One offered a variation technique to take account of the electron correlations where the coordinates of the centre of single-particle atomic orbital served as variation parameters. It enables to interpret dramatically variation of electron density distribution under anisotropic external effect in terms of the limited initial basis. One studied specific correlated states that might make correlation contribution into the orbital current. Paper presents generalization of the typical MO-LCAO pattern with the limited set of single particle functions enabling to take account of additional multipole-multipole interactions in the cluster [ru

  19. Electron correlation in molecules and condensed phases

    CERN Document Server

    March, N H

    1996-01-01

    This reference describes the latest research on correlation effects in the multicenter problems of atoms, molecules, and solids The author utilizes first- and second-order matrices, including the important observable electron density rho(r), and the Green function for discussing quantum computer simulations With its focus on concepts and theories, this volume will benefit experimental physicists, materials scientists, and physical and inorganic chemists as well as graduate students

  20. Valence photoelectron spectrum of KBr: Effects of electron correlation

    International Nuclear Information System (INIS)

    Calo, A.; Huttula, M.; Patanen, M.; Aksela, H.; Aksela, S.

    2008-01-01

    The valence photoelectron spectrum has been measured for molecular KBr. Experimental energies of the main and satellite structures have been compared with the results of ab initio calculations based on molecular orbital theory including configuration and multiconfiguration interaction approaches. Comparison between the experimental KBr spectrum and previously reported Kr valence photoelectron spectrum has also been performed in order to find out if electron correlation is of the same importance in the valence ionized state of KBr as in the corresponding state of Kr

  1. Atmospheric scanning electron microscope for correlative microscopy.

    Science.gov (United States)

    Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J

    2012-01-01

    The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Quantum frustrated and correlated electron systems

    Directory of Open Access Journals (Sweden)

    P Thalmeier

    2008-06-01

    Full Text Available  Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the high field magnetization are surveyed. The possible quantum phase transitions are discussed and applied to layered vanadium oxides. In itinerant electron systems frustration is an emergent property caused by electron correlations. It leads to enhanced spin fluctuations in a very large region of momentum space and therefore may cause heavy fermion type low temperature anomalies as in the 3d spinel compound LiV2O4 . Competing on-site and inter-site electronic interactions in Kondo compounds are responsible for the quantum phase transition between nonmagnetic Kondo singlet phase and magnetic phase such as observed in many 4f compounds. They may be described by Kondo lattice and simplified Kondo necklace type models. Their quantum phase transitions are investigated by numerical exact diagonalization and analytical bond operator methods respectively.

  3. Electron correlation effects in XUV photoabsorption spectroscopy of atoms

    International Nuclear Information System (INIS)

    Codling, K.

    1976-01-01

    Reference is made to sophisticated experiments involving the measurement of the angular distribution of photo-ejected electrons, coincidence electrons and ion spectroscopy, which can only be interpreted in terms of electron correlation effects. After an introductory review of previous work, the lectures fall under the following headings: experimental procedures (light sources, monochromators, absorption cells, limitations on the simple photoasbsorption experiment, and complementary techniques); experimental results (discrete states in the continuum, gross features in the photoionisation continuum (rare gases, alkalis, alkaline earths, rare earths, transition elements)). (U.K.)

  4. Electron-electron correlation in two-photon double ionization of He-like ions

    Science.gov (United States)

    Hu, S. X.

    2018-01-01

    Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding and strong-field-induced multielectron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photoinduced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions (L i+,B e2 + , and C4 +) exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra as the ionic charge increases, which is opposite to the intuition that the absolute increase of correlation in the ground state should lead to more equal energy sharing in photoionization. These findings indicate that the final-state electron-electron correlation ultimately determines the energy sharing of the two ionized electrons in TPDI.

  5. Self-limited kinetics of electron doping in correlated oxides

    International Nuclear Information System (INIS)

    Chen, Jikun; Zhou, You; Jiang, Jun; Shi, Jian; Ramanathan, Shriram; Middey, Srimanta; Chakhalian, Jak; Chen, Nuofu; Chen, Lidong; Shi, Xun; Döbeli, Max

    2015-01-01

    Electron doping by hydrogenation can reversibly modify the electrical properties of complex oxides. We show that in order to realize large, fast, and reversible response to hydrogen, it is important to consider both the electron configuration on the transition metal 3d orbitals, as well as the thermodynamic stability in nickelates. Specifically, large doping-induced resistivity modulations ranging several orders of magnitude change are only observed for rare earth nickelates with small ionic radii on the A-site, in which case both electron correlation effects and the meta-stability of Ni 3+ are important considerations. Charge doping via metastable incorporation of ionic dopants is of relevance to correlated oxide-based devices where advancing approaches to modify the ground state electronic properties is an important problem

  6. Aspects of electron correlations in the cuprate superconductors

    International Nuclear Information System (INIS)

    Brenig, W.

    1995-01-01

    We review concepts and effects of electron correlations in the copper-oxide superconductors. The purpose of this article is twofold. First, we provide an overview of results of various electron spectroscopies, Raman scattering and optical conductivity studies with a particular emphasis on experiments which identify the charge and spin correlations relevant to the cuprates. Second, we focus on microscopic theories of the single-particle excitations, and the charge and spin dynamics in the normal state of cuprates considering those models which incorporate strong electron correlations. The single-particle spectrum of the three-band Hubbard model is reviewed and related to results of electron spectroscopy. The carrier dynamics in the t-J model and the one-band Hubbard model at low doping is discussed in detail. We examine approaches which describe the single-particle excitations of correlated electron systems at finite doping. Theories of the static and dynamic magnetic correlations are considered and we speculate on the consequences of the spin dynamics for Raman scattering and the optical conductivity. Finally, selected phenomenological ideas are reviewed. ((orig.))

  7. Introduction to solid state electronics

    CERN Document Server

    Wang, FFY

    1989-01-01

    This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These proble

  8. Models including electron correlation in relation to Fock's proposed expansion of the ground-state wave function of He-like atomic ions

    Energy Technology Data Exchange (ETDEWEB)

    Glasser, M. L.; March, N. H.; Nieto, L. M. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, ES-47011 Valladolid, Spain and Department of Physics, Clarkson University, Potsdam, New York 13699 (United States); Department of Physics, University of Antwerp, BE-2020 Antwerp, Belgium and Department of Theoretical Chemistry, University of Oxford, Oxford OX1 2JD (United Kingdom); Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, ES-47011 Valladolid (Spain)

    2011-12-15

    Here attention is first drawn to the importance of gaining insight into Fock's early proposal for expanding the ground-state wave function for He-like atomic ions in hyperspherical coordinates. We approach the problem via two solvable models, namely, (i) the s-term model put forth by Temkin [Phys. Rev. 126, 130 (1962)] and (ii) the Hookean atom model proposed by Kestner and Sinanoglu [Phys. Rev. 128, 2687 (1962)]. In both cases the local kinetic energy can be obtained explicitly in hyperspherical coordinates. Separation of variables occurs in both model wave functions, though in a different context in the two cases. Finally, a k-space formulation is proposed that should eventually result in distinctive identifying characteristics of Fock's nonanalyticities for He-like atomic ions when both electrons are close to the nucleus.

  9. Strongly Correlated Electron Systems: An Operatorial Perspective

    Science.gov (United States)

    Di Ciolo, Andrea; Avella, Adolfo

    2018-05-01

    We discuss the operatorial approach to the study of strongly correlated electron systems and show how the exact solution of target models on small clusters chosen ad-hoc (minimal models) can suggest very efficient bulk approximations. We use the Hubbard model as case study (target model) and we analyze and discuss the crucial role of spin fluctuations in its 2-site realization (minimal model). Accordingly, we devise a novel three-pole approximation for the 2D case, including in the basic field an operator describing the dressing of the electronic one by the nearest-neighbor spin-fluctuations. Such a solution is in very good agreement with the exact one in the minimal model (2-site case) and performs very well once compared to advanced (semi-)numerical methods in the 2D case, being by far less computational-resource demanding.

  10. Effects of Structural Correlations on Electronic Properties

    International Nuclear Information System (INIS)

    Pastawski, H.M.; Weisz, J.F.

    1984-01-01

    A one dimensional alloy model is treated in the nearest neighbour tight binding approximation in which the correlation of the atoms can be adjusted. The correlation can be changed from a situation in which there is a tendency for atoms to alternate to a situation in which the atoms are randomly located, consistent with a fixed concentration c for A c B 1-c . The results show that when there is short range order, at certain energies there is a tendency for localized states and formation of structure induced minimum in the density of states. The results for the ordered case are similar to those of Charge Density Wave (CDW). A smooth transition is carried out between this case and the randomly disordered case which behaves like the Anderson model for uncorrelated disorder. (M.W.O.) [pt

  11. Electron-positron correlations in an electron liquid

    International Nuclear Information System (INIS)

    Stachowiak, H.

    1980-01-01

    The importance of studying electron-positron interaction for the interpretation of angular correlation data obtained for metallic systems is emphasized. The most successful approaches to electron-positron correlations in jellium are presented. Those include the Bethe-Goldstone two-body equation proposed by Kahana, the charge-density-dielectric function approach connected with the names of Singwi, Sjolander, Stott and Bhattacharyya and the Sawada boson-generalized Tamm-Dancoff approach elaborated recently by Arponen and Pajanne. In conclusion, it is reported that one can consider that the behaviour of a positron at rest in jellium is relatively well understood, though the problem of the optimal choice of a two-body electron-positron phenomenological equation is still open. Also, the behaviour of a positron in a real metal is not well understood and so far, serious calculations in this field have been performed only on very simple models while realistic calculations of the ACPAQ curves tend to minimize the importance of the problems which remain to be solved. (K.B.)

  12. Correlated electronic structure of CeN

    Energy Technology Data Exchange (ETDEWEB)

    Panda, S.K., E-mail: swarup.panda@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); Di Marco, I. [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); Delin, A. [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); KTH Royal Institute of Technology, School of Information and Communication Technology, Department of Materials and Nano Physics, Electrum 229, SE-164 40 Kista (Sweden); KTH Royal Institute of Technology, Swedish e-Science Research Center (SeRC), SE-100 44 Stockholm (Sweden); Eriksson, O., E-mail: olle.eriksson@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden)

    2016-04-15

    Highlights: • The electronic structure of CeN is studied within the GGA+DMFT approach using SPTF and Hubbard I approximation. • 4f spectral functions from SPTF and Hubbard I are coupled to explain the various spectroscopic manifestations of CeN. • The calculated XPS and BIS spectra show good agreement with the corresponding experimental spectra. • The contribution of the various l-states and the importance of cross-sections for the photoemission process are analyzed. - Abstract: We have studied in detail the electronic structure of CeN including spin orbit coupling (SOC) and electron–electron interaction, within the dynamical mean-field theory combined with density-functional theory in generalized gradient approximation (GGA+DMFT). The effective impurity problem has been solved through the spin-polarized T-matrix fluctuation-exchange (SPTF) solver and the Hubbard I approximation (HIA). The calculated l-projected atomic partial densities of states and the converged potential were used to obtain the X-ray-photoemission-spectra (XPS) and Bremstrahlung Isochromat spectra (BIS). Following the spirit of Gunnarsson–Schonhammer model, we have coupled the SPTF and HIA 4f spectral functions to explain the various spectroscopic manifestations of CeN. Our computed spectra in such a coupled scheme explain the experimental data remarkably well, establishing the validity of our theoretical model in analyzing the electronic structure of CeN. The contribution of the various l-states in the total spectra and the importance of cross sections are also analyzed in detail.

  13. Electron correlation explored through electron spectrometry using synchrotron radiation

    International Nuclear Information System (INIS)

    Caldwell, C.D.; Whitfield, S.B.; Flemming, M.G.

    1991-01-01

    The development of synchrotron radiation facilities as a research tool has made possible experiments which provide new insights into the role which correlation plays in electron dynamics and atomic and molecular structure. Features such as autoionizing resonances, normal and resonant Auger decay modes, and ionization threshold structure have become visible in a wealth of new detail. Some aspects of this information drawn from recent experiments on the alkaline earth metals and the rare gases are presented. The potential for increased flux and resolution inherent in insertion device-based facilities like the Advanced Light Source should advance this understanding even further, and some future directions are suggested. 8 refs., 8 figs

  14. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Californial 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  15. Strongly correlated electrons on two coupled chains

    International Nuclear Information System (INIS)

    Weihong, Z.; Oitmaa, J.; Hamer, C.J.

    2000-01-01

    Full text: The discovery of materials containing S = 1/2 ions which form a 2-leg ladder structure has led to much current research on ladder systems. Pure spin ladders show an unexpected difference between odd-legged ladders (including the single chain) which are gapless with long-range correlations and even-legged ladders which have a spin gap and short range correlations. Even more interesting behaviour occurs when these systems are doped, creating a system of strongly correlated mobile holes, as in the cuprate superconductors. The simplest models in this context are the Hubbard model and the t-J model. Considerable work has been reported on both of these models, using both numerical calculations and approximate analytic theories. We have used series expansion methods to study both of these systems. Our results, in some cases, confirm those of other approaches. In other cases we are able to probe regions of the phase diagram inaccessible to other methods, or to obtain results of increased precision. In this paper we focus on:- 1. The energy and dispersion relation of 1-hole states. 2.The existence of a 2-hole bound state and its energy and dispersion. 3. Spin and charge gaps and the question of phase separation

  16. Electron correlation in single-electron capture from helium by fast protons

    International Nuclear Information System (INIS)

    Purkait, M

    2012-01-01

    The differential and total cross sections for single charge exchange in p-He collisions have been calculated within the framework of four-body boundary corrected continuum intermediate state (BCCIS-4B) approximation. The effect of dynamic electron correlations is explicitly taken into account through the complete perturbation potentials.

  17. Superconductivity in strongly correlated electron systems: successes and open questions

    International Nuclear Information System (INIS)

    Shastry, B. Sriram

    2000-01-01

    Correlated electronic systems and superconductivity is a field which has unique track record of producing exciting new phases of matter. The article gives an overview of trends in solving the problems of superconductivity and correlated electronic systems

  18. Boson and fermion many-body assemblies: Fingerprints of excitations in the ground-state wave functions, with examples of superfluid 4He and the homogeneous correlated electron liquid

    International Nuclear Information System (INIS)

    March, N.H.

    2007-08-01

    After a brief summary of some basic properties of ideal gases of bosons and of fermions, two many-body Hamiltonians are cited for which ground-state wave functions allow the generation of excited states. But because of the complexity of ground-state many-body wave functions, we then consider properties of reduced density matrices, and in particular, the diagonal element of the second-order density matrix. For both the homogeneous correlated electron liquid and for an assembly of charged bosons, the ground-state pair correlation function g(r) has fingerprints of the zero-point energy of the plasmon modes. These affect crucially the static structure factor S(k), in the long wavelength limit. This is best understood by means of the Ornstein-Zernike direct correlation function c(r), which plays an important role throughout this article. Turning from such charged liquids, both boson and fermion, to superfluid 4 He, the elevated temperature (T) structure factor S(k, T) is related, albeit approximately, to its zero-temperature counterpart, via the velocity of sound, reflecting the collective phonon excitations, and the superfluid density. Finally some future directions are pointed. (author)

  19. Observation of the two-electron cusp in atomic collisions. Evidence for strong electron-electron correlation

    International Nuclear Information System (INIS)

    Sarkadi, L.; Orban, A.

    2007-01-01

    Complete text of publication follows. In this report we present experimental data for a process when two electrons with velocity vectors equal to that of the projectile are emitted from collisions. By observing the two electron cusp the study of the threshold phenomenon for two-electron break-up is possible. It is a particularly interesting question whether the outgoing charged projectile can attract the two repulsing electrons so strongly that the two-electron cusp is formed. If it is so, a further question arises: Are the two electrons correlated in the final state as it is predicted by the Wannier theory? The experiments have been done at the 1 MeV VdG accelerator of ATOMKI using our TOF spectrometer. The first measurements clearly showed the formation of the two-electron cusp and signature of the electron correlation in 200 keV He 0 +He collisions. These promising results motivated us to carry out the experiment at 100 keV beam energy where the coincidence count rate is still reasonable but the energy resolution is better. For an acceptable data acquisition time we improved our data acquisition and data processing system for triple coincidence measurements. In Fig. 1a we present our measured relative fourfold differential cross section (FDCS) that shows strong electron correlation. For a comparison, in Fig. 1b we displayed the contour plot for uncorrelated electron pair emission. These latter data were synthesized artificially, generating the energies of the electron pairs from two independent double coincidence experiments. In both figures the distributions are characterized by two ridges. In Fig. 1b the ridges are perpendicular straight lines (E 1 = E 2 .13.6 eV). As a result of the correlation, the ridges in Fig. 1a are distorted in such a way that they have a joint straight-line section following the line E 1 + E 2 = 27.2 eV. This means that the electron pairs in the vicinity of the cusp maximum are emitted with a center of- mass velocity equal to that of

  20. Electron spectroscopic evidence of electron correlation in Ni-Pt alloys: comparison with specific heat measurement

    CERN Document Server

    Nahm, T U; Kim, J Y; Oh, S J

    2003-01-01

    We have performed photoemission spectroscopy of Ni-Pt alloys to understand the origin of the discrepancy between the experimental linear coefficient of specific heat gamma and that predicted by band theory. We found that the quasiparticle density of states at the Fermi level deduced from photoemission measurement is in agreement with the experimental value of gamma, if we include the electron correlation effect. It was also found that the Ni 2p core level satellite intensity increases as Ni content is reduced, indicating a strong electron correlation effect which can enhance the quasiparticle effective mass considerably. This supports our conclusion that electron correlation is the most probable reason of disagreement of gamma between experiment and band theory.

  1. Electronic structure of a striped nickelate studied by the exact exchange for correlated electrons (EECE) approach

    KAUST Repository

    Schwingenschlögl, Udo

    2009-12-01

    Motivated by a RIXS study of Wakimoto, et al.(Phys. Rev. Lett., 102 (2009) 157001) we use density functional theory to analyze the magnetic order in the nickelate La5/3Sr1/3NiO4 and the details of its crystal and electronic structure. We compare the generalized gradient approximation to the hybrid functional approach of exact exchange for correlated electrons (EECE). In contrast to the former, the latter reproduces the insulating state of the compound and the midgap states. The EECE approach, in general, appears to be appropriate for describing stripe phases in systems with orbital degrees of freedom. Copyright © EPLA, 2009.

  2. Electron-ion correlation effects in ion-atom single ionization

    Energy Technology Data Exchange (ETDEWEB)

    Colavecchia, F.D.; Garibotti, C.R. [Centro Atomico Bariloche and Consejo Nacional de Investigaciones Cientificas y Tecnicas, 8400 San Carlos de Bariloche (Argentina); Gasaneo, G. [Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2000-06-28

    We study the effect of electron-ion correlation in single ionization processes of atoms by ion impact. We present a distorted wave model where the final state is represented by a correlated function solution of a non-separable three-body continuum Hamiltonian, that includes electron-ion correlation as coupling terms of the wave equation. A comparison of the electronic differential cross sections computed with this model with other theories and experimental data reveals that the influence of the electron-ion correlation is more significant for low energy emitted electrons. (author). Letter-to-the-editor.

  3. Electronic behavior of highly correlated metals

    International Nuclear Information System (INIS)

    Reich, A.

    1988-10-01

    This thesis addresses the question of the strongly interacting many-body problem: that is, systems where the interparticle correlations are so strong as to defy perturbative approaches. These subtle correlations occur in narrow band materials, such as the lanthanides and actinides, wherein the f-electrons are so localized that a variety of new phenomena, including intermediate-valence and heavy-fermionic behavior, may occur. As well, one has the alloying problem, where local interactions are paramount in determining the overall behavior. The technique employed in dealing with these systems is the Small Cluster method, wherein the full many-body Hamiltonian for a small grouping of atoms, coupled with periodic boundary conditions, is solved exactly. This is tantamount to solving a bulk crystal at the high points of symmetry in the Brillouin Zone. The mathematical overhead is further reduced by employing the full space group and spin symmetries. By its very nature, the Small Cluster method is well able to handle short-range interactions, as well as the combinatorial complexity of the many-body problem, on an equal footing. The nature of long-range order and phase transition behavior cannot be incorporated, but sometimes clues as to their origin can be discerned. The calculations presented include: a two-band Anderson model for an intermediate-valence system, wherein photoemission and fluctuation behavior is examined; a single-band Hubbard model for a ternary alloy system, such as copper-silver-gold; and a Hubbard model for a heavy- fermion system, wherein Fermi surface, transport, magnetic and superconducting properties are discussed. 148 refs., 31 figs., 24 tabs

  4. Quadrupole moments as measures of electron correlation in two-electron atoms

    International Nuclear Information System (INIS)

    Ceraulo, S.C.; Berry, R.S.

    1991-01-01

    We have calculated quadrupole moments, Q zz , of helium in several of its doubly excited states and in two of its singly excited Rydberg states, and of the alkaline-earth atoms Be, Mg, Ca, Sr, and Ba in their ground and low-lying excited states. The calculations use well-converged, frozen-core configuration-interaction (CI) wave functions and, for interpretive purposes, Hartree-Fock (HF) atomic wave functions and single-term, optimized, molecular rotor-vibrator (RV) wave functions. The quadrupole moments calculated using RV wave functions serve as a test of the validity of the correlated, moleculelike model, which has been used to describe the effects of electron correlation in these two-electron and pseudo-two-electron atoms. Likewise, the quadrupole moments calculated with HF wave functions test the validity of the independent-particle model. In addition to their predictive use and their application to testing simple models, the quadrupole moments calculated with CI wave functions reveal previously unavailable information about the electronic structure of these atoms. Experimental methods by which these quadrupole moments might be measured are also discussed. The quadrupole moments computed from CI wave functions are presented as predictions; measurements of Q zz have been made for only two singly excited Rydberg states of He, and a value of Q zz has been computed previously for only one of the states reported here. We present these results in the hope of stimulating others to measure some of these quadrupole moments

  5. Oscillating molecular dipoles require strongly correlated electronic and nuclear motion

    International Nuclear Information System (INIS)

    Chang, Bo Y; Shin, Seokmin; Palacios, Alicia; Martín, Fernando; Sola, Ignacio R

    2015-01-01

    To create an oscillating electric dipole in an homonuclear diatomic cation without an oscillating driver one needs (i) to break the symmetry of the system and (ii) to sustain highly correlated electronic and nuclear motion. Based on numerical simulations in H 2 + we present results for two schemes. In the first one (i) is achieved by creating a superposition of symmetric and antisymmetric electronic states freely evolving, while (ii) fails. In a second scheme, by preparing the system in a dressed state of a strong static field, both conditions hold. We then analyze the robustness of this scheme with respect to features of the nuclear wave function and its intrinsic sources of decoherence. (tutorial)

  6. Relativistic quantum correlations in bipartite fermionic states

    Indian Academy of Sciences (India)

    The influences of relative motion, the size of the wave packet and the average momentum of the particles on different types of correlations present in bipartite quantum states are investigated. In particular, the dynamics of the quantum mutual information, the classical correlation and the quantum discord on the ...

  7. Electronic structure and correlation effects in actinides

    International Nuclear Information System (INIS)

    Albers, R.C.

    1998-01-01

    This report consists of the vugraphs given at a conference on electronic structure. Topics discussed are electronic structure, f-bonding, crystal structure, and crystal structure stability of the actinides and how they are inter-related

  8. Transfer of spectral weight in spectroscopies of correlated electron systems

    International Nuclear Information System (INIS)

    Rozenberg, M.J.; Kotliar, G.; Kajueter, H.

    1996-01-01

    We study the transfer of spectral weight in the photoemission and optical spectra of strongly correlated electron systems. Within the local impurity self-consistent approximation, that becomes exact in the limit of large lattice coordination, we consider and compare two models of correlated electrons, the Hubbard model and the periodic Anderson model. The results are discussed in regard to recent experiments. In the Hubbard model, we predict an anomalous enhancement optical spectral weight as a function of temperature in the correlated metallic state which is in qualitative agreement with optical measurements in V 2 O 3 . We argue that anomalies observed in the spectroscopy of the metal are connected to the proximity to a crossover region in the phase diagram of the model. In the insulating phase, we obtain excellent agreement with the experimental data, and present a detailed discussion on the role of magnetic frustration by studying the k-resolved single-particle spectra. The results for the periodic Anderson model are discussed in connection to recent experimental data of the Kondo insulators Ce 3 Bi 4 Pt 3 and FeSi. The model can successfully explain the thermal filling of the optical gap and the corresponding changes in the photoemission density of states. The temperature dependence of the optical sum rule is obtained, and its relevance to the interpretation of the experimental data discussed. Finally, we argue that the large scattering rate measured in Kondo insulators cannot be described by the periodic Anderson model. copyright 1996 The American Physical Society

  9. State-selective electron capture

    International Nuclear Information System (INIS)

    Dunford, R.W.; Liu, C.J.; Berry, H.G.; Pardo, R.C.; Raphaelian, M.L.A.

    1988-01-01

    We report results from a new atomic physics program using the Argonne PII ECR ion source which is being built as part of the upgrade of the Argonne Tandem-Linear Accelerator (ATLAS). Our initial experiments have been aimed at studying state-selective electron capture in ion-atom collisions using the technique of Photon Emission Spectroscopy. We are extending existing cross section measurements at low energy ( 6+ and O 7+ on He and H 2 targets in the energy range from 1-105 keV/amu. We also present uv spectra obtained in collisions of O 6+ , O 5+ and N 5+ on a sodium target. 4 refs., 2 figs., 1 tab

  10. RPA ground state correlations in nuclei

    International Nuclear Information System (INIS)

    Lenske, H.

    1990-01-01

    Overcounting in the RPA theory of ground state correlations is shown to be avoided if exact rather than quasiboson commutators are used. Single particle occupation probabilities are formulated in a compact way by the RPA Green function. Calculations with large configuration spaces and realistic interactions are performed with 1p1h RPA and second RPA (SRPA) including 2p2h mixing in excited states. In 41 Ca valence hole states are found to be quenched by about 10% in RPA and up to 18% in SRPA. Contributions from low and high lying excitations and their relation to long and short range correlations in finite nuclei are investigated. (orig.)

  11. Quantum correlations and distinguishability of quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Spehner, Dominique [Université Grenoble Alpes and CNRS, Institut Fourier, F-38000 Grenoble, France and Laboratoire de Physique et Modélisation des Milieux Condensés, F-38000 Grenoble (France)

    2014-07-15

    A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.

  12. Quantum correlations and distinguishability of quantum states

    International Nuclear Information System (INIS)

    Spehner, Dominique

    2014-01-01

    A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature

  13. A study on multiple defect states in low-carbon doped GaN layers and its correlation with AlGaN/GaN high electron mobility transistor operation

    International Nuclear Information System (INIS)

    Tanaka, Takeshi; Shiojima, Kenji; Otoki, Yohei; Tokuda, Yutaka

    2014-01-01

    A study on defect states in relatively low-carbon doped GaN is presented. A large current collapse was observed in AlGaN/GaN high electron mobility transistor (HEMT) operation when the device channel was doped with carbon of 1 × 10 17 cm −3 . Deep level transient spectroscopy measurements showed a positive and even negative correlation between the densities of carbon and those of shallow trap states. Along with their small concentrations, shallow traps could not be associated with the collapse of the HEMT. Photo capacitance measurements yielded large signal at very deep levels of 1.6 and 2.4 eV in carbon doped GaN. Especially, the 2.4 eV deep trap was estimated to be acceptor type and related to some indirect states that the minority carrier transient spectroscopy could not characterize. A 20% of doped carbon was allocated to the very deep traps, and the large current collapse was attributed to these carbon-related states. - Highlights: • Systematic study on role of carbon in AlGaN/GaN HEMT structures was attempted. • Large current collapse was observed at HEMT operation in carbon doped channel. • Photo capacitance measurements yielded large signal at very deep levels. • The large current degradation was attributed to the carbon-related deep traps

  14. Locking classical correlations in quantum States.

    Science.gov (United States)

    DiVincenzo, David P; Horodecki, Michał; Leung, Debbie W; Smolin, John A; Terhal, Barbara M

    2004-02-13

    We show that there exist bipartite quantum states which contain a large locked classical correlation that is unlocked by a disproportionately small amount of classical communication. In particular, there are (2n+1)-qubit states for which a one-bit message doubles the optimal classical mutual information between measurement results on the subsystems, from n/2 bits to n bits. This phenomenon is impossible classically. However, states exhibiting this behavior need not be entangled. We study the range of states exhibiting this phenomenon and bound its magnitude.

  15. Electronic correlations in insulators, metals and superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sentef, Michael Andreas

    2010-12-03

    In this thesis dynamical mean-field methods in combination with a continuous-time quantum Monte Carlo impurity solver are used to study selected open problems of condensed matter theory. These problems comprise the effect of correlations and their quantification in covalent band insulators, non-local correlation effects and their intriguing consequences in frustrated two-dimensional systems, and a phenomenological approach to investigate temperature-dependent transport in graphene in the presence of disorder. (orig.)

  16. Electronic correlations in insulators, metals and superconductors

    International Nuclear Information System (INIS)

    Sentef, Michael Andreas

    2010-01-01

    In this thesis dynamical mean-field methods in combination with a continuous-time quantum Monte Carlo impurity solver are used to study selected open problems of condensed matter theory. These problems comprise the effect of correlations and their quantification in covalent band insulators, non-local correlation effects and their intriguing consequences in frustrated two-dimensional systems, and a phenomenological approach to investigate temperature-dependent transport in graphene in the presence of disorder. (orig.)

  17. Importance of σ Bonding Electrons for the Accurate Description of Electron Correlation in Graphene.

    Science.gov (United States)

    Zheng, Huihuo; Gan, Yu; Abbamonte, Peter; Wagner, Lucas K

    2017-10-20

    Electron correlation in graphene is unique because of the interplay between the Dirac cone dispersion of π electrons and long-range Coulomb interaction. Because of the zero density of states at Fermi level, the random phase approximation predicts no metallic screening at long distance and low energy, so one might expect that graphene should be a poorly screened system. However, empirically graphene is a weakly interacting semimetal, which leads to the question of how electron correlations take place in graphene at different length scales. We address this question by computing the equal time and dynamic structure factor S(q) and S(q,ω) of freestanding graphene using ab initio fixed-node diffusion Monte Carlo simulations and the random phase approximation. We find that the σ electrons contribute strongly to S(q,ω) for relevant experimental values of ω even at distances up to around 80 Å. These findings illustrate how the emergent physics from underlying Coulomb interactions results in the observed weakly correlated semimetal.

  18. States of the electron in hydrocarbon liquids

    International Nuclear Information System (INIS)

    Mozumder, A.

    2005-01-01

    Some features of the stationary and dynamic states of the electron are critically examined. Outline of a quantum mechanical description of electron thermalization is attempted qualitatively. The effects of both the mean free path and the reaction inefficiency on electron-ion geminate escape probability are investigated by a recently developed Metropolis method. The trapped state is interpreted in terms of Anderson localization, yielding an approximate number of molecules interacting with the trapped electron

  19. Relativistic quantum correlations in bipartite fermionic states

    Indian Academy of Sciences (India)

    2016-09-21

    Sep 21, 2016 ... particles on different types of correlations present in bipartite quantum states are investigated. In particular, the ... the focus of research for the last few years. Many re- ..... figures, the qualitative behaviour of all the three types ...

  20. Correlated electron pseudopotentials for 3d-transition metals

    International Nuclear Information System (INIS)

    Trail, J. R.; Needs, R. J.

    2015-01-01

    A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc − Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature

  1. Electronic properties of antiferromagnetic UBi2 metal by exact exchange for correlated electrons method

    Directory of Open Access Journals (Sweden)

    E Ghasemikhah

    2012-03-01

    Full Text Available This study investigated the electronic properties of antiferromagnetic UBi2 metal by using ab initio calculations based on the density functional theory (DFT, employing the augmented plane waves plus local orbital method. We used the exact exchange for correlated electrons (EECE method to calculate the exchange-correlation energy under a variety of hybrid functionals. Electric field gradients (EFGs at the uranium site in UBi2 compound were calculated and compared with the experiment. The EFGs were predicted experimentally at the U site to be very small in this compound. The EFG calculated by the EECE functional are in agreement with the experiment. The densities of states (DOSs show that 5f U orbital is hybrided with the other orbitals. The plotted Fermi surfaces show that there are two kinds of charges on Fermi surface of this compound.

  2. Quantum Correlations in Mixed-State Metrology

    Directory of Open Access Journals (Sweden)

    Kavan Modi

    2011-12-01

    Full Text Available We analyze the effects of quantum correlations, such as entanglement and discord, on the efficiency of phase estimation by studying four quantum circuits that can be readily implemented using NMR techniques. These circuits define a standard strategy of repeated single-qubit measurements, a classical strategy where only classical correlations are allowed, and two quantum strategies where nonclassical correlations are allowed. In addition to counting space (number of qubits and time (number of gates requirements, we introduce mixedness as a key constraint of the experiment. We compare the efficiency of the four strategies as a function of the mixedness parameter. We find that the quantum strategy gives sqrt[N] enhancement over the standard strategy for the same amount of mixedness. This result applies even for highly mixed states that have nonclassical correlations but no entanglement.

  3. Current correlations for the transport of interacting electrons through parallel quantum dots in a photon cavity

    Science.gov (United States)

    Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2018-06-01

    We calculate the current correlations for the steady-state electron transport through multi-level parallel quantum dots embedded in a short quantum wire, that is placed in a non-perfect photon cavity. We account for the electron-electron Coulomb interaction, and the para- and diamagnetic electron-photon interactions with a stepwise scheme of configuration interactions and truncation of the many-body Fock spaces. In the spectral density of the temporal current-current correlations we identify all the transitions, radiative and non-radiative, active in the system in order to maintain the steady state. We observe strong signs of two types of Rabi oscillations.

  4. Near-infrared branding efficiently correlates light and electron microscopy.

    Science.gov (United States)

    Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas

    2011-06-05

    The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.

  5. Emergent Gauge Fields and Their Nonperturbative Effects in Correlated Electrons

    Science.gov (United States)

    Kim, Ki-Seok; Tanaka, Akihiro

    The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner's and Anderson's physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner's description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner's paradigm. In this review article we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative

  6. Attractive electron correlation in wide band gap semiconductors by electron-photon interaction

    International Nuclear Information System (INIS)

    Takeda, Hiroyuki; Yoshino, Katsumi

    2004-01-01

    We theoretically demonstrate attractive electron correlation in wide band gap semiconductors by electron-photon interaction. At low temperature, wavevectors of electromagnetic waves absorbed in wide band gap semiconductors cannot be neglected for wavevectors of electron waves; that is, electromagnetic waves affect the movements of electrons. In particular, attractive interaction occurs between two electrons when one electron changes from a valence band to a conduction band and the other electron changes from a conduction band to a valence band

  7. Electronic correlations in hole- and electron-doped Fe-based superconductors

    Science.gov (United States)

    Hardy, Frederic; Boehmer, Anna; Schweiss, Peter; Wolf, Thomas; Heid, Rolf; Eder, Robert; Fisher, Robert A.; Meingast, Christoph

    2015-03-01

    High-temperature superconductivity in the cuprates occurs at the crossover from a highly-correlated Mott insulating state to a weaker correlated Fermi liquid as a function of hole doping. The iron pnictides were initially thought to be fairly weakly correlated. However, we have recently shown using transport and thermodynamic measurements that KFe2As2 is strongly correlated. Both the Sommerfeld coefficient and the Pauli susceptibility are strongly enhanced with respect to their bare DFT values. These correlations are even further enhanced in RbFe2As2andCsFe2As2. The temperature dependence of both the susceptibility and the thermal expansion provides strong experimental evidence for the existence of a coherence-incoherence crossover; similar to what is found in heavy-fermion compounds. Whereas the correlations in the cuprates result from a large value of the Hubbard U, recent works have stressed the particular relevance of Hund's coupling in the pnictides. Our data may be interpreted in terms of a close proximity of KFe2As2 to an orbital-selective Mott transition. We now have good thermodynamic data covering both the hole and electron sides of the BaFe2As2 system and we will discuss how these correlations are modified by doping.

  8. Studies of electron correlation in the photoionization process

    International Nuclear Information System (INIS)

    Rosenberg, R.A.

    1979-03-01

    Electron correlation is a result of the interaction of two or more electrons confined in a region of space, and may conveniently be treated under the formalism of configuration interaction (CI). Photoionization provides a rather direct experimental method for studying CI. The types of CI involved in the photoionization process can be divided into three categories: initial-state configuration interaction (ISCI), final-ionic-state configuration interaction (FISCI), and continuum-state configuration interaction (CSCI). The photoelecton spectroscopy of Ba, Sm, Eu, and Yb was studied using both HeI (22.22 eV) and NeI (16.85 eV) radiation. Satellite structure observed in these spectra using NeI (and for Yb, HeI also) radiation could be satisfactorily explained by ISCI alone. The HeI spectra of Sm, Eu, and, in particular, Ba showed dramatic changes in the satellite population which could only be explained by autoionization, a special form of CSCI. The detailed nature of this mechanism was explored in Ba with synchrotron radiation. It was found that the autoionizing level decays preferentially via an Auger-type mechanism. Further insight into autoionization was gained in the electron impact/ejected electron spectra of Ba (5p 6 6s 2 ) and Yb (5p 6 4f 14 6s 2 ). Autoionizing levels excited above the first (5p) -1 threshold decayed primarily in a two-step Auger process, leading to a relatively large number of doubly charged ions. For autoionizing states below the (5p) -1 limit, decay appears to go to ground and excited states of the singly charged ion. The first experimental determination of the lifetime of the XeII 5s5p 6 2 S/sub 1/2/ state yielded a value of 34.4(6) ns. Reasonable agreement with theory could only be reached by including both FISCI and relativistic effects in calculating the lifetime. 173 references, 43 figures, 10 tables

  9. Surface and Interface Physics of Correlated Electron Materials

    Energy Technology Data Exchange (ETDEWEB)

    Millis, Andrew [Columbia Univ., New York, NY (United States)

    2004-09-01

    The {\\it Surface and Interface Physics of Correlated Electron Materials} research program provided conceptual understanding of and theoretical methodologies for understanding the properties of surfaces and interfaces involving materials exhibiting strong electronic correlations. The issues addressed in this research program are important for basic science, because the behavior of correlated electron superlattices is a crucial challenge to and crucial test of our understanding of the grand-challenge problem of correlated electron physics and are important for our nation's energy future because correlated interfaces offer opportunities for the control of phenomena needed for energy and device applications. Results include new physics insights, development of new methods, and new predictions for materials properties.

  10. Advanced cluster methods for correlated-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Andre

    2015-04-27

    In this thesis, quantum cluster methods are used to calculate electronic properties of correlated-electron systems. A special focus lies in the determination of the ground state properties of a 3/4 filled triangular lattice within the one-band Hubbard model. At this filling, the electronic density of states exhibits a so-called van Hove singularity and the Fermi surface becomes perfectly nested, causing an instability towards a variety of spin-density-wave (SDW) and superconducting states. While chiral d+id-wave superconductivity has been proposed as the ground state in the weak coupling limit, the situation towards strong interactions is unclear. Additionally, quantum cluster methods are used here to investigate the interplay of Coulomb interactions and symmetry-breaking mechanisms within the nematic phase of iron-pnictide superconductors. The transition from a tetragonal to an orthorhombic phase is accompanied by a significant change in electronic properties, while long-range magnetic order is not established yet. The driving force of this transition may not only be phonons but also magnetic or orbital fluctuations. The signatures of these scenarios are studied with quantum cluster methods to identify the most important effects. Here, cluster perturbation theory (CPT) and its variational extention, the variational cluster approach (VCA) are used to treat the respective systems on a level beyond mean-field theory. Short-range correlations are incorporated numerically exactly by exact diagonalization (ED). In the VCA, long-range interactions are included by variational optimization of a fictitious symmetry-breaking field based on a self-energy functional approach. Due to limitations of ED, cluster sizes are limited to a small number of degrees of freedom. For the 3/4 filled triangular lattice, the VCA is performed for different cluster symmetries. A strong symmetry dependence and finite-size effects make a comparison of the results from different clusters difficult

  11. Beyond the Random Phase Approximation for the Electron Correlation Energy: The Importance of Single Excitations

    OpenAIRE

    Ren, Xinguo; Rinke, Patrick; Tkatchenko, Alexandre; Scheffler, Matthias

    2010-01-01

    The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-exchange (EX) energy, represents the state-of-the-art exchange-correlation functional within density-functional theory. However, the standard RPA practice-evaluating both the EX and the RPA correlation energies using Kohn-Sham (KS) orbitals from local or semilocal exchange-correlation functionals-leads to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior ca...

  12. Multiple electron generation in a sea of electronic states

    Science.gov (United States)

    Witzel, Wayne; Shabaev, Andrew; Efros, Alexander; Hellberg, Carl; Verne, Jacobs

    2009-03-01

    In traditional bulk semiconductor photovoltaics (PVs), each photon may excite a single electron-hole, wasting excess energy beyond the band-gap as heat. In nanocrystals, multiple excitons can be generated from a single photon, enhancing the PV current. Multiple electron generation (MEG) may result from Coulombic interactions of the confined electrons. Previous investigations have been based on incomplete or over-simplified electronic-state representations. We present results of quantum simulations that include hundreds of thousands of configuration states and show how the complex dynamics, even in a closed electronic system, yields a saturated MEG effect on a femtosecond timescale. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Explicit role of dynamical and nondynamical electron correlation on singlet-triplet splitting in carbenes

    International Nuclear Information System (INIS)

    Seal, Prasenjit; Chakrabarti, Swapan

    2007-01-01

    Density functional theoretical studies have been performed on carbene systems to determine the singlet-triplet splitting and also to explore the role of electron correlation. Using an approximate method of separation of dynamical and nondynamical correlation, it is found that dynamical and nondynamical electron correlation stabilizes the singlet state relative to the triplet for halo carbenes in both BLYP and B3LYP methods. Calculations performed on higher homologues of methylene suggest that beyond CH(CH 3 ), both the electron correlations have leveling effect in stabilizing the singlet state relative to the triplet. It has also been observed while dynamical electron correlation fails to provide any substantial degree of stabilization to the singlet states of higher homologues of methylene in B3LYP method, an opposite trend is observed for nondynamical counterpart. Among the larger systems studied (9-triptycyl)(α-naphthyl)-carbene has the highest stability of the triplet state whereas bis-imidazol-2-ylidenes has the most stable singlet state. Interestingly, the values of the dynamical electron correlation for each state of each system studied are different for the two methods used. The reason behind this apparent discrepancy lies in the fact that the coefficients of the LYP part in B3LYP and BLYP functionals are different

  14. Correlating substituent parameter values to electron transport properties of molecules

    International Nuclear Information System (INIS)

    Vedova-Brook, Natalie; Matsunaga, Nikita; Sohlberg, Karl

    2004-01-01

    There are a vast number of organic compounds that could be considered for use in molecular electronics. Because of this, the need for efficient and economical screening tools has emerged. We demonstrate that the substituent parameter values (σ), commonly found in advanced organic chemistry textbooks, correlate strongly with features of the charge migration process, establishing them as useful indicators of electronic properties. Specifically, we report that ab initio derived electronic charge transfer values for 16 different substituted aromatic molecules for molecular junctions correlate to the σ values with a correlation coefficient squared (R 2 ) of 0.863

  15. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions

    Science.gov (United States)

    Pernal, Katarzyna

    2018-01-01

    An adiabatic connection (AC) formula for the electron correlation energy is derived for a broad class of multireference wave functions. The AC expression recovers dynamic correlation energy and assures a balanced treatment of the correlation energy. Coupling the AC formalism with the extended random phase approximation allows one to find the correlation energy only from reference one- and two-electron reduced density matrices. If the generalized valence bond perfect pairing model is employed a simple closed-form expression for the approximate AC formula is obtained. This results in the overall M5 scaling of the computation cost making the method one of the most efficient multireference approaches accounting for dynamic electron correlation also for the strongly correlated systems.

  16. Correlated electron capture in the impact parameter and final projectile charge-state dependence of ECC cusp production in 0.53 MeV u-1 F8+ + Ne

    International Nuclear Information System (INIS)

    Skutlartz, A.; Hagmann, S.; Schmidt-Boecking, H.

    1988-01-01

    The impact parameter dependence of ECC cusp electron production in collisions of fast, highly charged ions with atoms is investigated by measuring the scattered projectiles in coincidence with cusp electrons emitted at 0 0 with respect to the beam axis. The absolute probabilities for ECC cusp production show a maximum at b ≅ 0.10 au, decrease strongly for smaller impact parameters and more gently toward larger impact parameters. In addition the final charge state of the scattered projectile is also determined simultaneously for each collision event. The probabilities, as a function of the projectile final charge state, are large for the case where at least one or more electrons are simultaneously captured into bound states of the projectile, but are surprisingly small for collisions in which a projectile did not capture an electron into a bound state. (author)

  17. Excitonic condensation in systems of strongly correlated electrons

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan

    2015-01-01

    Roč. 27, č. 33 (2015), s. 333201 ISSN 0953-8984 Institutional support: RVO:68378271 Keywords : electronic correlations * exciton * Bose-Einstein condensation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.209, year: 2015

  18. Studies of electron correlation in the photoionization process

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Richard Allen [Univ. of California, Berkeley, CA (United States)

    1979-03-01

    Electron correlation is a result of the interaction of two or more electrons confined in a region of space, and may conveniently be treated under the formalism of configuration interaction (CI). Photoionization provides a rather direct experimental method for studying configuration interaction. The types of CI involved in the photoionization process can be divided into three categories: initial state configuration interaction (ISCI), final ionic state configuration interaction (FISCI), and continuum state configuration interaction (CSCI). This thesis deals with experimental studies which reveal how the various types of CI may become manifested in photoionization. The experimental methods utilized in this work are photoelectron spectroscopy (PES), electron impact spectroscopy (EIS), and time-resolved fluorescence spectroscopy. The EIS was carried out following the discovery that the UV lamp on a Perkin-Elmer photoelectron spectrometer could be utilized as a source of low energy electrons. The time-resolved fluorescence work utilized both the tunability and the time structure of the radiation available at the Stanford Synchrotron Radiation Laboratory (SSRL). A commercial photoelectron spectrometer equipped with a conventional UV lamp (Hei, Nei) was employed for some of the PES studies, and a novel time-of-flight photoelectron spectrometer was developed for the PES work performed using synchrotron radiation. The PES of Ba, Sm, Eu, and Yb was studied using both Hei (22.22 eV) and Nei (16.85 eV) radiation. Satellite structure observed in these spectra using Nei (and for Yb, Hei also) radiation could be satisfactorily explained by ISCI alone. The Hei spectra of Sm, Eu, and, in particular, Ba showed dramatic changes in the satellite population which could only be explained by a new mechanism, autoionization, which is a special form of CSCI. The detailed nature of this mechanism was explored in Ba using synchrotron radiation. It was found that the autoionizing level decays

  19. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  20. Solid-state physics for electronics

    CERN Document Server

    Moliton, Andre

    2009-01-01

    Describing the fundamental physical properties of materials used in electronics, the thorough coverage of this book will facilitate an understanding of the technological processes used in the fabrication of electronic and photonic devices. The book opens with an introduction to the basic applied physics of simple electronic states and energy levels. Silicon and copper, the building blocks for many electronic devices, are used as examples. Next, more advanced theories are developed to better account for the electronic and optical behavior of ordered materials, such as diamond, and disordered ma

  1. Target correlation and polarization effects on the electron impact ionization of He atoms

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Hari P, E-mail: hps1@physics.ucf.edu [Physics Department, University of Central Florida, Orlando, FL 32816 (United States)

    2011-03-28

    We have reported here the results of our investigation of the effects of electron correlation and polarization of the target in the incident channel on the electron impact ionization of the helium atom. The triple differential cross section (TDCS) is calculated for 28.6 eV incident electron energy for the case when the two final-state outgoing electrons share 4.0 eV excess energy equally and unequally and leave in the opposite direction. The electron correlation and polarization of the He-target in the initial state are considered completely ab initio using the recently extended multiconfiguration Hartree-Fock method. The electron correlation between the two outgoing electrons in the final state is included through the variationally determined screening potential. It is found that both target correlation and polarization in the incident channel play an important role; the polarization has larger effect on the TDCS than the target correlation. We compared our results with available experimental and theoretical data.

  2. Collective spin correlations and entangled state dynamics in coupled quantum dots

    Science.gov (United States)

    Maslova, N. S.; Arseyev, P. I.; Mantsevich, V. N.

    2018-02-01

    Here we demonstrate that the dynamics of few-electron states in a correlated quantum-dot system coupled to an electronic reservoir is governed by the symmetry properties of the total system leading to the collective behavior of all the electrons. Time evolution of two-electron states in a correlated double quantum dot after coupling to the reservoir has been analyzed by means of kinetic equations for pseudoparticle occupation numbers with constraint on possible physical states. It was revealed that the absolute value of the spin correlation function and the degree of entanglement for two-electron states could considerably increase after coupling to the reservoir. The obtained results demonstrate the possibility of a controllable tuning of both the spin correlation function and the concurrence value in a coupled quantum-dot system by changing of the gate voltage applied to the barrier separating the dots.

  3. Electron transfer from electronic excited states to sub-vacuum electron traps in amorphous ice

    International Nuclear Information System (INIS)

    Vichnevetski, E.; Bass, A.D.; Sanche, L.

    2000-01-01

    We investigate the electron stimulated yield of electronically excited argon atoms (Ar * ) from monolayer quantities of Ar deposited onto thin films of amorphous ice. Two peaks of narrow width ( - electron-exciton complex into exciton states, by the transfer of an electron into a sub-vacuum electron state within the ice film. However, the 10.7 eV feature is shifted to lower energy since electron attachment to Ar occurs within small pores of amorphous ice. In this case, the excess electron is transferred into an electron trap below the conduction band of the ice layer

  4. Importance of conduction electron correlation in a Kondo lattice, Ce₂CoSi₃.

    Science.gov (United States)

    Patil, Swapnil; Pandey, Sudhir K; Medicherla, V R R; Singh, R S; Bindu, R; Sampathkumaran, E V; Maiti, Kalobaran

    2010-06-30

    Kondo systems are usually described by the interaction of the correlation induced local moments with the highly itinerant conduction electrons. Here, we study the role of electron correlations among conduction electrons in the electronic structure of a Kondo lattice compound, Ce₂CoSi₃, using high resolution photoemission spectroscopy and ab initio band structure calculations, where Co 3d electrons contribute in the conduction band. High energy resolution employed in the measurements helped to reveal the signatures of Ce 4f states derived Kondo resonance features at the Fermi level and the dominance of Co 3d contributions at higher binding energies in the conduction band. The lineshape of the experimental Co 3d band is found to be significantly different from that obtained from the band structure calculations within the local density approximations, LDA. Consideration of electron-electron Coulomb repulsion, U, among Co 3d electrons within the LDA + U method leads to a better representation of experimental results. The signature of an electron correlation induced satellite feature is also observed in the Co 2p core level spectrum. These results clearly demonstrate the importance of the electron correlation among conduction electrons in deriving the microscopic description of such Kondo systems.

  5. A partitioned correlation function interaction approach for describing electron correlation in atoms

    International Nuclear Information System (INIS)

    Verdebout, S; Godefroid, M; Rynkun, P; Jönsson, P; Gaigalas, G; Fischer, C Froese

    2013-01-01

    The traditional multiconfiguration Hartree–Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core–valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the

  6. A partitioned correlation function interaction approach for describing electron correlation in atoms

    Science.gov (United States)

    Verdebout, S.; Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C.; Godefroid, M.

    2013-04-01

    The traditional multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core-valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the MR

  7. Correlation of CVD Diamond Electron Emission with Film Properties

    Science.gov (United States)

    Bozeman, S. P.; Baumann, P. K.; Ward, B. L.; Nemanich, R. J.; Dreifus, D. L.

    1996-03-01

    Electron field emission from metals is affected by surface morphology and the properties of any dielectric coating. Recent results have demonstrated low field electron emission from p-type diamond, and photoemission measurements have identified surface treatments that result in a negative electron affinity (NEA). In this study, the field emission from diamond is correlated with surface treatment, surface roughness, and film properties (doping and defects). Electron emission measurements are reported on diamond films synthesized by plasma CVD. Ultraviolet photoemission spectroscopy indicates that the CVD films exhibit a NEA after exposure to hydrogen plasma. Field emission current-voltage measurements indicate "threshold voltages" ranging from approximately 20 to 100 V/micron.

  8. The strength of electron electron correlation in Cs3C60

    Science.gov (United States)

    Baldassarre, L.; Perucchi, A.; Mitrano, M.; Nicoletti, D.; Marini, C.; Pontiroli, D.; Mazzani, M.; Aramini, M.; Riccó, M.; Giovannetti, G.; Capone, M.; Lupi, S.

    2015-10-01

    Cs3C60 is an antiferromagnetic insulator that under pressure (P) becomes metallic and superconducting below Tc = 38 K. The superconducting dome present in the T - P phase diagram close to a magnetic state reminds what found in superconducting cuprates and pnictides, strongly suggesting that superconductivity is not of the conventional Bardeen-Cooper-Schrieffer (BCS) type We investigate the insulator to metal transition induced by pressure in Cs3C60 by means of infrared spectroscopy supplemented by Dynamical Mean-Field Theory calculations. The insulating compound is driven towards a metallic-like behaviour, while strong correlations survive in the investigated pressure range. The metallization process is accompanied by an enhancement of the Jahn-Teller effect. This shows that electronic correlations are crucial in determining the insulating behaviour at ambient pressure and the bad metallic nature for increasing pressure. On the other hand, the relevance of the Jahn-Teller coupling in the metallic state confirms that phonon coupling survives in the presence of strong correlations.

  9. Electron spectroscopy of nanodiamond surface states

    Energy Technology Data Exchange (ETDEWEB)

    Belobrov, P.I.; Bursill, L.A.; Maslakov, K.I.; Dementjev, A.P

    2003-06-15

    Electronic states of nanodiamond (ND) were investigated by PEELS, XPS and CKVV Auger spectra. Parallel electron energy loss spectra (PEELS) show that the electrons inside of ND particles are sp{sup 3} hybridized but there is a surface layer containing distinct hybridized states. The CKVV Auger spectra imply that the HOMO of the ND surface has a shift of 2.5 eV from natural diamond levels of {sigma}{sub p} up to the Fermi level. Hydrogen (H) treatment of natural diamond surface produces a chemical state indistinguishable from that of ND surfaces using CKVV. The ND electronic structure forms {sigma}{sub s}{sup 1}{sigma}{sub p}{sup 2}{pi}{sup 1} surface states without overlapping of {pi}-levels. Surface electronic states, including surface plasmons, as well as phonon-related electronic states of the ND surface are also interesting and may also be important for field emission mechanisms from the nanostructured diamond surface.

  10. Evidence for correlated double-electron capture in slow O6+ + He collisions

    International Nuclear Information System (INIS)

    Phaneuf, R.A.; Meyer, F.W.; Havener, C.C.; Stolterfoht, N.; Swenson, J.K.; Shafroth, S.M.

    1987-01-01

    Double electron capture by few-electron multicharged ions during slow collisions with He may result in Auger-decaying product states of the projectile, provided the initial projectile charge exceeds +4. These autoionizing states can be characterized by either (nearly) equivalent electron configurations, in which the two captured electrons occupy essentially the same or adjacent shells, or by non-equivalent configurations, in which one of the electrons is in a Rydberg state. Using the method of zero-degree Auger spectroscopy, the authors have verified population of both types of autoionizing states by double electron capture during slow collisions of O 6+ with He: for these systems, both LMM Auger electrons, attributed to the (nearly) equivalent electron configuration (1s 2 ) 3iota3iota' or (1s 2 )3iota4iota', and L 1 L 23 M-Coster Kronig electrons, attributed to the non-equivalent electron configurations (1s 2 )2pniota, were observed. Comparison of the LMM Auger electron and Coster Kronig electron production cross sections suggests that the correlated double capture process is of comparable importance to the sequential single capture mechanism

  11. Energy of ground state of laminar electron-hole liquid

    International Nuclear Information System (INIS)

    Andryushin, E.A.

    1976-01-01

    The problem of a possible existence of metal electron-hole liquid in semiconductors is considered. The calculation has been carried out for the following model: two parallel planes are separated with the distance on one of the planes electrons moving, on the other holes doing. Transitions between the planes are forbidden. The density of particles for both planes is the same. The energy of the ground state and correlation functions for such electron-and hole system are calculated. It is shown that the state of a metal liquid is more advantageous against the exciton gas. For the mass ratio of electrons and holes, msub(e)/msub(h) → 0 a smooth rearrangement of the system into a state with ordered heavy particles is observed

  12. Effects of target plasma electron-electron collisions on correlated motion of fragmented H2+ protons

    International Nuclear Information System (INIS)

    Barriga-Carrasco, Manuel D.

    2006-01-01

    The objective of the present work is to examined the effects of plasma target electron-electron collisions on H 2 + protons traversing it. Specifically, the target is deuterium in a plasma state with temperature T e =10 eV and density n=10 23 cm -3 , and proton velocities are v p =v th , v p =2v th , and v p =3v th , where v th is the electron thermal velocity of the target plasma. Proton interactions with plasma electrons are treated by means of the dielectric formalism. The interactions among close protons through plasma electronic medium are called vicinage forces. It is checked that these forces always screen the Coulomb explosions of the two fragmented protons from the same H 2 + ion decreasing their relative distance. They also align the interproton vector along the motion direction, and increase the energy loss of the two protons at early dwell times while for longer times the energy loss tends to the value of two isolated protons. Nevertheless, vicinage forces and effects are modified by the target electron collisions. These collisions enhance the calculated self-stopping and vicinage forces over the collisionless results. Regarding proton correlated motion, when these collisions are included, the interproton vector along the motion direction overaligns at slower proton velocities (v p =v th ) and misaligns for faster ones (v p =2v th , v p =3v th ). They also contribute to a great extend to increase the energy loss of the fragmented H 2 + ion. This later effect is more significant in reducing projectile velocity

  13. Dissociative photoionization of molecular hydrogen. A joint experimental and theoretical study of the electron-electron correlations induced by XUV photoionization and nuclear dynamics on IR-laser dressed transition states

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Andreas

    2015-01-13

    In this thesis, the dissociative single-ionization of molecular hydrogen is investigated in a kinematically complete experiment by employing extreme ultraviolet attosecond pulse trains and infrared femtosecond laser pulses. Induced by the absorption of a single XUV photon, a pronounced energy-dependent asymmetry of the relative emission direction of the photoelectron and the ion is observed. The asymmetry pattern is explained in terms of an interference of two ionization pathways involving a doubly-excited state. This interpretation is validated by a semi-classical model which only takes the nuclear motion into account. Using this model and the observed asymmetry, it is furthermore possible to disentangle the two dissociation pathways which allows for the determination of the autoionization lifetime of the contributing doubly-excited state as a function of the internuclear distance. Moreover, using a pump-probe experiment the dissociation dynamics of molecular hydrogen is investigated. A time-delay dependent momentum distribution of the fragments is observed. With a combined quantum mechanical and semi-classical approach the mechanism giving rise to the observed time-dependence is identified in terms of an intuitive elevator mechanism.

  14. PREFACE: International Conference on Strongly Correlated Electron Systems (SCES 2011)

    Science.gov (United States)

    Littlewood, P. B.; Lonzarich, G. G.; Saxena, S. S.; Sutherland, M. L.; Sebastian, S. E.; Artacho, E.; Grosche, F. M.; Hadzibabic, Z.

    2012-11-01

    The Strongly Correlated Electron Systems Conference (SCES) 2011, was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 was dedicated to 100 years of superconductivity and covered a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The meeting welcomed to Cambridge 657 participants from 23 countries, who presented 127 talks (including 16 plenary, 57 invited, and 54 contributed) and 736 posters in 40 sessions over five full days of meetings. This proceedings volume contains papers reporting on the science presented at the meeting. This work deepens our understanding of the rich physical phenomena that arise from correlation effects. Strongly correlated systems are known for their remarkable array of emergent phenomena: the traditional subjects of superconductivity, magnetism and metal-insulator transitions have been joined by non-Fermi liquid phenomena, topologically protected quantum states, atomic and photonic gases, and quantum phase transitions. These are some of the most challenging and interesting phenomena in science. As well as the science driver, there is underlying interest in energy-dense materials, which make use of 'small' electrons packed to the highest possible density. These are by definition 'strongly correlated'. For example: good photovoltaics must be efficient optical absorbers, which means that photons will generate tightly bound electron-hole pairs (excitons) that must then be ionised at a heterointerface and transported to contacts; efficient solid state refrigeration depends on substantial entropy changes in a unit cell, with large local electrical or magnetic moments; efficient lighting is in a real sense the inverse of photovoltaics; the limit of an efficient battery is a supercapacitor employing mixed valent ions; fuel cells and solar to fuel conversion

  15. First results of correlation electron cyclotron emission on Tore Supra

    OpenAIRE

    Udintsev, V. S.; Goniche, M.; Ségul, J.L.; Giruzzi, G.; Molina, D.; Turco, F.; Huysmans, G. T. A.; Maget, P.; Krämer-Flecken, A.

    2006-01-01

    Measurements of electron temperature fluctuations by means of correlation electron cyclotron emission (ECE) diagnostics aid in understanding the nature of the turbulent transport infusion plasmas. On Tore Supra tokamak, a 32-channel heterodyne ECE radiometer has been upgraded to include two channels for temperature fluctuation measurements. The central frequency of the yttrium iron garnet filter on each channel is remotely monitored by a driver, allowing one to shift the observation volume in...

  16. Electron scattering and correlation structure of light nuclei

    International Nuclear Information System (INIS)

    Lodhi, M.A.K.

    1976-01-01

    It has been known for some time that the short-range correlations due to the repulsive part of the nuclear interaction is exhibited in the nuclear form factors as obtained from high energy electron scattering. In this work the harmonic oscillator basis functions are used. The nuclear form factors as obtained from elastic electron scattering are calculated, with Jastrow's technique by means of the cluster expansion of Iwamoto Yamada, in the Born approximation. The correlated wave function is given. The results for nuclear form factors calculated with the wave function are presented for some light nuclei. (Auth.)

  17. Contributed review: Review of integrated correlative light and electron microscopy.

    Science.gov (United States)

    Timmermans, F J; Otto, C

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  18. Contributed Review: Review of integrated correlative light and electron microscopy

    International Nuclear Information System (INIS)

    Timmermans, F. J.; Otto, C.

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy

  19. Solid-state electronic devices an introduction

    CERN Document Server

    Papadopoulos, Christo

    2014-01-01

    A modern and concise treatment of the solid state electronic devices that are fundamental to electronic systems and information technology is provided in this book. The main devices that comprise semiconductor integrated circuits are covered in a clear manner accessible to the wide range of scientific and engineering disciplines that are impacted by this technology. Catering to a wider audience is becoming increasingly important as the field of electronic materials and devices becomes more interdisciplinary, with applications in biology, chemistry and electro-mechanical devices (to name a few) becoming more prevalent. Updated and state-of-the-art advancements are included along with emerging trends in electronic devices and their applications. In addition, an appendix containing the relevant physical background will be included to assist readers from different disciplines and provide a review for those more familiar with the area. Readers of this book can expect to derive a solid foundation for understanding ...

  20. Intersite electron correlations in a Hubbard model on inhomogeneous lattices

    International Nuclear Information System (INIS)

    Takemori, Nayuta; Koga, Akihisa; Hafermann, Hartmut

    2016-01-01

    We study intersite electron correlations in the half-filled Hubbard model on square lattices with periodic and open boundary conditions by means of a real-space dual fermion approach. By calculating renormalization factors, we clarify that nearest-neighbor intersite correlations already significantly reduce the critical interaction. The Mott transition occurs at U/t ∼ 6.4, where U is the interaction strength and t is the hopping integral. This value is consistent with quantum Monte Carlo results. It shows the importance of short-range intersite correlations, which are taken into account in the framework of the real-space dual fermion approach. (paper)

  1. Exact correlated kinetic energy related to the electron density for two-electron model atoms with harmonic confinement

    International Nuclear Information System (INIS)

    March, Norman H.; Akbari, Ali; Rubio, Angel

    2007-01-01

    For arbitrary interparticle interaction u(r 12 ), the model two-electron atom in the title is shown to be such that the ground-state electron density ρ(r) is determined uniquely by the correlated kinetic energy density t R (r) of the relative motion. Explicit results for t R (r) are presented for the Hookean atom with force constant k=1/4, and also for u(r 12 )=(λ)/(r 12 2 ) . Possible relevance of the Hookean atom treatment to the ground state of the helium atom itself is briefly discussed

  2. Simultaneous correlative scanning electron and high-NA fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Nalan Liv

    Full Text Available Correlative light and electron microscopy (CLEM is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown.

  3. Fast electronic structure methods for strongly correlated molecular systems

    International Nuclear Information System (INIS)

    Head-Gordon, Martin; Beran, Gregory J O; Sodt, Alex; Jung, Yousung

    2005-01-01

    A short review is given of newly developed fast electronic structure methods that are designed to treat molecular systems with strong electron correlations, such as diradicaloid molecules, for which standard electronic structure methods such as density functional theory are inadequate. These new local correlation methods are based on coupled cluster theory within a perfect pairing active space, containing either a linear or quadratic number of pair correlation amplitudes, to yield the perfect pairing (PP) and imperfect pairing (IP) models. This reduces the scaling of the coupled cluster iterations to no worse than cubic, relative to the sixth power dependence of the usual (untruncated) coupled cluster doubles model. A second order perturbation correction, PP(2), to treat the neglected (weaker) correlations is formulated for the PP model. To ensure minimal prefactors, in addition to favorable size-scaling, highly efficient implementations of PP, IP and PP(2) have been completed, using auxiliary basis expansions. This yields speedups of almost an order of magnitude over the best alternatives using 4-center 2-electron integrals. A short discussion of the scope of accessible chemical applications is given

  4. Spin delocalization phase transition in a correlated electrons model

    International Nuclear Information System (INIS)

    Huerta, L.

    1990-11-01

    In a simplified one-site model for correlated electrons systems we show the existence of a phase transition corresponding to spin delocalization. The system becomes a solvable model and zero-dimensional functional techniques are used. (author). 7 refs, 3 figs

  5. International Conference on Strongly Correlated Electron Systems 2017 (SCES2017)

    Science.gov (United States)

    2018-05-01

    The 2017 International Conference on Strongly Correlated Electron Systems, SCES 2017, took place at the Clarion Congress Hotel in Prague, Czech Republic from July 17 to 21, 2017. The meeting was held under the auspices of the Department of Condensed Matter Physics of the Faculty of Mathematics and Physics of the Charles University.

  6. Highlighting material structure with transmission electron diffraction correlation coefficient maps.

    Science.gov (United States)

    Kiss, Ákos K; Rauch, Edgar F; Lábár, János L

    2016-04-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Correlation properties of surface and percolation transfer of electrons

    International Nuclear Information System (INIS)

    Bakunin, O.G.

    2002-01-01

    In this work was received equation, connecting correlatively properties of surface with electrons distribution function. Usually for equilibrium is necessary a large number of collisions. Collisions are 'destroying' correlations. In case rare collisions large importance have correlations and 'memory' effects. Non-Markov's character of emitting particles by surface lead to strongly nonequilibrium condition of 'gas'. Here kinetic equation of diffusive form does not apply. Classical kinetic equation are described only conditions near to equilibrium. This work offers to use ideas anomal diffusion in phase-space. The correlation properties of surface describe by correlations of velocities of emitting electrons: B(t). We offer to use functional equation for probability collision instead of kinetic equation: ∫ 0 ν 0 W noncoll F(ν) dv = 1 - B(t). This functional allow to consider 'memory' effects. It is important for consideration of electrons and clusters near surfaces. Distribution function become direct connected with correlations. In classical Kubo-Mory theory of transfer is necessary to get nondivergences integral: D ∝ ∫ 0 ∞ B(t). In considering case we can use even 'power function'. It was used 'slow' correlation function as Kohlraush in calculations. The information about kinetics and correlations properties are containing in one functional equation. It was received solution of this equation in form Levy function: F(ν) ∝ 1/ν α exp(-1/ν). The solution of this form can not be get with help asymptotic methods of kinetic theory. Asymptotics of solution have scale-invariant character F(V) ∝ 1/V α . This indicate on fractal properties phase-space. (author)

  8. Electronic States in Thorium under Pressure

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Jan, J. P.

    1980-01-01

    We have used the local-density formalism and the atomic-sphere approximation to calculate self-consistently the electronic properties of thorium at pressures up to 400 kbar. The derived equation of state agrees very well with static pressure experiments and shock data. Below the Fermi level (EF......) the electronic band structure is formed by 7s and 6d states while the bottom of a relatively broad 5f band is positioned 0.07 Ry above EF. The calculated extremal areas of the Fermi surface and their calculated pressure dependence agree with earlier calculations and with de Haas-van Alphen measurements...

  9. Carbon buildup monitoring using RBS: Correlation with secondary electrons

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Rosales, P.; Martinez-Quiroz, E.; Murillo, G.; Fernandez, M.C.

    2006-01-01

    The RBS technique is applied to solve the problem of on-line monitoring of the carbon deposited on a thin backed foil under ion bombardment. An iterative method is used to reliably extract quantities such as number of projectiles and target thickness in spite of beam energy changes and detector unstabilities. Experimental values for secondary electron yields are also deduced. Results are reported for the thickness variation of thin carbon foils bombarded with carbon ions of energies between 8.95 and 13 MeV. A linear correlation of this variation is found with both, the ion fluence at target and the number of secondary electrons emitted. The correlation exists even though a wide range of beam currents, beam energies and bombarding times was used during the experiment. The measured electron yields show evidence for a change in the emission process between the original foils and the deposited layer, possibly due to a texture change

  10. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    Science.gov (United States)

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  11. Importance of non-local electron-positron correlations for positron annihilation characteristics in solids

    International Nuclear Information System (INIS)

    Rubaszek, A.

    2001-01-01

    Several methods to describe the electron-positron (e-p) correlation effects are used in calculations of positron annihilation characteristics in solids. The weighted density approximation (WDA), giving rise to the non-local, state-selective e-p correlation functions, is applied to calculate positron annihilation rates and e-p momentum densities in a variety of metals and silicon. The WDA results are compared to the results of other methods such as the independent particle model, local density approximation, generalised gradient approximation, and also to experiments. The importance of non-locality and state-dependence of the e-p correlation functions is discussed. (orig.)

  12. Electron impact excitation of xenon from the metastable state to the excited states

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jun; Dong Chenzhong; Xie Luyou; Zhou Xiaoxin [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Jianguo [Institute of Applied Physics and Computational Mathematic, Beijing 100088 (China)], E-mail: dongcz@nwnu.edu.cn

    2008-12-28

    The electron impact excitation cross sections from the lowest metastable state 5p{sup 5}6sJ = 2 to the six lowest excited states of the 5p{sup 5}6p configuration of xenon are calculated systematically by using the fully relativistic distorted wave method. In order to discuss the effects of target state descriptions on the electron impact excitation cross sections, two correlation models are used to describe the target states based on the multiconfiguration Dirac-Fock (MCDF) method. It is found that the correlation effects play a very important role in low energy impact. For high energy impact, however, the cross sections are not sensitive to the description of the target states, but many more partial waves must be included.

  13. Excitation of lowest electronic states of thymine by slow electrons

    Science.gov (United States)

    Chernyshova, I. V.; Kontros, E. J.; Markush, P. P.; Shpenik, O. B.

    2013-11-01

    Excitation of lowest electronic states of the thymine molecules in the gas phase is studied by elec- tron energy loss spectroscopy. In addition to dipole-allowed transitions to singlet states, transitions to the lowest triplet states were observed. The low-energy features of the spectrum at 3.66 and 4.61 eV are identified with the excitation of the first triplet states 13 A' (π → π*) and 13 A″ ( n → π*). The higher-lying features at 4.96, 5.75, 6.17, and 7.35 eV are assigned mainly to the excitation of the π → π* transitions to the singlet states of the molecule. The excitation dynamics of the lowest states is studied. It is found that the first triplet state 13 A'(π → π*) is most efficiently excited at a residual energy close to zero, while the singlet 21 A'(π → π*) state is excited with almost identical efficiency at different residual energies.

  14. Quantification of entanglement entropies for doubly excited resonance states in two-electron atomic systems

    International Nuclear Information System (INIS)

    Ho, Yew Kam; Lin, Chien-Hao

    2015-01-01

    In this work, we study the quantum entanglement for doubly excited resonance states in two-electron atomic systems such as the H - and Ps - ions and the He atom by using highly correlated Hylleraas type functions The resonance states are determined by calculation of density of resonance states with the stabilization method. The spatial (electron-electron orbital) entanglement entropies (linear and von Neumann) for the low-lying doubly excited states are quantified using the Schmidt-Slater decomposition method. (paper)

  15. Electron correlation in a three dimensional cluster of the cubic lattice ...

    African Journals Online (AJOL)

    ... and pairing correlations depend implicitly on the interaction strength (U/41). It is shown that for two electrons, the interaction is always repulsive in the ground state for any positive value of the on-site Coulomb interaction U. Implications of this result for superconductivity are also discussed. Nigerian Journal of Physics Vol.

  16. Electron affinity and excited states of methylglyoxal

    Science.gov (United States)

    Dauletyarov, Yerbolat; Dixon, Andrew R.; Wallace, Adam A.; Sanov, Andrei

    2017-07-01

    Using photoelectron imaging spectroscopy, we characterized the anion of methylglyoxal (X2A″ electronic state) and three lowest electronic states of the neutral methylglyoxal molecule: the closed-shell singlet ground state (X1A'), the lowest triplet state (a3A″), and the open-shell singlet state (A1A″). The adiabatic electron affinity (EA) of the ground state, EA(X1A') = 0.87(1) eV, spectroscopically determined for the first time, compares to 1.10(2) eV for unsubstituted glyoxal. The EAs (adiabatic attachment energies) of two excited states of methylglyoxal were also determined: EA(a3A″) = 3.27(2) eV and EA(A1A″) = 3.614(9) eV. The photodetachment of the anion to each of these two states produces the neutral species near the respective structural equilibria; hence, the a3A″ ← X2A″ and A1A″ ← X2A″ photodetachment transitions are dominated by intense peaks at their respective origins. The lowest-energy photodetachment transition, on the other hand, involves significant geometry relaxation in the X1A' state, which corresponds to a 60° internal rotation of the methyl group, compared to the anion structure. Accordingly, the X1A' ← X2A″ transition is characterized as a broad, congested band, whose vertical detachment energy, VDE = 1.20(4) eV, significantly exceeds the adiabatic EA. The experimental results are in excellent agreement with the ab initio predictions using several equation-of-motion methodologies, combined with coupled-cluster theory.

  17. The ion-electron correlation function in liquid metals

    International Nuclear Information System (INIS)

    Takeda, S.; Tamaki, S.; Waseda, Y.

    1985-01-01

    The structure factors of liquid Zn at 723 K, Sn at 523 K and Bi at 573 K have been determined by neutron diffraction with sufficient accuracy and compared with those of X-ray diffraction. A remarkable difference in the structural information between the two methods is clearly found around the first peak region as well as in the slightly varied peak positions, and it is apparently larger than the experimental errors. With these facts in mind, a new method evaluating the ion-electron correlation function in liquid metals has been proposed by using the measured structural data of X-rays and neutrons, with the help of theoretical values of the electron-electron correlation function by he Utsumi-Ichimaru scheme. This method has been applied to liquid Zn, Sn and Bi, and the radial distribution function of valence electrons around an ion has been estimated, from which the ionic radius and the schematic diagram of the electron distribution map are obtained. The ionic radii evaluated in this work have been found to agree well with those proposed by Pauling. (author)

  18. Electron-electron correlation, resonant photoemission and X-ray emission spectra

    International Nuclear Information System (INIS)

    Parlebas, J.C.; Kotani, Akio; Tanaka, Satoshi.

    1991-01-01

    In this short review paper we essentially focus on the high energy spectroscopies which involve second order quantum processes, i.e., resonance photoemission, Auger and X-ray emission spectroscopies, denoted respectively by RXPS, AES and XES. First, we summarize the main 3p-RXPS and AES results obtained in Cu and Ni metals; especially we recall that the satellite near the 3p-threshold in the spectra, which arises from a d-hole pair bound state, needs a careful treatment of the electron-electron correlation. Then we analyze the RXPS spectra in a few Ce compounds (CeO 2 , Ce 2 O 3 and CeF 3 ) involving 3d or 4d core levels and we interpret the spectra consistently with the other spectroscopies, such as core XPS and XAS which are first order quantum processes. Finally within the same one-impurity model and basically with the same sets of parameters, we review a theory for the Ce 5p→3d XES, as well as for the corresponding RXES, where (1) the incident X-ray is tuned to resonate with the 3d→4f transition and (2) the X-ray emission due to the 5p→3d transition is actually observed. The paper ends with a general discussion. (author) 77 refs

  19. Excited state electron affinity calculations for aluminum

    Science.gov (United States)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  20. Highlighting material structure with transmission electron diffraction correlation coefficient maps

    International Nuclear Information System (INIS)

    Kiss, Ákos K.; Rauch, Edgar F.; Lábár, János L.

    2016-01-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. - Highlights: • We propose a novel technique to image the structure of polycrystalline TEM-samples. • Correlation coefficients maps highlights the evolution of the diffracting signal. • 3D views of grain boundaries are provided for nano-particles or polycrystals.

  1. Electron correlation within the relativistic no-pair approximation

    Energy Technology Data Exchange (ETDEWEB)

    Almoukhalalati, Adel; Saue, Trond, E-mail: trond.saue@irsamc.ups-tlse.fr [Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS — Université Toulouse III-Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse (France); Knecht, Stefan [ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); Jensen, Hans Jørgen Aa. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Dyall, Kenneth G. [Dirac Solutions, 10527 NW Lost Park Drive, Portland, Oregon 97229 (United States)

    2016-08-21

    This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice, what is reported is the basis set correlation energy, where the “exact” value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within the no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF procedure is smaller than the no-pair full CI correlation energy, in accordance with the

  2. Influence of scattering processes on electron quantum states in nanowires

    Directory of Open Access Journals (Sweden)

    Pozdnyakov Dmitry

    2007-01-01

    Full Text Available AbstractIn the framework of quantum perturbation theory the self-consistent method of calculation of electron scattering rates in nanowires with the one-dimensional electron gas in the quantum limit is worked out. The developed method allows both the collisional broadening and the quantum correlations between scattering events to be taken into account. It is an alternativeper seto the Fock approximation for the self-energy approach based on Green’s function formalism. However this approach is free of mathematical difficulties typical to the Fock approximation. Moreover, the developed method is simpler than the Fock approximation from the computational point of view. Using the approximation of stable one-particle quantum states it is proved that the electron scattering processes determine the dependence of electron energy versus its wave vector.

  3. Communication: Near-locality of exchange and correlation density functionals for 1- and 2-electron systems

    Science.gov (United States)

    Sun, Jianwei; Perdew, John P.; Yang, Zenghui; Peng, Haowei

    2016-05-01

    The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.

  4. Communication: Near-locality of exchange and correlation density functionals for 1- and 2-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jianwei; Yang, Zenghui; Peng, Haowei [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Perdew, John P. [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2016-05-21

    The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.

  5. Communication: Near-locality of exchange and correlation density functionals for 1- and 2-electron systems

    International Nuclear Information System (INIS)

    Sun, Jianwei; Yang, Zenghui; Peng, Haowei; Perdew, John P.

    2016-01-01

    The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.

  6. Magnetic properties of metallic impurities with strongly correlated electrons

    Czech Academy of Sciences Publication Activity Database

    Janiš, Václav; Ringel, Matouš

    2009-01-01

    Roč. 115, č. 1 (2009), s. 30-35 ISSN 0587-4246 R&D Projects: GA ČR GA202/07/0644 Institutional research plan: CEZ:AV0Z10100520 Keywords : And erson impurity * strong electron correlations * spin-polarized solution * three-channel parquet equations * magnetic field Subject RIV: BE - Theoretical Physics Impact factor: 0.433, year: 2009 http://przyrbwn.icm.edu.pl/APP/ABSTR/115/a115-1-5.html

  7. Accuracy of ab initio electron correlation and electron densities in vanadium dioxide

    Science.gov (United States)

    Kylänpää, Ilkka; Balachandran, Janakiraman; Ganesh, Panchapakesan; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.

    2017-11-01

    Diffusion quantum Monte Carlo results are used as a reference to analyze properties related to phase stability and magnetism in vanadium dioxide computed with various formulations of density functional theory. We introduce metrics related to energetics, electron densities and spin densities that give us insight on both local and global variations in the antiferromagnetic M1 and R phases. Importantly, these metrics can address contributions arising from the challenging description of the 3 d orbital physics in this material. We observe that the best description of energetics between the structural phases does not correspond to the best accuracy in the charge density, which is consistent with observations made recently by Medvedev et al. [Science 355, 371 (2017), 10.1126/science.aag0410] in the context of isolated atoms. However, we do find evidence that an accurate spin density connects to correct energetic ordering of different magnetic states in VO2, although local, semilocal, and meta-GGA functionals tend to erroneously favor demagnetization of the vanadium sites. The recently developed SCAN functional stands out as remaining nearly balanced in terms of magnetization across the M1-R transition and correctly predicting the ground state crystal structure. In addition to ranking current density functionals, our reference energies and densities serve as important benchmarks for future functional development. With our reference data, the accuracy of both the energy and the electron density can be monitored simultaneously, which is useful for functional development. So far, this kind of detailed high accuracy reference data for correlated materials has been absent from the literature.

  8. Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide

    Science.gov (United States)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2018-04-01

    The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor-metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.

  9. e - 2e Collisions near ionization threshold - electron correlations

    International Nuclear Information System (INIS)

    Mazeau, J.; Huetz, A.; Selles, P.

    1986-01-01

    The results presented in this report constitute the first direct experimental proof that a few (LSΠ) states definitely contribute to the near threshold ionization cross section. The Wannier Peterkop Rau theory is an useful tool to their understanding and a more precise determination of the angular correlation width is still needed. It has been shown that the values of the a LSΠ coefficients can be extracted from the observations. These are physically interesting quantities as they are directly related to the probability of forming Wannier ridge riding states above the double escape threshold, and considerable theoretical effort is presently in progress to investigate such states. (Auth.)

  10. Correlation induced electron-hole asymmetry in quasi- two-dimensional iridates.

    Science.gov (United States)

    Pärschke, Ekaterina M; Wohlfeld, Krzysztof; Foyevtsova, Kateryna; van den Brink, Jeroen

    2017-09-25

    The resemblance of crystallographic and magnetic structures of the quasi-two-dimensional iridates Ba 2 IrO 4 and Sr 2 IrO 4 to La 2 CuO 4 points at an analogy to cuprate high-Tc superconductors, even if spin-orbit coupling is very strong in iridates. Here we examine this analogy for the motion of a charge (hole or electron) added to the antiferromagnetic ground state. We show that correlation effects render the hole and electron case in iridates very different. An added electron forms a spin polaron, similar to the cuprates, but the situation of a removed electron is far more complex. Many-body 5d 4 configurations form which can be singlet and triplet states of total angular momentum that strongly affect the hole motion. This not only has ramifications for the interpretation of (inverse-)photoemission experiments but also demonstrates that correlation physics renders electron- and hole-doped iridates fundamentally different.Some iridate compounds such as Sr 2 IrO 4 have electronic and atomic structures similar to quasi-2D copper oxides, raising the prospect of high temperature superconductivity. Here, the authors show that there is significant electron-hole asymmetry in iridates, contrary to expectations from the cuprates.

  11. Quantum correlations support probabilistic pure state cloning

    Energy Technology Data Exchange (ETDEWEB)

    Roa, Luis, E-mail: lroa@udec.cl [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Alid-Vaccarezza, M.; Jara-Figueroa, C. [Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Klimov, A.B. [Departamento de Física, Universidad de Guadalajara, Avenida Revolución 1500, 44420 Guadalajara, Jalisco (Mexico)

    2014-02-01

    The probabilistic scheme for making two copies of two nonorthogonal pure states requires two auxiliary systems, one for copying and one for attempting to project onto the suitable subspace. The process is performed by means of a unitary-reduction scheme which allows having a success probability of cloning different from zero. The scheme becomes optimal when the probability of success is maximized. In this case, a bipartite state remains as a free degree which does not affect the probability. We find bipartite states for which the unitarity does not introduce entanglement, but does introduce quantum discord between some involved subsystems.

  12. Strongly correlated electron materials. I. Theory of the quasiparticle structure

    International Nuclear Information System (INIS)

    Lopez-Aguilar, F.; Costa-Quintana, J.; Puig-Puig, L.

    1993-01-01

    In this paper we give a method for analyzing the renormalized electronic structure of the Hubbard systems. The first step is the determination of effective interactions from the random-phase approximation (RPA) and from an extended RPA (ERPA) that introduces vertex effects within the bubble polarization. The second step is the determination of the density of states deduced from the spectral functions. Its analysis leads us to conclude that these systems can exhibit three types of resonances in their electronic structures: the lower-, middle-, and upper-energy resonances. Furthermore, we analyze the conditions for which there is only one type of resonance and the causes that lead to the disappearance of the heavy-fermion state. We finally introduce the RPA and ERPA effective interactions within the strong-coupling theory and we give the conditions for obtaining coupling and superconductivity

  13. Irreducible multiqutrit correlations in Greenberger-Horne-Zeilinger-type states

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fu-Lin [Physics Department, School of Science, Tianjin University, Tianjin 300072 (China); Chen, Jing-Ling [Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin, 300071 (China); Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)

    2011-12-15

    Following the idea of the continuity approach by D. L. Zhou [Phys. Rev. Lett. 101, 180505 (2008)], we obtain the degrees of irreducible multiparty correlations in two families of n-qutrit Greenberger-Horne-Zeilinger-type states. For the pure states in one of the families, the irreducible 2-party, n-party, and (n-m)-party (0correlations are nonzero, which is different from the n-qubit case. We also derive the correlation distributions in the n-qutrit maximal slice state, which can be uniquely determined by its (n-1)-qutrit-reduced density matrices among pure states. It is proved that there is no irreducible n-qutrit correlation in the maximal slice state. This enlightens us to give a discussion about how to characterize the pure states with irreducible n-party correlation in arbitrarily high-dimensional systems by the way of the continuity approach.

  14. Irreducible multiqutrit correlations in Greenberger-Horne-Zeilinger-type states

    International Nuclear Information System (INIS)

    Zhang, Fu-Lin; Chen, Jing-Ling

    2011-01-01

    Following the idea of the continuity approach by D. L. Zhou [Phys. Rev. Lett. 101, 180505 (2008)], we obtain the degrees of irreducible multiparty correlations in two families of n-qutrit Greenberger-Horne-Zeilinger-type states. For the pure states in one of the families, the irreducible 2-party, n-party, and (n-m)-party (0< m< n-2) correlations are nonzero, which is different from the n-qubit case. We also derive the correlation distributions in the n-qutrit maximal slice state, which can be uniquely determined by its (n-1)-qutrit-reduced density matrices among pure states. It is proved that there is no irreducible n-qutrit correlation in the maximal slice state. This enlightens us to give a discussion about how to characterize the pure states with irreducible n-party correlation in arbitrarily high-dimensional systems by the way of the continuity approach.

  15. Covariance and correlation estimation in electron-density maps.

    Science.gov (United States)

    Altomare, Angela; Cuocci, Corrado; Giacovazzo, Carmelo; Moliterni, Anna; Rizzi, Rosanna

    2012-03-01

    Quite recently two papers have been published [Giacovazzo & Mazzone (2011). Acta Cryst. A67, 210-218; Giacovazzo et al. (2011). Acta Cryst. A67, 368-382] which calculate the variance in any point of an electron-density map at any stage of the phasing process. The main aim of the papers was to associate a standard deviation to each pixel of the map, in order to obtain a better estimate of the map reliability. This paper deals with the covariance estimate between points of an electron-density map in any space group, centrosymmetric or non-centrosymmetric, no matter the correlation between the model and target structures. The aim is as follows: to verify if the electron density in one point of the map is amplified or depressed as an effect of the electron density in one or more other points of the map. High values of the covariances are usually connected with undesired features of the map. The phases are the primitive random variables of our probabilistic model; the covariance changes with the quality of the model and therefore with the quality of the phases. The conclusive formulas show that the covariance is also influenced by the Patterson map. Uncertainty on measurements may influence the covariance, particularly in the final stages of the structure refinement; a general formula is obtained taking into account both phase and measurement uncertainty, valid at any stage of the crystal structure solution.

  16. Electron correlation effects on the N2--N2 interaction

    International Nuclear Information System (INIS)

    Hay, P.J.; Pack, R.T.; Martin, R.L.

    1984-01-01

    Ab initio self-consistent field, configuration interaction, and many-body perturbation theory methods are used to calculate the intermolecular potential between two nitrogen molecules. The emphasis is placed on the repulsive region important at the temperatures and pressures encountered in detonations. In addition, electron gas calculations are employed to fit and extend the ab initio data. We also generate effective spherical potentials which fit dilute gas virial, viscosity, and differential scattering data while being constrained by Hugoniot or ab initio data in the repulsive region. Finally, we discuss the roles of electron correlation and of many-body effects on the N 2 --N 2 interaction. Comparisons are also made to the Ar 2 potential where similar ab initio calculations are compared to an accurate empirical potential

  17. Electron correlation influenced magnetic phase transitions in f-electron systems

    International Nuclear Information System (INIS)

    Frauenheim, T.; Ropke, G.

    1980-01-01

    The temperature-induced phase transition (on lowering the temperature) antiferromagnet-ferromagnet in the heavy rare earth and some of actinide compounds is qualitatively explained in the scope of a two-band Hubbard model and the more complex RKKY model as the result of electron correlation effects in the conduction bands. (orig.)

  18. Electronic states in a quantum lens

    International Nuclear Information System (INIS)

    Rodriguez, Arezky H.; Trallero-Giner, C.; Ulloa, S. E.; Marin-Antuna, J.

    2001-01-01

    We present a model to find analytically the electronic states in self-assembled quantum dots with a truncated spherical cap (''lens'') geometry. A conformal analytical image is designed to map the quantum dot boundary into a dot with semispherical shape. The Hamiltonian for a carrier confined in the quantum lens is correspondingly mapped into an equivalent operator and its eigenvalues and eigenfunctions for the corresponding Dirichlet problem are analyzed. A modified Rayleigh-Schro''dinger perturbation theory is presented to obtain analytical expressions for the energy levels and wave functions as a function of the spherical cap height b and radius a of the circular cross section. Calculations for a hard wall confinement potential are presented, and the effect of decreasing symmetry on the energy values and eigenfunctions of the lens-shape quantum dot is studied. As the degeneracies of a semicircular geometry are broken for b≠a, our perturbation approach allows tracking of the split states. Energy states and electronic wave functions with m=0 present the most pronounced influence on the reduction of the lens height. The method and expressions presented here can be straightforwardly extended to deal with more general Hamiltonians, including strains and valence-band coupling effects in Group III--V and Group II--VI self-assembled quantum dots

  19. Electronic processes in organic electronics bridging nanostructure, electronic states and device properties

    CERN Document Server

    Kudo, Kazuhiro; Nakayama, Takashi; Ueno, Nobuo

    2015-01-01

    The book covers a variety of studies of organic semiconductors, from fundamental electronic states to device applications, including theoretical studies. Furthermore, innovative experimental techniques, e.g., ultrahigh sensitivity photoelectron spectroscopy, photoelectron yield spectroscopy, spin-resolved scanning tunneling microscopy (STM), and a material processing method with optical-vortex and polarization-vortex lasers, are introduced. As this book is intended to serve as a textbook for a graduate level course or as reference material for researchers in organic electronics and nanoscience from electronic states, fundamental science that is necessary to understand the research is described. It does not duplicate the books already written on organic electronics, but focuses mainly on electronic properties that arise from the nature of organic semiconductors (molecular solids). The new experimental methods introduced in this book are applicable to various materials (e.g., metals, inorganic and organic mater...

  20. Electron correlations in single-electron capture from helium by fast protons and α particles

    International Nuclear Information System (INIS)

    Mancev, Ivan; Milojevic, Nenad

    2010-01-01

    Single-electron capture from heliumlike atomic systems by bare projectiles is investigated by means of the four-body boundary-corrected first Born approximation (CB1-4B). The effect of the dynamic electron correlation is explicitly taken into account through the complete perturbation potential. The quantum-mechanical post and prior transition amplitudes for single charge exchange encompassing symmetric and/or asymmetric collisions are derived in terms of two-dimensional real integrals in the case of the prior form and five-dimensional quadratures for the post form. An illustrative computation is performed for single-electron capture from helium by protons and α particles at intermediate and high impact energies. The role of dynamic correlations is examined as a function of increased projectile energy. The validity and utility of the proposed CB1-4B method is critically assessed in comparison with the existing experimental data for total cross sections, and excellent agreement is obtained.

  1. Resting state EEG correlates of memory consolidation.

    Science.gov (United States)

    Brokaw, Kate; Tishler, Ward; Manceor, Stephanie; Hamilton, Kelly; Gaulden, Andrew; Parr, Elaine; Wamsley, Erin J

    2016-04-01

    Numerous studies demonstrate that post-training sleep benefits human memory. At the same time, emerging data suggest that other resting states may similarly facilitate consolidation. In order to identify the conditions under which non-sleep resting states benefit memory, we conducted an EEG (electroencephalographic) study of verbal memory retention across 15min of eyes-closed rest. Participants (n=26) listened to a short story and then either rested with their eyes closed, or else completed a distractor task for 15min. A delayed recall test was administered immediately following the rest period. We found, first, that quiet rest enhanced memory for the short story. Improved memory was associated with a particular EEG signature of increased slow oscillatory activity (rest can facilitate memory, and that this may occur via an active process of consolidation supported by slow oscillatory EEG activity and characterized by decreased attention to the external environment. Slow oscillatory EEG rhythms are proposed to facilitate memory consolidation during sleep by promoting hippocampal-cortical communication. Our findings suggest that EEG slow oscillations could play a significant role in memory consolidation during other resting states as well. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations.

    Science.gov (United States)

    Ren, Xinguo; Tkatchenko, Alexandre; Rinke, Patrick; Scheffler, Matthias

    2011-04-15

    The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-exchange (EX) energy, represents the state-of-the-art exchange-correlation functional within density-functional theory. However, the standard RPA practice--evaluating both the EX and the RPA correlation energies using Kohn-Sham (KS) orbitals from local or semilocal exchange-correlation functionals--leads to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior can be corrected by adding a "single excitation" contribution, so far not included in the standard RPA scheme. A similar improvement can also be achieved by replacing the non-self-consistent EX total energy by the corresponding self-consistent Hartree-Fock total energy, while retaining the RPA correlation energy evaluated using KS orbitals. Both schemes achieve chemical accuracy for a standard benchmark set of noncovalent intermolecular interactions.

  3. Correlated electron phenomena in ultra-low disorder quantum wires

    International Nuclear Information System (INIS)

    Reilly, D.J.; Facer, G.R.; Dzurak, A.S.; Kane, B.E.; Clark, R.G.; Lumpkin, N.E.

    1999-01-01

    Full text: Quantum point contacts in the lowest disorder HEMTs display structure at 0.7 x 2e 2 /h, which cannot be interpreted within a single particle Landauer model. This structure has been attributed to a spontaneous spin polarisation at zero B field. We have developed novel GaAs/AlGaAs enhancement mode FETs, which avoid the random impurity potential present in conventional MODFET devices by using epitaxially grown gates to produce ultra-low-disorder QPCs and quantum wires using electron beam lithography. The ballistic mean free path within these devices exceeds 160 μm 2 . Quantum wires of 5 μm in length show up to 15 conductance plateaux, indicating that these may be the lowest-disorder quantum wires fabricated using conventional surface patterning techniques. These structures are ideal for the study of correlation effects in QPCs and quantum wires as a function of electron density. Our data provides strong evidence that correlation effects are enhanced as the length of the 1D region is increased and also that additional structure moves close to 0.5 x 2e 2 /h, the value expected for an ideal spin-split 1D level

  4. Exact exchange-correlation potentials of singlet two-electron systems

    Science.gov (United States)

    Ryabinkin, Ilya G.; Ospadov, Egor; Staroverov, Viktor N.

    2017-10-01

    We suggest a non-iterative analytic method for constructing the exchange-correlation potential, v XC ( r ) , of any singlet ground-state two-electron system. The method is based on a convenient formula for v XC ( r ) in terms of quantities determined only by the system's electronic wave function, exact or approximate, and is essentially different from the Kohn-Sham inversion technique. When applied to Gaussian-basis-set wave functions, the method yields finite-basis-set approximations to the corresponding basis-set-limit v XC ( r ) , whereas the Kohn-Sham inversion produces physically inappropriate (oscillatory and divergent) potentials. The effectiveness of the procedure is demonstrated by computing accurate exchange-correlation potentials of several two-electron systems (helium isoelectronic series, H2, H3 + ) using common ab initio methods and Gaussian basis sets.

  5. 2012 CORRELATED ELECTRON SYSTEMS GRC AND GRS, JUNE 23-29, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kivelson, Steven

    2012-06-29

    The 2012 Gordon Conference on Correlated Electron Systems will present cutting-edge research on emergent properties arising from strong electronic correlations. While we expect the discussion at the meeting to be wide-ranging, given the breadth of the title subject matter, we have chosen several topics to be the particular focus of the talks. These are New Developments in Single and Bilayer Graphene, Topological States of Matter, including Topological Insulators and Spin Liquids, the Interplay Between Magnetism and Unconventional Superconductivity, and Quantum Critical Phenomena in Metallic Systems. We also plan to have shorter sessions on Systems Far From Equilibrium, Low Dimensional Electron Fluids, and New Directions (which will primarily focus on new experimental methodologies and their interpretation).

  6. Correlation Matrix Renormalization Theory: Improving Accuracy with Two-Electron Density-Matrix Sum Rules.

    Science.gov (United States)

    Liu, C; Liu, J; Yao, Y X; Wu, P; Wang, C Z; Ho, K M

    2016-10-11

    We recently proposed the correlation matrix renormalization (CMR) theory to treat the electronic correlation effects [Phys. Rev. B 2014, 89, 045131 and Sci. Rep. 2015, 5, 13478] in ground state total energy calculations of molecular systems using the Gutzwiller variational wave function (GWF). By adopting a number of approximations, the computational effort of the CMR can be reduced to a level similar to Hartree-Fock calculations. This paper reports our recent progress in minimizing the error originating from some of these approximations. We introduce a novel sum-rule correction to obtain a more accurate description of the intersite electron correlation effects in total energy calculations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.

  7. One-Body Potential Theory of Molecules and Solids Modified Semiempirically for Electron Correlation

    International Nuclear Information System (INIS)

    March, N.H.

    2010-08-01

    The study of Cordero, March and Alonso (CMA) for four spherical atoms, Be,Ne,Mg and Ar, semiempirically fine-tunes the Hartree-Fock (HF) ground-state electron density by inserting the experimentally determined ionization potentials. The present Letter, first of all, relates this approach to the very recent work of Bartlett 'towards an exact correlated orbital theory for electrons'. Both methods relax the requirement of standard DFT that a one-body potential shall generate the exact ground-state density, though both work with high quality approximations. Unlike DFT, the CMA theory uses a modified HF non-local potential. It is finally stressed that this potential generates also an idempotent Dirac density matrix. The CMA approach is thereby demonstrated to relate, albeit approximately, to the DFT exchange-correlation potential. (author)

  8. Coulomb correlations in electron and positron impact ionization of hydrogen at intermediate and higher energies

    International Nuclear Information System (INIS)

    Jetzke, S.; Faisal, F.H.M.

    1992-01-01

    Investigating the relation between the asymptotic condition and the dynamic Coulomb correlation for single and multiple ionization we discuss a complete set of spatially separable N-electrons final-state wavefunctions, satisfying multiple ionization boundary conditions. We apply these results to electron and positron impact ionization of atomic hydrogen in the energy range 54.4 and 250 eV on the basis of a parameter-free model formulated within the scope of the multiple scattering approach. A comparison between our results and available experimental data and alternative theoretical calculations are made and discussed. (Author)

  9. Exact Time-Dependent Exchange-Correlation Potential in Electron Scattering Processes

    Science.gov (United States)

    Suzuki, Yasumitsu; Lacombe, Lionel; Watanabe, Kazuyuki; Maitra, Neepa T.

    2017-12-01

    We identify peak and valley structures in the exact exchange-correlation potential of time-dependent density functional theory that are crucial for time-resolved electron scattering in a model one-dimensional system. These structures are completely missed by adiabatic approximations that, consequently, significantly underestimate the scattering probability. A recently proposed nonadiabatic approximation is shown to correctly capture the approach of the electron to the target when the initial Kohn-Sham state is chosen judiciously, and it is more accurate than standard adiabatic functionals but ultimately fails to accurately capture reflection. These results may explain the underestimation of scattering probabilities in some recent studies on molecules and surfaces.

  10. Electron-electron bound states in Maxwell-Chern-Simons-Proca QED3

    International Nuclear Information System (INIS)

    Belich, H.; Helayel-Neto, J.A.; Ferreira, M.M. Jr.; Maranhao Univ., Sao Luis, MA

    2002-10-01

    We start from a parity-breaking MCS QED 3 model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e - e - - bound state. Three expressions V eff↓↓ , V eff↓↑ , V eff↓↓ ) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED 3 model adopted may be suitable to address an eventual case of e - e - pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy scale of 10-100 meV to fix the breaking of the U(1)-symmetry. (author)

  11. Electron-electron bound states in Maxwell-Chern-Simons-Proca QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H.; Helayel-Neto, J.A. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: belich@cbpf.br; helayel@gft.ucp.br; Del Cima, O.M. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]. E-mail: delcima@gft.ucp.br; Ferreira, M.M. Jr. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica]. E-mail: manojr@cbpf.br

    2002-10-01

    We start from a parity-breaking MCS QED{sub 3} model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e{sup -}e{sup -} - bound state. Three expressions (V{sub eff{down_arrow}}{sub {down_arrow}}, V{sub eff{down_arrow}}{sub {up_arrow}}, V{sub eff{down_arrow}}{sub {down_arrow}}) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED{sub 3} model adopted may be suitable to address an eventual case of e{sup -}e{sup -} pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy scale of 10-100 meV to fix the breaking of the U(1)-symmetry. (author)

  12. Quantum-Dynamical Theory of Electron Exchange Correlation

    Directory of Open Access Journals (Sweden)

    Burke Ritchie

    2013-01-01

    aggregate, is elucidated. The relationship depends on the use of spin-dependent quantum trajectories (SDQT to evaluate Coulomb’s law between any two electrons as an instantaneous interaction in space and time rather than as a quantum-mean interaction in the form of screening and exchange potentials. Hence FDS depends in an ab initio sense on the inference of SDQT from Dirac’s equation, which provides for relativistic Lorentz invariance and a permanent magnetic moment (or spin in the electron’s equation of motion. Schroedinger’s time-dependent equation can be used to evaluate the SDQT in the nonrelativistic regime of electron velocity. Remarkably FDS is a relativistic property of an ensemble of electron, even though it is of order c0 in the nonrelativistic limit, in agreement with experimental observation. Finally it is shown that covalent versus separated-atoms limits can be characterized by the SDQT. As an example of the use of SDQT in a canonical structure problem, the energies of the 1Σg and 3Σu states of H2 are calculated and compared with the accurate variational energies of Kolos and Wolniewitz.

  13. Dynamic correlation of photo-excited electrons: Anomalous levels induced by light–matter coupling

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiankai [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); Song, Bo, E-mail: bosong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China)

    2014-04-01

    Nonlinear light–matter coupling plays an important role in many aspects of modern physics, such as spectroscopy, photo-induced phase transition, light-based devices, light-harvesting systems, light-directed reactions and bio-detection. However, excited states of electrons are still unclear for nano-structures and molecules in a light field. Our studies unexpectedly present that light can induce anomalous levels in the electronic structure of a donor–acceptor nanostructure with the help of the photo-excited electrons transferring dynamically between the donor and the acceptor. Furthermore, the physics underlying is revealed to be the photo-induced dynamical spin–flip correlation among electrons. These anomalous levels can significantly enhance the electron current through the nanostructure. These findings are expected to contribute greatly to the understanding of the photo-excited electrons with dynamic correlations, which provides a push to the development and application of techniques based on photosensitive molecules and nanostructures, such as light-triggered molecular devices, spectroscopic analysis, bio-molecule detection, and systems for solar energy conversion.

  14. Extending the random-phase approximation for electronic correlation energies: the renormalized adiabatic local density approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian S.

    2012-01-01

    The adiabatic connection fluctuation-dissipation theorem with the random phase approximation (RPA) has recently been applied with success to obtain correlation energies of a variety of chemical and solid state systems. The main merit of this approach is the improved description of dispersive forces...... while chemical bond strengths and absolute correlation energies are systematically underestimated. In this work we extend the RPA by including a parameter-free renormalized version of the adiabatic local-density (ALDA) exchange-correlation kernel. The renormalization consists of a (local) truncation...... of the ALDA kernel for wave vectors q > 2kF, which is found to yield excellent results for the homogeneous electron gas. In addition, the kernel significantly improves both the absolute correlation energies and atomization energies of small molecules over RPA and ALDA. The renormalization can...

  15. Quantum phase transitions of strongly correlated electron systems

    International Nuclear Information System (INIS)

    Imada, Masatoshi

    1998-01-01

    Interacting electrons in solids undergo various quantum phase transitions driven by quantum fluctuations. The quantum transitions take place at zero temperature by changing a parameter to control quantum fluctuations rather than thermal fluctuations. In contrast to classical phase transitions driven by thermal fluctuations, the quantum transitions have many different features where quantum dynamics introduces a source of intrinsic fluctuations tightly connected with spatial correlations and they have been a subject of recent intensive studies as we see below. Interacting electron systems cannot be fully understood without deep analyses of the quantum phase transitions themselves, because they are widely seen and play essential roles in many phenomena. Typical and important examples of the quantum phase transitions include metal-insulator transitions, (2, 3, 4, 5, 6, 7, 8, 9) metal-superconductor transitions, superconductor-insulator transitions, magnetic transitions to antiferromagnetic or ferromagnetic phases in metals as well as in Mott insulators, and charge ordering transitions. Here, we focus on three different types of transitions

  16. Electronically shielded solid state charged particle detector

    International Nuclear Information System (INIS)

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-01-01

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig

  17. Correlative Light- and Electron Microscopy Using Quantum Dot Nanoparticles.

    Science.gov (United States)

    Killingsworth, Murray C; Bobryshev, Yuri V

    2016-08-07

    A method is described whereby quantum dot (QD) nanoparticles can be used for correlative immunocytochemical studies of human pathology tissue using widefield fluorescence light microscopy and transmission electron microscopy (TEM). To demonstrate the protocol we have immunolabeled ultrathin epoxy sections of human somatostatinoma tumor using a primary antibody to somatostatin, followed by a biotinylated secondary antibody and visualization with streptavidin conjugated 585 nm cadmium-selenium (CdSe) quantum dots (QDs). The sections are mounted on a TEM specimen grid then placed on a glass slide for observation by widefield fluorescence light microscopy. Light microscopy reveals 585 nm QD labeling as bright orange fluorescence forming a granular pattern within the tumor cell cytoplasm. At low to mid-range magnification by light microscopy the labeling pattern can be easily recognized and the level of non-specific or background labeling assessed. This is a critical step for subsequent interpretation of the immunolabeling pattern by TEM and evaluation of the morphological context. The same section is then blotted dry and viewed by TEM. QD probes are seen to be attached to amorphous material contained in individual secretory granules. Images are acquired from the same region of interest (ROI) seen by light microscopy for correlative analysis. Corresponding images from each modality may then be blended to overlay fluorescence data on TEM ultrastructure of the corresponding region.

  18. Signals of strong electronic correlation in ion scattering processes

    Science.gov (United States)

    Bonetto, F.; Gonzalez, C.; Goldberg, E. C.

    2016-05-01

    Previous measurements of neutral atom fractions for S r+ scattered by gold polycrystalline surfaces show a singular dependence with the target temperature. There is still not a theoretical model that can properly describe the magnitude and the temperature dependence of the neutralization probabilities found. Here, we applied a first-principles quantum-mechanical theoretical formalism to describe the time-dependent scattering process. Three different electronic correlation approaches consistent with the system analyzed are used: (i) the spinless approach, where two charge channels are considered (S r0 and S r+ ) and the spin degeneration is neglected; (ii) the infinite-U approach, with the same charge channels (S r0 and S r+ ) but considering the spin degeneration; and (iii) the finite-U approach, where the first ionization and second ionization energy levels are considered very, but finitely, separated. Neutral fraction magnitudes and temperature dependence are better described by the finite-U approach, indicating that e -correlation plays a significant role in charge-transfer processes. However, none of them is able to explain the nonmonotonous temperature dependence experimentally obtained. Here, we suggest that small changes in the surface work function introduced by the target heating, and possibly not detected by experimental standard methods, could be responsible for that singular behavior. Additionally, we apply the same theoretical model using the infinite-U approximation for the Mg-Au system, obtaining an excellent description of the experimental neutral fractions measured.

  19. Evidence for electron-electron correlations in La2CuO4 and Lasub(2-x)Srsub(x)CuO4 superconductors

    International Nuclear Information System (INIS)

    Greene, R.L.; Plaskett, T.S.; Maletta, H.; Bednorz, J.G.; Muller, K.A.

    1987-01-01

    We report a study of the magnetic susceptibility of Lasub(2-x)Srsub(x)CUO 4 for x = 0, 0.10, 0.15, 0.20 from 4-350K. Our data suggest that La 2 CuO 4 has a spin-density wave or antiferromagnetic transition near 250K. The Sr doped superconductors have a Pauli susceptibility above Tsub(c) 35-40K that is enhanced by electron-electron correlations. The variation in Tsub(c) with Sr doping is not directly correlated with the change in electron density of states. (author)

  20. BEC-BCS-laser crossover in Coulomb-correlated electron-hole-photon systems

    International Nuclear Information System (INIS)

    Yamaguchi, M; Kamide, K; Ogawa, T; Yamamoto, Y

    2012-01-01

    Many-body features caused by Coulomb correlations are of great importance for understanding phenomena pertaining to polariton systems in semiconductor microcavities, i.e. electron-hole-photon systems. Remarkable many-body effects are shown to exist in both thermal-equilibrium phases and non-equilibrium lasing states. We then show a unified framework for connecting the thermal-equilibrium and the non-equilibrium steady states based on a non-equilibrium Green's function approach. Bose-Einstein condensate (BEC)-Bardeen-Cooper-Schrieffer (BCS)-laser crossovers are investigated by using this approach. (paper)

  1. Work hardening correlation for monotonic loading based on state variables

    International Nuclear Information System (INIS)

    Huang, F.H.; Li, C.Y.

    1977-01-01

    An absolute work hardening correlation in terms of the hardness parameter and the internal stress based on the state variable approach was developed. It was found applicable to a variety of metals and alloys. This correlation predicts strain rate insensitive work hardening properties at low homologous temperatures and produces strain rate effects at higher homologous temperatures without involving thermally induced recovery processes

  2. Mesoscopic Electronics in Solid State Nanostructures

    CERN Document Server

    Heinzel, Thomas

    2007-01-01

    This text treats electronic transport in the regime where conventional textbook models are no longer applicable, including the effect of electronic phase coherence, energy quantization and single-electron charging. This second edition is completely updated and expanded, and now comprises new chapters on spin electronics and quantum information processing, transport in inhomogeneous magnetic fields, organic/molecular electronics, and applications of field effect transistors. The book also provides an overview of semiconductor processing technologies and experimental techniques. With a number of

  3. Electronic structure calculations of atomic transport properties in uranium dioxide: influence of strong correlations

    International Nuclear Information System (INIS)

    Dorado, B.

    2010-09-01

    Uranium dioxide UO 2 is the standard nuclear fuel used in pressurized water reactors. During in-reactor operation, the fission of uranium atoms yields a wide variety of fission products (FP) which create numerous point defects while slowing down in the material. Point defects and FP govern in turn the evolution of the fuel physical properties under irradiation. In this study, we use electronic structure calculations in order to better understand the fuel behavior under irradiation. In particular, we investigate point defect behavior, as well as the stability of three volatile FP: iodine, krypton and xenon. In order to take into account the strong correlations of uranium 5f electrons in UO 2 , we use the DFT+U approximation, based on the density functional theory. This approximation, however, creates numerous metastable states which trap the system and induce discrepancies in the results reported in the literature. To solve this issue and to ensure the ground state is systematically approached as much as possible, we use a method based on electronic occupancy control of the correlated orbitals. We show that the DFT+U approximation, when used with electronic occupancy control, can describe accurately point defect and fission product behavior in UO 2 and provide quantitative information regarding point defect transport properties in the oxide fuel. (author)

  4. Momentum distributions for two-electron systems: electron correlation and the Coulomb hole

    International Nuclear Information System (INIS)

    Banyard, K.E.; Reed, C.E.

    1978-01-01

    By evaluating the distribution function f(p 12 ), where p 12 ) in momentum space can be investigated. difference[p 1 - p 2 ] the concept of a Coulomb hole Δf(p 12 ) in momentum space can be investigated. Results are presented for the isoelectronic systems H - , He and Li + . The electron correlation within each CI wavefunction was analysed into its radial and angular components so that the structure and composition of Δf(p 12 ) could be assessed. The two-particle momentum radial density distribution and several two-particle expectation quantities are also examined. The present findings indicate, that in momentum space, the radial components of correlation produce effects characteristic of total correlation in position space whereas, by contrast, angular correlation creates an opposite effect. Thus the shape and formation of Δf(p 12 ) proves to be considerably more complex than that found for its counterpart in position space. The results also reveal a noticeable change in the relative importance of the components of correlation as the momentum increases. (author)

  5. The 'single-particle' spectrum of states: correlated or uncorrelated?

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1985-01-01

    Even though static neutron pair correlations appear to be quenched for stably-deformed rare earth nuclei at .4 MeV, correlations remain for the lowest (π,α)=(+,0), and to a lesser extent for the lowest (+,1/2), configuration. Neutron pair fluctuations (pair vibrations) probably are a significant portion of these correlations. Since correlations are configuration dependent, but are relatively independent of isotope, an empirical spectrum of single-neutron states can be constructed from values of the neutron Fermi level, extracted from experiment. (orig.)

  6. How to upload a physical quantum state into correlation space

    International Nuclear Information System (INIS)

    Morimae, Tomoyuki

    2011-01-01

    In the framework of the computational tensor network [Phys. Rev. Lett. 98, 220503 (2007)], the quantum computation is performed in a virtual linear space called the correlation space. It was recently shown [Phys. Rev. Lett. 103, 050503 (2009)] that a state in a correlation space can be downloaded to the real physical space. In this paper, conversely, we study how to upload a state from a real physical space to the correlation space. After showing the impossibility of cloning a state between a real physical space and the correlation space, we propose a simple teleportation-like method of uploading. This method also enables the Gottesman-Chuang gate teleportation trick and entanglement swapping in the virtual-real hybrid setting. Furthermore, compared with the inverse of the downloading method by Cai et al. [Phys. Rev. Lett. 103, 050503 (2009)], which also works to upload, the proposed uploading method has several advantages.

  7. Correlation between auroral kilometric radiation and inverted v electron precipitation

    International Nuclear Information System (INIS)

    Green, J.L.; Gurnfti, D.A.; Hoffmans, R.A.

    1979-01-01

    Simultaneous observations of energetic electron precipitations and auroral kilometric radiation (AKR) were obtained from the polar orbiting satellites AE-D and Hawkeye. The Hawkeye observations were restricted to periods when the satellite was in the AKR emission cone in the northern hemisphere an at radial distances > or approx. =7 R/sub E/ to avoid local propagation cutoff effects. In addition, the AE-D measurements were restricted to complete passes across the auroral oval in the evening to midnight local time sector (from 20 to 01 hours magnetic local time). This is the local time region where the most intense bursts of AKR are believed to originate. A qualitative survey of AKR and electron precipitation than with plasma sheet precipitation. Quantitatively, a good correlation is found between the AKR intensity and the peak energy of inverted V events. In addition, in the tail of the most field-aligned portion (approx.O 0 pitch angle) of the distribution functions of the inverted V events,systematic changes are indicated as the associated AKR intensity increases. When the AKR power flux is weak ( -17 W/(m 2 Hz)). From a determination of the simultaneous power in the inverted V events and the AKR bursts, the efficiency of converting the charge particle energy into EM radiation increases to a maximum of about 1% for the most intense AKR bursts. However, conversion efficiencies as low as 10 -5 % are also found. There is some evidence which suggests that the tail temperature, T in F (V) of the inverted V events, may play an important role in the efficient generation or amplification of auroral kilometric radiation

  8. Double ionization of He and Li by ion impact: Final state correlation

    Energy Technology Data Exchange (ETDEWEB)

    Fiori, Marcelo [Departamento de Fisica, Universidad Nacional de Salta, 4400 Salta (Argentina)], E-mail: marcelorf@inenco.net; Jalbert, Ginette [Instituto de Fisica, Univ. Federal de Rio de Janeiro, Rio de Janeiro (Brazil); Garibotti, C.R. [CONICET and Centro Atomico Bariloche, 8400 Bariloche (Argentina)

    2007-10-15

    The total cross-sections for atomic double ionization are evaluated with a two-step approximation, by considering that the projectile ionizes successively each electron. Single ionization probabilities are calculated within the continuum distorted-wave with eikonal initial state (CDW-EIS) formalism. The initial and final atomic wave functions are obtained by solving numerically the atomic wave equations with an optimized potential model (OPM). The electron-electron correlation in the final state is investigated following three different approaches: the usual Gamow factor, a modified Gamow factor with an effective charge and a mean value of the electron-electron repulsive Coulomb wave. The calculations are compared with experimental data and good agreement is found for double ionization of He and Li atoms by H{sup +}, He{sup 2+}and Li{sup 3+} impact, at intermediate energies.

  9. Complementary views on electron spectra: From fluctuation diagnostics to real-space correlations

    Science.gov (United States)

    Gunnarsson, O.; Merino, J.; Schäfer, T.; Sangiovanni, G.; Rohringer, G.; Toschi, A.

    2018-03-01

    We study the relation between the microscopic properties of a many-body system and the electron spectra, experimentally accessible by photoemission. In a recent paper [O. Gunnarsson et al., Phys. Rev. Lett. 114, 236402 (2015), 10.1103/PhysRevLett.114.236402], we introduced the "fluctuation diagnostics" approach to extract the dominant wave-vector-dependent bosonic fluctuations from the electronic self-energy. Here, we first reformulate the theory in terms of fermionic modes to render its connection with resonance valence bond (RVB) fluctuations more transparent. Second, by using a large-U expansion, where U is the Coulomb interaction, we relate the fluctuations to real-space correlations. Therefore, it becomes possible to study how electron spectra are related to charge, spin, superconductivity, and RVB-like real-space correlations, broadening the analysis of an earlier work [J. Merino and O. Gunnarsson, Phys. Rev. B 89, 245130 (2014), 10.1103/PhysRevB.89.245130]. This formalism is applied to the pseudogap physics of the two-dimensional Hubbard model, studied in the dynamical cluster approximation. We perform calculations for embedded clusters with up to 32 sites, having three inequivalent K points at the Fermi surface. We find that as U is increased, correlation functions gradually attain values consistent with an RVB state. This first happens for correlation functions involving the antinodal point and gradually spreads to the nodal point along the Fermi surface. Simultaneously, a pseudogap opens up along the Fermi surface. We relate this to a crossover from a Kondo-type state to an RVB-like localized cluster state and to the presence of RVB and spin fluctuations. These changes are caused by a strong momentum dependence in the cluster bath couplings along the Fermi surface. We also show, from a more algorithmic perspective, how the time-consuming calculations in fluctuation diagnostics can be drastically simplified.

  10. Coherent electron-correlation compatible with random atom stacking in amorphous Ce-Ru alloys

    International Nuclear Information System (INIS)

    Homma, Yoshiya; Sumiyama, Kenji; Yamauchi, Hiroshi; Suzuki, Kenji

    1997-01-01

    The amorphous Ce-Ru alloys produced by the sputtering technique show the following distinct behaviors at low temperatures. The electronic specific heat coefficient rapidly increases below 5 K for Ce-19 and 42 at.%Ru alloys with decreasing temperature, T, (a heavy fermion behavior). The electrical resistivity displays -logT dependence at T > 40 K (an incoherent or impurity Kondo effect). Is slightly decreases at T < 30 K for Ce-19 and 42 at.%Ru alloys (a coherent Kondo effect), while it abruptly decreases at 2.5 K for 82 at.%Ru (a superconducting phenomenon). These coherent states may originate from the strong mixing and correlation of 4f-electrons and conduction-electrons even in the random alloy system. (author)

  11. Effect of electron correlation on the forced electric dipole transition probabilities in fsup(N) systems

    International Nuclear Information System (INIS)

    Jankowski, K.; Smentek-Mielczarek, L.

    1981-01-01

    Results of model studies of the impact of electron correlation on the forced electric dipole transition probabilities between states of the 4fsup(N) configuration are reported for the [ 3 P] 0 - [ 3 F] 4 , [ 3 H] 4 transitions in Pr 3+ : LaCl 3 and for [ 7 F] 0 - [ 5 D] 2 , [ 7 F] 1 - [ 5 D] 1 hypersensitive transitions in Eu 3+ : LaCl 3 . For the former system the correlation effects cause a modification of earlier results by 40-95 per cent, whereas for the latter the probability changes by as much as two orders of magnitude. The great changes found in the case of hypersensitive transitions suggest that electron correlation effects may belong to the most important factors determining the nature of these transitions. Several types of effective correlation operators are considered and their relative importance is discussed. The results indicate that intermediate configurations including g orbitals are very important for the description of correlation effects. (author)

  12. Non perturbative aspects of strongly correlated electron systems

    International Nuclear Information System (INIS)

    Controzzi, D.

    2000-01-01

    In this thesis we report some selected works on Strongly Correlated Electron Systems. A common ingredient of these works is the use of non-perturbative techniques available in low dimensions. In the first part we use the Bethe Ansatz to study some properties of two families of integrable models introduced by Fateev. We calculate the Thermodynamics of the models and show how they can be interpreted as effective Landau-Ginzburg theories for coupled two-dimensional superconductors interacting with an insulating substrate. This allows us to study exactly the dependence of the critical temperature on the thickness of the insulating layer, and on the interaction between the order parameters of two different superconducting planes. In the second part of the thesis we study the optical conductivity of the sine-Gordon model using the Form Factor method and Conformal Perturbation Theory. This allows us to develop, for the first time, a complete theory of the optical conductivity of one-dimensional Mott insulators, in the Quantum Field Theory limit. (author)

  13. Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States

    Science.gov (United States)

    Brandão, Fernando G. S. L.; Kastoryano, Michael J.

    2018-05-01

    Preparing quantum thermal states on a quantum computer is in general a difficult task. We provide a procedure to prepare a thermal state on a quantum computer with a logarithmic depth circuit of local quantum channels assuming that the thermal state correlations satisfy the following two properties: (i) the correlations between two regions are exponentially decaying in the distance between the regions, and (ii) the thermal state is an approximate Markov state for shielded regions. We require both properties to hold for the thermal state of the Hamiltonian on any induced subgraph of the original lattice. Assumption (ii) is satisfied for all commuting Gibbs states, while assumption (i) is satisfied for every model above a critical temperature. Both assumptions are satisfied in one spatial dimension. Moreover, both assumptions are expected to hold above the thermal phase transition for models without any topological order at finite temperature. As a building block, we show that exponential decay of correlation (for thermal states of Hamiltonians on all induced subgraphs) is sufficient to efficiently estimate the expectation value of a local observable. Our proof uses quantum belief propagation, a recent strengthening of strong sub-additivity, and naturally breaks down for states with topological order.

  14. Anti-correlated spectral motion in bisphthalocyanines: evidence for vibrational modulation of electronic mixing.

    Science.gov (United States)

    Prall, Bradley S; Parkinson, Dilworth Y; Ishikawa, Naoto; Fleming, Graham R

    2005-12-08

    We exploit a coherently excited nuclear wave packet to study nuclear motion modulation of electronic structure in a metal bridged phthalocyanine dimer, lutetium bisphthalocyanine, which displays two visible absorption bands. We find that the nuclear coordinate influences the energies of the underlying exciton and charge resonance states as well as their interaction; the interplay of the various couplings creates unusual anti-correlated spectral motion in the two bands. Excited state relaxation dynamics are the same regardless of which transition is pumped, with decay time constants of 1.5 and 11 ps. The dynamics are analyzed using a three-state kinetic model after relaxation from one or two additional states faster than the experimental time resolution of 50-100 fs.

  15. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?

    Science.gov (United States)

    Murphy, Kevin; Birn, Rasmus M; Handwerker, Daniel A; Jones, Tyler B; Bandettini, Peter A

    2009-02-01

    Low-frequency fluctuations in fMRI signal have been used to map several consistent resting state networks in the brain. Using the posterior cingulate cortex as a seed region, functional connectivity analyses have found not only positive correlations in the default mode network but negative correlations in another resting state network related to attentional processes. The interpretation is that the human brain is intrinsically organized into dynamic, anti-correlated functional networks. Global variations of the BOLD signal are often considered nuisance effects and are commonly removed using a general linear model (GLM) technique. This global signal regression method has been shown to introduce negative activation measures in standard fMRI analyses. The topic of this paper is whether such a correction technique could be the cause of anti-correlated resting state networks in functional connectivity analyses. Here we show that, after global signal regression, correlation values to a seed voxel must sum to a negative value. Simulations also show that small phase differences between regions can lead to spurious negative correlation values. A combination breath holding and visual task demonstrates that the relative phase of global and local signals can affect connectivity measures and that, experimentally, global signal regression leads to bell-shaped correlation value distributions, centred on zero. Finally, analyses of negatively correlated networks in resting state data show that global signal regression is most likely the cause of anti-correlations. These results call into question the interpretation of negatively correlated regions in the brain when using global signal regression as an initial processing step.

  16. Electron scattering in dense atomic and molecular gases: An empirical correlation of polarizability and electron scattering length

    International Nuclear Information System (INIS)

    Rupnik, K.; Asaf, U.; McGlynn, S.P.

    1990-01-01

    A linear correlation exists between the electron scattering length, as measured by a pressure shift method, and the polarizabilities for He, Ne, Ar, Kr, and Xe gases. The correlative algorithm has excellent predictive capability for the electron scattering lengths of mixtures of rare gases, simple molecular gases such as H 2 and N 2 and even complex molecular entities such as methane, CH 4

  17. Electron holography at atomic dimensions -- Present state

    International Nuclear Information System (INIS)

    Lehmann, M.; Lichte, H.

    1999-01-01

    An electron microscope is a wave optical instrument where the object information is carried by an electron wave. However, an important information, the phase of the electron wave, is lost, because only intensities can be recorded in a conventional electron micrograph. Off-axis electron holography solves this phase problem by encoding amplitude and phase information in an interference pattern, the so-called hologram. After reconstruction, a rather unrestricted wave optical analysis can be performed on a computer. The possibilities as well as the current limitations of off-axis electron holography at atomic dimensions are discussed, and they are illustrated at two applications of structure characterization of ε-NbN and YBCO-1237. Finally, an electron microscope equipped with a Cs-corrector, a monochromator, and a Moellenstedt biprism is outlined for subangstrom holography

  18. Coherent states of an electron in a quantized electromagnetic wave

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Bukhbinder, I.L.; Gitman, D.M.; Lavrov, P.M.

    1977-01-01

    Coherent states for interacting electrons and photons in a plane elecmagnetic wave are found. Trajectories of the electron and the characteristics of the electromagnetic field are investigated. Limiting transition to the given external field is studied

  19. Imaging the square of the correlated two-electron wave function of a hydrogen molecule.

    Science.gov (United States)

    Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R

    2017-12-22

    The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.

  20. New real space correlated-basis-functions approach for the electron correlations of the semiconductor inversion layer

    International Nuclear Information System (INIS)

    Feng Weiguo; Wang Hongwei; Wu Xiang

    1989-12-01

    Based on the real space Correlated-Basis-Functions theory and the collective oscillation behaviour of the electron gas with effective Coulomb interaction, the many body wave function is obtained for the quasi-two-dimensional electron system in the semiconductor inversion layer. The pair-correlation function and the correlation energy of the system have been calculated by the integro-differential method in this paper. The comparison with the other previous theoretical results is also made. The new theoretical approach and its numerical results show that the pair-correlation functions are definitely positive and satisfy the normalization condition. (author). 10 refs, 2 figs

  1. Correlation effects on spin-polarized electron-hole quantum bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Saini, L. K., E-mail: drlalitsaini75@gmail.com; Sharma, R. O., E-mail: sharmarajesh0387@gmail.com [Department of Applied Physics, S. V. National Institute of Technology, Surat – 395 007 (India); Nayak, Mukesh G. [Department of Physics, Silvassa College (Silvassa Institute of Higher Learning), Silvassa 396 230 (India)

    2016-05-06

    We present a numerical calculation for the intra- and interlayer pair-correlation functions, g{sub ll’}(r), of spin-polarized electron-hole quantum bilayers at zero temperature. The calculations of g{sub ll’}(r) are performed by including electron correlations within the dynamical version of the self-consistent mean-field approximation of Singwi, Tosi, Land and Sjölander (qSTLS). Our study reveals that the critical layer density decreases (increases) due to the inclusion of finite width (mass-asymmetry) effect during the phase-transition from charge-density wave to Wigner crystal ground-state by yielding the pronounced oscillatory behavior ing{sub ll}(r). The results are compared with recent findings of spin-polarized electron-hole quantum bilayers with mass-symmetry and zero width effects. To highlight the importance of dynamical character of correlations, we have also compared our results with the STLS results.

  2. Two correlated quasiparticles states in the principal series approximation

    International Nuclear Information System (INIS)

    Dukelsky, J.; Dussel, G.G.; Sofia, H.M.

    1983-01-01

    The principal series approximation is extended to the description of two correlated quasiparticles states, enabling a treatment of these states that takes into account the coupling among the two particle Green's function and the particle-hole one. This description is related to a random phase approximation treatment of collective states in open shell nuclei that includes simultaneously the particle-particle and particle-hole versions of the nuclear residual Hamiltonian. Using separable interactions it is found that the inclusion of the particle-particle part of the Hamiltonians greatly changes the properties of the 2 + states in the Sn isotopes

  3. Adler Award Lecture: Fermi-Liquid Instabilities in Strongly Correlated f-Electron Materials.^*

    Science.gov (United States)

    Maple, M. Brian

    1996-03-01

    Strongly correlated f-electron materials are replete with novel electronic states and phenomena ; e. g. , a metallic ``heavy electron'' state with a quasiparticle effective mass of several hundred times the free electron mass, anisotropic superconductivity with an energy gap that may vanish at points or along lines on the Fermi surface, the coexistence of superconductivity and antiferromagnetism over different parts of the Fermi surface, multiple superconducting phases in the hyperspace of chemical composition, temperature, pressure, and magnetic field, and an insulating phase, in so-called ``hybridization gap semiconductors'' or ``Kondo insulators'', with a small energy gap of only a few meV. During the last several years, a new low temperature non-Fermi-liquid (NFL) state has been observed in a new class of strongly correlated f-electron materials which currently consists of certain Ce and U intermetallics into which a nonmagnetic element has been substituted.(M. B. Maple et al./) , J. Low Temp. Phys. 99 , 223 (1995). The Ce and U ions have partially-filled f-electron shells and carry magnetic dipole or electric quadrupole moments which interact with the spins and charges of the conduction electrons and can participate in magnetic or quadrupolar ordering at low temperatures. The physical properties of these materials exhibit weak power law or logarithmic divergences in temperature and suggest the existence of a critical point at T=0 K. Possible origins of the 0 K critical point include an unconventional moment compensation process, such as a multichannel Kondo effect, and fluctuations of the order parameter in the vicinity of a 0 K second order phase transition. In some systems, such as Y_1-xU_xPd 3 and U_1-xTh_xPd _2Al 3 , the NFL characteristics appear to be single ion effects since they persist to low concentrations of f-moments, whereas in other systems, such as CeCu _5.9Au _0.1 , the NFL behavior seems to be associated with interactions between the f

  4. NATO Advanced Study Institute on Relativistic and Electron Correlation Effects in Molecules and Solids

    CERN Document Server

    1994-01-01

    The NATO Advanced Study Institute (ASI) on "R@lativistic and Electron Correlation Effects in Molecules and Solids", co-sponsored by Simon Fraser University (SFU) and the Natural Sciences and Engineering Research Council of Canada (NSERC) was held Aug 10- 21, 1992 at the University of British Columbia (UBC), Vancouver, Canada. A total of 90 lecturers and students with backgrounds in Chemistry, Physics, Mathematics and various interdisciplinary subjects attended the ASI. In my proposal submitted to NATO for financial support for this ASI, I pointed out that a NATO ASI on the effects of relativity in many-electron systems was held ten years ago, [See G.L. Malli, (ed) Relativistic Effects in Atoms, Molecules and Solids, Plenum Press, Vol B87, New York, 1983]. Moreover, at a NATO Advanced Research Workshop (ARW) on advanced methods for molecular electronic structure "an assessment of state-of­ the-art of Electron Correlation ... " was carried out [see C.E. Dykstra, (ed), Advanced Theories and Computational Approa...

  5. Correlation function and electronic spectral line broadening in relativistic plasmas

    Directory of Open Access Journals (Sweden)

    Douis S.

    2013-01-01

    Full Text Available The electrons dynamics and the time autocorrelation function Cee(t for the total electric microfield of the electrons on positive charge impurity embedded in a plasma are considered when the relativistic dynamic of the electrons is taken into account. We have, at first, built the effective potential governing the electrons dynamics. This potential obeys a nonlinear integral equation that we have solved numerically. Regarding the electron broadening of the line in plasma, we have found that when the plasma parameters change, the amplitude of the collision operator changes in the same way as the time integral of Cee(t. The electron-impurity interaction is taken at first time as screened Deutsh interaction and at the second time as Kelbg interaction. Comparisons of all interesting quantities are made with respect to the previous interactions as well as between classical and relativistic dynamics of electrons.

  6. Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet

    Directory of Open Access Journals (Sweden)

    P. A. Bhobe

    2015-10-01

    Full Text Available Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K_{2}Cr_{8}O_{16}, which exhibits a temperature-dependent (T-dependent paramagnetic-to-ferromagnetic-metal transition at T_{C}=180  K and transforms into a ferromagnetic insulator below T_{MI}=95  K. We observe clear T-dependent dynamic valence (charge fluctuations from above T_{C} to T_{MI}, which effectively get pinned to an average nominal valence of Cr^{+3.75} (Cr^{4+}∶Cr^{3+} states in a 3∶1 ratio in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0∼3.5(k_{B}T_{MI}∼35  meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U∼4  eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr and the half-metallic ferromagnetism in the t_{2g} up-spin band favor a low-energy Peierls metal-insulator transition.

  7. Guide to state-of-the-art electron devices

    CERN Document Server

    2013-01-01

    Concise, high quality and comparative overview of state-of-the-art electron device development, manufacturing technologies and applications Guide to State-of-the-Art Electron Devices marks the 60th anniversary of the IEEE Electron Devices Committee and the 35th anniversary of the IEEE Electron Devices Society, as such it defines the state-of-the-art of electron devices, as well as future directions across the entire field. Spans full range of electron device types such as photovoltaic devices, semiconductor manufacturing and VLSI technology and circuits, covered by IEEE Electron and Devices Society Contributed by internationally respected members of the electron devices community A timely desk reference with fully-integrated colour and a unique lay-out with sidebars to highlight the key terms Discusses the historical developments and speculates on future trends to give a more rounded picture of the topics covered A valuable resource R&D managers; engineers in the semiconductor industry; applied scientists...

  8. Magnetic states, correlation effects and metal-insulator transition in FCC lattice

    Science.gov (United States)

    Timirgazin, M. A.; Igoshev, P. A.; Arzhnikov, A. K.; Irkhin, V. Yu

    2016-12-01

    The ground-state magnetic phase diagram (including collinear and spiral states) of the single-band Hubbard model for the face-centered cubic lattice and related metal-insulator transition (MIT) are investigated within the slave-boson approach by Kotliar and Ruckenstein. The correlation-induced electron spectrum narrowing and a comparison with a generalized Hartree-Fock approximation allow one to estimate the strength of correlation effects. This, as well as the MIT scenario, depends dramatically on the ratio of the next-nearest and nearest electron hopping integrals {{t}\\prime}/t . In contrast with metallic state, possessing substantial band narrowing, insulator one is only weakly correlated. The magnetic (Slater) scenario of MIT is found to be superior over the Mott one. Unlike simple and body-centered cubic lattices, MIT is the first order transition (discontinuous) for most {{t}\\prime}/t . The insulator state is type-II or type-III antiferromagnet, and the metallic state is spin-spiral, collinear antiferromagnet or paramagnet depending on {{t}\\prime}/t . The picture of magnetic ordering is compared with that in the standard localized-electron (Heisenberg) model.

  9. Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence

    International Nuclear Information System (INIS)

    Gori-Giorgi, Paola; Savin, Andreas

    2006-01-01

    The combination of density-functional theory with other approaches to the many-electron problem through the separation of the electron-electron interaction into a short-range and a long-range contribution is a promising method, which is raising more and more interest in recent years. In this work some properties of the corresponding correlation energy functionals are derived by studying the electron-electron coalescence condition for a modified (long-range-only) interaction. A general relation for the on-top (zero electron-electron distance) pair density is derived, and its usefulness is discussed with some examples. For the special case of the uniform electron gas, a simple parametrization of the on-top pair density for a long-range only interaction is presented and supported by calculations within the ''extended Overhauser model.'' The results of this work can be used to build self-interaction corrected short-range correlation energy functionals

  10. Correlation Effects and Hidden Spin-Orbit Entangled Electronic Order in Parent and Electron-Doped Iridates Sr_{2}IrO_{4}

    Directory of Open Access Journals (Sweden)

    Sen Zhou

    2017-10-01

    Full Text Available Analogs of the high-T_{c} cuprates have been long sought after in transition metal oxides. Because of the strong spin-orbit coupling, the 5d perovskite iridates Sr_{2}IrO_{4} exhibit a low-energy electronic structure remarkably similar to the cuprates. Whether a superconducting state exists as in the cuprates requires understanding the correlated spin-orbit entangled electronic states. Recent experiments discovered hidden order in the parent and electron-doped iridates, some with striking analogies to the cuprates, including Fermi surface pockets, Fermi arcs, and pseudogap. Here, we study the correlation and disorder effects in a five-orbital model derived from the band theory. We find that the experimental observations are consistent with a d-wave spin-orbit density wave order that breaks the symmetry of a joint twofold spin-orbital rotation followed by a lattice translation. There is a Berry phase and a plaquette spin flux due to spin procession as electrons hop between Ir atoms, akin to the intersite spin-orbit coupling in quantum spin Hall insulators. The associated staggered circulating J_{eff}=1/2 spin current can be probed by advanced techniques of spin-current detection in spintronics. This electronic order can emerge spontaneously from the intersite Coulomb interactions between the spatially extended iridium 5d orbitals, turning the metallic state into an electron-doped quasi-2D Dirac semimetal with important implications on the possible superconducting state suggested by recent experiments.

  11. Correlation/Communication complexity of generating bipartite states

    OpenAIRE

    Jain, Rahul; Shi, Yaoyun; Wei, Zhaohui; Zhang, Shengyu

    2012-01-01

    We study the correlation complexity (or equivalently, the communication complexity) of generating a bipartite quantum state $\\rho$. When $\\rho$ is a pure state, we completely characterize the complexity for approximately generating $\\rho$ by a corresponding approximate rank, closing a gap left in Ambainis, Schulman, Ta-Shma, Vazirani and Wigderson (SIAM Journal on Computing, 32(6):1570-1585, 2003). When $\\rho$ is a classical distribution $P(x,y)$, we tightly characterize the complexity of gen...

  12. Spatial and temporal correlation in dynamic, multi-electron quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Godunov, A.L.; McGuire, J.H.; Shakov, Kh.Kh. [Department of Physics, Tulane University, New Orleans, LA (United States); Ivanov, P.B.; Shipakov, V.A. [Troitsk Institute for Innovation and Fusion Research, Troitsk (Russian Federation); Merabet, H.; Bruch, R.; Hanni, J. [Department of Physics, University of Nevada Reno, Reno, NV (United States)

    2001-12-28

    Cross sections for ionization with excitation and for double excitation in helium are evaluated in a full second Born calculation. These full second Born calculations are compared to calculations in the independent electron approximation, where spatial correlation between the electrons is removed. Comparison is also made to calculations in the independent time approximation, where time correlation between the electrons is removed. The two-electron transitions considered here are caused by interactions with incident protons and electrons with velocities ranging between 2 and 10 au. Good agreement is found between our full calculations and experiment, except for the lowest velocities, where higher Born terms are expected to be significant. Spatial electron correlation, arising from internal electron-electron interactions, and time correlation, arising from time ordering of the external interactions, can both give rise to observable effects. Our method may be used for photon impact. (author)

  13. Full-gap superconductivity with strong electron correlations in the β-pyrochlore KOs2O6

    International Nuclear Information System (INIS)

    Kasahara, Y.; Shimono, Y.; Kato, T.; Hashimoto, K.; Shibauchi, T.; Matsuda, Y.; Yonezawa, S.; Muraoka, Y.; Yamaura, J.; Nagao, Y.; Hiroi, Z.

    2008-01-01

    To elucidate the superconducting gap structure and the influence of rattling motion on quasiparticle dynamics in the superconducting state of KOs 2 O 6 , the thermal conductivity and microwave surface impedance were measured at low temperatures. The magnetic field dependence of thermal conductivity and temperature dependence of penetration depth demonstrate full-gap superconductivity in KOs 2 O 6 . The quasiparticle scattering time is strongly enhanced in the superconducting state, indicating a strong electron inelastic scattering in the normal state. These results highlight that KOs 2 O 6 is unique among superconductors with strong electron correlations

  14. Strongly correlated quasi-one-dimensional bands: Ground states, optical absorption, and phonons

    International Nuclear Information System (INIS)

    Campbell, D.K.; Gammel, J.T.; Loh, E.Y. Jr.

    1989-01-01

    Using the Lanczos method for exact diagonalization on systems up to 14 sites, combined with a novel ''phase randomization'' technique for extracting more information from these small systems, we investigate several aspects of the one-dimensional Peierls-Hubbard Hamiltonian, in the context of trans-polyacetylene: the dependence of the ground state dimerization on the strength of the electron-electron interactions, including the effects of ''off-diagonal'' Coulomb terms generally ignored in the Hubbard model; the phonon vibrational frequencies and dispersion relations, and the optical absorption properties, including the spectrum of absorptions as a function of photon energy. These three different observables provide considerable insight into the effects of electron-electron interactions on the properties of real materials and thus into the nature of strongly correlated electron systems. 29 refs., 11 figs

  15. Compression-Driven Enhancement of Electronic Correlations in Simple Alkali Metals

    Science.gov (United States)

    Fabbris, Gilberto; Lim, Jinhyuk; Veiga, Larissa; Haskel, Daniel; Schilling, James

    2015-03-01

    Alkali metals are the best realization of the nearly free electron model. This scenario appears to change dramatically as the alkalis are subjected to extreme pressure, leading to unexpected properties such as the departure from metallic behavior in Li and Na, and the occurrence of remarkable low-symmetry crystal structures in all alkalis. Although the mechanism behind these phase transitions is currently under debate, these are believed to be electronically driven. In this study the high-pressure electronic and structural ground state of Rb and Cs was investigated through low temperature XANES and XRD measurements combined with ab initio calculations. The results indicate that the pressure-induced localization of the conduction band triggers a Peierls-like mechanism, inducing the low symmetry phases. This localization process is evident by the pressure-driven increase in the number of d electrons, which takes place through strong spd hybridization. These experimental results indicate that compression turns the heavy alkali metals into strongly correlated electron systems. Work at Argonne was supported by DOE No. DE-AC02-06CH11357. Research at Washington University was supported by NSF DMR-1104742 and CDAC/DOE/NNSA DE-FC52-08NA28554.

  16. Final state interaction effect on correlations in narrow particles pairs

    International Nuclear Information System (INIS)

    Lednicky, R.; Lyuboshitz, V.L.

    1990-01-01

    In this paper the dependence of the two-particle correlation function on the space-time dimensions of the particle production region is discussed. The basic formulae, taking into account he effects of quantum statistics and final state interaction, and the conditions of their applicability are given

  17. Correlates of Abortion Related Maternal Mortality at the Lagos State ...

    African Journals Online (AJOL)

    This study was carried out to highlight the probable correlates of mortality among patients managed for abortion related complications at the Lagos State University Teaching Hospital, Ikeja. All patients managed for abortion related complications between 1st January 2000 and 31st December 2003 were studied. Certain ...

  18. Electronic states in systems of reduced dimensionality

    International Nuclear Information System (INIS)

    Ulloa, S.E.

    1992-01-01

    This report briefly discusses the following research: magnetically modulated systems, inelastic magnetotunneling, ballistic transport review, screening in reduced dimensions, raman and electron energy loss spectroscopy; and ballistic quantum interference effects. (LSP)

  19. Electronic and structural ground state of heavy alkali metals at high pressure

    Science.gov (United States)

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; Haskel, D.; Schilling, J. S.

    2015-02-01

    Alkali metals display unexpected properties at high pressure, including emergence of low-symmetry crystal structures, which appear to occur due to enhanced electronic correlations among the otherwise nearly free conduction electrons. We investigate the high-pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with a b i n i t i o theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the o C 84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of the valence electrons characterized by pseudogap formation near the Fermi level and strong s p d hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.

  20. Ground state correlations and structure of odd spherical nuclei

    International Nuclear Information System (INIS)

    Mishev, S.; Voronov, V. V.

    2006-01-01

    It is well known that the Pauli principle plays a substantial role at low energies because the phonon operators are not ideal boson operators. Calculating the exact commutators between the quasiparticle and phonon operators one can take into account the Pauli principle corrections. Besides the ground state correlations due to the quasiparticle interaction in the ground state influence the single particle fragmentation as well. In this paper, we generalize the basic QPM equations to account for both mentioned effects. As an illustration of our approach, calculations on the structure of the low-lying states in "1"3"1Ba have been performed.

  1. Ground state correlations and structure of odd spherical nuclei

    International Nuclear Information System (INIS)

    Mishev, S.; Voronov, V.V.

    2008-01-01

    It is well known that the Pauli principle plays a substantial role at low energies because the phonon operators are not ideal boson operators. Calculating the exact commutators between the quasiparticle and phonon operators one can take into account the Pauli principle corrections. Besides, the ground state correlations due to the quasiparticle interaction in the ground state influence the single-particle fragmentation as well. In this paper, we generalize the basic equations of the quasiparticle-phonon nuclear model to account for both effects mentioned. As an illustration of our approach, calculations on the structure of the low-lying states in 133 Ba have been performed

  2. Two dimensional electron systems for solid state quantum computation

    Science.gov (United States)

    Mondal, Sumit

    Two dimensional electron systems based on GaAs/AlGaAs heterostructures are extremely useful in various scientific investigations of recent times including the search for quantum computational schemes. Although significant strides have been made over the past few years to realize solid state qubits on GaAs/AlGaAs 2DEGs, there are numerous factors limiting the progress. We attempt to identify factors that have material and design-specific origin and develop ways to overcome them. The thesis is divided in two broad segments. In the first segment we describe the realization of a new field-effect induced two dimensional electron system on GaAs/AlGaAs heterostructure where the novel device-design is expected to suppress the level of charge noise present in the device. Modulation-doped GaAs/AlGaAs heterostructures are utilized extensively in the study of quantum transport in nanostructures, but charge fluctuations associated with remote ionized dopants often produce deleterious effects. Electric field-induced carrier systems offer an attractive alternative if certain challenges can be overcome. We demonstrate a field-effect transistor in which the active channel is locally devoid of modulation-doping, but silicon dopant atoms are retained in the ohmic contact region to facilitate low-resistance contacts. A high quality two-dimensional electron gas is induced by a field-effect that is tunable over a density range of 6.5x10 10cm-2 to 2.6x1011cm-2 . Device design, fabrication, and low temperature (T=0.3K) characterization results are discussed. The demonstrated device-design overcomes several existing limitations in the fabrication of field-induced 2DEGs and might find utility in hosting nanostructures required for making spin qubits. The second broad segment describes our effort to correlate transport parameters measured at T=0.3K to the strength of the fractional quantum Hall state observed at nu=5/2 in the second Landau level of high-mobility GaAs/AlGaAs two dimensional

  3. Unifying neural-network quantum states and correlator product states via tensor networks

    Science.gov (United States)

    Clark, Stephen R.

    2018-04-01

    Correlator product states (CPS) are a powerful and very broad class of states for quantum lattice systems whose (unnormalised) amplitudes in a fixed basis can be sampled exactly and efficiently. They work by gluing together states of overlapping clusters of sites on the lattice, called correlators. Recently Carleo and Troyer (2017 Science 355 602) introduced a new type sampleable ansatz called neural-network quantum states (NQS) that are inspired by the restricted Boltzmann model used in machine learning. By employing the formalism of tensor networks we show that NQS are a special form of CPS with novel properties. Diagramatically a number of simple observations become transparent. Namely, that NQS are CPS built from extensively sized GHZ-form correlators making them uniquely unbiased geometrically. The appearance of GHZ correlators also relates NQS to canonical polyadic decompositions of tensors. Another immediate implication of the NQS equivalence to CPS is that we are able to formulate exact NQS representations for a wide range of paradigmatic states, including superpositions of weighed-graph states, the Laughlin state, toric code states, and the resonating valence bond state. These examples reveal the potential of using higher dimensional hidden units and a second hidden layer in NQS. The major outlook of this study is the elevation of NQS to correlator operators allowing them to enhance conventional well-established variational Monte Carlo approaches for strongly correlated fermions.

  4. Correlated double electron capture in slow, highly charged ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Stolterfoht, N.; Havener, C.C.; Phaneuf, R.A.; Swenson, J.K.; Shafroth, S.M.; Meyer, F.W.

    1986-01-01

    Recent measurements of autoionization electrons produced in slow, highly charged ion-atom collisions are reviewed. Mechanisms for double electron capture into equivalent and nonequivalent configurations are analyzed by comparing the probabilities for the creation of L/sub 1/L/sub 23/X Coster Kronig electrons and L-Auger electrons. It is shown that the production of the Coster-Kronig electrons is due to electron correlation effects whose analysis leads beyond the independent-particle model. The importance of correlation effects on different capture mechanisms is discussed. 28 refs., 6 figs.

  5. Correlated double electron capture in slow, highly charged ion-atom collisions

    International Nuclear Information System (INIS)

    Stolterfoht, N.; Havener, C.C.; Phaneuf, R.A.; Swenson, J.K.; Shafroth, S.M.; Meyer, F.W.

    1986-01-01

    Recent measurements of autoionization electrons produced in slow, highly charged ion-atom collisions are reviewed. Mechanisms for double electron capture into equivalent and nonequivalent configurations are analyzed by comparing the probabilities for the creation of L 1 L 23 X Coster Kronig electrons and L-Auger electrons. It is shown that the production of the Coster-Kronig electrons is due to electron correlation effects whose analysis leads beyond the independent-particle model. The importance of correlation effects on different capture mechanisms is discussed. 28 refs., 6 figs

  6. The Electron-Phonon Interaction in Strongly Correlated Systems

    International Nuclear Information System (INIS)

    Castellani, C.; Grilli, M.

    1995-01-01

    We analyze the effect of strong electron-electron repulsion on the electron-phonon interaction from a Fermi-liquid point of view and show that the electron-electron interaction is responsible for vertex corrections, which generically lead to a strong suppression of the electron-phonon coupling in the v F q/ω >>1 region, while such effect is not present when v F q/ω F is the Fermi velocity and q and ω are the transferred momentum and frequency respectively. In particular the e-ph scattering is suppressed in transport properties which are dominated by low-energy-high-momentum processes. On the other hand, analyzing the stability criterion for the compressibility, which involves the effective interactions in the dynamical limit, we show that a sizable electron-phonon interaction can push the system towards a phase-separation instability. Finally a detailed analysis of these ideas is carried out using a slave-boson approach for the infinite-U three-band Hubbard model in the presence of a coupling between the local hole density and a dispersionless optical phonon. (author)

  7. Electron states in semiconductor quantum dots

    International Nuclear Information System (INIS)

    Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.

    2014-01-01

    In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications

  8. Electronic structure and the mechanism of autoionization for doubly excited states

    International Nuclear Information System (INIS)

    Komninos, Y.; Makri, N.; Nicolaides, C.A.

    1986-01-01

    Apart from pure phenomenology, the rigorous and quantitative study of many-electron autoionizing states presents intriguing questions as regards their structure and dynamics. In this paper we present an analysis of such states within a state specific theory with application to five low-lying doubly excited states (DES) of He. The zeroth order description is multiconfigurational and is obtained numerically at the MCHF level. In this way, major radial and angular correlations are accounted for accurately, and reliable predictions can be made without the requirement of large computations. The additional localized correlation is obtained by optimizing variationally analytic virtual orbitals. (orig./WL)

  9. Structure and electron-ion correlation of liquid germanium

    Energy Technology Data Exchange (ETDEWEB)

    Kawakita, Y. [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)]. E-mail: kawakita@rc.kyushu-u.ac.jp; Fujita, S. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Kohara, S. [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Mikazuki-cho, Hyogo 679-5198 (Japan); Ohshima, K. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Fujii, H. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Yokota, Y. [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Takeda, S. [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan)

    2005-08-15

    Structure factor of liquid germanium (Ge) has a shoulder at {theta} = 3.2 A{sup -1} in the high-momentum-transfer region of the first peak. To investigate the origin of such a non-simplicity in the structure, high energy X-ray diffraction measurements have been performed using 113.26 keV incident X-ray, at BL04B2 beamline of SPring-8. By a combination of the obtained structure factor with the reported neutron diffraction data, charge density function and electron-ion partial structure factor have been deduced. The peak position of the charge distribution is located at about 1 A, rather smaller r value than the half value of nearest neighbor distance ({approx}2.7 A), which suggests that valence electrons of liquid Ge play a role of screening electrons around a metallic ion rather than covalently bonding electrons.

  10. Combination of Wavefunction and Density Functional Approximations for Describing Electronic Correlation

    Science.gov (United States)

    Garza, Alejandro J.

    Perhaps the most important approximations to the electronic structure problem in quantum chemistry are those based on coupled cluster and density functional theories. Coupled cluster theory has been called the ``gold standard'' of quantum chemistry due to the high accuracy that it achieves for weakly correlated systems. Kohn-Sham density functionals based on semilocal approximations are, without a doubt, the most widely used methods in chemistry and material science because of their high accuracy/cost ratio. The root of the success of coupled cluster and density functionals is their ability to efficiently describe the dynamic part of the electron correlation. However, both traditional coupled cluster and density functional approximations may fail catastrophically when substantial static correlation is present. This severely limits the applicability of these methods to a plethora of important chemical and physical problems such as, e.g., the description of bond breaking, transition states, transition metal-, lanthanide- and actinide-containing compounds, and superconductivity. In an attempt to tackle this problem, nonstandard (single-reference) coupled cluster-based techniques that aim to describe static correlation have been recently developed: pair coupled cluster doubles (pCCD) and singlet-paired coupled cluster doubles (CCD0). The ability to describe static correlation in pCCD and CCD0 comes, however, at the expense of important amounts of dynamic correlation so that the high accuracy of standard coupled cluster becomes unattainable. Thus, the reliable and efficient description of static and dynamic correlation in a simultaneous manner remains an open problem for quantum chemistry and many-body theory in general. In this thesis, different ways to combine pCCD and CCD0 with density functionals in order to describe static and dynamic correlation simultaneously (and efficiently) are explored. The combination of wavefunction and density functional methods has a long

  11. Superconducting states in strongly correlated systems with nonstandard quasiparticles and real space pairing: an unconventional Fermi-liquid limit

    Directory of Open Access Journals (Sweden)

    J. Spałek

    2010-01-01

    Full Text Available We use the concept of generalized (almost localized Fermi Liquid composed of nonstandard quasiparticles with spin-dependence effective masses and the effective field induced by electron correlations. This Fermi liquid is obtained within the so-called statistically-consistent Gutzwiller approximation (SGA proposed recently [cf. J. Jędrak et al., arXiv: 1008.0021] and describes electronic states of the correlated quantum liquid. Particular emphasis is put on real space pairing driven by the electronic correlations, the Fulde-Ferrell state of the heavy-fermion liquid, and the d-wave superconducting state of high temperature curate superconductors in the overdoped limit. The appropriate phase diagrams are discussed showing in particular the limits of stability of the Bardeen-Cooper-Schrieffer (BCS type of state.

  12. Electronic structure of disordered binary alloys with short range correlation in Bethe lattice

    International Nuclear Information System (INIS)

    Moreno, I.F.

    1987-01-01

    The determination of the electronic structure of a disordered material along the tight-binding model when applied to a Bethe lattice. The diagonal as well as off-diagonal disorder, are considered. The coordination number on the Bethe is fixed lattice to four (Z=4) that occurs in most compound semiconductors. The main proposal was to study the conditions under which a relatively simple model of a disordered material, i.e, a binary alloy, could account for the basic properties of transport or more specifically for the electronic states in such systems. By using a parametrization of the pair probability the behaviour of the electronic density of states (DOS) for different values of the short range order parameter, σ, which makes possible to treat the segregated, random and alternating cases, was analysed. In solving the problem via the Green function technique in the Wannier representation a linear chain of atoms was considered and using the solution of such a 1-D system the problem of the Bethe lattice which is constructed using such renormalized chains as elements, was solved. The results indicate that the obtained DOS are strongly dependent on the correlation assumed for the occupancy in the lattice. (author) [pt

  13. Correlation researches of the outgoing directions 'shake-off' electron and positron at β+ - decay

    International Nuclear Information System (INIS)

    Mitrokhovich, N.F.; Kupryashkin, V.T.; Sidorenko, L.P.

    2012-01-01

    The correlation properties electron 'shake-off' at β + -decay is studied. The measurements were fulfilled in compare with such properties 'shake-off' electron at β - -decay for explanation mechanism, accountable for correlation motion 'shake-off' electron and main particle (electron at β'--decay and positron at β + -decay). 152 Eu decay was used for it. The measurements were performed on the installation of coincidences of γ-quanta with electrons and low energy electrons, including of e 0 -electrons of the secondary electron emission (γγee 0 -coincidences). The registration of electrons 'shake-off' implemented on e 0 -electrons, created by them. On obtained data, the space correlation of electron 'shake-off' with positron at β + -decay in direction forward is much less that those correlating s hake-off - electron at β - -decay. 'Shake-off'-electrons at β + -decay are predominantly moving in large solid angles relate positron. The mechanism, accountable for it, is proposed

  14. Correlation effects on double electron capture in highly-charged, low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Meyer, F.W.; Griffin, D.C.; Havener, C.C.; Huq, M.S.; Phaneuf, R.A.; Swenson, J.K.; Stolterfoht, N.

    1987-01-01

    The method of zero-degree Auger electron spectroscopy has been used to study two-electron excited states populated in slow double capture collisions of highly charged ions with He and H 2 . The focus of this study is on production of autoionization electrons originating from the non-equivalent 1s 2 2pnl electron configurations in comparison with electron production resulting from the Auger decay of (near) equivalent 1s 2 nln'l' (with n∼n') configurations. It is shown that production of non-equivalent electron configurations is significant and involves electron-electron correlation effects whose analysis leads beyond the independent-particle model. Recent results that include a measurement at non-zero angles are presented to illustrate the angular dependence of electron emission from non-equivalent electron configurations, as well as the dependence on projectile charge state and target species. Comparison of high resolution scans over two lines of the 1s 2 2pnl sequence for the O 6+ + He system with accurate transition energy calculations shows preferential population of high angular momentum substation

  15. Finite-Temperature Variational Monte Carlo Method for Strongly Correlated Electron Systems

    Science.gov (United States)

    Takai, Kensaku; Ido, Kota; Misawa, Takahiro; Yamaji, Youhei; Imada, Masatoshi

    2016-03-01

    A new computational method for finite-temperature properties of strongly correlated electrons is proposed by extending the variational Monte Carlo method originally developed for the ground state. The method is based on the path integral in the imaginary-time formulation, starting from the infinite-temperature state that is well approximated by a small number of certain random initial states. Lower temperatures are progressively reached by the imaginary-time evolution. The algorithm follows the framework of the quantum transfer matrix and finite-temperature Lanczos methods, but we extend them to treat much larger system sizes without the negative sign problem by optimizing the truncated Hilbert space on the basis of the time-dependent variational principle (TDVP). This optimization algorithm is equivalent to the stochastic reconfiguration (SR) method that has been frequently used for the ground state to optimally truncate the Hilbert space. The obtained finite-temperature states allow an interpretation based on the thermal pure quantum (TPQ) state instead of the conventional canonical-ensemble average. Our method is tested for the one- and two-dimensional Hubbard models and its accuracy and efficiency are demonstrated.

  16. Electron correlation effects on the d-d excitations in NiO

    NARCIS (Netherlands)

    de Graaf, C; Broer, R.; Nieuwpoort, WC

    1996-01-01

    The partly filled 3d shell in solid transition metal compounds is quite localized on the transition metal ion and gives rise to large electron correlation effects. With the recently developed CASSCF/CASPT2 approach electron correlation effects can be accounted for efficiently. The CASSCF step

  17. Symplectic invariants, entropic measures and correlations of Gaussian states

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, Alessio; Illuminati, Fabrizio; Siena, Silvio De [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno, INFM UdR Salerno, INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S Allende, 84081 Baronissi, SA (Italy)

    2004-01-28

    We present a derivation of the Von Neumann entropy and mutual information of arbitrary two-mode Gaussian states, based on the explicit determination of the symplectic eigenvalues of a generic covariance matrix. The key role of the symplectic invariants in such a determination is pointed out. We show that the Von Neumann entropy depends on two symplectic invariants, while the purity (or the linear entropy) is determined by only one invariant, so that the two quantities provide two different hierarchies of mixed Gaussian states. A comparison between mutual information and entanglement of formation for symmetric states is considered, taking note of the crucial role of the symplectic eigenvalues in qualifying and quantifying the correlations present in a generic state. (letter to the editor)

  18. Symplectic invariants, entropic measures and correlations of Gaussian states

    International Nuclear Information System (INIS)

    Serafini, Alessio; Illuminati, Fabrizio; Siena, Silvio De

    2004-01-01

    We present a derivation of the Von Neumann entropy and mutual information of arbitrary two-mode Gaussian states, based on the explicit determination of the symplectic eigenvalues of a generic covariance matrix. The key role of the symplectic invariants in such a determination is pointed out. We show that the Von Neumann entropy depends on two symplectic invariants, while the purity (or the linear entropy) is determined by only one invariant, so that the two quantities provide two different hierarchies of mixed Gaussian states. A comparison between mutual information and entanglement of formation for symmetric states is considered, taking note of the crucial role of the symplectic eigenvalues in qualifying and quantifying the correlations present in a generic state. (letter to the editor)

  19. All electron ab initio investigations of the electronic states of the FeC molecule

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, Karl A.

    1999-01-01

    The low lying electronic states of the molecule FeC have been investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) and multi reference configuration interaction (MRCI) calculations. The relativistic corrections for the one electron Darwin contact term...

  20. All Electron ab initio Investigations of the Electronic States of the MoN Molecule

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, Karl A.

    1999-01-01

    The low lying electronic states of the molecule MoN have been investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) calculations. The relativistic corrections for the one electron Darwin contact term and the relativistic mass-velocity correction have...

  1. All-electron ab initio investigations of the electronic states of the NiC molecule

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, Karl. A.

    1999-01-01

    The low-lying electronic states of NiC are investigated by all-electron ab initio multi-configuration self-consistent-field (CASSCF) calculations including relativistic corrections. The electronic structure of NiC is interpreted as perturbed antiferromagnetic couplings of the localized angular...

  2. DMFT at 25. Infinite dimensions. Lecutre notes of the Autumn school on correlated electrons 2014

    International Nuclear Information System (INIS)

    Pavarini, Eva; Koch, Erik; Vollhardt, Dieter; Lichtenstein, Alexander

    2014-01-01

    The following topics were dealt with: From Gutzwiller functions to dynamical mean-field theory, electronic structure of correlated materials, materials from an atonic viewpoint beyond the Landau paradigm, development of the LDA+DMFT approach, projectors and interactions, linear response functions, continuous-time QMC solvers for electronic systems in fermionic and bosonic baths, quantum cluster methods, making use of elf-energy functionals in the variational cluster approximation, dynamic vertex approximation, functional renormalization group approach to interacting Fermi systems, correlated electron dynamics and nonequilibrium dynamical mean-field theory, the one-step ARPES model, photoemission spectroscopy, correlation effects and electronic dimer formation in Ti 2 O 3 . (HSI)

  3. Electron density measurement for steady state plasmas

    International Nuclear Information System (INIS)

    Kawano, Yasunori; Chiba, Shinichi; Inoue, Akira

    2000-01-01

    Electron density of a large tokamak has been measured successfully by the tangential CO 2 laser polarimeter developed in JT-60U. The tangential Faraday rotation angles of two different wavelength of 9.27 and 10.6 μm provided the electron density independently. Two-color polarimeter concept for elimination of Faraday rotation at vacuum windows is verified for the first time. A system stability for long time operation up to ∼10 hours is confirmed. A fluctuation of a signal baseline is observed with a period of ∼3 hours and an amplitude of 0.4 - 0.7deg. In order to improve the polarimeter, an application of diamond window for reduction of the Faraday rotation at vacuum windows and another two-color polarimeter concept for elimination of mechanical rotation component are proposed. (author)

  4. Correlated Photon Emission from Multiatom Rydberg Dark States

    DEFF Research Database (Denmark)

    Pritchard, J.D.; Adams, C.S.; Mølmer, Klaus

    2012-01-01

    We consider three-level atoms driven by two resonant light fields in a ladder scheme where the upper level is a highly excited Rydberg state. We show that the dipole-dipole interactions between Rydberg excited atoms prevents the formation of single particle dark states and leads to strongly corre...... correlated photon pairs from atoms separated by distances large compared to the emission wavelength. For a pair of atoms, this enables realization of an efficient photon-pair source with on average one pair every 30 μs....

  5. Dihydroazulene Photochromism:Synthesis, Molecular Electronics and Hammett Correlations

    DEFF Research Database (Denmark)

    Broman, Søren Lindbæk

    This thesis describes the development of a versatile synthetic protocol for preparation of a large selection of dihydroazulenes (DHAs) with both electron withdrawing and donating groups. By UV-Vis and NMR spectroscopies and even in a single-molecule junction, their ability to undergo a light...... will be discussed in detail. The second chapter describes the design and synthesis of DHA/VHFs intended for use in molecular electronics and their solution and single-molecule junction switching properties. By the expansion of the recently reported procedure for functionalization of this system by Suzuki cross...

  6. Direct conversion of graphite into diamond through electronic excited states

    CERN Document Server

    Nakayama, H

    2003-01-01

    An ab initio total energy calculation has been performed for electronic excited states in diamond and rhombohedral graphite by the full-potential linearized augmented plane wave method within the framework of the local density approximation (LDA). First, calculations for the core-excited state in diamond have been performed to show that the ab initio calculations based on the LDA describe the wavefunctions in the electronic excited states as well as in the ground state quite well. Fairly good coincidence with both experimental data and theoretical prediction has been obtained for the lattice relaxation of the core exciton state. The results of the core exciton state are compared with nitrogen-doped diamond. Next, the structural stability of rhombohedral graphite has been investigated to examine the possibility of the transition into the diamond structure through electronic excited states. While maintaining the rhombohedral symmetry, rhombohedral graphite can be spontaneously transformed to cubic diamond. Tota...

  7. Plasmon Lifetime in K: A Case Study of Correlated Electrons in Solids Amenable to Ab Initio Theory

    International Nuclear Information System (INIS)

    Ku, W.; Eguiluz, A.G.

    1999-01-01

    We solve the puzzle posed by the anomalous dispersion of the plasmon linewidth in K via all-electron density-response calculations, performed within the framework of time-dependent density-functional theory. The key damping mechanism is shown to be decay into particle-hole pairs involving empty states of d symmetry. While the effect of many-particle correlations is small, the correlations built into the 'final-state' d bands play an important, and novel, role related to the phase-space complexity introduced by these flat bands. Our case study of plasmon lifetime in K illustrates the importance of ab initio paradigms for the study of excitations in correlated-electron systems. copyright 1999 The American Physical Society

  8. Correlation effects in magnetic materials: An ab initio investigation on electronic structure and spectroscopy

    International Nuclear Information System (INIS)

    Minár, J.; Braun, J.; Ebert, H.

    2013-01-01

    Highlights: ► We compare spin-resolved ARPES data of ferromagnetic 3d transition metals to many-body LSDA + DMFT based spectroscopic calculations. ► We document LSDA + DMFT provides a detailed and reliable interpretation of the data. ► We demonstrate that local correlations are dominant in Ni, whereas non-local correlations are important in Fe and Co. ► We reproduce the 6 eV satellite structure in ferromagnetic Ni LDSDA + DMFT in combination with the one-step model of photoemission provides a more or less complete description of the electronic structure of Fe, Co and Ni. -- Abstract: Various technical developments enlarged the potential of angle-resolved photoemission spectroscopy (ARPES) tremendously during the last two decades. In particular improved momentum and energy resolution in combination with spin-resolution as well as the use of photon energies from few eV up to several keV makes ARPES a rather unique tool to investigate the electronic properties of solids and surfaces. Obviously, this rises the need for a corresponding theoretical formalism that allows to accompany experimental ARPES studies in an adequate way. As will be demonstrated by several examples this goal could be achieved by various recent developments on the basis of density functional theory (DFT) in combination with dynamical mean field theory (DMFT) and with the one-step model of photoemission (1SM). A concrete realization of electronic structure calculations in the framework of multiple scattering theory further more provides direct access to the spectral function of the initial states via the one-electron Green function. Based on this bare spectral function matrix-element and final-state effects as well as surface related features may be calculated in addition using the one-step formalism that offers the possibility to analyse corresponding angle-resolved photoemission experiments in a quantitative sense. The impact of chemical disorder can be handled by means of the coherent

  9. Two-electron germanium centers with a negative correlation energy in lead chalcogenides

    International Nuclear Information System (INIS)

    Terukov, E. I.; Marchenko, A. V.; Zaitseva, A. V.; Seregin, P. P.

    2007-01-01

    It is shown that the charge state of the 73 Ge antisite defect that arises in anionic sublattices of PbS, PbSe, and PbTe after radioactive transformation of 73 As does not depend on the position of the Fermi level, whereas the 73 Ge center in cationic sublattices of PbS and PbSe represents a two-electron donor with the negative correlation energy: the Moessbauer spectrum for the n-type samples corresponds to the neutral state of the donor center (Ge 2+ ), while this spectrum corresponds to the doubly ionized state (Ge 4+ ) of the center in the p-type samples. In partially compensated PbSe samples, a fast electron exchange between the neutral and ionized donor centers is realized. It is shown by the method of Moessbauer spectroscopy for the 119 Sn isotope that the germanium-related energy levels are located higher than the levels formed in the band gap of these semiconductors by the impurity tin atoms

  10. Structure and electron-ion correlation in liquid Mg

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Shuta [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan); Fujii, Hiroyuki [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan); Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Yokota, Yukinobu [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan); Kawakita, Yukinobu [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810-8560 (Japan)]. E-mail: takeda@rc.kyushu-u.ac.jp

    2006-11-15

    For liquid Mg at 700 deg. C, structure factors were obtained from both neutron and X-ray diffraction measurements. The bond angle and coordination number distributions were derived from the reverse Monte Carlo analysis. By a combination of both structure factors, charge density function and electron-ion partial structure factor were deduced.

  11. Ligand identification using electron-density map correlations

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Adams, Paul D.; Moriarty, Nigel W.; Cohn, Judith D.

    2007-01-01

    An automated ligand-fitting procedure is applied to (F o − F c )exp(iϕ c ) difference density for 200 commonly found ligands from macromolecular structures in the Protein Data Bank to identify ligands from density maps. A procedure for the identification of ligands bound in crystal structures of macromolecules is described. Two characteristics of the density corresponding to a ligand are used in the identification procedure. One is the correlation of the ligand density with each of a set of test ligands after optimization of the fit of that ligand to the density. The other is the correlation of a fingerprint of the density with the fingerprint of model density for each possible ligand. The fingerprints consist of an ordered list of correlations of each the test ligands with the density. The two characteristics are scored using a Z-score approach in which the correlations are normalized to the mean and standard deviation of correlations found for a variety of mismatched ligand-density pairs, so that the Z scores are related to the probability of observing a particular value of the correlation by chance. The procedure was tested with a set of 200 of the most commonly found ligands in the Protein Data Bank, collectively representing 57% of all ligands in the Protein Data Bank. Using a combination of these two characteristics of ligand density, ranked lists of ligand identifications were made for representative (F o − F c )exp(iϕ c ) difference density from entries in the Protein Data Bank. In 48% of the 200 cases, the correct ligand was at the top of the ranked list of ligands. This approach may be useful in identification of unknown ligands in new macromolecular structures as well as in the identification of which ligands in a mixture have bound to a macromolecule

  12. Multiphonon contribution to the polaron formation in cuprates with strong electron correlations and strong electron-phonon interaction

    Science.gov (United States)

    Ovchinnikov, Sergey G.; Makarov, Ilya A.; Kozlov, Peter A.

    2017-03-01

    In this work dependences of the electron band structure and spectral function in the HTSC cuprates on magnitude of electron-phonon interaction (EPI) and temperature are investigated. We use three-band p-d model with diagonal and offdiagonal EPI with breathing and buckling phonon mode in the frameworks of polaronic version of the generalized tight binding (GTB) method. The polaronic quasiparticle excitation in the system with EPI within this approach is formed by a hybridization of the local multiphonon Franck-Condon excitations with lower and upper Hubbard bands. Increasing EPI leads to transfer of spectral weight to high-energy multiphonon excitations and broadening of the spectral function. Temperature effects are taken into account by occupation numbers of local excited polaronic states and variations in the magnitude of spin-spin correlation functions. Increasing the temperature results in band structure reconstruction, spectral weight redistribution, broadening of the spectral function peak at the top of the valence band and the decreasing of the peak intensity. The effect of EPI with two phonon modes on the polaron spectral function is discussed.

  13. Correlation and Entanglement in Elliptically Deformed Two-Electron Quantum Dots

    International Nuclear Information System (INIS)

    Okopinska, A.; Koscik, P.

    2011-01-01

    We study quantum correlation in a two-dimensional system of two Coulombically interacting electrons trapped in an anisotropic harmonic potential in dependence on the interaction strength. The linear entropy and von Neumann entropy that measure the entanglement between the electrons are compared with the correlation energy and the statistical correlation coefficient. We observe that the entanglement properties are dramatically influenced by the anisotropy of the confining potential. We observe that the energetic and statistical correlations get stronger, whereas the entropic measures show weakening of the correlations with anisotropy. (author)

  14. Analysis of correlation effects in autoionizing doubly excited states of barium using Coulomb Green's function

    International Nuclear Information System (INIS)

    Poirier, M.

    1997-01-01

    Though one would expect that large-angular momentum doubly excited states exhibit weak electronic correlations, it is shown in this paper that a first-order perturbation theory ignoring such correlations may completely fail in predicting correct autoionization probabilities: quadrupolar transitions are poorly described by lowest-order perturbation theory, except for very large angular momenta. Inclusion of second-order dipole-dipole term considerably improves the accuracy of the method. This effect is computed using Coulomb Green's function in its analytical form, probably applied here for the first time to autoionization processes. Examples are given in barium for 5d j 5g [k[ states (j=3/2, 5/2) and for 5d 5/2 nl [k[ states with l > 4. (orig.)

  15. Equilibrium state of colliding electron beams

    Directory of Open Access Journals (Sweden)

    R. L. Warnock

    2003-10-01

    Full Text Available We study a nonlinear integral equation that is a necessary condition on the equilibrium phase-space distribution function of stored, colliding electron beams. It is analogous to the Haïssinski equation, being derived from Vlasov-Fokker-Planck theory, but is quite different in form. The equation is analyzed for the case of the Chao-Ruth model of the beam-beam interaction in 1 degree of freedom, a so-called strong-strong model with nonlinear beam-beam force. We prove the existence of a unique solution, for sufficiently small beam current, by an application of the implicit function theorem. We have not yet proved that this solution is positive, as would be required to establish existence of an equilibrium. There is, however, numerical evidence of a positive solution. We expect that our analysis can be extended to more realistic models.

  16. Effect of suprathermal electrons on the impurity ionization state

    International Nuclear Information System (INIS)

    Ochando, M A; Medina, F; Zurro, B; McCarthy, K J; Pedrosa, M A; Baciero, A; Rapisarda, D; Carmona, J M; Jimenez, D

    2006-01-01

    The effect of electron cyclotron resonance heating induced suprathermal electron tails on the ionization of iron impurities in magnetically confined plasmas is investigated. The behaviour of plasma emissivity immediately after injection provides evidence of a spatially localized 'shift' towards higher charge states of the impurity. Bearing in mind that the non-inductive plasma heating methods generate long lasting non-Maxwellian distribution functions, possible implications on the deduced impurity transport coefficients, when fast electrons are present, are discussed

  17. Electron beam melting state-of-the-art 1984

    International Nuclear Information System (INIS)

    Bakish, R.

    1984-01-01

    In 1984 electron beam melting and refining appear poised for an important new growth phase. The driving force for this phase is improved production economics made possible by technological advances. There is also a new and exciting growth application for electron beam melting: its use for surface properties beneficiation. This article is based in part on the content of the Conference on Electron Beam Melting and Refining, The State-of-the-Art 1983, held in November 1983 in Reno, Nevada

  18. Imaging quasiperiodic electronic states in a synthetic Penrose tiling

    Science.gov (United States)

    Collins, Laura C.; Witte, Thomas G.; Silverman, Rochelle; Green, David B.; Gomes, Kenjiro K.

    2017-06-01

    Quasicrystals possess long-range order but lack the translational symmetry of crystalline solids. In solid state physics, periodicity is one of the fundamental properties that prescribes the electronic band structure in crystals. In the absence of periodicity and the presence of quasicrystalline order, the ways that electronic states change remain a mystery. Scanning tunnelling microscopy and atomic manipulation can be used to assemble a two-dimensional quasicrystalline structure mapped upon the Penrose tiling. Here, carbon monoxide molecules are arranged on the surface of Cu(111) one at a time to form the potential landscape that mimics the ionic potential of atoms in natural materials by constraining the electrons in the two-dimensional surface state of Cu(111). The real-space images reveal the presence of the quasiperiodic order in the electronic wave functions and the Fourier analysis of our results links the energy of the resonant states to the local vertex structure of the quasicrystal.

  19. Electron correlation within the relativistic no-pair approximation

    DEFF Research Database (Denmark)

    Almoukhalalati, Adel; Knecht, Stefan; Jensen, Hans Jørgen Aa

    2016-01-01

    and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2....... The well-known 1/Z- expansion in nonrelativistic atomic theory follows from coordinate scaling. We point out that coordinate scaling for consistency should be accompanied by velocity scaling. In the nonrelativistic domain this comes about automatically, whereas in the relativistic domain an explicit...... scaling of the speed of light is required. This in turn explains why the relativistic correlation energy to the lowest order is not independent of nuclear charge, in contrast to nonrelativistic theory....

  20. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

    Science.gov (United States)

    Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus

    2017-12-01

    Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.

  1. Molecular electronics with single molecules in solid-state devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-01-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule...

  2. Influence of lattice vibrations on the field driven electronic transport in chains with correlated disorder

    Science.gov (United States)

    da Silva, L. D.; Sales, M. O.; Ranciaro Neto, A.; Lyra, M. L.; de Moura, F. A. B. F.

    2016-12-01

    We investigate electronic transport in a one-dimensional model with four different types of atoms and long-ranged correlated disorder. The latter was attained by choosing an adequate distribution of on-site energies. The wave-packet dynamics is followed by taking into account effects due to a static electric field and electron-phonon coupling. In the absence of electron-phonon coupling, the competition between correlated disorder and the static electric field promotes the occurrence of wave-packet oscillations in the regime of strong correlations. When the electron-lattice coupling is switched on, phonon scattering degrades the Bloch oscillations. For weak electron-phonon couplings, a coherent oscillatory-like dynamics of the wave-packet centroid persists for short periods of time. For strong couplings the wave-packet acquires a diffusive-like displacement and spreading. A slower sub-diffusive spreading takes place in the regime of weak correlations.

  3. Surface-electronic-state effects in electron emission from the Be(0001) surface

    International Nuclear Information System (INIS)

    Archubi, C. D.; Gravielle, M. S.; Silkin, V. M.

    2011-01-01

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  4. Surface-electronic-state effects in electron emission from the Be(0001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Archubi, C. D. [Instituto de Astronomia y Fisica del Espacio, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires (Argentina); Gravielle, M. S. [Instituto de Astronomia y Fisica del Espacio, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Silkin, V. M. [Donostia International Physics Center, E-20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Facultad de Ciencias Quimicas, Universidad del Pais Vasco, Apartado 1072, E-20080 San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao (Spain)

    2011-07-15

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  5. D-state Rydberg electrons interacting with ultracold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Krupp, Alexander Thorsten

    2014-10-02

    This thesis was established in the field of ultracold atoms where the interaction of highly excited D-state electrons with rubidium atoms was examined. This work is divided into two main parts: In the first part we study D-state Rydberg molecules resulting from the binding of a D-state Rydberg electron to a ground state rubidium atom. We show that we can address specific rovibrational molecular states by changing our laser detuning and thus create perfectly aligned axial or antialigned toroidal molecules, in good agreement with our theoretical calculations. Furthermore the influence of the electric field on the Rydberg molecules was investigated, creating novel states which show a different angular dependence and alignment. In the second part of this thesis we excite single D-state Rydberg electrons in a Bose-Einstein condensate. We study the lifetime of these Rydberg electrons, the change of the shape of our condensate and the atom losses in the condensate due to this process. Moreover, we observe quadrupolar shape oscillations of the whole condensate created by the consecutive excitation of Rydberg atoms and compare all results to previous S-state measurements. In the outlook we propose a wide range of further experiments including the proposal of imaging a single electron wavefunction by the imprint of its orbit into the Bose-Einstein condensate.

  6. Investigations of electronic structure of Bi and Sb by the method of the angular correlation of annihilation quanta

    International Nuclear Information System (INIS)

    Szuszkiewicz, M.

    1977-01-01

    The work is devoted to the investigations of electronic structure of solid bismuth and antymony using the method of the angular correlation of annihilation quanta, originated from the two-photons annihilation of positrons with the electrons of a sample. The measurements of the angular correlation were performed for monocrystallic samples of Bi and Sb for three crystallographic directions: /011/,/011/, /111/. The analysis of the obtained results is based upon the Brillouin zones theory extended by Jones for the crystalline structure of those semimetals. For Bi for the direction /111/, a distinct discrepancy has been found between the experimental and expected distribution, calculated on the base of the completely occupied Jones zone. This diveragence is assumed to be due to the conductivity electrons occupying the electronic states outside the Jones zone. The angular distributions for all directions of Sb turned out to be inconsistent with the model of Jones zone, containing 10 quasi-free electrons per unit cell. It is possible to give a satisfactory interpretation of the experimental data for Sb under the assumption that the first Brillouin zone in Jones zone is occupied by the electrons, behaving as being strongly localized, (about 2 electrons per unit cell) and the remaining part of Jones zone is occupied by quasi-free electrons, similarly to Bi. (author)

  7. Localized electronic states: the small radius potential approximation

    International Nuclear Information System (INIS)

    Steslicka, M.; Jurczyszyn, L.

    1984-09-01

    Using a quasi three-dimensional crystal model we investigate the localized electronic states, generated by the crystal surface covered by foreign atoms. Two such states are found in the first forbidden energy gap and, because of their localization properties, called the Tamm-like and adsorption-like states. Using the small radius potential approximation, the properties of both types of states were discussed in detail. (author)

  8. Local Magnetism in Strongly Correlated Electron Systems with Orbital Degrees of Freedom

    Science.gov (United States)

    Ducatman, Samuel Charles

    The central aim of my research is to explain the connection between the macroscopic behavior and the microscopic physics of strongly correlated electron systems with orbital degrees of freedom through the use of effective models. My dissertation focuses on the sub-class of these materials where electrons appear to be localized by interactions, and magnetic ions have well measured magnetic moments. This suggests that we can capture the low-energy physics of the material by employing a minimal model featuring localized spins which interact with each other through exchange couplings. I describe Fe1+y Te and beta-Li2IrO3 with effective models primarily focusing on the spins of the magnetic ions, in this case Fe and Ir, respectively. The goal with both materials is to gain insight and make predictions for experimentalists. In chapter 2, I focus on Fe1+yTe. I describe why we believe the magnetic ground state of this material, with an observed Bragg peak at Q +/- pi/2, pi/2), can be described by a Heisenberg model with 1st, 2nd, and 3rd neighbor interactions. I present two possible ground states of this model in the small J1 limit, the bicollinear and plaquette states. In order to predict which ground state the model prefers, I calculate the spin wave spectrum with 1/S corrections, and I find the model naturally selects the "plaquette state." I give a brief description of the ways this result could be tested using experimental techniques such as polarized neutron scattering. In chapter 3, I extend the model used in chapter 2. This is necessary because the Heisenberg model we employed cannot explain why Fe1+yTe undergoes a phase transition as y is increased. We add an additional elements to our calculation; we assume that electrons in some of the Fe 3D orbitals have selectively localized while others remain itinerant. We write a new Hamiltonian, where localized moments acquire a new long-range RKKY-like interaction from interactions with the itinerant electrons. We are

  9. Electrocortical (EEG correlates of music and states of consciousness

    Directory of Open Access Journals (Sweden)

    Lazar Skaric

    2007-11-01

    Full Text Available The study of the perception of music is a paramount example of multidisciplinary research. In spite of a lot of theoretical and experimental efforts to understand musical processing, attempts to localize musical abilities in particular brain regions were largely unsuccessful, save for the difference between musicians and non musicians, especially in hemispheric specialization and in EEG correlational dimensions. Having in mind that human emotional response to music and to art in general is limbic dependent, this motivated us to address our question to a similar possible neurobiological origin of musicogenic altered states of consciousness and its possible EEG correlates, “resonantly” induced by deep spiritual music. For example, as in sound-induced altered states of consciousness cultivated in some Eastern yogic practices. The musicogenic states of consciousness are evaluated within a group of 6 adults, upon the influence of 4 types of spiritual music. The most prominent changes in theta or alpha frequency bands were induced in two subjects, upon the influence of Indian spiritual music, Bhajan.

  10. Cyclic electron flow is redox-controlled but independent of state transition.

    Science.gov (United States)

    Takahashi, Hiroko; Clowez, Sophie; Wollman, Francis-André; Vallon, Olivier; Rappaport, Fabrice

    2013-01-01

    Photosynthesis is the biological process that feeds the biosphere with reduced carbon. The assimilation of CO2 requires the fine tuning of two co-existing functional modes: linear electron flow, which provides NADPH and ATP, and cyclic electron flow, which only sustains ATP synthesis. Although the importance of this fine tuning is appreciated, its mechanism remains equivocal. Here we show that cyclic electron flow as well as formation of supercomplexes, thought to contribute to the enhancement of cyclic electron flow, are promoted in reducing conditions with no correlation with the reorganization of the thylakoid membranes associated with the migration of antenna proteins towards Photosystems I or II, a process known as state transition. We show that cyclic electron flow is tuned by the redox power and this provides a mechanistic model applying to the entire green lineage including the vast majority of the cases in which state transition only involves a moderate fraction of the antenna.

  11. Reaction (γ,2e) and (e,3e) as probe of electron correlation in atoms

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1995-01-01

    Cross sections of the (γ,2e) and (e,3e) reactions contain information about the two vacancy-energy spectrum and electron-pair correlations in initial and final states of the target atom. Physical pictures of these processes are presented for two- and many-electron atoms. The simplest mechanisms are discussed, demonstrating some features which await experimental confirmation. Attention is given to high photon energy and the relativistic energy region of these reactions. The energy distribution of outgoing relativistic electrons is qualitatively different from the nonrelativistic case. The origin and types of corrections to the simplest mechanisms, and possible means of their detection, are discussed. In addition, the role of different resonances: shape, giant, autoionizational, and Feshbach-type are considered. Results of calculations are compared with experimental data, mainly on double photoionization cross sections. Different possible objects as targets for the reactions are considered, including negative ions, excited atoms, molecules, and clusters. The modification of these reactions due to photon emission is discussed. The future of the domain is outlined

  12. Reactions (γ,2e) and (e,3e) as probes of electronic correlations in atoms

    International Nuclear Information System (INIS)

    Amusia, M.Ya.

    1993-01-01

    Cross sections of the (γ,2e) and (e,3e) reactions carry information on two vacancy energy spectrum and on electron pair correlations in initial and final states of the target atom. Physical pictures of these processes are presented for two- and many-electron atoms. Simplest mechanisms of them are discussed, demonstrating some features which are waiting for experimental confirmation. Attention is given to high photon energy and even to relativistic energy region of these reactions. The energy distribution of outgoing relativistic electrons is qualitatively different from what it is for the nonrelativistic case. Origin and types of corrections to the simplest mechanisms and possible means of their detection are discussed. Role of different resonances: shape, giant, autoionizational, and Feschbach-type are considered. Results of calculations are compared with experimental data, mainly on double photoionization cross sections. Different possible objects as targets for the reactions are mentioned, including negative ions, excited atoms, molecules and clusters. Modification of the type of these reactions due to rather probable emission of the photon is discussed. Future of the domain is outlined. (orig.)

  13. The electronic structure of core states under extreme compressions

    International Nuclear Information System (INIS)

    Straub, G.K.

    1992-01-01

    At normal density and for modest compressions, the electronic structure of a metal can be accurately described by treating the conduction electrons and their interactions with the usual methods of band theory. The core electrons remain essentially the same as for an isolated free atom and do not participate in the bonding forces responsible for creating a condensed phase. As the density increases, the core electrons begin to ''see'' one another as the overlap of the tails of wave functions can no longer be neglected. The electronic structure of the core electrons is responsible for an effective repulsive interaction that eventually becomes free-electron-like at very high compressions. The electronic structure of the interacting core electrons may be treated in a simple manner using the Atomic Surface Method (ASM). The ASM is a first-principles treatment of the electronic structure involving a rigorous integration of the Schroedinger equation within the atomic-sphere approximation. Solid phase wave functions are constructed from isolated atom wave functions and the band width W l and the center of gravity of the band C l are obtained from simple formulas. The ASM can also utilize analytic forms of the atomic wave functions and thus provide direct functional dependence of various aspects of the electronic structure. Of particular use in understanding the behavior of the core electrons, the ASM provides the ability to analytically determine the density dependence of the band widths and positions. The process whereby core states interact with one another is best viewed as the formation of narrow electron bands formed from atomic states. As the core-core overlap increases, the bands increase in width and mean energy. In Sec.3 this picture is further developed and from the ASM one obtains the analytic dependence on density of the relative motion of the different bands. Also in Sec. 3 is a discussion of the transition to free electron bands

  14. Time evolution of quenched state and correlation to glassy effects

    International Nuclear Information System (INIS)

    Kilic, K.; Kilic, A.; Altinkok, A.; Yetis, H.; Cetin, O.; Durust, Y.

    2005-01-01

    In this work, dynamic changes generated by the driving current were studied in superconducting bulk polycrystalline YBCO sample via transport relaxation measurements (V-t curves). The evolution of nonlinear V-t curves was interpreted in terms of the formation of resistive and nonresistive flow channels and the spatial reorganization of the transport current in a multiply connected network of weak-link structure. The dynamic re-organization of driving current could cause an enhancement or suppression in the superconducting order parameter due to the magnitude of the driving current and coupling strength of weak-link structure along with the chemical and anisotropic states of the sample as the time proceeds. A nonzero voltage decaying with time, correlated to the quenched state, was recorded when the magnitude of initial driving current is reduced to a finite value. It was found that, after sufficiently long waiting time, the evolution of the quenched state could result in a superconducting state, depending on the magnitude of the driving current and temperature. We showed that the decays in voltage over time are consistent with an exponential time dependence which is related to the glassy state. Further, the effect of doping of organic material Bis dimethyl-glyoximato Copper (II) to YBCO could be monitored apparently via the comparison of the V-t curves corresponding to doped and undoped YBCO samples

  15. Development of Colle-Salvetti type electron-nucleus correlation functional for MC-DFT

    Energy Technology Data Exchange (ETDEWEB)

    Udagawa, Taro [Department of Chemistry and Biomolecuar Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193 (Japan); Tsuneda, Takao [Fuel Cell Nanomaterials Center, University of Yamanashi, Miyamae-cho 6-43, Kofu 400-0021 (Japan); Tachikawa, Masanori [Quqnatum Chemistry Division, Graduate School of Science, Yokohama City University, Seto 22-2, Kanazawa, Yokohama 236-0027 (Japan)

    2015-12-31

    A Colle-Salvetti type electron-nucleus correlation functional for multicomponent density-functional theory is proposed. We demonstrate that our correlation functional quantitatively reproduces the quantum nuclear effects of protons; the mean absolute deviation value is 2.8 millihartrees for the optimized structure of hydrogen-containing molecules. We also show other practical calculations with our new electron-deuteron and electron-triton correlation functionals. Since this functional is derived without any unphysical assumption, the strategy taken in this development will be a promising recipe to make new functionals for the potentials of other particles’ interactions.

  16. Dynamical effects of electron-hole correlation and giant quantum attenuation of ultrasound in semimetals

    International Nuclear Information System (INIS)

    Kuramoto, Y.

    1982-01-01

    The giant quantum attenuation of ultrasound in bismuth and other semimetals is noticeably enhanced when certain pair of Landau subbands of electrons and holes participate simultaneously in an attenuation peak. A theoretical analysis is presented which emphasizes importance of dynamical effects of the electron-hole correlation. In the temperature range between 1K and 4K covered by most experiments, the correlation effect is found to be weak on the real part of the relevant response function which gives change in sound velocity. This implies that equilibrium properties of the system are not much influenced by the correlation effect. Nonetheless, the electron-hole correlation is shown to have a drastic consequence on the imaginary part of the response function probed by the ultrasonic attenuation. Proposal for experiment is advanced to discriminate relative importance of this exciton-like correlation from that of repulsive correlation between carriers with the same charge. (orig.)

  17. Adsorbates in a Box: Titration of Substrate Electronic States

    Science.gov (United States)

    Cheng, Zhihai; Wyrick, Jonathan; Luo, Miaomiao; Sun, Dezheng; Kim, Daeho; Zhu, Yeming; Lu, Wenhao; Kim, Kwangmoo; Einstein, T. L.; Bartels, Ludwig

    2010-08-01

    Nanoscale confinement of adsorbed CO molecules in an anthraquinone network on Cu(111) with a pore size of ≈4nm arranges the CO molecules in a shell structure that coincides with the distribution of substrate confined electronic states. Molecules occupy the states approximately in the sequence of rising electron energy. Despite the sixfold symmetry of the pore boundary itself, the adsorbate distribution adopts the threefold symmetry of the network-substrate system, highlighting the importance of the substrate even for such quasi-free-electron systems.

  18. Electron correlation in CaRuO3 and SrRuO3

    International Nuclear Information System (INIS)

    Singh, Ravi Shankar; Maiti, Kalobaran

    2005-01-01

    We investigate the role of electron correlation in the electronic structure of 4d transition-metal oxides CaRuO 3 and SrRuO 3 . The photoemission spectra collected at different surface sensitivities reveal qualitatively different surface and bulk electronic structures in these systems. Extracted bulk spectra could be simulated using first principle approaches consistently with their thermodynamic parameters within the same model. The estimated electron correlation strength (U/W ∼ 0.2) is significantly weak as expected in 4d systems and resolves the long-standing issue that arose due to the prediction of large U/W similar to 3d systems. (author)

  19. Correlated Dirac semimetallic state with unusual positive magnetoresistance in strain-free perovskite SrIrO3

    Science.gov (United States)

    Fujioka, J.; Okawa, T.; Yamamoto, A.; Tokura, Y.

    2017-03-01

    We investigated magnetotransport properties and charge dynamics of strain-free perovskite SrIrO3. Both the longitudinal and transverse magnetoresistivity (MR) are significantly enhanced with decreasing temperature, in accord with the evolution of the Dirac semimetallic state. The electron correlation effect in the Dirac state shows up as a dramatic change in charge dynamics with temperature and as an enhanced paramagnetic susceptibility. We propose that the field-induced topological transition of the Dirac node coupled to the enhanced paramagnetism causes the unique MR of correlated Dirac electrons.

  20. Molecular electronics with single molecules in solid-state devices.

    Science.gov (United States)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-09-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.

  1. Neutron Scattering Investigations of Correlated Electron Systems and Neutron Instrumentation

    DEFF Research Database (Denmark)

    Holm, Sonja Lindahl

    are a unique probe for studying the atomic and molecular structure and dynamics of materials. Even though neutrons are very expensive to produce, the advantages neutrons provide overshadow the price. As neutrons interact weakly with materials compared to many other probes, e.g. electrons or photons...... contains antiferromagnetically coupled Cu2+ S = 1=2 ions forming truncated 24-spin cube clusters of linked triangles. The clusters in boleite afford a situation intermediate between molecular and bulk magnetism, accessible to both experiment and numerical theory, in which a spin liquid can be studied...... the impact of the time structure (pulse length and repetition frequency) choice for ESS are appended. McStas simulations of a low resolution cold powder diffractometer and high resolution thermal powder diffractometer with wavelength frame multiplication have been carried out for 20 different settings...

  2. Density functional application to strongly correlated electron systems

    International Nuclear Information System (INIS)

    Eschrig, H.; Koepernik, K.; Chaplygin, I.

    2003-01-01

    The local spin density approximation plus onsite Coulomb repulsion approach (LSDA+U) to density functional theory is carefully reanalyzed. Its possible link to single-particle Green's function theory is occasionally discussed. A simple and elegant derivation of the important sum rules for the on-site interaction matrix elements linking them to the values of U and J is presented. All necessary expressions for an implementation of LSDA+U into a non-orthogonal basis solver for the Kohn-Sham equations are given, and implementation into the full-potential local-orbital solver (Phys. Rev. B 59 (1999) 1743) is made. Results of application to several planar cuprate structures are reported in detail and conclusions on the interpretation of the physics of the electronic structure of the cuprates are drawn

  3. Thermodynamically consistent description of criticality in models of correlated electrons

    Czech Academy of Sciences Publication Activity Database

    Janiš, Václav; Kauch, Anna; Pokorný, Vladislav

    2017-01-01

    Roč. 95, č. 4 (2017), s. 1-14, č. článku 045108. ISSN 2469-9950 R&D Projects: GA ČR GA15-14259S Institutional support: RVO:68378271 Keywords : conserving approximations * Anderson model * Hubbard model * parquet equations Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  4. Proceedings, strongly correlated electronic materials: The Los Alamos symposium 1993

    International Nuclear Information System (INIS)

    Bedell, K.S.

    1994-01-01

    The subject included such topics as high temperature superconductors, heavy-fermion insulators and superconductors, the metal-insulator transition, the superconductor-insulator transition and unusual (non-Fermi liquid) normal metallic states. The symposium was structured around 13 invited review talks; with each talk, there were several (about 30) related short presentations and discussion sections (90 pages). The review talks and short papers were processed separately for the data base

  5. Communication: Electronic flux induced by crossing the transition state

    Science.gov (United States)

    Jia, Dongming; Manz, Jörn; Yang, Yonggang

    2018-01-01

    We present a new effect of chemical reactions, e.g., isomerizations, that occurs when the reactants pass along the transition state, on the way to products. It is based on the well-known fact that at the transition state, the electronic structure of one isomer changes to the other. We discover that this switch of electronic structure causes a strong electronic flux that is well distinguishable from the usual flux of electrons that travel with the nuclei. As a simple but clear example, the effect is demonstrated here for bond length isomerization of Na2 (21Σu+), with adiabatic crossing the barrier between the inner and outer wells of the double minimum potential that support different "Rydberg" and "ionic" type electronic structures, respectively.

  6. Electronic properties of CdWO{sub 4}: Use of hybrid exchange and correlation functionals

    Energy Technology Data Exchange (ETDEWEB)

    Meena, B. S., E-mail: bsmphysics@gmail.com; Mund, H. S.; Ahuja, B. L. [Department of Physics, University College of Science, M. L. Sukhadia University, Udaipur-313001 (India); Heda, N. L. [Department of Pure and Applied Physics, University of Kota, Kota-324010 (India)

    2016-05-23

    Energy bands, density of states (DOS), Mulliken population (MP) and electron momentum densities (EMDs) of CdWO{sub 4} are presented using hybrid exchange and correlation functionals namely B3LYP, B3PW and PBE0. To validate the present hybrid potentials, theoretical EMDs have been compared with the experimental Compton profile. It is found that LCAO-B3LYP based Compton profile gives a better agreement with experiment than other theoretical profiles. The energy bands and DOS show a wide band gap semiconducting nature of CdWO{sub 4}. The theoretical band gap obtained using B3LYP scheme reconciles well with the available experimental data. In addition, we have also presented the anisotropies in EMDs along [100], [110] and [001] directions and the bonding effects using the MP data.

  7. Correlated electron capture and inner-shell excitation measurements in ion-atom collisions

    International Nuclear Information System (INIS)

    Tanis, J.A.; Bernstein, E.M.; Clark, M.W.

    1985-01-01

    In an ion-atom collision projectile excitation and charge transfer (electron capture) may occur together in a single encounter. If the excitation and capture are correlated, then the process is called resonant transfer and excitation (RTE); if they are uncorrelated, then the process is termed nonresonant transfer and excitation (NTE). Experimental work to date has shown the existence of RTE and provided strong evidence for NTE. Results presented here provide information on the relative magnitudes of RTE and NTE, the charge state dependence of RTE, the effect of the target momentum distribution on RTE, the magnitude of L-shell RTE compared to K-shell RTE, and the target Z dependences of RTE and NTE. 15 refs., 5 figs

  8. Effects of correlation in transition radiation of super-short electron bunches

    Science.gov (United States)

    Danilova, D. K.; Tishchenko, A. A.; Strikhanov, M. N.

    2017-07-01

    The effect of correlations between electrons in transition radiation is investigated. The correlation function is obtained with help of the approach similar to the Debye-Hückel theory. The corrections due to correlations are estimated to be near 2-3% for the parameters of future projects SINBAD and FLUTE for bunches with extremely small lengths (∼1-10 fs). For the bunches with number of electrons about ∼ 2.5 ∗1010 and more, and short enough that the radiation would be coherent, the corrections due to correlations are predicted to reach 20%.

  9. Electronically excited negative ion resonant states in chloroethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, O.G., E-mail: khv@mail.ru; Lukin, V.G.; Tuimedov, G.M.; Khatymova, L.Z.; Kinzyabulatov, R.R.; Tseplin, E.E.

    2015-02-15

    Highlights: • Several novel dissociative negative ion channels were revealed in chloroethylenes. • The electronically excited resonant states were recorded in all chloroethylenes under study. • The states were assigned to the inter-shell types, but not to the core-excited Feshbach one. - Abstract: The negative ion mass spectra of the resonant electron capture by molecules of 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans, trichloroethylene and tetrachloroethylene have been recorded in the 0–12 eV range of the captured electron energy using static magnetic sector mass spectrometer modified for operation in the resonant electron capture regime. As a result, several novel low-intensive dissociation channels were revealed in the compounds under study. Additionally, the negative ion resonant states were recorded at approximately 3–12 eV, mostly for the first time. These resonant states were assigned to the electronically excited resonances of the inter-shell type by comparing their energies with those of the parent neutral molecules triplet and singlet electronically excited states known from the energy-loss spectra obtained by previous studies.

  10. Electron momentum spectroscopy of aniline taking account of nuclear dynamics in the initial electronic ground state

    International Nuclear Information System (INIS)

    Farasat, M; Golzan, M M; Shojaei, S H R; Morini, F; Deleuze, M S

    2016-01-01

    The electronic structure, electron binding energy spectrum and (e, 2e) momentum distributions of aniline have been theoretically predicted at an electron impact energy of 1.500 keV on the basis of Born–Oppenheimer molecular dynamical simulations, in order to account for thermally induced nuclear motions in the initial electronic ground state. Most computed momentum profiles are rather insensitive to thermally induced alterations of the molecular structure, with the exception of the profiles corresponding to two ionization bands at electron binding energies comprised between ∼10.0 and ∼12.0 eV (band C) and between ∼16.5 and ∼20.0 eV (band G). These profiles are found to be strongly influenced by nuclear dynamics in the electronic ground state, especially in the low momentum region. The obtained results show that thermal averaging smears out most generally the spectral fingerprints that are induced by nitrogen inversion. (paper)

  11. Classical and quantum 'EPR'-spin correlations in the triplet state

    International Nuclear Information System (INIS)

    Barut, A.O.; Bozic, M.

    1987-01-01

    Quantum correlations and joint probabilities in the triplet state as well as the correlations of components of two correlated classical spin vectors, are evaluated. Correlations in the states with |S tot z |=1 are different from correlations in the state with S tot z =0 which may serve to distinguish different states of the triplet. As in the singlet case, we can reproduce quantum correlations by correlated classical spin vectors which also provide a precision of the notion of ''parallel spins''. Triplet state correlations could in principle be measured, for example, in the decay reaction J/ψ → e + e - for which there is a sufficiently large branching ratio. (author). 12 refs

  12. Cluster model calculations of the solid state materials electron structure

    International Nuclear Information System (INIS)

    Pelikan, P.; Biskupic, S.; Banacky, P.; Zajac, A.; Svrcek, A.; Noga, J.

    1997-01-01

    Materials of the general composition ACuO 2 are the parent compounds of so called infinite layer superconductors. In the paper presented the electron structure of the compounds CaCuO 2 , SrCuO2, Ca 0.86 Sr 0.14 CuO2 and Ca 0.26 Sr 0.74 CuO 2 were calculated. The cluster models consisting of 192 atoms were computed using quasi relativistic version of semiempirical INDO method. The obtained results indicate the strong ionicity of Ca/Sr-O bonds and high covalency of Cu-bonds. The width of energy gap at the Fermi level increases as follows: Ca 0.26 Sr 0.74 CuO 2 0.86 Sr 0.14 CuO2 2 . This order correlates with the fact that materials of the composition Ca x Sr 1-x CuO 2 have have the high temperatures of the superconductive transition (up to 110 K). Materials partially substituted by Sr 2+ have also the higher density of states in the close vicinity at the Fermi level that ai the additional condition for the possibility of superconductive transition. It was calculated the strong influence of the vibration motions to the energy gap at the Fermi level. (authors). 1 tabs., 2 figs., 10 refs

  13. Correlation functions of electronic and nuclear spins in a Heisenberg antiferromagnet semi-infinite medium

    International Nuclear Information System (INIS)

    Sarmento, E.F.

    1981-01-01

    Results are found for the dynamical correlation functions (or its corresponding Green's functions) among any combination including operator pairs of electronic and nuclear spins in an antiferromagnet semi-infinite medium, at low temperatures T [pt

  14. Angular correlations of coincident electron-positron pairs in heavy ion collisions

    International Nuclear Information System (INIS)

    Graf, O.

    1988-10-01

    In the present thesis angular correlations of coincident electron-positron pairsnin heavy ion collisions are studied. It is meant as a contribution to the answer of fundamental questions in the quantum electrodynamics of strong fields. (orig./HSI) [de

  15. Effect of impurity correlation on the density of states in slightly compensated heavily doped semiconductors

    International Nuclear Information System (INIS)

    Doan Nhat Quang; Nguyen Nhu Dat; Dinh Van An

    1993-07-01

    A theory is developed of the electron density of states (DOS) in slightly compensated heavily doped semiconductors which undergo a thermal treatment. The calculation is carried out within the semiclassical approach to the random impurity field, taking adequately into account high-temperature correlation among the impurities and low temperature screening due to the free carriers as well. Then, a simple analytic expression for the DOS is obtained which exhibits the same energy dependence as in the case of a random impurity distribution, but now with some correlation-induced changes in the coefficients. A numerical estimation on non-compensated n-type sample of GaAs at a doping level of 5 x 10 18 cm -3 shows that in the tail region the correlated DOS turns out to be somewhat larger and cut less sharply than the random one. (author). 45 refs, 2 figs, 1 tab

  16. Ground state of the electron gas by a stochastic method

    International Nuclear Information System (INIS)

    Ceperley, D.M.; Alder, B.J.

    1980-05-01

    An exact stochastic simulation of the Schroedinger equation for charged Bosons and Fermions was used to calculate the correlation energies, to locate the transitions to their respective crystal phases at zero temperature within 10%, and to establish the stability at intermediate densities of a ferromagnetic fluid of electrons

  17. Effective one-body potential of DFT plus correlated kinetic energy density for two-electron spherical model atoms

    International Nuclear Information System (INIS)

    March, N.H.; Ludena, Eduardo V.

    2004-01-01

    For three model problems concerning two-electron spin-compensated ground states with spherical density, the third-order linear homogeneous differential equation constructed for the determination of ρ(r) is used here in conjunction with the von Weizsacker functional to characterize the one-body potential of density functional theory (DFT). Correlated von Weizsacker-type terms are compared to the exact DFT functional

  18. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers

    Energy Technology Data Exchange (ETDEWEB)

    Schellenberger, Pascale [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Kaufmann, Rainer [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Siebert, C. Alistair; Hagen, Christoph [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Wodrich, Harald [Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, University of Bordeaux SEGALEN, 146 rue Leo Seignat, 33076 Bordeaux (France); Grünewald, Kay, E-mail: kay@strubi.ox.ac.uk [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2014-08-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. - Highlights: • Vitrified mammalian cell were imaged by fluorescence and electron cryo microscopy. • TetraSpeck fluorescence markers were added to correct shifts between cryo fluorescence channels. • FluoSpheres fiducials were used as reference points to assign new coordinates to cryoEM images. • Adenovirus particles were localised with an average correlation precision of 63 nm.

  19. Electron correlation effects on geometries and 19F shieldings of fluorobenzenes

    International Nuclear Information System (INIS)

    Webb, G.A.; Karadakov, P.B.; England, J.A.

    2000-01-01

    In order to include the effects of electron correlation in ab initio molecular orbital calculations it is necessary to go beyond the single determinant Hartree-Fock (HF) level of theory. In the present investigation the influences of both dynamic and non-dynamic correlation effects on the optimised geometries and 19 F nuclear shielding calculations of the twelve fluorobenzenes are reported.The non-dynamic electron correlation effects are represented by complete-active space self-consistent field (CASSCF) calculations. Second- and fourth-order Moller-Plesset (MP2 and MP4) calculations are used to describe the dynamic electron correlation effects. Some density-functional (DFT) results are also reported which do not distinguish between dynamic and non-dynamic electron correlation. Following the correlated geometry optimisations 19 F nuclear shielding calculations were performed using the gauge-included atomic orbitals (GIAO) procedure, these were undertaken with wave functions which include various levels of electron correlation including HF, CASSCF and MP2. For the calculations of the optimised geometries, and some of the nuclear shieldings the 6-13G** basis set s used whereas the locally-dense [6-13G** on C and H and 6-311++G(2d,2p) on F] set is used for some of the shielding calculations. A comparison of the results of HF shielding calculations using other basis sets is included. Comparison of the calculated geometry and shielding results with relevant, reported, experimental data is made. (author)

  20. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers

    International Nuclear Information System (INIS)

    Schellenberger, Pascale; Kaufmann, Rainer; Siebert, C. Alistair; Hagen, Christoph; Wodrich, Harald; Grünewald, Kay

    2014-01-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. - Highlights: • Vitrified mammalian cell were imaged by fluorescence and electron cryo microscopy. • TetraSpeck fluorescence markers were added to correct shifts between cryo fluorescence channels. • FluoSpheres fiducials were used as reference points to assign new coordinates to cryoEM images. • Adenovirus particles were localised with an average correlation precision of 63 nm

  1. Nonlocality, Correlations, and Magnetotransport in a Spatially Modulated Two-Dimensional Electron Gas

    Science.gov (United States)

    Raichev, O. E.

    2018-04-01

    It is shown that the classical commensurability phenomena in weakly modulated two-dimensional electron systems is a manifestation of the intrinsic properties of the correlation functions describing a homogeneous electron gas in a magnetic field. The theory demonstrates the importance for consideration of nonlocal response and removes the gap between classical and quantum approaches to magnetotransport in such systems.

  2. Role of electron correlation effects in δ-Pu and "115"-Pu-based unconventional superconductors

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Kolorenč, Jindřich

    2014-01-01

    Roč. 15, č. 7 (2014), 640-647 ISSN 1631-0705 R&D Projects: GA ČR(CZ) GAP204/10/0330 Institutional support: RVO:68378271 Keywords : electronic structure * strong electron correlations * photoemission * unconventional superconductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.035, year: 2014

  3. Steady state statistical correlations predict bistability in reaction motifs.

    Science.gov (United States)

    Chakravarty, Suchana; Barik, Debashis

    2017-03-28

    Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.

  4. Effects of wave function correlations on scaling violation in quasi-free electron scattering

    International Nuclear Information System (INIS)

    Tornow, V.; Drechsel, D.; Orlandini, G.; Traini, M.

    1981-01-01

    The scaling law in quasi-free electron scattering is broken due to the existence of exchange forces, leading to a finite mean value of the scaling variable anti y. This effect is considerably increased by wave function correlations, in particular by tensor correlations, similar to the case of the photonuclear enhancement factor k. (orig.)

  5. Free electron laser small signal dynamics and inclusion of electron-beam energy phase correlation

    International Nuclear Information System (INIS)

    Dattoli, G.; Giannessi, L.; Ottaviani, P. L.

    1998-01-01

    In this paper are analyzed the problems associated with the generation of coherent radiation by an e-beam, traversing an undulator magnet, with an initial energy-phase correlation. The mechanism of the process are explained and the role played by the bunching is clarified. The effect of the correlation on the stimulated part of the emission is also discussed [it

  6. Coulomb drag in electron-hole bilayer: Mass-asymmetry and exchange correlation effects

    Science.gov (United States)

    Arora, Priya; Singh, Gurvinder; Moudgil, R. K.

    2018-04-01

    Motivated by a recent experiment by Zheng et al. [App. Phys. Lett. 108, 062102 (2016)] on coulomb drag in electron-hole and hole-hole bilayers based on GaAs/AlGaAs semiconductor heterostructure, we investigate theoretically the influence of mass-asymmetry and temperature-dependence of correlations on the drag rate. The correlation effects are dealt with using the Vignale-Singwi effective inter-layer interaction model which includes correlations through local-field corrections to the bare coulomb interactions. However, in this work, we have incorporated only the intra-layer correlations using the temperature-dependent Hubbard approximation. Our results display a reasonably good agreement with the experimental data. However, it is crucial to include both the electron-hole mass-asymmetry and temperature-dependence of correlations. Mass-asymmetry and correlations are found to result in a substantial enhancement of drag resistivity.

  7. Photoionization of furan from the ground and excited electronic states.

    Science.gov (United States)

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nađa; Decleva, Piero

    2016-02-28

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.

  8. Stability of the antiferromagnetic state in the electron doped iridates

    Science.gov (United States)

    Bhowal, Sayantika; Moradi Kurdestany, Jamshid; Satpathy, Sashi

    2018-06-01

    Iridates such as Sr2IrO4 are of considerable interest owing to the formation of the Mott insulating state driven by a large spin–orbit coupling. However, in contrast to the expectation from the Nagaoka theorem that a single doped hole or electron destroys the anti-ferromagnetic (AFM) state of the half-filled Hubbard model in the large U limit, the anti-ferromagnetism persists in the doped Iridates for a large dopant concentration beyond half-filling. With a tight-binding description of the relevant states by the third-neighbor (t 1, t 2, t 3, U) Hubbard model on the square lattice, we examine the stability of the AFM state to the formation of a spin spiral state in the strong coupling limit. The third-neighbor interaction t 3 is important for the description of the Fermi surface of the electron doped system. A phase diagram in the parameter space is obtained for the regions of stability of the AFM state. Our results qualitatively explain the robustness of the AFM state in the electron doped iridate (such as Sr2‑x La x IrO4), observed in many experiments, where the AFM state continues to be stable until a critical dopant concentration.

  9. Electron capture to autoionizing states of multiply charged ions

    International Nuclear Information System (INIS)

    Mack, E.M.

    1987-01-01

    The present thesis investigates electron capture reactions resulting from slow collisions (V q+ ) and neutral gas targets (B). The energy spectra of the emitted electrons are measured; detection angle is 50 0 . Mainly, autoionizing double capture resulting from collisions with two-electron targets (He, H 2 ) is studied; then, the emitted electrons stem from doubly excited projectile states. The projectiles used are bare C 6+ , the H-like and He-like ions of C, N and O, He-like Ne 8+ and Ne-like Ar 8+ . Excited metastable projectiles used are C 5+ (2s), He-like projectiles A q+ (1s2s 3 S) and Ar 8+ (...2p 5 3s). Comparison is made with the predictions of a recently proposed extended classical barrier model, that was developed in connection with the work. This model assumes sequential capture of the electrons ('two-step' process); it predicts the realized binding enegies of the captured electrons - which may be directly determined from the autoionization spectra using only the projectile charge, the ionization potentials of the target and the collision velocity as parameters. No adjustable parameter enters into the calculations. The term energies and decay modes of the highly excited product ions themselves are studied. Generally, the autoionizing decay of these states is found to proceed preferentially to the directly adjacent lower singly excited state. Experimental evidence is presented, that triply excited states decay by successive emission of two electrons, whenever this is energetically possible. Finally, the L-MM decay in few-electron systems is considered. 314 refs.; 96 figs.; 29 tabs

  10. Integral cross sections for electron impact excitation of vibrational and electronic states in phenol

    Energy Technology Data Exchange (ETDEWEB)

    Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid (Spain); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Ratnavelu, K. [Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-05-21

    We report on measurements of integral cross sections (ICSs) for electron impact excitation of a series of composite vibrational modes and electronic-states in phenol, where the energy range of those experiments was 15–250 eV. There are currently no other results against which we can directly compare those measured data. We also report results from our independent atom model with screened additivity rule correction computations, namely, for the inelastic ICS (all discrete electronic states and neutral dissociation) and the total ionisation ICS. In addition, for the relevant dipole-allowed excited electronic states, we also report f-scaled Born-level and energy-corrected and f-scaled Born-level (BEf-scaled) ICS. Where possible, our measured and calculated ICSs are compared against one another with the general level of accord between them being satisfactory to within the measurement uncertainties.

  11. Electron-correlation based externally predictive QSARs for mutagenicity of nitrated-PAHs in Salmonella typhimurium TA100.

    Science.gov (United States)

    Reenu; Vikas

    2014-03-01

    In quantitative modeling, there are two major aspects that decide reliability and real external predictivity of a structure-activity relationship (SAR) based on quantum chemical descriptors. First, the information encoded in employed molecular descriptors, computed through a quantum-mechanical method, should be precisely estimated. The accuracy of the quantum-mechanical method, however, is dependent upon the amount of electron-correlation it incorporates. Second, the real external predictivity of a developed quantitative SAR (QSAR) should be validated employing an external prediction set. In this work, to analyze the role of electron-correlation, QSAR models are developed for a set of 51 ubiquitous pollutants, namely, nitrated monocyclic and polycyclic aromatic hydrocarbons (nitrated-AHs and PAHs) having mutagenic activity in TA100 strain of Salmonella typhimurium. The quality of the models, through state-of-the-art external validation procedures employing an external prediction set, is compared to the best models known in the literature for mutagenicity. The molecular descriptors whose electron-correlation contribution is analyzed include total energy, energy of HOMO and LUMO, and commonly employed electron-density based descriptors such as chemical hardness, chemical softness, absolute electronegativity and electrophilicity index. The electron-correlation based QSARs are also compared with those developed using quantum-mechanical descriptors computed with advanced semi-empirical (SE) methods such as PM6, PM7, RM1, and ab initio methods, namely, the Hartree-Fock (HF) and the density functional theory (DFT). The models, developed using electron-correlation contribution of the quantum-mechanical descriptors, are found to be not only reliable but also satisfactorily predictive when compared to the existing robust models. The robustness of the models based on descriptors computed through advanced SE methods, is also observed to be comparable to those developed with

  12. Many-particle correlations in quasi-two-dimensional electron-hole systems

    International Nuclear Information System (INIS)

    Nikolaev, Valentin

    2002-01-01

    This thesis reports a theoretical investigation of many-particle correlation effects in semiconductor heterostructures containing quantum wells. Particular attention is paid towards quasi-particle pair correlations. Using the Green's function technique and the ladder approximation as a basis, the generalized mass action law, which describes the redistribution of particles between correlated and uncorrelated states in quasi-two-dimensional systems for different temperatures and total densities, is derived. The expression is valid beyond the low-density limit, which allows us to investigate the transition of the system from a dilute exciton gas to a dense electron-hole plasma. A generalized Levinson theorem, which takes k-space filling into account, is formulated. Screening in quasi-two-dimensional systems is analyzed rigorously. Firstly, the qualitatively new mechanism of static local screening by indirect excitons is studied using the simple Thomas-Fermi approximation. Then, a detailed many-body description suitable for a proper account of dynamic screening by a quasi-2D electron-hole plasma, and consistent with the previously derived mass action law, is provided. The generalized Lindhard approximation and excitonic plasmon-pole approximations are also derived. The theory is applied to single and double quantum wells. A self-consistent procedure is developed for numerical investigation of the ionization degree of an electron-hole plasma at different values of temperature/exciton Rydberg ratios. This procedure accounts for screening, k-space filling (exciton bleaching), and the formation of excitons. An abrupt jump in the value of the ionization degree that happens with an increase of the carrier density or temperature (Mott transition) is found in a certain density-temperature region. It has been found that the critical density of the Mott transition for indirect excitons may be much smaller than that for direct excitons. A suggestion has been made that some of the

  13. Electron momentum spectroscopy of the core state of solid carbon

    International Nuclear Information System (INIS)

    Caprari, R.S.; Clark, S.A.C.; McCarthy, I.E.; Storer, P.J.; Vos, M.; Weigold, E.

    1994-08-01

    Electron momentum spectroscopy (binary encounter (e,2e)) experimental results are presented for the core state of an amorphous carbon allotrope. The (e,2e) cross section has two identifiable regions. One is a narrow energy width 'core band peak' that does not disperse with momentum. At higher binding energies there is an energy diffuse 'multiple scattering continuum', which is a consequence of (e,2e) collisions with core electrons that are accompanied by inelastic scattering of one or more of the incoming or outgoing electrons. Comparisons of experimental momentum distributions with the Hartree-Fock atomic carbon ls orbital are presented for both regions. 16 refs., 4 figs

  14. Extreme electron correlation effects on the electric properties of atomic anions

    International Nuclear Information System (INIS)

    Canuto, S.

    1994-01-01

    The contribution of the electron correlation effects to the calculated dipole polarizability and hyper-polarizability of the first-row atomic anions is calculated and analyzed. It is shown that the total correlation contribution to the dipole hyperpolarizability is extremely large with the Hartree-Fock model accounting for only a small fraction of the accurate result. The linear and, more pronounced, the nonlinear response of atomic anions to the application of an electric field emphatically shows the effects of the correlated motion of the electrons

  15. Statistical electron angular correlation coefficients for atoms within the Hohenberg-Kohn-Sham theory

    International Nuclear Information System (INIS)

    Pathak, R.K.

    1985-01-01

    Statistical electron angular correlation coefficients tau = 2 2 He through 14 Si, within the Hohenberg-Kohn-Sham density-functional formalism. These are computed with use of the spectral sum rules obtained from the pseudoexcitation spectrum employing the recent formulation of the time-dependent Kohn-Sham theory due to Bartolotti. Various approximations to the exchange-correlation energy functional are used and for first-row atoms, a comparison is made with the highly accurate correlation coefficients recently obtained by Thakkar. The present tau values show closer agreement with those of Thakkar with increasing number of electrons

  16. Dipole-bound states as doorways in (dissociative) electron attachment

    International Nuclear Information System (INIS)

    Sommerfeld, Thomas

    2005-01-01

    This communication starts with a comparison of dissociative recombination and dissociative attachment placing emphasis on the role of resonances as reactive intermediates. The main focus is then the mechanism of electron attachment to polar molecules at very low energies (100 meV). The scheme considered consists of two steps: First, an electron is captured in a diffuse dipole-bound state depositing its energy in the vibrational degrees of freedom, in other words, a vibrational Feshbach resonance is formed. Then, owing to the coupling with a valence state, the electron is transferred into a compact valence orbital, and depending on the electron affinities of the valence state and possible dissociation products, as well as on the details of the intramolecular redistribution of vibrational energy, long-lived anions can be generated or dissociation reactions can be initiated. The key property in this context is the electronic coupling strength between the diffuse dipole-bound and the compact valence states. We describe how the coupling strength can be extracted from ab initio data, and present results for Nitromethane, Uracil and Cyanoacetylene

  17. Electron-nuclear magnetic resonance in the inverted state

    International Nuclear Information System (INIS)

    Ignatchenko, V.A.; Tsifrinovich, V.I.

    1975-01-01

    The paper considers the susceptibility of the electron-nucleus system of a ferromagnet when nuclear magnetization is inverted with respect to the hyperfine field direction. The inverted state is a situation in which nuclear magnetization is turned through π relative to its equilibrium orientation, whereas electron magnetization is in an equilibrium state with respect to an external magnetic field. The consideration is carried out for a thin plate magnetized in its plane. Amplification of a weak radiofrequency signal can be attained under the fulfilment of an additional inequality relating the interaction frequency with electron and nuclear relaxation parameters. The gain may exceed the gain for an inverted nuclear system in magnetically disordered substances. In the range of strong interaction between the frequencies of ferromagnetic (FMR) and nuclear magnetic (NMR) resonances the electron-nuclear magnetic resonance (ENMR) spectrum possesses a fine structure which is inverse to that obtained for the ENMR spectrum in a normal state. The inverted state ENMR line shape is analysed in detail for the case of so weak HF fields that the relaxation conditions may be regarded as stationary. The initial (linear) stages of a forced transient process arising in an electron-nuclear system under the effect of a strong HF field are briefly analysed

  18. Coordinate transformation based cryo-correlative methods for electron tomography and focused ion beam milling

    International Nuclear Information System (INIS)

    Fukuda, Yoshiyuki; Schrod, Nikolas; Schaffer, Miroslava; Feng, Li Rebekah; Baumeister, Wolfgang; Lucic, Vladan

    2014-01-01

    Correlative microscopy allows imaging of the same feature over multiple length scales, combining light microscopy with high resolution information provided by electron microscopy. We demonstrate two procedures for coordinate transformation based correlative microscopy of vitrified biological samples applicable to different imaging modes. The first procedure aims at navigating cryo-electron tomography to cellular regions identified by fluorescent labels. The second procedure, allowing navigation of focused ion beam milling to fluorescently labeled molecules, is based on the introduction of an intermediate scanning electron microscopy imaging step to overcome the large difference between cryo-light microscopy and focused ion beam imaging modes. These methods make it possible to image fluorescently labeled macromolecular complexes in their natural environments by cryo-electron tomography, while minimizing exposure to the electron beam during the search for features of interest. - Highlights: • Correlative light microscopy and focused ion beam milling of vitrified samples. • Coordinate transformation based cryo-correlative method. • Improved correlative light microscopy and cryo-electron tomography

  19. Correlation between modulation structure and electronic inhomogeneity on Pb-doped Bi-2212 single crystals

    International Nuclear Information System (INIS)

    Sugimoto, A.; Kashiwaya, S.; Eisaki, H.; Yamaguchi, H.; Oka, K.; Kashiwaya, H.; Tsuchiura, H.; Tanaka, Y.

    2005-01-01

    The correlation between nanometer-size electronic states and surface structure is investigated by scanning tunneling microscopy/spectroscopy (STM/S) on Pb-doped Bi 2-x Pb x Sr 2 CaCu2O 8+y (Pb-Bi-2212) single crystals. The advantage of the Pb-Bi-2212 samples is that the modulation structure can be totally or locally suppressed depending on the Pb contents and annealing conditions. The superconducting gap (Δ) distribution on modulated Pb-Bi-2212 samples showed the lack of correlation with modulation structure except a slight reduction of superconducting island size for the b-axis direction. On the other hand, the optimal doped Pb-Bi-2212 (x = 0.6) samples obtained by reduced-annealing showed totally non-modulated structure in topography, however, the spatial distribution of Δ still showed inhomogeneity of which features were quite similar to those of modulated samples. These results suggest that the modulation structure is not the dominant origin of inhomogeneity although it modifies the streaky Δ structure sub-dominantly. From the gap structure variation around the border of narrow gap and broad gap regions, a trend of the coexistence of two separated phases i.e., superconducting phase and pseudogap like phase, is detected

  20. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

    Science.gov (United States)

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-06-11

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

  1. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity

    International Nuclear Information System (INIS)

    Schorb, Martin; Briggs, John A.G.

    2014-01-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. - Highlights: • Workflow for correlated cryo-fluorescence and cryo-electron microscopy. • Cryo-fluorescence microscopy setup incorporating a high numerical aperture objective. • Fluorescent signals located in cryo-electron micrographs with 50 nm spatial precision

  2. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Schorb, Martin [Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany); Briggs, John A.G., E-mail: john.briggs@embl.de [Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany); Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany)

    2014-08-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. - Highlights: • Workflow for correlated cryo-fluorescence and cryo-electron microscopy. • Cryo-fluorescence microscopy setup incorporating a high numerical aperture objective. • Fluorescent signals located in cryo-electron micrographs with 50 nm spatial precision.

  3. Leaky electronic states for photovoltaic photodetectors based on asymmetric superlattices

    Science.gov (United States)

    Penello, Germano Maioli; Pereira, Pedro Henrique; Pires, Mauricio Pamplona; Sivco, Deborah; Gmachl, Claire; Souza, Patricia Lustoza

    2018-01-01

    The concept of leaky electronic states in the continuum is used to achieve room temperature operation of photovoltaic superlattice infrared photodetectors. A structural asymmetric InGaAs/InAlAs potential profile is designed to create states in the continuum with the preferential direction for electron extraction and, consequently, to obtain photovoltaic operation at room temperature. Due to the photovoltaic operation and virtual increase in the bandoffset, the device presents both low dark current and low noise. The Johnson noise limited specific detectivity reaches values as high as 1.4 × 1011 Jones at 80 K. At 300 K, the detectivity obtained is 7.0 × 105 Jones.

  4. Many-body theory of electron correlations in atoms: RPAE and beyond

    International Nuclear Information System (INIS)

    Amusia, M.Ya.

    1996-01-01

    It is demonstrated how the correlations of electrons manifest themselves in photoionization of atoms. The diagrammatical technique, convenient and transparent, is applied to study this and related processes. Choosing as the best one particle the Hartree-Fock approximation, the first considerable step in accounting for electron correlations is made by constructing the Random Phase Approximation with Exchange. Its generalizations are also described, which include rearrangement of electron shells due to vacancies creation and decay. Attention is given to ''two electron-two vacancy'' excitations, formation of the negative ions and their photoionization as well as to satellites and ''shadows''. The direct knock-out of secondary particles, electrons and photons, by photoelectrons is considered. Formation of multiply-charged ions and above threshold phenomena, mainly multistep PCI, are discussed. Future of the domain: new atom-like objects and next steps in theoretical studies are outlined. (author)

  5. Quantum Monte Carlo methods and strongly correlated electrons on honeycomb structures

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Thomas C.

    2010-12-16

    In this thesis we apply recently developed, as well as sophisticated quantum Monte Carlo methods to numerically investigate models of strongly correlated electron systems on honeycomb structures. The latter are of particular interest owing to their unique properties when simulating electrons on them, like the relativistic dispersion, strong quantum fluctuations and their resistance against instabilities. This work covers several projects including the advancement of the weak-coupling continuous time quantum Monte Carlo and its application to zero temperature and phonons, quantum phase transitions of valence bond solids in spin-1/2 Heisenberg systems using projector quantum Monte Carlo in the valence bond basis, and the magnetic field induced transition to a canted antiferromagnet of the Hubbard model on the honeycomb lattice. The emphasis lies on two projects investigating the phase diagram of the SU(2) and the SU(N)-symmetric Hubbard model on the hexagonal lattice. At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. Previously elusive in experimentally relevant microscopic two-dimensional models, we show by means of large-scale quantum Monte Carlo simulations of the SU(2) Hubbard model on the honeycomb lattice, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Inspired by the rich phase diagrams of SU(N) models we study the SU(N)-symmetric Hubbard Heisenberg quantum antiferromagnet on the honeycomb lattice to investigate the reliability of 1/N corrections to large-N results by means of numerically exact QMC simulations. We study the melting of phases

  6. Exact many-electron ground states on diamond and triangle Hubbard chains

    International Nuclear Information System (INIS)

    Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter

    2009-01-01

    We construct exact ground states of interacting electrons on triangle and diamond Hubbard chains. The construction requires (1) a rewriting of the Hamiltonian into positive semidefinite form, (2) the construction of a many-electron ground state of this Hamiltonian, and (3) the proof of the uniqueness of the ground state. This approach works in any dimension, requires no integrability of the model, and only demands sufficiently many microscopic parameters in the Hamiltonian which have to fulfill certain relations. The scheme is first employed to construct exact ground state for the diamond Hubbard chain in a magnetic field. These ground states are found to exhibit a wide range of properties such as flat-band ferromagnetism and correlation induced metallic, half-metallic or insulating behavior, which can be tuned by changing the magnetic flux, local potentials, or electron density. Detailed proofs of the uniqueness of the ground states are presented. By the same technique exact ground states are constructed for triangle Hubbard chains and a one-dimensional periodic Anderson model with nearest-neighbor hybridization. They permit direct comparison with results obtained by variational techniques for f-electron ferromagnetism due to a flat band in CeRh 3 B 2 . (author)

  7. Dynamic behavior of correlated electrons in the insulating doped semiconductor Si:P

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, Elvira

    2009-06-04

    At low energy scales charge transport in the insulating Si:P is dominated by activated hopping between the localized donor electron states. Theoretical models for a disordered electronic system with a long-range Coulomb interaction are appropriate to interpret the electric conductivity spectra. With a novel and advanced method we perform broadband phase sensitive measurements of the reflection coefficient from 45 MHz up to 5 GHz, employing a vector network analyzer with a 2.4 mm coaxial sensor, which is terminated by the sample under test. While the material parameters (conductivity and permittivity) can be easily extracted from the obtained impedance data if the sample is metallic, no direct solution is possible if the material under investigation is an insulator. Focusing on doped semiconductors with largely varying conductivity and dielectric function, we present a closed calibration and evaluation procedure with an optimized theoretical and experimental complexity, based on the rigorous solution for the electromagnetic field inside the insulating sample, combined with the variational principle. Basically no limiting assumptions are necessary in a strictly defined parameter range. As an application of our new method, we have measured the complex broadband microwave conductivity of Si:P in a broad range of phosphorus concentration n/n{sub c} from 0.56 to 0.9 relative to the critical value n{sub c}=3.5 x 10{sup 18} cm{sup -3} of the metal-insulator transition driven by doping at temperatures down to 1.1 K, and studied unresolved issues of fundamental research concerning the electronic correlations and the metal-insulator transition. (orig.)

  8. A toy model to investigate the existence of excitons in the ground state of strongly-correlated semiconductor

    Science.gov (United States)

    Karima, H. R.; Majidi, M. A.

    2018-04-01

    Excitons, quasiparticles associated with bound states between an electron and a hole and are typically created when photons with a suitable energy are absorbed in a solid-state material. We propose to study a possible emergence of excitons, created not by photon absorption but the effect of strong electronic correlations. This study is motivated by a recent experimental study of a substrate material SrTiO3 (STO) that reveals strong exitonic signals in its optical conductivity. Here we conjecture that some excitons may already exist in the ground state as a result of the electronic correlations before the additional excitons being created later by photon absorption. To investigate the existence of excitons in the ground state, we propose to study a simple 4-energy-level model that mimics a situation in strongly-correlated semiconductors. The four levels are divided into two groups, lower and upper groups separated by an energy gap, Eg , mimicking the valence and the conduction bands, respectively. Further, we incorporate repulsive Coulomb interactions between the electrons. The model is then solved by exact diagonalization method. Our result shows that the toy model can demonstrate band gap widening or narrowing and the existence of exciton in the ground state depending on interaction parameter values.

  9. Electronic states of graphene nanoribbons and analytical solutions

    Directory of Open Access Journals (Sweden)

    Katsunori Wakabayashi, Ken-ichi Sasaki, Takeshi Nakanishi and Toshiaki Enoki

    2010-01-01

    Full Text Available Graphene is a one-atom-thick layer of graphite, where low-energy electronic states are described by the massless Dirac fermion. The orientation of the graphene edge determines the energy spectrum of π-electrons. For example, zigzag edges possess localized edge states with energies close to the Fermi level. In this review, we investigate nanoscale effects on the physical properties of graphene nanoribbons and clarify the role of edge boundaries. We also provide analytical solutions for electronic dispersion and the corresponding wavefunction in graphene nanoribbons with their detailed derivation using wave mechanics based on the tight-binding model. The energy band structures of armchair nanoribbons can be obtained by making the transverse wavenumber discrete, in accordance with the edge boundary condition, as in the case of carbon nanotubes. However, zigzag nanoribbons are not analogous to carbon nanotubes, because in zigzag nanoribbons the transverse wavenumber depends not only on the ribbon width but also on the longitudinal wavenumber. The quantization rule of electronic conductance as well as the magnetic instability of edge states due to the electron–electron interaction are briefly discussed.

  10. Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces.

    Science.gov (United States)

    Koning, Roman I; Celler, Katherine; Willemse, Joost; Bos, Erik; van Wezel, Gilles P; Koster, Abraham J

    2014-01-01

    Light microscopy and electron microscopy are complementary techniques that in a correlative approach enable identification and targeting of fluorescently labeled structures in situ for three-dimensional imaging at nanometer resolution. Correlative imaging allows electron microscopic images to be positioned in a broader temporal and spatial context. We employed cryo-correlative light and electron microscopy (cryo-CLEM), combining cryo-fluorescence light microscopy and cryo-electron tomography, on vitrified Streptomyces bacteria to study cell division. Streptomycetes are mycelial bacteria that grow as long hyphae and reproduce via sporulation. On solid media, Streptomyces subsequently form distinct aerial mycelia where cell division leads to the formation of unigenomic spores which separate and disperse to form new colonies. In liquid media, only vegetative hyphae are present divided by noncell separating crosswalls. Their multicellular life style makes them exciting model systems for the study of bacterial development and cell division. Complex intracellular structures have been visualized with transmission electron microscopy. Here, we describe the methods for cryo-CLEM that we applied for studying Streptomyces. These methods include cell growth, fluorescent labeling, cryo-fixation by vitrification, cryo-light microscopy using a Linkam cryo-stage, image overlay and relocation, cryo-electron tomography using a Titan Krios, and tomographic reconstruction. Additionally, methods for segmentation, volume rendering, and visualization of the correlative data are described. © 2014 Elsevier Inc. All rights reserved.

  11. Unique Intramolecular Electronic Communications in Mono-ferrocenylpyrimidine Derivatives: Correlation between Redox Properties and Structural Nature

    International Nuclear Information System (INIS)

    Xiang, Debo; Noel, Jerome; Shao, Huibo; Dupas, Georges; Merbouh, Nabyl; Yu, Hua-Zhong

    2015-01-01

    Highlights: • Unique intramolecular electronic communications (electron withdrawing and π-bond delocalization effects) exist in the mono-ferrocenylpyrimidine derivatives. • The redox potential shift correlates the pyrimidine ring torsion angle with the extent of electron delocalization. • The correlation between redox properties and structural nature in mono-ferrocenylpyrimidine derivatives is evident. - Abstract: The correlation between redox properties and structural nature in a complete set of mono-ferrocenylpyrimidine derivatives (2-ferrocenylpyrimidine, 2-FcPy; 4-ferrocenylpyrimidine, 4-FcPy; 5-ferrocenylpyrimidine, 5-FcPy) was evaluated by investigating the intramolecular electronic communications. Both conventional electrochemical measurements in organic solvents and thin-film voltammetric studies of these compounds were carried out. It was discovered that their formal potentials are significantly different from each other, and shift negatively in the order of 4-FcPy > 5-FcPy > 2-FcPy. This result suggests that the intramolecular electronic communication is dictated by the delocalization effect of the π-bonding systems in 2-FcPy, and that the electron-withdrawing effect of the nitrogen atoms in the pyrimidine ring plays the key role in 4-FcPy and 5-FcPy. The single crystal X-ray structure analyis and Density Functional Theory (DFT) calculation provided additional evidence (e.g., different torsion angles between the cyclopentadienyl and pyrimidine rings) to support the observed correlation between the redox properties and structural nature

  12. Electronic structure of a striped nickelate studied by the exact exchange for correlated electrons (EECE) approach

    KAUST Repository

    Schwingenschlö gl, Udo; Schuster, Cosima B.; Fré sard, Raymond

    2009-01-01

    Motivated by a RIXS study of Wakimoto, et al.(Phys. Rev. Lett., 102 (2009) 157001) we use density functional theory to analyze the magnetic order in the nickelate La5/3Sr1/3NiO4 and the details of its crystal and electronic structure. We compare

  13. Trapped electronic states in YAG crystal excited by femtosecond radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zavedeev, E.V.; Kononenko, V.V.; Konov, V.I. [General Physics Institute of RAS, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2017-07-15

    The excitation of an electronic subsystem of an yttrium aluminum garnet by 800 nm femtosecond radiation was studied theoretically and experimentally. The spatio-temporal dynamics of the refractive index (n) inside the beam waist was explored by means of the pump-probe interferometric technique with a submicron resolution. The observed increase in n indicated the formation of bound electronic states relaxed for ∝ 150 ps. We showed that the experimental data agreed with the computational simulation based on the numerical solution of the nonlinear Schroedinger equation only if these transient states were considered to arise from a direct light-induced process but not from the decay of radiatively generated free-electron-hole pairs. (orig.)

  14. Photoemission electronic states of epitaxially grown magnetite films

    International Nuclear Information System (INIS)

    Zalecki, R.; Kolodziejczyk, A.; Korecki, J.; Spiridis, N.; Zajac, M.; Kozlowski, A.; Kakol, Z.; Antolak, D.

    2007-01-01

    The valence band photoemission spectra of epitaxially grown 300 A single crystalline magnetite films were measured by the angle-resolved ultraviolet photoemission spectroscopy (ARUPS) at 300 K. The samples were grown either on MgO(0 0 1) (B termination) or on (0 0 1) Fe (iron-rich A termination), thus intentionally presenting different surface stoichiometry, i.e. also different surface electronic states. Four main features of the electron photoemission at about -1.0, -3.0, -5.5 and -10.0 eV below a chemical potential show systematic differences for two terminations; this difference depends on the electron outgoing angle. Our studies confirm sensitivity of angle resolved PES technique on subtleties of surface states

  15. Solid-state NMR covariance of homonuclear correlation spectra.

    Science.gov (United States)

    Hu, Bingwen; Amoureux, Jean-Paul; Trebosc, Julien; Deschamps, Michael; Tricot, Gregory

    2008-04-07

    Direct covariance NMR spectroscopy, which does not involve a Fourier transformation along the indirect dimension, is demonstrated to obtain homonuclear correlation two-dimensional (2D) spectra in the solid state. In contrast to the usual 2D Fourier transform (2D-FT) NMR, in a 2D covariance (2D-Cov) spectrum the spectral resolution in the indirect dimension is determined by the resolution along the detection dimension, thereby largely reducing the time-consuming indirect sampling requirement. The covariance method does not need any separate phase correction or apodization along the indirect dimension because it uses those applied in the detection dimension. We compare in detail the specifications obtained with 2D-FT and 2D-Cov, for narrow and broad resonances. The efficiency of the covariance data treatment is demonstrated in organic and inorganic samples that are both well crystallized and amorphous, for spin -1/2 nuclei with 13C, 29Si, and 31P through-space or through-bond homonuclear 2D correlation spectra. In all cases, the experimental time has been reduced by at least a factor of 10, without any loss of resolution and signal to noise ratio, with respect to what is necessary with the 2D-FT NMR. According to this method, we have been able to study the silicate network of glasses by 2D NMR within reasonable experimental time despite the very long relaxation time of the 29Si nucleus. The main limitation of the 2D-Cov data treatment is related to the introduction of autocorrelated peaks onto the diagonal, which does not represent any actual connectivity.

  16. The Effects of Surface Reconstruction and Electron-Positron Correlation on the Annihilation Characteristics of Positrons Trapped at Semiconductor Surfaces

    International Nuclear Information System (INIS)

    Fazleev, N. G.; Jung, E.; Weiss, A. H.

    2009-01-01

    Experimental positron annihilation induced Auger electron spectroscopy (PAES) data from Ge(100) and Ge(111) surfaces display several strong Auger peaks corresponding to M 4,5 N 1 N 2,3 , M 2,3 M 4,5 M 4,5 , M 2,3 M 4,5 V, and M 1 M 4,5 M 4,5 Auger transitions. The integrated peak intensities of Auger transitions have been used to obtain experimental annihilation probabilities for the Ge 3d and 3p core electrons. The experimental data were analyzed by performing theoretical studies of the effects of surface reconstructions and electron-positron correlations on image potential induced surface states and annihilation characteristics of positrons trapped at the reconstructed Ge(100) and Ge(111) surfaces. Calculations of positron surface states and annihilation characteristics have been performed for Ge(100) surface with (2x1), (2x2), and (4x2) reconstructions, and for Ge(111) surface with c(2x8) reconstruction. Estimates of the positron binding energy and annihilation characteristics reveal their sensitivity to the specific atomic structure of the topmost layers of the semiconductor and to the approximations used to describe electron-positron correlations. The results of these theoretical studies are compared with the ones obtained for the reconstructed Si(100)-(2x1) and Si(111)-(7x7) surfaces.

  17. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually increa...

  18. Electron beam charge state amplifier (EBQA)--a conceptual evaluation

    International Nuclear Information System (INIS)

    Dooling, J. C.

    1998-01-01

    A concept is presented for stripping low-energy, radioactive ions from 1+ to higher charge states. Referred to as an Electron Beam Charge State Amplifier (EBQA), this device accepts a continuous beam of singly-charged, radioactive ions and passes them through a high-density electron beam confined by a solenoidal magnetic field. Singly-charged ions may be extracted from standard Isotope-Separator-Online (ISOL) sources. An EBQA is potentially useful for increasing the charge state of ions prior to injection into post-acceleration stages at ISOL radioactive beam facilities. The stripping efficiency from q=1+ to 2+ (η 12 ) is evaluated as a function of electron beam radius at constant current with solenoid field, injected ion energy, and ion beam emittance used as parameters. Assuming a 5 keV, 1 A electron beam, η 12 = 0.38 for 0.1 keV, 132 Xe ions passing through an 8 Tesla solenoid, 1 m in length. Multi-pass configurations to achieve 3+ or 4+ charge states are also conceivable. The calculated efficiencies depend inversely on the initial ion beam emittances. The use of a helium-buffer-gas, ion-guide stage to improve the brightness of the 1+ beams [1] may enhance the performance of an EBQA

  19. Correlation of displacement effects produced by electrons, protons, and neutrons in silicon

    International Nuclear Information System (INIS)

    van Lint, V.A.J.; Gigas, G.; Barengoltz, J.

    1975-01-01

    The correlation of displacement effects produced by electrons, protons, and neutrons in silicon is studied. Available data from the literature is employed. In particular the scope of the study is limited to the degradation of excess carrier lifetime and device electrical parameters directly related to it. The degree to which displacement effects may be correlated in order to predict semiconductor device response based on response data to another type of radiation is discussed. Useful ranges of the correlation factors (K/sub tau/ ratios) as a function of device majority carrier type, device resistivity, and injection level are presented. A significant dependence on injection level for the correlation factors is found

  20. Many-body correlation effects in the spatially separated electron and hole layers in the coupled quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Babichenko, V.S. [RRC Kurchatov Institute, Kurchatov Sq., 1, 123182 Moscow (Russian Federation); Polishchuk, I.Ya., E-mail: iyppolishchuk@gmail.com [RRC Kurchatov Institute, Kurchatov Sq., 1, 123182 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700, 9, Institutskii per., Dolgoprudny, Moscow Region (Russian Federation)

    2014-11-15

    The many-body correlation effects in the spatially separated electron and hole layers in the coupled quantum wells are investigated. A special case of the many-component electron–hole system is considered. It is shown that if the hole mass is much greater than the electron mass, the negative correlation energy is mainly determined by the holes. The ground state of the system is found to be the 2D electron–hole liquid with the energy smaller than the exciton phase. It is shown that the system decays into the spatially separated neutral electron–hole drops if the initially created charge density in the layers is smaller than the certain critical value n{sub eq}.

  1. To the theory of spin-charge separation in one-dimensional correlated electron systems

    International Nuclear Information System (INIS)

    Zvyagin, A.A.

    2004-01-01

    Spin-charge separation is considered to be one of the key properties that distinguish low-dimensional electron systems from others. Three-dimensional correlated electron systems are described by the Fermi liquid theory. There, low-energy excitations (quasiparticles) are reminiscent of noninteracting electrons: They carry charges -e and spins 1/2 . It is believed that for any one-dimensional correlated electron system, low-lying electron excitations carry either only spin and no charge, or only charge without spin. That is why recent experiments looked for such low-lying collective electron excitations, one of which carries only spin, and the other carries only charge. Here we show that despite the fact that for exactly solvable one-dimensional correlated electron models there exist excitations which carry only spin and only charge, in all these models with short-range interactions the low-energy physics is described by low-lying collective excitations, one of which carries both spin and charge

  2. Pseudoclassical approach to electron and ion density correlations in simple liquid metals

    International Nuclear Information System (INIS)

    Vericat, F.; Tosi, M.P.; Pastore, G.

    1986-04-01

    Electron-electron and electron-ion structural correlations in simple liquid metals are treated by using effective pair potentials to incorporate quantal effects into a pseudoclassical description of the electron fluid. An effective pair potential between simultaneous electron density fluctuations is first constructed from known properties of the degenerate jellium model, which are the plasmon sum rule, the Kimball-Niklasson relation and Yasuhara's values of the electron pair distribution function at contact. An analytic expression is thereby obtained in the Debye-Hueckel approximation for the electronic structure factor in jellium over a range of density appropriate to metals, with results which compare favourably with those of fully quantal evaluations. A simple pseudoclassical model is then set up for a liquid metal: this involves a model of charged hard spheres for the ion-ion potential and an empty core model for the electron-ion potential, the Coulombic tails being scaled as required by the relation between the long-wavelength partial structure factors and the isothermal compressibility of the metal. The model is solved analytically by a pseudoclassical linear response treatment of the electron-ion coupling and numerical results are reported for partial structure factors in liquid sodium and liquid beryllium. Contact is made for the latter system with data on the electron-electron structure factor in the crystal from inelastic X-ray scattering experiments of Eisenberger, Marra and Brown. (author)

  3. Foucault's Pendulum, Analog for an Electron Spin State

    Science.gov (United States)

    Linck, Rebecca

    2012-11-01

    The classical Lagrangian that describes the coupled oscillations of Foucault's pendulum presents an interesting analog to an electron's spin state in an external magnetic field. With a simple modification, this classical Lagrangian yields equations of motion that directly map onto the Schrodinger-Pauli Equation. This analog goes well beyond the geometric phase, reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  4. Two Electron States in a Quantum Ring on a Sphere

    International Nuclear Information System (INIS)

    Kazaryan, Eduard M.; Shahnazaryan, Vanik A.; Sarkisyan, Hayk A.

    2014-01-01

    Two electron states in a quantum ring on a spherical surface are discussed. The problem is discussed within the frameworks of Russell–Saunders coupling scheme, that is, the spin–orbit coupling is neglected. Treating Coulomb interaction as a perturbation, the energy correction for different states is calculated. The dependence of the Coulomb interaction energy on external polar boundary angle of quantum ring is obtained. In analogue with the helium atom the concept of states exchange time is introduced, and its dependence on geometrical parameters of the ring is shown. (author)

  5. Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Mel, E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, North Carolina A and T State University, Greensboro, North Carolina 27411 (United States); Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W., E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario (Canada)

    2014-05-14

    Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

  6. Electronic structure and correlated wave functions of a few electron quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Tokuei [Laboratory of Physics, College of Science and Technology, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba 274-8501 (Japan); Ishida, Hiroshi [College of Humanities and Sciences, Nihon University, Tokyo 156-8550 (Japan); Fujikawa, Kazuo [Institute of Quantum Science, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2015-01-22

    The energy spectra and wave functions of a few electrons confined by a quasi-one-dimensional harmonic and anharmonic potentials have been studied by using a full configuration interaction method employing a Cartesian anisotropic Gaussian basis set. The energy spectra are classified into three regimes of the strength of confinement, namely, large, medium and small. The polyad quantum number defined by a total number of nodes in the wave functions is shown to be a key ingredient to interpret the energy spectra for the whole range of the confinement strength. The nodal pattern of the wave functions exhibits normal modes for the harmonic confining potential, indicating collective motions of electrons. These normal modes are shown to undergo a transition to local modes for an anharmonic potential with large anharmonicity.

  7. Correlation electron cyclotron emission diagnostic and improved calculation of turbulent temperature fluctuation levels on ASDEX Upgrade

    Science.gov (United States)

    Creely, A. J.; Freethy, S. J.; Burke, W. M.; Conway, G. D.; Leccacorvi, R.; Parkin, W. C.; Terry, D. R.; White, A. E.

    2018-05-01

    A newly upgraded correlation electron cyclotron emission (CECE) diagnostic has been installed on the ASDEX Upgrade tokamak and has begun to perform experimental measurements of electron temperature fluctuations. CECE diagnostics measure small amplitude electron temperature fluctuations by correlating closely spaced heterodyne radiometer channels. This upgrade expanded the system from six channels to thirty, allowing simultaneous measurement of fluctuation level radial profiles without repeat discharges, as well as opening up the possibility of measuring radial turbulent correlation lengths. Newly refined statistical techniques have been developed in order to accurately analyze the fluctuation data collected from the CECE system. This paper presents the hardware upgrades for this system and the analysis techniques used to interpret the raw data, as well as measurements of fluctuation spectra and fluctuation level radial profiles.

  8. Foucault's pendulum, a classical analog for the electron spin state

    Science.gov (United States)

    Linck, Rebecca A.

    Spin has long been regarded as a fundamentally quantum phenomena that is incapable of being described classically. To bridge the gap and show that aspects of spin's quantum nature can be described classically, this work uses a classical Lagrangian based on the coupled oscillations of Foucault's pendulum as an analog for the electron spin state in an external magnetic field. With this analog it is possible to demonstrate that Foucault's pendulum not only serves as a basis for explaining geometric phase, but is also a basis for reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured electron spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  9. Role of electron correlation and long range magnetic order in the electronic structure of Ca(Sr)RuO3

    International Nuclear Information System (INIS)

    Singh, Ravi Shankar; Medicherla, V.R.R.; Maiti, Kalobaran

    2008-01-01

    The room temperature photoemission spectra collected at different surface sensitivities reveal qualitatively different surface and bulk electronic structures in CaRuO 3 and SrRuO 3 . The extracted bulk spectra are dominated by the coherent feature intensity with a weak correlation induced feature at higher binding energies. The First principle calculations provide a wonderful representation of the bulk spectra for the effective electron correlation strength, U/W∼0.2 as expected for highly extended 4d systems. This resolves a long-standing issue that arose due to the prediction of large U/W similar to 3d systems. Photoemission spectra across the magnetic phase transition reveal unusual evolution exhibiting a large reduction in the coherent feature intensity in the bulk spectrum of SrRuO 3 , while the bulk spectrum in CaRuO 3 remains almost the same down to the lowest temperature studied

  10. Studies of electron correlation effects in multicharged ion atom collisions involving double capture

    Energy Technology Data Exchange (ETDEWEB)

    Stolterfoht, N.; Sommer, K.; Griffin, D.C.; Havener, C.C.; Huq, M.S.; Phaneuf, R.A.; Swenson, J.K.; Meyer, F.W.

    1988-01-01

    We review measurements of L-Coster Kronig and Auger electron production in slow, multicharged collision systems to study electron correlation effects in the process of double electron capture. The n/sup /minus/3/ law was confirmed for the production of the Coster-Kronig configurations 1s/sup 2/2pn/ell/ (n greater than or equal to 6) in O/sup 6 +/ + He collisions. Enhancement of high angular momentum /ell/ in specific 1s/sup 2/2pn/ell/ configurations was observed by means of high-resolution measurements of the Coster-Kronig lines. The importance of electron correlation effects in couplings of potential energy curves leading to the 1s/sup 2/2pn/ell/ configurations is verified by means of Landau-Zener model calculations. 32 refs., 4 figs.

  11. Studies of electron correlation effects in multicharged ion atom collisions involving double capture

    International Nuclear Information System (INIS)

    Stolterfoht, N.; Sommer, K.; Griffin, D.C.; Havener, C.C.; Huq, M.S.; Phaneuf, R.A.; Swenson, J.K.; Meyer, F.W.

    1988-01-01

    We review measurements of L-Coster Kronig and Auger electron production in slow, multicharged collision systems to study electron correlation effects in the process of double electron capture. The n/sup /minus/3/ law was confirmed for the production of the Coster-Kronig configurations 1s 2 2pn/ell/ (n ≥ 6) in O 6+ + He collisions. Enhancement of high angular momentum /ell/ in specific 1s 2 2pn/ell/ configurations was observed by means of high-resolution measurements of the Coster-Kronig lines. The importance of electron correlation effects in couplings of potential energy curves leading to the 1s 2 2pn/ell/ configurations is verified by means of Landau-Zener model calculations. 32 refs., 4 figs

  12. Correlated proton-electron hole dynamics in protonated water clusters upon extreme ultraviolet photoionization

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2016-07-01

    Full Text Available The ultrafast nuclear and electronic dynamics of protonated water clusters H+(H2On after extreme ultraviolet photoionization is investigated. In particular, we focus on cluster cations with n = 3, 6, and 21. Upon ionization, two positive charges are present in the cluster related to the excess proton and the missing electron, respectively. A correlation is found between the cluster's geometrical conformation and initial electronic energy with the size of the final fragments produced. For situations in which the electron hole and proton are initially spatially close, the two entities become correlated and separate in a time-scale of 20 to 40 fs driven by strong non-adiabatic effects.

  13. Correlated proton-electron hole dynamics in protonated water clusters upon extreme ultraviolet photoionization

    Science.gov (United States)

    Li, Zheng; Vendrell, Oriol

    2016-01-01

    The ultrafast nuclear and electronic dynamics of protonated water clusters H+(H2O)n after extreme ultraviolet photoionization is investigated. In particular, we focus on cluster cations with n = 3, 6, and 21. Upon ionization, two positive charges are present in the cluster related to the excess proton and the missing electron, respectively. A correlation is found between the cluster's geometrical conformation and initial electronic energy with the size of the final fragments produced. For situations in which the electron hole and proton are initially spatially close, the two entities become correlated and separate in a time-scale of 20 to 40 fs driven by strong non-adiabatic effects. PMID:26798842

  14. Measurement of turbulent electron temperature fluctuations on the ASDEX Upgrade tokamak using correlated electron cyclotron emission

    Energy Technology Data Exchange (ETDEWEB)

    Freethy, S. J., E-mail: simon.freethy@ipp.mpg.de [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Conway, G. D.; Happel, T.; Köhn, A. [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Classen, I.; Vanovac, B. [FOM Institute DIFFER, 5612 AJ Eindhoven (Netherlands); Creely, A. J.; White, A. E. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-11-15

    Turbulent temperature fluctuations are measured on the ASDEX Upgrade tokamak using pairs of closely spaced, narrow-band heterodyne radiometer channels and a standard correlation technique. The pre-detection spacing and bandwidth of the radiometer channel pairs is chosen such that they are physically separated less than a turbulent correlation length, but do not overlap. The radiometer has 4 fixed filter frequency channels and two tunable filter channels for added flexibility in the measurement position. Relative temperature fluctuation amplitudes are observed in a helium plasma to be δT/T = (0.76 ± 0.02)%, (0.67 ± 0.02)%, and (0.59 ± 0.03)% at normalised toroidal flux radius of ρ{sub tor} = 0.82, 0.75, and 0.68, respectively.

  15. How decays and final-state interactions affect velocity correlations in heavy-ion collisions

    International Nuclear Information System (INIS)

    Wieand, K.L.; Pratt, S.E.; Balantekin, A.B.

    1992-01-01

    We study rapidity correlations by calculating two-particle correlation functions and fractorial moments for a simple thermal model of ultrarelativistic-heavy-ion collisions. In this model correlations arise from decays of unstable hadrons and the final-state interactions of the measured particles. These correlations are shown to be similar but smaller than correlations due to phase separation. (orig.)

  16. Chemical modulation of electronic structure at the excited state

    Science.gov (United States)

    Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.

    2017-12-01

    Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.

  17. Novel Approaches to Spectral Properties of Correlated Electron Materials: From Generalized Kohn-Sham Theory to Screened Exchange Dynamical Mean Field Theory

    Science.gov (United States)

    Delange, Pascal; Backes, Steffen; van Roekeghem, Ambroise; Pourovskii, Leonid; Jiang, Hong; Biermann, Silke

    2018-04-01

    The most intriguing properties of emergent materials are typically consequences of highly correlated quantum states of their electronic degrees of freedom. Describing those materials from first principles remains a challenge for modern condensed matter theory. Here, we review, apply and discuss novel approaches to spectral properties of correlated electron materials, assessing current day predictive capabilities of electronic structure calculations. In particular, we focus on the recent Screened Exchange Dynamical Mean-Field Theory scheme and its relation to generalized Kohn-Sham Theory. These concepts are illustrated on the transition metal pnictide BaCo2As2 and elemental zinc and cadmium.

  18. Resonant Ion Pair Formation in Electron Collisions with Ground State Molecular Ions

    International Nuclear Information System (INIS)

    Zong, W.; Dunn, G.H.; Djuric, N.; Greene, C.H.; Neau, A.; Zong, W.; Larsson, M.; Al-Khalili, A.; Neau, A.; Derkatch, A.M.; Vikor, L.; Shi, W.; Rosen, S.; Le Padellec, A.; Danared, H.; Ugglas, M. af

    1999-01-01

    Resonant ion pair formation from collisions of electrons with ground state diatomic molecular ions has been observed and absolute cross sections measured. The cross section for HD + is characterized by an abrupt threshold at 1.9thinspthinspeV and 14 resolved peaks in the range of energies 0≤E≤14 eV . The dominant mechanism responsible for the structures appears to be resonant capture and stabilization, modified by two-channel quantum interference. Data on HF + show structure correlated with photoionization of HF and with dissociative recombination of electrons with this ion. copyright 1999 The American Physical Society

  19. Single-electron states near a current-carrying core

    International Nuclear Information System (INIS)

    Masale, M.

    2004-01-01

    The energy spectrum of an electron confined near a current-carrying core is obtained as a function of the azimuthal applied magnetic field within the effective-mass approximation. The double degeneracy of the non-zero electron's axial wave number (k z ) states is lifted by the current-induced magnetic field while that of the non-zero azimuthal quantum number (m) states is preserved. A further analysis is the evaluations of the oscillator strengths for optical transitions involving the lowest-order pair of the electron's energy subbands within the dipole approximation. The radiation field is taken as that of elliptically polarized light incident along the core axis. In this polarization and within the dipole approximation, the allowed transitions are only those governed by the following specific selection rules. The azimuthal quantum numbers of the initial and final states must differ by unity while the electron's axial wave number is conserved. The azimuthal magnetic field is also found to lift the multiple degeneracies of the k z ≠0 interaction integrals as well as those of the oscillator strengths for optical transitions

  20. High Temperature, high pressure equation of state density correlations and viscosity correlations

    Energy Technology Data Exchange (ETDEWEB)

    Tapriyal, D.; Enick, R.; McHugh, M.; Gamwo, I.; Morreale, B.

    2012-07-31

    Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.

  1. Strongly correlated electrons at high pressure: an approach by inelastic X-Ray scattering; Electrons correles sous haute pression: une approche par diffusion inelastique des rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Rueff, J.P

    2007-06-15

    Inelastic X-ray scattering (IXS) and associated methods has turn out to be a powerful alternative for high-pressure physics. It is an all-photon technique fully compatible with high-pressure environments and applicable to a vast range of materials. Standard focalization of X-ray in the range of 100 microns is typical of the sample size in the pressure cell. Our main aim is to provide an overview of experimental results obtained by IXS under high pressure in 2 classes of materials which have been at the origin of the renewal of condensed matter physics: strongly correlated transition metal oxides and rare-earth compounds. Under pressure, d and f-electron materials show behaviors far more complex that what would be expected from a simplistic band picture of electron delocalization. These spectroscopic studies have revealed unusual phenomena in the electronic degrees of freedom, brought up by the increased density, the changes in the charge-carrier concentration, the over-lapping between orbitals, and hybridization under high pressure conditions. Particularly we discuss about pressure induced magnetic collapse and metal-insulator transitions in 3d compounds and valence fluctuations phenomena in 4f and 5f compounds. Thanks to its superior penetration depth, chemical selectivity and resonant enhancement, resonant inelastic X-ray scattering has appeared extremely well suited to high pressure physics in strongly correlated materials. (A.C.)

  2. Neutron-electron EDM correlations in supersymmetry and prospects for EDM searches

    International Nuclear Information System (INIS)

    Abel, Steven A.; Lebedev, Oleg

    2006-01-01

    Motivated by recent progress in experimental techniques of electric dipole moment (EDM) measurements, we study correlations between the neutron and electron EDMs in common supersymmetric models. These include minimal supergravity (mSUGRA) with small CP phases, mSUGRA with a heavy SUSY spectrum, the decoupling scenario and split SUSY. In most cases, the electron and neutron EDMs are found to be observable in the next round of EDM experiments. They exhibit certain correlation patterns. For example, if d n ∼ 10 -27 e cm is found, d e is predicted to lie in the range 10 -28 -10 -29 e cm

  3. Neutron-electron EDM correlations in supersymmetry and prospects for EDM searches

    International Nuclear Information System (INIS)

    Abel, S.A.

    2005-08-01

    Motivated by recent progress in experimental techniques of electric dipole moment (EDM) measurements, we study correlations between the neutron and electron EDMs in common supersymmetric models. These include minimal supergravity (mSUGRA) with small CP phases, mSUGRA with a heavy SUSY spectrum, the decoupling scenario and split SUSY. In most cases, the electron and neutron EDMs are found to be observable in the next round of EDM experiments. They exhibit certain correlation patterns. For example, if d n ∝ 10 -27 e cm is found, d e is predicted to lie in the range 10 -28 - 10 -29 e cm. (orig.)

  4. Correlation functions of electronic and nuclear spins in a Heisenberg antiferromagnet semi-infinite media

    International Nuclear Information System (INIS)

    Sarmento, E.F.

    1980-01-01

    Results are found for the correlation dynamic functions (or the correspondent green functions) between any combination including pairs of electronic anel nuclear spin operators in an antiferromagnet semi-infinite media., at low temperature T N . These correlation functions, are used to investigate, at the same time, the properties of surface spin waves in volume and surface. The dispersion relatons of nuclear and electronic spin waves coupled modes, in surface are found, resolving a system of linearized equatons of spin operators a system of linearized equations of spin operators. (author) [pt

  5. Measurement of the electron-neutrino angular correlation in 6He decay

    International Nuclear Information System (INIS)

    Naviliat-Cuncic, O.; Ban, G.; Durand, D.; Duval, F.; Flechard, X.; Herbane, M.; Labalme, M.; Lienard, E.; Mauger, F.; Mery, A.; Rodriguez-Rubiales, D.

    2006-01-01

    We report on the status of an experiment aiming to determine the angular correlation coefficient between the electron and the anti-neutrino in the pure Gamow-Teller decay of 6He. Such measurement is motivated by the search for the presence of tensor type contributions to the weak interaction. The experiment uses a setup where 6He ions are confined in a novel transparent Paul trap. Electrons and recoiling ions are detected in coincidence to deduce the angular correlation coefficient. First direct in trap decays have been recorded

  6. Communication: A Jastrow factor coupled cluster theory for weak and strong electron correlation

    International Nuclear Information System (INIS)

    Neuscamman, Eric

    2013-01-01

    We present a Jastrow-factor-inspired variant of coupled cluster theory that accurately describes both weak and strong electron correlation. Compatibility with quantum Monte Carlo allows for variational energy evaluations and an antisymmetric geminal power reference, two features not present in traditional coupled cluster that facilitate a nearly exact description of the strong electron correlations in minimal-basis N 2 bond breaking. In double-ζ treatments of the HF and H 2 O bond dissociations, where both weak and strong correlations are important, this polynomial cost method proves more accurate than either traditional coupled cluster or complete active space perturbation theory. These preliminary successes suggest a deep connection between the ways in which cluster operators and Jastrow factors encode correlation

  7. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.

    2013-01-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass

  8. Quantum discord and classical correlation signatures of mobility edges in one-dimensional aperiodic single-electron systems

    International Nuclear Information System (INIS)

    Gong, Longyan; Zhu, Hao; Zhao, Shengmei; Cheng, Weiwen; Sheng, Yubo

    2012-01-01

    We investigate numerically the quantum discord and the classical correlation in a one-dimensional slowly varying potential model and a one-dimensional Soukoulis–Economou ones, respectively. There are well-defined mobility edges in the slowly varying potential model, while there are discrepancies on mobility edges in the Soukoulis–Economou ones. In the slowly varying potential model, we find that extended and localized states can be distinguished by both the quantum discord and the classical correlation. There are sharp transitions in the quantum discord and the classical correlation at mobility edges. Based on these, we study “mobility edges” in the Soukoulis–Economou model using the quantum discord and the classical correlation, which gives another perspectives for these “mobility edges”. All these provide us good quantities, i.e., the quantum discord and the classical correlation, to reflect mobility edges in these one-dimensional aperiodic single-electron systems. Moreover, our studies propose a consistent interpretation of the discrepancies between previous numerical results about the Soukoulis–Economou model. -- Highlights: ► Quantum discord and classical correlation can signal mobility edges in two models. ► An interpretation for mobility edges in the Soukoulis–Economou model is proposed. ► Quantum discord and classical correlation can reflect well localization properties.

  9. On stationary states of electron beams in drift space

    International Nuclear Information System (INIS)

    Kovalev, N.F.

    2002-01-01

    The article is devoted to studying the conditions of formation and existence of virtual cathodes. The problem on stationary states of the strongly magnetized electron beams in the homogeneous drift channels is discussed. The problem on the planar and coaxial moduli of the drift spaces is considered. The possibility of existing the virtual cathodes in the coaxial tubular beams by the injection currents, smaller than the threshold ones is highly proved. The inaccuracy of results of a number of works, studying the properties of the virtual cathodes in the strongly magnetized electron beams, is shown [ru

  10. Surface study of liquid 3He using surface state electrons

    International Nuclear Information System (INIS)

    Shirahama, K.; Ito, S.; Suto, H.; Kono, K.

    1995-01-01

    We have measured the mobility of surface state electrons (SSE) on liquid 3 He, μ 3 , aiming to study the elementary surface excitations of the Fermi liquid. A gradual increase of μ 3 below 300 mK is attributed to the scattering of electrons by ripplons. Ripplons do exist in 3 He down to 100 mK. We observe an abrupt decrease of μ 3 , due to the transition to the Wigner solid (WS). The dependences of the WS conductivity and mobility on temperature and magnetic field differ from the SSE behavior on liquid 4 He

  11. Electronic Band Structure of BaCo_{2}As_{2}: A Fully Doped Ferropnictide Analog with Reduced Electronic Correlations

    Directory of Open Access Journals (Sweden)

    N. Xu

    2013-01-01

    Full Text Available We report an investigation with angle-resolved photoemission spectroscopy of the Fermi surface and electronic band structure of BaCo_{2}As_{2}. Although its quasinesting-free Fermi surface differs drastically from that of its Fe-pnictide cousins, we show that the BaCo_{2}As_{2} system can be used as an approximation to the bare unoccupied band structure of the related BaFe_{2-x}Co_{x}As_{2} and Ba_{1-x}K_{x}Fe_{2}As_{2} compounds. However, our experimental results, in agreement with dynamical-mean-field-theory calculations, indicate that electronic correlations are much less important in BaCo_{2}As_{2} than in the ferropnictides. Our findings suggest that this effect is due to the increased filling of the electronic 3d shell in the presence of significant Hund’s exchange coupling.

  12. High-resolution x-ray scattering studies of charge ordering in highly correlated electron systems

    International Nuclear Information System (INIS)

    Ghazi, M.E.

    2002-01-01

    Many important properties of transition metal oxides such as, copper oxide high-temperature superconductivity and colossal magnetoresistance (CMR) in manganites are due to strong electron-electron interactions, and hence these systems are called highly correlated systems. These materials are characterised by the coexistence of different kinds of order, including charge, orbital, and magnetic moment. This thesis contains high-resolution X-ray scattering studies of charge ordering in such systems namely the high-T C copper oxides isostructural system, La 2-x Sr x NiO 4 with various Sr concentrations (x = 0.33 - 0.2), and the CMR manganite system, Nd 1/2 Sr 1/2 MnO 3 . It also includes a review of charge ordering in a large variety of transition metal oxides, such as ferrates, vanadates, cobaltates, nickelates, manganites, and cuprates systems, which have been reported to date in the scientific literature. Using high-resolution synchrotron X-ray scattering, it has been demonstrated that the charge stripes exist in a series of single crystals of La 2-x Sr x NiO 4 with Sr concentrations (x = 0.33 - 0.2) at low temperatures. Satellite reflections due to the charge ordering were found with the wavevector (2ε, 0, 1) below the charge ordering transition temperature, T CO , where 2ε is the amount of separation from the corresponding Bragg peak. The charge stripes are shown to be two-dimensional in nature both by measurements of their correlation lengths and by measurement of the critical exponents of the charge stripe melting transition with an anomaly at x = 0.25. The results show by decreasing the hole concentration from the x = 0.33 to 0.2, the well-correlated charge stripes change to a glassy state at x = 0.25. The electronic transition into the charge stripe phase is second-order without any corresponding structural transition. Above the second-order transition critical scattering was observed due to fluctuations into the charge stripe phase. In a single-crystal of Nd

  13. Strongly correlated electron systems and neutron scattering. Magnetism, superconductivity, structural phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Katano, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron scattering experiments in our group on strongly correlated electron systems are reviewed Metal-insulator transitions caused by structural phase transitions in (La{sub 1-x}Sr{sub x}) MnO{sub 3}, a novel magnetic transition in the CeP compound, correlations between antiferromagnetism and superconductivity in UPd{sub 2}Al{sub 3} and so forth are discussed. Here, in this note, the phase transition of Mn-oxides was mainly described. (author)

  14. Importance of Relativistic Effects and Electron Correlation in Structure Factors and Electron Density of Diphenyl Mercury and Triphenyl Bismuth.

    Science.gov (United States)

    Bučinský, Lukáš; Jayatilaka, Dylan; Grabowsky, Simon

    2016-08-25

    This study investigates the possibility of detecting relativistic effects and electron correlation in single-crystal X-ray diffraction experiments using the examples of diphenyl mercury (HgPh2) and triphenyl bismuth (BiPh3). In detail, the importance of electron correlation (ECORR), relativistic effects (REL) [distinguishing between total, scalar and spin-orbit (SO) coupling relativistic effects] and picture change error (PCE) on the theoretical electron density, its topology and its Laplacian using infinite order two component (IOTC) wave functions is discussed. This is to develop an understanding of the order of magnitude and shape of these different effects as they manifest in the electron density. Subsequently, the same effects are considered for the theoretical structure factors. It becomes clear that SO and PCE are negligible, but ECORR and scalar REL are important in low- and medium-order reflections on absolute and relative scales-not in the high-order region. As a further step, Hirshfeld atom refinement (HAR) and subsequent X-ray constrained wavefunction (XCW) fitting have been performed for the compound HgPh2 with various relativistic and nonrelativistic wave functions against the experimental structure factors. IOTC calculations of theoretical structure factors and relativistic HAR as well as relativistic XCW fitting are presented for the first time, accounting for both scalar and spin-orbit relativistic effects.

  15. A new methodology for measuring time correlations and excite states of atoms and nuclei

    International Nuclear Information System (INIS)

    Cavalcante, M.A.

    1989-01-01

    A system for measuring time correlation of physical phenomena events in the range of 10 -7 to 10 5 sec is proposed, and his results presented. This system, is based on a sequential time scale which is controlled by a precision quartz oscillator; the zero time of observation is set by means of a JK Flip-Flop, which is operated by a negative transition of pulse in coincidence with the pulse from a detector which marks the time zero of the event (precedent pulse). This electronic system (named digital chronoanalizer) was used in the measurement of excited states of nuclei as well as for the determination of time fluctuations in physical phenomena, such as the time lag in a halogen Geiger counter and is the measurement of the 60 KeV excited state of N P 237 . (author)

  16. Nanoscale probing of bandgap states on oxide particles using electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qianlang [School for the Engineering of Matter, Transport and Energy, Arizona State University, 85287 AZ (United States); March, Katia [Laboratoire de Physique des Solides, Bâtiment 510, Université Paris-Sud, 91405 Orsay Cedex (France); Crozier, Peter A., E-mail: CROZIER@asu.edu [School for the Engineering of Matter, Transport and Energy, Arizona State University, 85287 AZ (United States)

    2017-07-15

    Surface and near-surface electronic states were probed with nanometer spatial resolution in MgO and TiO{sub 2} anatase nanoparticles using ultra-high energy resolution electron energy-loss spectroscopy (EELS) coupled to a scanning transmission electron microscope (STEM). This combination allows the surface electronic structure determined with spectroscopy to be correlated with nanoparticle size, morphology, facet etc. By acquiring the spectra in aloof beam mode, radiation damage to the surface can be significantly reduced while maintaining the nanometer spatial resolution. MgO and TiO{sub 2} showed very different bandgap features associated with the surface/sub-surface layer of the nanoparticles. Spectral simulations based on dielectric theory and density of states models showed that a plateau feature found in the pre-bandgap region in the spectra from (100) surfaces of 60 nm MgO nanocubes is consistent with a thin hydroxide surface layer. The spectroscopy shows that this hydroxide species gives rise to a broad filled surface state at 1.1 eV above the MgO valence band. At the surfaces of TiO{sub 2} nanoparticles, pronounced peaks were observed in the bandgap region, which could not be well fitted to defect states. In this case, the high refractive index and large particle size may make Cherenkov or guided light modes the likely causes of the peaks. - Highlights: • Bandgap states detected with aloof beam monochromated EELS on oxide nanoparticle surfaces. • Dielectric theory applied to simulate the spectra and interpret surface structure. • Density of states models also be employed to understand the surface electronic structure. • In MgO, one states associate with water species was found close to the valence band edge. • In anatase, two mid-gap states associated with point defects were found.

  17. Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition.

    Science.gov (United States)

    Glazyrin, K; Pourovskii, L V; Dubrovinsky, L; Narygina, O; McCammon, C; Hewener, B; Schünemann, V; Wolny, J; Muffler, K; Chumakov, A I; Crichton, W; Hanfland, M; Prakapenka, V B; Tasnádi, F; Ekholm, M; Aichhorn, M; Vildosola, V; Ruban, A V; Katsnelson, M I; Abrikosov, I A

    2013-03-15

    We discover that hcp phases of Fe and Fe(0.9)Ni(0.1) undergo an electronic topological transition at pressures of about 40 GPa. This topological change of the Fermi surface manifests itself through anomalous behavior of the Debye sound velocity, c/a lattice parameter ratio, and Mössbauer center shift observed in our experiments. First-principles simulations within the dynamic mean field approach demonstrate that the transition is induced by many-electron effects. It is absent in one-electron calculations and represents a clear signature of correlation effects in hcp Fe.

  18. Electron states and electron Raman scattering in semiconductor double cylindrical quantum well wire

    International Nuclear Information System (INIS)

    Munguía-Rodríguez, M; Riera, R; Betancourt-Riera, Ri; Betancourt-Riera, Re; Nieto Jalil, J M

    2016-01-01

    The differential cross section for an electron Raman scattering process in a semiconductor GaAs/AlGaAs double quantum well wire is calculated, and expressions for the electronic states are presented. The system is modeled by considering T = 0 K and also with a single parabolic conduction band, which is split into a subband system due to the confinement. The gain and differential cross-section for an electron Raman scattering process are obtained. In addition, the emission spectra for several scattering configurations are discussed, and interpretations of the singularities found in the spectra are given. The electron Raman scattering studied here can be used to provide direct information about the efficiency of the lasers. (paper)

  19. Calculation of the two-electron Darwin term using explicitly correlated wave functions

    International Nuclear Information System (INIS)

    Middendorf, Nils; Höfener, Sebastian; Klopper, Wim; Helgaker, Trygve

    2012-01-01

    Graphical abstract: The two-electron Darwin term is computed analytically at the MP2-F12 level of theory using density fitted integrals. Highlights: ► Two-electron Darwin term computed analytically at the MP2-F12 level. ► Darwin two-electron integrals computed using density fitting techniques. ► Two-electron Darwin term dominated by singlet pair contributions. ► Much improved basis set convergence is achieved with F12 methods. ► Interference correction works well for the two-electron Darwin term. - Abstract: This article is concerned with the calculation of the two-electron Darwin term (D2). At the level of explicitly correlated second-order perturbation theory (MP2-F12), the D2 term is obtained as an analytic energy derivative; at the level of explicitly correlated coupled-cluster theory, it is obtained from finite differences. To avoid the calculation of four-center integrals, a density-fitting approximation is applied to the D2 two-electron integrals without loss of accuracy, even though the absolute value of the D2 term is typically about 0.1 mE h . Explicitly correlated methods provide a qualitatively correct description of the short-range region around the Coulomb hole, even for small orbital basis sets. Therefore, explicitly correlated wave functions remedy the otherwise extremely slow convergence of the D2 contribution with respect to the basis-set size, yielding more accurate results than those obtained by two-point basis-set extrapolation. Moreover, we show that the interference correction of Petersson’s complete-basis-set model chemistry can be used to compute a D2 basis-set correction at the MP2-F12 level to improve standard coupled-cluster singles-and-doubles results.

  20. First principles electron-correlated calculations of optical absorption in magnesium clusters★

    Science.gov (United States)

    Shinde, Ravindra; Shukla, Alok

    2017-11-01

    In this paper, we report large-scale configuration interaction (CI) calculations of linear optical absorption spectra of various isomers of magnesium clusters Mgn (n = 2-5), corresponding to valence transitions. Geometry optimization of several low-lying isomers of each cluster was carried out using coupled-cluster singles doubles (CCSD) approach, and these geometries were subsequently employed to perform ground and excited state calculations using either the full-CI (FCI) or the multi-reference singles-doubles configuration interaction (MRSDCI) approach, within the frozen-core approximation. Our calculated photoabsorption spectrum of magnesium dimer (Mg2) is in excellent agreement with the experiments both for peak positions, and intensities. Owing to the sufficiently inclusive electron-correlation effects, these results can serve as benchmarks against which future experiments, as well as calculations performed using other theoretical approaches, can be tested. Supplementary material in the form of one pdf fille available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80356-6.

  1. Exchange-correlation energy in the orbital occupancy method: electronic structure of organic molecules

    International Nuclear Information System (INIS)

    Oszwaldowski, R; Vazquez, H; Pou, P; Ortega, J; Perez, R; Flores, F

    2003-01-01

    A new DF-LCAO (density functional with local combination of atomic orbitals) method is used to calculate the electronic properties of 3,4,9,10 perylenetetracarboxylic dianhydride (PTCDA), C 6 H 6 , CH 4 , and CO. The method, called the OO (orbital occupancy) method, is a DF-based theory, which uses the OOs instead of ρ(r) to calculate the exchange and correlation energies. In our calculations, we compare the OO method with the conventional local density approximation approach. Our results show that, using a minimal basis set, we obtain equilibrium bond lengths and binding energies for PTCDA, C 6 H 6 , and CH 4 which are respectively within 6, and 10-15% of the experimental values. We have also calculated the affinity and ionization levels, as well as the optical gap, for benzene and PTCDA and have found that a variant of Koopmans' theorem works well for these molecules. Using this theorem we calculate the Koopmans relaxation energies of the σ- and π-orbitals for PTCDA and have obtained this molecule's density of states which compares well with experimental evidence

  2. Two-electron spin correlations in precision placed donors in silicon.

    Science.gov (United States)

    Broome, M A; Gorman, S K; House, M G; Hile, S J; Keizer, J G; Keith, D; Hill, C D; Watson, T F; Baker, W J; Hollenberg, L C L; Simmons, M Y

    2018-03-07

    Substitutional donor atoms in silicon are promising qubits for quantum computation with extremely long relaxation and dephasing times demonstrated. One of the critical challenges of scaling these systems is determining inter-donor distances to achieve controllable wavefunction overlap while at the same time performing high fidelity spin readout on each qubit. Here we achieve such a device by means of scanning tunnelling microscopy lithography. We measure anti-correlated spin states between two donor-based spin qubits in silicon separated by 16 ± 1 nm. By utilising an asymmetric system with two phosphorus donors at one qubit site and one on the other (2P-1P), we demonstrate that the exchange interaction can be turned on and off via electrical control of two in-plane phosphorus doped detuning gates. We determine the tunnel coupling between the 2P-1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations.

  3. Low-Lying Electronic States of AlZn Calculated by MRCI+Q Method

    Science.gov (United States)

    Zhang, Shudong; Wang, Mingxu; Wang, Zifan; Hu, Kun; Dong, Jingping

    2017-07-01

    Some low-lying electronic states of AlZn have been studied by the ab initio calculation method of multireference configuration interaction (MRCI). The complete potential energy curves (PECs) of the three lowest doublet states (X2Π, A2Σ+, and B2Π) and the two lowest quartet states (a4Σ- and b4Π) are computed in the range of R = 0.1-0.9 nm and these states are correlated to three dissociation limits, X2Π and A2Σ+ to Zn(4s2,1S) + Al(3s23p1,2P), a4Σ- and b4Π to Zn(4s2,1S) + Al(3s13p2,4P), and B2Π to Zn(4s14p1,3P) + Al(3s23p1,2P). The calculated PECs indicate that the A2Σ+ state has a very shallow potential well and the other states show significant binding-state characteristics. The equilibrium internuclear distances Re, dissociation energies De, and term energies Te for the electronic excited states were obtained. All the possible vibrational levels, rotational constants, and spectral constants for the four bound states were computed by solving the radial Schrödinger equation of nuclear motion with the Level8.0 program provided by Le Roy.

  4. Electronic money in russia: current state and problems of development

    Directory of Open Access Journals (Sweden)

    T. G. Bondarenko

    2016-01-01

    Full Text Available Article is devoted to urgent problems of non-cash methods of calculation development by using electronic money – as one of the modern economically developed state strategic tasks. On modern economic science strong influence appears informatization process. The control expansion tendency, influence and distribution of commerce due to informatization of society led to emergence of the new phenomenon – information economy. Information economy brought new economic events which owing to their novelty are insufficiently studied to life. It is possible to carry electronic money to such phenomena of modern network economy Relevance and, in our opinion, timeliness of this scientific work, consisting in novelty of this non-cash payment method, its prospects and innovation within non-cash methods of calculations. Authors set as the purpose – studying of problems and the prospects of development of electronic money in the Russian Federation. In article theoretical bases of electronic money functioning are described. Determinations and classifications dismissed non-cash a method, and also the principles of electronic money functioning are considered, the questions of their historical development are raised.Authors analyzed statistical data on development of electronic services and channels of their using. Features, benefits and shortcomings of the current state of the market of electronic money are studied. The emphasis on that fact that in modern conditions considerable number of economic actors perform the activities, both in the real environment of economy, and within the virtual environment that promotes expansion of methods of their customer interaction by means of technical devices of personal computers, mobile phones is placed. In article common problems and tendencies of payments with using an electronic money are designated, the research on assessment of the current state and the prospects of electronic money

  5. Initial state dependence of nonlinear kinetic equations: The classical electron gas

    International Nuclear Information System (INIS)

    Marchetti, M.C.; Cohen, E.G.D.; Dorfman, J.R.; Kirkpatrick, T.R.

    1985-01-01

    The method of nonequilibrium cluster expansion is used to study the decay to equilibrium of a weakly coupled inhomogeneous electron gas prepared in a local equilibrium state at the initial time, t=0. A nonlinear kinetic equation describing the long time behavior of the one-particle distribution function is obtained. For consistency, initial correlations have to be taken into account. The resulting kinetic equation-differs from that obtained when the initial state of the system is assumed to be factorized in a product of one-particle functions. The question of to what extent correlations in the initial state play an essential role in determining the form of the kinetic equation at long times is discussed. To that end, the present calculations are compared wih results obtained before for hard sphere gases and in general with strong short-range forces. A partial answer is proposed and some open questions are indicated

  6. Electronic and ground state properties of ThTe

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Purvee, E-mail: purveebhardwaj@gmail.com; Singh, Sadhna, E-mail: drsadhna100@gmail.com [High Pressure Research Lab. Department of Physics Barkatullah University, Bhopal (MP) 462026 (India)

    2016-05-06

    The electronic properties of ThTe in cesium chloride (CsCl, B2) structure are investigated in the present paper. To study the ground state properties of thorium chalcogenide, the first principle calculations have been calculated. The bulk properties, including lattice constant, bulk modulus and its pressure derivative are obtained. The calculated equilibrium structural parameters are in good agreement with the available experimental and theoretical results.

  7. Anisotropic correlated electron model associated with the Temperley-Lieb algebra

    International Nuclear Information System (INIS)

    Foerster, Angela; Links, Jon; Roditi, Itzhak

    1997-12-01

    We present and anisotropic correlated electron model on a periodic lattice, constructed from an R-matrix associated with the Temperley-Lieb algebra. By modification of the coupling of the first and last sites we obtain a model with quantum algebra invariance. (author)

  8. Electron density in reasonably real metallic surfaces, including interchange and correlation effects

    International Nuclear Information System (INIS)

    Moraga, L.A.; Martinez, G.

    1981-01-01

    By means of a new method, the electron density in a jellium surface is calculated taking in account interchange and correlation effects; reproducing, in this way, the Lang and Kohn results. The new method is self-consistent but not iterative and hence is possible extend it to the solution of the same problem in more reasonably real metallic surfaces. (L.C.) [pt

  9. The inclusion of electron correlation in intermolecular potentials: Applications to the formamide dimer and liquid formamide

    DEFF Research Database (Denmark)

    Brdarski, S.; Åstrand, P.-O.; Karlström, G.

    2000-01-01

    dipole moment is 11% lower at the MP2 level than at the Hartree-Fock (HF) level, whereas the isotropic part of the polarizability is increased by 36% by adding electron correlation and using a considerably larger basis set. The atomic charges, dipole moments and polarizabilities obtained at the HF level...

  10. Exchange-correlation energies of atoms from efficient density functionals: influence of the electron density

    Science.gov (United States)

    Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua

    2017-12-01

    The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.

  11. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    Science.gov (United States)

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The effects of local correlations on the electronic structure of FeSe

    Science.gov (United States)

    Watson, Matthew; Kim, Timur; Haghighirad, Amir; Coldea, Amalia

    FeSe is structurally the simplest of Fe-based superconductors, but its complex and unique properties pose important theoretical questions. One important aspect of the physics of FeSe is the understanding of the strength and effects of electronic correlations. In order to explore this, we have performed angle-resolved photo-emission spectroscopy (ARPES) measurements on high quality bulk single crystals of FeSe over a wide range of binding energies, in different scattering geometries and with varying incident photon energies, analysing the quasiparticle renormalisations, scattering rates and degree of coherence. We find that FeSe exhibits moderately strong, orbital-dependent correlation effects which are understood to arise primarily due to local electron-electron interactions on the Fe sites. We conclude that electronic correlations constitute a key ingredient in understanding the electronic structure of FeSe. Part of this work was supported by EPSRC, UK (EP/I004475/1, EP/I017836/1). We thank Diamond Light Source for access to Beamline I05.

  13. Electron structure of amorphous semi-conductor states

    International Nuclear Information System (INIS)

    Wiid, D.H.; Lemmer, R.H.

    1975-01-01

    The electrical properties of amorphous materials are determined by their electron states. Since the electrons are much lighter than the massive ions, the energy levels of the electrons are extremely sensitive to changes in the states of the ions, e.g. a change in their positions. A method has been developed to approximate the positional disorder inthe crystal by a compositional disorder, i.e. the substitution, in a pure crystal, of ions by impurities. The advantage of this lies in the retention of the periodicity of the lattice. This model is linked with an investigation at present under way, in which the mobility, electrical resistance, etc. of a silicon crystal is determined as a function of its amorphous state. It is for instance possible to control the degree of disorder in the crystal, and the problem is to characterise the disorder by a specific parameter. For theoretical calculations such a parameter is essential and it is therefore also the biggest shortcoming in all the theories that, as far as is known, have been developed. It is possible to set up a general phenomenological theory for, for example, electrical resistance, but in view of its complex nature only rough approximations can be made [af

  14. Engineering electronic states of periodic and quasiperiodic chains by buckling

    Science.gov (United States)

    Mukherjee, Amrita; Nandy, Atanu; Chakrabarti, Arunava

    2017-07-01

    The spectrum of spinless, non-interacting electrons on a linear chain that is buckled in a non-uniform, quasiperiodic manner is investigated within a tight binding formalism. We have addressed two specific cases, viz., a perfectly periodic chain wrinkled in a quasiperiodic Fibonacci pattern, and a quasiperiodic Fibonacci chain, where the buckling also takes place in a Fibonacci pattern. The buckling brings distant neighbors in the parent chain to close proximity, which is simulated by a tunnel hopping amplitude. It is seen that, in the perfectly ordered case, increasing the strength of the tunnel hopping (that is, bending the segments more) absolutely continuous density of states is retained towards the edges of the band, while the central portion becomes fragmented and host subbands of narrowing widths containing extended, current carrying states, and multiple isolated bound states formed as a result of the bending. A switching ;on; and ;off; of the electronic transmission can thus be engineered by buckling. On the other hand, in the second example of a quasiperiodic Fibonacci chain, imparting a quasiperiodic buckling is found to generate continuous subband(s) destroying the usual multifractality of the energy spectrum. We present exact results based on a real space renormalization group analysis, that is corroborated by explicit calculation of the two terminal electronic transport.

  15. Entanglement between electronic states in silicene and photons

    Energy Technology Data Exchange (ETDEWEB)

    Rastgoo, S. [Physics Department, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Shirkani, H. [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Golshan, M.M., E-mail: golshan@susc.ac.ir [Physics Department, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2015-06-12

    Temporal behavior of entanglement between electrons in silicene and single mode radiations is reported. We show that the corresponding total Hamiltonian and time evolution operators are block diagonal. Initial states are divided into two categories for which buckling and the intrinsic spin–orbit effects are either of opposite or the same signs. Negativity shows that π-electrons and photons periodically become entangled for both categories. The entanglement spontaneously shows abrupt variations when buckling and the spin–orbit effects are equal but opposite in sign, leading to quantum phase transitions. As photonic excitations increase, the entanglement exhibits plateaus of constant durations for such initial states. - Highlights: • Time evolution of entanglement between π-electrons and photons in silicene is reported. • Intrinsic spin–orbit coupling (ISOC) and buckling effect (BE) are taken into account. • Initial states with ISOC and BE of opposite signs show quantum phase transitions. • Quantum phase transitions spontaneously occur when ISOC is equal to BE. • Periodic plateaus of maximal entanglement are observed for high photonic excitations.

  16. Doubly excited 3Pe resonance states of two-electron positive ions in Debye plasmas

    International Nuclear Information System (INIS)

    Hu, Xiao-Qing; Wang, Yang; Kar, Sabyasachi; Jiang, Zishi; Jiang, Pinghui

    2015-01-01

    We investigate the doubly excited 3 P e resonance states of two-electron positive ions Li + , Be 2+ , B 3+ , and C 4+ by employing correlated exponential wave functions. In the framework of the stabilization method, we calculate two series (3pnp and 3dnd) of 3 P e resonances below the N = 3 threshold. The 3 P e resonance parameters (resonance energies and widths) are reported for the first time as a function of the screening parameter. For free-atomic cases, comparisons are made with the reported results and few resonance states are reported for the first time

  17. Electron correlation in molecules: concurrent computation Many-Body Perturbation Theory (ccMBPT) calculations using macrotasking on the NEC SX-3/44 computer

    International Nuclear Information System (INIS)

    Moncrieff, D.; Wilson, S.

    1992-06-01

    The ab initio determination of the electronic structure of molecules is a many-fermion problem involving the approximate description of the motion of the electrons in the field of fixed nuclei. It is an area of research which demands considerable computational resources but having enormous potential in fields as diverse as interstellar chemistry and drug design, catalysis and solid state chemistry, molecular biology and environmental chemistry. Electronic structure calculations almost invariably divide into two main stages: the approximate solution of an independent electron model, in which each electron moves in the average field created by the other electrons in the system, and then, the more computationally demanding determination of a series of corrections to this model, the electron correlation effects. The many-body perturbation theory expansion affords a systematic description of correlation effects, which leads directly to algorithms which are suitable for concurrent computation. We term this concurrent computation Many-Body Perturbation Theory (ccMBPT). The use of a dynamic load balancing technique on the NEC SX-3/44 computer in electron correlation calculations is investigated for the calculation of the most demanding energy component in the most accurate of contemporary ab initio studies. An application to the ground state of the nitrogen molecule is described. We also briefly discuss the extent to which the calculation of the dominant corrections to such studies can be rendered computationally tractable by exploiting both the vector processing and parallel processor capabilities of the NEC SX-3/44 computer. (author)

  18. Towards native-state imaging in biological context in the electron microscope

    Science.gov (United States)

    Weston, Anne E.; Armer, Hannah E. J.

    2009-01-01

    Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context. PMID:19916039

  19. Role of temperature on static correlational properties in a spin-polarized electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Priya; Moudgil, R. K., E-mail: rkmoudgil@kuk.ac.in [Department of Physics, Kurukshetra University, Kurukshetra – 136 119 (India); Kumar, Krishan [S. D. College (Lahore), Ambala Cantt. - 133001 (India)

    2016-05-06

    We have studied the effect of temperature on the static correlational properties of a spin-polarized three-dimensional electron gas (3DEG) over a wide coupling and temperature regime. This problem has been very recently studied by Brown et al. using the restricted path-integral Monte Carlo (RPIMC) technique in the warm-dense regime. To this endeavor, we have used the finite temperature version of the dynamical mean-field theory of Singwi et al, the so-called quantum STLS (qSTLS) approach. The static density structure factor and the static pair-correlation function are calculated, and compared with the RPIMC simulation data. We find an excellent agreement with the simulation at high temperature over a wide coupling range. However, the agreement is seen to somewhat deteriorate with decreasing temperature. The pair-correlation function is found to become small negative for small electron separation. This may be attributed to the inadequacy of the mean-field theory in dealing with the like spin electron correlations in the strong-coupling domain. A nice agreement with RPIMC data at high temperature seems to arise due to weakening of both the exchange and coulomb correlations with rising temperature.

  20. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    Science.gov (United States)

    Jones, D. B.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.

    2016-04-01

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  1. The electronic density of states of disordered compounds

    International Nuclear Information System (INIS)

    Geertsma, W.; Dijkstra, J.

    1984-11-01

    Recently, the electronic properties of liquid alkali (Li, Na, K, Rb, Cs)-group IV (Si, Ge, Sn, Pb) alloys have been discussed by the present authors using a tight-binding model. Only anion orbitals (= group IV) are taken into account. Disorder is described by a pseudo lattice, which takes into account local coordination in one of the sublattices (cation or anion) only. In the first part of this paper it is shown that this approximation is consistent with the usual valence rules used by structural chemists for crystalline structures. In the second part of the paper the solutions for the density of states of the tight-binding Hamiltonian are studied for a number of pseudolattices. The infinite set of Green function equations is solved by using the effective transfer method, which replaces the famous Block condition. It is shown that such a model can explain the formation of bandgaps in disordered systems. By choosing the proper smallest cluster(s) of transfer loops to model the real structure by a pseudolattice, a density of states is obtained which represents properly that of the corresponding crystalline structure. Structures reminiscent to those caused by van Hove singularities already appear in the electronic density of states when relatively small cluster(s) of transfer loops are used. The approach outlined in this paper is capable of describing the electronic density of states due to various degrees of local order in a sublattice. Some of the peculiarities occurring in the solution of the density of states of certain pseudolattices, such as poles outside the band, are discussed in an appendix. (author)

  2. Wave-Particle Interactions Involving Correlated Electron Bursts and Whistler Chorus in Earth's Radiation Belts

    Science.gov (United States)

    Echterling, N.; Schriver, D.; Roeder, J. L.; Fennell, J. F.

    2017-12-01

    During the recovery phase of substorm plasma injections, the Van Allen Probes commonly observe events of quasi-periodic energetic electron bursts correlating with simultaneously detected upper-band, whistler-mode chorus emissions. These electron bursts exhibit narrow ranges of pitch angles (75-80° and 100-105°) and energies (20-40 keV). Electron cyclotron harmonic (ECH) emissions are also commonly detected, but typically do not display correlation with the electron bursts. To examine sources of free energy and the generation of these wave emissions, an observed electron velocity distribution on January 13, 2013 is used as the starting condition for a particle in cell (PIC) simulation. Effects of temperature anisotropy (perpendicular temperature greater than parallel temperature), the presence of a loss cone and a cold electron population on the generation of whistler and ECH waves are examined to understand wave generation and nonlinear interactions with the particle population. These nonlinear interactions produce energy diffusion along with strong pitch angle scattering into the loss cone on the order of milliseconds, which is faster than a typical bounce period of seconds. To examine the quasi-periodic nature of the electron bursts, a loss-cone recycling technique is implemented to model the effects of the periodic emptying of the loss cone and electron injection on the growth of whistler and ECH waves. The results of the simulations are compared to the Van Allen Probe observations to determine electron acceleration, heating and transport in Earth's radiation belts due to wave-particle interactions.

  3. Nanoscale probing of bandgap states on oxide particles using electron energy-loss spectroscopy.

    Science.gov (United States)

    Liu, Qianlang; March, Katia; Crozier, Peter A

    2017-07-01

    Surface and near-surface electronic states were probed with nanometer spatial resolution in MgO and TiO 2 anatase nanoparticles using ultra-high energy resolution electron energy-loss spectroscopy (EELS) coupled to a scanning transmission electron microscope (STEM). This combination allows the surface electronic structure determined with spectroscopy to be correlated with nanoparticle size, morphology, facet etc. By acquiring the spectra in aloof beam mode, radiation damage to the surface can be significantly reduced while maintaining the nanometer spatial resolution. MgO and TiO 2 showed very different bandgap features associated with the surface/sub-surface layer of the nanoparticles. Spectral simulations based on dielectric theory and density of states models showed that a plateau feature found in the pre-bandgap region in the spectra from (100) surfaces of 60nm MgO nanocubes is consistent with a thin hydroxide surface layer. The spectroscopy shows that this hydroxide species gives rise to a broad filled surface state at 1.1eV above the MgO valence band. At the surfaces of TiO 2 nanoparticles, pronounced peaks were observed in the bandgap region, which could not be well fitted to defect states. In this case, the high refractive index and large particle size may make Cherenkov or guided light modes the likely causes of the peaks. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Linked-cluster formulation of electron-hole interaction kernel in real-space representation without using unoccupied states.

    Science.gov (United States)

    Bayne, Michael G; Scher, Jeremy A; Ellis, Benjamin H; Chakraborty, Arindam

    2018-05-21

    Electron-hole or quasiparticle representation plays a central role in describing electronic excitations in many-electron systems. For charge-neutral excitation, the electron-hole interaction kernel is the quantity of interest for calculating important excitation properties such as optical gap, optical spectra, electron-hole recombination and electron-hole binding energies. The electron-hole interaction kernel can be formally derived from the density-density correlation function using both Green's function and TDDFT formalism. The accurate determination of the electron-hole interaction kernel remains a significant challenge for precise calculations of optical properties in the GW+BSE formalism. From the TDDFT perspective, the electron-hole interaction kernel has been viewed as a path to systematic development of frequency-dependent exchange-correlation functionals. Traditional approaches, such as MBPT formalism, use unoccupied states (which are defined with respect to Fermi vacuum) to construct the electron-hole interaction kernel. However, the inclusion of unoccupied states has long been recognized as the leading computational bottleneck that limits the application of this approach for larger finite systems. In this work, an alternative derivation that avoids using unoccupied states to construct the electron-hole interaction kernel is presented. The central idea of this approach is to use explicitly correlated geminal functions for treating electron-electron correlation for both ground and excited state wave functions. Using this ansatz, it is derived using both diagrammatic and algebraic techniques that the electron-hole interaction kernel can be expressed only in terms of linked closed-loop diagrams. It is proved that the cancellation of unlinked diagrams is a consequence of linked-cluster theorem in real-space representation. The electron-hole interaction kernel derived in this work was used to calculate excitation energies in many-electron systems and results

  5. Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy

    Science.gov (United States)

    Lewin, M.; Hauer, B.; Bornhöfft, M.; Jung, L.; Benke, J.; Michel, A.-K. U.; Mayer, J.; Wuttig, M.; Taubner, T.

    2015-10-01

    Phase Change Materials (PCM) show two stable states in the solid phase with significantly different optical and electronic properties. They can be switched reversibly between those two states and are promising candidates for future non-volatile memory applications. The development of phase change devices demands characterization tools, yielding information about the switching process at high spatial resolution. Scattering-type Scanning Near-field Optical Microscopy (s-SNOM) allows for spectroscopic analyses of the different optical properties of the PCMs on the nm-scale. By correlating the optical s-SNOM images with transmission electron microscopy images of the same sample, we unambiguously demonstrate the correlation of the infrared optical contrast with the structural state of the phase change material. The investigated sample consists of sandwiched amorphous and crystalline regions of Ag 4 In 3 Sb 67 Te 26 below a 100 nm thick ( ZnS ) 80 - ( SiO2 ) 20 capping layer. Our results demonstrate the sensitivity of s-SNOM to small dielectric near-field contrasts even below a comparably thick capping layer ( 100 nm ).

  6. Electron-electron bound states in parity-preserving QED3

    International Nuclear Information System (INIS)

    Belich, H.; Helayel-Neto, J.A.; Centro Brasileiro de Pesquisas Fisicas; Cima, O.M. del; Ferreira Junior, M.M.; Maranhao Univ., Sao Luis, MA

    2002-04-01

    By considering the Higgs mechanism in the framework of a parity-preserving Planar Quantum Electrodynamics, one shows that an attractive electron-electron interaction may dominate. The e - e - interaction potential emerges as the non-relativistic limit of the Moeller scattering amplitude and it results attractive with a suitable choice of parameters. Numerically values of the e - e - binding energy are obtained by solving the two-dimensional Schroedinger equation. The existence of bound states is a strong indicative that this model may be adopted to address the pairing mechanism of high-T c superconductivity. (author)

  7. Electron-electron bound states in parity-preserving QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H.; Helayel-Neto, J.A. [Universidade Catolica do Petropolis, RJ (Brazil). Grupo de Fisica Teorica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas; Cima, O.M. del [Universidade Catolica do Petropolis, RJ (Brazil). Grupo de Fisica Teorica; Ferreira Junior, M.M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica

    2002-04-01

    By considering the Higgs mechanism in the framework of a parity-preserving Planar Quantum Electrodynamics, one shows that an attractive electron-electron interaction may dominate. The e{sup -}e{sup -} interaction potential emerges as the non-relativistic limit of the Moeller scattering amplitude and it results attractive with a suitable choice of parameters. Numerically values of the e{sup -}e{sup -} binding energy are obtained by solving the two-dimensional Schroedinger equation. The existence of bound states is a strong indicative that this model may be adopted to address the pairing mechanism of high-T{sub c} superconductivity. (author)

  8. Single electron probes of fractional quantum hall states

    Science.gov (United States)

    Venkatachalam, Vivek

    When electrons are confined to a two dimensional layer with a perpendicular applied magnetic field, such that the ratio of electrons to flux quanta (nu) is a small integer or simple rational value, these electrons condense into remarkable new phases of matter that are strikingly different from the metallic electron gas that exists in the absence of a magnetic field. These phases, called integer or fractional quantum Hall (IQH or FQH) states, appear to be conventional insulators in their bulk, but behave as a dissipationless metal along their edge. Furthermore, electrical measurements of such a system are largely insensitive to the detailed geometry of how the system is contacted or even how large the system is... only the order in which contacts are made appears to matter. This insensitivity to local geometry has since appeared in a number of other two and three dimensional systems, earning them the classification of "topological insulators" and prompting an enormous experimental and theoretical effort to understand their properties and perhaps manipulate these properties to create robust quantum information processors. The focus of this thesis will be two experiments designed to elucidate remarkable properties of the metallic edge and insulating bulk of certain FQH systems. To study such systems, we can use mesoscopic devices known as single electron transistors (SETs). These devices operate by watching single electrons hop into and out of a confining box and into a nearby wire (for measurement). If it is initially unfavorable for an electron to leave the box, it can be made favorable by bringing another charge nearby, modifying the energy of the confined electron and pushing it out of the box and into the nearby wire. In this way, the SET can measure nearby charges. Alternatively, we can heat up the nearby wire to make it easier for electrons to enter and leave the box. In this way, the SET is a sensitive thermometer. First, by operating the SET as an

  9. Initial state fluctuations and final state correlations: status and open questions

    International Nuclear Information System (INIS)

    Adare, Andrew; Luzum, Matthew; Petersen, Hannah

    2013-01-01

    The recent appreciation of the importance of event-by-event fluctuations in relativistic heavy-ion collisions has lead to a large amount of diverse theoretical and experimental activity. In particular, there is significant interest in understanding the fluctuations in the initial stage of a collision, how exactly these fluctuations are propagated through the system evolution, and how they are manifested in correlations between measured particles. In order to address these questions a workshop was organized on ‘initial state fluctuations and final state correlations’, held at ECT* in Trento, Italy during the week of 2–6 July 2012. The goal was to collect recent work in order to provide a coherent picture of the current status of our understanding, to identify important questions that remain open, and to set a course for future research. Here we report the outcome of the presentations and discussions, focusing on the most important conclusions. (comment)

  10. Correlation between electron-irradiation defects and applied stress in graphene: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Kida, Shogo; Yamamoto, Masaya; Kawata, Hiroaki; Hirai, Yoshihiko; Yasuda, Masaaki, E-mail: yasuda@pe.osakafu-u.ac.jp [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Tada, Kazuhiro [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, Toyama 939-8630 (Japan)

    2015-09-15

    Molecular dynamics (MD) simulations are performed to study the correlation between electron irradiation defects and applied stress in graphene. The electron irradiation effect is introduced by the binary collision model in the MD simulation. By applying a tensile stress to graphene, the number of adatom-vacancy (AV) and Stone–Wales (SW) defects increase under electron irradiation, while the number of single-vacancy defects is not noticeably affected by the applied stress. Both the activation and formation energies of an AV defect and the activation energy of an SW defect decrease when a tensile stress is applied to graphene. Applying tensile stress also relaxes the compression stress associated with SW defect formation. These effects induced by the applied stress cause the increase in AV and SW defect formation under electron irradiation.

  11. Correlated observations of intensified whistler waves and electron acceleration around the geostationary orbit

    International Nuclear Information System (INIS)

    Xiao Fuliang; He Zhaoguo; Tang Lijun; Zong Qiugang; Wang Chengrui; Su Zhenpeng

    2012-01-01

    We report correlated observations of enhanced whistler waves and energetic electron acceleration collected by multiple satellites specifically near the geostationary orbit during the 7–10 November 2004 superstorms, together with multi-site observations of ULF wave power measured on the ground. Energetic (>0.6 MeV) electron fluxes are found to increase significantly during the recovery phase, reaching a peak value by ∼100 higher than the prestorm level. In particular, such high electron flux corresponds to intensified whistler wave activities but to the weak ULF wave power. This result suggests that wave–particle interaction appears to be more important than inward radial diffusion in acceleration of outer radiation belt energetic electrons in this event, assisting to better understand the acceleration mechanism. (paper)

  12. Electronically excited states of chloroethylenes: Experiment and DFT calculations in comparison

    International Nuclear Information System (INIS)

    Khvostenko, O.G.

    2014-01-01

    Highlights: • B3LYP/6-311 + G(d,p) calculations of chloroethylenes molecules were performed. • Calculations were correlated with experiment on the molecules ground and excited states. • The general pattern of electron structure of chloroethylenes was obtained. • Necessity of this data for chloroethylenes negative ions study was noted. - Abstract: B3LYP/6-311 + G(d,p) calculations of ground and electronically excited states of ethylene, chloroethylene, 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans trichloroethylene and tetrachloroethylene molecules have been performed. Molecular orbitals images and orbital correlation diagram are given. The calculation results for chloroethylenes electronically excited states were compared with experimental data from the energy-loss spectra obtained and generally considered previously by C.F. Koerting, K.N. Walzl and A. Kupperman. Several new additional triplet and singlet transitions were pointed out in these spectra considering the calculation results. The finding of the additional transitions was supported by the UV absorption spectrum of trichloroethylene recorded in big cuvette (10 cm), where the first three triplet and two low-intensive forbidden singlet transitions were registered. The first triplet of this compound was recorded to be at the same energy as was found with the energy-loss spectroscopy

  13. Electronically excited states of chloroethylenes: Experiment and DFT calculations in comparison

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, O.G., E-mail: khv@mail.ru

    2014-08-15

    Highlights: • B3LYP/6-311 + G(d,p) calculations of chloroethylenes molecules were performed. • Calculations were correlated with experiment on the molecules ground and excited states. • The general pattern of electron structure of chloroethylenes was obtained. • Necessity of this data for chloroethylenes negative ions study was noted. - Abstract: B3LYP/6-311 + G(d,p) calculations of ground and electronically excited states of ethylene, chloroethylene, 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans trichloroethylene and tetrachloroethylene molecules have been performed. Molecular orbitals images and orbital correlation diagram are given. The calculation results for chloroethylenes electronically excited states were compared with experimental data from the energy-loss spectra obtained and generally considered previously by C.F. Koerting, K.N. Walzl and A. Kupperman. Several new additional triplet and singlet transitions were pointed out in these spectra considering the calculation results. The finding of the additional transitions was supported by the UV absorption spectrum of trichloroethylene recorded in big cuvette (10 cm), where the first three triplet and two low-intensive forbidden singlet transitions were registered. The first triplet of this compound was recorded to be at the same energy as was found with the energy-loss spectroscopy.

  14. Electron-photon angular correlation measurements of He (1 1S0-2 1P1) excitation by electron impact at 80 eV

    International Nuclear Information System (INIS)

    Steph, N.C.; Golden, D.E.

    1980-01-01

    The electron-photon angular correlation function was measured between 80-eV electrons which excited the 2 1 P 1 state of helium and 58.4-nm photons from the decay of that state for electron scattering angles ranging from 5 0 to 100 0 . The data have been analyzed to yield values of the ratio lambda of the differential cross section for exciting the M/sub j/=0 sublevel to the total differential cross section and the magnitude vertical-barchivertical-bar of the phase difference between the M/sub j/=0 and M/sub j/=1 excitation amplitudes. The data agree with all previous measurements within one standard deviation, with the exception of the large-angle values of lambda obtained by Hollywood, Crowe, and Williams. Possible causes of these discrepancies are discussed. The values of lambda and vertical-barchivertical-bar obtained in this work agree quite well with those given by the distorted-wave calculations of Madison over the entire angular range

  15. Electron capture into excited states of multi-charged ions

    International Nuclear Information System (INIS)

    Dijkkamp, D.

    1985-01-01

    This thesis deals with charge exchange reactions in slow collisions of multi-charged ions with neutral atoms or molecules. These reactions proceed very efficiently via a curve crossing mechanism, which leads to preferential population of excited states of the ion. The subsequent decay of these states leads to the emission of characteristic radiation. From wavelength resolved measurements of the absolute intensity of this radiation, cross sections for selective population of the excited (n,l-) states of the ion were determined. In addition, for some systems the total capture cross section was measured directly by means of charge state analysis of the secondary projectile ions. The role of charge exchange processes in fusion plasmas and in astrophysical plasmas is indicated. An experimental set-up is described with emphasis on the Electron Cyclotron Resonance Ion Source that was used in the experiments. Results for collisions of C 6+ , N 6+ , O 6+ and Ne 6+ with He, H 2 and Ar are presented as well as for electron capture from Li atoms by C 4+ and He 2+ . The interaction of the iso-electronic sequence C 4+ , N 5+ , O 6+ with atomic hydrogen, molecular hydrogen and helium is studied. First results for partial and total cross sections in collisions of fully stripped carbon, nitrogen and oxygen ions with atomic hydrogen are presented. These data are of particular importance for applications in fusion diagnostics. The data indicate that calculations of both molecular and atomic orbital type yield correct results, if an extended basis set is used. (Auth.)

  16. Benzonitrile: Electron affinity, excited states, and anion solvation

    Science.gov (United States)

    Dixon, Andrew R.; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-01

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X ˜ 1 A 1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, a ˜ 3 A 1 , is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet A ˜ 1 A 1 , is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.

  17. Electronic structures of interfacial states formed at polymeric semiconductor heterojunctions

    Science.gov (United States)

    Huang, Ya-Shih; Westenhoff, Sebastian; Avilov, Igor; Sreearunothai, Paiboon; Hodgkiss, Justin M.; Deleener, Caroline; Friend, Richard H.; Beljonne, David

    2008-06-01

    Heterojunctions between organic semiconductors are central to the operation of light-emitting and photovoltaic diodes, providing respectively for electron-hole capture and separation. However, relatively little is known about the character of electronic excitations stable at the heterojunction. We have developed molecular models to study such interfacial excited electronic excitations that form at the heterojunction between model polymer donor and polymer acceptor systems: poly(9,9-dioctylfluorene-co-bis-N,N-(4-butylphenyl)-bis-N,N-phenyl-1,4-phenylenediamine) (PFB) with poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT), and poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine) (TFB) with F8BT. We find that for stable ground-state geometries the excited state has a strong charge-transfer character. Furthermore, when partly covalent, modelled radiative lifetimes (~10-7s) and off-chain axis polarization (30∘) match observed `exciplex' emission. Additionally for the PFB:F8BT blend, geometries with fully ionic character are also found, thus accounting for the low electroluminescence efficiency of this system.

  18. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    Science.gov (United States)

    Ramon, John Glenn Santos

    , we examine the effect of the nanoscale interfacial morphology and solvation on the electronic excited states of TFB/F8BT. Here, we employ time-dependent density functional theory (TD-DFT) to investigate the relevant excited states of two stacking configurations. We show that the calculated states agree with the excited states responsible for the experimentally observed emission peaks and that these states are blue shifted relative to those of the isolated chain. Furthermore, slight lateral shifts in the stacking orientation not only shift the excited state energies; more importantly, they alter the nature of these states altogether. Lastly, we see that solvation greatly stabilizes the charge-transfer states.

  19. Electron scattering from the ground state of mercury

    International Nuclear Information System (INIS)

    Fursa, D.; Bray, I.

    2000-01-01

    Full text: Close-coupling calculations have been performed for electron scattering from the ground state of mercury. We have used non-relativistic convergent close-coupling computer code with only minor modifications in order to account for the most prominent relativistic effects. These are the relativistic shift effect and singlet-triplet mixing. Very good agreement with measurements of differential cross sections for elastic scattering and excitation of 6s6p 1 P state at all energies is obtained. It is well recognised that a consistent approach to electron scattering from heavy atoms (like mercury, with nuclear charge Z=80) must be based on a fully relativistic Dirac equations based technique. While development of such technique is under progress in our group, the complexity of the problem ensures that results will not be available in the near future. On other hand, there is considerable interest in reliable theoretical results for electron scattering from heavy atoms from both applications and the need to interpret existing experimental data. This is particularly the case for mercury, which is the major component in fluorescent lighting devices and has been the subject of intense experimental study since nineteen thirties. Similarly to our approach for alkaline-earth atoms we use a model of two valence electrons above an inert Hartree-Fock core to describe the mercury atom. Note that this model does not account for any core excited states which are present in the mercury discrete spectrum. The major effect of missing core-excited states is substantial underestimation of the static dipole polarizability of the mercury ground state (34 a.u.) and consequent underestimation of the forward scattering elastic cross sections. We correct for this by adding in the scattering calculations a phenomenological polarization potential. In order to obtain correct ground state ionization energy for mercury one has to account for the relativistic shift effect. We model this

  20. Induced Rashba splitting of electronic states in monolayers of Au, Cu on a W(110) substrate

    International Nuclear Information System (INIS)

    Shikin, A M; Rybkina, A A; Rybkin, A G; Marchenko, D; Korshunov, A S; Kudasov, Yu B; Frolova, N V; Sánchez-Barriga, J; Varykhalov, A; Rader, O

    2013-01-01

    The paper sums up a theoretical and experimental investigation of the influence of the spin–orbit coupling in W(110) on the spin structure of electronic states in deposited Au and Cu monolayers. Angle-resolved photoemission spectroscopy reveals that in the case of monolayers of Au and Cu spin–orbit split bands are formed in a surface-projected gap of W(110). Spin resolution shows that these states are spin polarized and that, therefore, the spin–orbit splitting is of Rashba type. The states evolve from hybridization of W 5d, 6p-derived states with the s, p states of the deposited metal. Interaction with Au and Cu shifts the original W 5d-derived states from the edges toward the center of the surface-projected gap. The size of the spin–orbit splitting of the formed states does not correlate with the atomic number of the deposited metal and is even higher for Cu than for Au. These states can be described as W-derived surface resonances modified by hybridization with the p, d states of the adsorbed metal. Our electronic structure calculations performed in the framework of the density functional theory correlate well with the experiment and demonstrate the crucial role of the W top layer for the spin–orbit splitting. It is shown that the contributions of the spin–orbit interaction from W and Au act in opposite directions which leads to a decrease of the resulting spin–orbit splitting in the Au monolayer on W(110). For the Cu monolayer with lower spin–orbit interaction the resulting spin splitting is higher and mainly determined by the W. (paper)

  1. Correlations and polarization in electronic and atomic collisions and (e,2e) reactions

    International Nuclear Information System (INIS)

    Teubner, P.J.O.; Weigold, E.

    1992-01-01

    This volume contains the invited papers presented at the Sixth International Symposium on Correlations and Polarization in Electronic and Atomic collisions and (e,2e) Reactions held at Flinders University, Adelaide, Australia from 18-21 July, 1991. This symposium was a satellite meeting to the XVII International Conference on the Physics of Electronic and Atomic Collisions (ICPEAC) held in Brisbane, Australia. It follows a tradition of satellite meetings on (e,2e) collisions and on correlation and polarization in electronic and atomic collisions held in association with previous ICPEACs. The subject matter of this symposium covered that of the previous meeting at Hoboken, USA (1989) on correlation and polarization phenomena as well as that of the previous meeting at the University of Maryland (1989) on (e,2e) collisions. In addition it extended the scope to include some discussion of (e,3e), (γ,eγ) and (γ,2γ) coincidence measurements. The discussion of the current rapid advances in coincidence experiments, correlations and polarization measurements and related theoretical developments brought together 100 scientist from many countries with broad interdisciplinary backgrounds. The symposium stressed the common threads weaving through all these areas of research. (Author)

  2. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Costa, R. F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Departamento de Física, Universidade Federal do Espírito Santo, 29075-910, Vitória, Espírito Santo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-04-14

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20–250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron–furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  3. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    International Nuclear Information System (INIS)

    Jones, D. B.; Costa, R. F. da; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.

    2016-01-01

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20–250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron–furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  4. Correlated electron dynamics and memory in time-dependent density functional theory

    International Nuclear Information System (INIS)

    Thiele, Mark

    2009-01-01

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  5. Correlated electron dynamics and memory in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Mark

    2009-07-28

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  6. Correlation between biological activity and electron transferring of bovine liver catalase: Osmolytes effects

    International Nuclear Information System (INIS)

    Tehrani, H. Sepasi; Moosavi-Movahedi, A.A.; Ghourchian, H.

    2013-01-01

    Highlights: • Proline increases ET in Bovine Liver Catalase (BLC) whereas histidine decreases it. • Proline also increased the biological activity, whereas histidine decreased it. • Electron transferring and biological activity for BLC are directly correlated. • Proline causes favorable ET for BLC shown by positive E 1/2 (E°′) and negative ΔG. • Histidine makes ET unfavorable for BLC, manifested by E 1/2 (E°′) 0. -- Abstract: Catalase is a crucial antioxidant enzyme that protects life against detrimental effects of H 2 O 2 by disproportionating it into water and molecular oxygen. Effect of proline as a compatible and histidine as a non compatible osmolyte on the electron transferring and midpoint potential of catalase has been investigated. Proline increases the midpoint potential (ΔE m > 0), therefore causing the ΔG ET to be less positive and making the electron transfer reaction more facile whereas histidine decreases the E m (ΔE m ET , thereby rendering the electron transfer reaction less efficient. These results indicate the inhibitory effect of histidine evident by a −37% decrease in the cathodic peak current compared to 16% increase in the case of proline indicative of activation. The insight paves the tedious way towards our ultimate goal of elucidating a correlation between biological activity and electron transferring

  7. Correlates of state enactment of elementary school physical education laws.

    Science.gov (United States)

    Monnat, Shannon M; Lounsbery, Monica A F; Smith, Nicole J

    2014-12-01

    To describe variation in U.S. state elementary school physical education (PE) policies and to assess associations between state PE policy enactment and education funding, academic achievement, sociodemographic disadvantage, and political characteristics. U.S. state laws regarding school PE time, staffing, curriculum, fitness assessment, and moderate-to-vigorous physical activity (MVPA) in 2012 were classified as strong/specific, weak/nonspecific, or none based on codified law ratings within the Classification of Laws Associated with School Students (C.L.A.S.S.). Laws were merged with state-level data from multiple sources. Logistic regression was used to determine associations between state characteristics and PE laws (N=51). Laws with specific PE and MVPA time requirements and evidence-based curriculum standards were more likely in states with low academic performance and in states with sociodemographically disadvantaged populations. School day length was positively associated with enacting a PE curriculum that referenced evidence-based standards. School funding and political characteristics were not associated with PE laws. Limited time and high-stake testing requirements force schools to prioritize academic programs, posing barriers to state passage of specific PE laws. To facilitate PE policy enactment, it may be necessary to provide evidence on how PE policies can be implemented within existing time and staffing structures. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Electron-phonon interactions and intrinsic nonadiabatic state of superconductors

    International Nuclear Information System (INIS)

    Banacky, Pavol

    2007-01-01

    Study of band structure of YBa 2 Cu 3 O 7 has shown that electron coupling to A g , B 2g and B 3g modes results in fluctuation of saddle point of one of the CuO plane d-pσ band in Y point of 1st BZ across Fermi level. It represents breakdown of adiabatic Born-Oppenheimer approximation and transition of the system into intrinsic nonadiabatic state, ω > E F . Results show that system is stabilized in this state at distorted nuclear geometry. Stabilization effect is mainly due to strong dependence of the electronic motion on instantaneous nuclear momenta. On the lattice scale, the intrinsic nonadiabatic state is geometrically degenerate at broken translation symmetry - system has fluxional nuclear configuration of O2, O3 atoms in CuO planes. It enables formation of mobile bipolarons that can move in the lattice without dissipation. Described effects are absent in non-superconducting YBa 2 Cu 3 O 6

  9. Electron phonon interactions and intrinsic nonadiabatic state of superconductors

    Science.gov (United States)

    Baňacký, Pavol

    2007-09-01

    Study of band structure of YBa 2Cu 3O 7 has shown that electron coupling to A g, B 2g and B 3g modes results in fluctuation of saddle point of one of the CuO plane d-pσ band in Y point of 1st BZ across Fermi level. It represents breakdown of adiabatic Born-Oppenheimer approximation and transition of the system into intrinsic nonadiabatic state, ω > EF. Results show that system is stabilized in this state at distorted nuclear geometry. Stabilization effect is mainly due to strong dependence of the electronic motion on instantaneous nuclear momenta. On the lattice scale, the intrinsic nonadiabatic state is geometrically degenerate at broken translation symmetry - system has fluxional nuclear configuration of O2, O3 atoms in CuO planes. It enables formation of mobile bipolarons that can move in the lattice without dissipation. Described effects are absent in non-superconducting YBa 2Cu 3O 6.

  10. Correlation between excited d-orbital electron lifetime in polaron dynamics and coloration of WO3 upon ultraviolet exposure

    Science.gov (United States)

    Lee, Young-Ahn; Han, Seung-Ik; Rhee, Hanju; Seo, Hyungtak

    2018-05-01

    Polarons have been suggested to explain the mechanism of the coloration of WO3 induced by UV light. However, despite the many experimental results that support small polarons as a key mechanism, direct observation of the carrier dynamics of polarons have yet to be reported. Here, we investigate the correlation between the electronic structure and the coloration of WO3 upon exposure to UV light in 5% H2/N2 gas and, more importantly, reveal photon-induced excited d-electron generation/relaxation via the W5+ oxidation state. The WO3 is fabricated by radio-frequency magnetron sputtering. X-ray diffraction patterns show that prepared WO3 is amorphous. Optical bandgap of 3.1 eV is measured by UV-vis before and after UV light. The results of Fourier transform infrared and Raman exhibit pristine WO3 is formed with surface H2O. The colored WO3 shows reduced state of W5+ state (34.3 eV) by using X-ray photoelectron spectroscopy. The valence band maximum of WO3 after UV light in H2 is shifted from mid gap to shallow donor by using ultraviolet photoelectron spectroscopy. During the exploration of the carrier dynamics, pump (700 nm)-probe (1000 nm) spectroscopy at the femtosecond scale was used. The results indicated that electron-phonon relaxation of UV-irradiated WO3, which is the origin of the polaron-induced local surface plasmonic effect, is dominant, resulting in slow decay (within a few picoseconds); in contrast, pristine WO3 shows fast decay (less than a picosecond). Accordingly, the long photoinduced carrier relaxation is ascribed to the prolonged hot-carrier lifetime in reduced oxides resulting in a greater number of free d-electrons and, therefore, more interactions with the W5+ sub-gap states.

  11. Behaviour of the electron density near an impurity with exchange and correlation

    International Nuclear Information System (INIS)

    Adawi, I.; Godwin, V.E.

    1982-09-01

    The behaviour of the electron density n(r) and potential energy V(r) near an impurity of charge Z is studied in the linear response theory of metals with exchange and correlation. The leading two terms in nsub(odd)(r) and the first three terms in Vsub(odd)(r) are the same as in the Lindhard theory, but corrections appear in the higher terms of the odd powers expansions of these functions. In all quantum linear response theories, the derivative n'(0)=-2Zn 0 /a 0 where n 0 is the free electron gas density and a 0 is the Bohr radius. (author)

  12. Electron-correlation study of Y III-Tc VII ions using a relativistic coupled-cluster theory

    Science.gov (United States)

    Das, Arghya; Bhowmik, Anal; Nath Dutta, Narendra; Majumder, Sonjoy

    2018-01-01

    Spectroscopic properties, useful for plasma diagnostics and astrophysics, of a few rubidium-like ions are studied here. We choose one of the simplest, but correlationally challenging series where d- and f-orbitals are present in the core and/or valence shells with 4d {}2{D}3/2 as the ground state. We study different correlation characteristics of this series and make precise calculations of electronic structure and rates of electromagnetic transitions. Our calculated lifetimes and transition rates are compared with other available experimental and theoretical values. Radiative rates of vacuum ultraviolet electromagnetic transitions of the long lived Tc6+ ion, useful in several areas of physics and chemistry, are estimated. To the best of our knowledge, there is no literature for most of these transitions.

  13. Control of two-dimensional electronic states at anatase Ti O2(001 ) surface by K adsorption

    Science.gov (United States)

    Yukawa, R.; Minohara, M.; Shiga, D.; Kitamura, M.; Mitsuhashi, T.; Kobayashi, M.; Horiba, K.; Kumigashira, H.

    2018-04-01

    The nature of the intriguing metallic electronic structures appearing at the surface of anatase titanium dioxide (a-Ti O2 ) remains to be elucidated, mainly owing to the difficulty of controlling the depth distribution of the oxygen vacancies generated by photoirradiation. In this study, K atoms were adsorbed onto the (001) surface of a-Ti O2 to dope electrons into the a-Ti O2 and to confine the electrons in the surface region. The success of the electron doping and its controllability were confirmed by performing in situ angle-resolved photoemission spectroscopy as well as core-level measurements. Clear subband structures were observed in the surface metallic states, indicating the creation of quasi-two-dimensional electron liquid (q2DEL) states in a controllable fashion. With increasing electron doping (K adsorption), the q2DEL states exhibited crossover from polaronic liquid states with multiple phonon-loss structures originating from the long-range Fröhlich interaction to "weakly correlated metallic" states. In the q2DEL states in the weakly correlated metallic region, a kink due to short-range electron-phonon coupling was clearly observed at about 80 ±10 meV . The characteristic energy is smaller than that previously observed for the metallic states of a-Ti O2 with three-dimensional nature (˜110 meV ) . These results suggest that the dominant electron-phonon coupling is modulated by anisotropic carrier screening in the q2DEL states.

  14. Strong correlation in acene sheets from the active-space variational two-electron reduced density matrix method: effects of symmetry and size.

    Science.gov (United States)

    Pelzer, Kenley; Greenman, Loren; Gidofalvi, Gergely; Mazziotti, David A

    2011-06-09

    Polyaromatic hydrocarbons (PAHs) are a class of organic molecules with importance in several branches of science, including medicine, combustion chemistry, and materials science. The delocalized π-orbital systems in PAHs require highly accurate electronic structure methods to capture strong electron correlation. Treating correlation in PAHs has been challenging because (i) traditional wave function methods for strong correlation have not been applicable since they scale exponentially in the number of strongly correlated orbitals, and (ii) alternative methods such as the density-matrix renormalization group and variational two-electron reduced density matrix (2-RDM) methods have not been applied beyond linear acene chains. In this paper we extend the earlier results from active-space variational 2-RDM theory [Gidofalvi, G.; Mazziotti, D. A. J. Chem. Phys. 2008, 129, 134108] to the more general two-dimensional arrangement of rings--acene sheets--to study the relationship between geometry and electron correlation in PAHs. The acene-sheet calculations, if performed with conventional wave function methods, would require wave function expansions with as many as 1.5 × 10(17) configuration state functions. To measure electron correlation, we employ several RDM-based metrics: (i) natural-orbital occupation numbers, (ii) the 1-RDM von Neumann entropy, (iii) the correlation energy per carbon atom, and (iv) the squared Frobenius norm of the cumulant 2-RDM. The results confirm a trend of increasing polyradical character with increasing molecular size previously observed in linear PAHs and reveal a corresponding trend in two-dimensional (arch-shaped) PAHs. Furthermore, in PAHs of similar size they show significant variations in correlation with geometry. PAHs with the strictly linear geometry (chains) exhibit more electron correlation than PAHs with nonlinear geometries (sheets).

  15. Angular correlations of photons from solution diffraction at a free-electron laser encode molecular structure

    International Nuclear Information System (INIS)

    Mendez, Derek; Watkins, Herschel; Qiao, Shenglan; Raines, Kevin S.; Lane, Thomas J.

    2016-01-01

    During X-ray exposure of a molecular solution, photons scattered from the same molecule are correlated. If molecular motion is insignificant during exposure, then differences in momentum transfer between correlated photons are direct measurements of the molecular structure. In conventional small- and wide-angle solution scattering, photon correlations are ignored. This report presents advances in a new biomolecular structural analysis technique, correlated X-ray scattering (CXS), which uses angular intensity correlations to recover hidden structural details from molecules in solution. Due to its intense rapid pulses, an X-ray free electron laser (XFEL) is an excellent tool for CXS experiments. A protocol is outlined for analysis of a CXS data set comprising a total of half a million X-ray exposures of solutions of small gold nanoparticles recorded at the Spring-8 Ångström Compact XFEL facility (SACLA). From the scattered intensities and their correlations, two populations of nanoparticle domains within the solution are distinguished: small twinned, and large probably non-twinned domains. Finally, it is shown analytically how, in a solution measurement, twinning information is only accessible via intensity correlations, demonstrating how CXS reveals atomic-level information from a disordered solution of like molecules.

  16. Solid state lasers: a major direction in quantum electronics

    International Nuclear Information System (INIS)

    Shcherbakov, I.A.

    2004-01-01

    The aim of the report is to analyze development of solid-state lasers (SSL) as one of the most important avenues of the quantum electronics. The obtained intensity of a laser radiation at the focus equal to 5x10 1 0 W/cm 2 (the field intensity equal to about 5x10 1 0 V/cm 2 ) is noted to enable to observe nonlinear quantum- electrodynamic effects. Besides, one managed to increase the SSL efficiency conventionally equal to maximum 3% up to 48-50%. Paper describes new types of SSLs, namely, the crystalline fiber lasers with the lateral gradient of the index of refraction [ru

  17. Parallelization for first principles electronic state calculation program

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Oguchi, Tamio.

    1997-03-01

    In this report we study the parallelization for First principles electronic state calculation program. The target machines are NEC SX-4 for shared memory type parallelization and FUJITSU VPP300 for distributed memory type parallelization. The features of each parallel machine are surveyed, and the parallelization methods suitable for each are proposed. It is shown that 1.60 times acceleration is achieved with 2 CPU parallelization by SX-4 and 4.97 times acceleration is achieved with 12 PE parallelization by VPP 300. (author)

  18. Local correlations of mixed two-qubit states

    International Nuclear Information System (INIS)

    Zhang Fulin; Chen Jingling; Ren Changliang; Shi Mingjun

    2010-01-01

    The quantum probability distribution arising from single-copy von Neumann measurements on an arbitrary two-qubit state is decomposed into the local and nonlocal parts, in the approach of Elitzur, Popescu and Rohrlich [A. Elitzur, S. Popescu, D. Rohrlich, Phys. Lett. A 162 (1992) 25]. A lower bound of the local weight is proved being connected with the concurrence of the state p L max =1-C(ρ). The local probability distributions for two families of mixed states are constructed independently, which accord with the lower bound.

  19. Time-dependent reduced density matrix functional theory applied to laser-driven, correlated two-electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins; Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Time-dependent density functional theory (TDDFT) with known and practicable exchange-correlation potentials does not capture highly correlated electron dynamics such as single-photon double ionization, autoionization, or nonsequential ionization. Time-dependent reduced density matrix functional theory (TDRDMFT) may remedy these problems. The key ingredients in TDRDMFT are the natural orbitals (NOs), i.e., the eigenfunctions of the one-body reduced density matrix (1-RDM), and the occupation numbers (OCs), i.e., the respective eigenvalues. The two-body reduced density matrix (2-RDM) is then expanded in NOs, and equations of motion for the NOs can be derived. If the expansion coefficients of the 2-RDM were known exactly, the problem at hand would be solved. In practice, approximations have to be made. We study the prospects of TDRDMFT following a top-down approach. We solve the exact two-electron time-dependent Schroedinger equation for a model Helium atom in intense laser fields in order to study highly correlated phenomena such as the population of autoionizing states or single-photon double ionization. From the exact wave function we calculate the exact NOs, OCs, the exact expansion coefficients of the 2-RDM, and the exact potentials in the equations of motion. In that way we can identify how many NOs and which level of approximations are necessary to capture such phenomena.

  20. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur, E-mail: Artur.Nenov@unibo.it; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K. [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Rivalta, Ivan [Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France); Cerullo, Giulio [Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano (Italy); Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States); Garavelli, Marco, E-mail: marco.garavelli@unibo.it, E-mail: marco.garavelli@ens-lyon.fr [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France)

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  1. Electron-muon correlation as a new probe of strongly interacting quark-gluon plasma

    International Nuclear Information System (INIS)

    Akamatsu, Yukinao; Hatsuda, Tetsuo; Hirano, Tetsufumi

    2009-01-01

    As a new and clean probe to the strongly interacting quark-gluon plasma (sQGP), we propose an azimuthal correlation of an electron and a muon that originate from the semileptonic decay of charm and bottom quarks. By solving the Langevin equation for the heavy quarks under the hydrodynamic evolution of the hot plasma, we show that substantial quenching of the away-side peak in the electron-muon correlation can be seen if the sQGP drag force acting on heavy quarks is large enough as suggested from the gauge/gravity correspondence. The effect could be detected in high-energy heavy ion collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider.

  2. Angular Correlation between Photoelectrons and Auger Electrons from K-Shell Ionization of Neon

    International Nuclear Information System (INIS)

    Landers, A. L.; Robicheaux, F.; Bhandary, A.; Jahnke, T.; Schoeffler, M.; Titze, J.; Akoury, D.; Doerner, R.; Osipov, T.; Lee, S. Y.; Adaniya, H.; Hertlein, M.; Weber, Th.; Prior, M. H.; Belkacem, A.; Ranitovic, P.; Bocharova, I.; Cocke, C. L.

    2009-01-01

    We have used cold target recoil ion momentum spectroscopy to study the continuum correlation between the photoelectron of core-photoionized neon and the subsequent Auger electron. We observe a strong angular correlation between the two electrons. Classical trajectory Monte Carlo calculations agree quite well with the photoelectron energy distribution that is shifted due to the potential change associated with Auger decay. However, a striking discrepancy results in the distribution of the relative angle between Auger and photoelectron. The classical model predicts a shift in photoelectron flux away from the Auger emission direction, and the data strikingly reveal that the flux is lost rather than diverted, indicating that the two-step interpretation of photoionization followed by Auger emission is insufficient to fully describe the core-photoionization process.

  3. Free energy correlation of rate constants for electron transfer between organic systems in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, D

    1975-07-15

    Recent experimental data concerning the rate constants for electron transfer reactions of organic systems in aqueous solutions and their equilibrium constants is examined for possible correlation. The data is correlated quite well by the Marcus theory, if a reorganization parameter, lambda, of 18 kcal/mole is used. Assuming that the only contribution to lambda is the free energy of rearrangement of the water molecules, an effective radius of 5 A for the reacting entities is estimated. For the zero free energy change reaction, i.e., electron exchange between a radical ion and its parent molecule, a rate constant of about 5 X 10/sup 7/ M/sup -1/ s/sup -1/ is predicted. (auth)

  4. Limits on nonlocal correlations from the structure of the local state space

    International Nuclear Information System (INIS)

    Janotta, Peter; Gogolin, Christian; Barrett, Jonathan; Brunner, Nicolas

    2011-01-01

    The outcomes of measurements on entangled quantum systems can be nonlocally correlated. However, while it is easy to write down toy theories allowing arbitrary nonlocal correlations, those allowed in quantum mechanics are limited. Quantum correlations cannot, for example, violate a principle known as macroscopic locality, which implies that they cannot violate Tsirelson's bound. This paper shows that there is a connection between the strength of nonlocal correlations in a physical theory and the structure of the state spaces of individual systems. This is illustrated by a family of models in which local state spaces are regular polygons, where a natural analogue of a maximally entangled state of two systems exists. We characterize the nonlocal correlations obtainable from such states. The family allows us to study the transition between classical, quantum and super-quantum correlations by varying only the local state space. We show that the strength of nonlocal correlations - in particular whether the maximally entangled state violates Tsirelson's bound or not-depends crucially on a simple geometric property of the local state space, known as strong self-duality. This result is seen to be a special case of a general theorem, which states that a broad class of entangled states in probabilistic theories-including, by extension, all bipartite classical and quantum states-cannot violate macroscopic locality. Finally, our results show that models exist that are locally almost indistinguishable from quantum mechanics, but can nevertheless generate maximally nonlocal correlations.

  5. Effect of electron correlations on the electronic structure and phase stability of FeSe upon lattice expansion

    Science.gov (United States)

    Skornyakov, S. L.; Anisimov, V. I.; Vollhardt, D.; Leonov, I.

    2017-07-01

    We present results of a detailed theoretical study of the electronic, magnetic, and structural properties of the chalcogenide parent system FeSe using a fully charge-self-consistent implementation of the density functional theory plus dynamical mean-field theory (DFT+DMFT) method. In particular, we predict a remarkable change of the electronic structure of FeSe which is accompanied by a complete reconstruction of the Fermi surface topology (Lifshitz transition) upon a moderate expansion of the lattice volume. The phase transition results in a change of the in-plane magnetic nesting wave vector from (π ,π ) to (π ,0 ) and is associated with a transition from itinerant to orbital-selective localized magnetic moments. We attribute this behavior to a correlation-induced shift of the Van Hove singularity of the Fe t2 bands at the M point across the Fermi level. Our results reveal a strong orbital-selective renormalization of the effective mass m*/m of the Fe 3 d electrons upon expansion. The largest effect occurs in the Fe x y orbital, which gives rise to a non-Fermi-liquid-like behavior above the transition. The behavior of the momentum-resolved magnetic susceptibility χ (q ) demonstrates that magnetic correlations are also characterized by a pronounced orbital selectivity, suggesting a spin-fluctuation origin of the nematic phase of paramagnetic FeSe. We conjecture that the anomalous behavior of FeSe upon expansion is associated with the proximity of the Fe t2 Van Hove singularity to the Fermi level and the sensitive dependence of its position on external conditions.

  6. A Correlational Analysis: Electronic Health Records (EHR) and Quality of Care in Critical Access Hospitals

    Science.gov (United States)

    Khan, Arshia A.

    2012-01-01

    Driven by the compulsion to improve the evident paucity in quality of care, especially in critical access hospitals in the United States, policy makers, healthcare providers, and administrators have taken the advise of researchers suggesting the integration of technology in healthcare. The Electronic Health Record (EHR) System composed of multiple…

  7. Applications and limitations of electron correlation microscopy to study relaxation dynamics in supercooled liquids

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei; He, Li [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Besser, Matthew F. [Materials Science and Engineering, Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Liu, Ze; Schroers, Jan [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511 (United States); Kramer, Matthew J. [Materials Science and Engineering, Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Voyles, Paul M., E-mail: paul.voyles@wisc.edu [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2017-07-15

    Electron correlation microscopy (ECM) is a way to measure structural relaxation times, τ, of liquids with nanometer-scale spatial resolution using coherent electron scattering equivalent of photon correlation spectroscopy. We have applied ECM with a 3.5 nm diameter probe to Pt{sub 57.5}Cu{sub 14.7}Ni{sub 5.3}P{sub 22.5} amorphous nanorods and Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass (BMG) heated inside the STEM into the supercooled liquid region. These data demonstrate that the ECM technique is limited by the characteristics of the time series, which must be at least 40τ to obtain a well-converged correlation function g{sub 2}(t), and the time per frame, which must be less than 0.1τ to obtain sufficient sampling. A high-speed direct electron camera enables fast acquisition and affords reliable g{sub 2}(t) data even with low signal per frame. - Highlights: • Electron Correlation Microscopy (ECM) technique was applied to measure structural relaxation times of supercooled liquids in metallic glass. • In Pt{sub 57.5}Cu{sub 14.7}Ni{sub 5.3}P{sub 22.5} nanowire, τ and β decreases over the measured supercooled liquid regime. • In Pd{sub 40}Ni{sub 40}P{sub 20} bulk alloy, τ decreases from T{sub g}+28 °C to T{sub g}+48 °C, then increases as the temperature approaches T{sub x}. • ECM experiment requires a length of time series at least 40 times the characteristic relaxation time and a time per diffraction pattern at most 0.1 times the relaxation time.

  8. Diagrammatic Representation of Electronic Correlations in Photoionization Process: Application to Scandium

    International Nuclear Information System (INIS)

    Liu Mengmeng; Ma Xiaoguang

    2011-01-01

    The conversion rules under which an algebraic expression can be obtained from a corresponding photoionization Goldstone diagram have been given systematically in the present work. The electronic correlations in the photoionization processes then could be studied diagrammatically. The application to atomic scandium shows that the present theoretical scheme can give reasonable photoionization cross sections, which agree well with the experimental results. (atomic and molecular physics)

  9. Correlative Light and Electron Microscopy (CLEM) and its applications in infectious disease

    Science.gov (United States)

    2016-05-20

    has been shown to handle OsO4 fixation by withstanding standard EM processing concentrations of 1% [29]. A great utility of FPs is the endogenous...Development of imaging techniques to study the pathogenesis of biosafety level 2/3 infectious agents. Pathog Dis, 2014. 72(3): p. 167-73. 3. Sridhar...3): p. 397-406. 32. Johnson, E., et al., Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins. Sci Rep

  10. Fermi-degeneracy and discrete-ion effects in the spherical-cell model and electron-electron correlation effects in hot dense plasmas

    International Nuclear Information System (INIS)

    Furukawa, H.; Nishihara, K.

    1992-01-01

    The spherical-cell model [F. Perrot, Phys. Rev. A 25, 489 (1982); M. W. C. Dharma-wardana and F. Perrot, ibid. 26, 2096 (1982)] is improved to investigate laser-produced hot, dense plasmas. The free-electron distribution function around a test free electron is calculated by using the Fermi integral in order that the free-electron--free-electron correlation function includes Fermi-degeneracy effects, and also that the calculation includes the discrete-ion effect. The free-electron--free-electron, free-electron--ion, and ion-ion correlation effects are coupled, within the framework of the hypernetted-chain approximation, through the Ornstein-Zernike relation. The effective ion-ion potential includes the effect of a spatial distribution of bound electrons. The interparticle correlation functions and the effective potential acting on either an electron or an ion in hot, dense plasmas are calculated numerically. The Fermi-degeneracy effect on the correlation functions between free electrons becomes clear for the degeneracy parameter θ approx-lt 1. The discrete-ion effect in the calculation of the correlation functions between free electrons affects the electron-ion pair distribution functions for r s approx-gt 3. As an application of the proposed model, the strong-coupling effect on the stopping power of charged particles [Xin-Zhong Yan, S. Tanaka, S. Mitake, and S. Ichimaru, Phys. Rev. A 32, 1785 (1985)] is estimated. While the free-electron--ion strong-coupling effect and the Fermi-degeneracy effect incorporated in the calculation of the free-electron distribution function around a test free electron enhance the stopping number, the quantum-diffraction effect incorporated in the quantal hypernetted-chain equations [J. Chihara, Prog. Theor. Phys. 72, 940 (1984); Phys. Rev. A 44, 1247 (1991); J. Phys. Condens. Matter 3, 8715 (1991)] reduces the stopping number substantially

  11. Electron paramagnetic resonance detection of carotenoid triplet states

    International Nuclear Information System (INIS)

    Frank, H.A.; Bolt, J.D.; deCosta, S.M.; Sauer, K.

    1980-01-01

    Triplet states of carotenoids have been detected by X-band electron paramagnetic resonance (EPR) and are reported here for the first time. The systems in which carotenoid triplets are observed include cells of photosynthetic bacteria, isolated bacteriochlorophyll-protein complexes, and detergent micelles which contain β-carotene. It is well known that if electron transfer is blocked following the initial acceptor in the bacterial photochemical reaction center, back reaction of the primary radical pair produces a bacteriochlorophyll dimer triplet. Previous optical studies have shown that in reaction centers containing carotenoids the bacteriochlorophyll dimer triplet sensitizes the carotenoid triplet. We have observed this carotenoid triplet state by EPR in reaction centers of Rhodopseudomonas sphaeroides, strain 2.4.1 (wild type), which contain the carotenoid spheroidene. The zero-field splitting parameters of the triplet spectrum are /D/ = 0.0290 +- 0.0005 cm -1 and /E/ = 0.0044 +-0.0006 cm -1 , in contrast with the parameters of the bacteriochlorophyll dimer triplet, which are /D/ = 0.0189 +- 0.0004 cm -1 and /E/ = 0.0032 +- 0.004 cm -1 . Bacteriochlorophyll in a light harvesting protein complex from Rps. sphaeroides, wild type, also sensitizes carotenoid triplet formation. In whole cells the EPR spectra vary with temperature between 100 and 10 K. Carotenoid triplets also have been observed by EPR in whole cells of Rps. sphaeroides and cells of Rhodospirillum rubrum which contain the carotenoid spirilloxanthin. Attempts to observe the triplet state EPR spectrum of β-carotene in numerous organic solvents failed. However, in nonionic detergent micelles and in phospholipid bilayer vesicles β-carotene gives a triplet state spectrum with /D/ = 0.0333 +- 0.0010 cm -1 and /E/ = 0.0037 +- 0.0010 cm -1 . 6 figures, 1 table

  12. Electron impact excitation cross sections and rates from the ground state of atomic calcium

    CERN Document Server

    Samson, A M

    2001-01-01

    New R-matrix calculations are presented for electron excitation of atomic calcium. The target state expansion includes 22 states: 4s sup 2 sup 1 S; 4snl sup 1 sup , sup 3 L, where nl is 3d, 4p, 5s, 5p, 4d and 4f; 3d4p sup 1 sup , sup 3 P,D,F; and 4p sup 2 sup 3 P, sup 1 D, sup 1 S terms. The calculation is in LS coupling, and configuration interaction involving 3p subshell correlation is included. Electron impact excitation cross sections from the 4s sup 2 ground state to the next 10 states are tabulated for low energies, and thermally averaged effective collision strengths are tabulated over a range of electron temperatures from 1000 to 10,000 K. Comparisons are made with previous cross sections calculations for the 4s sup 2 -4s4p sup 3 P deg. transition; excellent agreement is found with experimentally derived rates for 4s sup 2 -4s4p sup 1 P deg

  13. Electron correlation effects in the half-metallic NiMnSb within a cluster-perturbation approach with ab-initio parameters

    Directory of Open Access Journals (Sweden)

    H. Allmaier

    2008-06-01

    Full Text Available  Using a combination of electronic-structure and many-body calculations, we investigate correlations effects in the halfmetallic ferromagnet NiMnSb. A realistic many-body Hamiltonian, containing only Mn-d orbitals shows the importance of non-quasiparticle states just above the Fermi level. Our results suggest that for a better description of low energy states around Fermi level, Ni-d orbitals should be explicitly included.

  14. aCORN: An experiment to measure the electron-antineutrino correlation in neutron decay

    Energy Technology Data Exchange (ETDEWEB)

    Wietfeldt, F.E., E-mail: few@tulane.ed [Department of Physics, Tulane University, New Orleans, LA 70118 (United States); Byrne, J. [University of Sussex (United Kingdom); Collett, B. [Physics Department, Hamilton College, Clinton, NY 13323 (United States); Dewey, M.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Jones, G.L. [Physics Department, Hamilton College, Clinton, NY 13323 (United States); Komives, A. [Physics Department, DePauw University, Greencastle, IN 46135 (United States); Laptev, A. [Department of Physics, Tulane University, New Orleans, LA 70118 (United States); Nico, J.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Noid, G.; Stephenson, E.J. [Indiana University Cyclotron Facility, Bloomington, IN 47408 (United States); Stern, I.; Trull, C. [Department of Physics, Tulane University, New Orleans, LA 70118 (United States); Yerozolimsky, B.G. [Physics Department, Harvard University, Cambridge, MA 02139 (United States)

    2009-12-11

    The aCORN experiment is designed to make a precision (<1%) measurement of the electron-antineutrino angular correlation (a-coefficient) in neutron beta decay. It uses a new method proposed in 1996 by Yerozolimsky and Mostovoy. Electrons and recoil protons from neutron decay in a cold beam are detected in coincidence. The momenta of the particles are selected so that the protons form two kinematically distinct time-of-flight groups as a function of electron energy. The count rate asymmetry in these two groups is proportional to the a-coefficient. Precision spectroscopy of the protons is not required. The apparatus is currently under construction. It will be integrated and tested at the Indiana University Cyclotron Facility (IUCF) and then moved to the NIST Center for Neutron Research for the initial physics run.

  15. Initial state fluctuations and final state correlations in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Luzum, Matthew; Petersen, Hannah

    2014-01-01

    We review the phenomenology and theory of bulk observables in ultra-relativistic heavy-ion collisions, focusing on recent developments involving event-by-event fluctuations in the initial stages of a heavy-ion collision, and how they manifest in observed correlations. We first define the relevant observables and show how each measurement is related to underlying theoretical quantities. Then we review the prevailing picture of the various stages of a collision, including the state-of-the-art modeling of the initial stages of a collision and subsequent hydrodynamic evolution, as well as hadronic scattering and freeze-out in the later stages. We then discuss the recent results that have shaped our current understanding and identify the challenges that remain. Finally, we point out open issues and the potential for progress in the field. (topical review)

  16. Langevin Dynamics with Spatial Correlations as a Model for Electron-Phonon Coupling

    Science.gov (United States)

    Tamm, A.; Caro, M.; Caro, A.; Samolyuk, G.; Klintenberg, M.; Correa, A. A.

    2018-05-01

    Stochastic Langevin dynamics has been traditionally used as a tool to describe nonequilibrium processes. When utilized in systems with collective modes, traditional Langevin dynamics relaxes all modes indiscriminately, regardless of their wavelength. We propose a generalization of Langevin dynamics that can capture a differential coupling between collective modes and the bath, by introducing spatial correlations in the random forces. This allows modeling the electronic subsystem in a metal as a generalized Langevin bath endowed with a concept of locality, greatly improving the capabilities of the two-temperature model. The specific form proposed here for the spatial correlations produces a physical wave-vector and polarization dependency of the relaxation produced by the electron-phonon coupling in a solid. We show that the resulting model can be used for describing the path to equilibration of ions and electrons and also as a thermostat to sample the equilibrium canonical ensemble. By extension, the family of models presented here can be applied in general to any dense system, solids, alloys, and dense plasmas. As an example, we apply the model to study the nonequilibrium dynamics of an electron-ion two-temperature Ni crystal.

  17. Nonequilibrium fluctuation-dissipation relations for one- and two-particle correlation functions in steady-state quantum transport

    International Nuclear Information System (INIS)

    Ness, H.; Dash, L. K.

    2014-01-01

    We study the non-equilibrium (NE) fluctuation-dissipation (FD) relations in the context of quantum thermoelectric transport through a two-terminal nanodevice in the steady-state. The FD relations for the one- and two-particle correlation functions are derived for a model of the central region consisting of a single electron level. Explicit expressions for the FD relations of the Green's functions (one-particle correlations) are provided. The FD relations for the current-current and charge-charge (two-particle) correlations are calculated numerically. We use self-consistent NE Green's functions calculations to treat the system in the absence and in the presence of interaction (electron-phonon) in the central region. We show that, for this model, there is no single universal FD theorem for the NE steady state. There are different FD relations for each different class of problems. We find that the FD relations for the one-particle correlation function are strongly dependent on both the NE conditions and the interactions, while the FD relations of the current-current correlation function are much less dependent on the interaction. The latter property suggests interesting applications for single-molecule and other nanoscale transport experiments

  18. Theoretical description of high-lying two-electrons states

    International Nuclear Information System (INIS)

    Greene, C.H.; Cavagnero, M.; Sadeghpour, H.R.

    1993-01-01

    Within the past two years, experiments on high-lying doubly-excited states in He and H- have shown spectra at energies near excited hydrogenic thresholds having principal quantum numbers in the range N=5--9. While they display some nontrivial complexities, the spectra are tremendously simpler than might be anticipated on the basis of independent electron models, in that only a small fraction of the total number of anticipated resonances are observed experimentally. Moreover, for principal quantum number N that are not too high, specifically N - , the resonance positions are described accurately by adiabatic calculations using hyperspherical coordinates and can be parametrized by a remarkably simple two-electron Rydberg formula. The observed propensity for excitation of only a small subset of the possible resonance states has been codified by several groups into approximate selection rules based on alternative (but apparently equivalent) classification schemes. Comparatively few attempts have been made at quantitative tests of the validity of these rules. The present review describes recent efforts to quantify their accuracy and limitations using R-matrix and quantum defect techniques, and Smith's delay-time matrix. Prospensity rules for exciting different degrees of freedom are found to differ greatly in their degree of validity

  19. Electronic States of IC60BA and PC71BM

    International Nuclear Information System (INIS)

    Sheng Chun-Qi; Wang Peng; Shen Ying; Li Wen-Jie; Li Hong-Nian; Zhang Wen-Hua; Zhu Jun-Fa; Lai Guo-Qiao

    2013-01-01

    We investigate the electronic states of IC 60 BA and PC 71 BM using first-principles calculations and photoelectron spectroscopy (PES) measurements. The energy level structures for all possible isomers are reported and compared with those of C 60 , C 70 and PC 61 BM. The attachment of the side chains can raise the LUMO energies and decrease the HOMO-LUMO gaps, and thus helps to increase the power-conversion efficiency of bulk heterojunction solar cells. In the PES studies, we prepared IC 60 BA and PC 71 BM films on Si:H(111) substrates to construct adsorbate/substrate interfaces describable with the integer charge-transfer (ICT) model. Successful measurements then revealed that one of the most important material properties for an electron acceptor, the energy of the negative integer charge-transfer state (E ICT− ), is 4.31 eV below the vacuum level for PC 71 BM. The E ICT− of IC 60 BA is smaller than 4.14 eV

  20. Quantum Correlation in Matrix Product States of One-Dimensional Spin Chains

    International Nuclear Information System (INIS)

    Zhu Jing-Min

    2015-01-01

    For our proposed composite parity-conserved matrix product state (MPS), if only a spin block length is larger than 1, any two such spin blocks have correlation including classical correlation and quantum correlation. Both the total correlation and the classical correlation become larger than that in any subcomponent; while the quantum correlations of the two nearest-neighbor spin blocks and the two next-nearest-neighbor spin blocks become smaller and for other conditions the quantum correlation becomes larger, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation, which deserves to be investigated in the future; and the ration of the quantum correlation to the total correlation monotonically decreases to a steady value as the spacing spin length increasing. (paper)