WorldWideScience

Sample records for correction factors calculation

  1. An improved correlated sampling method for calculating correction factor of detector

    International Nuclear Information System (INIS)

    Wu Zhen; Li Junli; Cheng Jianping

    2006-01-01

    In the case of a small size detector lying inside a bulk of medium, there are two problems in the correction factors calculation of the detectors. One is that the detector is too small for the particles to arrive at and collide in; the other is that the ratio of two quantities is not accurate enough. The method discussed in this paper, which combines correlated sampling with modified particle collision auto-importance sampling, and has been realized on the MCNP-4C platform, can solve these two problems. Besides, other 3 variance reduction techniques are also combined with correlated sampling respectively to calculate a simple calculating model of the correction factors of detectors. The results prove that, although all the variance reduction techniques combined with correlated sampling can improve the calculating efficiency, the method combining the modified particle collision auto-importance sampling with the correlated sampling is the most efficient one. (authors)

  2. Calculations of electron fluence correction factors using the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Siegbahn, E A; Nilsson, B; Fernandez-Varea, J M; Andreo, P

    2003-01-01

    In electron-beam dosimetry, plastic phantom materials may be used instead of water for the determination of absorbed dose to water. A correction factor φ water plastic is then needed for converting the electron fluence in the plastic phantom to the fluence at an equivalent depth in water. The recommended values for this factor given by AAPM TG-25 (1991 Med. Phys. 18 73-109) and the IAEA protocols TRS-381 (1997) and TRS-398 (2000) disagree, in particular at large depths. Calculations of the electron fluence have been done, using the Monte Carlo code PENELOPE, in semi-infinite phantoms of water and common plastic materials (PMMA, clear polystyrene, A-150, polyethylene, Plastic water TM and Solid water TM (WT1)). The simulations have been carried out for monoenergetic electron beams of 6, 10 and 20 MeV, as well as for a realistic clinical beam. The simulated fluence correction factors differ from the values in the AAPM and IAEA recommendations by up to 2%, and are in better agreement with factors obtained by Ding et al (1997 Med. Phys. 24 161-76) using EGS4. Our Monte Carlo calculations are also in good accordance with φ water plastic values measured by using an almost perturbation-free ion chamber. The important interdependence between depth- and fluence-scaling corrections for plastic phantoms is discussed. Discrepancies between the measured and the recommended values of φ water plastic may then be explained considering the different depth-scaling rules used

  3. Calculation of the Pitot tube correction factor for Newtonian and non-Newtonian fluids.

    Science.gov (United States)

    Etemad, S Gh; Thibault, J; Hashemabadi, S H

    2003-10-01

    This paper presents the numerical investigation performed to calculate the correction factor for Pitot tubes. The purely viscous non-Newtonian fluids with the power-law model constitutive equation were considered. It was shown that the power-law index, the Reynolds number, and the distance between the impact and static tubes have a major influence on the Pitot tube correction factor. The problem was solved for a wide range of these parameters. It was shown that employing Bernoulli's equation could lead to large errors, which depend on the magnitude of the kinetic energy and energy friction loss terms. A neural network model was used to correlate the correction factor of a Pitot tube as a function of these three parameters. This correlation is valid for most Newtonian, pseudoplastic, and dilatant fluids at low Reynolds number.

  4. Calculation of beam quality correction factor using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kawachi, T.; Saitoh, H.; Myojoyama, A.; Katayose, T.; Kojima, T.; Fukuda, K.; Inoue, M.

    2005-01-01

    In recent years, a number of the CyberKnife systems (Accuray C., U.S.) have been increasing significantly. However, the CyberKnife has unique treatment head structure and beam collimating system. Therefore, the global standard protocols can not be adopted for absolute absorbed dose dosimetry in CyberKnife beam. In this work, the energy spectrum of photon and electron from CyberKnife treatment head at 80 cm SSD and several depths in water are simulated with conscientious geometry using by the EGS Monte Carlo method. Furthermore, for calculation of the beam quality correction factor k Q , the mean restricted mass stopping power and the mass energy absorption coefficient of air, water and several chamber wall and waterproofing sleeve materials are calculated. As a result, the factors k Q CyberKnife beam for several ionization chambers are determined. And the relationship between the beam quality index PDD(10) x in CyberKnife beam and k Q is described in this report. (author)

  5. Calculation of the flux attenuation and multiple scattering correction factors in time of flight technique for double differential cross section measurements

    International Nuclear Information System (INIS)

    Martin, G.; Coca, M.; Capote, R.

    1996-01-01

    Using Monte Carlo method technique , a computer code which simulates the time of flight experiment to measure double differential cross section was developed. The correction factor for flux attenuation and multiple scattering, that make a deformation to the measured spectrum, were calculated. The energy dependence of the correction factor was determined and a comparison with other works is shown. Calculations for Fe 56 at two different scattering angles were made. We also reproduce the experiment performed at the Nuclear Analysis Laboratory for C 12 at 25 celsius degree and the calculated correction factor for the is measured is shown. We found a linear relation between the scatter size and the correction factor for flux attenuation

  6. NLO corrections to the photon impact factor: Combining real and virtual corrections

    International Nuclear Information System (INIS)

    Bartels, J.; Colferai, D.; Kyrieleis, A.; Gieseke, S.

    2002-08-01

    In this third part of our calculation of the QCD NLO corrections to the photon impact factor we combine our previous results for the real corrections with the singular pieces of the virtual corrections and present finite analytic expressions for the quark-antiquark-gluon intermediate state inside the photon impact factor. We begin with a list of the infrared singular pieces of the virtual correction, obtained in the first step of our program. We then list the complete results for the real corrections (longitudinal and transverse photon polarization). In the next step we defined, for the real corrections, the collinear and soft singular regions and calculate their contributions to the impact factor. We then subtract the contribution due to the central region. Finally, we combine the real corrections with the singular pieces of the virtual corrections and obtain our finite results. (orig.)

  7. Correction factors for photon beam quality for cylindrical ionization chambers: Monte Carlo calculations by using the PENELOPE code

    International Nuclear Information System (INIS)

    Barreras Caballero, A. A.; Hernandez Garcia, J.J.; Alfonso Laguardia, R.

    2009-01-01

    Were directly determined correction factors depending on the type camera beam quality, k, Q, and kQ, Qo, instead of the product (w, air p) Q, for three type cylindrical ionization chambers Pinpoint and divergent monoenergetic beams of photons in a wide range of energies (4-20 MV). The method of calculation used dispenses with the approaches taken in the classic procedure considered independent of braking power ratios and the factors disturbance of the camera. A detailed description of the geometry and materials chambers were supplied by the manufacturer and used as data input for the system 2006 of PENELOPE Monte Carlo calculation using a User code that includes correlated sampling, and forced interactions division of particles. We used a photon beam Co-60 as beam reference for calculating the correction factors for beam quality. No data exist for the cameras PTW 31014, 31015 and 31016 in the TRS-398 at they do not compare the results with data calculated or determined experimentally by other authors. (author)

  8. Generalised Batho correction factor

    International Nuclear Information System (INIS)

    Siddon, R.L.

    1984-01-01

    There are various approximate algorithms available to calculate the radiation dose in the presence of a heterogeneous medium. The Webb and Fox product over layers formulation of the generalised Batho correction factor requires determination of the number of layers and the layer densities for each ray path. It has been shown that the Webb and Fox expression is inefficient for the heterogeneous medium which is expressed as regions of inhomogeneity rather than layers. The inefficiency of the layer formulation is identified as the repeated problem of determining for each ray path which inhomogeneity region corresponds to a particular layer. It has been shown that the formulation of the Batho correction factor as a product over inhomogeneity regions avoids that topological problem entirely. The formulation in terms of a product over regions simplifies the computer code and reduces the time required to calculate the Batho correction factor for the general heterogeneous medium. (U.K.)

  9. Monte Carlo calculation of correction factors for radionuclide neutron source emission rate measurement by manganese bath method

    International Nuclear Information System (INIS)

    Li Chunjuan; Liu Yi'na; Zhang Weihua; Wang Zhiqiang

    2014-01-01

    The manganese bath method for measuring the neutron emission rate of radionuclide sources requires corrections to be made for emitted neutrons which are not captured by manganese nuclei. The Monte Carlo particle transport code MCNP was used to simulate the manganese bath system of the standards for the measurement of neutron source intensity. The correction factors were calculated and the reliability of the model was demonstrated through the key comparison for the radionuclide neutron source emission rate measurements organized by BIPM. The uncertainties in the calculated values were evaluated by considering the sensitivities to the solution density, the density of the radioactive material, the positioning of the source, the radius of the bath, and the interaction cross-sections. A new method for the evaluation of the uncertainties in Monte Carlo calculation was given. (authors)

  10. Efficient Color-Dressed Calculation of Virtual Corrections

    CERN Document Server

    Giele, Walter; Winter, Jan

    2010-01-01

    With the advent of generalized unitarity and parametric integration techniques, the construction of a generic Next-to-Leading Order Monte Carlo becomes feasible. Such a generator will entail the treatment of QCD color in the amplitudes. We extend the concept of color dressing to one-loop amplitudes, resulting in the formulation of an explicit algorithmic solution for the calculation of arbitrary scattering processes at Next-to-Leading order. The resulting algorithm is of exponential complexity, that is the numerical evaluation time of the virtual corrections grows by a constant multiplicative factor as the number of external partons is increased. To study the properties of the method, we calculate the virtual corrections to $n$-gluon scattering.

  11. Wall attenuation and scatter corrections for ion chambers: measurements versus calculations

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, D W.O.; Bielajew, A F [National Research Council of Canada, Ottawa, ON (Canada). Div. of Physics

    1990-08-01

    In precision ion chamber dosimetry in air, wall attenuation and scatter are corrected for A{sub wall} (K{sub att} in IAEA terminology, K{sub w}{sup -1} in standards laboratory terminology). Using the EGS4 system the authors show that Monte Carlo calculated A{sub wall} factors predict relative variations in detector response with wall thickness which agree with all available experimental data within a statistical uncertainty of less than 0.1%. They calculated correction factors for use in exposure and air kerma standards are different by up to 1% from those obtained by extrapolating these same measurements. Using calculated correction factors would imply increases of 0.7-1.0% in the exposure and air kerma standards based on spherical and large diameter, large length cylindrical chambers and decreases of 0.3-0.5% for standards based on large diameter pancake chambers. (author).

  12. Correction factors for the NMi free-air ionization chamber for medium-energy x-rays calculated with the Monte Carlo method

    International Nuclear Information System (INIS)

    Grimbergen, T.W.M.; Dijk, E. van; Vries, W. de

    1998-01-01

    A new method is described for the determination of x-ray quality dependent correction factors for free-air ionization chambers. The method is based on weighting correction factors for mono-energetic photons, which are calculated using the Monte Carlo method, with measured air kerma spectra. With this method, correction factors for electron loss, scatter inside the chamber and transmission through the diaphragm and front wall have been calculated for the NMi free-air chamber for medium-energy x-rays for a wide range of x-ray qualities in use at NMi. The newly obtained correction factors were compared with the values in use at present, which are based on interpolation of experimental data for a specific set of x-ray qualities. For x-ray qualities which are similar to this specific set, the agreement between the correction factors determined with the new method and those based on the experimental data is better than 0.1%, except for heavily filtered x-rays generated at 250 kV. For x-ray qualities dissimilar to the specific set, differences up to 0.4% exist, which can be explained by uncertainties in the interpolation procedure of the experimental data. Since the new method does not depend on experimental data for a specific set of x-ray qualities, the new method allows for a more flexible use of the free-air chamber as a primary standard for air kerma for any x-ray quality in the medium-energy x-ray range. (author)

  13. Systematic uncertainties in the Monte Carlo calculation of ion chamber replacement correction factors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L. L. W.; La Russa, D. J.; Rogers, D. W. O. [Ottawa Carleton Institute of Physics, Carleton University, Campus Ottawa, Ottawa, Ontario KIS 5B6 (Canada)

    2009-05-15

    In a previous study [Med. Phys. 35, 1747-1755 (2008)], the authors proposed two direct methods of calculating the replacement correction factors (P{sub repl} or p{sub cav}p{sub dis}) for ion chambers by Monte Carlo calculation. By ''direct'' we meant the stopping-power ratio evaluation is not necessary. The two methods were named as the high-density air (HDA) and low-density water (LDW) methods. Although the accuracy of these methods was briefly discussed, it turns out that the assumption made regarding the dose in an HDA slab as a function of slab thickness is not correct. This issue is reinvestigated in the current study, and the accuracy of the LDW method applied to ion chambers in a {sup 60}Co photon beam is also studied. It is found that the two direct methods are in fact not completely independent of the stopping-power ratio of the two materials involved. There is an implicit dependence of the calculated P{sub repl} values upon the stopping-power ratio evaluation through the choice of an appropriate energy cutoff {Delta}, which characterizes a cavity size in the Spencer-Attix cavity theory. Since the {Delta} value is not accurately defined in the theory, this dependence on the stopping-power ratio results in a systematic uncertainty on the calculated P{sub repl} values. For phantom materials of similar effective atomic number to air, such as water and graphite, this systematic uncertainty is at most 0.2% for most commonly used chambers for either electron or photon beams. This uncertainty level is good enough for current ion chamber dosimetry, and the merits of the two direct methods of calculating P{sub repl} values are maintained, i.e., there is no need to do a separate stopping-power ratio calculation. For high-Z materials, the inherent uncertainty would make it practically impossible to calculate reliable P{sub repl} values using the two direct methods.

  14. Calculation of “LS-curves” for coincidence summing corrections in gamma ray spectrometry

    Science.gov (United States)

    Vidmar, Tim; Korun, Matjaž

    2006-01-01

    When coincidence summing correction factors for extended samples are calculated in gamma-ray spectrometry from full-energy-peak and total efficiencies, their variation over the sample volume needs to be considered. In other words, the correction factors cannot be computed as if the sample were a point source. A method developed by Blaauw and Gelsema takes the variation of the efficiencies over the sample volume into account. It introduces the so-called LS-curve in the calibration procedure and only requires the preparation of a single standard for each sample geometry. We propose to replace the standard preparation by calculation and we show that the LS-curves resulting from our method yield coincidence summing correction factors that are consistent with the LS values obtained from experimental data.

  15. Correction of rhodium detector signals for comparison to design calculations

    International Nuclear Information System (INIS)

    Judd, J.L.; Chang, R.Y.; Gabel, C.W.

    1989-01-01

    Rhodium detectors are used in many commercial pressurized water reactors PWRs [pressurized water reactor] as in-core neutron detectors. The signals from the detectors are the result of neutron absorption in 103 Rh and the subsequent beta decay of 104 Rh to 104 Pd. The rhodium depletes ∼1% per full-power month, so corrections are necessary to the detector signal to account for the effects of the rhodium depletion. These corrections result from the change in detector self-shielding with rhodium burnup and the change in rhodium concentration itself. Correction for the change in rhodium concentration is done by multiplication of the factor N(t)/N 0 , where N(t) is the rhodium concentration at time t and N 0 is the initial rhodium concentration. The calculation of the self-shielding factor is more complicated and is presented. A self-shielding factor based on the fraction of rhodium remaining was calculated with the CASMO-3 code. The results obtained from our comparisons of predicted and measured in-core detector signals show that the CASMO-3/SIMULATE-3 code package is an effective tool for estimating pin peaking and power distributions

  16. Adaptation of penelope Monte Carlo code system to the absorbed dose metrology: characterization of high energy photon beams and calculations of reference dosimeter correction factors

    International Nuclear Information System (INIS)

    Mazurier, J.

    1999-01-01

    This thesis has been performed in the framework of national reference setting-up for absorbed dose in water and high energy photon beam provided with the SATURNE-43 medical accelerator of the BNM-LPRI (acronym for National Bureau of Metrology and Primary standard laboratory of ionising radiation). The aim of this work has been to develop and validate different user codes, based on PENELOPE Monte Carlo code system, to determine the photon beam characteristics and calculate the correction factors of reference dosimeters such as Fricke dosimeters and graphite calorimeter. In the first step, the developed user codes have permitted the influence study of different components constituting the irradiation head. Variance reduction techniques have been used to reduce the calculation time. The phase space has been calculated for 6, 12 and 25 MV at the output surface level of the accelerator head, then used for calculating energy spectra and dose distributions in the reference water phantom. Results obtained have been compared with experimental measurements. The second step has been devoted to develop an user code allowing calculation correction factors associated with both BNM-LPRI's graphite and Fricke dosimeters thanks to a correlated sampling method starting with energy spectra obtained in the first step. Then the calculated correction factors have been compared with experimental and calculated results obtained with the Monte Carlo EGS4 code system. The good agreement, between experimental and calculated results, leads to validate simulations performed with the PENELOPE code system. (author)

  17. Calculator for the correction of the experimental specific migration for comparison with the legislative limit

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Hoekstra, Eddo J.

    The EURL-NRL-FCM Taskforce on the Fourth Amendment of the Plastic Directive 2002/72/EC developed a calculator for the correction of the test results for comparison with the specific migration limit (SML). The calculator calculates the maximum acceptable specific migration under the given experime......The EURL-NRL-FCM Taskforce on the Fourth Amendment of the Plastic Directive 2002/72/EC developed a calculator for the correction of the test results for comparison with the specific migration limit (SML). The calculator calculates the maximum acceptable specific migration under the given...... experimental conditions in food or food stimulant and indicates whether the test result is in compliance with the legislation. This calculator includes the Fat Reduction Factor, the simulant D Reduction Factor and the factor of the difference in surface-to-volume ratio between test and real food contact....

  18. SU-E-T-552: Monte Carlo Calculation of Correction Factors for a Free-Air Ionization Chamber in Support of a National Air-Kerma Standard for Electronic Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mille, M; Bergstrom, P [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    2015-06-15

    Purpose: To use Monte Carlo radiation transport methods to calculate correction factors for a free-air ionization chamber in support of a national air-kerma standard for low-energy, miniature x-ray sources used for electronic brachytherapy (eBx). Methods: The NIST is establishing a calibration service for well-type ionization chambers used to characterize the strength of eBx sources prior to clinical use. The calibration approach involves establishing the well-chamber’s response to an eBx source whose air-kerma rate at a 50 cm distance is determined through a primary measurement performed using the Lamperti free-air ionization chamber. However, the free-air chamber measurements of charge or current can only be related to the reference air-kerma standard after applying several corrections, some of which are best determined via Monte Carlo simulation. To this end, a detailed geometric model of the Lamperti chamber was developed in the EGSnrc code based on the engineering drawings of the instrument. The egs-fac user code in EGSnrc was then used to calculate energy-dependent correction factors which account for missing or undesired ionization arising from effects such as: (1) attenuation and scatter of the x-rays in air; (2) primary electrons escaping the charge collection region; (3) lack of charged particle equilibrium; (4) atomic fluorescence and bremsstrahlung radiation. Results: Energy-dependent correction factors were calculated assuming a monoenergetic point source with the photon energy ranging from 2 keV to 60 keV in 2 keV increments. Sufficient photon histories were simulated so that the Monte Carlo statistical uncertainty of the correction factors was less than 0.01%. The correction factors for a specific eBx source will be determined by integrating these tabulated results over its measured x-ray spectrum. Conclusion: The correction factors calculated in this work are important for establishing a national standard for eBx which will help ensure that dose

  19. SU-F-T-67: Correction Factors for Monitor Unit Verification of Clinical Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Haywood, J [Mercy Health Partners, Muskegon, MI (United States)

    2016-06-15

    Purpose: Monitor units calculated by electron Monte Carlo treatment planning systems are often higher than TG-71 hand calculations for a majority of patients. Here I’ve calculated tables of geometry and heterogeneity correction factors for correcting electron hand calculations. Method: A flat water phantom with spherical volumes having radii ranging from 3 to 15 cm was created. The spheres were centered with respect to the flat water phantom, and all shapes shared a surface at 100 cm SSD. D{sub max} dose at 100 cm SSD was calculated for each cone and energy on the flat phantom and for the spherical volumes in the absence of the flat phantom. The ratio of dose in the sphere to dose in the flat phantom defined the geometrical correction factor. The heterogeneity factors were then calculated from the unrestricted collisional stopping power for tissues encountered in electron beam treatments. These factors were then used in patient second check calculations. Patient curvature was estimated by the largest sphere that aligns to the patient contour, and appropriate tissue density was read from the physical properties provided by the CT. The resulting MU were compared to those calculated by the treatment planning system and TG-71 hand calculations. Results: The geometry and heterogeneity correction factors range from ∼(0.8–1.0) and ∼(0.9–1.01) respectively for the energies and cones presented. Percent differences for TG-71 hand calculations drop from ∼(3–14)% to ∼(0–2)%. Conclusion: Monitor units calculated with the correction factors typically decrease the percent difference to under actionable levels, < 5%. While these correction factors work for a majority of patients, there are some patient anatomies that do not fit the assumptions made. Using these factors in hand calculations is a first step in bringing the verification monitor units into agreement with the treatment planning system MU.

  20. Correction factor for hair analysis by PIXE

    International Nuclear Information System (INIS)

    Montenegro, E.C.; Baptista, G.B.; Castro Faria, L.V. de; Paschoa, A.S.

    1980-01-01

    The application of the Particle Induced X-ray Emission (PIXE) technique to analyse quantitatively the elemental composition of hair specimens brings about some difficulties in the interpretation of the data. The present paper proposes a correction factor to account for the effects of the energy loss of the incident particle with penetration depth, and X-ray self-absorption when a particular geometrical distribution of elements in hair is assumed for calculational purposes. The correction factor has been applied to the analysis of hair contents Zn, Cu and Ca as a function of the energy of the incident particle. (orig.)

  1. Correction factor for hair analysis by PIXE

    International Nuclear Information System (INIS)

    Montenegro, E.C.; Baptista, G.B.; Castro Faria, L.V. de; Paschoa, A.S.

    1979-06-01

    The application of the Particle Induced X-ray Emission (PIXE) technique to analyse quantitatively the elemental composition of hair specimens brings about some difficulties in the interpretation of the data. The present paper proposes a correction factor to account for the effects of energy loss of the incident particle with penetration depth, and x-ray self-absorption when a particular geometrical distribution of elements in hair is assumed for calculational purposes. The correction factor has been applied to the analysis of hair contents Zn, Cu and Ca as a function of the energy of the incident particle.(Author) [pt

  2. Calculation of Dancoff correction for cylindrical cells including void

    International Nuclear Information System (INIS)

    Lima, C.P.B.; Martinez, A.S.

    1989-01-01

    This paper presents a method developed to the calculation of an analytical expression to the Dancoff Correction for fuel rods surrounded by air gaps. The Dancoff Correction has an important role in the calculation of the multigroup constants. The approximated expression obtained to the Dancoff Correction may be used in the available methods for the multigroup constants calculation, based in its simple and precise form. (author) [pt

  3. The determination of beam quality correction factors: Monte Carlo simulations and measurements.

    Science.gov (United States)

    González-Castaño, D M; Hartmann, G H; Sánchez-Doblado, F; Gómez, F; Kapsch, R-P; Pena, J; Capote, R

    2009-08-07

    Modern dosimetry protocols are based on the use of ionization chambers provided with a calibration factor in terms of absorbed dose to water. The basic formula to determine the absorbed dose at a user's beam contains the well-known beam quality correction factor that is required whenever the quality of radiation used at calibration differs from that of the user's radiation. The dosimetry protocols describe the whole ionization chamber calibration procedure and include tabulated beam quality correction factors which refer to 60Co gamma radiation used as calibration quality. They have been calculated for a series of ionization chambers and radiation qualities based on formulae, which are also described in the protocols. In the case of high-energy photon beams, the relative standard uncertainty of the beam quality correction factor is estimated to amount to 1%. In the present work, two alternative methods to determine beam quality correction factors are prescribed-Monte Carlo simulation using the EGSnrc system and an experimental method based on a comparison with a reference chamber. Both Monte Carlo calculations and ratio measurements were carried out for nine chambers at several radiation beams. Four chamber types are not included in the current dosimetry protocols. Beam quality corrections for the reference chamber at two beam qualities were also measured using a calorimeter at a PTB Primary Standards Dosimetry Laboratory. Good agreement between the Monte Carlo calculated (1% uncertainty) and measured (0.5% uncertainty) beam quality correction factors was obtained. Based on these results we propose that beam quality correction factors can be generated both by measurements and by the Monte Carlo simulations with an uncertainty at least comparable to that given in current dosimetry protocols.

  4. Correction factor for the experimental prompt neutron decay constant

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Y.; Sadovich, S.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.

    2013-01-01

    Highlights: • Definition of a spatial correction factor for the experimental prompt neutron decay constant. • Introduction of a MCNP6 calculation methodology to simulate Rossi-alpha distribution for pulsed neutron sources. • Comparison of MCNP6 results with experimental data for count rate, Rossi-alpha, and Feynman-alpha distributions. • Improvement of the comparison between numerical and experimental results by taking into account the dead-time effect. - Abstract: This study introduces a new correction factor to obtain the experimental effective multiplication factor of subcritical assemblies by the point kinetics formulation. The correction factor is defined as the ratio between the MCNP6 prompt neutron decay constant obtained in criticality mode and the one obtained in source mode. The correction factor mainly takes into account the longer neutron lifetime in the reflector region and the effects of the external neutron source. For the YALINA Thermal facility, the comparison between the experimental and computational effective multiplication factors noticeably improves after the application of the correction factor. The accuracy of the MCNP6 computational model of the YALINA Thermal subcritical assembly has been verified by reproducing the neutron count rate, Rossi-α, and Feynman-α distributions obtained from the experimental data

  5. Self-consistency corrections in effective-interaction calculations

    International Nuclear Information System (INIS)

    Starkand, Y.; Kirson, M.W.

    1975-01-01

    Large-matrix extended-shell-model calculations are used to compute self-consistency corrections to the effective interaction and to the linked-cluster effective interaction. The corrections are found to be numerically significant and to affect the rate of convergence of the corresponding perturbation series. The influence of various partial corrections is tested. It is concluded that self-consistency is an important effect in determining the effective interaction and improving the rate of convergence. (author)

  6. Absorption correction factor in X-ray fluorescent quantitative analysis

    International Nuclear Information System (INIS)

    Pimjun, S.

    1994-01-01

    An experiment on absorption correction factor in X-ray fluorescent quantitative analysis were carried out. Standard samples were prepared from the mixture of Fe 2 O 3 and tapioca flour at various concentration of Fe 2 O 3 ranging from 5% to 25%. Unknown samples were kaolin containing 3.5% to-50% of Fe 2 O 3 Kaolin samples were diluted with tapioca flour in order to reduce the absorption of FeK α and make them easy to prepare. Pressed samples with 0.150 /cm 2 and 2.76 cm in diameter, were used in the experiment. Absorption correction factor is related to total mass absorption coefficient (χ) which varied with sample composition. In known sample, χ can be calculated by conveniently the formula. However in unknown sample, χ can be determined by Emission-Transmission method. It was found that the relationship between corrected FeK α intensity and contents of Fe 2 O 3 in these samples was linear. This result indicate that this correction factor can be used to adjust the accuracy of X-ray intensity. Therefore, this correction factor is essential in quantitative analysis of elements comprising in any sample by X-ray fluorescent technique

  7. 'TrueCoinc' software utility for calculation of the true coincidence correction

    International Nuclear Information System (INIS)

    Sudar, S.

    2002-01-01

    The true coincidence correction plays an important role in the overall accuracy of the γ ray spectrometry especially in the case of present-day high volume detectors. The calculation of true coincidence corrections needs detailed nuclear structure information. Recently these data are available in computerized form from the Nuclear Data Centers through the Internet or on a CD-ROM of the Table of Isotopes. The aim has been to develop software for this calculation, using available databases for the levels data. The user has to supply only the parameters of the detector to be used. The new computer program runs under the Windows 95/98 operating system. In the framework of the project a new formula was prepared for calculating the summing out correction and calculation of the intensity of alias lines (sum peaks). The file converter for reading the ENDSF-2 type files was completed. Reading and converting the original ENDSF was added to the program. A computer accessible database of the X rays energies and intensities was created. The X ray emissions were taken in account in the 'summing out' calculation. Calculation of the true coincidence 'summing in' correction was done. The output was arranged to show independently two types of corrections and to calculate the final correction as multiplication of the two. A minimal intensity threshold can be set to show the final list only for the strongest lines. The calculation takes into account all the transitions, independently of the threshold. The program calculates the intensity of X rays (K, L lines). The true coincidence corrections for X rays were calculated. The intensities of the alias γ lines were calculated. (author)

  8. Determination of true coincidence correction factors using Monte-Carlo simulation techniques

    Directory of Open Access Journals (Sweden)

    Chionis Dionysios A.

    2014-01-01

    Full Text Available Aim of this work is the numerical calculation of the true coincidence correction factors by means of Monte-Carlo simulation techniques. For this purpose, the Monte Carlo computer code PENELOPE was used and the main program PENMAIN was properly modified in order to include the effect of the true coincidence phenomenon. The modified main program that takes into consideration the true coincidence phenomenon was used for the full energy peak efficiency determination of an XtRa Ge detector with relative efficiency 104% and the results obtained for the 1173 keV and 1332 keV photons of 60Co were found consistent with respective experimental ones. The true coincidence correction factors were calculated as the ratio of the full energy peak efficiencies was determined from the original main program PENMAIN and the modified main program PENMAIN. The developed technique was applied for 57Co, 88Y, and 134Cs and for two source-to-detector geometries. The results obtained were compared with true coincidence correction factors calculated from the "TrueCoinc" program and the relative bias was found to be less than 2%, 4%, and 8% for 57Co, 88Y, and 134Cs, respectively.

  9. Adaptation of penelope Monte Carlo code system to the absorbed dose metrology: characterization of high energy photon beams and calculations of reference dosimeter correction factors; Adaptation du code Monte Carlo penelope pour la metrologie de la dose absorbee: caracterisation des faisceaux de photons X de haute energie et calcul de facteurs de correction de dosimetres de reference

    Energy Technology Data Exchange (ETDEWEB)

    Mazurier, J

    1999-05-28

    This thesis has been performed in the framework of national reference setting-up for absorbed dose in water and high energy photon beam provided with the SATURNE-43 medical accelerator of the BNM-LPRI (acronym for National Bureau of Metrology and Primary standard laboratory of ionising radiation). The aim of this work has been to develop and validate different user codes, based on PENELOPE Monte Carlo code system, to determine the photon beam characteristics and calculate the correction factors of reference dosimeters such as Fricke dosimeters and graphite calorimeter. In the first step, the developed user codes have permitted the influence study of different components constituting the irradiation head. Variance reduction techniques have been used to reduce the calculation time. The phase space has been calculated for 6, 12 and 25 MV at the output surface level of the accelerator head, then used for calculating energy spectra and dose distributions in the reference water phantom. Results obtained have been compared with experimental measurements. The second step has been devoted to develop an user code allowing calculation correction factors associated with both BNM-LPRI's graphite and Fricke dosimeters thanks to a correlated sampling method starting with energy spectra obtained in the first step. Then the calculated correction factors have been compared with experimental and calculated results obtained with the Monte Carlo EGS4 code system. The good agreement, between experimental and calculated results, leads to validate simulations performed with the PENELOPE code system. (author)

  10. Impact of the neutron detector choice on Bell and Glasstone spatial correction factor for subcriticality measurement

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto, E-mail: alby@anl.gov [Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States); Gohar, Y.; Cao, Y.; Zhong, Z. [Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States); Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C. [Joint Institute for Power and Nuclear Research-Sosny, National Academy of Sciences of Belarus, 99 acad. Krasin str., Minsk 220109 (Belarus)

    2012-03-11

    In subcritical assemblies, the Bell and Glasstone spatial correction factor is used to correct the measured reactivity from different detector positions. In addition to the measuring position, several other parameters affect the correction factor: the detector material, the detector size, and the energy-angle distribution of source neutrons. The effective multiplication factor calculated by computer codes in criticality mode slightly differs from the average value obtained from the measurements in the different experimental channels of the subcritical assembly, which are corrected by the Bell and Glasstone spatial correction factor. Generally, this difference is due to (1) neutron counting errors; (2) geometrical imperfections, which are not simulated in the calculational model, and (3) quantities and distributions of material impurities, which are missing from the material definitions. This work examines these issues and it focuses on the detector choice and the calculation methodologies. The work investigated the YALINA Booster subcritical assembly of Belarus, which has been operated with three different fuel enrichments in the fast zone either: high (90%) and medium (36%), medium (36%), or low (21%) enriched uranium fuel.

  11. Impact of the neutron detector choice on Bell and Glasstone spatial correction factor for subcriticality measurement

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Y.; Cao, Y.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.

    2012-01-01

    In subcritical assemblies, the Bell and Glasstone spatial correction factor is used to correct the measured reactivity from different detector positions. In addition to the measuring position, several other parameters affect the correction factor: the detector material, the detector size, and the energy-angle distribution of source neutrons. The effective multiplication factor calculated by computer codes in criticality mode slightly differs from the average value obtained from the measurements in the different experimental channels of the subcritical assembly, which are corrected by the Bell and Glasstone spatial correction factor. Generally, this difference is due to (1) neutron counting errors; (2) geometrical imperfections, which are not simulated in the calculational model, and (3) quantities and distributions of material impurities, which are missing from the material definitions. This work examines these issues and it focuses on the detector choice and the calculation methodologies. The work investigated the YALINA Booster subcritical assembly of Belarus, which has been operated with three different fuel enrichments in the fast zone either: high (90%) and medium (36%), medium (36%), or low (21%) enriched uranium fuel.

  12. Attenuation correction factors for cylindrical, disc and box geometry

    International Nuclear Information System (INIS)

    Agarwal, Chhavi; Poi, Sanhita; Mhatre, Amol; Goswami, A.; Gathibandhe, M.

    2009-01-01

    In the present study, attenuation correction factors have been experimentally determined for samples having cylindrical, disc and box geometry and compared with the attenuation correction factors calculated by Hybrid Monte Carlo (HMC) method [ C. Agarwal, S. Poi, A. Goswami, M. Gathibandhe, R.A. Agrawal, Nucl. Instr. and. Meth. A 597 (2008) 198] and with the near-field and far-field formulations available in literature. It has been observed that the near-field formulae, although said to be applicable at close sample-detector geometry, does not work at very close sample-detector configuration. The advantage of the HMC method is that it is found to be valid for all sample-detector geometries.

  13. Power correction to the asymptotics of the pion electromagnetic form factor

    International Nuclear Information System (INIS)

    Geshkenbein, B.V.; Terentyev, M.V.

    1982-01-01

    The contribution of the power correction approximately (μ 2 /Q 2 ) 2 enhanced by the factor approximately μ 2 /anti m 2 , to the pion form factor (FF) is calculated (here μ is the pion mass, anti m=1/2(msub(u)+msub(α)) is the mean value of the u- and d-quark masses, Q 2 =-(p-p') 2 > 0, where p, p' are meson momenta at initial and final state. It is shown that the only source of large corrections is due to the contribution of the local pseudoscalar current. The main (approximately 1/Q 2 ) asymptotics of FF associated with the axial current contribution, is derived. The contribution (approximately 1/Q 4 ) of the pseudoscalar current is calculated

  14. Reply to comment on 'Model calculation of the scanned field enhancement factor of CNTs'

    International Nuclear Information System (INIS)

    Ahmad, Amir; Tripathi, V K

    2010-01-01

    In the paper (Ahmad and Tripathi 2006 Nanotechnology 17 3798), we derived an expression to compute the field enhancement factor of CNTs under any positional distribution of CNTs by using the model of a floating sphere between parallel anode and cathode plates. Using this expression we can compute the field enhancement factor of a CNT in a cluster (non-uniformly distributed CNTs). This expression was used to compute the field enhancement factor of a CNT in an array (uniformly distributed CNTs). We used an approximation to calculate the field enhancement factor. Hence, our expressions are correct in that assumption only. Zhbanov et al (2010 Nanotechnology 21 358001) suggest a correction that can calculate the field enhancement factor without using the approximation. Hence, this correction can improve the applicability of this model. (reply)

  15. Investigation of electron-loss and photon scattering correction factors for FAC-IR-300 ionization chamber

    Science.gov (United States)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-02-01

    The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (ke) and photon scattering correction factor (ksc) are needed. ke factor corrects the charge loss from the collecting volume and ksc factor corrects the scattering of photons into collecting volume. In this work ke and ksc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the ke and ksc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.

  16. SU-E-T-469: A Practical Approach for the Determination of Small Field Output Factors Using Published Monte Carlo Derived Correction Factors

    International Nuclear Information System (INIS)

    Calderon, E; Siergiej, D

    2014-01-01

    Purpose: Output factor determination for small fields (less than 20 mm) presents significant challenges due to ion chamber volume averaging and diode over-response. Measured output factor values between detectors are known to have large deviations as field sizes are decreased. No set standard to resolve this difference in measurement exists. We observed differences between measured output factors of up to 14% using two different detectors. Published Monte Carlo derived correction factors were used to address this challenge and decrease the output factor deviation between detectors. Methods: Output factors for Elekta's linac-based stereotactic cone system were measured using the EDGE detector (Sun Nuclear) and the A16 ion chamber (Standard Imaging). Measurements conditions were 100 cm SSD (source to surface distance) and 1.5 cm depth. Output factors were first normalized to a 10.4 cm × 10.4 cm field size using a daisy-chaining technique to minimize the dependence of field size on detector response. An equation expressing the relation between published Monte Carlo correction factors as a function of field size for each detector was derived. The measured output factors were then multiplied by the calculated correction factors. EBT3 gafchromic film dosimetry was used to independently validate the corrected output factors. Results: Without correction, the deviation in output factors between the EDGE and A16 detectors ranged from 1.3 to 14.8%, depending on cone size. After applying the calculated correction factors, this deviation fell to 0 to 3.4%. Output factors determined with film agree within 3.5% of the corrected output factors. Conclusion: We present a practical approach to applying published Monte Carlo derived correction factors to measured small field output factors for the EDGE and A16 detectors. Using this method, we were able to decrease the percent deviation between both detectors from 14.8% to 3.4% agreement

  17. Improvements to the Chebyshev expansion of attenuation correction factors for cylindrical samples

    International Nuclear Information System (INIS)

    Mildner, D.F.R.; Carpenter, J.M.

    1990-01-01

    The accuracy of the Chebyshev expansion coefficients used for the calculation of attenuation correction factors for cylinderical samples has been improved. An increased order of expansion allows the method to be useful over a greater range of attenuation. It is shown that many of these coefficients are exactly zero, others are rational numbers, and others are rational frations of π -1 . The assumptions of Sears in his asymptotic expression of the attenuation correction factor are also examined. (orig.)

  18. Investigation of electron-loss and photon scattering correction factors for FAC-IR-300 ionization chamber

    International Nuclear Information System (INIS)

    Mohammadi, S.M.; Tavakoli-Anbaran, H.; Zeinali, H.Z.

    2017-01-01

    The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (k e ) and photon scattering correction factor (k sc ) are needed. k e factor corrects the charge loss from the collecting volume and k sc factor corrects the scattering of photons into collecting volume. In this work k e and k sc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the k e and k sc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.

  19. Determination of correction and conversion factor of exposure rate generated Gamma spectrometer GR-320 to Victoreen data

    International Nuclear Information System (INIS)

    Supardjo-AS; Mappa, Djody-Rachim; Nasrun-Syamsul; Syamsul-Hadi

    2000-01-01

    Exposure rate data of Muria Peninsula were generated from Victoreen-491 measurement and calculation of radioelement content in soil which were measured by Exploranium GR-320, using IAEA formula. However those data are not be comparable so the exposure rate calculated from Gamma Spectrometer data necessarily to be corrected. The correction factor was determinate by measuring the exposure rate of at the NMDC's back yard selected location using Victoreen-491 and Gamma Spectrometer Exploranium GR-320 . Correction factor was created by comparing mean exposure rate data that calculated from 30 data measured by Gamma Spectrometer instrument and to those Victoreen's exposure rate. Conversion factor was gained from comparing of total count data of Gamma Spectrometer Exploranium GR-320 to Victoreen's exposure rate data. The correction factor of Exploranium GR-320's exposure rate is 0.34 μR/hours, and the conversion factor of total count is 0.0092 μR/hours per c/m. Deviation Victoreen 491 = 4.7 % and Gamma Spectrometer Exploranium GR-320 8.6 %

  20. The real corrections to the virtual photon impact factor

    International Nuclear Information System (INIS)

    Kyrieleis, A.

    2003-10-01

    We investigate the interaction of two virtual photons in the high energy limit of quantum chromodynamics (QCD). We are motivated by two closely linked problems: the calculation of the γ * γ * total cross section, σ γ * γ * , in the framework NLO BFKL and the NLO extensions to the colour dipole picture. We calculate the squared amplitude for the process γ * + q → qqg + q in arbitrary space-time dimensions for both longitudinal and transverse photon polarisation. In transverse configuration space the result is found to factorise supporting in this way the photon wave function interpretation. This is the first step in the calculation of the qqg Fock component of the γ * wave function. The squared vertex for the transition Reggeon-γ * → qqg is extracted in order to calculate the NLO real corrections to the γ * impact factor. Together with the virtual corrections this will allow for the calculation of σ γ * γ * . The infrared divergences are dimensionally regularised and their cancellation against those from the virtual corrections is performed. After the introduction of Feynman parameters in each Feynman diagram, part of the qqg phase space integration is performed analytically. The various divergences emerging due to the independent treatment of the diagrams are regularised. A procedure is worked out to obtain for each diagram a finite phase space integral. In the case of longitudinal photon polarisation, this method is implemented in a computer program and the full phase space integration is carried out numerically. First numerical tests of the calculation are successfully performed. (orig.)

  1. Automatic Power Factor Correction Using Capacitive Bank

    OpenAIRE

    Mr.Anant Kumar Tiwari,; Mrs. Durga Sharma

    2014-01-01

    The power factor correction of electrical loads is a problem common to all industrial companies. Earlier the power factor correction was done by adjusting the capacitive bank manually [1]. The automated power factor corrector (APFC) using capacitive load bank is helpful in providing the power factor correction. Proposed automated project involves measuring the power factor value from the load using microcontroller. The design of this auto-adjustable power factor correction is ...

  2. Monte Carlo and experimental determination of correction factors for gamma knife perfexion small field dosimetry measurements

    Science.gov (United States)

    Zoros, E.; Moutsatsos, A.; Pappas, E. P.; Georgiou, E.; Kollias, G.; Karaiskos, P.; Pantelis, E.

    2017-09-01

    Detector-, field size- and machine-specific correction factors are required for precise dosimetry measurements in small and non-standard photon fields. In this work, Monte Carlo (MC) simulation techniques were used to calculate the k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} and k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors for a series of ionization chambers, a synthetic microDiamond and diode dosimeters, used for reference and/or output factor (OF) measurements in the Gamma Knife Perfexion photon fields. Calculations were performed for the solid water (SW) and ABS plastic phantoms, as well as for a water phantom of the same geometry. MC calculations for the k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors in SW were compared against corresponding experimental results for a subset of ionization chambers and diode detectors. Reference experimental OF data were obtained through the weighted average of corresponding measurements using TLDs, EBT-2 films and alanine pellets. k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} values close to unity (within 1%) were calculated for most of ionization chambers in water. Greater corrections of up to 6.0% were observed for chambers with relatively large air-cavity dimensions and steel central electrode. A phantom correction of 1.006 and 1.024 (breaking down to 1.014 from the ABS sphere and 1.010 from the accompanying ABS phantom adapter) were calculated for the SW and ABS phantoms, respectively, adding up to k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} corrections in water. Both measurements and MC calculations for the diode and microDiamond detectors resulted in lower than unit k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors, due to their denser sensitive volume and encapsulation materials. In comparison, higher than unit k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} results for the ionization chambers suggested field size depended dose underestimations (being significant for the 4 mm field), with magnitude depending on the combination of

  3. The calculation of wall and non-uniformity correction factors for the BIPM air-kerma standard for 60Co using the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Burns, D.T.

    2002-01-01

    Traditionally, the correction factor k wall for attenuation and scatter in the walls of cavity ionization chamber primary standards has been evaluated experimentally using an extrapolation method. During the past decade, there have been a number of Monte Carlo calculations of k wall indicating that for certain ionization chamber types the extrapolation method may not be valid. In particular, values for k wall have been proposed that, if adopted by each laboratory concerned, would have a significant effect on the results of international comparisons of air-kerma primary standards. The calculations have also proposed new values for the axial component k an of the point-source uniformity correction. Central to the results of international comparisons is the BIPM air-kerma standard. Unlike most others, the BIPM standard is of the parallel-plate design for which the extrapolation method for evaluating k wall should be valid. The value in use at present is k wall =1.0026 (standard uncertainty 0.0008). Rogers and Treurniet calculated the value k wall =1.0014 for the BIPM standard, which is in moderate agreement with the value in use (no overall uncertainty was given). However, they also calculated k an =1.0024 (statistical uncertainty 0.0003) which is very different from the value k an =0.9964 (0.0007) in use at present for the BIPM standard. A new 60 Co facility has recently been installed at the BIPM and the opportunity was taken to re-evaluate the correction factors for the BIPM standard in this new beam. Given that almost all of the Monte Carlo work to date has used the EGS Monte Carlo code, it was decided to use the code PENELOPE. The new source, container, head and collimating jaws were simulated in detail with more that fifty components being modelled, as shown. This model was used to create a phase-space file in the plane 90 cm from the source. The normalized distribution of photon number with energy is shown, where the various sources of scattered photons are

  4. Status of the NLO Corrections to the Photon Impact Factor

    OpenAIRE

    Gieseke, Stefan

    2002-01-01

    We present the status of the programme of calculating the next-to-leading order corrections to the virtual photon impact factor. In particular, we discuss new results for the transversely polarized photon. We briefly outline the definition of infrared finite terms and the subtraction of the leading logarithmic parts.

  5. Electron fluence correction factors for various materials in clinical electron beams

    International Nuclear Information System (INIS)

    Olivares, M.; Blois, F. de; Podgorsak, E.B.; Seuntjens, J.P.

    2001-01-01

    Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at d max in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than ±1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83±0.01 and 1.55±0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1σ level. Excluding the data for Cu, electron fluence

  6. Factors affecting volume calculation with single photon emission tomography (SPECT) method

    International Nuclear Information System (INIS)

    Liu, T.H.; Lee, K.H.; Chen, D.C.P.; Ballard, S.; Siegel, M.E.

    1985-01-01

    Several factors may influence the calculation of absolute volumes (VL) from SPECT images. The effect of these factors must be established to optimize the technique. The authors investigated the following on the VL calculations: % of background (BG) subtraction, reconstruction filters, sample activity, angular sampling and edge detection methods. Transaxial images of a liver-trunk phantom filled with Tc-99m from 1 to 3 μCi/cc were obtained in 64x64 matrix with a Siemens Rota Camera and MDS computer. Different reconstruction filters including Hanning 20,32, 64 and Butterworth 20, 32 were used. Angular samplings were performed in 3 and 6 degree increments. ROI's were drawn manually and with an automatic edge detection program around the image after BG subtraction. VL's were calculated by multiplying the number of pixels within the ROI by the slice thickness and the x- and y- calibrations of each pixel. One or 2 pixel per slice thickness was applied in the calculation. An inverse correlation was found between the calculated VL and the % of BG subtraction (r=0.99 for 1,2,3 μCi/cc activity). Based on the authors' linear regression analysis, the correct liver VL was measured with about 53% BG subtraction. The reconstruction filters, slice thickness and angular sampling had only minor effects on the calculated phantom volumes. Detection of the ROI automatically by the computer was not as accurate as the manual method. The authors conclude that the % of BG subtraction appears to be the most important factor affecting the VL calculation. With good quality control and appropriate reconstruction factors, correct VL calculations can be achieved with SPECT

  7. Study of the replacement correction factors for ionization chamber dosimetry by Monte Carlo simulations

    Science.gov (United States)

    Wang, Lilie

    In ionization chamber radiation dosimetry, the introduction of the ion chamber into medium will unavoidably distort the radiation field near the chamber because the chamber cavity material (air) is different from the medium. A replacement correction factor, Prepl was introduced in order to correct the chamber readings to give an accurate radiation dose in the medium without the presence of the chamber. Generally it is very hard to measure the values of Prepl since they are intertwined with the chamber wall effect. In addition, the P repl values always come together with the stopping-power ratio of the two media involved. This makes the problem of determining the P repl values even more complicated. Monte Carlo simulation is an ideal method to investigate the replacement correction factors. In this study, four different methods of calculating the values of Prepl by Monte Carlo simulation are discussed. Two of the methods are designated as 'direct' methods in the sense that the evaluation of the stopping-power ratio is not necessary. The systematic uncertainties of the two direct methods are estimated to be about 0.1-0.2% which comes from the ambiguous definition of the energy cutoff Delta used in the Spencer-Attix cavity theory. The two direct methods are used to calculate the values of P repl for both plane-parallel chambers and cylindrical thimble chambers in either electron beams or photon beams. The calculation results are compared to measurements. For electron beams, good agreements are obtained. For thimble chambers in photon beams, significant discrepancies are observed between calculations and measurements. The experiments are thus investigated and the procedures are simulated by the Monte Carlo method. It is found that the interpretation of the measured data as the replacement correction factors in dosimetry protocols are not correct. In applying the calculation to the BIPM graphite chamber in a 60Co beam, the calculated values of P repl differ from those

  8. Model Correction Factor Method

    DEFF Research Database (Denmark)

    Christensen, Claus; Randrup-Thomsen, Søren; Morsing Johannesen, Johannes

    1997-01-01

    The model correction factor method is proposed as an alternative to traditional polynomial based response surface techniques in structural reliability considering a computationally time consuming limit state procedure as a 'black box'. The class of polynomial functions is replaced by a limit...... of the model correction factor method, is that in simpler form not using gradient information on the original limit state function or only using this information once, a drastic reduction of the number of limit state evaluation is obtained together with good approximations on the reliability. Methods...

  9. Evaluation of the uniformity of wide circular reference source and application of correction factors

    International Nuclear Information System (INIS)

    Silva Junior, I.A.; Xavier, M.; Siqueira, P.T.D.; Sordi, G.A.A.; Potiens, M.P.A.

    2017-01-01

    In this work the uniformity of wide circular reference sources is evaluated. This kind of reference source is still widely used in Brazil. In previous works wide rectangular reference sources were analyzed and it was shown the importance of the application of correction factors in calibration procedures of radiation monitors. Now a transposition of the methods used formerly is performed, evaluating the uniformities of circular reference sources and calculating the associated correction factors. (author)

  10. Relativistic and QED corrections to the g factor of Li-like ions

    International Nuclear Information System (INIS)

    Glazov, D.A.; Shabaev, V.M.; Volotka, A.V.; Tupitsyn, I.I.; Yerokhin, V.A.; Plunien, G.; Soff, G.

    2004-01-01

    Calculations of various corrections to the g factor of Li-like ions are presented, which result in a significant improvement of the theoretical accuracy in the region Z=6-92. The configuration-interaction Dirac-Fock method is employed for the evaluation of the interelectronic-interaction correction of order 1/Z 2 and higher. This correction is combined with the 1/Z interelectronic-interaction term derived within a rigorous QED approach. The one-electron QED correction of first order in α is obtained by employing our recent results for the self-energy term and by evaluating the vacuum-polarization contribution. The screening of QED corrections is taken into account to the leading orders in αZ and 1/Z

  11. Self-attenuation correction factors for bioindicators measured by γ spectrometry for energies <100keV

    International Nuclear Information System (INIS)

    Manduci, L.; Tenailleau, L.; Trolet, J.L.; De Vismes, A.; Lopez, G.; Piccione, M.

    2010-01-01

    The mass attenuation coefficients for a number of marine and terrestrial bioindicators were measured using γ spectrometry for energies between 22 and 80 keV. These values were then used to find the correction factor k for the apparent radioactivity. The experimental results were compared with a Monte Carlo simulation performed using PENELOPE in order to evaluate the reliability of the simplified calculation and to determine the correction factors.

  12. Correction of CT artifacts and its influence on Monte Carlo dose calculations

    International Nuclear Information System (INIS)

    Bazalova, Magdalena; Beaulieu, Luc; Palefsky, Steven; Verhaegen, Frank

    2007-01-01

    Computed tomography (CT) images of patients having metallic implants or dental fillings exhibit severe streaking artifacts. These artifacts may disallow tumor and organ delineation and compromise dose calculation outcomes in radiotherapy. We used a sinogram interpolation metal streaking artifact correction algorithm on several phantoms of exact-known compositions and on a prostate patient with two hip prostheses. We compared original CT images and artifact-corrected images of both. To evaluate the effect of the artifact correction on dose calculations, we performed Monte Carlo dose calculation in the EGSnrc/DOSXYZnrc code. For the phantoms, we performed calculations in the exact geometry, in the original CT geometry and in the artifact-corrected geometry for photon and electron beams. The maximum errors in 6 MV photon beam dose calculation were found to exceed 25% in original CT images when the standard DOSXYZnrc/CTCREATE calibration is used but less than 2% in artifact-corrected images when an extended calibration is used. The extended calibration includes an extra calibration point for a metal. The patient dose volume histograms of a hypothetical target irradiated by five 18 MV photon beams in a hypothetical treatment differ significantly in the original CT geometry and in the artifact-corrected geometry. This was found to be mostly due to miss-assignment of tissue voxels to air due to metal artifacts. We also developed a simple Monte Carlo model for a CT scanner and we simulated the contribution of scatter and beam hardening to metal streaking artifacts. We found that whereas beam hardening has a minor effect on metal artifacts, scatter is an important cause of these artifacts

  13. Correction factors for assessing immersion suits under harsh conditions.

    Science.gov (United States)

    Power, Jonathan; Tikuisis, Peter; Ré, António Simões; Barwood, Martin; Tipton, Michael

    2016-03-01

    Many immersion suit standards require testing of thermal protective properties in calm, circulating water while these suits are typically used in harsher environments where they often underperform. Yet it can be expensive and logistically challenging to test immersion suits in realistic conditions. The goal of this work was to develop a set of correction factors that would allow suits to be tested in calm water yet ensure they will offer sufficient protection in harsher conditions. Two immersion studies, one dry and the other with 500 mL of water within the suit, were conducted in wind and waves to measure the change in suit insulation. In both studies, wind and waves resulted in a significantly lower immersed insulation value compared to calm water. The minimum required thermal insulation for maintaining heat balance can be calculated for a given mean skin temperature, metabolic heat production, and water temperature. Combining the physiological limits of sustainable cold water immersion and actual suit insulation, correction factors can be deduced for harsh conditions compared to calm. The minimum in-situ suit insulation to maintain thermal balance is 1.553-0.0624·TW + 0.00018·TW(2) for a dry calm condition. Multiplicative correction factors to the above equation are 1.37, 1.25, and 1.72 for wind + waves, 500 mL suit wetness, and both combined, respectively. Calm water certification tests of suit insulation should meet or exceed the minimum in-situ requirements to maintain thermal balance, and correction factors should be applied for a more realistic determination of minimum insulation for harsh conditions. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  14. A study of coarse mesh collision probability correction factors in slab lattices

    International Nuclear Information System (INIS)

    Buckler, A.N.

    1975-07-01

    Calculations of collision probability leakage estimates are performed in one dimensional slab geometry with one neutron group to gain some insight into methods of correction for the coarseness of the mesh H. The chief result is that the correction factor, beta, can be written as CD/H where C → 4 for the diffusion limit. An explicit expression for C is derived in terms of the E 3 function, for a linear flux variation across the slabs. (author)

  15. Calculation and Analysis of Differential Corrections for BeiDou

    Science.gov (United States)

    Yang, Sainan; Chen, Junping; Zhang, Yize

    2015-04-01

    BeiDou Satellite Navigation System has been providing service forAsia-Pacific area. BeiDou uses observations of regional monitoring network to determine satellite orbit, which limits the satellite orbit accuracy. And the satellite clock error is produced by time synchronization system. The time synchronization delay of antenna device is general obtained through prior Calibration, and the residual calibration error is included in the satellite clock, which affects the prediction accuracy of satellite clock error. In this paper, we study the algorithms of Beidou differential corrections to improve the accuracy of satellite signals to improve the user positioning accuracy. In this algorithm, both pseudo-range and phase observations are used to calculate differential corrections. We process pseudo-range observations to obtain equivalent satellite clock error, which include satellite clock errors and orbit radial errors, as well as the average projection of orbit tangential and normal errors in combination. And the epoch-difference of phase observations are processed to eliminate the ambiguity which simplifies algorithms and ensure the relative accuracy (corrections variety between the epochs). Observations more than 10 stations in China are processed, and the equivalent clock error calculation results are analyzed, which shows that the satellite UDRE are significantly reduced and user location accuracy improves when the equivalent clock error corrections are applied. The residuals deducting equivalent satellite clock error contains the projection difference of satellite orbit error in all station (tangential and normal errors are main). We utilize the residuals to solve the tangential and normal orbit errors which cause the projection difference. The same observation data is processed. The results show that after calculating three-dimensional corrections, the satellite UDRE doesn't improve significantly compared to equivalent satellite clock error corrections and user

  16. Monte Carlo determination of the infinite matrix dose rate correction factors for 250 μm quartz and TLD500 chip

    International Nuclear Information System (INIS)

    Baly, L.; Martín, G.; Quesada, I.; Padilla, F.; Arteche, R.

    2015-01-01

    A new approach based on the Monte Carlo simulation is used to calculate the infinite matrix dose rate correction factors of gamma, beta and internal conversion radiations for 250 μm diameter grains of quartz and TLD500 chips. Here, the dependence of the correction factor on the radiation energy is initially calculated for each type of emitted particle and with this result the correction factors for the 232 Th and 238 U series and 40 K are determined. This analysis is made for dry soil and also for different levels of water content in it. The obtained beta correction factors for quartz are in good agreement with those previously reported. For the TLD500 chip certain differences with previously reported data are found. The analysis of the gamma water correction factor for quartz based on Zimmerman equation shows the correspondence with the similar correction factor for electrons. In the case of TLD500 chip a gamma water correction factor value of 1.0 was found. - Highlights: • A new approach based on Monte Carlo simulation is used to compute infinite matrix dose rate correction factors. • Infinite matrix models with real dimensions were analyzed within 3% uncertainties. • The dependence of grain size attenuation on particle energy is determined. • The same dependence for water correction factors is also analyzed

  17. Lattice calculation of electric dipole moments and form factors of the nucleon

    Science.gov (United States)

    Abramczyk, M.; Aoki, S.; Blum, T.; Izubuchi, T.; Ohki, H.; Syritsyn, S.

    2017-07-01

    We analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF) F3 and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor F2 due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the C P -violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for F3. Finally, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.

  18. 1/mQ corrections to form factors and extraction of |Vcb|

    International Nuclear Information System (INIS)

    Liu, J.; Chao, K.

    1997-01-01

    Form factors for 0 - →0 - and 0 - →1 - mesonic transitions in the heavy quark limit and the 1/m Q corrections are analyzed model independently within the Bethe-Salpeter (BS) formalism. The analysis shows that the BS formalism has spin-flavor symmetry in the heavy quark limit and respects Luke's theorem when the 1/m Q corrections are taken into account. All form factors for B→D (*) transitions beyond the zero recoil point are estimated in a relativistic constituent quark model based on the BS formalism. Using these form factors we calculate the branching ratios for the semileptonic decays B→D (*) l + ν l and extract the Cabibbo-Kobayashi-Maskawa matrix element |V cb |. We get |V cb |=0.042±0.003 which is consistent with the current world average. copyright 1997 The American Physical Society

  19. Recoil corrected bag model calculations for semileptonic weak decays

    International Nuclear Information System (INIS)

    Lie-Svendsen, Oe.; Hoegaasen, H.

    1987-02-01

    Recoil corrections to various model results for strangeness changing weak decay amplitudes have been developed. It is shown that the spurious reference frame dependence of earlier calculations is reduced. The second class currents are generally less important than obtained by calculations in the static approximation. Theoretical results are compared to observations. The agreement is quite good, although the values for the Cabibbo angle obtained by fits to the decay rates are somewhat to large

  20. The non-uniformity correction factor for the cylindrical ionization chambers in dosimetry of an HDR 192Ir brachytherapy source

    International Nuclear Information System (INIS)

    Majumdar, Bishnu; Patel, Narayan Prasad; Vijayan, V.

    2006-01-01

    The aim of this study is to derive the non-uniformity correction factor for the two therapy ionization chambers for the dose measurement near the brachytherapy source. The two ionization chambers of 0.6 cc and 0.1 cc volume were used. The measurement in air was performed for distances between 0.8 cm and 20 cm from the source in specially designed measurement jig. The non-uniformity correction factors were derived from the measured values. The experimentally derived factors were compared with the theoretically calculated non-uniformity correction factors and a close agreement was found between these two studies. The experimentally derived non-uniformity correction factor supports the anisotropic theory. (author)

  1. Consistent calculation of the polarization electric dipole moment by the shell-correction method

    International Nuclear Information System (INIS)

    Denisov, V.Yu.

    1992-01-01

    Macroscopic calculations of the polarization electric dipole moment which arises in nuclei with an octupole deformation are discussed in detail. This dipole moment is shown to depend on the position of the center of gravity. The conditions of consistency of the radii of the proton and neutron potentials and the radii of the proton and neutron surfaces, respectively, are discussed. These conditions must be incorporated in a shell-correction calculation of this dipole moment. A correct calculation of this moment by the shell-correction method is carried out. Dipole transitions between (on the one hand) levels belonging to an octupole vibrational band and (on the other) the ground state in rare-earth nuclei with a large quadrupole deformation are studied. 19 refs., 3 figs

  2. An analytical inductor design procedure for three-phase PWM converters in power factor correction applications

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Niroumand, Farideh Javidi; Haase, Frerk

    2015-01-01

    This paper presents an analytical method for designing the inductor of three-phase power factor correction converters (PFCs). The complex behavior of the inductor current complicates the inductor design procedure as well as the core loss and copper loss calculations. Therefore, this paper analyze...... to calculate the core loss in the PFC application. To investigate the impact of the dc link voltage level, two inductors for different dc voltage levels are designed and the results are compared.......This paper presents an analytical method for designing the inductor of three-phase power factor correction converters (PFCs). The complex behavior of the inductor current complicates the inductor design procedure as well as the core loss and copper loss calculations. Therefore, this paper analyzes...... circuit is used to provide the inductor current harmonic spectrum. Therefore, using the harmonic spectrum, the low and high frequency copper losses are calculated. The high frequency minor B-H loops in one switching cycle are also analyzed. Then, the loss map provided by the measurement setup is used...

  3. Quark number density and susceptibility calculation with one correction in mean field potential

    International Nuclear Information System (INIS)

    Singh, S. Somorendro

    2016-01-01

    We calculate quark number density and susceptibility of a model which has one loop correction in mean field potential. The calculation shows continuous increasing in the number density and susceptibility up to the temperature T = 0.4 GeV. Then the value of number density and susceptibility approach to the lattice result for higher value of temperature. The result indicates that the calculated values of the model fit well and the result increase the temperature to reach the lattice data with the one loop correction in the mean field potential. (author)

  4. Real-Gas Correction Factors for Hypersonic Flow Parameters in Helium

    Science.gov (United States)

    Erickson, Wayne D.

    1960-01-01

    The real-gas hypersonic flow parameters for helium have been calculated for stagnation temperatures from 0 F to 600 F and stagnation pressures up to 6,000 pounds per square inch absolute. The results of these calculations are presented in the form of simple correction factors which must be applied to the tabulated ideal-gas parameters. It has been shown that the deviations from the ideal-gas law which exist at high pressures may cause a corresponding significant error in the hypersonic flow parameters when calculated as an ideal gas. For example the ratio of the free-stream static to stagnation pressure as calculated from the thermodynamic properties of helium for a stagnation temperature of 80 F and pressure of 4,000 pounds per square inch absolute was found to be approximately 13 percent greater than that determined from the ideal-gas tabulation with a specific heat ratio of 5/3.

  5. Development of hybrid core calculation system using 2-D full-core heterogeneous transport calculation and 3-D advanced nodal calculation

    International Nuclear Information System (INIS)

    Sugimura, Naoki; Mori, Masaaki; Hijiya, Masayuki; Ushio, Tadashi; Arakawa, Yasushi

    2004-01-01

    This paper presents the Hybrid Core Calculation System which is a very rigorous but a practical calculation system applicable to best estimate core design calculations taking advantage of the recent remarkable progress of computers. The basic idea of this system is to generate the correction factors for assembly homogenized cross sections, discontinuity factors, etc. by comparing the CASMO-4 and SIMULATE-3 2-D core calculation results under the consistent calculation condition and then apply them for SIMULATE-3 3-D calculation. The CASMO-4 2-D heterogeneous core calculation is performed for each depletion step with the core conditions previously determined by ordinary SIMULATE-3 core calculation to avoid time consuming iterative calculations searching for the critical boron concentrations while treating the thermal hydraulic feedback. The final SIMULATE-3 3-D calculation using the correction factors is performed with iterative calculations searching for the critical boron concentrations while treating the thermal hydraulic feedback. (author)

  6. Monte Carlo study of thermal flux profiles and body correction factors for body protein measurements of obese subjects

    International Nuclear Information System (INIS)

    McGregor, B.J.; Allen, B.J.

    1991-01-01

    In previous calculations for total body nitrogen measurements of children, the anterior/posterior thermal neutron flux profile with depth was found to be fairly flat after an initial rise. However, for obese adults significant variations are found in the flux profile with the central flux value being as low as 20% of the peak value. The significance of these flux variations is examined. Correction factors are calculated for the varying attenuation of the nitrogen and hydrogen photons by a range of obese bodies. The calculations included the effect of the thermal flux profile as well as that of an outer layer of low nitrogen content adipose tissue. The bodies are assumed to have a homogeneous hydrogen content. A study of four obese body models with varying sex and fat content shows that the correction factors do not vary much between males and females. This is surprising since the female models are assumed to have a surface fat layer twice as thick as for the male models. The correction factors are found to be only slightly sensitive to the thermal flux variations with depth. 5 refs., 1 tab., 4 figs

  7. Determination of velocity correction factors for real-time air velocity monitoring in underground mines.

    Science.gov (United States)

    Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-12-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer ® . The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed.

  8. SU-C-304-07: Are Small Field Detector Correction Factors Strongly Dependent On Machine-Specific Characteristics?

    International Nuclear Information System (INIS)

    Mathew, D; Tanny, S; Parsai, E; Sperling, N

    2015-01-01

    Purpose: The current small field dosimetry formalism utilizes quality correction factors to compensate for the difference in detector response relative to dose deposited in water. The correction factors are defined on a machine-specific basis for each beam quality and detector combination. Some research has suggested that the correction factors may only be weakly dependent on machine-to-machine variations, allowing for determinations of class-specific correction factors for various accelerator models. This research examines the differences in small field correction factors for three detectors across two Varian Truebeam accelerators to determine the correction factor dependence on machine-specific characteristics. Methods: Output factors were measured on two Varian Truebeam accelerators for equivalently tuned 6 MV and 6 FFF beams. Measurements were obtained using a commercial plastic scintillation detector (PSD), two ion chambers, and a diode detector. Measurements were made at a depth of 10 cm with an SSD of 100 cm for jaw-defined field sizes ranging from 3×3 cm 2 to 0.6×0.6 cm 2 , normalized to values at 5×5cm 2 . Correction factors for each field on each machine were calculated as the ratio of the detector response to the PSD response. Percent change of correction factors for the chambers are presented relative to the primary machine. Results: The Exradin A26 demonstrates a difference of 9% for 6×6mm 2 fields in both the 6FFF and 6MV beams. The A16 chamber demonstrates a 5%, and 3% difference in 6FFF and 6MV fields at the same field size respectively. The Edge diode exhibits less than 1.5% difference across both evaluated energies. Field sizes larger than 1.4×1.4cm2 demonstrated less than 1% difference for all detectors. Conclusion: Preliminary results suggest that class-specific correction may not be appropriate for micro-ionization chamber. For diode systems, the correction factor was substantially similar and may be useful for class-specific reference

  9. SU-C-304-07: Are Small Field Detector Correction Factors Strongly Dependent On Machine-Specific Characteristics?

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, D; Tanny, S; Parsai, E; Sperling, N [University of Toledo Medical Center, Toledo, OH (United States)

    2015-06-15

    Purpose: The current small field dosimetry formalism utilizes quality correction factors to compensate for the difference in detector response relative to dose deposited in water. The correction factors are defined on a machine-specific basis for each beam quality and detector combination. Some research has suggested that the correction factors may only be weakly dependent on machine-to-machine variations, allowing for determinations of class-specific correction factors for various accelerator models. This research examines the differences in small field correction factors for three detectors across two Varian Truebeam accelerators to determine the correction factor dependence on machine-specific characteristics. Methods: Output factors were measured on two Varian Truebeam accelerators for equivalently tuned 6 MV and 6 FFF beams. Measurements were obtained using a commercial plastic scintillation detector (PSD), two ion chambers, and a diode detector. Measurements were made at a depth of 10 cm with an SSD of 100 cm for jaw-defined field sizes ranging from 3×3 cm{sup 2} to 0.6×0.6 cm{sup 2}, normalized to values at 5×5cm{sup 2}. Correction factors for each field on each machine were calculated as the ratio of the detector response to the PSD response. Percent change of correction factors for the chambers are presented relative to the primary machine. Results: The Exradin A26 demonstrates a difference of 9% for 6×6mm{sup 2} fields in both the 6FFF and 6MV beams. The A16 chamber demonstrates a 5%, and 3% difference in 6FFF and 6MV fields at the same field size respectively. The Edge diode exhibits less than 1.5% difference across both evaluated energies. Field sizes larger than 1.4×1.4cm2 demonstrated less than 1% difference for all detectors. Conclusion: Preliminary results suggest that class-specific correction may not be appropriate for micro-ionization chamber. For diode systems, the correction factor was substantially similar and may be useful for class

  10. MRI-Based Computed Tomography Metal Artifact Correction Method for Improving Proton Range Calculation Accuracy

    International Nuclear Information System (INIS)

    Park, Peter C.; Schreibmann, Eduard; Roper, Justin; Elder, Eric; Crocker, Ian; Fox, Tim; Zhu, X. Ronald; Dong, Lei; Dhabaan, Anees

    2015-01-01

    Purpose: Computed tomography (CT) artifacts can severely degrade dose calculation accuracy in proton therapy. Prompted by the recently increased popularity of magnetic resonance imaging (MRI) in the radiation therapy clinic, we developed an MRI-based CT artifact correction method for improving the accuracy of proton range calculations. Methods and Materials: The proposed method replaces corrupted CT data by mapping CT Hounsfield units (HU number) from a nearby artifact-free slice, using a coregistered MRI. MRI and CT volumetric images were registered with use of 3-dimensional (3D) deformable image registration (DIR). The registration was fine-tuned on a slice-by-slice basis by using 2D DIR. Based on the intensity of paired MRI pixel values and HU from an artifact-free slice, we performed a comprehensive analysis to predict the correct HU for the corrupted region. For a proof-of-concept validation, metal artifacts were simulated on a reference data set. Proton range was calculated using reference, artifactual, and corrected images to quantify the reduction in proton range error. The correction method was applied to 4 unique clinical cases. Results: The correction method resulted in substantial artifact reduction, both quantitatively and qualitatively. On respective simulated brain and head and neck CT images, the mean error was reduced from 495 and 370 HU to 108 and 92 HU after correction. Correspondingly, the absolute mean proton range errors of 2.4 cm and 1.7 cm were reduced to less than 2 mm in both cases. Conclusions: Our MRI-based CT artifact correction method can improve CT image quality and proton range calculation accuracy for patients with severe CT artifacts

  11. 49 CFR 325.73 - Microphone distance correction factors. 1

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Microphone distance correction factors. 1 325.73 Section 325.73 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR... MOTOR CARRIER NOISE EMISSION STANDARDS Correction Factors § 325.73 Microphone distance correction...

  12. A method for determining an effective porosity correction factor for thermal conductivity in fast reactor uranium-plutonium oxide fuel pellets

    International Nuclear Information System (INIS)

    Inoue, Masaki; Abe, Kazuyuki; Sato, Isamu

    2000-01-01

    A reliable method has been developed for determining an effective porosity correction factor for calculating a realistic thermal conductivity for fast reactor uranium-plutonium (mixed) oxide fuel pellets. By using image analysis of the ceramographs of transverse sections of mixed-oxide fuel pellets, the fuel morphology could be classified into two basic types. One is a 'two-phase' type that consists of small pores dispersed in the fuel matrix. The other is a 'three-phase' type that has large pores in addition to the small pores dispersed in the fuel matrix. The pore sizes are divided into two categories, large and small, at the 30 μm area equivalent diameter. These classifications lead to an equation for calculating an effective porosity correction factor by accounting for the small and large pore volume fractions and coefficients. This new analytical method for determining the effective porosity correction factor for calculating the realistic thermal conductivity of mixed-oxide fuel was also experimentally confirmed for high-, medium- and low-density fuel pellets

  13. Megavoltage photon beam attenuation by carbon fiber couch tops and its prediction using correction factors

    International Nuclear Information System (INIS)

    Hayashi, Naoki; Shibamoto, Yuta; Obata, Yasunori; Kimura, Takashi; Nakazawa, Hisato; Hagiwara, Masahiro; Hashizume, Chisa I.; Mori, Yoshimasa; Kobayashi, Tatsuya

    2010-01-01

    The purpose of this study was to evaluate the effect of megavoltage photon beam attenuation (PBA) by couch tops and to propose a method for correction of PBA. Four series of phantom measurements were carried out. First, PBA by the exact couch top (ECT, Varian) and Imaging Couch Top (ICT, BrainLAB) was evaluated using a water-equivalent phantom. Second, PBA by Type-S system (Med-Tec), ECT and ICT was compared with a spherical phantom. Third, percentage depth dose (PDD) after passing through ICT was measured to compare with control data of PDD. Forth, the gantry angle dependency of PBA by ICT was evaluated. Then, an equation for PBA correction was elaborated and correction factors for PBA at isocenter were obtained. Finally, this method was applied to a patient with hepatoma. PBA of perpendicular beams by ICT was 4.7% on average. With the increase in field size, the measured values became higher. PBA by ICT was greater than that by Type-S system and ECT. PBA increased significantly as the angle of incidence increased, ranging from 4.3% at 180 deg to 11.2% at 120 deg. Calculated doses obtained by the equation and correction factors agreed quite well with the measured doses between 120 deg and 180 deg of angles of incidence. Also in the patient, PBA by ICT was corrected quite well by the equation and correction factors. In conclusion, PBA and its gantry angle dependency by ICT were observed. This simple method using the equation and correction factors appeared useful to correct the isocenter dose when the PBA effect cannot be corrected by a treatment planning system. (author)

  14. Regression dilution bias: tools for correction methods and sample size calculation.

    Science.gov (United States)

    Berglund, Lars

    2012-08-01

    Random errors in measurement of a risk factor will introduce downward bias of an estimated association to a disease or a disease marker. This phenomenon is called regression dilution bias. A bias correction may be made with data from a validity study or a reliability study. In this article we give a non-technical description of designs of reliability studies with emphasis on selection of individuals for a repeated measurement, assumptions of measurement error models, and correction methods for the slope in a simple linear regression model where the dependent variable is a continuous variable. Also, we describe situations where correction for regression dilution bias is not appropriate. The methods are illustrated with the association between insulin sensitivity measured with the euglycaemic insulin clamp technique and fasting insulin, where measurement of the latter variable carries noticeable random error. We provide software tools for estimation of a corrected slope in a simple linear regression model assuming data for a continuous dependent variable and a continuous risk factor from a main study and an additional measurement of the risk factor in a reliability study. Also, we supply programs for estimation of the number of individuals needed in the reliability study and for choice of its design. Our conclusion is that correction for regression dilution bias is seldom applied in epidemiological studies. This may cause important effects of risk factors with large measurement errors to be neglected.

  15. Pencil kernel correction and residual error estimation for quality-index-based dose calculations

    International Nuclear Information System (INIS)

    Nyholm, Tufve; Olofsson, Joergen; Ahnesjoe, Anders; Georg, Dietmar; Karlsson, Mikael

    2006-01-01

    Experimental data from 593 photon beams were used to quantify the errors in dose calculations using a previously published pencil kernel model. A correction of the kernel was derived in order to remove the observed systematic errors. The remaining residual error for individual beams was modelled through uncertainty associated with the kernel model. The methods were tested against an independent set of measurements. No significant systematic error was observed in the calculations using the derived correction of the kernel and the remaining random errors were found to be adequately predicted by the proposed method

  16. Theoretical determination of gamma spectrometry systems efficiency based on probability functions. Application to self-attenuation correction factors

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Manuel, E-mail: manuel.barrera@uca.es [Escuela Superior de Ingeniería, University of Cadiz, Avda, Universidad de Cadiz 10, 11519 Puerto Real, Cadiz (Spain); Suarez-Llorens, Alfonso [Facultad de Ciencias, University of Cadiz, Avda, Rep. Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Casas-Ruiz, Melquiades; Alonso, José J.; Vidal, Juan [CEIMAR, University of Cadiz, Avda, Rep. Saharaui s/n, 11510 Puerto Real, Cádiz (Spain)

    2017-05-11

    A generic theoretical methodology for the calculation of the efficiency of gamma spectrometry systems is introduced in this work. The procedure is valid for any type of source and detector and can be applied to determine the full energy peak and the total efficiency of any source-detector system. The methodology is based on the idea of underlying probability of detection, which describes the physical model for the detection of the gamma radiation at the particular studied situation. This probability depends explicitly on the direction of the gamma radiation, allowing the use of this dependence the development of more realistic and complex models than the traditional models based on the point source integration. The probability function that has to be employed in practice must reproduce the relevant characteristics of the detection process occurring at the particular studied situation. Once the probability is defined, the efficiency calculations can be performed in general by using numerical methods. Monte Carlo integration procedure is especially useful to perform the calculations when complex probability functions are used. The methodology can be used for the direct determination of the efficiency and also for the calculation of corrections that require this determination of the efficiency, as it is the case of coincidence summing, geometric or self-attenuation corrections. In particular, we have applied the procedure to obtain some of the classical self-attenuation correction factors usually employed to correct for the sample attenuation of cylindrical geometry sources. The methodology clarifies the theoretical basis and approximations associated to each factor, by making explicit the probability which is generally hidden and implicit to each model. It has been shown that most of these self-attenuation correction factors can be derived by using a common underlying probability, having this probability a growing level of complexity as it reproduces more precisely

  17. Analytic representation of the backscatter correction factor at the exit of high energy photon beams

    International Nuclear Information System (INIS)

    Kappas, K.; Rosenwald, J.C.

    1991-01-01

    In high-energy X-ray beams, the dose calculated near the exit surface under electronic equilibrium conditions is generally over-estimated since it is derived from measurements performed in water with large thickness of backscattering material. The resulting error depends on a number of parameters such as beam energy, field dimension, thickness of overlying and underlying material. The authors have systematically measured for 4 different energies and for different para- meters and for different combinations of the above parameters, the reduction of dose due to backscatter. This correction is expressed as a multiplicative factor, called 'Backscatter Correction Factor' (BCF). This BCF is larger for lower energies, larger field sizes and larger depths. The BCF has been represented by an analytical expression which involves an exponential function of the backscattering thickness and linear relationships with depth field size and beam quality index. Using this expression, the BCF can be calculated within 0.5% for any conditions in the energy range investigated. (author). 14 refs.; 4 figs.; 3 tabs

  18. Photon energy-fluence correction factor in low energy brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Yoriyaz, Hélio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo, E-mail: pacrisguian@gmail.com [Department of Atomic, Molecular, and Nuclear Physics and Instituto de Física Corpuscular (UV-CSIC), University of Valencia (Spain)

    2017-07-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D{sub tis}) and dose-to-water (D{sub w}). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the {sup 125}I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  19. Photon energy-fluence correction factor in low energy brachytherapy

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Yoriyaz, Hélio; Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D tis ) and dose-to-water (D w ). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the 125 I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  20. Resistivity Correction Factor for the Four-Probe Method: Experiment II

    Science.gov (United States)

    Yamashita, Masato; Yamaguchi, Shoji; Nishii, Toshifumi; Kurihara, Hiroshi; Enjoji, Hideo

    1989-05-01

    Experimental verification of the theoretically derived resistivity correction factor F is presented. Factor F can be applied to a system consisting of a disk sample and a four-probe array. Measurements are made on isotropic graphite disks and crystalline ITO films. Factor F can correct the apparent variations of the data and lead to reasonable resistivities and sheet resistances. Here factor F is compared to other correction factors; i.e. FASTM and FJIS.

  1. Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations.

    Science.gov (United States)

    Palmans, H; Al-Sulaiti, L; Andreo, P; Shipley, D; Lühr, A; Bassler, N; Martinkovič, J; Dobrovodský, J; Rossomme, S; Thomas, R A S; Kacperek, A

    2013-05-21

    The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, kfl, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose-to-graphite in a graphite phantom to dose-to-water in a water phantom for 60 MeV mono-energetic protons were calculated using an analytical model and five different Monte Carlo codes (Geant4, FLUKA, MCNPX, SHIELD-HIT and McPTRAN.MEDIA). In general the fluence correction factors are found to be close to unity and the analytical and Monte Carlo codes give consistent values when considering the differences in secondary particle transport. When considering only protons the fluence correction factors are unity at the surface and increase with depth by 0.5% to 1.5% depending on the code. When the fluence of all charged particles is considered, the fluence correction factor is about 0.5% lower than unity at shallow depths predominantly due to the contributions from alpha particles and increases to values above unity near the Bragg peak. Fluence correction factors directly derived from the fluence distributions differential in energy at equivalent depths in water and graphite can be described by kfl = 0.9964 + 0.0024·zw-eq with a relative standard uncertainty of 0.2%. Fluence correction factors derived from a ratio of calculated doses at equivalent depths in water and graphite can be described by kfl = 0.9947 + 0.0024·zw-eq with a relative standard uncertainty of 0.3%. These results are of direct relevance to graphite calorimetry in low-energy protons but given that the fluence

  2. SU-F-T-23: Correspondence Factor Correction Coefficient for Commissioning of Leipzig and Valencia Applicators with the Standard Imaging IVB 1000

    International Nuclear Information System (INIS)

    Donaghue, J; Gajdos, S

    2016-01-01

    Purpose: To determine the correction factor of the correspondence factor for the Standard Imaging IVB 1000 well chamber for commissioning of Elekta’s Leipzig and Valencia skin applicators. Methods: The Leipzig and Valencia applicators are designed to treat small skin lesions by collimating irradiation to the treatment area. Published output factors are used to calculate dose rates for clinical treatments. To validate onsite applicators, a correspondence factor (CFrev) is measured and compared to published values. The published CFrev is based on well chamber model SI HDR 1000 Plus. The CFrev is determined by correlating raw values of the source calibration setup (Rcal,raw) and values taken when each applicator is mounted on the same well chamber with an adapter (Rapp,raw). The CFrev is calculated by using the equation CFrev =Rapp,raw/Rcal,raw. The CFrev was measured for each applicator in both the SI HDR 1000 Plus and the SI IVB 1000. A correction factor, CFIVB for the SI IVB 1000 was determined by finding the ratio of CFrev (SI IVB 1000) and CFrev (SI HDR 1000 Plus). Results: The average correction factors at dwell position 1121 were found to be 1.073, 1.039, 1.209, 1.091, and 1.058 for the Valencia V2, Valencia V3, Leipzig H1, Leipzig H2, and Leipzig H3 respectively. There were no significant variations in the correction factor for dwell positions 1119 through 1121. Conclusion: By using the appropriate correction factor, the correspondence factors for the Leipzig and Valencia surface applicators can be validated with the Standard Imaging IVB 1000. This allows users to correlate their measurements with the Standard Imaging IVB 1000 to the published data. The correction factor is included in the equation for the CFrev as follows: CFrev= Rapp,raw/(CFIVB*Rcal,raw). Each individual applicator has its own correction factor, so care must be taken that the appropriate factor is used.

  3. Integral transport multiregion geometrical shadowing factor for the approximate collision probability matrix calculation of infinite closely packed lattices

    International Nuclear Information System (INIS)

    Jowzani-Moghaddam, A.

    1981-01-01

    An integral transport method of calculating the geometrical shadowing factor in multiregion annular cells for infinite closely packed lattices in cylindrical geometry is developed. This analytical method has been programmed in the TPGS code. This method is based upon a consideration of the properties of the integral transport method for a nonuniform body, which together with Bonalumi's approximations allows the determination of the approximate multiregion collision probability matrix for infinite closely packed lattices with sufficient accuracy. The multiregion geometrical shadowing factors have been calculated for variations in fuel pin annular segment rings in a geometry of annular cells. These shadowing factors can then be used in the calculation of neutron transport from one annulus to another in an infinite lattice. The result of this new geometrical shadowing and collision probability matrix are compared with the Dancoff-Ginsburg correction and the probability matrix using constant shadowing on Yankee fuel elements in an infinite lattice. In these cases the Dancoff-Ginsburg correction factor and collision probability matrix using constant shadowing are in difference by at most 6.2% and 6%, respectively

  4. Improved SVR Model for Multi-Layer Buildup Factor Calculation

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2006-01-01

    The accuracy of point kernel method applied in gamma ray dose rate calculations in shielding design and radiation safety analysis is limited by the accuracy of buildup factors used in calculations. Although buildup factors for single-layer shields are well defined and understood, buildup factors for stratified shields represent a complex physical problem that is hard to express in mathematical terms. The traditional approach for expressing buildup factors of multi-layer shields is through semi-empirical formulas obtained by fitting the results of transport theory or Monte Carlo calculations. Such an approach requires an ad-hoc definition of the fitting function and often results with numerous and usually inadequately explained and defined correction factors added to the final empirical formula. Even more, finally obtained formulas are generally limited to a small number of predefined combinations of materials within relatively small range of gamma ray energies and shield thicknesses. Recently, a new approach has been suggested by the authors involving one of machine learning techniques called Support Vector Machines, i.e., Support Vector Regression (SVR). Preliminary investigations performed for double-layer shields revealed great potential of the method, but also pointed out some drawbacks of the developed model, mostly related to the selection of one of the parameters describing the problem (material atomic number), and the method in which the model was designed to evolve during the learning process. It is the aim of this paper to introduce a new parameter (single material buildup factor) that is to replace the existing material atomic number as an input parameter. The comparison of two models generated by different input parameters has been performed. The second goal is to improve the evolution process of learning, i.e., the experimental computational procedure that provides a framework for automated construction of complex regression models of predefined

  5. Current s - quark mass corrections to the form factors of D - meson semileptonic decays

    International Nuclear Information System (INIS)

    Hussain, F.; Ivanov, A.N.; Troitskaya, N.I.

    1994-11-01

    The infinite mass effective theory, when a heavy quark mass tends to infinity, and Chiral perturbation theory at the quark level, based on the extended Nambu - Jona - Lasinio model with linear realization of chiral U(3) x U(3) symmetry, are applied to the calculations of current s - quark mass corrections to the form factors of the D → K-bar e + ν e and D → K-bar * e + ν e decays. These corrections turn out to be quite significant, of the order of 7 - 20%. The theoretical results are compared with experimental data. (author). 17 refs

  6. QED radiative corrections to impact factors

    International Nuclear Information System (INIS)

    Kuraev, E.A.; Lipatov, L.N.; Shishkina, T.V.

    2001-01-01

    We consider radiative corrections to the electron and photon impact factors. The generalized eikonal representation for the e + e - scattering amplitude at high energies and fixed momentum transfers is violated by nonplanar diagrams. An additional contribution to the two-loop approximation appears from the Bethe-Heitler mechanism of fermion pair production with the identity of the fermions in the final state taken into account. The violation of the generalized eikonal representation is also related to the charge parity conservation in QED. A one-loop correction to the photon impact factor for small virtualities of the exchanged photon is obtained using the known results for the cross section of the e + e - production during photon-nuclei interactions

  7. Determination of dose correction factor for energy and directional dependence of the MOSFET dosimeter in an anthropomorphic phantom

    International Nuclear Information System (INIS)

    Cho, Sung Koo; Choi, Sang Hyoun; Kim, Chan Hyeong; Na, Seong Ho

    2006-01-01

    In recent years, the MOSFET dosimeter has been widely used in various medical applications such as dose verification in radiation therapeutic and diagnostic applications. The MOSFET dosimeter is, however, mainly made of silicon and shows some energy dependence for low energy photons. Therefore, the MOSFET dosimeter tends to overestimate the dose for low energy scattered photons in a phantom. This study determines the correction factors to compensate these dependences of the MOSFET dosimeter in ATOM phantom. For this, we first constructed a computational model of the ATOM phantom based on the 3D CT image data of the phantom. The voxel phantom was then implemented in a Monte Carlo simulation code and used to calculate the energy spectrum of the photon field at each of the MOSFET dosimeter locations in the phantom. Finally, the correction factors were calculated based on the energy spectrum of the photon field at the dosimeter locations and the pre-determined energy and directional dependence of the MOSFET dosimeter. Our result for 60 Co and 137 Cs photon fields shows that the correction factors are distributed within the range of 0.89 and 0.97 considering all the MOSFET dosimeter locations in the phantom

  8. The calculation and experiment verification of geometry factors of disk sources and detectors

    International Nuclear Information System (INIS)

    Shi Zhixia; Minowa, Y.

    1993-01-01

    In alpha counting the efficiency of counting system is most frequently determined from the counter response to a calibrated source. Whenever this procedure is used, however, question invariably arise as to the integrity of the standard source, or indeed the validity of the primary calibration. As a check, therefore, it is often helped to be able to calculate the disintegration rate from counting rate data. The conclusion are: 1. If the source is thin enough the error E is generally less than 5%. It is acceptable in routine measurement. When the standard source lacks for experiment we can use the geometry factor calculated instead of measured efficiency. 2. The geometry factor calculated can be used to correct the counter system, study the effect of each parameters and identify those parameters needing careful control. 3. The method of overlapping area of the source and the projection of the detector is very believable, simple and convenient for calculating geometry. (5 tabs.)

  9. Determination of epithermal flux correction factor (α) for irradiation ...

    African Journals Online (AJOL)

    Due to resonance that occur in the epithermal energy region of a reactor, the flux spectra in that region deviates strongly from the ideal I/E law to a I/E1+α with alpha as the correction factor. The factor has to be determined if zirconium as monitor pairs to determine the correction factor for inner irradiation channel 5 and outer ...

  10. Monte Carlo calculations of kQ, the beam quality conversion factor

    International Nuclear Information System (INIS)

    Muir, B. R.; Rogers, D. W. O.

    2010-01-01

    Purpose: To use EGSnrc Monte Carlo simulations to directly calculate beam quality conversion factors, k Q , for 32 cylindrical ionization chambers over a range of beam qualities and to quantify the effect of systematic uncertainties on Monte Carlo calculations of k Q . These factors are required to use the TG-51 or TRS-398 clinical dosimetry protocols for calibrating external radiotherapy beams. Methods: Ionization chambers are modeled either from blueprints or manufacturers' user's manuals. The dose-to-air in the chamber is calculated using the EGSnrc user-code egs c hamber using 11 different tabulated clinical photon spectra for the incident beams. The dose to a small volume of water is also calculated in the absence of the chamber at the midpoint of the chamber on its central axis. Using a simple equation, k Q is calculated from these quantities under the assumption that W/e is constant with energy and compared to TG-51 protocol and measured values. Results: Polynomial fits to the Monte Carlo calculated k Q factors as a function of beam quality expressed as %dd(10) x and TPR 10 20 are given for each ionization chamber. Differences are explained between Monte Carlo calculated values and values from the TG-51 protocol or calculated using the computer program used for TG-51 calculations. Systematic uncertainties in calculated k Q values are analyzed and amount to a maximum of one standard deviation uncertainty of 0.99% if one assumes that photon cross-section uncertainties are uncorrelated and 0.63% if they are assumed correlated. The largest components of the uncertainty are the constancy of W/e and the uncertainty in the cross-section for photons in water. Conclusions: It is now possible to calculate k Q directly using Monte Carlo simulations. Monte Carlo calculations for most ionization chambers give results which are comparable to TG-51 values. Discrepancies can be explained using individual Monte Carlo calculations of various correction factors which are more

  11. Self-interaction corrected local spin density calculations of actinides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z

    2010-01-01

    We use the self-interaction corrected local spin-density approximation in order to describe localization-delocalization phenomena in the strongly correlated actinide materials. Based on total energy considerations, the methodology enables us to predict the ground-state valency configuration...... of the actinide ions in these compounds from first principles. Here we review a number of applications, ranging from electronic structure calculations of actinide metals, nitrides and carbides to the behaviour under pressure of intermetallics, and O vacancies in PuO2....

  12. Hydrophone area-averaging correction factors in nonlinearly generated ultrasonic beams

    International Nuclear Information System (INIS)

    Cooling, M P; Humphrey, V F; Wilkens, V

    2011-01-01

    The nonlinear propagation of an ultrasonic wave can be used to produce a wavefield rich in higher frequency components that is ideally suited to the calibration, or inter-calibration, of hydrophones. These techniques usually use a tone-burst signal, limiting the measurements to harmonics of the fundamental calibration frequency. Alternatively, using a short pulse enables calibration at a continuous spectrum of frequencies. Such a technique is used at PTB in conjunction with an optical measurement technique to calibrate devices. Experimental findings indicate that the area-averaging correction factor for a hydrophone in such a field demonstrates a complex behaviour, most notably varying periodically between frequencies that are harmonics of the centre frequency of the original pulse and frequencies that lie midway between these harmonics. The beam characteristics of such nonlinearly generated fields have been investigated using a finite difference solution to the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a focused field. The simulation results are used to calculate the hydrophone area-averaging correction factors for 0.2 mm and 0.5 mm devices. The results clearly demonstrate a number of significant features observed in the experimental investigations, including the variation with frequency, drive level and hydrophone element size. An explanation for these effects is also proposed.

  13. Hydrophone area-averaging correction factors in nonlinearly generated ultrasonic beams

    Science.gov (United States)

    Cooling, M. P.; Humphrey, V. F.; Wilkens, V.

    2011-02-01

    The nonlinear propagation of an ultrasonic wave can be used to produce a wavefield rich in higher frequency components that is ideally suited to the calibration, or inter-calibration, of hydrophones. These techniques usually use a tone-burst signal, limiting the measurements to harmonics of the fundamental calibration frequency. Alternatively, using a short pulse enables calibration at a continuous spectrum of frequencies. Such a technique is used at PTB in conjunction with an optical measurement technique to calibrate devices. Experimental findings indicate that the area-averaging correction factor for a hydrophone in such a field demonstrates a complex behaviour, most notably varying periodically between frequencies that are harmonics of the centre frequency of the original pulse and frequencies that lie midway between these harmonics. The beam characteristics of such nonlinearly generated fields have been investigated using a finite difference solution to the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a focused field. The simulation results are used to calculate the hydrophone area-averaging correction factors for 0.2 mm and 0.5 mm devices. The results clearly demonstrate a number of significant features observed in the experimental investigations, including the variation with frequency, drive level and hydrophone element size. An explanation for these effects is also proposed.

  14. Monte Carlo study of correction factors for the use of plastic phantoms in clinical electron dosimetry

    International Nuclear Information System (INIS)

    Araki, Fujio

    2007-01-01

    In some recent dosimetry protocols, plastic is allowed as a phantom material for the determination of an absorbed dose to water in electron beams, especially for low energy with beam qualities R 50 2 . In electron dosimetry with plastic, a depth-scaling factor, c pl , and a chamber-dependent fluence correction factor, h pl , are needed to convert the dose measured at a water-equivalent reference depth in plastic to a dose at a reference depth in water. The purpose of this study is to calculate correction factors for the use of plastic phantoms for clinical electron dosimetry using the EGSnrc Monte Carlo code system. RMI-457 and WE-211 were investigated as phantom materials. First the c pl values for plastic materials were calculated as a function of a half-value depth of maximum ionization, I 50 , in plastic. The c pl values for RMI-457 and WE-211 varied from 0.992 to 1.002 and from 0.971 to 0.979, respectively, in a range of nominal energies from 4 MeV to 18 MeV, and varied slightly as a function of I 50 in plastic. Since h pl values depend on the wall correction factor, P wall , of the chamber used, they are evaluated using a pure electron fluence correction factor, φ pl w , and P wall w and P wall pl for a combination of water or plastic phantoms and plane-parallel ionization chambers (NACP-02, Markus and Roos). The φ pl w and P wall (P wall w and P wall pl ) values were calculated as a function of the water-equivalent depth in plastic materials and at a reference depth as a function of R 50 in water, respectively. The φ pl w values varied from 1.024 at 4 MeV to 1.013 at 18 MeV for RMI-457, and from 1.025 to 1.016 for WE-211. P wall w values for plane-parallel chambers showed values in the order of 1.5% to 2% larger than unity at 4 MeV, consistent with earlier results. The P wall pl values of RMI-457 and WE-211 were close to unity for all the energy beams. Finally, calculated h pl values of RMI-457 ranged from 1.009 to 1.005, from 1.010 to 1.003 and from 1

  15. Automatic calculation of supersymmetric renormalization group equations and loop corrections

    Science.gov (United States)

    Staub, Florian

    2011-03-01

    SARAH is a Mathematica package for studying supersymmetric models. It calculates for a given model the masses, tadpole equations and all vertices at tree-level. This information can be used by SARAH to write model files for CalcHep/ CompHep or FeynArts/ FormCalc. In addition, the second version of SARAH can derive the renormalization group equations for the gauge couplings, parameters of the superpotential and soft-breaking parameters at one- and two-loop level. Furthermore, it calculates the one-loop self-energies and the one-loop corrections to the tadpoles. SARAH can handle all N=1 SUSY models whose gauge sector is a direct product of SU(N) and U(1) gauge groups. The particle content of the model can be an arbitrary number of chiral superfields transforming as any irreducible representation with respect to the gauge groups. To implement a new model, the user has just to define the gauge sector, the particle, the superpotential and the field rotations to mass eigenstates. Program summaryProgram title: SARAH Catalogue identifier: AEIB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 97 577 No. of bytes in distributed program, including test data, etc.: 2 009 769 Distribution format: tar.gz Programming language: Mathematica Computer: All systems that Mathematica is available for Operating system: All systems that Mathematica is available for Classification: 11.1, 11.6 Nature of problem: A supersymmetric model is usually characterized by the particle content, the gauge sector and the superpotential. It is a time consuming process to obtain all necessary information for phenomenological studies from these basic ingredients. Solution method: SARAH calculates the complete Lagrangian for a given model whose

  16. A transient, Hex-Z nodal code corrected by discontinuity factors

    International Nuclear Information System (INIS)

    Shatilla, Y.A.M.; Henry, A.F.

    1993-01-01

    This document constitutes Volume 1 of the Final Report of a three-year study supported by the special Research Grant Program for Nuclear Energy Research set up by the US Department of Energy. The original motivation for the work was to provide a fast and accurate computer program for the analysis of transients in heavy water or graphite-moderated reactors being considered as candidates for the New Production Reactor. Thus, part of the funding was by way of pass-through money from the Savannah River Laboratory. With this intent in mind, a three-dimensional (Hex-Z), general-energy-group transient, nodal code was created, programmed, and tested. In order to improve accuracy, correction terms, called open-quotes discontinuity factors,close quotes were incorporated into the nodal equations. Ideal values of these factors force the nodal equations to provide node-integrated reaction rates and leakage rates across nodal surfaces that match exactly those edited from a more exact reference calculation. Since the exact reference solution is needed to compute the ideal discontinuity factors, the fact that they result in exact nodal equations would be of little practical interest were it not that approximate discontinuity factors, found at a greatly reduced cost, often yield very accurate results. For example, for light-water reactors, discontinuity factors found from two-dimensional, fine-mesh, multigroup transport solutions for two-dimensional cuts of a fuel assembly provide very accurate predictions of three-dimensional, full-core power distributions. The present document (volume 1) deals primarily with the specification, programming and testing of the three-dimensional, Hex-Z computer program. The program solves both the static (eigenvalue) and transient, general-energy-group, nodal equations corrected by user-supplied discontinuity factors

  17. Calculation of higher order radiation corrections to beta decay of hyperons in the Glashow-Weinberg-Salam theory

    International Nuclear Information System (INIS)

    Margaritisz, Tanaszisz

    1984-01-01

    The Glashow-Weinberg-Salam theory of unified electromagnetic and weak interactions, believed to be the correct quantum theory of these interactions, possesses the great advantage of being renormable. Thus the perturbation theory is applicable to calculate the radiative corrections of the tree-graph results. The present paper describes the detailed calculation of one-loop corrections to beta decay of hyperons. After defining the theory and fixing the gauge and renormalization conventions, the equations of weak and electromagnetic one-loop corrections are derived. Numerical evaluation of the equations was helped by algebraic and integrator computer codes. The results are directly comparable to experimental data. (D.Gy.)

  18. Investigating power factor compensation capacity calculation in medium sized industry

    International Nuclear Information System (INIS)

    Chudhry, M.A.; Hanif, A.

    2008-01-01

    There are a variety of techniques developed in order to improve the efficiency of electrical systems and reduce cost of providing electricity to the consumer. This paper presents a new technique for power-factor capacity calculation in medium-sized industrial/ commercial setups. Various loads of similar nominal power-factor are categorized and demand-factor of loads is so selected that it has engineering justifications. The developed system works on the principle of low-voltage power-factor correction, which substantially reduces electricity bill and increases loading-capacity of the electrical system. It allows commercial and industrial consumers to save on their power cost appreciably. This work utilizes software, which takes few inputs and produces numerous useful results. Adoption of this system can help the user in computing compensation-capacity, system KVA (size of transformer) and cost of compensation. A feature of this system is prediction of low PF penalty. Moreover, it also suggests the tentative payback period. (author)

  19. Determination of corrective factors for an ultrasonic flow measuring method in pipes accounting for perturbations

    International Nuclear Information System (INIS)

    Etter, S.

    1982-01-01

    By current ultrasonic flow measuring equipment (UFME) the mean velocity is measured for one or two measuring paths. This mean velocity is not equal to the velocity averaged over the flow cross-section, by means of which the flow rate is calculated. This difference will be found already for axially symmetrical, fully developed velocity profiles and, to a larger extent, for disturbed profiles varying in flow direction and for nonsteady flow. Corrective factors are defined for steady and nonsteady flows. These factors can be derived from the flow profiles within the UFME. By mathematical simulation of the entrainment effect the influence of cross and swirl flows on various ultrasonic measuring methods is studied. The applied UFME with crossed measuring paths is shown to be largely independent of cross and swirl flows. For evaluation in a computer of velocity network measurements in circular cross-sections the equations for interpolation and integration are derived. Results of the mathematical method are the isotach profile, the flow rate and, for fully developed flow, directly the corrective factor. In the experimental part corrective factors are determined in nonsteady flow in a measuring plane before and in form measuring planes behind a perturbation. (orig./RW) [de

  20. Theoretical foundations of the correction factors for the analysis of the relative variations of 13C/12C and 18O/16O ratios, by mass spectrometry

    International Nuclear Information System (INIS)

    Ducatti, C.; Salati, E.

    1982-01-01

    A review is made of analytical procedures to calculate correction factors, proposed by CRAIG (1957) to determine isotopic enrichment relating to the international PBD standard sample, obtained from analysis of carbon dioxide gas samples by mass spectrometry. Using such correction factors, the isotopic composition of the secondary CENA-standard sample is characterized through calculation of the main isotopic ratios of this sample. It is then possible to obtain correction factors for the determination of the isotopic enrichment relating to the secondary CENA-standard sample itself. New correction factors are proposed taking into account the interference of various isotopic species and the variability in sample and secondary standard preparation, that make possible the detemination of carbon-13 and oxygen-18 isotopic enrichment relating to the international PBD standard sample, with a total analytical error σ = + - 0.2 0 /00 in normal routine work. (Author) [pt

  1. Monte-Carlo calculation of the calibration factors for the interfacial area concentration and the velocity of the bubbles for double sensor conductivity probe

    International Nuclear Information System (INIS)

    Munoz-Cobo, J.L.; Pena, J.; Chiva, S.; Mendez, S.

    2007-01-01

    This paper presents a study of the estimation of the correction factors for the interfacial area concentration and the bubble velocity in two phase flow measurements using the double sensor conductivity probe. Monte-Carlo calculations of these correction factors have been performed for different values of the relative distance (ΔS/D) between the tips of the conductivity probe and different values of the relative bubble velocity fluctuation parameter. Also this paper presents the Monte-Carlo calculation of the expected value of the calibration factors for bubbly flow assuming a log-normal distribution of the bubble sizes. We have computed the variation of the expected values of the calibration factors with the relative distance (ΔS/D) between the tips and the velocity fluctuation parameter. Finally, we have performed a sensitivity study of the variation of the average values of the calibration factors for bubbly flow with the geometrical standard deviation of the log-normal distribution of bubble sizes. The results of these calculations show that the total interfacial area correction factor is very close to 2, and depends very weakly on the velocity fluctuation, and the relative distance between tips. For the velocity calibration factor, the Monte-Carlo results show that for moderate values of the relative bubble velocity fluctuation parameter (H max ≤ 0.3) and values of the relative distance between tips not too small (ΔS/D ≥ 0.2), the correction velocity factor for the bubble sensor conductivity probe is close to unity, ranging from 0.96 to 1

  2. Correction Factor Analysis Of Foil Activation And The Effect Of Neglecting The Correction On Neutron Flux And Spectrum Measurement; ANALISIS FAKTOR KOREKSI KEPING AKTIVASI DAN PENGARUH PENGABAIANNYA PADA PENGUKURAN FLUKS DAN SPEKTRUM NEUTRON

    Energy Technology Data Exchange (ETDEWEB)

    Radiyanti, Ita Budi; Hamzah, Amir; Pinem, Surian [Multipurpose Reactor Centre Indonesia, Serpong, (Indonesia)

    1996-04-15

    Foil activation method is commonly used in flux and neutron spectrum measurement in nuclear reactor and other research. The effect of the thickness, type of foil material and neutron spectrum shape on the self shielding correction and activities correction on the edges of the foil have been analyzed. Also the effect of neglecting those correction factors on neutron flux and spectrum measurement were analyzed. The calculation of the correction factor has been done by using the program which had been verified for several foils. The foils used are Au, In. Cu, Co and Dy of 0.00254 cm -0.127 cm thickness and 1.27 cm diameter. The result showed that the correction factor foils were not similar due to the variation of activation cross section and neutron spectrum shape. For the neutron spectrum in RS-2 multi purpose reactor GAS using foils of 0.00254 cm thick. The effect of neglecting correction factor on thermal flux measurement for Au, In, Co and Cu were less than -6%, for Dy was about -25%. On epithermal flux measurement for Au and In were about -60%, Co and Dy was -12% and -6%, for Cu less than -2%. The effect of neglecting correction factor on spectrum measurement was the change on the neutron flux density values along neutron energy region.

  3. Radiative corrections in supersymmetry and application to relic density calculation beyond leading order

    International Nuclear Information System (INIS)

    Chalons, G.

    2010-07-01

    This thesis focuses on the evaluation of supersymmetric radiative corrections for processes involved in the calculation of the relic density of dark matter, in the MSSM (Minimal Supersymmetric Standard Model) and the standard cosmological scenario, as well as the impact of the choice renormalisation scheme in the neutralino/chargino sector based on the measure of three physical masses. This study has been carried out with the help of an automatic program dedicated the the computation of physical observables at one-loop in the MSSM, called SloopS. For the relic density calculation we investigated scenarios where the most studied dark matter candidate, the neutralino, annihilates into gauge boson pair. We covered cases where its mass was of the order of hundreds of GeV to 2 TeV. The full set of electroweak and strong corrections has been taken into account, involved in sub-leading channels with quarks. In the case of very heavy neutralinos, two important effects were outlined: the Sommerfeld enhancement due to massive gauge bosons and maybe even more important some corrections of Sudakov type. (authors)

  4. New equations to calculate temperature correction factors for PO2 in human blood.

    Science.gov (United States)

    Inaba, H; Ohwada, T; Sato, J; Mizuguchi, T; Hirasawa, H

    1986-01-01

    Effects of hemoglobin concentration (Hb), pH, and body temperature (T) on the relationships between delta log PO2/delta T and PO2 were studied by means of a mathematical model using a Newton-Raphson iteration method. The functions between delta log PO2/delta T and PO2 were affected by the above three factors. New equations considering the effects of Hb, pH, and T were proposed by modifying the equation reported by Severinghaus: delta log PO2/delta T = (L +(U-L)/(A(vPO237)B + 1))(10(-2) where U = 3.15-0.45(7.4-pH37) L = 0.68-0.09(7.4-pH37) A = 5.86(exp10(0.074(T)-0.294(7.4-pH37)-11))((Hb)0.913) B = 6.33(exp10(-0.0051(T)))((Hb)-0.113) + 0.24(7.4-pH37) and vPO237 is virtual PO237 which may exist when PO237 is corrected to standard conditions (pH = 7.4, BE = 0) by the following equations: vPO237 = PO237(exp10(fB(7.4-pH37)-0.0013(BE))) fB = (PO237/26.6)0.08-1.52 where fB is the Bohr factor. The above equations provided values of delta log PO2/delta T which fit closely to those obtained by the complex iteration method with maximum differences of less than 1.3 X 10(-3) at T = 27, indicating that maximum % errors for PO2 at T (PO2T) are less than 3.0% at T = 27 and that our equations can be applied over a wide range of Hb, pH37 and T.

  5. Dispersion-corrected first-principles calculation of terahertz vibration, and evidence for weak hydrogen bond formation

    Science.gov (United States)

    Takahashi, Masae; Ishikawa, Yoichi; Ito, Hiromasa

    2013-03-01

    A weak hydrogen bond (WHB) such as CH-O is very important for the structure, function, and dynamics in a chemical and biological system WHB stretching vibration is in a terahertz (THz) frequency region Very recently, the reasonable performance of dispersion-corrected first-principles to WHB has been proven. In this lecture, we report dispersion-corrected first-principles calculation of the vibrational absorption of some organic crystals, and low-temperature THz spectral measurement, in order to clarify WHB stretching vibration. The THz frequency calculation of a WHB crystal has extremely improved by dispersion correction. Moreover, the discrepancy in frequency between an experiment and calculation and is 10 1/cm or less. Dispersion correction is especially effective for intermolecular mode. The very sharp peak appearing at 4 K is assigned to the intermolecular translational mode that corresponds to WHB stretching vibration. It is difficult to detect and control the WHB formation in a crystal because the binding energy is very small. With the help of the latest intense development of experimental and theoretical technique and its careful use, we reveal solid-state WHB stretching vibration as evidence for the WHB formation that differs in respective WHB networks The research was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant No. 22550003).

  6. SU-E-T-464: On the Equivalence of the Quality Correction Factor for Pencil Beam Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Sorriaux, J; Paganetti, H; Testa, M; Giantsoudi, D; Schuemann, J; Bertrand, D; Orban de Xivry, J.; Lee, J; Palmans, H; Vynckier, S; Sterpin, E

    2014-01-01

    Purpose: In current practice, most proton therapy centers apply IAEA TRS-398 reference dosimetry protocol. Quality correction factors (kQ) take into account in the dose determination process the differences in beam qualities used for calibration unit and for treatment unit. These quality correction factors are valid for specific reference conditions. TRS-398 reference conditions should be achievable in both scattered proton beams (i.e. DS) and scanned proton beams (i.e. PBS). However, it is not a priori clear if TRS-398 kQ data, which are based on Monte Carlo (MC) calculations in scattered beams, can be used for scanned beams. Using TOPAS-Geant4 MC simulations, the study aims to determine whether broad beam quality correction factors calculated in TRS-398 can be directly applied to PBS delivery modality. Methods: As reference conditions, we consider a 10×10×10 cm 3 homogeneous dose distribution delivered by PBS system in a water phantom (32/10 cm range/modulation) and an air cavity placed at the center of the spread-out-Bragg-peak. In order to isolate beam differences, a hypothetical broad beam is simulated. This hypothetical beam reproduces exactly the same range modulation, and uses the same energy layers than the PBS field. Ion chamber responses are computed for the PBS and hypothetical beams and then compared. Results: For an air cavity of 2×2×0.2 cm 3 , the ratio of ion chamber responses for the PBS and hypothetical beam qualities is 0.9991 ± 0.0016. Conclusion: Quality correction factors are insensitive to the delivery pattern of the beam (broad beam or PBS), as long as similar dose distributions are achieved. This investigation, for an air cavity, suggests that broad beam quality correction factors published in TRS-398 can be applied for scanned beams. J. Sorriaux is financially supported by a public-private partnership involving the company Ion Beam Applications (IBA)

  7. Scatter factor corrections for elongated fields

    International Nuclear Information System (INIS)

    Higgins, P.D.; Sohn, W.H.; Sibata, C.H.; McCarthy, W.A.

    1989-01-01

    Measurements have been made to determine scatter factor corrections for elongated fields of Cobalt-60 and for nominal linear accelerator energies of 6 MV (Siemens Mevatron 67) and 18 MV (AECL Therac 20). It was found that for every energy the collimator scatter factor varies by 2% or more as the field length-to-width ratio increases beyond 3:1. The phantom scatter factor is independent of which collimator pair is elongated at these energies. For 18 MV photons it was found that the collimator scatter factor is complicated by field-size-dependent backscatter into the beam monitor

  8. Development of a reactivity worth correction scheme for the one-dimensional transient analysis

    International Nuclear Information System (INIS)

    Cho, J. Y.; Song, J. S.; Joo, H. G.; Kim, H. Y.; Kim, K. S.; Lee, C. C.; Zee, S. Q.

    2003-11-01

    This work is to develop a reactivity worth correction scheme for the MASTER one-dimensional (1-D) calculation model. The 1-D cross section variations according to the core state in the MASTER input file, which are produced for 1-D calculation performed by the MASTER code, are incorrect in most of all the core states except for exactly the same core state where the variations are produced. Therefore this scheme performs the reactivity worth correction factor calculations before the main 1-D transient calculation, and generates correction factors for boron worth, Doppler and moderator temperature coefficients, and control rod worth, respectively. These correction factors force the one dimensional calculation to generate the same reactivity worths with the 3-dimensional calculation. This scheme is applied to the control bank withdrawal accident of Yonggwang unit 1 cycle 14, and the performance is examined by comparing the 1-D results with the 3-D results. This problem is analyzed by the RETRAN-MASTER consolidated code system. Most of all results of 1-D calculation including the transient power behavior, the peak power and time are very similar with the 3-D results. In the MASTER neutronics computing time, the 1-D calculation including the correction factor calculation requires the negligible time comparing with the 3-D case. Therefore, the reactivity worth correction scheme is concluded to be very good in that it enables the 1-D calculation to produce the very accurate results in a few computing time

  9. Application of a numerical transport correction in diffusion calculations

    International Nuclear Information System (INIS)

    Tomatis, Daniele; Dall'Osso, Aldo

    2011-01-01

    Full core calculations by ordinary transport methods can demand considerable computational time, hardly acceptable in the industrial work frame. However, the trend of next generation nuclear cores goes toward more heterogeneous systems, where transport phenomena of neutrons become very important. On the other hand, using diffusion solvers is more practical allowing faster calculations, but a specific formulation of the diffusion coefficient is requested to reproduce the scalar flux with reliable physical accuracy. In this paper, the Ronen method is used to evaluate numerically the diffusion coefficient in the slab reactor. The new diffusion solution is driven toward the solution of the integral neutron transport equation by non linear iterations. Better estimates of currents are computed and diffusion coefficients are corrected at node interfaces, still assuming Fick's law. This method enables obtaining closer results to the transport solution by a common solver in multigroup diffusion. (author)

  10. Some recoil corrections to the hydrogen hyperfine splitting

    International Nuclear Information System (INIS)

    Bodwin, G.T.; Yennie, D.R.

    1988-01-01

    We compute all of the recoil corrections to the ground-state hyperfine splitting in hydrogen, with the exception of the proton polarizability, that are required to achieve an accuracy of 1 ppm. Our approach includes a unified treatment of the corrections that would arise from a pointlike Dirac proton and the corrections that are due to the proton's non-QED structure. Our principal new results are a calculation of the relative order-α 2 (m/sub e//m/sub p/) contributions that arise from the proton's anomalous magnetic moment and a systematic treatment of the relative order-α(m/sub e//m/sub p/) contributions that arise from form-factor corrections. In the former calculation we introduce some new technical improvements and are able to evaluate all of the expressions analytically. In the latter calculation, which has been the subject of previous investigations by other authors, we express the form-factor corrections in terms of two-dimensional integrals that are convenient for numerical evaluation and present numerical results for the commonly used dipole parametrization of the form factors. Because we use a parametrization of the form factors that differs slightly from the ones used in previous work, our numerical results are shifted from older ones by a small amount

  11. Accuracy of radiotherapy dose calculations based on cone-beam CT: comparison of deformable registration and image correction based methods

    Science.gov (United States)

    Marchant, T. E.; Joshi, K. D.; Moore, C. J.

    2018-03-01

    Radiotherapy dose calculations based on cone-beam CT (CBCT) images can be inaccurate due to unreliable Hounsfield units (HU) in the CBCT. Deformable image registration of planning CT images to CBCT, and direct correction of CBCT image values are two methods proposed to allow heterogeneity corrected dose calculations based on CBCT. In this paper we compare the accuracy and robustness of these two approaches. CBCT images for 44 patients were used including pelvis, lung and head & neck sites. CBCT HU were corrected using a ‘shading correction’ algorithm and via deformable registration of planning CT to CBCT using either Elastix or Niftyreg. Radiotherapy dose distributions were re-calculated with heterogeneity correction based on the corrected CBCT and several relevant dose metrics for target and OAR volumes were calculated. Accuracy of CBCT based dose metrics was determined using an ‘override ratio’ method where the ratio of the dose metric to that calculated on a bulk-density assigned version of the same image is assumed to be constant for each patient, allowing comparison to the patient’s planning CT as a gold standard. Similar performance is achieved by shading corrected CBCT and both deformable registration algorithms, with mean and standard deviation of dose metric error less than 1% for all sites studied. For lung images, use of deformed CT leads to slightly larger standard deviation of dose metric error than shading corrected CBCT with more dose metric errors greater than 2% observed (7% versus 1%).

  12. Economic benefits of power factor correction at a nuclear facility

    International Nuclear Information System (INIS)

    Boger, R.M.; Dalos, W.; Juguilon, M.E.

    1986-01-01

    The economic benefits of correcting poor power factor at an operating nuclear facility are shown. A project approach for achieving rapid return of investment without disrupting plant availability is described. Examples of technical problems associated with using capacitors for power factor correction are presented

  13. Accurate structures and energetics of neutral-framework zeotypes from dispersion-corrected DFT calculations

    Science.gov (United States)

    Fischer, Michael; Angel, Ross J.

    2017-05-01

    Density-functional theory (DFT) calculations incorporating a pairwise dispersion correction were employed to optimize the structures of various neutral-framework compounds with zeolite topologies. The calculations used the PBE functional for solids (PBEsol) in combination with two different dispersion correction schemes, the D2 correction devised by Grimme and the TS correction of Tkatchenko and Scheffler. In the first part of the study, a benchmarking of the DFT-optimized structures against experimental crystal structure data was carried out, considering a total of 14 structures (8 all-silica zeolites, 4 aluminophosphate zeotypes, and 2 dense phases). Both PBEsol-D2 and PBEsol-TS showed an excellent performance, improving significantly over the best-performing approach identified in a previous study (PBE-TS). The temperature dependence of lattice parameters and bond lengths was assessed for those zeotypes where the available experimental data permitted such an analysis. In most instances, the agreement between DFT and experiment improved when the experimental data were corrected for the effects of thermal motion and when low-temperature structure data rather than room-temperature structure data were used as a reference. In the second part, a benchmarking against experimental enthalpies of transition (with respect to α-quartz) was carried out for 16 all-silica zeolites. Excellent agreement was obtained with the PBEsol-D2 functional, with the overall error being in the same range as the experimental uncertainty. Altogether, PBEsol-D2 can be recommended as a computationally efficient DFT approach that simultaneously delivers accurate structures and energetics of neutral-framework zeotypes.

  14. SU-F-BRD-15: Quality Correction Factors in Scanned Or Broad Proton Therapy Beams Are Indistinguishable

    International Nuclear Information System (INIS)

    Sorriaux, J; Lee, J; Testa, M; Paganetti, H; Bertrand, D; Orban de Xivry, J; Palmans, H; Vynckier, S; Sterpin, E

    2015-01-01

    Purpose: The IAEA TRS-398 code of practice details the reference conditions for reference dosimetry of proton beams using ionization chambers and the required beam quality correction factors (kQ). Pencil beam scanning (PBS) requires multiple spots to reproduce the reference conditions. The objective is to demonstrate, using Monte Carlo (MC) calculations, that kQ factors for broad beams can be used for scanned beams under the same reference conditions with no significant additional uncertainty. We consider hereafter the general Alfonso formalism (Alfonso et al, 2008) for non-standard beam. Methods: To approach the reference conditions and the associated dose distributions, PBS must combine many pencil beams with range modulation and shaping techniques different than those used in passive systems (broad beams). This might lead to a different energy spectrum at the measurement point. In order to evaluate the impact of these differences on kQ factors, ion chamber responses are computed with MC (Geant4 9.6) in a dedicated scanned pencil beam (Q-pcsr) producing a 10×10cm2 composite field with a flat dose distribution from 10 to 16 cm depth. Ion chamber responses are also computed by MC in a broad beam with quality Q-ds (double scattering). The dose distribution of Q -pcsr matches the dose distribution of Q-ds. k-(Q-pcsr,Q-ds) is computed for a 2×2×0.2cm 3 idealized air cavity and a realistic plane-parallel ion chamber (IC). Results: Under reference conditions, quality correction factors for a scanned composite field versus a broad beam are the same for air cavity dose response, k-(Q-pcsr,Q-ds) =1.001±0.001 and for a Roos IC, k-(Q-pcsr,Q-ds) =0.999±0.005. Conclusion: Quality correction factors for ion chamber response in scanned and broad proton therapy beams are identical under reference conditions within the calculation uncertainties. The results indicate that quality correction factors published in IAEA TRS-398 can be used for scanned beams in the SOBP of a high

  15. SU-F-BRD-15: Quality Correction Factors in Scanned Or Broad Proton Therapy Beams Are Indistinguishable

    Energy Technology Data Exchange (ETDEWEB)

    Sorriaux, J; Lee, J [Molecular Imaging Radiotherapy & Oncology, Universite Catholique de Louvain, Brussels (Belgium); ICTEAM Institute, Universite catholique de Louvain, Louvain-la-Neuve (Belgium); Testa, M; Paganetti, H [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, Massachusetts (United States); Bertrand, D; Orban de Xivry, J [Ion Beam Applications, Louvain-la-neuve, Brabant Wallon (Belgium); Palmans, H [EBG MedAustron GmbH, Wiener Neustadt (Austria); National Physical Laboratory, Teddington (United Kingdom); Vynckier, S [Cliniques Universitaires Saint-Luc, Brussels (Belgium); Sterpin, E [Molecular Imaging Radiotherapy & Oncology, Universite Catholique de Louvain, Brussels (Belgium)

    2015-06-15

    Purpose: The IAEA TRS-398 code of practice details the reference conditions for reference dosimetry of proton beams using ionization chambers and the required beam quality correction factors (kQ). Pencil beam scanning (PBS) requires multiple spots to reproduce the reference conditions. The objective is to demonstrate, using Monte Carlo (MC) calculations, that kQ factors for broad beams can be used for scanned beams under the same reference conditions with no significant additional uncertainty. We consider hereafter the general Alfonso formalism (Alfonso et al, 2008) for non-standard beam. Methods: To approach the reference conditions and the associated dose distributions, PBS must combine many pencil beams with range modulation and shaping techniques different than those used in passive systems (broad beams). This might lead to a different energy spectrum at the measurement point. In order to evaluate the impact of these differences on kQ factors, ion chamber responses are computed with MC (Geant4 9.6) in a dedicated scanned pencil beam (Q-pcsr) producing a 10×10cm2 composite field with a flat dose distribution from 10 to 16 cm depth. Ion chamber responses are also computed by MC in a broad beam with quality Q-ds (double scattering). The dose distribution of Q -pcsr matches the dose distribution of Q-ds. k-(Q-pcsr,Q-ds) is computed for a 2×2×0.2cm{sup 3} idealized air cavity and a realistic plane-parallel ion chamber (IC). Results: Under reference conditions, quality correction factors for a scanned composite field versus a broad beam are the same for air cavity dose response, k-(Q-pcsr,Q-ds) =1.001±0.001 and for a Roos IC, k-(Q-pcsr,Q-ds) =0.999±0.005. Conclusion: Quality correction factors for ion chamber response in scanned and broad proton therapy beams are identical under reference conditions within the calculation uncertainties. The results indicate that quality correction factors published in IAEA TRS-398 can be used for scanned beams in the SOBP of a

  16. Continuous correction of differential path length factor in near-infrared spectroscopy.

    Science.gov (United States)

    Talukdar, Tanveer; Moore, Jason H; Diamond, Solomon G

    2013-05-01

    In continuous-wave near-infrared spectroscopy (CW-NIRS), changes in the concentration of oxyhemoglobin and deoxyhemoglobin can be calculated by solving a set of linear equations from the modified Beer-Lambert Law. Cross-talk error in the calculated hemodynamics can arise from inaccurate knowledge of the wavelength-dependent differential path length factor (DPF). We apply the extended Kalman filter (EKF) with a dynamical systems model to calculate relative concentration changes in oxy- and deoxyhemoglobin while simultaneously estimating relative changes in DPF. Results from simulated and experimental CW-NIRS data are compared with results from a weighted least squares (WLSQ) method. The EKF method was found to effectively correct for artificially introduced errors in DPF and to reduce the cross-talk error in simulation. With experimental CW-NIRS data, the hemodynamic estimates from EKF differ significantly from the WLSQ (p EKF method compared to WLSQ in three physiologically relevant spectral bands 0.04 to 0.15 Hz, 0.15 to 0.4 Hz and 0.4 to 2.0 Hz (p EKF method.

  17. Analytic calculation of radiative-recoil corrections to muonium hyperfine splitting: Electron-line contribution

    International Nuclear Information System (INIS)

    Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A.

    1991-01-01

    The detailed account of analytic calculation of radiative-recoil correction to muonium hyperfine splitting, induced by electron-line radiative insertions, is presented. The consideration is performed in the framework of the effective two-particle formalism. A good deal of attention is paid to the problem of the divergence cancellation and the selection of graphs, relevant to radiative-recoil corrections. The analysis is greatly facilitated by use of the Fried-Yennie gauge for radiative photons. The obtained set of graphs turns out to be gauge-invariant and actual calculations are performed in the Feynman gauge. The main technical tricks, with the help of which we have effectively utilized the existence in the problem of the small parameter-mass ratio and managed to perform all calculations in the analytic form are described. The main intermediate results, as well as the final answer, δE rr = (α(Ζα)/π 2 )(m/M)E F (6ζ(3) + 3π 2 In 2 + π 2 /2 + 17/8), are also presented

  18. Correction Factors Applied to Finger Dosimetry: A Theoretical Assessment of Appropriate Values for Use in Handling Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Sherbini, Sami; Ilas, Dan; Eckerman, Keith F.; DeCicco, Joseph

    2011-01-01

    United States Nuclear Regulatory Commission (USNRC) regulations limit the dose to the skin to 500 mSv per year. This is also the dose limit recommended by the International Commission on Radiological Protection (ICRP). The operational quantity recommended by ICRP for quantifying dose to the skin is the personal dose equivalent, Hp(0.07) and is identical to NRC's shallow dose equivalent, Hs, also measured at a skin depth of 7 mg cm 2. However, whereas ICRP recommends averaging the dose to the skin over an area of 1 cm2 regardless of the size of the exposed area of skin, USNRC requires the shallow dose equivalent to be averaged over 10 cm2. To monitor dose to the skin of the hands of workers handling radioactive materials and particularly in radiopharmaceutical manufacturing facilities, which is the focus of this work, workers are frequently required to wear finger ring dosimeters. The dosimeters monitor the dose at the location of the sensitive element, but this is not the dose required to show compliance (i.e., the dose averaged over the highest exposed contiguous 10 cm2 of skin). Therefore, it may be necessary to apply a correction factor that enables estimation of the required skin dose from the dosimeter reading. This work explored the effects of finger ring placement and of the geometry of the radioactive materials being handled by the worker on the relationship between the dosimeter reading and the desired average dose. A mathematical model of the hand was developed for this purpose that is capable of positioning the fingers in any desired grasping configuration, thereby realistically modeling manipulation of any object. The model was then used with the radiation transport code MCNP to calculate the dose distribution on the skin of the hand when handling a variety of radioactive vials and syringes, as well as the dose to the dosimeter element. Correction factors were calculated using the results of these calculations and examined for any patterns that may be

  19. SU-E-T-101: Determination and Comparison of Correction Factors Obtained for TLDs in Small Field Lung Heterogenous Phantom Using Acuros XB and EGSnrc

    International Nuclear Information System (INIS)

    Soh, R; Lee, J; Harianto, F

    2014-01-01

    Purpose: To determine and compare the correction factors obtained for TLDs in 2 × 2cm 2 small field in lung heterogenous phantom using Acuros XB (AXB) and EGSnrc. Methods: This study will simulate the correction factors due to the perturbation of TLD-100 chips (Harshaw/Thermoscientific, 3 × 3 × 0.9mm 3 , 2.64g/cm 3 ) in small field lung medium for Stereotactic Body Radiation Therapy (SBRT). A physical lung phantom was simulated by a 14cm thick composite cork phantom (0.27g/cm 3 , HU:-743 ± 11) sandwiched between 4cm thick Plastic Water (CIRS,Norfolk). Composite cork has been shown to be a good lung substitute material for dosimetric studies. 6MV photon beam from Varian Clinac iX (Varian Medical Systems, Palo Alto, CA) with field size 2 × 2cm 2 was simulated. Depth dose profiles were obtained from the Eclipse treatment planning system Acuros XB (AXB) and independently from DOSxyznrc, EGSnrc. Correction factors was calculated by the ratio of unperturbed to perturbed dose. Since AXB has limitations in simulating actual material compositions, EGSnrc will also simulate the AXB-based material composition for comparison to the actual lung phantom. Results: TLD-100, with its finite size and relatively high density, causes significant perturbation in 2 × 2cm 2 small field in a low lung density phantom. Correction factors calculated by both EGSnrc and AXB was found to be as low as 0.9. It is expected that the correction factor obtained by EGSnrc wlll be more accurate as it is able to simulate the actual phantom material compositions. AXB have a limited material library, therefore it only approximates the composition of TLD, Composite cork and Plastic water, contributing to uncertainties in TLD correction factors. Conclusion: It is expected that the correction factors obtained by EGSnrc will be more accurate. Studies will be done to investigate the correction factors for higher energies where perturbation may be more pronounced

  20. Volume correction factor in time dose relationships in brachytherapy

    International Nuclear Information System (INIS)

    Supe, S.J.; Sasane, J.B.

    1987-01-01

    Paterson's clinical data about the maximum tolerance doses for various volumes of interstitial implants with Ra-226 delivered in seven days was made use of in deriving volume correction factors for TDF and CRE concepts respectively for brachytherapy. The derived volume correction factors for TDF and for CRE differ fromthe one assumed for CRE by Kirk et al. and implied for TDF by Goitein. A normalising volume of 70 cc has been suggested for both CRE and TDF concepts for brachytherapy. A table showing the volume corrected TDF is presented for various volumes and dose rates for continuous irradiation. The use of this table is illustrated with examples. (orig.) [de

  1. SU-C-201-06: Small Field Correction Factors for the MicroDiamond Detector in the Gamma Knife-Model C Derived Using Monte Carlo Methods

    International Nuclear Information System (INIS)

    Barrett, J C; Knill, C

    2016-01-01

    Purpose: To determine small field correction factors for PTW’s microDiamond detector in Elekta’s Gamma Knife Model-C unit. These factors allow the microDiamond to be used in QA measurements of output factors in the Gamma Knife Model-C; additionally, the results also contribute to the discussion on the water equivalence of the relatively-new microDiamond detector and its overall effectiveness in small field applications. Methods: The small field correction factors were calculated as k correction factors according to the Alfonso formalism. An MC model of the Gamma Knife and microDiamond was built with the EGSnrc code system, using BEAMnrc and DOSRZnrc user codes. Validation of the model was accomplished by simulating field output factors and measurement ratios for an available ABS plastic phantom and then comparing simulated results to film measurements, detector measurements, and treatment planning system (TPS) data. Once validated, the final k factors were determined by applying the model to a more waterlike solid water phantom. Results: During validation, all MC methods agreed with experiment within the stated uncertainties: MC determined field output factors agreed within 0.6% of the TPS and 1.4% of film; and MC simulated measurement ratios matched physically measured ratios within 1%. The final k correction factors for the PTW microDiamond in the solid water phantom approached unity to within 0.4%±1.7% for all the helmet sizes except the 4 mm; the 4 mm helmet size over-responded by 3.2%±1.7%, resulting in a k factor of 0.969. Conclusion: Similar to what has been found in the Gamma Knife Perfexion, the PTW microDiamond requires little to no corrections except for the smallest 4 mm field. The over-response can be corrected via the Alfonso formalism using the correction factors determined in this work. Using the MC calculated correction factors, the PTW microDiamond detector is an effective dosimeter in all available helmet sizes. The authors would like to

  2. SU-C-201-06: Small Field Correction Factors for the MicroDiamond Detector in the Gamma Knife-Model C Derived Using Monte Carlo Methods

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, J C [Wayne State University, Detroit, MI (United States); Karmanos Cancer Institute McLaren-Macomb, Clinton Township, MI (United States); Knill, C [Wayne State University, Detroit, MI (United States); Beaumont Hospital, Canton, MI (United States)

    2016-06-15

    Purpose: To determine small field correction factors for PTW’s microDiamond detector in Elekta’s Gamma Knife Model-C unit. These factors allow the microDiamond to be used in QA measurements of output factors in the Gamma Knife Model-C; additionally, the results also contribute to the discussion on the water equivalence of the relatively-new microDiamond detector and its overall effectiveness in small field applications. Methods: The small field correction factors were calculated as k correction factors according to the Alfonso formalism. An MC model of the Gamma Knife and microDiamond was built with the EGSnrc code system, using BEAMnrc and DOSRZnrc user codes. Validation of the model was accomplished by simulating field output factors and measurement ratios for an available ABS plastic phantom and then comparing simulated results to film measurements, detector measurements, and treatment planning system (TPS) data. Once validated, the final k factors were determined by applying the model to a more waterlike solid water phantom. Results: During validation, all MC methods agreed with experiment within the stated uncertainties: MC determined field output factors agreed within 0.6% of the TPS and 1.4% of film; and MC simulated measurement ratios matched physically measured ratios within 1%. The final k correction factors for the PTW microDiamond in the solid water phantom approached unity to within 0.4%±1.7% for all the helmet sizes except the 4 mm; the 4 mm helmet size over-responded by 3.2%±1.7%, resulting in a k factor of 0.969. Conclusion: Similar to what has been found in the Gamma Knife Perfexion, the PTW microDiamond requires little to no corrections except for the smallest 4 mm field. The over-response can be corrected via the Alfonso formalism using the correction factors determined in this work. Using the MC calculated correction factors, the PTW microDiamond detector is an effective dosimeter in all available helmet sizes. The authors would like to

  3. Correction of the calculation of beam loading based in the RF power diffusion equation

    International Nuclear Information System (INIS)

    Silva, R. da.

    1980-01-01

    It is described an empirical correction based upon experimental datas of others authors in ORELA, GELINA and SLAC accelerators, to the calculation of the energy loss due to the beam loading effect as stated by the RF power diffusion equation theory an accelerating structure. It is obtained a dependence of this correction with the electron pulse full width half maximum, but independent of the electron energy. (author) [pt

  4. Evaluation of off-axis wedge correction factor using diode dosimeters for estimation of delivered dose in external radiotherapy

    International Nuclear Information System (INIS)

    Allahverdi, Mahmoud; Shirazi, Alireza; Geraily, Ghazale; Mohammadkarim, Alireza; Esfehani, Mahbod; Nedaie, Hasanali

    2012-01-01

    An in vivo dosimetry system, using p-type diode dosimeters, was characterized for clinical applications of treatment machines ranging in megavoltage energies. This paper investigates two different models of diodes for externally wedged beams and explains a new algorithm for the calculation of the target dose at various tissue depths in external radiotherapy. The values of off-axis wedge correction factors were determined at two different positions in the wedged (toward the thick and thin edges) and in the non-wedged directions on entrance and exit surfaces of a polystyrene phantom in 60 Co and 6 MV photon beams. Depth transmission was defined on the entrance and exit surfaces to obtain the off-axis wedge correction factor at any depth. As the sensitivity of the diodes depends on physical characteristics (field size, source-skin distance (SSD), thickness, backscatter), correction factors were applied to the diode reading when measuring conditions different from calibration situations. The results indicate that needful correction factors for 60 Co wedged photons are usually larger than those for 6 MV wedged photon beams. In vivo dosimetry performed with the proposed algorithms at externally wedged beams has negligible probable errors (less than 0.5%) and is a reliable method for patient dose control. (author)

  5. Evaluation of off-axis wedge correction factor using diode dosimeters for estimation of delivered dose in external radiotherapy

    Directory of Open Access Journals (Sweden)

    Mahmoud Allahverdi

    2012-01-01

    Full Text Available An in vivo dosimetry system, using p-type diode dosimeters, was characterized for clinical applications of treatment machines ranging in megavoltage energies. This paper investigates two different models of diodes for externally wedged beams and explains a new algorithm for the calculation of the target dose at various tissue depths in external radiotherapy. The values of off-axis wedge correction factors were determined at two different positions in the wedged (toward the thick and thin edges and in the non-wedged directions on entrance and exit surfaces of a polystyrene phantom in 60 Co and 6 MV photon beams. Depth transmission was defined on the entrance and exit surfaces to obtain the off-axis wedge correction factor at any depth. As the sensitivity of the diodes depends on physical characteristics [field size, source-skin distance (SSD, thickness, backscatter], correction factors were applied to the diode reading when measuring conditions different from calibration situations . The results indicate that needful correction factors for 60 Co wedged photons are usually larger than those for 6 MV wedged photon beams. In vivo dosimetry performed with the proposed algorithms at externally wedged beams has negligible probable errors (less than 0.5% and is a reliable method for patient dose control.

  6. Derivation of Batho's correction factor for heterogeneities

    International Nuclear Information System (INIS)

    Lulu, B.A.; Bjaerngard, B.E.

    1982-01-01

    Batho's correction factor for dose in a heterogeneous, layered medium is derived from the tissue--air ratio method (TARM). The reason why the Batho factor is superior to the TARM factor at low energy is ascribed to the fact that it accounts for the distribution of the scatter-generating matter along the centerline. The poor behavior of the Batho factor at high energies is explained as a consequence of the lack of electron equilibrium at appreciable depth below the surface. Key words: Batho factor, heterogeneity, inhomogeneity, tissue--air ratio method

  7. Calculation and measurement of radiation corrections for plasmon resonances in nanoparticles

    Science.gov (United States)

    Hung, L.; Lee, S. Y.; McGovern, O.; Rabin, O.; Mayergoyz, I.

    2013-08-01

    The problem of plasmon resonances in metallic nanoparticles can be formulated as an eigenvalue problem under the condition that the wavelengths of the incident radiation are much larger than the particle dimensions. As the nanoparticle size increases, the quasistatic condition is no longer valid. For this reason, the accuracy of the electrostatic approximation may be compromised and appropriate radiation corrections for the calculation of resonance permittivities and resonance wavelengths are needed. In this paper, we present the radiation corrections in the framework of the eigenvalue method for plasmon mode analysis and demonstrate that the computational results accurately match analytical solutions (for nanospheres) and experimental data (for nanorings and nanocubes). We also demonstrate that the optical spectra of silver nanocube suspensions can be fully assigned to dipole-type resonance modes when radiation corrections are introduced. Finally, our method is used to predict the resonance wavelengths for face-to-face silver nanocube dimers on glass substrates. These results may be useful for the indirect measurements of the gaps in the dimers from extinction cross-section observations.

  8. Corrections to the bag factor in B- anti B-mixing

    Energy Technology Data Exchange (ETDEWEB)

    Grozin, Andrey G. [BINP, Novosibirsk (Russian Federation); Klein, Rebecca; Mannel, Thomas; Pivovarov, Alexei A. [Universitaet Siegen (Germany)

    2016-07-01

    B- anti B-Mixing is parameterized by the matrix elements of local operators O{sub i}. For the computation of these matrix elements a bag factor B{sub i} can be introduced left angle anti B vertical stroke O{sub i} vertical stroke B right angle =B{sub i} left angle anti B vertical stroke O{sub i} vertical stroke B right angle {sup fac}, which is unity in naive factorization. Any deviation from unity describes the accuracy of the naive factorization prescription. Corrections to B{sub i} emerge from QCD radiative corrections and from nonperturbative contributions at order 1/m{sub b}. We present the current status of these corrections to B{sub i}.

  9. A spectrum correction method for fuel assembly rehomogenization

    International Nuclear Information System (INIS)

    Lee, Kyung Taek; Cho, Nam Zin

    2004-01-01

    To overcome the limitation of existing homogenization methods based on the single assembly calculation with zero current boundary condition, we propose a new rehomogenization method, named spectrum correction method (SCM), consisting of the multigroup energy spectrum approximation by spectrum correction and the condensed two-group heterogeneous single assembly calculations with non-zero current boundary condition. In SCM, the spectrum shifting phenomena caused by current across assembly interfaces are considered by the spectrum correction at group condensation stage at first. Then, heterogeneous single assembly calculations with two-group cross sections condensed by using corrected multigroup energy spectrum are performed to obtain rehomogenized nodal diffusion parameters, i.e., assembly-wise homogenized cross sections and discontinuity factors. To evaluate the performance of SCM, it was applied to the analytic function expansion nodal (AFEN) method and several test problems were solved. The results show that SCM can reduce the errors significantly both in multiplication factors and assembly averaged power distributions

  10. Three-loop massive form factors: complete light-fermion corrections for the vector current

    Science.gov (United States)

    Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias

    2018-03-01

    We compute the three-loop QCD corrections to the massive quark-anti-quark-photon form factors F 1 and F 2 involving a closed loop of massless fermions. This subset is gauge invariant and contains both planar and non-planar contributions. We perform the reduction using FIRE and compute the master integrals with the help of differential equations. Our analytic results can be expressed in terms of Goncharov polylogarithms. We provide analytic results for all master integrals which are not present in the large- N c calculation considered in refs. [1, 2].

  11. Correction of X-ray diffraction profiles in linear-type PSPC by position factor

    International Nuclear Information System (INIS)

    Takahashi, Toshio

    1992-01-01

    PSPC (Position Sensitive Proportional Counter) makes it possible to obtain one-dimentional diffraction profiles without mechanical scanning. In a linear-type PSPC, the obtained profiles need correcting, because the position factor influences the intensity of the diffracted X-ray beam and the counting rate at each position on PSPC. The distances from the specimen are not the same at the center and at the edge of the detector, and the intensity decreases at the edge because of radiation and absorption. The counting rate varies with the incident angle of the diffracted beam at each position on PSPC. The position factor f i at channel i of the multichannel-analyser is given by f i = cos 4 α i ·exp{-μR(1/cosα i -1)} where R is the distance between the specimen and the center of PSPC, μ is the linear absorption coefficient and α i is the incident angle of the diffracted beam at channel i. The background profiles of silica gel powder were measured with CrKα and CuKα. The parameters of the model function were fitted to the profiles by the non-linear least squares method. The agreement between these parameters and the calculated values shows that the position factor can correct the measured profiles properly. (author)

  12. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B. R., E-mail: Bryan.Muir@nrc-cnrc.gc.ca [Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada); Rogers, D. W. O., E-mail: drogers@physics.carleton.ca [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 ColonelBy Drive, Ottawa, Ontario K1S 5B6 (Canada)

    2014-11-01

    Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers’ effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ′}) are provided. These

  13. Calculation of self-shielding coefficients, flux depression and cadmium factor for thermal neutron flux measurement of the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Marques, Andre Luis Ferreira; Ting, Daniel Kao Sun; Mendonca, Arlindo Gilson

    1996-01-01

    A calculation methodology of Flux Depression, Self-Shielding and Cadmium Factors is presented, using the ANISN code, for experiments conducted at the IPEN/MB-01 Research Reactor. The correction factors were determined considering thermal neutron flux and 0.125 e 0.250 mm diameter of 197 Au wires. (author)

  14. First-order corrections to random-phase approximation GW calculations in silicon and diamond

    NARCIS (Netherlands)

    Ummels, R.T.M.; Bobbert, P.A.; van Haeringen, W.

    1998-01-01

    We report on ab initio calculations of the first-order corrections in the screened interaction W to the random-phase approximation polarizability and to the GW self-energy, using a noninteracting Green's function, for silicon and diamond. It is found that the first-order vertex and self-consistency

  15. A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    International Nuclear Information System (INIS)

    Gu Xuejun; Jia Xun; Jiang, Steve B; Jelen, Urszula; Li Jinsheng

    2011-01-01

    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite-size pencil beam (FSPB) algorithm with a 3D-density correction method on graphics processing unit (GPU). This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework (Gu et al 2009 Phys. Med. Biol. 54 6287-97). Dosimetric evaluations against Monte Carlo dose calculations are conducted on ten IMRT treatment plans (five head-and-neck cases and five lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 s (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (∼5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning.

  16. Adjustement of Dancoff factor for calculating the cell of fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Borges, V.; Sefidvash, F.

    1988-01-01

    A new nuclear reactor design based on the fluidized bed concept is under reserch and development. It utilized spherical fuel of slightly enriched zircaloy-clad uranium dioxide fluidized by light water under pressure since the Leopard code has been developed for light water reactor analysis, it was necessary to develop a method to determine the dimensions of the hypothetical fuel rod lattice, which are neutronically equivalent to the spherical fuel pellet lattice. This method is shown to calculate the Dancoff factor correctly. (author) [pt

  17. Computer automation for protection factor calculations of buildings

    International Nuclear Information System (INIS)

    Farafat, M.A.Z.; Madian, A.H.

    2011-01-01

    The protection factors of buildings are different according to the constructional and architectural specifications. Uk and USA performed a calculation using manual method to calculate the protection factor for any building which may protect the people in it from gamma rays and fall-out.The manual calculation method is very complex which is very difficult to use, for that reason the researchers simplify this method in proposed form which will be easy to understand and use. Also the researchers have designed a computer program ,in visual basic, to calculate the different protection factors for buildings. The program aims to provide the missing time in the calculation processes to calculate the protection in some spaces for any building through entering specifications data for any building .The program will modify the protection factor in very short time which will save the effort and time in comparison with the manual calculation.

  18. Correction factors for clinical dosemeters used in large field dosimetry

    International Nuclear Information System (INIS)

    Campos, L.L.; Caldas, L.

    1989-08-01

    The determination of the absorbed dose in high-energy photon and electron beams by the user is carried out as a two-step procedure. First the ionization chamber is calibrated at a reference quality by the user at a standard laboratory, and then the chamber is used to determine the absorbed dose with the user's beam. A number of conversion and correction factors have to be applied. Different sets of factors are needed depending on the physical quantity the calibration refers to, the calibration geometry and the chamber design. Another correction factor to be introduced for the absorbed dose determination in large fields refers to radiation effects on the stem, cable and sometimes connectors. A simple method was developed to be suggested to hospital physicists to be followed during large radiation field dosimetry, in order to evaluate the radiation effects of cables and connectors and to determine correction factors for each system or geometry. (author) [pt

  19. Validation of calculated self-shielding factors for Rh foils

    Science.gov (United States)

    Jaćimović, R.; Trkov, A.; Žerovnik, G.; Snoj, L.; Schillebeeckx, P.

    2010-10-01

    Rhodium foils of about 5 mm diameter were obtained from IRMM. One foil had thickness of 0.006 mm and three were 0.112 mm thick. They were irradiated in the pneumatic transfer system and in the carousel facility of the TRIGA reactor at the Jožef Stefan Institute. The foils were irradiated bare and enclosed in small cadmium boxes (about 2 g weight) of 1 mm thickness to minimise the perturbation of the local neutron flux. They were co-irradiated with 5 mm diameter and 0.2 mm thick Al-Au (0.1%) alloy monitor foils. The resonance self-shielding corrections for the 0.006 and 0.112 mm thick samples were calculated by the Monte Carlo simulation and amount to about 10% and 60%, respectively. The consistency of measurements confirmed the validity of self-shielding factors. Trial estimates of Q0 and k0 factors for the 555.8 keV gamma line of 104Rh were made and amount to 6.65±0.18 and (6.61±0.12)×10 -2, respectively.

  20. Calculation of the correction factors for the primary standard of kerma in the air at the LNMRI-IRD, Rio de Janeiro, Brazil; Calculo de fatores de correcao para o padrao primario em kerma no ar do LNMRI-IRD, Rio de Janeiro, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cosme Norival Mello da, E-mail: cosme@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiacoes Ionizantes (LNMRI)

    2009-07-01

    In order to determine the primary standardization in terms of kerma in the air, a graphite ionization chamber is used for calculation some correction factors. A program was elaborated, using the Monte Carlo Penelope for simulate the CC01-110 at the LNMRI/IRD, Rio de Janeiro, Brazil

  1. Determination of small field synthetic single-crystal diamond detector correction factors for CyberKnife, Leksell Gamma Knife Perfexion and linear accelerator.

    Science.gov (United States)

    Veselsky, T; Novotny, J; Pastykova, V; Koniarova, I

    2017-12-01

    The aim of this study was to determine small field correction factors for a synthetic single-crystal diamond detector (PTW microDiamond) for routine use in clinical dosimetric measurements. Correction factors following small field Alfonso formalism were calculated by comparison of PTW microDiamond measured ratio M Qclin fclin /M Qmsr fmsr with Monte Carlo (MC) based field output factors Ω Qclin,Qmsr fclin,fmsr determined using Dosimetry Diode E or with MC simulation itself. Diode measurements were used for the CyberKnife and Varian Clinac 2100C/D linear accelerator. PTW microDiamond correction factors for Leksell Gamma Knife (LGK) were derived using MC simulated reference values from the manufacturer. PTW microDiamond correction factors for CyberKnife field sizes 25-5 mm were mostly smaller than 1% (except for 2.9% for 5 mm Iris field and 1.4% for 7.5 mm fixed cone field). The correction of 0.1% and 2.0% for 8 mm and 4 mm collimators, respectively, needed to be applied to PTW microDiamond measurements for LGK Perfexion. Finally, PTW microDiamond M Qclin fclin /M Qmsr fmsr for the linear accelerator varied from MC corrected Dosimetry Diode data by less than 0.5% (except for 1 × 1 cm 2 field size with 1.3% deviation). Regarding low resulting correction factor values, the PTW microDiamond detector may be considered an almost ideal tool for relative small field dosimetry in a large variety of stereotactic and radiosurgery treatment devices. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Efficacy of surface error corrections to density functional theory calculations of vacancy formation energy in transition metals.

    Science.gov (United States)

    Nandi, Prithwish Kumar; Valsakumar, M C; Chandra, Sharat; Sahu, H K; Sundar, C S

    2010-09-01

    We calculate properties like equilibrium lattice parameter, bulk modulus and monovacancy formation energy for nickel (Ni), iron (Fe) and chromium (Cr) using Kohn-Sham density functional theory (DFT). We compare the relative performance of local density approximation (LDA) and generalized gradient approximation (GGA) for predicting such physical properties for these metals. We also make a relative study between two different flavors of GGA exchange correlation functional, namely PW91 and PBE. These calculations show that there is a discrepancy between DFT calculations and experimental data. In order to understand this discrepancy in the calculation of vacancy formation energy, we introduce a correction for the surface intrinsic error corresponding to an exchange correlation functional using the scheme implemented by Mattsson et al (2006 Phys. Rev. B 73 195123) and compare the effectiveness of the correction scheme for Al and the 3d transition metals.

  3. SORM correction of FORM results for the FBC load combination problem

    DEFF Research Database (Denmark)

    Ditlevsen, Ove

    2005-01-01

    The old stochastic load combination model of Ferry Borges and Castanheta and the corresponding extreme random load effect value is considered. The evaluation of the distribution function of the extreme value by use of a particular first order reliability method was first described in a celebrated...... calculations. The calculation gives a limit state curvature correction factor on the probability approximation obtained by the RF algorithm. This correction factor is based on Breitung’s celebrated asymptotic formula. Example calculations with comparisons with exact results show an impressing accuracy...

  4. Calculating the mounting parameters for Taylor Spatial Frame correction using computed tomography.

    Science.gov (United States)

    Kucukkaya, Metin; Karakoyun, Ozgur; Armagan, Raffi; Kuzgun, Unal

    2011-07-01

    The Taylor Spatial Frame uses a computer program-based six-axis deformity analysis. However, there is often a residual deformity after the initial correction, especially in deformities with a rotational component. This problem can be resolved by recalculating the parameters and inputting all new deformity and mounting parameters. However, this may necessitate repeated x-rays and delay treatment. We believe that error in the mounting parameters is the main reason for most residual deformities. To prevent these problems, we describe a new calculation technique for determining the mounting parameters that uses computed tomography. This technique is especially advantageous for deformities with a rotational component. Using this technique, exact calculation of the mounting parameters is possible and the residual deformity and number of repeated x-rays can be minimized. This new technique is an alternative method to accurately calculating the mounting parameters.

  5. Study of lung density corrections in a clinical trial (RTOG 88-08)

    International Nuclear Information System (INIS)

    Orton, Colin G.; Chungbin, Suzanne; Klein, Eric E.; Gillin, Michael T.; Schultheiss, Timothy E.; Sause, William T.

    1998-01-01

    Purpose: To investigate the effect of lung density corrections on the dose delivered to lung cancer radiotherapy patients in a multi-institutional clinical trial, and to determine whether commonly available density-correction algorithms are sufficient to improve the accuracy and precision of dose calculation in the clinical trials setting. Methods and Materials: A benchmark problem was designed (and a corresponding phantom fabricated) to test density-correction algorithms under standard conditions for photon beams ranging from 60 Co to 24 MV. Point doses and isodose distributions submitted for a Phase III trial in regionally advanced, unresectable non-small-cell lung cancer (Radiation Therapy Oncology Group 88-08) were calculated with and without density correction. Tumor doses were analyzed for 322 patients and 1236 separate fields. Results: For the benchmark problem studied here, the overall correction factor for a four-field treatment varied significantly with energy, ranging from 1.14 ( 60 Co) to 1.05 (24 MV) for measured doses, or 1.17 ( 60 Co) to 1.05 (24 MV) for doses calculated by conventional density-correction algorithms. For the patient data, overall correction factors (calculated) ranged from 0.95 to 1.28, with a mean of 1.05 and distributional standard deviation of 0.05. The largest corrections were for lateral fields, with a mean correction factor of 1.11 and standard deviation of 0.08. Conclusions: Lung inhomogeneities can lead to significant variations in delivered dose between patients treated in a clinical trial. Existing density-correction algorithms are accurate enough to significantly reduce these variations

  6. Numerical tables of anomalous scattering factors calculated by the Cromer and Liberman's method

    International Nuclear Information System (INIS)

    Sasaki, Satoshi.

    1989-02-01

    Anomalous scattering factors f' and f'' have been calculated for the atoms Li through Bi, plus U, using the relativistic treatment described by Cromer and Liberman. The final f' value does not include the Jensen's correction term on the magnetic scattering. The tables are presented with the f' and f'' values (i) at 0.01 A intervals in the wavelength range from 0.1 to 2.89 A and (ii) at 0.0001 A intervals in the neighborhood of the K, L 1 , L 2 , and L 3 absorption edges. (author)

  7. Perturbative corrections to B → D form factors in QCD

    Science.gov (United States)

    Wang, Yu-Ming; Wei, Yan-Bing; Shen, Yue-Long; Lü, Cai-Dian

    2017-06-01

    We compute perturbative QCD corrections to B → D form factors at leading power in Λ/ m b , at large hadronic recoil, from the light-cone sum rules (LCSR) with B-meson distribution amplitudes in HQET. QCD factorization for the vacuum-to- B-meson correlation function with an interpolating current for the D-meson is demonstrated explicitly at one loop with the power counting scheme {m}_c˜ O(√{Λ {m}_b}) . The jet functions encoding information of the hard-collinear dynamics in the above-mentioned correlation function are complicated by the appearance of an additional hard-collinear scale m c , compared to the counterparts entering the factorization formula of the vacuum-to- B-meson correction function for the construction of B → π from factors. Inspecting the next-to-leading-logarithmic sum rules for the form factors of B → Dℓν indicates that perturbative corrections to the hard-collinear functions are more profound than that for the hard functions, with the default theory inputs, in the physical kinematic region. We further compute the subleading power correction induced by the three-particle quark-gluon distribution amplitudes of the B-meson at tree level employing the background gluon field approach. The LCSR predictions for the semileptonic B → Dℓν form factors are then extrapolated to the entire kinematic region with the z-series parametrization. Phenomenological implications of our determinations for the form factors f BD +,0 ( q 2) are explored by investigating the (differential) branching fractions and the R( D) ratio of B → Dℓν and by determining the CKM matrix element |V cb | from the total decay rate of B → Dμν μ .

  8. Correction factor to determine total hydrogen+deuterium concentration obtained by inert gas fusion-thermal conductivity detection (IGF- TCD) technique

    International Nuclear Information System (INIS)

    Ramakumar, K.L.; Sesha Sayi, Y.; Shankaran, P.S.; Chhapru, G.C; Yadav, C.S.; Venugopal, V.

    2004-01-01

    The limitation of commercially available dedicated equipment based on Inert Gas Fusion- Thermal Conductivity Detection (IGF - TCD) for the determination of hydrogen+deuterium is described. For a given molar concentration, deuterium is underestimated vis a vis hydrogen because of lower thermal conductivity and not considering its molecular weight in calculations. An empirical correction factor based on the differences between the thermal conductivities of hydrogen, deuterium and the carrier gas argon, and the mole fraction of deuterium in the sample has been derived to correct the observed hydrogen+deuterium concentration. The corrected results obtained by IGF - TCD technique have been validated by determining hydrogen and deuterium contents in a few samples using an independent method based on hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). Knowledge of mole fraction of deuterium (XD) is necessary to effect the correction. The correction becomes insignificant at low X D values (XD < 0.2) as the precision in the IGF measurements is comparable with the extent of correction. (author)

  9. Real-time correction of tsunami site effect by frequency-dependent tsunami-amplification factor

    Science.gov (United States)

    Tsushima, H.

    2017-12-01

    For tsunami early warning, I developed frequency-dependent tsunami-amplification factor and used it to design a recursive digital filter that can be applicable for real-time correction of tsunami site response. In this study, I assumed that a tsunami waveform at an observing point could be modeled by convolution of source, path and site effects in time domain. Under this assumption, spectral ratio between offshore and the nearby coast can be regarded as site response (i.e. frequency-dependent amplification factor). If the amplification factor can be prepared before tsunamigenic earthquakes, its temporal convolution to offshore tsunami waveform provides tsunami prediction at coast in real time. In this study, tsunami waveforms calculated by tsunami numerical simulations were used to develop frequency-dependent tsunami-amplification factor. Firstly, I performed numerical tsunami simulations based on nonlinear shallow-water theory from many tsuanmigenic earthquake scenarios by varying the seismic magnitudes and locations. The resultant tsunami waveforms at offshore and the nearby coastal observing points were then used in spectral-ratio analysis. An average of the resulted spectral ratios from the tsunamigenic-earthquake scenarios is regarded as frequency-dependent amplification factor. Finally, the estimated amplification factor is used in design of a recursive digital filter that can be applicable in time domain. The above procedure is applied to Miyako bay at the Pacific coast of northeastern Japan. The averaged tsunami-height spectral ratio (i.e. amplification factor) between the location at the center of the bay and the outside show a peak at wave-period of 20 min. A recursive digital filter based on the estimated amplification factor shows good performance in real-time correction of tsunami-height amplification due to the site effect. This study is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI grant 15K16309.

  10. Audit calculation and comments on a new CHF correlation

    Energy Technology Data Exchange (ETDEWEB)

    Auh, Geun Sun [Korea Institute of Nuclear Safety, Daejon (Korea, Republic of); Hwang, Dae Hyun [Korea Atomic Energy Research Institute, Daejon (Korea, Republic of)

    2008-10-15

    An audit calculation was conducted for a local parameter CHF correlation which was intended for the thermal hydraulic design calculations of a new type of fuel assembly, named 17x17 type ACE7. The proposed empirical correlation calculates the CHF as a function of local conditions in a rod bundle which were evaluated by the subchannel analysis code THINC. The CHF data base for this correlation consisted of 4 test bundles with a total of 295 data points. Independent audit calculation was performed in order to substantiate the analyses results for the proposed correlation. Total 295 calculations were performed with a subchannel code MATRA and the results were compared with the results of THINC calculations. A new feature of the proposed correlation is a correction factor for axially non uniform power shapes. The proposed correction factor model contends a decrease of upstream memory effect with a decrease of the grid spacing. The physical background as well as the CHF data base supporting the magnitude of the correction factor was closely investigated. From the results of the investigation, the applicability limitations such as 3.5% penalty factor on the DNBR and 17x17 type ACE7 fuel assembly application only were self imposed on the proposed correlation.

  11. SU-F-T-452: Influence of Dose Calculation Algorithm and Heterogeneity Correction On Risk Categorization of Patients with Cardiac Implanted Electronic Devices Undergoing Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, P; Lins, L Nadler [AC Camargo Cancer Center, Sao Paulo (Brazil)

    2016-06-15

    Purpose: There is a lack of studies with significant cohort data about patients using pacemaker (PM), implanted cardioverter defibrillator (ICD) or cardiac resynchronization therapy (CRT) device undergoing radiotherapy. There is no literature comparing the cumulative doses delivered to those cardiac implanted electronic devices (CIED) calculated by different algorithms neither studies comparing doses with heterogeneity correction or not. The aim of this study was to evaluate the influence of the algorithms Pencil Beam Convolution (PBC), Analytical Anisotropic Algorithm (AAA) and Acuros XB (AXB) as well as heterogeneity correction on risk categorization of patients. Methods: A retrospective analysis of 19 3DCRT or IMRT plans of 17 patients was conducted, calculating the dose delivered to CIED using three different calculation algorithms. Doses were evaluated with and without heterogeneity correction for comparison. Risk categorization of the patients was based on their CIED dependency and cumulative dose in the devices. Results: Total estimated doses at CIED calculated by AAA or AXB were higher than those calculated by PBC in 56% of the cases. In average, the doses at CIED calculated by AAA and AXB were higher than those calculated by PBC (29% and 4% higher, respectively). The maximum difference of doses calculated by each algorithm was about 1 Gy, either using heterogeneity correction or not. Values of maximum dose calculated with heterogeneity correction showed that dose at CIED was at least equal or higher in 84% of the cases with PBC, 77% with AAA and 67% with AXB than dose obtained with no heterogeneity correction. Conclusion: The dose calculation algorithm and heterogeneity correction did not change the risk categorization. Since higher estimated doses delivered to CIED do not compromise treatment precautions to be taken, it’s recommend that the most sophisticated algorithm available should be used to predict dose at the CIED using heterogeneity correction.

  12. SU-F-T-452: Influence of Dose Calculation Algorithm and Heterogeneity Correction On Risk Categorization of Patients with Cardiac Implanted Electronic Devices Undergoing Radiotherapy

    International Nuclear Information System (INIS)

    Iwai, P; Lins, L Nadler

    2016-01-01

    Purpose: There is a lack of studies with significant cohort data about patients using pacemaker (PM), implanted cardioverter defibrillator (ICD) or cardiac resynchronization therapy (CRT) device undergoing radiotherapy. There is no literature comparing the cumulative doses delivered to those cardiac implanted electronic devices (CIED) calculated by different algorithms neither studies comparing doses with heterogeneity correction or not. The aim of this study was to evaluate the influence of the algorithms Pencil Beam Convolution (PBC), Analytical Anisotropic Algorithm (AAA) and Acuros XB (AXB) as well as heterogeneity correction on risk categorization of patients. Methods: A retrospective analysis of 19 3DCRT or IMRT plans of 17 patients was conducted, calculating the dose delivered to CIED using three different calculation algorithms. Doses were evaluated with and without heterogeneity correction for comparison. Risk categorization of the patients was based on their CIED dependency and cumulative dose in the devices. Results: Total estimated doses at CIED calculated by AAA or AXB were higher than those calculated by PBC in 56% of the cases. In average, the doses at CIED calculated by AAA and AXB were higher than those calculated by PBC (29% and 4% higher, respectively). The maximum difference of doses calculated by each algorithm was about 1 Gy, either using heterogeneity correction or not. Values of maximum dose calculated with heterogeneity correction showed that dose at CIED was at least equal or higher in 84% of the cases with PBC, 77% with AAA and 67% with AXB than dose obtained with no heterogeneity correction. Conclusion: The dose calculation algorithm and heterogeneity correction did not change the risk categorization. Since higher estimated doses delivered to CIED do not compromise treatment precautions to be taken, it’s recommend that the most sophisticated algorithm available should be used to predict dose at the CIED using heterogeneity correction.

  13. Higher order QCD corrections in small x physics

    International Nuclear Information System (INIS)

    Chachamis, G.

    2006-11-01

    We study higher order QCD corrections in small x Physics. The numerical implementation of the full NLO photon impact factor is the remaining necessary piece for the testing of the NLO BFKL resummation against data from physical processes, such as γ * γ * collisions. We perform the numerical integration over phase space for the virtual corrections to the NLO photon impact factor. This, along with the previously calculated real corrections, makes feasible in the near future first estimates for the γ*γ* total cross section, since the convolution of the full impact factor with the NLO BFKL gluon Green's function is now straightforward. The NLO corrections for the photon impact factor are sizeable and negative. In the second part of this thesis, we estimate higher order correction to the BK equation. We are mainly interested in whether partonic saturation delays or not in rapidity when going beyond the leading order. In our investigation, we use the so called 'rapidity veto' which forbid two emissions to be very close in rapidity, to 'switch on' higher order corrections to the BK equation. From analytic and numerical analysis, we conclude that indeed saturation does delay in rapidity when higher order corrections are taken into account. In the last part, we investigate higher order QCD corrections as additional corrections to the Electroweak (EW) sector. The question of whether BFKL corrections are of any importance in the Regge limit for the EW sector seems natural; although they arise in higher loop level, the accumulation of logarithms in energy s at high energies, cannot be dismissed without an investigation. We focus on the process γγ→ZZ. We calculate the pQCD corrections in the forward region at leading logarithmic (LL) BFKL accuracy, which are of the order of few percent at the TeV energy scale. (orig.)

  14. Higher order QCD corrections in small x physics

    Energy Technology Data Exchange (ETDEWEB)

    Chachamis, G.

    2006-11-15

    We study higher order QCD corrections in small x Physics. The numerical implementation of the full NLO photon impact factor is the remaining necessary piece for the testing of the NLO BFKL resummation against data from physical processes, such as {gamma}{sup *}{gamma}{sup *} collisions. We perform the numerical integration over phase space for the virtual corrections to the NLO photon impact factor. This, along with the previously calculated real corrections, makes feasible in the near future first estimates for the {gamma}*{gamma}* total cross section, since the convolution of the full impact factor with the NLO BFKL gluon Green's function is now straightforward. The NLO corrections for the photon impact factor are sizeable and negative. In the second part of this thesis, we estimate higher order correction to the BK equation. We are mainly interested in whether partonic saturation delays or not in rapidity when going beyond the leading order. In our investigation, we use the so called 'rapidity veto' which forbid two emissions to be very close in rapidity, to 'switch on' higher order corrections to the BK equation. From analytic and numerical analysis, we conclude that indeed saturation does delay in rapidity when higher order corrections are taken into account. In the last part, we investigate higher order QCD corrections as additional corrections to the Electroweak (EW) sector. The question of whether BFKL corrections are of any importance in the Regge limit for the EW sector seems natural; although they arise in higher loop level, the accumulation of logarithms in energy s at high energies, cannot be dismissed without an investigation. We focus on the process {gamma}{gamma}{yields}ZZ. We calculate the pQCD corrections in the forward region at leading logarithmic (LL) BFKL accuracy, which are of the order of few percent at the TeV energy scale. (orig.)

  15. Self-interaction corrected density functional calculations of molecular Rydberg states

    International Nuclear Information System (INIS)

    Gudmundsdóttir, Hildur; Zhang, Yao; Weber, Peter M.; Jónsson, Hannes

    2013-01-01

    A method is presented for calculating the wave function and energy of Rydberg excited states of molecules. A good estimate of the Rydberg state orbital is obtained using ground state density functional theory including Perdew-Zunger self-interaction correction and an optimized effective potential. The total energy of the excited molecule is obtained using the Delta Self-Consistent Field method where an electron is removed from the highest occupied orbital and placed in the Rydberg orbital. Results are presented for the first few Rydberg states of NH 3 , H 2 O, H 2 CO, C 2 H 4 , and N(CH 3 ) 3 . The mean absolute error in the energy of the 33 molecular Rydberg states presented here is 0.18 eV. The orbitals are represented on a real space grid, avoiding the dependence on diffuse atomic basis sets. As in standard density functional theory calculations, the computational effort scales as NM 2 where N is the number of orbitals and M is the number of grid points included in the calculation. Due to the slow scaling of the computational effort with system size and the high level of parallelism in the real space grid approach, the method presented here makes it possible to estimate Rydberg electron binding energy in large molecules

  16. Contribution to the G0 experiment about parity violation: calculation and simulation of radiative corrections, study of the background noise

    International Nuclear Information System (INIS)

    Guler, H.

    2003-12-01

    In the framework of quantum chromodynamics, the nucleon is made of three valence quarks surrounded by a sea of gluons and quark-antiquark pairs. Only the only lightest quarks (u, d and s) contribute significantly to the nucleon properties. In G 0 we use the property of weak interaction to violate parity symmetry, in order to determine separately the contributions of the three types of quarks to nucleon form factors. The experiment, which takes place at Thomas Jefferson laboratory (USA), aims at measuring parity violation asymmetry in electron-proton scattering. By doing several measurements at different momentum squared of the exchanged photons and for different kinematics (forward angle when the proton is detected and backward angle it will be the electron) will permit to determine separately strange quarks electric and magnetic contributions to nucleon form factors. To extract an asymmetry with small errors, it is necessary to correct all the beam parameters, and to have high enough counting rates in detectors. A special electronics was developed to treat information coming from 16 scintillator pairs for each of the 8 sectors of the G 0 spectrometer. A complete calculation of radiative corrections has been done and Monte Carlo simulations with the GEANT program has permitted to determine the shape of the experimental spectra including inelastic background. This work will allow to do a comparison between experimental data and theoretical calculations based on the Standard Model. (author)

  17. Statistical calculation of hot channel factors

    International Nuclear Information System (INIS)

    Farhadi, K.

    2007-01-01

    It is a conventional practice in the design of nuclear reactors to introduce hot channel factors to allow for spatial variations of power generation and flow distribution. Consequently, it is not enough to be able to calculate the nominal temperature distributions of fuel element, cladding, coolant, and central fuel. Indeed, one must be able to calculate the probability that the imposed temperature or heat flux limits in the entire core is not exceeded. In this paper, statistical methods are used to calculate hot channel factors for a particular case of a heterogeneous, Material Testing Reactor (MTR) and compare the results obtained from different statistical methods. It is shown that among the statistical methods available, the semi-statistical method is the most reliable one

  18. Power factor correction (PFC) converters feeding brushless DC ...

    African Journals Online (AJOL)

    DR OKE

    1Department of Electrical Engineering, Indian Institute of Technology Delhi, INDIA ... Hence, power factor correction (PFC) converters are used for achieving a unity ...... He is currently working as a Systems Engineer (Power IC) in AvantGarde ...

  19. Effect of precipitation bias correction on water budget calculation in Upper Yellow River, China

    International Nuclear Information System (INIS)

    Ye Baisheng; Yang Daqing; Ma Lijuan

    2012-01-01

    This study quantifies the effect of precipitation bias corrections on basin water balance calculations for the Yellow River Source region (YRS). We analyse long-term (1959–2001) monthly and yearly data of precipitation, runoff, and ERA-40 water budget variables and define a water balance regime. Basin precipitation, evapotranspiration and runoff are high in summer and low in winter. The basin water storage change is positive in summer and negative in winter. Monthly precipitation bias corrections, ranging from 2 to 16 mm, do not significantly alter the pattern of the seasonal water budget. The annual bias correction of precipitation is about 98 mm (19%); this increase leads to the same amount of evapotranspiration increase, since yearly runoff remains unchanged and the long-term storage change is assumed to be zero. Annual runoff and evapotranspiration coefficients change, due to precipitation bias corrections, from 0.33 and 0.67 to 0.28 and 0.72, respectively. These changes will impact the parameterization and calibration of land surface and hydrological models. The bias corrections of precipitation data also improve the relationship between annual precipitation and runoff. (letter)

  20. MONOTONIC DERIVATIVE CORRECTION FOR CALCULATION OF SUPERSONIC FLOWS WITH SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-07-01

    Full Text Available Subject of Research. Numerical solution methods of gas dynamics problems based on exact and approximate solution of Riemann problem are considered. We have developed an approach to the solution of Euler equations describing flows of inviscid compressible gas based on finite volume method and finite difference schemes of various order of accuracy. Godunov scheme, Kolgan scheme, Roe scheme, Harten scheme and Chakravarthy-Osher scheme are used in calculations (order of accuracy of finite difference schemes varies from 1st to 3rd. Comparison of accuracy and efficiency of various finite difference schemes is demonstrated on the calculation example of inviscid compressible gas flow in Laval nozzle in the case of continuous acceleration of flow in the nozzle and in the case of nozzle shock wave presence. Conclusions about accuracy of various finite difference schemes and time required for calculations are made. Main Results. Comparative analysis of difference schemes for Euler equations integration has been carried out. These schemes are based on accurate and approximate solution for the problem of an arbitrary discontinuity breakdown. Calculation results show that monotonic derivative correction provides numerical solution uniformity in the breakdown neighbourhood. From the one hand, it prevents formation of new points of extremum, providing the monotonicity property, but from the other hand, causes smoothing of existing minimums and maximums and accuracy loss. Practical Relevance. Developed numerical calculation method gives the possibility to perform high accuracy calculations of flows with strong non-stationary shock and detonation waves. At the same time, there are no non-physical solution oscillations on the shock wave front.

  1. Healthy brain ageing assessed with 18F-FDG PET and age-dependent recovery factors after partial volume effect correction

    Energy Technology Data Exchange (ETDEWEB)

    Bonte, Stijn [IBiTech, Ghent, (Belgium); Ghent University, iMinds - Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Ghent (Belgium); University Hospital, Department of Radiology and Nuclear Medicine, Ghent (Belgium); Vandemaele, Pieter; Deblaere, Karel; Goethals, Ingeborg [University Hospital, Department of Radiology and Nuclear Medicine, Ghent (Belgium); Verleden, Stijn; Audenaert, Kurt [University Hospital, Department of Psychiatry, Ghent (Belgium); Holen, Roel van [Ghent University, iMinds - Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Ghent (Belgium)

    2017-05-15

    The mechanisms of ageing of the healthy brain are not entirely clarified to date. In recent years several authors have tried to elucidate this topic by using {sup 18}F-FDG positron emission tomography. However, when correcting for partial volume effects (PVE), divergent results were reported. Therefore, it is necessary to evaluate these methods in the presence of atrophy due to ageing. In this paper we first evaluate the performance of two PVE correction techniques with a phantom study: the Rousset method and iterative deconvolution. We show that the ability of the latter method to recover the true activity in a small region decreases with increasing age due to brain atrophy. Next, we have calculated age-dependent recovery factors to correct for this incomplete recovery. These factors were applied to PVE-corrected {sup 18}F-FDG PET scans of healthy subjects for mapping the agedependent metabolism in the brain. Many regions in the brain show a reduced metabolism with ageing, especially in grey matter in the frontal and temporal lobe. An increased metabolism is found in grey matter of the cerebellum and thalamus. Our study resulted in age-dependent recovery factors which can be applied following standard PVE correction methods. Cancelling the effect of atrophy, we found regional changes in {sup 18}F-FDG metabolism with ageing. A decreasing trend is found in the frontal and temporal lobe, whereas an increasing metabolism with ageing is observed in the thalamus and cerebellum.

  2. Effects of projection and background correction method upon calculation of right ventricular ejection fraction using first-pass radionuclide angiography

    International Nuclear Information System (INIS)

    Caplin, J.L.; Flatman, W.D.; Dymond, D.S.

    1985-01-01

    There is no consensus as to the best projection or correction method for first-pass radionuclide studies of the right ventricle. We assessed the effects of two commonly used projections, 30 degrees right anterior oblique and anterior-posterior, on the calculation of right ventricular ejection fraction. In addition two background correction methods, planar background correction to account for scatter, and right atrial correction to account for right atrio-ventricular overlap were assessed. Two first-pass radionuclide angiograms were performed in 19 subjects, one in each projection, using gold-195m (half-life 30.5 seconds), and each study was analysed using the two methods of correction. Right ventricular ejection fraction was highest using the right anterior oblique projection with right atrial correction 35.6 +/- 12.5% (mean +/- SD), and lowest when using the anterior posterior projection with planar background correction 26.2 +/- 11% (p less than 0.001). The study design allowed assessment of the effects of correction method and projection independently. Correction method appeared to have relatively little effect on right ventricular ejection fraction. Using right atrial correction correlation coefficient (r) between projections was 0.92, and for planar background correction r = 0.76, both p less than 0.001. However, right ventricular ejection fraction was far more dependent upon projection. When the anterior-posterior projection was used calculated right ventricular ejection fraction was much more dependent on correction method (r = 0.65, p = not significant), than using the right anterior oblique projection (r = 0.85, p less than 0.001)

  3. Contribution to the G0 violation of parity experience: calculation and simulation of radiative corrections and the background noise study; Contribution a l'experience G0 de violation de la parite : calcul et simulation des corrections radiatives et etude du bruit de fond

    Energy Technology Data Exchange (ETDEWEB)

    Guler, Hayg [Univ. of Paris, Orsay (France)

    2003-12-17

    In the framework of quantum chromodynamics, the nucleon is made of three valence quarks surrpounded by a sea of gluons and quark-antiquark pairs. Only the only lightest quarks (u, d and s) contribute significantly to the nucleon properties. In Go we using the property of weak interaction to violate parity symmetry, in order to determine separately the contributions of the three types of quarks to nucleon form factors. The experiment, which takes place at Thomas Jefferson laboratory (USA), aims at measuring parity violation asymmetry in electron-proton scattering. By doing several measurements at different momentum squared of the exchanged photons and for different kinematics (forward angle when the proton is detected and backward angle it will be the electron) will permit to determine separately strange quarks electric and magnetic contributions to nucleon form factors. To extract an asymmetry with small errors, it is necessary to correct all the beam parameters, and to have high enough counting rates in detectors. A special electronics was developed to treat information coming from 16 scintillator pairs for each of the 8 sectors of the Go spectrometer. A complete calculation of radiative corrections has been clone and Monte Carlo simulations with the GEANT program has permitted to determine the shape of the experimental spectra including inelastic background. This work will allow to do a comparison between experimental data and theoretical calculations based on the Standard Model.

  4. Contribution to the G{sup 0} experiment about parity violation: calculation and simulation of radiative corrections, study of the background noise; Contribution a l'experience G{sup 0} de violation de la parite: calcul et simulation des corrections radiatives et etude de bruit de fond

    Energy Technology Data Exchange (ETDEWEB)

    Guler, H

    2003-12-01

    In the framework of quantum chromodynamics, the nucleon is made of three valence quarks surrounded by a sea of gluons and quark-antiquark pairs. Only the only lightest quarks (u, d and s) contribute significantly to the nucleon properties. In G{sup 0} we use the property of weak interaction to violate parity symmetry, in order to determine separately the contributions of the three types of quarks to nucleon form factors. The experiment, which takes place at Thomas Jefferson laboratory (USA), aims at measuring parity violation asymmetry in electron-proton scattering. By doing several measurements at different momentum squared of the exchanged photons and for different kinematics (forward angle when the proton is detected and backward angle it will be the electron) will permit to determine separately strange quarks electric and magnetic contributions to nucleon form factors. To extract an asymmetry with small errors, it is necessary to correct all the beam parameters, and to have high enough counting rates in detectors. A special electronics was developed to treat information coming from 16 scintillator pairs for each of the 8 sectors of the G{sup 0} spectrometer. A complete calculation of radiative corrections has been done and Monte Carlo simulations with the GEANT program has permitted to determine the shape of the experimental spectra including inelastic background. This work will allow to do a comparison between experimental data and theoretical calculations based on the Standard Model. (author)

  5. Fault of the correction factor for pressure and temperature kPT in the atmospheric conditions of Dosimetric Calibration Lab. - LSCD of ININ - Mexico

    International Nuclear Information System (INIS)

    Alvarez R, Jose T.; Jesus Cejudo, A.; La Cruz H., Daniel de; Tovar M, Victor M.

    2013-01-01

    The realization of the operational quantities H*, Hp y/0 H'(0.07) for estimating the effective dose E, usually is done by measuring the air kerma Ka air within the field of ionizing radiation of interest and was subsequently applied appropriate conversion factors for both the quality of radiation and the operational quantity of interest. However, the SSDL in performing the Ka to environmental conditions of ININ (3000 m above sea level, P ∼ 710 hPa) with ionization chambers has found that the pressure correction factor and kPT temperature is not sufficient to correct the change in air density. Indeed, in the case of 60 Co the discrepancy between the measurement of a primary standard graphite walls Ka (BEV CC01 be 131) and a side of the plastic walls (Exradin A12) is on the order of 0.4% for the case of the RX BIPM qualities to 100,135, 180 and 250 kV. It was found that for a camera model 30001 PTW (PMMA graphite wall) is needed an additional correction factor k PT ranging from 0.4% to 1.5%, correction factor calculated by MC simulation. For Sk of 125 I brachytherapy sources was given an additional correction lower in 11% compared to conventional k PT value measured with a well chamber Standard Imaging HDR 1000 plus. Finally, it is in the process of studying the behavior of this additional correction factor to the case of 137 Cs

  6. Optical conductivity calculation of a k.p model semiconductor GaAs incorporating first-order electron-hole vertex correction

    Science.gov (United States)

    Nurhuda, Maryam; Aziz Majidi, Muhammad

    2018-04-01

    The role of excitons in semiconducting materials carries potential applications. Experimental results show that excitonic signals also appear in optical absorption spectra of semiconductor system with narrow gap, such as Gallium Arsenide (GaAs). While on the theoretical side, calculation of optical spectra based purely on Density Functional Theory (DFT) without taking electron-hole (e-h) interactions into account does not lead to the appearance of any excitonic signal. Meanwhile, existing DFT-based algorithms that include a full vertex correction through Bethe-Salpeter equation may reveal an excitonic signal, but the algorithm has not provided a way to analyze the excitonic signal further. Motivated to provide a way to isolate the excitonic effect in the optical response theoretically, we develop a method of calculation for the optical conductivity of a narrow band-gap semiconductor GaAs within the 8-band k.p model that includes electron-hole interactions through first-order electron-hole vertex correction. Our calculation confirms that the first-order e-h vertex correction reveals excitonic signal around 1.5 eV (the band gap edge), consistent with the experimental data.

  7. Spatial correction factors for YALINA Booster facility loaded with medium and low enriched fuels

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Bournos, V.; Fokov, Y.; Kiyavitskaya, H.; Routkovskaya, C.

    2012-01-01

    The Bell and Glasstone spatial correction factor is used in analyses of subcritical assemblies to correct the experimental reactivity as function of the detector position. Besides the detector position, several other parameters affect the correction factor: the energy weighting function of the detector, the detector size, the energy-angle distribution of source neutrons, and the reactivity of the subcritical assembly. This work focuses on the dependency of the correction factor on the detector material and it investigates the YALINA Booster subcritical assembly loaded with medium (36%) and low (10%) enriched fuels. (authors)

  8. Spatial correction factors for YALINA Booster facility loaded with medium and low enriched fuels

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Bournos, V.; Fokov, Y.; Kiyavitskaya, H.; Routkovskaya, C. [Joint Inst. for Power and Nuclear Research-Sosny, 99 Academician A.K.Krasin Str, Minsk 220109 (Belarus)

    2012-07-01

    The Bell and Glasstone spatial correction factor is used in analyses of subcritical assemblies to correct the experimental reactivity as function of the detector position. Besides the detector position, several other parameters affect the correction factor: the energy weighting function of the detector, the detector size, the energy-angle distribution of source neutrons, and the reactivity of the subcritical assembly. This work focuses on the dependency of the correction factor on the detector material and it investigates the YALINA Booster subcritical assembly loaded with medium (36%) and low (10%) enriched fuels. (authors)

  9. 75 FR 5536 - Pipeline Safety: Control Room Management/Human Factors, Correction

    Science.gov (United States)

    2010-02-03

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Parts...: Control Room Management/Human Factors, Correction AGENCY: Pipeline and Hazardous Materials Safety... following correcting amendments: PART 192--TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM...

  10. Resistivity Correction Factor for the Four-Probe Method: Experiment I

    Science.gov (United States)

    Yamashita, Masato; Yamaguchi, Shoji; Enjoji, Hideo

    1988-05-01

    Experimental verification of the theoretically derived resistivity correction factor (RCF) is presented. Resistivity and sheet resistance measurements by the four-probe method are made on three samples: isotropic graphite, ITO film and Au film. It is indicated that the RCF can correct the apparent variations of experimental data to yield reasonable resistivities and sheet resistances.

  11. Power factor correction (PFC) converters feeding brushless DC ...

    African Journals Online (AJOL)

    This paper presents a comprehensive study of power factor correction (PFC) converters for feeding brushless DC (BLDC) motor drive. This work explores various configurations of PFC converters which are classified into five different categories of non-isolated, bridgeless (BL) non-isolated, isolated, BL-isolated PFC ...

  12. Blackbody-radiation correction to the polarizability of helium

    International Nuclear Information System (INIS)

    Puchalski, M.; Jentschura, U. D.; Mohr, P. J.

    2011-01-01

    The correction to the polarizability of helium due to blackbody radiation is calculated near room temperature. A precise theoretical determination of the blackbody radiation correction to the polarizability of helium is essential for dielectric gas thermometry and for the determination of the Boltzmann constant. We find that the correction, for not too high temperature, is roughly proportional to a modified hyperpolarizability (two-color hyperpolarizability), which is different from the ordinary hyperpolarizability of helium. Our explicit calculations provide a definite numerical result for the effect and indicate that the effect of blackbody radiation can be excluded as a limiting factor for dielectric gas thermometry using helium or argon.

  13. Calculation of pion form factor

    International Nuclear Information System (INIS)

    Vahedi, N.; Amirarjomand, S.

    1975-09-01

    The pion form factor is calculated using the structure function Wsub(2), which incorporates kinematical constraints, threshold behaviour and scaling. The Bloom-Gilman sum rule is used and only the two leading Regge trajectories are taken into account

  14. A screening-corrected additivity rule for the calculation of electron scattering from macro-molecules

    International Nuclear Information System (INIS)

    Blanco, F; Garcia, G

    2009-01-01

    A simplified form of the well-known screening-corrected additivity rule procedure for the calculation of electron-molecule cross sections is proposed for the treatment of some very large macro-molecules. While the comparison of the standard and simplified treatments for a DNA dodecamer reveals very similar results, the new treatment presents some important advantages for large molecules.

  15. The strategy of spectral shifts and the sets of correct methods for calculating eigenvalues of general tridiagonal matrices

    International Nuclear Information System (INIS)

    Emel'yanenko, G.A.; Sek, I.E.

    1988-01-01

    Many correctable unknown methods for eigenvalue calculation of general tridiagonal matrices with real elements; criteria of singular tridiagonal matrices; necessary and sufficient conditions of tridiagonal matrix degeneracy; process with boundary conditions according to calculation processes of general upper and lower tridiagonal matrix minors are obtained. 6 refs

  16. Calculation of nucleon electromagnetic form factors

    International Nuclear Information System (INIS)

    Renner, D.B.; Brower, R.; Dolgov, D.; Eicker, N.; Lippert, Th.; Negele, J.W.; Pochinsky, A.; Schilling, K.

    2003-01-01

    The formalism is developed to express nucleon matrix elements of the electromagnetic current in terms of form factors consistent with the translational, rotational, and parity symmetries of a cubic lattice. We calculate the number of these form factors and show how appropriate linear combinations approach the continuum limit

  17. Generalized radiative corrections for hadronic targets

    International Nuclear Information System (INIS)

    Calan, C. de; Navelet, H.; Picard, J.

    1990-02-01

    Besides the radiative corrections theory at the order α 2 for reactions involving an arbitrary number of particles, this report gives the complete formula for the correction factor δ in dσ = dσ Born (1 + δ). The only approximation made here - unavoidable in this formulation - is to assume that the Born amplitude can be factorized. This calculation is valid for spin zero bosons. In the 1/2 fermion case, an extra contribution appears which has been analytically computed using a minor approximation. Special care has been devoted to the 1/v divergence of the amplitude near thresholds [fr

  18. Calculated shielding factors for selected European houses

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.

    1984-12-01

    Shielding factors for gamma radiation from activity deposited on structures and ground surfaces have been calculated with the computer model DEPSHIELD for single-family and multi-storey buildings in France, United Kingdom and Denmark. For all three countries it was found that the shielding factors for single-family houses are approximately a factor of 2 - 10 higher that those for buildings with five or more storeys. Away from doors and windows the shielding factors for French, British, and Danish single-family houses are in the range 0.03 - 0.1, 0.06 - 0.4, and 0.07 - 0.3, respectively. The uncertainties of the calculations are discussed and DEPSHIELD-results are compared with other methods as well as with experimental results. (author)

  19. Calculation of coupling factor for double-period accelerating structure

    International Nuclear Information System (INIS)

    Bian Xiaohao; Chen Huaibi; Zheng Shuxin

    2005-01-01

    In the design of the linear accelerating structure, the coupling factor between cavities is a crucial parameter. The error of coupling factor accounts for the electric or magnetic field error mainly. To accurately design the coupling iris, the accurate calculation of coupling factor is essential. The numerical simulation is widely used to calculate the coupling factor now. By using MAFIA code, two methods have been applied to calculate the dispersion characteristics of the single-period structure, one method is to simulate the traveling wave mode by the period boundary condition; another method is to simulate the standing wave mode by the electrical boundary condition. In this work, the authors develop the two methods to calculate the coupling factor of double-period accelerating structure. Compared to experiment, the results for both methods are very similar, and in agreement with measurement within 15% deviation. (authors)

  20. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling

    Science.gov (United States)

    Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C.; Joyce, Kevin P.; Kovalenko, Andriy

    2016-11-01

    Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing (R=0.98 for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining R=0.73 compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to R=0.93. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple pK_{ {a}} correction improved agreement with experiment from R=0.54 to R=0.66, despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.

  1. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling.

    Science.gov (United States)

    Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C; Joyce, Kevin P; Kovalenko, Andriy

    2016-11-01

    Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing ([Formula: see text] for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining [Formula: see text] compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to [Formula: see text]. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple [Formula: see text] correction improved agreement with experiment from [Formula: see text] to [Formula: see text], despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.

  2. Scattering amplitudes and static atomic correction factors for the composition-sensitive 002 reflection in sphalerite ternary III-V and II-VI semiconductors.

    Science.gov (United States)

    Schowalter, M; Müller, K; Rosenauer, A

    2012-01-01

    Modified atomic scattering amplitudes (MASAs), taking into account the redistribution of charge due to bonds, and the respective correction factors considering the effect of static atomic displacements were computed for the chemically sensitive 002 reflection for ternary III-V and II-VI semiconductors. MASAs were derived from computations within the density functional theory formalism. Binary eight-atom unit cells were strained according to each strain state s (thin, intermediate, thick and fully relaxed electron microscopic specimen) and each concentration (x = 0, …, 1 in 0.01 steps), where the lattice parameters for composition x in strain state s were calculated using continuum elasticity theory. The concentration dependence was derived by computing MASAs for each of these binary cells. Correction factors for static atomic displacements were computed from relaxed atom positions by generating 50 × 50 × 50 supercells using the lattice parameter of the eight-atom unit cells. Atoms were randomly distributed according to the required composition. Polynomials were fitted to the composition dependence of the MASAs and the correction factors for the different strain states. Fit parameters are given in the paper.

  3. Dose calculations for irregular fields using three-dimensional first-scatter integration

    International Nuclear Information System (INIS)

    Boesecke, R.; Scharfenberg, H.; Schlegel, W.; Hartmann, G.H.

    1986-01-01

    This paper describes a method of dose calculations for irregular fields which requires only the mean energy of the incident photons, the geometrical properties of the irregular field and of the therapy unit, and the attenuation coefficient of tissue. The method goes back to an approach including spatial aspects of photon scattering for inhomogeneities for the calculation of dose reduction factors as proposed by Sontag and Cunningham (1978). It is based on the separation of dose into a primary component and a scattered component. The scattered component can generally be calculated for each field by integration over dose contributions from scattering in neighbouring volume elements. The quotient of this scattering contribution in the irregular field and the scattering contribution in the equivalent open field is then the correction factor for scattering in an irregular field. A correction factor for the primary component can be calculated if the attenuation of the photons in the shielding block is properly taken into account. The correction factor is simply given by the quotient of primary photons of the irregular field and the primary photons of the open field. (author)

  4. Attenuation correction method for single photon emission CT

    Energy Technology Data Exchange (ETDEWEB)

    Morozumi, Tatsuru; Nakajima, Masato [Keio Univ., Yokohama (Japan). Faculty of Science and Technology; Ogawa, Koichi; Yuta, Shinichi

    1983-10-01

    A correction method (Modified Correction Matrix method) is proposed to implement iterative correction by exactly measuring attenuation constant distribution in a test body, calculating a correction factor for every picture element, then multiply the image by these factors. Computer simulation for the comparison of the results showed that the proposed method was specifically more effective to an application to the test body, in which the rate of attenuation constant change is large, than the conventional correction matrix method. Since the actual measurement data always contain quantum noise, the noise was taken into account in the simulation. However, the correction effect was large even under the noise. For verifying its clinical effectiveness, the experiment using an acrylic phantom was also carried out. As the result, the recovery of image quality in the parts with small attenuation constant was remarkable as compared with the conventional method.

  5. Determination of self absorption correction factor (SAF) for gross alpha measurement in water samples by BIS method

    International Nuclear Information System (INIS)

    Raveendran, Nanda; Baburajan, A.; Ravi, P.M.

    2018-01-01

    The laboratories accredited by AERB undertake the measurement of gross alpha and gross beta in packaged drinking water from manufactures across the country and analyze as per the procedure of Bureau of Indian standards. The accurate measurements of gross alpha in the drinking water sample is a challenge due to the self absorption of alpha particle from varying precipitate (Fe(OH) 3 +BaSO 4 ) thickness and total dissolved solids (TDS). This paper deals with a study on tracer recovery generation and self absorption correction factor (SAF). ESL, Tarapur has participated in an inter-laboratory comparison exercise conducted by IDS, RSSD, BARC as per the recommendation of AERB for the accredited laboratories. The thickness of the precipitate is an important aspect which affected the counting process. The activity was reported after conducting multiple experiments with uranium tracer recovery and precipitate thickness. Later on to make our efforts simplified, an average tracer recovery and Self Absorption correction Factor (SAF) was derived by the present experiment and the same was used for the re-calculation of activity from the count rate reported earlier

  6. CdSe/CdTe interface band gaps and band offsets calculated using spin-orbit and self-energy corrections

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, M. [Centro de Pesquisas Avancadas Wernher von Braun, Av. Alice de Castro P.N. Mattosinho 301, CEP 13098-392 Campinas, SP (Brazil); Ferreira, L.G. [Departamento de Fisica dos Materiais e Mecanica, Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo, SP (Brazil); Fonseca, L.R.C. [Center for Semiconductor Components, State University of Campinas, R. Pandia Calogeras 90, 13083-870 Campinas, SP (Brazil); Ramprasad, R. [Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269 (United States)

    2012-09-20

    We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe, and their interface band alignments on the CdSe in-plane lattice parameters. For this, we employed the LDA-1/2 self-energy correction scheme to obtain corrected band gaps and band offsets. Our calculations include the spin-orbit effects for the bulk cases, which have shown to be of importance for the equilibrium systems and are possibly degraded in these strained semiconductors. Therefore, the SO showed reduced importance for the band alignment of this particular system. Moreover, the electronic structure calculated along the transition region across the CdSe/CdTe interface shows an interesting non-monotonic variation of the band gap in the range 0.8-1.8 eV, which may enhance the absorption of light for corresponding frequencies at the interface between these two materials in photovoltaic applications.

  7. Refined shear correction factor for very thick simply supported and uniformly loaded isosceles right triangular auxetic plates

    International Nuclear Information System (INIS)

    Lim, Teik-Cheng

    2016-01-01

    For moderately thick plates, the use of First order Shear Deformation Theory (FSDT) with a constant shear correction factor of 5/6 is sufficient to take into account the plate deflection arising from transverse shear deformation. For very thick plates, the use of Third order Shear Deformation Theory (TSDT) is preferred as it allows the shear strain distribution to be varied through the plate thickness. Therefore no correction factor is required in TSDT, unlike FSDT. Due to the complexity involved in TSDT, this paper obtains a more accurate shear correction factor for use in FSDT of very thick simply supported and uniformly loaded isosceles right triangular plates based on the TSDT. By matching the maximum deflections for this plate according to FSDT and TSDT, a variable shear correction factor is obtained. Results show that the shear correction factor for the simplified TSDT, i.e. 14/17, is least accurate. The commonly adopted shear correction factor of 5/6 in FSDT is valid only for very thin or highly auxetic plates. This paper provides a variable shear correction for FSDT deflection that matches the plate deflection by TSDT. This variable shear correction factor allows designers to justify the use of a commonly adopted shear correction factor of 5/6 even for very thick plates as long as the Poisson’s ratio of the plate material is sufficiently negative. (paper)

  8. Journal Impact Factor: Do the Numerator and Denominator Need Correction?

    Science.gov (United States)

    Liu, Xue-Li; Gai, Shuang-Shuang; Zhou, Jing

    2016-01-01

    To correct the incongruence of document types between the numerator and denominator in the traditional impact factor (IF), we make a corresponding adjustment to its formula and present five corrective IFs: IFTotal/Total, IFTotal/AREL, IFAR/AR, IFAREL/AR, and IFAREL/AREL. Based on a survey of researchers in the fields of ophthalmology and mathematics, we obtained the real impact ranking of sample journals in the minds of peer experts. The correlations between various IFs and questionnaire score were analyzed to verify their journal evaluation effects. The results show that it is scientific and reasonable to use five corrective IFs for journal evaluation for both ophthalmology and mathematics. For ophthalmology, the journal evaluation effects of the five corrective IFs are superior than those of traditional IF: the corrective effect of IFAR/AR is the best, IFAREL/AR is better than IFTotal/Total, followed by IFTotal/AREL, and IFAREL/AREL. For mathematics, the journal evaluation effect of traditional IF is superior than those of the five corrective IFs: the corrective effect of IFTotal/Total is best, IFAREL/AR is better than IFTotal/AREL and IFAREL/AREL, and the corrective effect of IFAR/AR is the worst. In conclusion, not all disciplinary journal IF need correction. The results in the current paper show that to correct the IF of ophthalmologic journals may be valuable, but it seems to be meaningless for mathematic journals. PMID:26977697

  9. Empirical Derivation of Correction Factors for Human Spiral Ganglion Cell Nucleus and Nucleolus Count Units.

    Science.gov (United States)

    Robert, Mark E; Linthicum, Fred H

    2016-01-01

    Profile count method for estimating cell number in sectioned tissue applies a correction factor for double count (resulting from transection during sectioning) of count units selected to represent the cell. For human spiral ganglion cell counts, we attempted to address apparent confusion between published correction factors for nucleus and nucleolus count units that are identical despite the role of count unit diameter in a commonly used correction factor formula. We examined a portion of human cochlea to empirically derive correction factors for the 2 count units, using 3-dimensional reconstruction software to identify double counts. The Neurotology and House Histological Temporal Bone Laboratory at University of California at Los Angeles. Using a fully sectioned and stained human temporal bone, we identified and generated digital images of sections of the modiolar region of the lower first turn of cochlea, identified count units with a light microscope, labeled them on corresponding digital sections, and used 3-dimensional reconstruction software to identify double-counted count units. For 25 consecutive sections, we determined that double-count correction factors for nucleus count unit (0.91) and nucleolus count unit (0.92) matched the published factors. We discovered that nuclei and, therefore, spiral ganglion cells were undercounted by 6.3% when using nucleolus count units. We determined that correction factors for count units must include an element for undercounting spiral ganglion cells as well as the double-count element. We recommend a correction factor of 0.91 for the nucleus count unit and 0.98 for the nucleolus count unit when using 20-µm sections. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  10. Calculation of coincidence summing corrections for a specific small soil sample geometry

    Energy Technology Data Exchange (ETDEWEB)

    Helmer, R.G.; Gehrke, R.J.

    1996-10-01

    Previously, a system was developed at the INEL for measuring the {gamma}-ray emitting nuclides in small soil samples for the purpose of environmental monitoring. These samples were counted close to a {approx}20% Ge detector and, therefore, it was necessary to take into account the coincidence summing that occurs for some nuclides. In order to improve the technical basis for the coincidence summing corrections, the authors have carried out a study of the variation in the coincidence summing probability with position within the sample volume. A Monte Carlo electron and photon transport code (CYLTRAN) was used to compute peak and total efficiencies for various photon energies from 30 to 2,000 keV at 30 points throughout the sample volume. The geometry for these calculations included the various components of the detector and source along with the shielding. The associated coincidence summing corrections were computed at these 30 positions in the sample volume and then averaged for the whole source. The influence of the soil and the detector shielding on the efficiencies was investigated.

  11. The effect of correction factors on internal bremsstrahlung spectrum

    International Nuclear Information System (INIS)

    Elias, M.M.

    1985-01-01

    Correction factors affecting the experimental spectrum of internal bremsstrahlung (IB) accompanying B-decay have been studied. A wide survey of previous experimental studies, show a discrepancy between experimental results and the available theories of IB production especially for heavy nuclides and forbidden B-transitions, with some agreement in bounded regions in IB spectrum. This is due to the uncertainity in evaluating correction factors and neglecting others. The experimental distributions of IB from 147 Pm, 204 Tl and 90 Y are measured by using two different crystals of NaI(Tl) scintillators (2''x2'' and 3'''x3'') with suitable geometrical arrangements designed to minimize the effect of several factors. The present study covers overlapped ranges of energy from 0.05 to 2.2 MeV to observe the effect of these factors along this wide region of energy. The experimental probabilities are compared with theories. It agrees fairly well with Lewis and Ford theory in case of 14 '7Pm, 204 Tl, and with detour transitions theory in the intermediate region of energies of IB spectrum from 90 Y. Deviation of our results from theories is less than all previous experimental work. 20 tabs.; 43 figs.; 84 refs.; 5 apps

  12. TU-F-CAMPUS-T-05: A Cloud-Based Monte Carlo Dose Calculation for Electron Cutout Factors

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T; Bush, K [Stanford School of Medicine, Stanford, CA (United States)

    2015-06-15

    Purpose: For electron cutouts of smaller sizes, it is necessary to verify electron cutout factors due to perturbations in electron scattering. Often, this requires a physical measurement using a small ion chamber, diode, or film. The purpose of this study is to develop a fast Monte Carlo based dose calculation framework that requires only a smart phone photograph of the cutout and specification of the SSD and energy to determine the electron cutout factor, with the ultimate goal of making this cloud-based calculation widely available to the medical physics community. Methods: The algorithm uses a pattern recognition technique to identify the corners of the cutout in the photograph as shown in Figure 1. It then corrects for variations in perspective, scaling, and translation of the photograph introduced by the user’s positioning of the camera. Blob detection is used to identify the portions of the cutout which comprise the aperture and the portions which are cutout material. This information is then used define physical densities of the voxels used in the Monte Carlo dose calculation algorithm as shown in Figure 2, and select a particle source from a pre-computed library of phase-spaces scored above the cutout. The electron cutout factor is obtained by taking a ratio of the maximum dose delivered with the cutout in place to the dose delivered under calibration/reference conditions. Results: The algorithm has been shown to successfully identify all necessary features of the electron cutout to perform the calculation. Subsequent testing will be performed to compare the Monte Carlo results with a physical measurement. Conclusion: A simple, cloud-based method of calculating electron cutout factors could eliminate the need for physical measurements and substantially reduce the time required to properly assure accurate dose delivery.

  13. Determination of the Kwall correction factor for a cylindrical ionization chamber to measure air-kerma in 60Co gamma beams

    International Nuclear Information System (INIS)

    Laitano, R.F.; Toni, M.P.; Pimpinella, M.; Bovi, M.

    2002-01-01

    The factor K wall to correct for photon attenuation and scatter in the wall of ionization chambers for 60 Co air-kerma measurement has been traditionally determined by a procedure based on a linear extrapolation of the chamber current to zero wall thickness. Monte Carlo calculations by Rogers and Bielajew (1990 Phys. Med. Biol. 35 1065-78) provided evidence, mostly for chambers of cylindrical and spherical geometry, of appreciable deviations between the calculated values of K wall and those obtained by the traditional extrapolation procedure. In the present work an experimental method other than the traditional extrapolation procedure was used to determine the K wall factor. In this method the dependence of the ionization current in a cylindrical chamber was analysed as a function of an effective wall thickness in place of the physical (radial) wall thickness traditionally considered in this type of measurement. To this end the chamber wall was ideally divided into distinct regions and for each region an effective thickness to which the chamber current correlates was determined. A Monte Carlo calculation of attenuation and scatter effects in the different regions of the chamber wall was also made to compare calculation to measurement results. The K wall values experimentally determined in this work agree within 0.2% with the Monte Carlo calculation. The agreement between these independent methods and the appreciable deviation (up to about 1%) between the results of both these methods and those obtained by the traditional extrapolation procedure support the conclusion that the two independent methods providing comparable results are correct and the traditional extrapolation procedure is likely to be wrong. The numerical results of the present study refer to a cylindrical cavity chamber like that adopted as the Italian national air-kerma standard at INMRI-ENEA (Italy). The method used in this study applies, however, to any other chamber of the same type. (author)

  14. Power Factor Correction for Thyristor Equipment in Glass Industry ...

    African Journals Online (AJOL)

    Thyristor power controllers are now widely used in the glass industry for controlling furnace temperature. While offering a number of operational advantages, they operate at lagging power factors which require correction for minimum power cost. Harmonic resonance with the utility feed, however, complicate the use of ...

  15. Relationship between γ detection dead-time and count correction factor

    International Nuclear Information System (INIS)

    Wu Huailong; Zhang Jianhua; Chu Chengsheng; Hu Guangchun; Zhang Changfan; Hu Gen; Gong Jian; Tian Dongfeng

    2015-01-01

    The relationship between dead-time and count correction factor was investigated by using interference source for purpose of high γ activity measurement. The count rates maintain several 10 s"-"l with γ energy of 0.3-1.3 MeV for 10"4-10"5 Bq radioactive source. It is proved that the relationship between count loss and dead-time is unconcerned at various energy and various count intensities. The same correction formula can be used for any nuclide measurement. (authors)

  16. Correction factors to convert microdosimetry measurements in silicon to tissue in 12C ion therapy.

    Science.gov (United States)

    Bolst, David; Guatelli, Susanna; Tran, Linh T; Chartier, Lachlan; Lerch, Michael L F; Matsufuji, Naruhiro; Rosenfeld, Anatoly B

    2017-03-21

    Silicon microdosimetry is a promising technology for heavy ion therapy (HIT) quality assurance, because of its sub-mm spatial resolution and capability to determine radiation effects at a cellular level in a mixed radiation field. A drawback of silicon is not being tissue-equivalent, thus the need to convert the detector response obtained in silicon to tissue. This paper presents a method for converting silicon microdosimetric spectra to tissue for a therapeutic 12 C beam, based on Monte Carlo simulations. The energy deposition spectra in a 10 μm sized silicon cylindrical sensitive volume (SV) were found to be equivalent to those measured in a tissue SV, with the same shape, but with dimensions scaled by a factor κ equal to 0.57 and 0.54 for muscle and water, respectively. A low energy correction factor was determined to account for the enhanced response in silicon at low energy depositions, produced by electrons. The concept of the mean path length [Formula: see text] to calculate the lineal energy was introduced as an alternative to the mean chord length [Formula: see text] because it was found that adopting Cauchy's formula for the [Formula: see text] was not appropriate for the radiation field typical of HIT as it is very directional. [Formula: see text] can be determined based on the peak of the lineal energy distribution produced by the incident carbon beam. Furthermore it was demonstrated that the thickness of the SV along the direction of the incident 12 C ion beam can be adopted as [Formula: see text]. The tissue equivalence conversion method and [Formula: see text] were adopted to determine the RBE 10 , calculated using a modified microdosimetric kinetic model, applied to the microdosimetric spectra resulting from the simulation study. Comparison of the RBE 10 along the Bragg peak to experimental TEPC measurements at HIMAC, NIRS, showed good agreement. Such agreement demonstrates the validity of the developed tissue equivalence correction factors and of

  17. Improved scatter correction with factor analysis for planar and SPECT imaging

    Science.gov (United States)

    Knoll, Peter; Rahmim, Arman; Gültekin, Selma; Šámal, Martin; Ljungberg, Michael; Mirzaei, Siroos; Segars, Paul; Szczupak, Boguslaw

    2017-09-01

    Quantitative nuclear medicine imaging is an increasingly important frontier. In order to achieve quantitative imaging, various interactions of photons with matter have to be modeled and compensated. Although correction for photon attenuation has been addressed by including x-ray CT scans (accurate), correction for Compton scatter remains an open issue. The inclusion of scattered photons within the energy window used for planar or SPECT data acquisition decreases the contrast of the image. While a number of methods for scatter correction have been proposed in the past, in this work, we propose and assess a novel, user-independent framework applying factor analysis (FA). Extensive Monte Carlo simulations for planar and tomographic imaging were performed using the SIMIND software. Furthermore, planar acquisition of two Petri dishes filled with 99mTc solutions and a Jaszczak phantom study (Data Spectrum Corporation, Durham, NC, USA) using a dual head gamma camera were performed. In order to use FA for scatter correction, we subdivided the applied energy window into a number of sub-windows, serving as input data. FA results in two factor images (photo-peak, scatter) and two corresponding factor curves (energy spectra). Planar and tomographic Jaszczak phantom gamma camera measurements were recorded. The tomographic data (simulations and measurements) were processed for each angular position resulting in a photo-peak and a scatter data set. The reconstructed transaxial slices of the Jaszczak phantom were quantified using an ImageJ plugin. The data obtained by FA showed good agreement with the energy spectra, photo-peak, and scatter images obtained in all Monte Carlo simulated data sets. For comparison, the standard dual-energy window (DEW) approach was additionally applied for scatter correction. FA in comparison with the DEW method results in significant improvements in image accuracy for both planar and tomographic data sets. FA can be used as a user

  18. Research on 3-D terrain correction methods of airborne gamma-ray spectrometry survey

    International Nuclear Information System (INIS)

    Liu Yanyang; Liu Qingcheng; Zhang Zhiyong

    2008-01-01

    The general method of height correction is not effectual in complex terrain during the process of explaining airborne gamma-ray spectrometry data, and the 2-D terrain correction method researched in recent years is just available for correction of section measured. A new method of 3-D sector terrain correction is studied. The ground radiator is divided into many small sector radiators by the method, then the irradiation rate is calculated in certain survey distance, and the total value of all small radiate sources is regarded as the irradiation rate of the ground radiator at certain point of aero- survey, and the correction coefficients of every point are calculated which then applied to correct to airborne gamma-ray spectrometry data. The method can achieve the forward calculation, inversion calculation and terrain correction for airborne gamma-ray spectrometry survey in complex topography by dividing the ground radiator into many small sectors. Other factors are considered such as the un- saturated degree of measure scope, uneven-radiator content on ground, and so on. The results of for- ward model and an example analysis show that the 3-D terrain correction method is proper and effectual. (authors)

  19. Neutron activation analysis of copper traces: a study for sodium correction factor

    International Nuclear Information System (INIS)

    Tripathi, A.B.R.; Bhadkambekar, C.A.; Basu, A.K.; Chattopadhyay, N.

    2007-01-01

    Peak ratio correction factors for accurate quantitative determination of copper by NAA via 64 Cu radioisotope in presence of high 24 Na radioactivities has been established. Copper is the principal element as a marker of bullet residues on targets in connection to forensic ballistics cases. Reliable and precise estimation of copper by NAA either via non-destructive way or by resorting to radiochemical separation is of importance in forensic analysis for arriving at definitive inferences. However, majority of samples originating from wearing apparels, paper, leather, skin, glass or any other metal exhibit matrices contain high levels of sodium. The NAA scheme for determination of copper rests on measurements of net counts at 511 KeV which is the positron annihilation peak of 64 Cu. 24 Na also contributes significantly exactly at 511 KeV of gamma energy albeit by different mechanism i.e., by pair production. Therefore, total signal at 511 KeV is contributed by both. The easiest approach for correct estimation of copper traces has been established by the peak ratio correction factor. This has significance as both 64 Cu and 24 Na have comparable half lives, hence, as such time gap measurements cannot improve the situation. The consistency of peak ratio correction factor could be established for a particular geometry. (author)

  20. Factors influencing workplace violence risk among correctional health workers: insights from an Australian survey.

    Science.gov (United States)

    Cashmore, Aaron W; Indig, Devon; Hampton, Stephen E; Hegney, Desley G; Jalaludin, Bin B

    2016-11-01

    Little is known about the environmental and organisational determinants of workplace violence in correctional health settings. This paper describes the views of health professionals working in these settings on the factors influencing workplace violence risk. All employees of a large correctional health service in New South Wales, Australia, were invited to complete an online survey. The survey included an open-ended question seeking the views of participants about the factors influencing workplace violence in correctional health settings. Responses to this question were analysed using qualitative thematic analysis. Participants identified several factors that they felt reduced the risk of violence in their workplace, including: appropriate workplace health and safety policies and procedures; professionalism among health staff; the presence of prison guards and the quality of security provided; and physical barriers within clinics. Conversely, participants perceived workplace violence risk to be increased by: low health staff-to-patient and correctional officer-to-patient ratios; high workloads; insufficient or underperforming security staff; and poor management of violence, especially horizontal violence. The views of these participants should inform efforts to prevent workplace violence among correctional health professionals.

  1. Proton dose calculation on scatter-corrected CBCT image: Feasibility study for adaptive proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang-Kyun, E-mail: ykpark@mgh.harvard.edu; Sharp, Gregory C.; Phillips, Justin; Winey, Brian A. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2015-08-15

    Purpose: To demonstrate the feasibility of proton dose calculation on scatter-corrected cone-beam computed tomographic (CBCT) images for the purpose of adaptive proton therapy. Methods: CBCT projection images were acquired from anthropomorphic phantoms and a prostate patient using an on-board imaging system of an Elekta infinity linear accelerator. Two previously introduced techniques were used to correct the scattered x-rays in the raw projection images: uniform scatter correction (CBCT{sub us}) and a priori CT-based scatter correction (CBCT{sub ap}). CBCT images were reconstructed using a standard FDK algorithm and GPU-based reconstruction toolkit. Soft tissue ROI-based HU shifting was used to improve HU accuracy of the uncorrected CBCT images and CBCT{sub us}, while no HU change was applied to the CBCT{sub ap}. The degree of equivalence of the corrected CBCT images with respect to the reference CT image (CT{sub ref}) was evaluated by using angular profiles of water equivalent path length (WEPL) and passively scattered proton treatment plans. The CBCT{sub ap} was further evaluated in more realistic scenarios such as rectal filling and weight loss to assess the effect of mismatched prior information on the corrected images. Results: The uncorrected CBCT and CBCT{sub us} images demonstrated substantial WEPL discrepancies (7.3 ± 5.3 mm and 11.1 ± 6.6 mm, respectively) with respect to the CT{sub ref}, while the CBCT{sub ap} images showed substantially reduced WEPL errors (2.4 ± 2.0 mm). Similarly, the CBCT{sub ap}-based treatment plans demonstrated a high pass rate (96.0% ± 2.5% in 2 mm/2% criteria) in a 3D gamma analysis. Conclusions: A priori CT-based scatter correction technique was shown to be promising for adaptive proton therapy, as it achieved equivalent proton dose distributions and water equivalent path lengths compared to those of a reference CT in a selection of anthropomorphic phantoms.

  2. Calculation of the Energy Dependence of Dosimeter Response to Ionizing Photons

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1982-01-01

    Using a program in BASIC applied to a desk-top calculator, simplified calculations provide approximate energy dependence correction factors of dosimeter readings of absorbed dose according to Bragg-Gray cavity theories. Burlin's general cavity theory is applied in the present calculations, and ce...

  3. Some computer realizations of the REDUCE-3 calculations for exclusive processes

    International Nuclear Information System (INIS)

    Darbaidze, Ya.Z.; Merebashvili, Z.V.; Rostovtsev, V.A.

    1990-01-01

    The REDUCE-3 algorithm for the calculation of the squared gauge invariant set of tree diagrams is given in the α 3 order of the perturbation theory. The necessity of using such program packages as factorizator, 'COLOR'-factor and so on is shown. The correctness of calculation for the infrared radiation corrections as compared with manual calculations is discussed. An example of applying the programs is given for the matrix and noncommutative algebras when the well-known supersymmetric commutative relation is proved. (author)

  4. Self-Excited Single-Stage Power Factor Correction Driving Circuit for LED Lighting

    Directory of Open Access Journals (Sweden)

    Yong-Nong Chang

    2014-01-01

    Full Text Available This pa\tper proposes a self-excited single-stage high power factor LED lighting driving circuit. Being featured with power factor correction capability without needing any control devices, the proposed circuit structure is with low cost and suitable for commercial production. The power factor correction function is accomplished by using inductor in combination with a half-bridge quasi resonant converter to achieve active switching and yield out voltage regulation according to load requirement. Furthermore, the zero-voltage switching in the half-bridge converter can be attained to promote the overall performance efficiency of the proposed circuit. Finally, the validity and production availability of the proposed circuit will be verified as well.

  5. Calculation method for gamma-dose rates from spherical puffs

    International Nuclear Information System (INIS)

    Thykier-Nielsen, S.; Deme, S.; Lang, E.

    1993-05-01

    The Lagrangian puff-models are widely used for calculation of the dispersion of atmospheric releases. Basic output from such models are concentrations of material in the air and on the ground. The most simple method for calculation of the gamma dose from the concentration of airborne activity is based on semi-infinite cloud model. This method is however only applicable for points far away from the release point. The exact calculation of the cloud dose using the volume integral requires significant computer time. The volume integral for the gamma dose could be approximated by using the semi-infinite cloud model combined with correction factors. This type of calculation procedure is very fast, but usually the accuracy is poor due to the fact that the same correction factors are used for all isotopes. The authors describe a more elaborate correction method. This method uses precalculated values of the gamma-dose rate as a function of the puff dispersion parameter (δ p ) and the distance from the puff centre for four energy groups. The release of energy for each radionuclide in each energy group has been calculated and tabulated. Based on these tables and a suitable interpolation procedure the calculation of gamma doses takes very short time and is almost independent of the number of radionuclides. (au) (7 tabs., 7 ills., 12 refs.)

  6. Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels

    Science.gov (United States)

    Dral, Pavlo O.; Owens, Alec; Yurchenko, Sergei N.; Thiel, Walter

    2017-06-01

    We present an efficient approach for generating highly accurate molecular potential energy surfaces (PESs) using self-correcting, kernel ridge regression (KRR) based machine learning (ML). We introduce structure-based sampling to automatically assign nuclear configurations from a pre-defined grid to the training and prediction sets, respectively. Accurate high-level ab initio energies are required only for the points in the training set, while the energies for the remaining points are provided by the ML model with negligible computational cost. The proposed sampling procedure is shown to be superior to random sampling and also eliminates the need for training several ML models. Self-correcting machine learning has been implemented such that each additional layer corrects errors from the previous layer. The performance of our approach is demonstrated in a case study on a published high-level ab initio PES of methyl chloride with 44 819 points. The ML model is trained on sets of different sizes and then used to predict the energies for tens of thousands of nuclear configurations within seconds. The resulting datasets are utilized in variational calculations of the vibrational energy levels of CH3Cl. By using both structure-based sampling and self-correction, the size of the training set can be kept small (e.g., 10% of the points) without any significant loss of accuracy. In ab initio rovibrational spectroscopy, it is thus possible to reduce the number of computationally costly electronic structure calculations through structure-based sampling and self-correcting KRR-based machine learning by up to 90%.

  7. Coulomb corrections for interferometry analysis of expanding hadron systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinyukov, Yu.M.; Lednicky, R.; Pluta, J.; Erazmus, B. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Akkelin, S.V. [ITP, Kiev (Ukraine)

    1997-09-01

    The problem of the Coulomb corrections to the two-boson correlation functions for the systems formed in ultra-relativistic heavy ion collisions is considered for large effective system volumes. The modification of the standard zero-distance correction (so called Gamow or Coulomb factor) has been proposed for such a kind of systems. For the {pi}{sup +}{pi}{sup +} and K{sup +}K{sup +} correlation functions the analytical calculations of the Coulomb correction are compared with the exact numerical results. (author). 20 refs.

  8. QED radiative corrections to the pionium life time

    International Nuclear Information System (INIS)

    Kuraev, Eh.A.

    1997-01-01

    The lowest order QED radiative corrections to the cross section of the recharged process of transition of two neutral ones and to the pionium lifetime are calculated in frame of scalar QED. It is argued that the ultraviolet cut-off of the loop momentum is to be chosen of order of ρ-meson mass. This fact permits to perform the calculation in frames of Effective Chiral Lagrangian theory with vector-meson dominance. The Coulomb factor corresponding to interaction in the initial state, shown, is to be removed to avoid the double counting. Resulting value of the radiative correction to the pionium lifetime is 0.25%

  9. A correction scheme for a simplified analytical random walk model algorithm of proton dose calculation in distal Bragg peak regions

    Science.gov (United States)

    Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.

    2016-10-01

    The lateral homogeneity assumption is used in most analytical algorithms for proton dose, such as the pencil-beam algorithms and our simplified analytical random walk model. To improve the dose calculation in the distal fall-off region in heterogeneous media, we analyzed primary proton fluence near heterogeneous media and propose to calculate the lateral fluence with voxel-specific Gaussian distributions. The lateral fluence from a beamlet is no longer expressed by a single Gaussian for all the lateral voxels, but by a specific Gaussian for each lateral voxel. The voxel-specific Gaussian for the beamlet of interest is calculated by re-initializing the fluence deviation on an effective surface where the proton energies of the beamlet of interest and the beamlet passing the voxel are the same. The dose improvement from the correction scheme was demonstrated by the dose distributions in two sets of heterogeneous phantoms consisting of cortical bone, lung, and water and by evaluating distributions in example patients with a head-and-neck tumor and metal spinal implants. The dose distributions from Monte Carlo simulations were used as the reference. The correction scheme effectively improved the dose calculation accuracy in the distal fall-off region and increased the gamma test pass rate. The extra computation for the correction was about 20% of that for the original algorithm but is dependent upon patient geometry.

  10. Quantum corrections to Drell-Yan production of Z bosons

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakova, Elena S.

    2011-08-15

    In this thesis, we present higher-order corrections to inclusive Z-boson hadroproduction via the Drell-Yan mechanism, h{sub 1}+h{sub 2}{yields}Z+X, at large transverse momentum (q{sub T}). Specifically, we include the QED, QCD and electroweak corrections of orders O({alpha}{sub S}{alpha}, {alpha}{sub S}{sup 2}{alpha}, {alpha}{sub S}{alpha}{sup 2}). We work in the framework of the Standard Model and adopt the MS scheme of renormalization and factorization. The cross section of Z-boson production has been precisely measured at various hadron-hadron colliders, including the Tevatron and the LHC. Our calculations will help to calibrate and monitor the luminosity and to estimate of backgrounds of the hadron-hadron interactions more reliably. Besides the total cross section, we study the distributions in the transverse momentum and the rapidity (y) of the Z boson, appropriate for Tevatron and LHC experimental conditions. Investigating the relative sizes fo the various types of corrections by means of the factor K = {sigma}{sub tot} / {sigma}{sub Born}, we find that the QCS corrections of order {alpha}{sub S}{sup 2}{alpha} are largest in general and that the electroweak corrections of order {alpha}{sub S}{alpha}{sup 2} play an important role at large values of q{sub T}, while the QED corrections at the same order are small, of order 2% or below. We also compare out results with the existing literature. We correct a few misprints in the original calculation of the QCD corrections, and find the published electroweak correction to be incomplete. Our results for the QED corrections are new. (orig.)

  11. Geometrical correction for the inter- and intramolecular basis set superposition error in periodic density functional theory calculations.

    Science.gov (United States)

    Brandenburg, Jan Gerit; Alessio, Maristella; Civalleri, Bartolomeo; Peintinger, Michael F; Bredow, Thomas; Grimme, Stefan

    2013-09-26

    We extend the previously developed geometrical correction for the inter- and intramolecular basis set superposition error (gCP) to periodic density functional theory (DFT) calculations. We report gCP results compared to those from the standard Boys-Bernardi counterpoise correction scheme and large basis set calculations. The applicability of the method to molecular crystals as the main target is tested for the benchmark set X23. It consists of 23 noncovalently bound crystals as introduced by Johnson et al. (J. Chem. Phys. 2012, 137, 054103) and refined by Tkatchenko et al. (J. Chem. Phys. 2013, 139, 024705). In order to accurately describe long-range electron correlation effects, we use the standard atom-pairwise dispersion correction scheme DFT-D3. We show that a combination of DFT energies with small atom-centered basis sets, the D3 dispersion correction, and the gCP correction can accurately describe van der Waals and hydrogen-bonded crystals. Mean absolute deviations of the X23 sublimation energies can be reduced by more than 70% and 80% for the standard functionals PBE and B3LYP, respectively, to small residual mean absolute deviations of about 2 kcal/mol (corresponding to 13% of the average sublimation energy). As a further test, we compute the interlayer interaction of graphite for varying distances and obtain a good equilibrium distance and interaction energy of 6.75 Å and -43.0 meV/atom at the PBE-D3-gCP/SVP level. We fit the gCP scheme for a recently developed pob-TZVP solid-state basis set and obtain reasonable results for the X23 benchmark set and the potential energy curve for water adsorption on a nickel (110) surface.

  12. Relativistic corrections to the form factors of Bc into P-wave orbitally excited charmonium

    Science.gov (United States)

    Zhu, Ruilin

    2018-06-01

    We investigated the form factors of the Bc meson into P-wave orbitally excited charmonium using the nonrelativistic QCD effective theory. Through the analytic computation, the next-to-leading order relativistic corrections to the form factors were obtained, and the asymptotic expressions were studied in the infinite bottom quark mass limit. Employing the general form factors, we discussed the exclusive decays of the Bc meson into P-wave orbitally excited charmonium and a light meson. We found that the relativistic corrections lead to a large correction for the form factors, which makes the branching ratios of the decay channels B (Bc ± →χcJ (hc) +π± (K±)) larger. These results are useful for the phenomenological analysis of the Bc meson decays into P-wave charmonium, which shall be tested in the LHCb experiments.

  13. Determination of correction factor of radioelement content data generated from Exploranium GR-320 Gamma spectrometer

    International Nuclear Information System (INIS)

    Nasrun, S; Syamsul-Hadi, M; Sumardi

    2000-01-01

    Gamma-ray Spectrometer Exploranium GR-320 is the instrument radiometric survey which is able to measure radioelement content directly in field based on partial gamma-ray energy of elements. Because of the instrument is new and it was granted from the lAEA, so it is necessarily to create a correction factor for the instrument due to be gaining the better data. Correction factor was generated from comparing gamma spectrometer's radioelement content to those of chemical analysed data of calibration pad. The correction factor for Potassium (K) is 1.31, uranium is 1.46, and thorium is 0.39

  14. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin

    2011-01-01

    Random coil chemical shifts are necessary for secondary chemical shift analysis, which is the main NMR method for identification of secondary structure in proteins. One of the largest challenges in the determination of random coil chemical shifts is accounting for the effect of neighboring residues....... The contributions from the neighboring residues are typically removed by using neighbor correction factors determined based on each residue's effect on glycine chemical shifts. Due to its unusual conformational freedom, glycine may be particularly unrepresentative for the remaining residue types. In this study, we...... in the conformational ensemble are an important source of neighbor effects in disordered proteins. Glutamine derived random coil chemical shifts and correction factors modestly improve our ability to predict (13)C chemical shifts of intrinsically disordered proteins compared to existing datasets, and may thus improve...

  15. A constant albumin factor for the calculation of the percentage composition of the serum-protein fraction obtained by elution of paper electrophoresis strips : the azocarmine staining of strips

    NARCIS (Netherlands)

    Meulemans, O.

    A new method of calculating the percentages of serum protein is discussed. This method has a smaller distribution curve than the factor that is generally used for the correction of the extinction of the albumin fraction obtained with the elution method. The magnitude of the new factor is 1.22 ±

  16. Next-to-leading-logarithmic power corrections for N -jettiness subtraction in color-singlet production

    Science.gov (United States)

    Boughezal, Radja; Isgrò, Andrea; Petriello, Frank

    2018-04-01

    We present a detailed derivation of the power corrections to the factorization theorem for the 0-jettiness event shape variable T . Our calculation is performed directly in QCD without using the formalism of effective field theory. We analytically calculate the next-to-leading logarithmic power corrections for small T at next-to-leading order in the strong coupling constant, extending previous computations which obtained only the leading-logarithmic power corrections. We address a discrepancy in the literature between results for the leading-logarithmic power corrections to a particular definition of 0-jettiness. We present a numerical study of the power corrections in the context of their application to the N -jettiness subtraction method for higher-order calculations, using gluon-fusion Higgs production as an example. The inclusion of the next-to-leading-logarithmic power corrections further improves the numerical efficiency of the approach beyond the improvement obtained from the leading-logarithmic power corrections.

  17. Correction factors for 13C-labelled substrate oxidation at whole-body and muscle level

    DEFF Research Database (Denmark)

    Van Hall, Gerrit

    1999-01-01

    acid cycle. Changes in metabolic rate induced, for example, by feeding, hormonal changes and physical activity, as well as infusion time, have been shown to affect both correction factors. The present paper explains the theoretical and physiological basis of these correction factors and makes...... for the proportion of labelled CO2 that is produced via oxidation but not excreted. Furthermore, depending on the substrate and position of the C label(s), there may also be a need to correct for labelled C from the metabolized substrate that does not appear as CO2, but rather becomes temporarily fixed in other...

  18. A new plastic correction for the stress intensity factor of an under-clad defect in a PWR vessel subjected to a pressurised thermal shock

    International Nuclear Information System (INIS)

    Marie, S.; Nedelec, M.

    2007-01-01

    For the assessment of an under-clad defect in a vessel subjected to a cold pressurised thermal shock, plasticity is considered through the amplification β of the elastic stress intensity factor K I in the ferritic part of the vessel. An important effort has been made recently by CEA to improve the analytical tools in the frame of R and D activities funded by IRSN. The current solution in the French RSE-M code has been developed from fitted F.E. calculation results. A more physical solution is proposed in this paper. This takes into account two phenomena: the amplification of the elastic K I due to plasticity in the cladding and a plastic zone size correction in the ferritic part. The first correction has been established by representing the cladding plasticity by an imposed displacement on the crack faces at the interface between the cladding and the ferritic vessel. The corresponding elastic stress intensity factor is determined from the elastic plane strain asymptotic solution for the opening displacement. Plasticity in the ferritic steel is considered through a classical plastic zone size correction. The application of the solution to axisymmetric defects is first checked. The case of semi-elliptical defects is also investigated. For the correction determined at the interface between the cladding and the ferritic vessel, an amplification of the correction proposed for the deepest point is determined from a fitting of the 3D F.E. calculation results. It is also shown that the proposition of RSE-M, which consists in applying the same β correction at the deepest point and the interface point is not suitable. The applicability to a thermal shock, eventually combined with an internal pressure has been verified. For the deepest point, the proposed correction leads to similar results to the RSE-M method, but presents an extended domain of validity (no limits on the crack length are imposed)

  19. A procedure for effective Dancoff factor calculation

    International Nuclear Information System (INIS)

    Milosevic, M.

    2001-01-01

    In this paper, a procedure for Dancoff factors calculation based on equivalence principle and its application in the SCALE-4.3 code system is described. This procedure is founded on principle of conservation of neutron absorption for resolved resonance range in a heterogeneous medium and an equivalent medium consisted of an infinite array of two-region pin cells, where the presence of other fuel rods is taken into account through a Dancoff factor. The neutron absorption in both media is obtained using a fine-group elastic slowing-down calculation. This procedure is implemented in a design oriented lattice physics code, which is applicable for any geometry where the method of collision probability is possible to apply to get a flux solution. Proposed procedure was benchmarked for recent exercise that represents a system with a fuel double heterogeneity, i.e., fuel in solid form (pellets) surrounded by fissile material in solution, and for a 5x5 irregular pressurised water reactor assembly, which requires different Dancoff factors. (author)

  20. Syringe calibration factors and volume correction factors for the NPL secondary standard radionuclide calibrator

    CERN Document Server

    Tyler, D K

    2002-01-01

    The activity assay of a radiopharmaceutical administration to a patient is normally achieved via the use of a radionuclide calibrator. Because of the different geometries and elemental compositions between plastic syringes and glass vials, the calibration factors for syringes may well be significantly different from those for the glass containers. The magnitude of these differences depends on the energies of the emitted photons. For some radionuclides variations have been observed of 70 %, it is therefore important to recalibrate for syringes or use syringe calibration factors. Calibration factors and volume correction factors have been derived for the NPL secondary standard radionuclide calibrator, for a variety of commonly used syringes and needles, for the most commonly used medical radionuclide.

  1. On the Calculation of the Fast Fission Factor

    Energy Technology Data Exchange (ETDEWEB)

    Almgren, B

    1960-06-15

    Definitions of the fast fission factor {epsilon} are discussed. Different methods of calculation of {epsilon} are compared. Group constants for one - , two- and three-group calculations have been evaluated using the best obtainable basic data. The effects of back-scattering, coupling and (n,2n) reactions are discussed.

  2. Development of the Heated Length Correction Factor

    International Nuclear Information System (INIS)

    Park, Ho-Young; Kim, Kang-Hoon; Nahm, Kee-Yil; Jung, Yil-Sup; Park, Eung-Jun

    2008-01-01

    The Critical Heat Flux (CHF) on a nuclear fuel is defined by the function of flow channel geometry and flow condition. According to the selection of the explanatory variable, there are three hypotheses to explain CHF at uniformly heated vertical rod (inlet condition hypothesis, exit condition hypothesis, local condition hypothesis). For inlet condition hypothesis, CHF is characterized by function of system pressure, rod diameter, rod length, mass flow and inlet subcooling. For exit condition hypothesis, exit quality substitutes for inlet subcooling. Generally the heated length effect on CHF in exit condition hypothesis is smaller than that of other variables. Heated length is usually excluded in local condition hypothesis to describe the CHF with only local fluid conditions. Most of commercial plants currently use the empirical CHF correlation based on local condition hypothesis. Empirical CHF correlation is developed by the method of fitting the selected sensitive local variables to CHF test data using the multiple non-linear regression. Because this kind of method can not explain physical meaning, it is difficult to reflect the proper effect of complex geometry. So the recent CHF correlation development strategy of nuclear fuel vendor is making the basic CHF correlation which consists of basic flow variables (local fluid conditions) at first, and then the geometrical correction factors are compensated additionally. Because the functional forms of correction factors are determined from the independent test data which represent the corresponding geometry separately, it can be applied to other CHF correlation directly only with minor coefficient modification

  3. Correction of measured Gamma-Knife output factors for angular dependence of diode detectors and PinPoint ionization chamber.

    Science.gov (United States)

    Hršak, Hrvoje; Majer, Marija; Grego, Timor; Bibić, Juraj; Heinrich, Zdravko

    2014-12-01

    Dosimetry for Gamma-Knife requires detectors with high spatial resolution and minimal angular dependence of response. Angular dependence and end effect time for p-type silicon detectors (PTW Diode P and Diode E) and PTW PinPoint ionization chamber were measured with Gamma-Knife beams. Weighted angular dependence correction factors were calculated for each detector. The Gamma-Knife output factors were corrected for angular dependence and end effect time. For Gamma-Knife beams angle range of 84°-54°. Diode P shows considerable angular dependence of 9% and 8% for the 18 mm and 14, 8, 4 mm collimator, respectively. For Diode E this dependence is about 4% for all collimators. PinPoint ionization chamber shows angular dependence of less than 3% for 18, 14 and 8 mm helmet and 10% for 4 mm collimator due to volumetric averaging effect in a small photon beam. Corrected output factors for 14 mm helmet are in very good agreement (within ±0.3%) with published data and values recommended by vendor (Elekta AB, Stockholm, Sweden). For the 8 mm collimator diodes are still in good agreement with recommended values (within ±0.6%), while PinPoint gives 3% less value. For the 4 mm helmet Diodes P and E show over-response of 2.8% and 1.8%, respectively. For PinPoint chamber output factor of 4 mm collimator is 25% lower than Elekta value which is generally not consequence of angular dependence, but of volumetric averaging effect and lack of lateral electronic equilibrium. Diodes P and E represent good choice for Gamma-Knife dosimetry. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. Dose factors to calculate the radiation exposure due to radioactive waste air from nuclear facilities

    International Nuclear Information System (INIS)

    Brenk, H.D.; Vogt, K.J.

    1977-01-01

    An evaluation of the environmental impact of nuclear plants according to paragraph 45 of the Radiation Protection Directive of the Federal Republic of Germany requires the calculation of dose conversion factors indicating the correlation between the contaminated medium and individual radiation exposure. The present study is to be conceived as a contribution to discussion on this subject. For the determination of radiation exposure caused by the waste air of nuclear plants, models are being specified for computing the dose conversion factors for the external exposure pathways of β-submersion, γ-submersion and γ-radiation from contaminated ground as well as the internal exposure pathways of inhalation and ingestion, which further elaborate and improve the models previously applied, especially as far as the ingestion pathway is concerned, which distinguishes between 6 major food categories. The computer models are applied to those radionuclides which are significan for nuclear emitters, in particular nuclear light-water power stations. The results obtained for the individual exposure pathways and affected organs are specified in the form of tables. For this purpose, calculations were first of all carried out for the so-called 'reference man'. The results can be transferred to population groups with different consumption habits (e.g. vegetarians) by the application of correction factors. The models are capable of being extended with a view to covering other age groups. (orig.) [de

  5. Correction of multigroup cross sections for resolved resonance interference in mixed absorbers

    International Nuclear Information System (INIS)

    Williams, M.L.

    1982-07-01

    The effect that interference between resolved resonances has on averaging multigroup cross sections is examined for thermal reactor-type problems. A simple and efficient numerical scheme is presented to correct a preprocessed multigroup library for interference effects. The procedure is implemented in a design oriented lattice physics computer code and compared with rigorous numerical calculations. The approximate method for computing resonance interference correction factors is applied to obtaining fine-group cross sections for a homogeneous uranium-plutonium mixture and a uranium oxide lattice. It was found that some fine group cross sections are changed by more than 40% due to resonance interference. The change in resonance interference correction factors due to burnup of a PWR fuel pin is examined and found to be small. The effect of resolved resonance interference on collapsed broad-group cross sections for thermal reactor calculations is discussed

  6. Role of humidity and other correction factors in the AAPM TG-21 dosimetry protocol

    International Nuclear Information System (INIS)

    Rogers, D.W.; Ross, C.K.

    1988-01-01

    A detailed derivation is presented of the formulas required to determine Ngas and Dmed in the AAPM TG-21 dosimetry protocol. This protocol specifies how to determine the absorbed dose in an electron or photon beam when using exposure or absorbed dose calibrated ion chambers. It is shown that the expression given in TG-21's recent letter of clarification is incorrect. Accounting for humidity correctly increases, by 0.4%, all absorbed dose determinations using an exposure calibrated ion chamber. Taking into account other correction factors in the equation for exposure could also have varying, but significant effects (possibly over 1%). These are the stem scatter correction, the axial nonuniformity correction and the electrode correction for electrodes made of different materials from the wall. Attention is drawn to differences in the definitions of the exposure and absorbed dose calibration factors, Nx and ND, respectively, as supplied by the NBS and the NRCC

  7. Core barrel motion calibration factor calculation

    International Nuclear Information System (INIS)

    Shahrokhi, F.; Robinson, J.C.

    1976-01-01

    Neutron transport theory calculations were performed to obtain a calibration factor for inferring core-barrel motion from spectral density data using excore ionization chambers in PWRs. The analysis of core-barrel movement was based on the postulate that the movement is a cantilevered type, with the preferred direction x-x'

  8. Relativistic corrections to the elastic electron scattering from 208Pb

    International Nuclear Information System (INIS)

    Chandra, H.; Sauer, G.

    1976-01-01

    In the present work we have calculated the differential cross sections for the elastic electron scattering from 208 Pb using the charge distributions resulting from various corrections. The point proton and neutron mass distributions have been calculated from the spherical wave functions for 208 Pb obtained by Kolb et al. The relativistic correction to the nuclear charge distribution coming from the electromagnetic structure of the nucleon has been accomplished by assuming a linear superposition of Gaussian shapes for the proton and the neutron charge form factor. Results of this calculation are quite similar to an earlier calculation by Bertozzi et al., who have used a different wave function for 208 Pb and have assumed exponential smearing for the proton corresponding to the dipole fit for the form factor. Also in the present work, reason for the small spin orbit contribution to the effective charge distribution is discussed in some detail. It is also shown that the use of a single Gaussian shape for the proton smearing usually underestimates the actual theoretical cross section

  9. Calibration of megavoltage cone-beam CT for radiotherapy dose calculations: Correction of cupping artifacts and conversion of CT numbers to electron density

    International Nuclear Information System (INIS)

    Petit, Steven F.; Elmpt, Wouter J. C. van; Nijsten, Sebastiaan M. J. J. G.; Lambin, Philippe; Dekker, Andre L. A. J.

    2008-01-01

    Megavoltage cone-beam CT (MV CBCT) is used for three-dimensional imaging of the patient anatomy on the treatment table prior to or just after radiotherapy treatment. To use MV CBCT images for radiotherapy dose calculation purposes, reliable electron density (ED) distributions are needed. Patient scatter, beam hardening and softening effects result in cupping artifacts in MV CBCT images and distort the CT number to ED conversion. A method based on transmission images is presented to correct for these effects without using prior knowledge of the object's geometry. The scatter distribution originating from the patient is calculated with pencil beam scatter kernels that are fitted based on transmission measurements. The radiological thickness is extracted from the scatter subtracted transmission images and is then converted to the primary transmission used in the cone-beam reconstruction. These corrections are performed in an iterative manner, without using prior knowledge regarding the geometry and composition of the object. The method was tested using various homogeneous and inhomogeneous phantoms with varying shapes and compositions, including a phantom with different electron density inserts, phantoms with large density variations, and an anthropomorphic head phantom. For all phantoms, the cupping artifact was substantially removed from the images and a linear relation between the CT number and electron density was found. After correction the deviations in reconstructed ED from the true values were reduced from up to 0.30 ED units to 0.03 for the majority of the phantoms; the residual difference is equal to the amount of noise in the images. The ED distributions were evaluated in terms of absolute dose calculation accuracy for homogeneous cylinders of different size; errors decreased from 7% to below 1% in the center of the objects for the uncorrected and corrected images, respectively, and maximum differences were reduced from 17% to 2%, respectively. The

  10. Calculation of the Nucleon Axial Form Factor Using Staggered Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Aaron S. [Fermilab; Hill, Richard J. [Perimeter Inst. Theor. Phys.; Kronfeld, Andreas S. [Fermilab; Li, Ruizi [Indiana U.; Simone, James N. [Fermilab

    2016-10-14

    The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we present preliminary results on a blinded calculation of $g_A$ and the axial form factor using HISQ staggered baryons with 2+1+1 flavors of sea quarks. Calculations are done using physical light quark masses and are absolutely normalized. We discuss fitting form factor data with the model-independent $z$ expansion parametrization.

  11. A versatile atomic number correction for electron-probe microanalysis

    International Nuclear Information System (INIS)

    Love, G.; Cox, M.G.; Scott, V.D.

    1978-01-01

    A new atomic number correction is proposed for quantitative electron-probe microanalysis. Analytical expressions for the stopping power S and back-scatter R factors are derived which take into account atomic number of the target, incident electron energy and overvoltage; the latter expression is established using Monte Carlo calculations. The correct procedures for evaluating S and R for multi-element specimens are described. The new method, which overcomes some limitations inherent in earlier atomic number corrections, may readily be used where specimens are inclined to the electron beam. (author)

  12. Text book of dose calculation for operators

    International Nuclear Information System (INIS)

    Aoyagi, Haruki; Gonda, Kozo

    1979-07-01

    This is a text book of dose calculation for the operators of the reprocessing factory of Power Reactor and Nuclear Fuel Development Corporation. The radiations considered are beta-ray and gamma-ray. The method used is a point attenuation nuclear integral method. Radiation sources are considered as the assemblies of point sources. Dose from each point source is calculated, then, total dose is obtained by the integration for all sources. Attenuation is calculated by considering the attenuation owing to distance and the absorption by absorbers. The build-up factor is introduced for the correction for scattered gamma-ray. The build-up factor is given in a table for various scatterers. The operators are able to calculate dose by themselves. The results of integral calculation expressed with formulas are given in graphs. (Kato, T.)

  13. Determination of the air attenuation correction factor for a free air ionization chamber

    International Nuclear Information System (INIS)

    Silva, Natalia F.; Cintra, Felipe B.; Castro, Maysa C. de; Caldas, Linda V.E.

    2016-01-01

    The objective of this work is to present the experimental and simulation results for the air attenuation correction factor for a free air ionization chamber with concentric cylinders of Victoreen, model 481-5. This correction factor was obtained for the standard mammography qualities established in the Instrument Calibration Laboratory (LCI) of IPEN. The values were compared with the results from the German primary standard laboratory Physikalisch- Technische Bundesanstalt (PTB), and maximum differences of 0.40% in relation to the experimental value and 0.31% in relation to the simulated value were obtained. (author)

  14. Higher order QCD corrections in exclusive charmless B decays

    International Nuclear Information System (INIS)

    Bell, G.

    2006-10-01

    We discuss exclusive charmless B decays within the Standard Model of particle physics. These decays play a central role in the on-going process to constrain the parameters of the CKM matrix and to clarify the nature of CP violation. In order to exploit the rich source of data that is currently being collected at the experiments, a systematic theoretical treatment of the complicated hadronic dynamics is strongly desired. QCD Factorization represents a model-independent framework to compute hadronic matrix elements from first principles. It is based on a power expansion in Λ QCD /m b and allows for the systematic implementation of perturbative corrections. In particular, we consider hadronic two-body decays as B → ππ and perform a conceptual analysis of heavy-to-light form factors which encode the strong interaction effects in semi-leptonic decays as B → πlν. Concerning the hadronic decays we compute NNLO QCD corrections which are particularly important with respect to strong interaction phases and hence direct CP asymmetries. On the technical level, we perform a 2-loop calculation which is based on an automatized reduction algorithm and apply sophisticated techniques for the calculation of loop-integrals. We indeed find that the considered quantities are well-defined as predicted by QCD Factorization, which is the result of a highly complicated subtraction procedure. We present results for the imaginary part of the topological tree amplitudes and observe that the considered corrections are substantial. The calculation of the real part of the amplitudes is far more complicated and we present a preliminary result which is based on certain simplifications. Our calculation is one part of the full NNLO analysis of nonleptonic B decays within QCD Factorization which is currently pursued by various groups. In our conceptual analysis of the QCD dynamics in heavy-to-light transitions we consider form factors between non-relativistic bound states which can be

  15. Higher order QCD corrections in exclusive charmless B decays

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.

    2006-10-15

    We discuss exclusive charmless B decays within the Standard Model of particle physics. These decays play a central role in the on-going process to constrain the parameters of the CKM matrix and to clarify the nature of CP violation. In order to exploit the rich source of data that is currently being collected at the experiments, a systematic theoretical treatment of the complicated hadronic dynamics is strongly desired. QCD Factorization represents a model-independent framework to compute hadronic matrix elements from first principles. It is based on a power expansion in {lambda}{sub QCD}/m{sub b} and allows for the systematic implementation of perturbative corrections. In particular, we consider hadronic two-body decays as B {yields} {pi}{pi} and perform a conceptual analysis of heavy-to-light form factors which encode the strong interaction effects in semi-leptonic decays as B {yields} {pi}l{nu}. Concerning the hadronic decays we compute NNLO QCD corrections which are particularly important with respect to strong interaction phases and hence direct CP asymmetries. On the technical level, we perform a 2-loop calculation which is based on an automatized reduction algorithm and apply sophisticated techniques for the calculation of loop-integrals. We indeed find that the considered quantities are well-defined as predicted by QCD Factorization, which is the result of a highly complicated subtraction procedure. We present results for the imaginary part of the topological tree amplitudes and observe that the considered corrections are substantial. The calculation of the real part of the amplitudes is far more complicated and we present a preliminary result which is based on certain simplifications. Our calculation is one part of the full NNLO analysis of nonleptonic B decays within QCD Factorization which is currently pursued by various groups. In our conceptual analysis of the QCD dynamics in heavy-to-light transitions we consider form factors between non

  16. Experimental 64Zn(d⃗,t)63Zn spectroscopic factors: Guidance for isospin-symmetry-breaking calculations

    Science.gov (United States)

    Leach, K. G.; Garrett, P. E.; Towner, I. S.; Ball, G. C.; Bildstein, V.; Brown, B. A.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Krücken, R.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.; Wong, J.

    2013-06-01

    With the recent inclusion of core orbitals to the radial-overlap component of the isospin-symmetry-breaking (ISB) corrections for superallowed Fermi β decay, experimental data are needed to test the validity of the theoretical model. This work reports measurements of single-neutron pickup reaction spectroscopic factors into 63Zn, one neutron away from 62Zn, the superallowed daughter of 62Ga. The experiment was performed using a 22-MeV polarized deuteron beam, a Q3D magnetic spectrograph, and a cathode-strip focal-plane detector to analyze outgoing tritons at nine angles between 10∘ and 60∘. Angular distributions and vector analyzing powers were obtained for all 162 observed states in 63Zn, including 125 newly observed levels, up to an excitation energy of 4.8 MeV. Spectroscopic factors are extracted and compared to several shell-model predictions, and implications for the ISB calculations are discussed.

  17. Efficiency and attenuation correction factors determination in gamma spectrometric assay of bulk samples using self radiation

    International Nuclear Information System (INIS)

    Haddad, Kh.

    2009-02-01

    Gamma spectrometry forms the most important and capable tool for measuring radioactive materials. Determination of the efficiency and attenuation correction factors is the most tedious problem in the gamma spectrometric assay of bulk samples. A new experimental and easy method for these correction factors determination using self radiation was proposed in this work. An experimental study of the correlation between self attenuation correction factor and sample thickness and its practical application was also introduced. The work was performed on NORM and uranyl nitrate bulk sample. The results of proposed methods agreed with those of traditional ones.(author)

  18. Next to Leading Order QCD Corrections to Polarized $\\Lambda$ Production in DIS

    CERN Document Server

    de Florian, D

    1997-01-01

    We calculate next to leading order QCD corrections to semi-inclusive polarized deep inelastic scattering and $e^+e^-$ annihilation cross sections for processes where the polarization of the identified final-state hadron can also be determined. Using dimensional regularization and the HVBM prescription for the $\\gamma_5$ matrix, we compute corrections for different spin-dependent observables, both in the $\\overline{MS}$ and $\\overline{MS_p}$ factorization schemes, and analyse their structure. In addition to the well known corrections to polarized parton distributions, we also present those for final-state polarized fracture functions and polarized fragmentation functions, in a consistent factorization scheme.

  19. Calculating corrections in F-theory from refined BPS invariants and backreacted geometries

    Energy Technology Data Exchange (ETDEWEB)

    Poretschkin, Maximilian

    2015-07-01

    This thesis presents various corrections to F-theory compactifications which rely on the computation of refined Bogomol'nyi-Prasad-Sommerfield (BPS) invariants and the analysis of backreacted geometries. Detailed information about rigid supersymmetric theories in five dimensions is contained in an index counting refined BPS invariants. These BPS states fall into representations of SU(2){sub L} x SU(2){sub R}, the little group in five dimensions, which has an induced action on the cohomology of the moduli space of stable pairs. In the first part of this thesis, we present the computation of refined BPS state multiplicities associated to M-theory compactifications on local Calabi-Yau manifolds whose base is given by a del Pezzo or half K3 surface. For geometries with a toric realization we use an algorithm which is based on the Weierstrass normal form of the mirror geometry. In addition we use the refined holomorphic anomaly equation and the gap condition at the conifold locus in the moduli space in order to perform the direct integration and to fix the holomorphic ambiguity. In a second approach, we use the refined Goettsche formula and the refined modular anomaly equation that govern the (refined) genus expansion of the free energy of the half K3 surface. By this procedure, we compute the refined BPS invariants of the half K3 from which the results of the remaining del Pezzo surfaces are obtained by flop transitions and blow-downs. These calculations also make use of the high symmetry of the del Pezzo surfaces whose homology lattice contains the root lattice of exceptional Lie algebras. In cases where both approaches are applicable, we successfully check the compatibility of these two methods. In the second part of this thesis, we apply the results obtained from the calculation of the refined invariants of the del Pezzo respectively the half K3 surfaces to count non-perturbative objects in F-theory. The first application is given by BPS states of the E

  20. Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth

    Science.gov (United States)

    Forth, Scott C.; Herman, Dave J.; James, Mark A.

    2003-01-01

    Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).

  1. Fretting fatigue life estimation using fatigue damage gradient correction factor in various contact configurations

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong Hyeon; Cho, Sung-San [Hongik University, Seoul (Korea, Republic of)

    2017-03-15

    A fretting fatigue life estimation method that takes into account the stress gradient effect was developed by the authors [Journal of Mechanical Science and Technology, 28 (2014) 2153-2159]. In the developed method, fatigue damage value at the cracking location is corrected with fatigue damage gradient and the corrected value is compared directly with the plain fatigue data for life estimation. In other words, the correction factor is the ratio of plain fatigue damage to fretting fatigue damage at the same life and a function of fatigue damage gradient. Since reliability of the method was verified only for cylinder-on-flat contact configuration in the previous study, the present study extends application of the method to flat-on-flat contact configurations by developing the correction factor for both the contact configuration. Fretting fatigue experiments were conducted to obtain fatigue life data for various fretting pads. Finite element analyses were conducted to evaluate the Smith-Watson-Topper (SWT) fatigue damage parameter in the cracking region. It is revealed that the SWT parameter in fat-on-flat contact configuration decreases exponentially away from the surface as in cylinder-on-flat contact configuration, and thus the SWT gradient at the surface can be evaluated reliably. Moreover, it is found that decrease in the SWT parameter around the cracking location can be expressed by piecewise exponential curves. If the gradient of SWT at the surface is used as a representative value of SWT gradient, it is impossible to establish functional relationship between the SWT gradient and the correction factor for both the contact configurations although it was possible for cylinder-on-flat contact configuration. However, if weighted average of the SWT gradient values obtained from each exponential curve in the piecewise exponential curve is used as a representative value, the correction factor for both the contact configurations becomes a function of the SWT gradient

  2. Seasonal correction factors in radon exposure assessment: are they help or hindrance?

    International Nuclear Information System (INIS)

    Denman, A.R.; Groves-Kirkby, C.J.; Phillips, P.S.; Woolridge, A.C.; Crockett, R.G.M.

    2008-01-01

    Northern Hemisphere radon levels are generally higher in Winter than in Summer, primarily due to the increased interior/exterior temperature difference during the heating season, which results in greater atmospheric pressure differential and enhanced radon ingress. Following a survey of domestic radon levels in the United Kingdom (UK), the former National Radiological Protection Board (NRPB) established measurement protocols and promulgated nationally-applicable Seasonal Correction Factors (SCF). These factors convert a one-month or three-month radon concentration measurement, commencing in any month of the year, to an annual mean radon concentration. Subsequent study suggests that this approach may not be sufficiently sensitive to local conditions, and a major independent investigation reported seasonal correction factors specific to nine geographic regions, together with a composite set applicable to all regions. Similar geographical variability has been observed in other countries. In a recent evaluation of the applicability of short-term exposures in quantifying long-term domestic radon levels, radon levels in 34 houses were monitored over a 12-month period with 1-week, 1-month and 3-month exposures. Radon concentration variation departed significantly from that expected on the basis of the recommended SCFs, with year-end discontinuities at all exposure durations. Weekly monitoring with electrets was continued in three of these locations for four years. Short-term variations in radon levels were observed, particularly during the shorter exposures, and this dataset has also shown year-on-year variations. Overall, SCFs derived from this dataset are significantly lower than those recommended, but are comparable with other results from the UK and elsewhere, particularly those that recognise geological diversity and are consequently prepared on a regional rather than a national basis. These findings call into question the validity of using nationally

  3. Studies on the true coincidence correction in measuring filter samples by gamma spectrometry

    CERN Document Server

    Lian Qi; Chang Yong Fu; Xia Bing

    2002-01-01

    The true coincidence correction in measuring filter samples has been studied by high efficiency HPGe gamma detectors. The true coincidence correction for a specific three excited levels de-excitation case has been analyzed, and the typical analytical expressions of true coincidence correction factors have been given. According to the measured relative efficiency on the detector surface with 8 'single' energy gamma emitters and efficiency of filter samples, the peak and total efficiency surfaces are fitted. The true coincidence correction factors of sup 6 sup 0 Co and sup 1 sup 5 sup 2 Eu calculated by the efficiency surfaces agree well with experimental results

  4. Determination of non-uniformity correction factors for cylindrical ionization chambers close to 192Ir brachytherapy sources

    International Nuclear Information System (INIS)

    Toelli, H.; Bielajew, A. F.; Mattsson, O.; Sernbo, G.

    1995-01-01

    When ionization chambers are used in brachytherapy dosimetry, the measurements must be corrected for the non-uniformity of the incident photon fluence. The theory for determination of non-uniformity correction factors, developed by Kondo and Randolph (Rad. Res. 1960) assumes that the electron fluence within the air cavity is isotropic and does not take into account material differences in the chamber wall. The theory was extended by Bielajew (PMB 1990) using an anisotropic electron angular fluence in the cavity. In contrast to the theory by Kondo and Randolph, the anisotropic theory predicts a wall material dependence in the non-uniformity correction factors. This work presents experimental determination of non-uniformity correction factors at distances between 10 and 140 mm from an Ir-192 source. The experimental work makes use of a PTW23331-chamber and Farmer-type chambers (NE2571 and NE2581) with different materials in the walls. The results of the experiments agree well with the anisotropic theory. Due to the geometrical shape of the NE-type chambers, it is shown that the full length of the these chambers, 24.1mm, is not an appropriate input parameter when theoretical non-uniformity correction factors are evaluated

  5. NLO supersymmetric QCD corrections to tt-bar h0 associated production at hadron colliders

    International Nuclear Information System (INIS)

    Wu Peng; Ma Wengan; Hou Hongsheng; Zhang Renyou; Han Liang; Jiang Yi

    2005-01-01

    We calculate NLO QCD corrections to the lightest neutral Higgs boson production associated with top quark pair at hadron colliders in the minimal supersymmetric standard model (MSSM). Our calculation shows that the total QCD correction significantly reduces its dependence on the renormalization/factorization scale. The relative correction from the SUSY QCD part approaches to be a constant, if either M S or m g- bar is heavy enough. The corrections are generally moderate (in the range of few percent to 20%) and under control in most of the SUSY parameter space. The relative correction is obviously related to m g- bar , A t and μ, but not very sensitive to tanβ, M S at both the Tevatron and the LHC with our specified parameters

  6. Monte Carlo calculation of Dancoff factors in irregular geometries

    International Nuclear Information System (INIS)

    Feher, S.; Hoogenboom, J.E.; Leege, P.F.A. de; Valko, J.

    1994-01-01

    A Monte Carlo program is described that calculates Dancoff factors in arbitrary arrangements of cylindrical or spherical fuel elements. The fuel elements can have different diameters and material compositions, and they are allowed to be black or partially transparent. Calculations of the Dancoff factor is based on its collision probability definition. The Monte Carlo approach is recommended because it is equally applicable in simple and in complicated geometries. It is shown that some of the commonly used algorithms are inaccurate even in infinite regular lattices. An example of application includes the Canada deuterium uranium (CANDU) 37-pin fuel bundle, which requires different Dancoff factors for the symmetrically different fuel pin positions

  7. On the evaluation of the correction factor μ (rho', tau') for the periodic pulse method

    International Nuclear Information System (INIS)

    Mueller, J.W.

    1976-01-01

    The inconveniences associated with the purely numerical approach we have chosen to solve some of the problems which arise in connection with the source-pulser method are twofold. On the one hand, there is the trouble of calculating the tables for μ, requiring several nights of computer time. On the other hand, apart from some simple limiting values as μ = 1 for tau' = 0 or 1, μ = 1/0.5 + /0.5 - tau'/ for rho' → 0 (and 0 > 1, no appropriate analytical form for the correction factor μ of sufficient precision is known for the moment. This drawback, we hope, is partly removed by a tabulation which should cover the whole region of practical interest. The computer programs for both the evaluation of μ and the Monte Carlo simulation are available upon request

  8. Leading relativistic corrections for atomic P states calculated with a finite-nuclear-mass approach and all-electron explicitly correlated Gaussian functions

    Science.gov (United States)

    Stanke, Monika; Bralin, Amir; Bubin, Sergiy; Adamowicz, Ludwik

    2018-01-01

    In this work we report progress in the development and implementation of quantum-mechanical methods for calculating bound ground and excited states of small atomic systems. The work concerns singlet states with the L =1 total orbital angular momentum (P states). The method is based on the finite-nuclear-mass (non-Born-Oppenheimer; non-BO) approach and the use of all-particle explicitly correlated Gaussian functions for expanding the nonrelativistic wave function of the system. The development presented here includes derivation and implementation of algorithms for calculating the leading relativistic corrections for singlet states. The corrections are determined in the framework of the perturbation theory as expectation values of the corresponding effective operators using the non-BO wave functions. The method is tested in the calculations of the ten lowest 1P states of the helium atom and the four lowest 1P states of the beryllium atom.

  9. Influence on dose calculation by difference of dose calculation algorithms in stereotactic lung irradiation. Comparison of pencil beam convolution (inhomogeneity correction: batho power law) and analytical anisotropic algorithm

    International Nuclear Information System (INIS)

    Tachibana, Masayuki; Noguchi, Yoshitaka; Fukunaga, Jyunichi; Hirano, Naomi; Yoshidome, Satoshi; Hirose, Takaaki

    2009-01-01

    The monitor unit (MU) was calculated by pencil beam convolution (inhomogeneity correction algorithm: batho power law) [PBC (BPL)] which is the dose calculation algorithm based on measurement in the past in the stereotactic lung irradiation study. The recalculation was done by analytical anisotropic algorithm (AAA), which is the dose calculation algorithm based on theory data. The MU calculated by PBC (BPL) and AAA was compared for each field. In the result of the comparison of 1031 fields in 136 cases, the MU calculated by PBC (BPL) was about 2% smaller than that calculated by AAA. This depends on whether one does the calculation concerning the extension of the second electrons. In particular, the difference in the MU is influenced by the X-ray energy. With the same X-ray energy, when the irradiation field size is small, the lung pass length is long, the lung pass length percentage is large, and the CT value of the lung is low, and the difference of MU is increased. (author)

  10. Monte Carlo correction factors for a Farmer 0.6 cm3 ion chamber dose measurement in the build-up region of the 6 MV clinical beam

    International Nuclear Information System (INIS)

    Pena, J; Sanchez-Doblado, F; Capote, R; Terron, J A; Gomez, F

    2006-01-01

    Reference dosimetry of photon fields is a well-established subject and currently available protocols (such as the IAEA TRS-398 and AAPM TG-51) provide methods for converting the ionization chamber (IC) reading into dose to water, provided reference conditions of charged particle equilibrium (CPE) are fulfilled. But these protocols cannot deal with the build-up region, where the lack of CPE limits the applicability of the cavity theorems and so the chamber correction factors become depth dependent. By explicitly including the IC geometry in the Monte Carlo simulations, depth-dependent dose correction factors are calculated for a PTW 30001 0.6 cm 3 ion chamber in the build-up region of the 6 MV photon beam. The corrected percentage depth dose (PDD) agrees within 2% with that measured using the NACP 02 plane-parallel ion chamber in the build-up region at depths greater than 0.4 cm, where the Farmer chamber wall reaches the phantom surface

  11. Design of The High Efficiency Power Factor Correction Circuit for Power Supply

    Directory of Open Access Journals (Sweden)

    Atiye Hülya OBDAN

    2017-12-01

    Full Text Available Designing power factor correction circuits for switched power supplies has become important in recent years in terms of efficient use of energy. Power factor correction techniques play a significant role in high power density and energy efficiency. For these purposes, bridgeless PFC topologies and control strategies have been developed alongside basic boost PFC circuits. The power density can be increased using bridgeless structures by means of reducing losses in the circuit. This article examines bridgeless PFC structures and compares their performances in terms of losses and power factor. A semi-bridgeless PFC, which is widely used at high power levels, was analyzed and simulated. The designed circuit simulation using the current mode control method was performed in the PSIM program. A prototype of a 900 W semi-bridgeless PFC circuit was implemented and the results obtained from the circuit are presented

  12. Correction factors for photon spectrometry in nuclear parameters study

    International Nuclear Information System (INIS)

    Patrao, Karla Cristina de Souza

    2004-10-01

    The goal of this work was the determination, using metrologic severity, the factors of correction for coincidences XX, Xγ and γγ and the factors of transference of efficiency for use in gamma spectrometry. On this way, it was carried through by determination of nuclear parameters of a nuclide used in medicine diagnostic ( 201 Tl) and the standardization of two environmental samples, of regular and irregular geometry, proceeding from the residual (ashes and slag) from the nuclear industry. The results shows that this adopted methodology is valid, and it allows its application for many different nuclides, including complex decay schema nuclides, using only photons spectrometry techniques on semiconductor detectors. (author)

  13. Correcting for long-alpha stopping distances in (U-Th)/He dating

    Science.gov (United States)

    Glotzbach, Christoph; Lang, Karl; Avdievitch, Nikita; Flowers, Rebecca; Metcalf, James; Ehlers, Todd

    2017-04-01

    Conventional (U-Th)/He dating requires a correction of measured He content for the effect of He loss by alpha particle ejection (e.g. Farley et al. 1996). Compared to typical mineral grain sizes ( 100 µm), the relatively long stopping distance of alpha particles ( 22 µm) results in a significant volume of lost He that systematically bias age calculations (e.g. Ketcham et al. 2011). For example, only 65% of radiogenic He ingrowth will remain within an apatite grain with a radius of 40 µm, assuming a spherical grain shape (Ft=0.65). With such a significant correction to (U-Th)/He age calculations, accurate characterization of grain shape and precise measurement of grain dimensions may often be the largest source of analytical uncertainty. Indeed, difficulty in calculating grain shape may explain at least part of commonly observed overdispersion in (U-Th)/He ages (e.g. Dobson et al. 2008; Horne et al. 2016). For example, the widely used Fish Canyon standard yields 11% dispersion in zircon (U-Th)/He ages(e.g. Dobson et al. 2008; Horne et al. 2016), although the analytical error in He and U-Th-Sm measurement is typically 2%. Most laboratories measure apatite and zircon grain dimensions with a stereo microscope under 200x magnification. Grains are often elongated and therefore measurements are often based on photomicrographs with the crystallographic c-axis parallel to the field of view. Grain dimensions measured this way cannot account for cross sectional variation perpendicular to the crystallographic c-axis, despite this assumption in commonly used analytical calculations of the Ft correction factor (e.g. Ketcham et al. 2011). Moreover, grains with morphologies not well described by frusta or pyramidal-terminated box, cylindrical or hexagonal shapes do not have simple analytical solutions for the Ft correction factor, and must be neglected from subsequent analysis. Here we introduce an advanced numerical approach to measure grain shape and calculate Ft correction

  14. Duality and corrections to the van Royen-Weisskopf formula

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1981-01-01

    We propose that duality can be used in conjunction with QCD calculations of the cross section for e + e - → qanti q - to evaluate relativistic and radiative corrections to the leptonic widths of the psi and UPSILON states. We use this method to discuss relativistic corrections to the van Royen-Weisskopf formula for leptonic widths. We also point out that this formula is in error by an important factor 4m 2 sub(q)/M 2 sub(n). (orig.)

  15. Evaluation of ion chamber dependent correction factors for ionisation chamber dosimetry in proton beams using a Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Palmans, H [Ghent Univ. (Belgium). Dept. of Biomedical Physics; Verhaegen, F

    1995-12-01

    In the last decade, several clinical proton beam therapy facilities have been developed. To satisfy the demand for uniformity in clinical (routine) proton beam dosimetry two dosimetry protocols (ECHED and AAPM) have been published. Both protocols neglect the influence of ion chamber dependent parameters on dose determination in proton beams because of the scatter properties of these beams, although the problem has not been studied thoroughly yet. A comparison between water calorimetry and ionisation chamber dosimetry showed a discrepancy of 2.6% between the former method and ionometry following the ECHED protocol. Possibly, a small part of this difference can be attributed to chamber dependent correction factors. Indications for this possibility are found in ionometry measurements. To allow the simulation of complex geometries with different media necessary for the study of those corrections, an existing proton Monte Carlo code (PTRAN, Berger) has been modified. The original code, that applies Mollire`s multiple scattering theory and Vavilov`s energy straggling theory, calculates depth dose profiles, energy distributions and radial distributions for pencil beams in water. Comparisons with measurements and calculations reported in the literature are done to test the program`s accuracy. Preliminary results of the influence of chamber design and chamber materials on dose to water determination are presented.

  16. Evaluation of ion chamber dependent correction factors for ionisation chamber dosimetry in proton beams using a Monte Carlo method

    International Nuclear Information System (INIS)

    Palmans, H.; Verhaegen, F.

    1995-01-01

    In the last decade, several clinical proton beam therapy facilities have been developed. To satisfy the demand for uniformity in clinical (routine) proton beam dosimetry two dosimetry protocols (ECHED and AAPM) have been published. Both protocols neglect the influence of ion chamber dependent parameters on dose determination in proton beams because of the scatter properties of these beams, although the problem has not been studied thoroughly yet. A comparison between water calorimetry and ionisation chamber dosimetry showed a discrepancy of 2.6% between the former method and ionometry following the ECHED protocol. Possibly, a small part of this difference can be attributed to chamber dependent correction factors. Indications for this possibility are found in ionometry measurements. To allow the simulation of complex geometries with different media necessary for the study of those corrections, an existing proton Monte Carlo code (PTRAN, Berger) has been modified. The original code, that applies Mollire's multiple scattering theory and Vavilov's energy straggling theory, calculates depth dose profiles, energy distributions and radial distributions for pencil beams in water. Comparisons with measurements and calculations reported in the literature are done to test the program's accuracy. Preliminary results of the influence of chamber design and chamber materials on dose to water determination are presented

  17. Integrals of random fields treated by the model correction factor method

    DEFF Research Database (Denmark)

    Franchin, P.; Ditlevsen, Ove Dalager; Kiureghian, Armen Der

    2002-01-01

    The model correction factor method (MCFM) is used in conjunction with the first-order reliability method (FORM) to solve structural reliability problems involving integrals of non-Gaussian random fields. The approach replaces the limit-state function with an idealized one, in which the integrals ...

  18. Determination of Dancoff correction thermal utilization and thermal disadvantage factors of HEU and LEU cores of an MNSR

    International Nuclear Information System (INIS)

    Ofori, Y. T.

    2013-07-01

    Ghana Research Reactor-1 (GHARR-1), an MNSR (Miniature Neutron Source Reactor) is to be converted from HEU (Highly Enriched Uranium) to LEU (Low Enriched Uranium) fuel, along with all current MNSRs in various other countries. The purpose of the conversion is to minimize the use of HEU for non-proliferation of high-grade nuclear fuel. In this research work, a comparative study has been performed for the determination of the Dancoff, thermal utilization and thermal disadvantage factors of highly enriched uranium (HEU) and potential low enriched uranium (LEU) cores of GHARR-1. A one group transport theory and collision probability based methodologies was used to develop mathematical formulations for thermal utilization factor and thermal disadvantage factor assuming isotropic scattering. This methodology was implemented in a FORTRAN 95 based computer program THERMCALC, which uses Bessell and BesselK as subroutines developed to calculate the modified Bessel functions I n and K n respectively using the polynomial approximation method. Furthermore, a Dancoff correction factor of 0.1519 thermal utilization factor of 0.9767 and a thermal disadvantage factor of 1.894 were obtained for the 90.2% highly enriched Uranium core of GHARR-1. The results compare favorably with literature. Thus THERMCALC can be used as a reliable tool for the calculation of Dancoff, thermal utilization and disadvantage factors of MNSR cores. Other potential LEU cores; UO 2 (with different fuel meat densities and enrichments) and U 3 Si 2 have also been analysed. UO 2 with 12.6% of Uranium-235 was chosen as the most potential LEU core for the GHARR-1. (au)

  19. Parametrisation of the collimator scatter correction factors of square and rectangular photon beams

    International Nuclear Information System (INIS)

    Jager, H.N.; Heukelom, S.; Kleffens, H.J. van; Gasteren, J.J.M. van; Laarse, R. van der; Venselaar, J.L.M.; Westermann, C.F.

    1995-01-01

    Collimator scatter correction factors S c have been measured with a cylindrical mini-phantom for five types of dual photon energy accelerators with energies between 6 and 25 MV. Using these S c -data three methods to parametrize S c of square fields have been compared including a third-order polynomial of the natural logarithm of the fieldsize normalised by the fieldsize of 10 cm 2 . Also six methods to calculate S c of rectangular fields have been compared including a new one which determines the equivalent fieldsize by extending Sterling's method. The deviation between measured and calculated S c for every accelerator, energy and all methods are determined resulting in the maximum and average deviation per method. Applied to square fields the maximum and average deviation were for the method of Chen 0.64% and 0.15%, of Szymzcyk 0.98% and 0.21%, and of this work 0.41% and 0.10%. For the rectangular fields the deviations were for the method of Sterling 1.89% and 0.50%, of Vadash 1.60% and 0.28%, of Szymczyk et al. 1.21% and 0.25%, of Chen 1.84% and 0.31% and of this work 0.79% and 0.20%. Finally, a recommendation is given how to limit the number of fields at which S c should be measured

  20. New look at displacement factor and point of measurement corrections in ionization chamber dosimetry

    International Nuclear Information System (INIS)

    Awschalom, M.; Rosenberg, I.; Ten Haken, R.K.

    1983-01-01

    A new technique is presented for determination of the effective point of measurement when cavity ionization chambers are used to measure the absorbed dose due to ionizing radiation in a dense medium. An algorithm is derived relating the effective point of measurement to the displacement correction factor. This algorithm relates variations of the displacement factor to the radiation field gradient. The technique is applied to derive the magnitudes of the corrections for several chambers in a p(66)Be(49) neutron therapy beam. 30 references, 4 figures, 1 table

  1. Applicability of perturbative QCD and NLO power corrections for the pion form factor

    International Nuclear Information System (INIS)

    Yeh Tsungwen

    2002-01-01

    As is well recognized, the asymptotic of the perturbative QCD prediction for the pion form factor is much smaller than the upper end of the data. We investigate this problem. We first evaluate the next-to-leading-order (NLO) power correction for the pion form factor. The corrected form factor contains nonperturbative parameters which are determined from a χ 2 fit to the data. Interpreting these parameters leads to the fact that the involved strong interaction coupling constant should be identified as an effective coupling constant under a nonperturbative QCD vacuum. If the scale associated with the effective coupling constant is identified as 2 Q 2 , then Q 2 , the momentum transfer square for the pion form factor to be measured, can have a value about 1 GeV 2 , and , the averaged momentum fraction variable, can locate around 0.5. This circumstance is consistent with the asymptotic model for the pion wave function

  2. The fortran programme for the calculation of the absorption and double scattering corrections in cross-section measurements with fast neutrons using the monte Carlo method (1963); Programme fortran pour le calcul des corrections d'absorption et de double diffusion dans les mesures de sections efficaces pour les neutrons rapides par la methode de monte-carlo (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    A calculation for double scattering and absorption corrections in fast neutron scattering experiments using Monte-Carlo method is given. Application to cylindrical target is presented in FORTRAN symbolic language. (author) [French] Un calcul des corrections de double diffusion et d'absorption dans les experiences de diffusion de neutrons rapides par la methode de Monte-Carlo est presente. L'application au cas d'une cible cylindrique est traitee en langage symbolique FORTRAN. (auteur)

  3. Sci—Fri AM: Mountain — 01: Validation of a new formulism and the related correction factors on output factor determination for small photon fields

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yizhen; Younge, Kelly; Nielsen, Michelle; Mutanga, Theodore [Peel Regional Cancer Center, Trillium Health Partners, Mississauga, ON (Canada); Cui, Congwu [Peel Regional Cancer Center, Trillium Health Partners, Mississauga, ON (Canada); Department of Radiation Oncology, University of Toronto, Toronto, ON (Canada); Das, Indra J. [Radiation Oncology Dept., Indiana University- School of Medicine, Indianapolis, IN (United States)

    2014-08-15

    Small field dosimetry measurements including output factors are difficult due to lack of charged-particle equilibrium, occlusion of the radiation source, the finite size of detectors, and non-water equivalence of detector components. With available detectors significant variations could be measured that will lead to incorrect delivered dose to patients. IAEA/AAPM have provided a framework and formulation to correct the detector response in small photon fields. Monte Carlo derived correction factors for some commonly used small field detectors are now available, however validation has not been performed prior to this study. An Exradin A16 chamber, EDGE detector and SFD detector were used to perform the output factor measurement for a series of conical fields (5–30mm) on a Varian iX linear accelerator. Discrepancies up to 20%, 10% and 6% were observed for 5, 7.5 and 10 mm cones between the initial output factors measured by the EDGE detector and the A16 ion chamber, while the discrepancies for the conical fields larger than 10 mm were less than 4%. After the application of the correction, the output factors agree well with each other to within 1%. Caution is needed when determining the output factors for small photon fields, especially for fields 10 mm in diameter or smaller. More than one type of detector should be used, each with proper corrections applied to the measurement results. It is concluded that with the application of correction factors to appropriately chosen detectors, output can be measured accurately for small fields.

  4. JNC results of BFS-62-3A benchmark calculation (CRP: Phase 5)

    International Nuclear Information System (INIS)

    Ishikawa, M.

    2004-01-01

    The present work is the results of JNC, Japan, for the Phase 5 of IAEA CRP benchmark problem (BFS-62-3A critical experiment). Analytical Method of JNC is based on Nuclear Data Library JENDL-3.2; Group Constant Set JFS-3-J3.2R: 70-group, ABBN-type self-shielding factor table based on JENDL-3.2; Effective Cross-section - Current-weighted multigroup transport cross-section. Cell model for the BFS as-built tube and pellets was (Case 1) Homogeneous Model based on IPPE definition; (Case 2) Homogeneous atomic density equivalent to JNC's heterogeneous calculation only to cross-check the adjusted correction factors; (Case 3) Heterogeneous model based on JNC's evaluation, One-dimensional plate-stretch model with Tone's background cross-section method (CASUP code). Basic diffusion Calculation was done in 18-groups and three-dimensional Hex-Z model (by the CITATION code), with Isotropic diffusion coefficients (Case 1 and 2), and Benoist's anisotropic diffusion coefficients (Case 3). For sodium void reactivity, the exact perturbation theory was applied both to basic calculation and correction calculations, ultra-fine energy group correction - approx. 100,000 group constants below 50 keV, and ABBN-type 175 group constants with shielding factors above 50 keV. Transport theory and mesh size correction 18-group, was used for three-dimensional Hex-Z model (the MINIHEX code based on the S4-P0 transport method, which was developed by JNC. Effective delayed Neutron fraction in the reactivity scale was fixed at 0.00623 by IPPE evaluation. Analytical Results of criticality values and sodium void reactivity coefficient obtained by JNC are presented. JNC made a cross-check of the homogeneous model and the adjusted correction factors submitted by IPPE, and confirmed they are consistent. JNC standard system showed quite satisfactory analytical results for the criticality and the sodium void reactivity of BFS-62-3A experiment. JNC calculated the cross-section sensitivity coefficients of BFS

  5. Finite size vertex correction to the strong decay of ηc and χc states and a determination of αs(mc)

    International Nuclear Information System (INIS)

    Ping Ronggang; Jiang Huanqing; Zou Bingsong

    2002-01-01

    In previous calculations of the strong decay of a charmonium, the first-order momentum dependence of the quark propagator is kept. It was found that the finite-size vertex correction to the Γ(J/ψ→3g) process is large. The authors calculate the two-gluon decay widths of η e , χ c0 and χ c2 by including the full momentum dependence of the quark propagator. Comparing to the zero-order calculation the authors find that the finite-size vertex correction factor to the two-gluon decay widths of η c is 1.32, and for the two-gluon decays of χ c0 and χ c2 , the vertex correction factors are 1.45 and 1.26, respectively. With the corrected decay widths Γ(η c →2g) authors extract the value as α s (m c ) = 0.28 +- 0.05 which agrees with that calculated from the Γ(J/ψ→3g) process with the same correction. The finite-size vertex correction to the process Γ(η c →3g) is not as large as that to the process Γ(J/ψ→3g)

  6. Humidity correction in the standard measurement of exposure

    International Nuclear Information System (INIS)

    Ibaraki, Yasuyuki; Katoh, Akira

    1980-01-01

    This paper deals with the humidity correction to be made in the standard measurement of the exposure to the measured ionization current in the humid air for the purpose of excluding the influence of the water vapour that is not included in the definition of the exposure. First, formulae giving the humidity correction factors for a parallel plate free air chamber and a cavity chamber have been derived respectively in the case where the contributions of air and water vapour to the ionization are independent. Next, in the case where the contributions are not independent, i.e., the Jesse effect is taken into account, a formula to obtain the W-value for humid air has been derived on the basis of the Niatel's experimental result. Using this formula, formulae to obtain the humidity correction factors for the free air chamber and the cavity chamber are derived. The humidity calculated by the latter formulae show good agreements with the results by Niatel and Guiho, respectively. (author)

  7. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography

    Science.gov (United States)

    Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K. W.; Yoshimura, Nagahisa

    2016-01-01

    Purpose To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. Methods The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Results Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. Conclusions The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction. PMID:26814541

  8. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography.

    Directory of Open Access Journals (Sweden)

    Tomomi Higashide

    Full Text Available To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects.The thickness of retinal layers {retinal nerve fiber layer (RNFL, ganglion cell layer plus inner plexiform layer (GCLIPL, RNFL plus GCLIPL (ganglion cell complex, GCC, total retina, total retina minus GCC (outer retina} were measured by macular scans (RS-3000, NIDEK in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters with or without magnification correction. For each layer thickness, a semipartial correlation (sr was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index.Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13 regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33 and a negative sr with GCLIPL (sr2, 0.22 to 0.31, GCC (sr2, 0.03 to 0.17, total retina (sr2, 0.07 to 0.17 and outer retina (sr2, 0.16 to 0.29 in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction.The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction.

  9. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography.

    Science.gov (United States)

    Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K W; Yoshimura, Nagahisa

    2016-01-01

    To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction.

  10. Regional-scale calculation of the LS factor using parallel processing

    Science.gov (United States)

    Liu, Kai; Tang, Guoan; Jiang, Ling; Zhu, A.-Xing; Yang, Jianyi; Song, Xiaodong

    2015-05-01

    With the increase of data resolution and the increasing application of USLE over large areas, the existing serial implementation of algorithms for computing the LS factor is becoming a bottleneck. In this paper, a parallel processing model based on message passing interface (MPI) is presented for the calculation of the LS factor, so that massive datasets at a regional scale can be processed efficiently. The parallel model contains algorithms for calculating flow direction, flow accumulation, drainage network, slope, slope length and the LS factor. According to the existence of data dependence, the algorithms are divided into local algorithms and global algorithms. Parallel strategy are designed according to the algorithm characters including the decomposition method for maintaining the integrity of the results, optimized workflow for reducing the time taken for exporting the unnecessary intermediate data and a buffer-communication-computation strategy for improving the communication efficiency. Experiments on a multi-node system show that the proposed parallel model allows efficient calculation of the LS factor at a regional scale with a massive dataset.

  11. CI+MBPT calculations of Ar I energies, g factors, and transition line strengths

    Science.gov (United States)

    Savukov, I. M.

    2018-03-01

    Excited states of noble gas atoms present certain challenges to atomic theory for several reasons: first, relativistic effects are important and LS coupling is not optimal; second, energy intervals can be quite small, leading to strong mixing of states; third, many-body perturbation theory for hole states does not converge well. Previously, some attempts were made to solve this problem, using for example the all-order coupled-cluster approach and particle-hole configuration-interaction many-body perturbation theory (CI-MBPT) with modified denominators. However, while these approaches were promising, the accuracy was still limited. In this paper, we calculate Ar I energies, g factors, and transition amplitudes using ab initio CI-MBPT with eight valence electrons to avoid the problem of slow convergence of MBPT due to strong interaction between 3p and 3s states. We also included in CI many dominant states obtained by double excitations of the ground state configuration. Thus perturbation corrections were needed only for 1s, 2s, 2p core electrons non-included in valence-valence CI, which are quite small. We found that energy, g factors, and electric dipole matrix elements are in reasonable agreement with experiments. It is noteworthy that the theory agreed well with accurately measured g factors. Experimental oscillator strengths have large uncertainty, so in some cases we made a comparison with average values.

  12. Evaluation of the uniformity of wide circular reference source and application of correction factors; Avaliação da uniformidade de fonte extensa de referência circular e aplicação de fatores de correção

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, I.A.; Xavier, M.; Siqueira, P.T.D.; Sordi, G.A.A.; Potiens, M.P.A., E-mail: iremarjr@gmail.com [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    In this work the uniformity of wide circular reference sources is evaluated. This kind of reference source is still widely used in Brazil. In previous works wide rectangular reference sources were analyzed and it was shown the importance of the application of correction factors in calibration procedures of radiation monitors. Now a transposition of the methods used formerly is performed, evaluating the uniformities of circular reference sources and calculating the associated correction factors. (author)

  13. Gamma self-shielding correction factors calculation for aqueous bulk sample analysis by PGNAA technique

    International Nuclear Information System (INIS)

    Nasrabadi, M.N.; Mohammadi, A.; Jalali, M.

    2009-01-01

    In this paper bulk sample prompt gamma neutron activation analysis (BSPGNAA) was applied to aqueous sample analysis using a relative method. For elemental analysis of an unknown bulk sample, gamma self-shielding coefficient was required. Gamma self-shielding coefficient of unknown samples was estimated by an experimental method and also by MCNP code calculation. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the gamma self-shielding within the sample volume is required.

  14. Chemical short range order and magnetic correction in liquid manganese–gallium zero alloy

    Energy Technology Data Exchange (ETDEWEB)

    Grosdidier, B. [Laboratoire de Chimie Physique – Approche Multi-Echelle des Milieux Complexes, Institut Jean Bariol, Université de Lorraine, Institut de Chimie, Physique et Matériaux, 1 Bd Arago, 57078 Metz Cedex 3 (France); Ben Abdellah, A. [Laboratoire de Chimie Physique – Approche Multi-Echelle des Milieux Complexes, Institut Jean Bariol, Université de Lorraine, Institut de Chimie, Physique et Matériaux, 1 Bd Arago, 57078 Metz Cedex 3 (France); Innovation and Management of Industrial Systems, Abdelmalek Essaadi University, College of Sciences and Techniques of Tangier , P.O. Box 416, Postal code 90000, Tangier (Morocco); Université Internationale de Rabat, Parc Technopolis Rabat-Shore, 11100 Sala El Jadida (Morocco); Osman, S.M., E-mail: osm@squ.edu.om [Physics Department, College of Science, Sultan Qaboos University, P.O. Box 36, Postal Code 123, Al-Khod, Muscat (Oman); Ataati, J. [Innovation and Management of Industrial Systems, Abdelmalek Essaadi University, College of Sciences and Techniques of Tangier, P.O. Box 416, Postal code 90000, Tangier (Morocco); Gasser, J.G. [Laboratoire de Chimie Physique – Approche Multi-Echelle des Milieux Complexes, Institut Jean Bariol, Université de Lorraine, Institut de Chimie, Physique et Matériaux, 1 Bd Arago, 57078 Metz Cedex 3 (France)

    2015-12-15

    The Mn{sub 66}Ga{sub 34} alloy at this particular composition is known to be zero alloy in which the linear combination of the two neutron scattering lengths weighted by the atomic compositions vanish. Thus for this specific concentration, the effect of the partial structure factors S{sub NN} and S{sub NC} is cancelled by a weighted term, which value is zero. Then the measured total structure factor S(q) gives directly the concentration–concentration structure factor S{sub CC}(q). We present here the first experimental results of neutron diffraction on the Mn{sub 66}Ga{sub 34} “null matrix alloy” at 1050 °C. The main peak of the experimental S{sub CC}(q) gives a strong evidence of a hetero-atomic chemical order in this coordinated alloy. This order also appears in real space radial distribution function which is calculated by the Fourier transform of the structure factor. The degree of hetero-coordination is discussed together with other manganese-polyvalent alloys. However manganese also shows abnormal magnetic scattering in the alloy structure factor which must be corrected. This correction gives an experimental information on the mean effective spin of manganese in this liquid alloy. We present the first critical theoretical calculations of the magnetic correction factor in Mn–Ga zero-alloy based on our accurate experimental measurements of S{sub CC}(q).

  15. Fault of the correction factor for pressure and temperature k{sub PT} in the atmospheric conditions of Dosimetric Calibration Lab. - LSCD of ININ - Mexico; Falla del factor de correcion por presion y temperatura k{sub PT} a las condiciones atmosfericas del LSCD-ININ-Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, Jose T.; Jesus Cejudo, A.; La Cruz H., Daniel de; Tovar M, Victor M., E-mail: trinidad.alvarez@inin.gob.mx, E-mail: jesus.cejudo@inin.gob.mx, E-mail: daniel.delacruz@inin.gob.mx, E-mail: victor.tovar@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares (LSCD/ININ), Ocoyoacac (Mexico). Laboratorio Secundario de Calibracion Dosimetrica

    2013-07-01

    The realization of the operational quantities H*, Hp y/0 H'(0.07) for estimating the effective dose E, usually is done by measuring the air kerma Ka air within the field of ionizing radiation of interest and was subsequently applied appropriate conversion factors for both the quality of radiation and the operational quantity of interest. However, the SSDL in performing the Ka to environmental conditions of ININ (3000 m above sea level, P ∼ 710 hPa) with ionization chambers has found that the pressure correction factor and kPT temperature is not sufficient to correct the change in air density. Indeed, in the case of {sup 60}Co the discrepancy between the measurement of a primary standard graphite walls Ka (BEV CC01 be 131) and a side of the plastic walls (Exradin A12) is on the order of 0.4% for the case of the RX BIPM qualities to 100,135, 180 and 250 kV. It was found that for a camera model 30001 PTW (PMMA graphite wall) is needed an additional correction factor k PT ranging from 0.4% to 1.5%, correction factor calculated by MC simulation. For Sk of {sup 125}I brachytherapy sources was given an additional correction lower in 11% compared to conventional k{sub PT} value measured with a well chamber Standard Imaging HDR 1000 plus. Finally, it is in the process of studying the behavior of this additional correction factor to the case of {sup 137}Cs.

  16. Calculation of coupling factor for the heterogeneous accelerating structure

    International Nuclear Information System (INIS)

    Bian Xiaohao; Chen Huaibi; Zheng Shuxin

    2006-01-01

    The converging part of electron accelerator is designed to converge the phase of injecting electrons, improving the beam quality of the accelerator. It is very crucial to calculate the coupling factor between cavities and to design the geometry structure of the coupling irises. By the E module of code MAFIA, the authors calculate the frequency of every single resonant cavity and the two eigenfrequencies of two-cavitiy line. Then we get the coupling factor between the two cavities. This method can be used to design the geometry structure of the coupling isises between every two cavities. Compared to experiment, the results of the method is very accurate. (authors)

  17. Long-range corrected DFT calculations of charge-transfer integrals in model metal-free phthalocyanine complexes

    Czech Academy of Sciences Publication Activity Database

    Mikolajczyk, M. M.; Zalesny, R.; Czyznikowska, Z.; Toman, Petr; Leszczynski, J.; Bartkowiak, W.

    2011-01-01

    Roč. 17, č. 9 (2011), s. 2143-2149 ISSN 1610-2940 R&D Projects: GA ČR(CZ) GAP205/10/2280; GA MŠk MEB051010 Institutional research plan: CEZ:AV0Z40500505 Keywords : charge-transfer integral * density functional theory * long-range corrected functionals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.797, year: 2011

  18. Calculating disadvantage factor for fuel taking into account the neutron energy distribution

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1964-01-01

    Errors in calculating the disadvantage factor are caused by applying the diffusion approximation and one-group method. This paper describes the method for calculating the fuel disadvantage factor by applying a non-diffusion method taking into account neutron thermalization

  19. Conduction Losses and Common Mode EMI Analysis on Bridgeless Power Factor Correction

    DEFF Research Database (Denmark)

    Li, Qingnan; Andersen, Michael Andreas E.; Thomsen, Ole Cornelius

    2009-01-01

    In this paper, a review of Bridgeless Boost power factor correction (PFC) converters is presented at first. Performance comparison on conduction losses and common mode electromagnetic interference (EMI) are analyzed between conventional Boost PFC converter and members of Bridgeless PFC family...

  20. NLO corrections to production of heavy particles at hadron colliders

    International Nuclear Information System (INIS)

    Pagani, Davide

    2013-01-01

    In this thesis we study specific aspects of the production of heavy particles at hadron colliders, with emphasis on precision predictions including next-to-leading order (NLO) corrections from the strong and electroweak interactions. In the first part of the thesis we consider the top quark charge asymmetry. In particular, we discuss in detail the calculation of the electroweak contributions from the asymmetric part of the top quark pair production cross section at O(α 2 s α) and O(α 2 ) and their numerical impact on predictions for the asymmetry measurements at the Tevatron. These electroweak contributions provide a non-negligible addition to the QCD-induced asymmetry with the same overall sign and, in general, enlarge the Standard Model predictions by a factor around 1.2, diminishing the deviations from experimental measurements. In the second part of the thesis we consider the production of squarks, the supersymmetric partners of quarks, at the Large Hadron Collider (LHC). We discuss the calculation of the contribution of factorizable NLO QCD corrections to the production of squark-squark pairs combined at fully differential level with squark decays. Combining the production process with two different configurations for the squark decays, our calculation is used to provide precise phenomenological predictions for two different experimental signatures that are important for the search of supersymmetry at the LHC. We focus, for one signature, on the impact of our results on important physical differential distributions and on cut-and-count searches performed by the ATLAS and CMS collaborations. Considering the other signature, we analyze the effects from NLO QCD corrections and from the combination of production and decays on distributions relevant for parameter determination. In general, factorizable NLO QCD corrections have to be taken into account to obtain precise phenomenological predictions for the analyzed distributions and inclusive quantities. Moreover

  1. Low Capacitive Inductors for Fast Switching Devices in Active Power Factor Correction Applications

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

    2014-01-01

    This paper examines different winding strategies for reduced capacitance inductors in active power factor correction circuits (PFC). The effect of the parasitic capacitance is analyzed from an electro magnetic compatibility (EMI) and efficiency point of views. The purpose of this work is to inves......This paper examines different winding strategies for reduced capacitance inductors in active power factor correction circuits (PFC). The effect of the parasitic capacitance is analyzed from an electro magnetic compatibility (EMI) and efficiency point of views. The purpose of this work...... is to investigate different winding approaches and identify suitable solutions for high switching frequency/high speed transition PFC designs. A low parasitic capacitance PCB based inductor design is proposed to address the challenges imposed by high switching frequency PFC Boost converters....

  2. A Method for Correcting IMRT Optimizer Heterogeneity Dose Calculations

    International Nuclear Information System (INIS)

    Zacarias, Albert S.; Brown, Mellonie F.; Mills, Michael D.

    2010-01-01

    Radiation therapy treatment planning for volumes close to the patient's surface, in lung tissue and in the head and neck region, can be challenging for the planning system optimizer because of the complexity of the treatment and protected volumes, as well as striking heterogeneity corrections. Because it is often the goal of the planner to produce an isodose plan with uniform dose throughout the planning target volume (PTV), there is a need for improved planning optimization procedures for PTVs located in these anatomical regions. To illustrate such an improved procedure, we present a treatment planning case of a patient with a lung lesion located in the posterior right lung. The intensity-modulated radiation therapy (IMRT) plan generated using standard optimization procedures produced substantial dose nonuniformity across the tumor caused by the effect of lung tissue surrounding the tumor. We demonstrate a novel iterative method of dose correction performed on the initial IMRT plan to produce a more uniform dose distribution within the PTV. This optimization method corrected for the dose missing on the periphery of the PTV and reduced the maximum dose on the PTV to 106% from 120% on the representative IMRT plan.

  3. Determining chance coincidence, survival factor and decay factor in 220Rn delayed coincidence measurement

    International Nuclear Information System (INIS)

    Huang Derong; Yan Yongjun; Zhou Jianliang; Qiu Shoukang

    2013-01-01

    The method and calculation formulas to determine the chance coincidence in the 220 Rn coincidence measurement are introduced in this paper. The poisson distribution is introduced to correct the chance coincidence. The relative deviation of the true coincidence between the method and the Giffin's is within 5% after the correction of the cohance coincidence. The measurement of 220 Rn is done by comparative measurement with RAD7. The results shows that 220 Rn can be measured by the method with a relative deviation of 14%. Mean while, for the 220 Rn flow regime is difficult to meet the condition of calculation formulas, a solution to solve the survival factor and decay factor is proposed and the error come from the useage of theoretical calculation formula is avoided. (authors)

  4. Application of the “best representativity” method to a PWR fuel calculation using the critical experiments at the Toshiba NCA facility

    International Nuclear Information System (INIS)

    Umano, Takuya; Yoshioka, Kenichi; Obara, Toru

    2015-01-01

    Highlights: • Calculation procedures are easier than those of the cross-section adjustment method. • In addition, few cases of experimental results, two or three cases for example, can be well managed with the method. • Different from the bias factor method, a representativity factor is simultaneously obtained to know the whole quality of utilized experiments. • After easier process of calculations, it is possible to obtain a correction value of a particular physical property with the method. • Our proposed method was considered to be applicable to the correction of the infinite neutron multiplication factor in LWR studies. - Abstract: To judge the applicability of a critical experiment, it is necessary to confirm the similarities of the experiment with actual reactor conditions or equipment. The concept of the “representativity factor” has been well adopted since the late 1970’s, particularly for fast breeder reactors (FBRs) and future reactor studies. In our previous study, we extended this concept to the design of a light water reactor (LWR) system, and derived mathematical formulas for a new numerical evaluation method to correct a physical property of a target system. This method is different from the cross-section adjustment method and the bias factor method. For the first qualification of the method, sample calculations were carried out to correct the effective neutron multiplication factor through critical experiments at the Toshiba Nuclear Critical Assembly (NCA) facility. We also compared the result with that of the Product of Exponentiated experimental values method (PE method) of the extended bias factor methods. A good agreement was observed. The purpose of this study was to demonstrate the applicability of the method to the infinite neutron multiplication factor. Using the method and three kinds of critical experiments of NCA, calculations were performed to correct the infinite neutron multiplication factor of a pressurized water

  5. Correction of build-up factor one x-ray hvl measurement

    International Nuclear Information System (INIS)

    Yuliati, Helfi; Akhadi, Mukhlis

    2000-01-01

    Research to obtain the value build-up factor (b) on half value layers (HVL) measurement of diagnostic X-Rays using pocket dosimeter behind aluminium (AI) filter with its thickness vary from 1 to 4 mm. From the measurement it was obtained HVL value of 1.997, 2.596 and 2.718 mmAI for X-Rays of kVp : 80 Kv with 1, 2, 3 and 4 mm filter thickness respectively. HVL value significantly increase with increasing AI filter thickness. Increasing of HVL means increasing filter thickness. From the calculation it was obtained increasing b value relative to 1 mm AI filter of 18.26 and 46% for filter thickness of 2, 3 and 4 mm respectively. Experiment result shows the need of involving b value in HVL calculation of X-Rays if the filter is relatively thick. Calculation of HVL of X-Rays can be carried out with thin layers filter. Key words : x-rays, half value layer, build up factor

  6. On the accuracy of triple phase boundary lengths calculated from tomographic image data

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Yakal-Kremski, Kyle; Wilson, James

    2014-01-01

    to systematic errors in TPB estimates. Here, two approaches for calculating the TPB density are compared to investigate how different TPB aspects such as curvature, orientation, and phase contact angles affect the results. The first approach applies a correction factor to the TPB length calculated by simply...

  7. Effect of temperature change at inlet of engine on the corrected performance of turbofan engine

    Energy Technology Data Exchange (ETDEWEB)

    Kozu, Masao; Yajima, Satoshi [Defence Agency, Tokyo, JapanIshikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1989-06-10

    Theoretical consideration on the effect of inlet temperature change of engine on the engine performance was conducted, and soundness of the result was appreciated by applying it to the experimental result of turbofan engine. As the theoretical consideration, premises of Buckingham's fundamental theorem was corrected by Reynolds Number and by the consideration on the effect of inlet temperature on gas constant and specific heat ratio. By using the result, correction factors were calculated from the experimental result of an actual turbo-fan engine. The correction factors were applied to the other engine test result and confirmed satisfactory soundness. 4 refs., 11 figs.

  8. Correction factors for {gamma}-ray relative intensities in the {sup 66}Ga radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, G.J. [Duke Univ., Durham, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Chasteler, R.M. [Duke Univ., Durham, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Laymon, C.M. [Duke Univ., Durham, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Weller, H.R. [Duke Univ., Durham, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Moore, E.F. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Bybee, C.R. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Drake, J.M. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Tilley, D.R. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Vavrina, G. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Wallace, P.M. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States)

    1996-09-16

    We present here strong evidence that recently published values for the relative intensities of {gamma}-ray lines in the {sup 66}Ga({beta}{sup +}+EC){sup 66}Zn decay are incorrect at the higher energies ({proportional_to}30% too low at 4.8 MeV). In particular, we find that our current results are consistent with a set of correction factors which were first suggested 20 years ago, but have gone largely ignored until now. Our validation of these little known correction factors will have bearing on experiments which use the {sup 66}Ga radioisotope to extrapolate absolute detector efficiencies to higher energies. In particular, we discuss the conclusions of a recent D(p, {gamma}){sup 3}He experiment which will be strongly affected by our current results. The astrophysical S-factor data derived from this D(p, {gamma}){sup 3}He experiment are now seen to be systematically too low by {proportional_to}30%. (orig.).

  9. Calculation of quality factor for monoenergetic neutrons - in accordance with ICRU Report 40

    International Nuclear Information System (INIS)

    Bregadze, Y.I.; Maslyaev, P.F.; Nurlibaev, K.N.

    1988-01-01

    The quality factors for heavy particle dose in tissue from first interactions of monoenergetic neutrons calculated directly from the new quality factor determination given in ICRU Report 40 are presented as a function of neutron energy. The results of the calculation are compared with previously published calculations based on old concepts. For neutron energies from 100 keV up to 1 MeV these differences are about a factor of two. (author)

  10. Monte Carlo based electron treatment planning and cutout output factor calculations

    Science.gov (United States)

    Mitrou, Ellis

    Electron radiotherapy (RT) offers a number of advantages over photons. The high surface dose, combined with a rapid dose fall-off beyond the target volume presents a net increase in tumor control probability and decreases the normal tissue complication for superficial tumors. Electron treatments are normally delivered clinically without previously calculated dose distributions due to the complexity of the electron transport involved and greater error in planning accuracy. This research uses Monte Carlo (MC) methods to model clinical electron beams in order to accurately calculate electron beam dose distributions in patients as well as calculate cutout output factors, reducing the need for a clinical measurement. The present work is incorporated into a research MC calculation system: McGill Monte Carlo Treatment Planning (MMCTP) system. Measurements of PDDs, profiles and output factors in addition to 2D GAFCHROMICRTM EBT2 film measurements in heterogeneous phantoms were obtained to commission the electron beam model. The use of MC for electron TP will provide more accurate treatments and yield greater knowledge of the electron dose distribution within the patient. The calculation of output factors could invoke a clinical time saving of up to 1 hour per patient.

  11. 75 FR 72739 - Compliance Testing Procedures: Correction Factor for Room Air Conditioners

    Science.gov (United States)

    2010-11-26

    ...: Correction Factor for Room Air Conditioners AGENCY: Office of the General Counsel, Department of Energy (DOE... air conditioners. The petition seeks temporary enforcement forbearance, or in the alternative, a... procedures for room air conditioners. Public comment is requested on whether DOE should grant the petition...

  12. Calculation of mixed mode stress intensity factors using an alternating method

    International Nuclear Information System (INIS)

    Sakai, Takayuki

    1999-01-01

    In this study, mixed mode stress intensity factors (K I and K II ) of a square plate with a notch were calculated using a finite element alternating method. The obtained results were compared with the ones by a finite element method, and it was shown that the finite element alternating method can accurately estimate mixed mode stress intensity factors. Then, using this finite element alternating method, mixed mode stress intensity factors were calculated as changing the size and position of the notch, and its simplified equations were proposed. (author)

  13. Calculation method of efficiency factor in Alford's force

    Energy Technology Data Exchange (ETDEWEB)

    Ding, X.; Yang, Y.; Chen, W.; Huang, S.; Zheng, C. [Huazhong University of Science and Technology, Wuhan (China). College of Energy and Power Engineering

    2006-07-01

    The mechanism of gas excitation for wheel eccentricity and to calculate Alford's force are introduced. On the basis of the blade-and-flow parameters a new formulation is derived and validated. The calculation results are consistent with current theory and experimental conclusions. The physical meaning of the ranges of numerical values of the efficiency factor are discussed. This gets rid of the difficulty of selecting the efficiency factor in Alford's formulation and lays a theoretical foundation for the stability analysis to increases turbine rotor stability. (author)

  14. Monte Carlo study of MOSFET dosimeter dose correction factors considering energy spectrum of radiation field in a steam generator channel head

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Koo; Choi, Sang Hyoun; Kim, Chan Hyeong [Hanyang Univ., Seoul (Korea, Republic of)

    2006-12-15

    In Korea, a real-time effective dose measurement system is in development. The system uses 32 high-sensitivity MOSFET dosimeters to measure radiation doses at various organ locations in an anthropomorphic physical phantom. The MOSFET dosimeters are, however, mainly made of silicon and shows some degree of energy and angular dependence especially for low energy photons. This study determines the correction factors to correct for these dependences of the MOSFET dosimeters for accurate measurement of radiation doses at organ locations in the phantom. For this, first, the dose correction factors of MOSFET dosimeters were determined for the energy spectrum in the steam generator channel of the Kori Nuclear Power Plant Unit no.1 by Monte Carlo simulations. Then, the results were compared with the dose correction factors from 0.662 MeV and 1.25 MeV mono-energetic photons. The difference of the dose correction factors were found very negligible ({<=}1.5%), which in general shows that the dose corrections factors determined from 0.662 MeV and 1.25 MeV can be in a steam general channel head of a nuclear power plant. The measured effective dose was generally found to decrease by {approx}7% when we apply the dose correction factors.

  15. QCD calculation of π0γγ vertex at equal Euclidean q2 of both photons

    International Nuclear Information System (INIS)

    Voloshin, M.B.

    1982-01-01

    The form factor of the π 6 γγ vertex at equal space-like four- momentum q 2 of the photons (q 1 2 =q 2 2 =-Q 2 ) and a small four- momentum p 2 of the pion is calculated within QCD. Explicit expressions for leading perturbative and non perturbative preasymptotic corrections are derived. To find the latter correction matrix elements of operators of dimension d=5 between the pion and vacuum are calculated. The result for the form factor smoothly matches at Q 2 approximately 0.5 GeV 2 the estimate based on the vector mesom dominance model [ru

  16. Towards a universal method for calculating hydration free energies: a 3D reference interaction site model with partial molar volume correction

    International Nuclear Information System (INIS)

    Palmer, David S; Frolov, Andrey I; Ratkova, Ekaterina L; Fedorov, Maxim V

    2010-01-01

    We report a simple universal method to systematically improve the accuracy of hydration free energies calculated using an integral equation theory of molecular liquids, the 3D reference interaction site model. A strong linear correlation is observed between the difference of the experimental and (uncorrected) calculated hydration free energies and the calculated partial molar volume for a data set of 185 neutral organic molecules from different chemical classes. By using the partial molar volume as a linear empirical correction to the calculated hydration free energy, we obtain predictions of hydration free energies in excellent agreement with experiment (R = 0.94, σ = 0.99 kcal mol -1 for a test set of 120 organic molecules). (fast track communication)

  17. Towards a universal method for calculating hydration free energies: a 3D reference interaction site model with partial molar volume correction.

    Science.gov (United States)

    Palmer, David S; Frolov, Andrey I; Ratkova, Ekaterina L; Fedorov, Maxim V

    2010-12-15

    We report a simple universal method to systematically improve the accuracy of hydration free energies calculated using an integral equation theory of molecular liquids, the 3D reference interaction site model. A strong linear correlation is observed between the difference of the experimental and (uncorrected) calculated hydration free energies and the calculated partial molar volume for a data set of 185 neutral organic molecules from different chemical classes. By using the partial molar volume as a linear empirical correction to the calculated hydration free energy, we obtain predictions of hydration free energies in excellent agreement with experiment (R = 0.94, σ = 0.99 kcal mol (- 1) for a test set of 120 organic molecules).

  18. Application of the correction factor for radiation qualityKq in dosimetry with pencil-type ionization chambers using a Tandem system

    International Nuclear Information System (INIS)

    Fontes, Ladyjane Pereira; Potiens, Maria da Penha Albuquerque

    2017-01-01

    The pencil-type ionization chamber widely used in computed tomography (CT) dosimetry, is a measuring instrument that has a cylindrical shape and provides uniform response independent of the angle of incidence of ionizing radiation. Calibration and measurements performed with the pencil-type ionization chamber are done in terms of Kerma product in air-length (P k,l ) and values are given in Gy.cm. To obtain the values of (P k,l ) during clinical measurements, the readings performed with the ionization chamber are multiplied by the calibration coefficient (N k,l ) and the correction factor C for quality (K q ) which are given in Calibration certificates of the chambers. The application of the correction factor for radiation quality K q is done as a function of the effective energy of the beam that is determined by the Half Value layer (HVL) calculation. In order to estimate the HVL values in this work, a Tandem system made up of cylindrical aluminum and PMMA absorber layers was used as a low cost and easy to apply method. From the Tandem curve, it was possible to construct the calibration curve and obtain the appropriate K q to the beam of the computed tomography equipment studied. (author)

  19. High efficiency three-phase power factor correction rectifier using SiC switches

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2017-01-01

    This paper presents designing procedure of a high efficiency 5 kW silicon-carbide (SiC) based threephase power factor correction (PFC). SiC switches present low capacitive switching loss compared to the alternative Si switches. Therefore, the switching frequency can be increased and hence the siz...

  20. SU-F-I-13: Correction Factor Computations for the NIST Ritz Free Air Chamber for Medium-Energy X Rays

    International Nuclear Information System (INIS)

    Bergstrom, P

    2016-01-01

    Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source in the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.

  1. SU-F-I-13: Correction Factor Computations for the NIST Ritz Free Air Chamber for Medium-Energy X Rays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, P [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (United States)

    2016-06-15

    Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source in the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.

  2. Simulation study of the photon quality correction factors of ionization chambers for FiR 1 epithermal neutron beam

    International Nuclear Information System (INIS)

    Koivunoro, H.; Uusi-Simola, J.; Savolainen, S.; Kotiluoto, P.; Auterinen, I.; Kosunen, A.

    2006-01-01

    At FiR 1 BNCT facility in Finland, neutron-insensitive Mg(Ar) ionization chambers are used for photon dose measurements in an epithermal neutron beam. Previously, photon sensitivity factors for the chamber for the measurements in a water phantom in FiR 1 beam have been determined experimentally from measurements in 60 Co gamma and in a 6 MV clinical accelerator photon beams. However, the response of the ionization chamber in a water phantom depends on energy spectrum and angle of the photons and the secondary electrons created inside the phantom and may differ depending on type of the irradiation source (accelerator vs. an epithermal neutron beam). Also, the experimental sensitivity factor does not take into account the possible perturbations in the photon production in phantom caused by the ionization chamber materials. Therefore, it is necessary to determine the photon quality correction factors (k Qγ ) for the Mg(Ar) chamber at the FiR 1 beam through computer simulations. In this study, the k Qγ factors have been determined for Mg(Ar) chamber from Monte Carlo calculations of absorbed photon dose at two depths in a water phantom using MCNP code. The k qγ factors obtained with this method are compared to the sensitivity factors determined with measurements in an accelerator photon beam and to the k Qγ factors published previously. (author)

  3. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments

    International Nuclear Information System (INIS)

    Lee, K.W.; Sheu, R.J.

    2015-01-01

    High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with 252 Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing 252 Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6-8 extended-range sphere versus the 6'' standard sphere). (authors)

  4. Calculated rotational and vibrational g factors of LiH X 1S+ and evaluation of parameters in radial functions from rotational and vibration-rotational spectra

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Paidarová, Ivana; Oddershede, Jens

    2011-01-01

    The vibrational g factor, that is, the nonadiabatic correction to the vibrational reduced mass, of LiH has been calculated for internuclear distances over a wide range. Based on multiconfigurational wave functions with a large complete active space and an extended set of gaussian type basis...

  5. Nonperturbative QCD corrections to electroweak observables

    Energy Technology Data Exchange (ETDEWEB)

    Dru B Renner, Xu Feng, Karl Jansen, Marcus Petschlies

    2011-12-01

    Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we will examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We will then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we will mention applications to the Adler function, the determination of the strong coupling constant and QCD corrections to muonic-hydrogen.

  6. Assessment of radioactivity for 24 hours urine sample depending on correction factor by using creatinine

    International Nuclear Information System (INIS)

    Kharita, M. H.; Maghrabi, M.

    2006-09-01

    Assessment of intake and internal does requires knowing the amount of radioactivity in 24 hours urine sample, sometimes it is difficult to get 24 hour sample because this method is not comfortable and in most cases the workers refuse to collect this amount of urine. This work focuses on finding correction factor of 24 hour sample depending on knowing the amount of creatinine in the sample whatever the size of this sample. Then the 24 hours excretion of radionuclide is calculated assuming the average creatinine excretion rate is 1.7 g per 24 hours, based on the amount of activity and creatinine in the urine sample. Several urine sample were collected from occupationally exposed workers the amount and ratios of creatinine and activity in these samples were determined, then normalized to 24 excretion of radionuclide. The average chemical recovery was 77%. It should be emphasized that this method should only be used if a 24 hours sample was not possible to collect. (author)

  7. Determination of the self-attenuation correction factor for environmental samples analysis in gamma spectrometry

    International Nuclear Information System (INIS)

    Santos, Talita O.; Rocha, Zildete; Knupp, Eliana A.N.; Kastner, Geraldo F.; Oliveira, Arno H. de; Oliveira, Arno H. de

    2015-01-01

    Gamma spectrometry technique has been used in order to obtain the activity concentrations of natural and artificial radionuclides in environmental samples of different origins, compositions and densities. These samples characteristics may influence the calibration condition by the self-attenuation effect. The sample density has been considered the most important factor. For reliable results, it is necessary to determine self-attenuation correction factor which has been subject of great interest due to its effect on activity concentration. In this context, the aim of this work is to show the calibration process considering the correction by self-attenuation in the evaluation of the concentration of each radionuclide to a gamma HPGEe detector spectrometry system. (author)

  8. Comparison of analytic source models for head scatter factor calculation and planar dose calculation for IMRT

    International Nuclear Information System (INIS)

    Yan Guanghua; Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G

    2008-01-01

    The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity

  9. Comparison of analytic source models for head scatter factor calculation and planar dose calculation for IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Yan Guanghua [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G [Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385 (United States)

    2008-04-21

    The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity.

  10. An NLO calculation of the electroproduction of large-E bot hadrons

    International Nuclear Information System (INIS)

    Aurenche, P.; Basu, Rahul; Fontannaz, M.; Godbole, R.M.

    2004-01-01

    We present a next-to-leading order calculation of the cross section for the leptoproduction of large-E bot hadrons and we compare our predictions with H1 data on the forward production of π 0 . We find large higher order corrections and an important sensitivity to the renormalization and factorization scales. These large corrections are shown to arise in part from BFKL-like diagrams at the lowest order. (orig.)

  11. A universal PWR spectral history correction

    International Nuclear Information System (INIS)

    Hutt, P.K.; Nunn, D.L.

    1989-01-01

    The accuracy of a form of universal correction for the difference between depletion conditions assumed in PWR assembly lattice calculations and those experienced in a reactor burn-up is investigated. The correction is based on lattice calculations in which only one such depletion history difference, depletion at two different water densities, is explicitly represented by lattice calculations. The assumption is made that other historical effects bear the same relationship to an appropriate time-average of the two-group neutron flux spectrum. The correction is shown to be accurate for the most important historical effects, depletion with burnable absorbers inserted, control rods inserted or at a different soluble boron level, in addition to density itself. The correction is less accurate for representing depletion at a different fuel or coolant temperature but even in these cases gives an improvement over no correction. In addition it is argued that these historic temperature effects are likely to be of minor importance. (author)

  12. Normality test for determining the correction factor of isotopic composition in PWR spent fuel

    International Nuclear Information System (INIS)

    Lee, Y. H.; Shin, H. S.; Noh, S. K.; Seo, K. S.

    2001-01-01

    Normality test has been carried out for the ratios of the measured-to-calculated isotopic compositions in PWR spent fuel, using Shapiro-Wilk W, Lilliefors D, Cramer-von Mises and Anderson-Darling. All 38 istopices have been evaluated by means of the 1.5xIQR rule and then outliers have been discarded. As result, it seems that only 20 nuclides are satisfied with the normality at significance level 5 %. 18 Nuclides(samples) including U-235 have higher significance probability(p-value) than 25 % in W-test and p-values obtained by other three tests exceed the upper limit. Besides, in 6 nuclides including Pu-239, it seems that the p-values are between 5 % and 25 % in W test. From these results, in order to predict the isotopic compositions in the conservative point of view, it is decided that the correction factors for the nuclides are determined at the 95/95 probability and confidence level by using tolerance limit-methods with the assumption that only 18 nuclides are satisfied with thr normality

  13. Factors affecting neutron measurements and calculations. Part F. Water content in granite

    International Nuclear Information System (INIS)

    Iwatani, Kazuo; Hasai, Hiromi; Shizuma, Kiyoshi; Hoshi, Masaharu; Endo, Satoru; Oka, Takamitsu; Imanaka, Tetsuji

    2005-01-01

    As part of the DS02 studies to reevaluate neutrons from the atomic bomb, we cored rock samples from a pillar of Motoyasu Bridge, located at a distance of 128 m from the hypocenter in Hiroshima, and measured the depth profile of induced 152 Eu radioactivity in the rock (Hasai et al. 1987). By use of the MCNP neutron transport calculation code, the depth profile of 152 Eu in the rock was calculated, assuming a neutron distribution at the given location around the pillar based on the DS86 calculations. The depth profile was then compared with the distribution of measurements (Endo et al. 1999). For the calculation, it is necessary to know the major components of the rock. It is also necessary to estimate the water content correctly, since the cross section of hydrogen-neutron reactions is large, and neutron moderation effects of hydrogen are significant. For this purpose, the basic characteristics of water content in rock were studied, based on a few characteristic experiments to estimate the water content, which was then used in neutron transport calculations. The following describes our concepts and methods. (author)

  14. Evaluation on correction factor for in-line X-ray phase contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Mingli; Huang, Zhifeng; Zhang, Li; Zhang, Ran [Tsinghua Univ., Beijing (China). Dept. of Engineering Physics; Ministry of Education, Beijing (China). Key Laboratory of Particle and Radiation Imaging; Yin, Hongxia; Liu, Yunfu; Wang, Zhenchang [Capital Medical Univ., Beijing (China). Medical Imaging Center; Xiao, Tiqiao [Chinese Academy of Sciences, Shanghai (China). Shanghai Inst. of Applied Physics

    2011-07-01

    X-ray in-line phase contrast computed tomography (CT) is an effective nondestructive tool, providing 3D distribution of the refractive index of weakly absorbing low-Z object with high resolution and image contrast, especially with high-brilliance third-generation synchrotron radiation sources. Modified Bronnikov's algorithm (MBA), one of the in-line phase contrast CT reconstruction algorithms, can reconstruct the refractive index distribution of a pure phase object with a single computed tomographic data set. The key idea of the MBA is to use a correction factor in the filter function to stabilize the behavior at low frequencies. In this paper, we evaluate the influences of the correction factor to the final reconstruction results of the absorption-phase-mixed objects with analytical simulation and actual experiments. The limitations of the MBA are discussed finally. (orig.)

  15. Calculating the Unit Cost Factors for Decommissioning Cost Estimation of the Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Jeong, Kwan Seong; Lee, Dong Gyu; Jung, Chong Hun; Lee, Kune Woo

    2006-01-01

    The estimated decommissioning cost of nuclear research reactor is calculated by applying a unit cost factor-based engineering cost calculation method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning cost of nuclear research reactor is composed of labor cost, equipment and materials cost. Labor cost of decommissioning costs in decommissioning works are calculated on the basis of working time consumed in decommissioning objects. In this paper, the unit cost factors and work difficulty factors which are needed to calculate the labor cost in estimating decommissioning cost of nuclear research reactor are derived and figured out.

  16. A new approximating formula for calculating gamma-ray buildup factors in multilayer shields

    International Nuclear Information System (INIS)

    Assad, A.; Chiron, M.; Nimal, J.C.; Diop, C.M.; Ridoux, P.

    1999-01-01

    This study proposes a new approximating formula for calculating gamma-ray buildup factors in multilayer shields. The formula combines the buildup factors of single-layer shields with products and quotients. The feasibility of the formula for reproducing the buildup factors was tested by using point isotropic buildup factors calculated with the SN1D discrete ordinates code as reference data. The dose buildup factors of single-, double-, and multilayer shields composed of water, aluminum, iron, and lead were calculated for a spherical geometry in the energy range between 10 MeV and 40 keV and for total thicknesses of up to 30 mean free paths. The calculation of the buildup factors takes into account the bound electron effect of Compton scattering (incoherent scattering), the coherent scattering, the pair production, and the secondary sources of bremsstrahlung and fluorescence. The tests have shown that the approximating formula reproduces the reference data of double-layer shields very well for most cases. With the same parameters and with a new physical consideration that takes into account in a global way the degradation of the gamma-ray energy spectrum, the buildup factors of three- and five-layer shields were also very well reproduced

  17. New method in obtaining correction factor of power confirming

    International Nuclear Information System (INIS)

    Deng Yongjun; Li Rundong; Liu Yongkang; Zhou Wei

    2010-01-01

    Westcott theory is the most widely used method in reactor power calibration, which particularly suited to research reactor. But this method is very fussy because lots of correction parameters which rely on empirical formula to special reactor type are needed. The incidence coefficient between foil activity and reactor power was obtained by Monte-Carlo calculation, which was carried out with precise description of the reactor core and the foil arrangement position by MCNP input card. So the reactor power was determined by the core neutron fluence profile and the foil activity placed in the position for normalization use. The characteristic of this new method is simpler, more flexible and accurate than Westcott theory. In this paper, the results of SPRR-300 obtained by the new method in theory were compared with the experimental results, which verified the possibility of this new method. (authors)

  18. Some factors in the calculation of the neutron intensity from (α,n) reactions with reference to the assay of special nuclear materials

    International Nuclear Information System (INIS)

    West, D.

    1985-07-01

    The application of neutron coincidence counting to the assay of special nuclear material involves a major correction for neutron multiplication. The correction commonly used at present requires an accurate knowledge of the intensity ratio of neutrons from (α,n) reactions to those from spontaneous fission. This paper covers various factors, which need to be evaluated in order to assess their importance, in the calculation of (α,n) neutron production using measured thick target yields. They include: accuracy of (α,n) thick target yield measurements; errors introduced by deriving yields in compounds from the measured yields in the constituents and vice-versa; the likely effect of neglecting the difference of α-particle stopping power between Pu and U on the calculated neutron yield from mixed oxide fuel pellets; the intensity of neutrons produced from 1 to 2% of Al used to alloy plutonium metal; the intensity of neutrons produced in Al, used as canning material, from α-particles escaping from the surface layers of oxide or metal fuel; and neutron production from oxygen in the air spaces of powdered PuO 2 prior to sintering. (author)

  19. Calculation of Dose Gamma Ray Build up Factor in Some ...

    African Journals Online (AJOL)

    The gamma ray buildup factor was calculated by analyzing the narrow- beam and broad-beam geometry equations using Taylor's formula for isotropic sources and homogeneous materials. The buildup factor was programmed using MATLAB software to operate with any radiation energy (E), atomic number (Z) and the ...

  20. Interleaved segment correction achieves higher improvement factors in using genetic algorithm to optimize light focusing through scattering media

    Science.gov (United States)

    Li, Runze; Peng, Tong; Liang, Yansheng; Yang, Yanlong; Yao, Baoli; Yu, Xianghua; Min, Junwei; Lei, Ming; Yan, Shaohui; Zhang, Chunmin; Ye, Tong

    2017-10-01

    Focusing and imaging through scattering media has been proved possible with high resolution wavefront shaping. A completely scrambled scattering field can be corrected by applying a correction phase mask on a phase only spatial light modulator (SLM) and thereby the focusing quality can be improved. The correction phase is often found by global searching algorithms, among which Genetic Algorithm (GA) stands out for its parallel optimization process and high performance in noisy environment. However, the convergence of GA slows down gradually with the progression of optimization, causing the improvement factor of optimization to reach a plateau eventually. In this report, we propose an interleaved segment correction (ISC) method that can significantly boost the improvement factor with the same number of iterations comparing with the conventional all segment correction method. In the ISC method, all the phase segments are divided into a number of interleaved groups; GA optimization procedures are performed individually and sequentially among each group of segments. The final correction phase mask is formed by applying correction phases of all interleaved groups together on the SLM. The ISC method has been proved significantly useful in practice because of its ability to achieve better improvement factors when noise is present in the system. We have also demonstrated that the imaging quality is improved as better correction phases are found and applied on the SLM. Additionally, the ISC method lowers the demand of dynamic ranges of detection devices. The proposed method holds potential in applications, such as high-resolution imaging in deep tissue.

  1. Strong intercation corrections to semiweak decays: calculation of the V → Hγ decay rate with αsub(s) accuracy

    International Nuclear Information System (INIS)

    Vysotskij, M.I.

    1980-01-01

    The problem of the search for the Higgs boson in the V → Hγ decay, where V is a vector particle built of anti QQ heavy quark pair is considered. The V → Hγ decay proposed by Wilczek gives possibility to avoid experimental dificulties in detecting Higgs bosons. The probability of this decay and one loop gluan strong corrections to this process have been calculated

  2. Nonperturbative QCD corrections to electroweak observables

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Dru B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus)

    2012-06-15

    Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of standard model parameters, such as the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a combination of experimental measurements, effective field theory techniques and phenomenological modeling but ideally should be calculated from first principles. Recent developments indicate that many of the most important hadronic corrections may be feasibly calculated using lattice QCD methods. To illustrate this, we examine the lattice computation of the leading-order QCD corrections to the muon magnetic moment, paying particular attention to a recently developed method but also reviewing the results from other calculations. We then continue with several examples that demonstrate the potential impact of the new approach: the leading-order corrections to the electron and tau magnetic moments, the running of the electromagnetic coupling, and a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way, we mention applications to the Adler function, which can be used to determine the strong coupling constant, and QCD corrections to muonic-hydrogen.

  3. Calculation of neutron fluence-to-dose conversion factors for extremities

    International Nuclear Information System (INIS)

    Stewart, R.D.; Harty, R.; McDonald, J.C.; Tanner, J.E.

    1993-04-01

    The Pacific Northwest Laboratory is developing a standard for the performance testing of personnel extremity dosimeters for the US Department of Energy. Part of this effort requires the calculation of neutron fluence-to-dose conversion factors for finger and wrist extremities. This study focuses on conversion factors for two types of extremity models: namely the polymethyl methacrylate (PMMA) phantom (as specified in the draft standard for performance testing of extremity dosimeters) and more realistic extremity models composed of tissue-and-bone. Calculations for each type of model are based on both bare and D 2 O-moderated 252 Cf sources. The results are then tabulated and compared with whole-body conversion factors. More appropriate energy-averaged quality factors for the extremity models have also been computed from the neutron fluence in 50 equally spaced energy bins with energies from 2.53 x 10 -8 to 15 MeV. Tabulated results show that conversion factors for both types of extremity phantom are 15 to 30% lower than the corresponcung whole-body phantom conversion factors for 252 Cf neutron sources. This difference in extremity and whole-body conversion factors is attributable to the proportionally smaller amount of back-scattering that occurs in the extremity phantoms compared with whole-body phantoms

  4. The Bouguer Correction Algorithm for Gravity with Limited Range

    Directory of Open Access Journals (Sweden)

    MA Jian

    2017-01-01

    Full Text Available The Bouguer correction is an important item in gravity reduction, while the traditional Bouguer correction, whether the plane Bouguer correction or the spherical Bouguer correction, exists approximation error because of far-zone virtual terrain. The error grows as the calculation point gets higher. Therefore gravity reduction using the Bouguer correction with limited range, which was in accordance with the scope of the topographic correction, was researched in this paper. After that, a simplified formula to calculate the Bouguer correction with limited range was proposed. The algorithm, which is innovative and has the value of mathematical theory to some extent, shows consistency with the equation evolved from the strict integral algorithm for topographic correction. The interpolation experiment shows that gravity reduction based on the Bouguer correction with limited range is prior to unlimited range when the calculation point is taller than 1000 m.

  5. Comparison of two screening corrections to the additivity rule for the calculation of electron scattering from polyatomic molecules

    International Nuclear Information System (INIS)

    Blanco, F.; Rosado, J.; Illana, A.; Garcia, G.

    2010-01-01

    The SCAR and EGAR procedures have been proposed in order to extend to lower energies the applicability of the additivity rule for calculation of electron-molecule total cross sections. Both those approximate treatments arise after considering geometrical screening corrections due to partial overlapping of atoms in the molecule, as seen by the incident electrons. The main features, results and limitations of both treatments are put here in comparison by means of their application to some different sized species.

  6. Determination of velocity correction factors for real-time air velocity monitoring in underground mines

    OpenAIRE

    Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-01-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction fac...

  7. Recommendations on dose buildup factors used in models for calculating gamma doses for a plume

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.; Thykier-Nielsen, S.

    1980-09-01

    Calculations of external γ-doses from radioactivity released to the atmosphere have been made using different dose buildup factor formulas. Some of the dose buildup factor formulas are used by the Nordic countries in their respective γ-dose models. A comparison of calculated γ-doses using these dose buildup factors shows that the γ-doses can be significantly dependent on the buildup factor formula used in the calculation. Increasing differences occur for increasing plume height, crosswind distance, and atmospheric stability and also for decreasing downwind distance. It is concluded that the most accurate γ-dose can be calculated by use of Capo's polynomial buildup factor formula. Capo-coefficients have been calculated and shown in this report for γ-energies below the original lower limit given by Capo. (author)

  8. Microscopic Calculations of Isospin-Breaking Corrections to Superallowed Beta Decay

    International Nuclear Information System (INIS)

    Satula, W.; Rafalski, M.; Dobaczewski, J.; Nazarewicz, W.

    2011-01-01

    The superallowed β-decay rates that provide stringent constraints on physics beyond the standard model of particle physics are affected by nuclear structure effects through isospin-breaking corrections. The self-consistent isospin- and angular-momentum-projected nuclear density functional theory is used for the first time to compute those corrections for a number of Fermi transitions in nuclei from A=10 to A=74. The resulting leading element of the Cabibbo-Kobayashi-Maskawa matrix, |V ud |=0.974 47(23), agrees well with the recent result of Towner and Hardy [Phys. Rev. C 77, 025501 (2008)].

  9. Corrections to primordial nucleosynthesis

    International Nuclear Information System (INIS)

    Dicus, D.A.; Kolb, E.W.; Gleeson, A.M.; Sudarshan, E.C.G.; Teplitz, V.L.; Turner, M.S.

    1982-01-01

    The changes in primordial nucleosynthesis resulting from small corrections to rates for weak processes that connect neutrons and protons are discussed. The weak rates are corrected by improved treatment of Coulomb and radiative corrections, and by inclusion of plasma effects. The calculations lead to a systematic decrease in the predicted 4 He abundance of about ΔY = 0.0025. The relative changes in other primoridal abundances are also 1 to 2%

  10. An Effective Method to Accurately Calculate the Phase Space Factors for β"-β"- Decay

    International Nuclear Information System (INIS)

    Horoi, Mihai; Neacsu, Andrei

    2016-01-01

    Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.

  11. MO-FG-CAMPUS-JeP1-05: Water Equivalent Path Length Calculations Using Scatter-Corrected Head and Neck CBCT Images to Evaluate Patients for Adaptive Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J; Park, Y; Sharp, G; Winey, B [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: To establish a method to evaluate the dosimetric impact of anatomic changes in head and neck patients during proton therapy by using scatter-corrected cone-beam CT (CBCT) images. Methods: The water equivalent path length (WEPL) was calculated to the distal edge of PTV contours by using tomographic images available for six head and neck patients received photon therapy. The proton range variation was measured by calculating the difference between the distal WEPLs calculated with the planning CT and weekly treatment CBCT images. By performing an automatic rigid registration, six degrees-of-freedom (DOF) correction was made to the CBCT images to account for the patient setup uncertainty. For accurate WEPL calculations, an existing CBCT scatter correction algorithm, whose performance was already proven for phantom images, was calibrated for head and neck patient images. Specifically, two different image similarity measures, mutual information (MI) and mean square error (MSE), were tested for the deformable image registration (DIR) in the CBCT scatter correction algorithm. Results: The impact of weight loss was reflected in the distal WEPL differences with the aid of the automatic rigid registration reducing the influence of patient setup uncertainty on the WEPL calculation results. The WEPL difference averaged over distal area was 2.9 ± 2.9 (mm) across all fractions of six patients and its maximum, mostly found at the last available fraction, was 6.2 ± 3.4 (mm). The MSE-based DIR successfully registered each treatment CBCT image to the planning CT image. On the other hand, the MI-based DIR deformed the skin voxels in the planning CT image to the immobilization mask in the treatment CBCT image, most of which was cropped out of the planning CT image. Conclusion: The dosimetric impact of anatomic changes was evaluated by calculating the distal WEPL difference with the existing scatter-correction algorithm appropriately calibrated. Jihun Kim, Yang-Kyun Park

  12. One loop electro-weak radiative corrections in the standard model

    International Nuclear Information System (INIS)

    Kalyniak, P.; Sundaresan, M.K.

    1987-01-01

    This paper reports on the effect of radiative corrections in the standard model. A sensitive test of the three gauge boson vertices is expected to come from the work in LEPII in which the reaction e + e - → W + W - can occur. Two calculations of radiative corrections to the reaction e + e - → W + W - exist at present. The results of the calculations although very similar disagree with one another as to the actual magnitude of the correction. Some of the reasons for the disagreement are understood. However, due to the reasons mentioned below, another look must be taken at these lengthy calculations to resolve the differences between the two previous calculations. This is what is being done in the present work. There are a number of reasons why we must take another look at the calculation of the radiative corrections. The previous calculations were carried out before the UA1, UA2 data on W and Z bosons were obtained. Experimental groups require a computer program which can readily calculate the radiative corrections ab initio for various experimental conditions. The normalization of sin 2 θ w in the previous calculations was done in a way which is not convenient for use in the experimental work. It would be desirable to have the analytical expressions for the corrections available so that the renormalization scheme dependence of the corrections could be studied

  13. Effect of attenuation by the cranium on quantitative SPECT measurements of cerebral blood flow and a correction method

    International Nuclear Information System (INIS)

    Iwase, Mikio; Kurono, Kenji; Iida, Akihiko.

    1998-01-01

    Attenuation correction for cerebral blood flow SPECT image reconstruction is usually performed by considering the head as a whole to be equivalent to water, and the effects of differences in attenuation between subjects produced by the cranium have not been taken into account. We determined the differences in attenuation between subjects and assessed a method of correcting quantitative cerebral blood flow values. Attenuations by head on the right and left sides were measured before intravenous injection of 123 I-IMP, and water-converted diameters of both sides (Ta) were calculated from the measurements obtained. After acquiring SPECT images, attenuation correction was conducted according to the method of Sorenson, and images were reconstructed. The diameters of the right and left sides in the same position as the Ta (Tt) were calculated from the contours determined by threshold values. Using Ts given by 2 Ts=Ta-Tt, the correction factor λ=exp(μ 1 Ts) was calculated and multiplied as the correction factor when rCBF was determined. The results revealed significant differences between Tt and Ta. Although no gender differences were observed in Tt, they were seen in both Ta and Ts. Thus, interindividual differences in attenuation by the cranium were found to have an influence that cannot be ignored. Inter-subject correlation is needed to obtain accurate quantitative values. (author)

  14. On the gluonic correction to lepton-pair decays in a relativistic quarkonium model

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    1987-01-01

    The gluonic correction to the leptonic decay of the heavy vector meson is investigated by using the perturbation theory to the order α s . The on-mass-shell approximation is assumed for the constituent quarks so that we assure the gauge independence of the correction. The decay rates in the model based on the Bethe-Salpeter equation are also shown, in which the gluonic correction with a high-momentum cutoff is calculated for the off-shell quarks. It is shown that the static approximation to the correction factor (1 - 16α s /3π) is not adequate and the gluonic correction does not suppress but enhance the decay rates of the ground states for the c anti c and b anti b systems. (author)

  15. HECTOR 1.00. A program for the calculation of QED, QCD and electroweak corrections to ep and l±N deep inelastic neutral and charged current scattering

    International Nuclear Information System (INIS)

    Arbuzov, A.; Kalinovskaya, L.; Bardin, D.; Deutsches Elektronen-Synchrotron; Bluemlein, J.; Riemann, T.

    1995-11-01

    A description of the Fortran program HECTOR for a variety of semi-analytical calculations of radiative QED, QCD, and electroweak corrections to the double-differential cross sections of NC and CC deep inelastic charged lepton proton (or lepton deuteron) scattering is presented. HECTOR originates from the substantially improved and extended earlier programs HELIOS and TERAD91. It is mainly intended for applications at HERA or LEP x LHC, but may be used also for μN scattering in fixed target experiments. The QED corrections may be calculated in different sets of variables: leptonic, hadronic, mixed, Jaquet-Blondel, double angle etc. Besides the leading logarithmic approximation up to order O(α 2 ), exact O(α) corrections and inclusive soft photon exponentiation are taken into account. The photoproduction region is also covered. (orig.)

  16. Correction of self-reported BMI based on objective measurements: a Belgian experience.

    Science.gov (United States)

    Drieskens, S; Demarest, S; Bel, S; De Ridder, K; Tafforeau, J

    2018-01-01

    Based on successive Health Interview Surveys (HIS), it has been demonstrated that also in Belgium obesity, measured by means of a self-reported body mass index (BMI in kg/m 2 ), is a growing public health problem that needs to be monitored as accurately as possible. Studies have shown that a self-reported BMI can be biased. Consequently, if the aim is to rely on a self-reported BMI, adjustment is recommended. Data on measured and self-reported BMI, derived from the Belgian Food Consumption Survey (FCS) 2014 offers the opportunity to do so. The HIS and FCS are cross-sectional surveys based on representative population samples. This study focused on adults aged 18-64 years (sample HIS = 6545 and FCS = 1213). Measured and self-reported BMI collected in FCS were used to assess possible misreporting. Using FCS data, correction factors (measured BMI/self-reported BMI) were calculated in function of a combination of background variables (region, gender, educational level and age group). Individual self-reported BMI of the HIS 2013 were then multiplied with the corresponding correction factors to produce a corrected BMI-classification. When compared with the measured BMI, the self-reported BMI in the FCS was underestimated (mean 0.97 kg/m 2 ). 28% of the obese people underestimated their BMI. After applying the correction factors, the prevalence of obesity based on HIS data significantly increased (from 13% based on the original HIS data to 17% based on the corrected HIS data) and approximated the measured one derived from the FCS data. Since self-reported calculations of BMI are underestimated, it is recommended to adjust them to obtain accurate estimates which are important for decision making.

  17. Thermal disadvantage factor calculation by the multiregion collision probability method

    International Nuclear Information System (INIS)

    Ozgener, B.; Ozgener, H.A.

    2004-01-01

    A multi-region collision probability formulation that is capable of applying white boundary condition directly is presented and applied to thermal neutron transport problems. The disadvantage factors computed are compared with their counterparts calculated by S N methods with both direct and indirect application of white boundary condition. The results of the ABH and collision probability method with indirect application of white boundary condition are also considered and comparisons with benchmark Monte Carlo results are carried out. The studies show that the proposed formulation is capable of calculating thermal disadvantage factor with sufficient accuracy without resorting to the fictitious scattering outer shell approximation associated with the indirect application of the white boundary condition in collision probability solutions

  18. Perturbative corrections to Λ_b→Λ form factors from QCD light-cone sum rules

    International Nuclear Information System (INIS)

    Wang, Yu-Ming; Shen, Yue-Long

    2016-01-01

    We compute radiative corrections to Λ_b→Λ from factors, at next-to-leading logarithmic accuracy, from QCD light-cone sum rules with Λ_b-baryon distribution amplitudes. Employing the diagrammatic approach factorization of the vacuum-to-Λ_b-baryon correlation function is justified at leading power in Λ/m_b, with the aid of the method of regions. Hard functions entering the factorization formulae are identical to the corresponding matching coefficients of heavy-to-light currents from QCD onto soft-collinear effective theory. The universal jet function from integrating out the hard-collinear fluctuations exhibits richer structures compared with the one involved in the factorization expressions of the vacuum-to-B-meson correlation function. Based upon the QCD resummation improved sum rules we observe that the perturbative corrections at O(α_s) shift the Λ_b→Λ from factors at large recoil significantly and the dominant contribution originates from the next-to-leading order jet function instead of the hard coefficient functions. Having at hand the sum rule predictions for the Λ_b→Λ from factors we further investigate several decay observables in the electro-weak penguin Λ_b→Λ ℓ"+ℓ"− transitions in the factorization limit (i.e., ignoring the “non-factorizable' hadronic effects which cannot be expressed in terms of the Λ_b→Λ from factors), including the invariant mass distribution of the lepton pair, the forward-backward asymmetry in the dilepton system and the longitudinal polarization fraction of the leptonic sector.

  19. Dose calculation in eye brachytherapy with Ir-192 threads using the Sievert integral and corrected by attenuation and scattering with the Meisberg polynomials

    International Nuclear Information System (INIS)

    Vivanco, M.G. Bernui de; Cardenas R, A.

    2006-01-01

    The ocular brachytherapy many times unique alternative to conserve the visual organ in patients of ocular cancer, one comes carrying out in the National Institute of Neoplastic Illnesses (INEN) using threads of Iridium 192; those which, they are placed in radial form on the interior surface of a spherical cap of gold of 18 K; the cap remains in the eye until reaching the prescribed dose by the doctor. The main objective of this work is to be able to calculate in a correct and practical way the one time that the treatment of ocular brachytherapy should last to reach the dose prescribed by the doctor. To reach this objective I use the Sievert integral corrected by attenuation effects and scattering (Meisberg polynomials); calculating it by the Simpson method. In the calculations by means of the Sievert integral doesn't take into account the scattering produced by the gold cap neither the variation of the constant of frequency of exposure with the distance. The calculations by means of Sievert integral are compared with those obtained using the Monte Carlo Penelope simulation code, where it is observed that they agree at distances of the surface of the cap greater or equal to 2mm. (Author)

  20. A Study on Vehicle Emission Factor Correction Based on Fuel Consumption Measurement

    Science.gov (United States)

    Wang, Xiaoning; Li, Meng; Peng, Bo

    2018-01-01

    The objective of this study is to address the problem of obvious differences between the calculated and measured emissions of pollutants from motor vehicle by using the existing "Environmental Impact Assessment Specification of Highway Construction Projects". First, a field study collects the vehicle composition ratio, speed, slope, fuel consumption and other essential data. Considering practical applications, the emission factors corresponding to 40km/h and 110km/h and 120km/h velocity are introduced by data fitting. Then, the emission factors of motor vehicle are revised based on the measured fuel consumption, and the pollutant emission modified formula was calculated and compared with the standard recommendation formula. The results show the error between calculated and measured values are within 5%, which can better reflect the actual discharge of the motor vehicle.

  1. How to simplify transmission-based scatter correction for clinical application

    International Nuclear Information System (INIS)

    Baccarne, V.; Hutton, B.F.

    1998-01-01

    Full text: The performances of ordered subsets (OS) EM reconstruction including attenuation, scatter and spatial resolution correction are evaluated using cardiac Monte Carlo data. We demonstrate how simplifications in the scatter model allow one to correct SPECT data for scatter in terms of quantitation and quality in a reasonable time. Initial reconstruction of the 20% window is performed including attenuation correction (broad beam μ values), to estimate the activity quantitatively (accuracy 3%), but not spatially. A rough reconstruction with 2 iterations (subset size: 8) is sufficient for subsequent scatter correction. Estimation of primary photons is obtained by projecting the previous distribution including attenuation (narrow beam μ values). Estimation of the scatter is obtained by convolving the primary estimates by a depth dependent scatter kernel, and scaling the result by a factor calculated from the attenuation map. The correction can be accelerated by convolving several adjacent planes with the same kernel, and using an average scaling factor. Simulation of the effects of the collimator during the scatter correction was demonstrated to be unnecessary. Final reconstruction is performed using 6 iterations OSEM, including attenuation (narrow beam μ values) and spatial resolution correction. Scatter correction is implemented by incorporating the estimated scatter as a constant offset in the forward projection step. The total correction + reconstruction (64 proj. 40x128 pixel) takes 38 minutes on a Sun Sparc 20. Quantitatively, the accuracy is 7% in a reconstructed slice. The SNR inside the whole myocardium (defined from the original object), is equal to 2.1 and 2.3 - in the corrected and the primary slices respectively. The scatter correction preserves the myocardium to ventricle contrast (primary: 0.79, corrected: 0.82). These simplifications allow acceleration of correction without influencing the quality of the result

  2. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data

    Science.gov (United States)

    Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter

    2016-01-01

    With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW’s) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach. PMID:27314363

  3. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.

    Science.gov (United States)

    Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter

    2016-06-15

    With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003-2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW's) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.

  4. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data

    Directory of Open Access Journals (Sweden)

    Haris Akram Bhatti

    2016-06-01

    Full Text Available With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA Climate Prediction Centre (CPC morphing technique (CMORPH satellite rainfall product (CMORPH in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW sizes and for sequential windows (SW’s of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE. To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r and standard deviation (SD. Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.

  5. Efficiency corrections in determining the 137Cs inventory of environmental soil samples by using relative measurement method and GEANT4 simulations

    International Nuclear Information System (INIS)

    Li, Gang; Liang, Yongfei; Xu, Jiayun; Bai, Lixin

    2015-01-01

    The determination of 137 Cs inventory is widely used to estimate the soil erosion or deposition rate. The generally used method to determine the activity of volumetric samples is the relative measurement method, which employs a calibration standard sample with accurately known activity. This method has great advantages in accuracy and operation only when there is a small difference in elemental composition, sample density and geometry between measuring samples and the calibration standard. Otherwise it needs additional efficiency corrections in the calculating process. The Monte Carlo simulations can handle these correction problems easily with lower financial cost and higher accuracy. This work presents a detailed description to the simulation and calibration procedure for a conventionally used commercial P-type coaxial HPGe detector with cylindrical sample geometry. The effects of sample elemental composition, density and geometry were discussed in detail and calculated in terms of efficiency correction factors. The effect of sample placement was also analyzed, the results indicate that the radioactive nuclides and sample density are not absolutely uniform distributed along the axial direction. At last, a unified binary quadratic functional relationship of efficiency correction factors as a function of sample density and height was obtained by the least square fitting method. This function covers the sample density and height range of 0.8–1.8 g/cm 3 and 3.0–7.25 cm, respectively. The efficiency correction factors calculated by the fitted function are in good agreement with those obtained by the GEANT4 simulations with the determination coefficient value greater than 0.9999. The results obtained in this paper make the above-mentioned relative measurements more accurate and efficient in the routine radioactive analysis of environmental cylindrical soil samples. - Highlights: • Determination of 137 Cs inventory in environmental soil samples by using relative

  6. Evaluation of Wall Correction Factor of INER's Air-Kerma Primary Standard Chamber and Dose Variation by Source Displacement for HDR 192Ir Brachytherapy

    Directory of Open Access Journals (Sweden)

    J. H. Lee

    2013-01-01

    Full Text Available The aim of the present study was to estimate the wall effect of the self-made spherical graphite-walled cavity chamber with the Monte Carlo method for establishing the air-kerma primary standard of high-dose-rate (HDR 192Ir brachytherapy sources at the Institute of Nuclear Energy Research (INER, Taiwan. The Monte Carlo method established in this paper was also employed to respectively simulate wall correction factors of the 192Ir air-kerma standard chambers used at the National Institute of Standards and Technology (NIST, USA and the National Physical Laboratory (NPL, UK for comparisons and verification. The chamber wall correction calculation results will be incorporated into INER's HDR 192Ir primary standard in the future. For the brachytherapy treatment in the esophagus or in the bronchi, the position of the isotope may have displacement in the cavity. Thus the delivered dose would differ from the prescribed dose in the treatment plan. We also tried assessing dose distribution due to the position displacement of HDR 192Ir brachytherapy source in a phantom with a central cavity by the Monte Carlo method. The calculated results could offer a clinical reference for the brachytherapy within the human organs with cavity.

  7. Calculating gamma dose factors for hot particle exposures

    International Nuclear Information System (INIS)

    Murphy, P.

    1990-01-01

    For hot particle exposures to the skin, the beta component of radiation delivers the majority of the dose. However, in order to fully demonstrate regulatory compliance, licenses must ordinarily provide reasonable bases for assuming that both the gamma component of the skin dose and the whole body doses are negligible. While beta dose factors are commonly available in the literature, gamma dose factors are not. This paper describes in detail a method by which gamma skin dose factors may be calculated using the Specific Gamma-ray Constant, even if the particle is not located directly on the skin. Two common hot particle exposure geometries are considered: first, a single square centimeter of skin lying at density thickness of 7 mg/cm 2 and then at 1000 mg/cm 2 . A table provides example gamma dose factors for a number of isotopes encountered at power reactors

  8. CONCEPTUAL STRUCTURALLOGIC DIAGRAM PRODUCTION AUTOMATION EXPERT STUDY ON THE ISSUE OF CORRECTNESS OF CALCULATION OF THE TAX ON PROFIT OF ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    Andrey N. Ishchenko

    2014-01-01

    Full Text Available In this article the possibility of automation of an expert study on the questionof correctness of tax calculation profi t organization. Considered are the problemsof formalization of the expert research inthis field, specify the structure of imprisonment. The author proposes a conceptual structural-logic diagram automation expertresearch in this area.

  9. A New Theory for Calculation of Some Biochemical Parameters Concentration in Human Serum

    International Nuclear Information System (INIS)

    Moustafa, K.A.; Amien, A.I.

    2009-01-01

    The serum volumes of the blood samples are varied from one patient to another according to the packed cell volume (PCV %), so if the patient sample has low PCV %, it will have high serum volume and vice versa. To calculate a certain clinical parameter such as glucose in the serum of patients using the conventional calculation, it will give the concentration in units per deci liter serum, while by calculating the concentration according to the ratio of serum volume to the total volume of the blood, it will give different results. Thus, the present study aimed to find a new theory used for calculation of some biochemical parameters concentration taking into consideration the ratio of plasma volume to the total blood volume. The present study was conducted on 122 subjects. These subjects were categorized into 4 groups. Group 1 (G1) comprised 40 healthy subjects as control group, group 2 (G2) comprised 30 low PCV % patients, group 3 (G3) comprised 30 subjects with relatively high PCV % and group 4 comprised 22 diabetic patients. Each group of the previous groups was further subdivided into group a (G a ) and group b (G b ). In the later group, the results were multiplied by the correction factor (V p /V b ), which is the ratio of plasma volume (V p ) to the blood volume (V b ) TSH hormone, glucose, cholesterol, triglycerides, urea, creatinine, uric acid, alanine aminotransferase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) were estimated and the results were multiplied by the correction factor (V p /V b ) to get the results after correction. Compared the results before and after correction, there was a very highly significant (ρ p /V b ), thus we recommended that biochemical parameters results must be calculated as indicated in the present study to obtain actual results which might be useful in the correct diagnosis, monitoring and follow up of the different diseases

  10. The Guayas Estuary and sea level corrections to calculate flooding areas for climate change scenarios

    Science.gov (United States)

    Moreano, H. R.; Paredes, N.

    2011-12-01

    The Guayas estuary is the inner area of the Gulf of Guayaquil, it holds a water body of around 5000 km2 and the Puna island divides the water flow in two main streams : El Morro and Estero Salado Channel (length: 90 Km.) and Jambeli and Rio Guayas Channel (length: 125km.). The geometry of the estuarine system with the behavior of the tidal wave (semidiurnal) makes tidal amplitude higher at the head than at the mouth, whereas the wave crest at the head is delayed from one and a half to two hours from that at the mouth and sea level recorded by gages along the estuary are all different because of the wave propagation and mean sea level (msl) calculated for each gage show differences with that of La Libertad which is the base line for all altitudes on land (zero level). A leveling and calculations were made to correct such differences in a way that all gages (msl) records were linked to La Libertad and this in turn allowed a better estimates of flooding areas and draw them on topographic maps where zero level corresponds to the mean sea level at La Libertad. The procedure and mathematical formulation could be applied to any estuary or coastal area and it is a useful tool to calculate such areas especially when impacts are on people or capital goods and related to climate change scenarios.

  11. Advanteges of using Two-Switch Forward in Single-Stage Power Factor Corrected Power Supplies

    DEFF Research Database (Denmark)

    Petersen, Lars

    2000-01-01

    A single-Stage power factor corrected power supply using a two-switch forward is proposed to increase efficiency. The converter is operated in the DCM (Discontinues Conduction Mode). This will insure the intermediate DC-bus to be controlled only by means of circuit parameters and therefore...... power supply has been implemented. The measured efficiency and power factor are about 87% and 0.96 respectively....

  12. Logarithmic black hole entropy corrections and holographic Renyi entropy

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Subhash [The Institute of Mathematical Sciences, Chennai (India); KU Leuven - KULAK, Department of Physics, Kortrijk (Belgium)

    2018-01-15

    The entanglement and Renyi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Renyi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order G{sub D}{sup 0}. The entropic c-function and the inequalities of the Renyi entropy are also satisfied even with the correction terms. (orig.)

  13. Logarithmic black hole entropy corrections and holographic Renyi entropy

    International Nuclear Information System (INIS)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Renyi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Renyi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order G D 0 . The entropic c-function and the inequalities of the Renyi entropy are also satisfied even with the correction terms. (orig.)

  14. Next-to-next-to-eikonal corrections in the CGC

    Energy Technology Data Exchange (ETDEWEB)

    Altinoluk, Tolga; Armesto, Néstor [Departamento de Física de Partículas and IGFAE,Universidade de Santiago de Compostela,E-15706 Santiago de Compostela, Galicia (Spain); Beuf, Guillaume [Department of Physics, Ben-Gurion University of the Negev,Beer Sheva 84105 (Israel); Moscoso, Alexis [Departamento de Física de Partículas and IGFAE,Universidade de Santiago de Compostela,E-15706 Santiago de Compostela, Galicia (Spain)

    2016-01-19

    We extend the study of corrections to the eikonal approximation that was initiated in ref. http://dx.doi.org/10.1007/JHEP07(2014)068 to higher orders. These corrections associated with the finite width of the target are investigated and the gluon propagator in background field is calculated at next-to-next-to-eikonal accuracy. The result is then applied to the single inclusive gluon production cross section at central rapidities and the single transverse spin asymmetry with a transversely polarized target, in pA collisions, in order to analyze these observables beyond the eikonal limit. The next-to-next-to-eikonal corrections to the unpolarized cross section are non-zero and provide the first corrections to the usual k{sub ⊥}-factorized expression. In contrast, the eikonal and next-to-next-to-eikonal contributions to the single transverse spin asymmetry vanish, while the next-to-eikonal ones are non-zero.

  15. Application of the correction factor for radiation qualityK{sub q} in dosimetry with pencil-type ionization chambers using a Tandem system

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Ladyjane Pereira; Potiens, Maria da Penha Albuquerque, E-mail: lpfontes@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    The pencil-type ionization chamber widely used in computed tomography (CT) dosimetry, is a measuring instrument that has a cylindrical shape and provides uniform response independent of the angle of incidence of ionizing radiation. Calibration and measurements performed with the pencil-type ionization chamber are done in terms of Kerma product in air-length (P{sub k,l}) and values are given in Gy.cm. To obtain the values of (P{sub k,l}) during clinical measurements, the readings performed with the ionization chamber are multiplied by the calibration coefficient (N{sub k,l}) and the correction factor C for quality (K{sub q}) which are given in Calibration certificates of the chambers. The application of the correction factor for radiation quality K{sub q} is done as a function of the effective energy of the beam that is determined by the Half Value layer (HVL) calculation. In order to estimate the HVL values in this work, a Tandem system made up of cylindrical aluminum and PMMA absorber layers was used as a low cost and easy to apply method. From the Tandem curve, it was possible to construct the calibration curve and obtain the appropriate K{sub q} to the beam of the computed tomography equipment studied. (author)

  16. Reducing dose calculation time for accurate iterative IMRT planning

    International Nuclear Information System (INIS)

    Siebers, Jeffrey V.; Lauterbach, Marc; Tong, Shidong; Wu Qiuwen; Mohan, Radhe

    2002-01-01

    A time-consuming component of IMRT optimization is the dose computation required in each iteration for the evaluation of the objective function. Accurate superposition/convolution (SC) and Monte Carlo (MC) dose calculations are currently considered too time-consuming for iterative IMRT dose calculation. Thus, fast, but less accurate algorithms such as pencil beam (PB) algorithms are typically used in most current IMRT systems. This paper describes two hybrid methods that utilize the speed of fast PB algorithms yet achieve the accuracy of optimizing based upon SC algorithms via the application of dose correction matrices. In one method, the ratio method, an infrequently computed voxel-by-voxel dose ratio matrix (R=D SC /D PB ) is applied for each beam to the dose distributions calculated with the PB method during the optimization. That is, D PB xR is used for the dose calculation during the optimization. The optimization proceeds until both the IMRT beam intensities and the dose correction ratio matrix converge. In the second method, the correction method, a periodically computed voxel-by-voxel correction matrix for each beam, defined to be the difference between the SC and PB dose computations, is used to correct PB dose distributions. To validate the methods, IMRT treatment plans developed with the hybrid methods are compared with those obtained when the SC algorithm is used for all optimization iterations and with those obtained when PB-based optimization is followed by SC-based optimization. In the 12 patient cases studied, no clinically significant differences exist in the final treatment plans developed with each of the dose computation methodologies. However, the number of time-consuming SC iterations is reduced from 6-32 for pure SC optimization to four or less for the ratio matrix method and five or less for the correction method. Because the PB algorithm is faster at computing dose, this reduces the inverse planning optimization time for our implementation

  17. Experimental Guidance of ISB Corrections via Direct Nuclear Reactions

    Science.gov (United States)

    Leach, K. G.; Garrett, P. E.; Ball, G. C.; Bangay, J. C.; Bianco, L.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Kriicken, R.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Towner, I. S.; Triambak, S.; Wirth, H.-F.; Wong, J.

    2011-09-01

    The most recent isospin-symmetry-breaking corrections, δc, of Towner and Hardy for superallowed Fermi β-decay transitions, have included the opening of specific core orbitals. This change has resulted in significant deviations in some of the δc factors from their previous calculations, and an improved agreement of the individual corrected Script Ft values with the overall world average of the 13 most precise cases. While this is consistent with the conserved-vector-current (CVC) hypothesis of the Standard Model, these new calculations must be thoroughly tested, and guidance must be given for the improvement of calculations for the upper-pf shell nuclei. Using the (d,t) reaction mechanism to probe the single neutron wavefunction overlap, information regarding the relevant shell-model configurations needed in the calculation can be determined. An experiment was therefore performed with a 22 MeV polarized deuterium beam from the MP tandem Van de Graaff accelerator in Munich, Germany. Using the Q3D magnetic spectrograph, and a cathode-strip focal-plane detector, outgoing tritons were analyzed at 9 angles between 10° and 60°, up to an excitation energy of 4.8 MeV. This proceeding reports the motivational and experimental details for the 64Zn(d,t)63Zn transfer work presented.

  18. Isochronicity correction in the CR storage ring

    International Nuclear Information System (INIS)

    Litvinov, S.; Toprek, D.; Weick, H.; Dolinskii, A.

    2013-01-01

    A challenge for nuclear physics is to measure masses of exotic nuclei up to the limits of nuclear existence which are characterized by low production cross-sections and short half-lives. The large acceptance Collector Ring (CR) [1] at FAIR [2] tuned in the isochronous ion-optical mode offers unique possibilities for measuring short-lived and very exotic nuclides. However, in a ring designed for maximal acceptance, many factors limit the resolution. One point is a limit in time resolution inversely proportional to the transverse emittance. But most of the time aberrations can be corrected and others become small for large number of turns. We show the relations of the time correction to the corresponding transverse focusing and that the main correction for large emittance corresponds directly to the chromaticity correction for transverse focusing of the beam. With the help of Monte-Carlo simulations for the full acceptance we demonstrate how to correct the revolution times so that in principle resolutions of Δm/m=10 −6 can be achieved. In these calculations the influence of magnet inhomogeneities and extended fringe fields are considered and a calibration scheme also for ions with different mass-to-charge ratio is presented

  19. Home radon levels and seasonal correction factors for the Isle of Man

    International Nuclear Information System (INIS)

    Grainger, P.; Preece, A.W.; Goodfellow, S.A.

    2000-01-01

    Ionizing radiation dose levels due to home radon can rise to levels that would be illegal for workers in the nuclear industry. It is well known that radon levels within homes and from home to home, and also from month to month, vary considerably. To define an Isle of Man radon seasonal correction factor, readings were taken in eight homes over a 12 month period. An average island indoor exposure of 48 Bq m -3 (range 4-518 Bq m -3 ) was determined from 285 homes selected from a cohort of 1300 families participating in the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) in the Isle of Man. This compares with a UK home average of 20 Bq m -3 and a European Union average (excluding UK) of 68 Bq m -3 . Ten homes of those measured were found to have radon levels above the National Radiological Protection Board 200 Bq m -3 action level. There are 29 377 homes on the Isle of Man, suggesting that there could be some 900 or more homes above the action level. No statistical difference was found between the NRPB and Isle of Man seasonal correction factors. (author)

  20. Band-structure calculations of noble-gas and alkali halide solids using accurate Kohn-Sham potentials with self-interaction correction

    International Nuclear Information System (INIS)

    Li, Y.; Krieger, J.B.; Norman, M.R.; Iafrate, G.J.

    1991-01-01

    The optimized-effective-potential (OEP) method and a method developed recently by Krieger, Li, and Iafrate (KLI) are applied to the band-structure calculations of noble-gas and alkali halide solids employing the self-interaction-corrected (SIC) local-spin-density (LSD) approximation for the exchange-correlation energy functional. The resulting band gaps from both calculations are found to be in fair agreement with the experimental values. The discrepancies are typically within a few percent with results that are nearly the same as those of previously published orbital-dependent multipotential SIC calculations, whereas the LSD results underestimate the band gaps by as much as 40%. As in the LSD---and it is believed to be the case even for the exact Kohn-Sham potential---both the OEP and KLI predict valence-band widths which are narrower than those of experiment. In all cases, the KLI method yields essentially the same results as the OEP

  1. A Preliminary Study on Calculation of Inter-Pebble Dancoff Factor in a Pebble Type Core

    International Nuclear Information System (INIS)

    Kim, Song Hyun; Kim, Hong Chul; Kim, Soon Young; Noh, Jae Man; Kim, Jong Kyung

    2009-01-01

    The Dancoff factor is an entering probability of the neutron escaped from specific fuel kernel to another one without the interaction with moderators. Currently, Dancoff factors are mainly evaluated from stochastic methods, hence a research on analytical method is considerably insufficient in this field. In order to analytically evaluate Dancoff factor considering double-heterogeneous effect, inter-pebble and intra-pebble Dancoff factors should be calculated, respectively. Intra-pebble Dancoff factor related with the fuel kernels in one pebble was analyzed in past study. For the evaluation of inter-pebble Dancoff factor, fuel region to region Dancoff factor (FRDF) was defined and the method to calculate the FRDF is developed in this study. The result is compared with the calculation result of the MCNP5 code

  2. Relativistic neoclassical transport coefficients with momentum correction

    International Nuclear Information System (INIS)

    Marushchenko, I.; Azarenkov, N.A.

    2016-01-01

    The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.

  3. Correction factors for safe performance of API X65 pipeline steel

    International Nuclear Information System (INIS)

    Hashemi, Sayyed H.

    2009-01-01

    Prediction of required Charpy energy for fracture arrest is vital for safe performance of gas transportation pipelines. This is commonly estimated through failure models calibrated in the past on fracture data from combined Charpy tests and full-thickness burst experiments. Unfortunately, such pipeline failure models are unable to correctly predict the minimum arrest toughness of thermo-mechanical controlled rolled (TMCR) steels. To refine the existing failure models, different empirical adjustments have been proposed in recent years. In this paper, similar correction factors were derived from fracture information of instrumented Charpy impact tests on API X65 steel. The contribution of different fracture mechanisms of impact test specimens was determined through energy partitioning analysis. Parts of the energy contribution were correlated then to the source of uncertainty observed in similar experiments. The applied technique was similar to that of previous studies on X70 and X100 steels, and proved to be encouraging in giving consistent results compared to available test data.

  4. Running coupling corrections to high energy inclusive gluon production

    International Nuclear Information System (INIS)

    Horowitz, W.A.; Kovchegov, Yuri V.

    2011-01-01

    We calculate running coupling corrections for the lowest-order gluon production cross section in high energy hadronic and nuclear scattering using the BLM scale-setting prescription. In the final answer for the cross section the three powers of fixed coupling are replaced by seven factors of running coupling, five in the numerator and two in the denominator, forming a 'septumvirate' of running couplings, analogous to the 'triumvirate' of running couplings found earlier for the small-x BFKL/BK/JIMWLK evolution equations. It is interesting to note that the two running couplings in the denominator of the 'septumvirate' run with complex-valued momentum scales, which are complex conjugates of each other, such that the production cross section is indeed real. We use our lowest-order result to conjecture how running coupling corrections may enter the full fixed-coupling k T -factorization formula for gluon production which includes nonlinear small-x evolution.

  5. NLO QCD corrections to the production of two bottom-antibottom pairs at the LHC

    International Nuclear Information System (INIS)

    Greiner, Nicolas; Reuter, Juergen; Freiburg Univ.

    2011-05-01

    We report the results of a computation of the full next-to-leading order QCD corrections to the production of two b anti b pairs at the LHC. This calculation at the parton level provides predictions for well separated b-jets. The results show that the next-to-leading order corrections lead to an enhancement of the cross-section for the central scale choice by roughly 50% with respect to the leading order result. The theoretical uncertainty estimated by variation of the renormalization and factorization scales is strongly reduced by the inclusion of next-to-leading order corrections. (orig.)

  6. NLO QCD corrections to the production of two bottom-antibottom pairs at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Nicolas [Illinois Univ., Urbana-Champaign, IL (United States). Dept. of Physics; Guffanti, Alberto [Freiburg Univ. (Germany). Physikalisches Inst.; Reiter, Thomas [Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands); Max-Planck-Institut fuer Physik, Muenchen (Germany); Reuter, Juergen [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Freiburg Univ. (Germany). Physikalisches Inst.

    2011-05-15

    We report the results of a computation of the full next-to-leading order QCD corrections to the production of two b anti b pairs at the LHC. This calculation at the parton level provides predictions for well separated b-jets. The results show that the next-to-leading order corrections lead to an enhancement of the cross-section for the central scale choice by roughly 50% with respect to the leading order result. The theoretical uncertainty estimated by variation of the renormalization and factorization scales is strongly reduced by the inclusion of next-to-leading order corrections. (orig.)

  7. A pedestal temperature model with self-consistent calculation of safety factor and magnetic shear

    International Nuclear Information System (INIS)

    Onjun, T; Siriburanon, T; Onjun, O

    2008-01-01

    A pedestal model based on theory-motivated models for the pedestal width and the pedestal pressure gradient is developed for the temperature at the top of the H-mode pedestal. The pedestal width model based on magnetic shear and flow shear stabilization is used in this study, where the pedestal pressure gradient is assumed to be limited by first stability of infinite n ballooning mode instability. This pedestal model is implemented in the 1.5D BALDUR integrated predictive modeling code, where the safety factor and magnetic shear are solved self-consistently in both core and pedestal regions. With the self-consistently approach for calculating safety factor and magnetic shear, the effect of bootstrap current can be correctly included in the pedestal model. The pedestal model is used to provide the boundary conditions in the simulations and the Multi-mode core transport model is used to describe the core transport. This new integrated modeling procedure of the BALDUR code is used to predict the temperature and density profiles of 26 H-mode discharges. Simulations are carried out for 13 discharges in the Joint European Torus and 13 discharges in the DIII-D tokamak. The average root-mean-square deviation between experimental data and the predicted profiles of the temperature and the density, normalized by their central values, is found to be about 14%

  8. Heavy meson form factors from QCD

    International Nuclear Information System (INIS)

    Falk, A.F.; Georgi, H.; Grinstein, B.

    1990-01-01

    We calculate the leading QCD radiative corrections to the relations which follow from the decoupling of the heavy quark spin as the quark mass goes infinity and from the symmetry between systems with different heavy quarks. One of the effects we calculate gives the leading q 2 -dependence of the form factor of a heavy quark, which in turn dominates the q 2 -dependence of the form factors of bound states of the heavy quark with light quarks. This, combined with the normalization of the form factor provided by symmetry, gives us a first principles calculation of the heavy meson (or baryon) form factors in the limit of very large heavy quark mass. (orig.)

  9. JNC results of BN-600 benchmark calculation (phase 3)

    International Nuclear Information System (INIS)

    Ishikawa, M.

    2002-01-01

    The present work is the result of phase 3 BN-600 core benchmark problem, meaning burnup and heterogeneity. Analytical method applied consisted of: JENDL-3.2 nuclear data library, group constants (70 group, ABBN type self shielding transport factors), heterogeneous cell model for fuel and control rod, basic diffusion calculation (CITATION code), transport theory and mesh size correction (NSHEX code based on SN transport nodal method developed by JNC). Burnup and heterogeneity calculation results are presented obtained by applying both diffusion and transport approach for beginning and end of cycle

  10. Correction factors of commercial radionuclide calibrators for several measurement geometries of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Correia, Amanda Ribeiro

    2011-01-01

    In order to reach therapy and diagnosis objectives, the activity must be determined with high accuracy to administer a radiopharmaceutical to a patient. Initially, a glass vial with the radiopharmaceutical is placed into the radionuclide calibrator to determine its activity. Subsequently, an aliquot is transferred to a syringe and again its activity is measured on the calibrator before being administered to the patient. The glass vial and the syringe are different in many aspects as the calibration factors too, which may cause incorrect activities administered to the patient. This study aims to determine the correction factors, as well as the values of the uncertainties associated to two distinct models of calibrators: one that uses ionization chamber and another Geiger-Mueller as detectors. The radionuclides chosen were 99 Tc m and 123 1 and the containers were glass vials (type lOR and P6) and plastic syringes of 3 and 5 mL. The correction factors for each type of vials or syringe were determined as a function of volume and type of calibrator. Activity measurements comparison was also made involving several radionuclide calibrators of different models belonging to four nuclear medicine hospitals and to National Metrology Laboratory of lionizing Radiation (LNMRI). In the measurements of activity values larger than allowed by CNEN NN-3.05 norm, results have shown deviations for syringes in calibrator with Geiger-Mueller detectors and for both radionuclides. (author)

  11. Fried-Yennie gauge recalculation of the electron line induced radiative-recoil corrections to muonium hyperfine splitting

    International Nuclear Information System (INIS)

    Brook, V.Yu.; Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A.

    1989-01-01

    A new analytic calculation of radiative-recoil corrections to muonium ground-state hyperfine splitting induced by electron line insertions is performed. The starting point of this calculation is presented by the Fried-Yennie gauge expression for the electron line factor. The final result confirms the one obtained previously from the apparently different expression in the Feynman gauge and removes the slight discrepancy which existed in the literature between the calculations in different gauges. (orig.)

  12. Scintigraphic measurements of gastric emptying corrected for differences in tissue attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, J.B.; Hoejgaard, L.; Uhrenholdt, A. (Copenhagen Univ. (Denmark). Hvidovre Hospital)

    1983-10-01

    In order to evaluate the importance of variations in tissue attenuation in scintigraphic measurements of gastric emptying, both in vivo and in vitro measurements of count rates from an encapsulated sup(99m)Tc dose were performed in different parts of the stomach. The obtained individual tissue correction factors were applied in the calculation of gastric emptying rates by gamma camera in healthy volunteers. The results showed that the anterior gamma camera scan without correction for differences in tissue attenuation underestimated the gastric emptying rate by 11% if the results were expressed as percentage meal emptied over 60 minutes.

  13. Quality correction factors of composite IMRT beam deliveries: Theoretical considerations

    International Nuclear Information System (INIS)

    Bouchard, Hugo

    2012-01-01

    Purpose: In the scope of intensity modulated radiation therapy (IMRT) dosimetry using ionization chambers, quality correction factors of plan-class-specific reference (PCSR) fields are theoretically investigated. The symmetry of the problem is studied to provide recommendable criteria for composite beam deliveries where correction factors are minimal and also to establish a theoretical limit for PCSR delivery k Q factors. Methods: The concept of virtual symmetric collapsed (VSC) beam, being associated to a given modulated composite delivery, is defined in the scope of this investigation. Under symmetrical measurement conditions, any composite delivery has the property of having a k Q factor identical to its associated VSC beam. Using this concept of VSC, a fundamental property of IMRT k Q factors is demonstrated in the form of a theorem. The sensitivity to the conditions required by the theorem is thoroughly examined. Results: The theorem states that if a composite modulated beam delivery produces a uniform dose distribution in a volume V cyl which is symmetric with the cylindrical delivery and all beams fulfills two conditions in V cyl : (1) the dose modulation function is unchanged along the beam axis, and (2) the dose gradient in the beam direction is constant for a given lateral position; then its associated VSC beam produces no lateral dose gradient in V cyl , no matter what beam modulation or gantry angles are being used. The examination of the conditions required by the theorem lead to the following results. The effect of the depth-dose gradient not being perfectly constant with depth on the VSC beam lateral dose gradient is found negligible. The effect of the dose modulation function being degraded with depth on the VSC beam lateral dose gradient is found to be only related to scatter and beam hardening, as the theorem holds also for diverging beams. Conclusions: The use of the symmetry of the problem in the present paper leads to a valuable theorem showing

  14. Uncertainties in the correction factors as the dose polarization and recombination at different energies

    International Nuclear Information System (INIS)

    Alejo Luque, L.; Rodriguez Romero, R.; Castro Tejero, P.; Fandino Lareo, J. M.

    2011-01-01

    This paper discusses the measures and uncertainties of the correction factors for dose-polarization (k, 1) and recombination (k,) of different ionization chambers plane-parallel and cylindrical. The values ??have been obtained using photon and electron beams of various energies generated by linear accelerators nominal Varian 21EX CLJNAC Tomotherapy Hi-Art and JI. We study the cases in which you can avoid the application of the factors obtained, according to the criteria proposed

  15. SU-F-T-16: Experimental Determination of Ionization Chamber Correction Factors for In-Phantom Measurements of Reference Air Kerma Rate and Absorbed Water Dose Rate of Brachytherapy 192Ir Source

    International Nuclear Information System (INIS)

    Chan, M; Lee, V; Wong, M; Leung, R; Law, G; Lee, K; Cheung, S; Tung, S

    2016-01-01

    Purpose: Following the method of in-phantom measurements of reference air kerma rate (Ka) at 100cm and absorbed water dose rate (Dw1) at 1cm of high-dose-rate 192Ir brachytherapy source using 60Co absorbed-dose-to-water calibrated (ND,w,60Co) ionization chamber (IC), we experimentally determined the in-phantom correction factors (kglob) of the PTW30013 (PTW, Freiburg, Germany) IC by comparing the Monte Carlo (MC)-calculated kglob of the other PTW30016 IC. Methods: The Dw1 formalism of in-phantom measurement is: M*ND,w,60Co*(kglob)Dw1, where M is the collected charges, and (kglob)Dw1 the in-phantom Dw1 correction factor. Similarly, Ka is determined by M*ND,w,60Co*(kglob)ka, where (kglob)ka the in-phantom Ka correction factor. Two thimble ICs PTW30013 and another PTW30016 having a ND,w,60Co from the German primary standard laboratory (PTB) were simultaneously exposed to the microselectron 192Ir v2 source at 8cm in a PMMA phantom. A reference well chamber (PTW33004) with a PTB transfer Ka calibration Nka was used for comparing the in-phantom measurements to derive the experimental (kglob)ka factors. We determined the experimental (kglob)Dw1 of the PTW30013 by comparing the PTW30016 measurements with MC-calculated (kglob)Dw1. Results: Ka results of the PTW30016 based on ND,w,60Co and MC-calculated (kglob)ka differ from the well chamber results based on Nka by 1.6% and from the manufacturer by 1.0%. Experimental (kglob)ka factors for the PTW30016 and two other PTW30013 are 0.00683, 0.00681 and 0.00679, and vary <0.5% with 1mm source positioning uncertainty. Experimental (kglob)Dw1 of the PTW30013 ICs are 75.3 and 75.6, and differ by 1.6% from the conversion by dose rate constant from the AAPM report 229. Conclusion: The 1.7% difference between MC and experimental (kglob)ka for the PTW30016 IC is within the PTB 2.5% expanded uncertainty in Ka calibration standard. Using a single IC with ND,w,60Co to calibrate the brachytherapy source and dose output in external

  16. Model correction factor method for reliability problems involving integrals of non-Gaussian random fields

    DEFF Research Database (Denmark)

    Franchin, P.; Ditlevsen, Ove Dalager; Kiureghian, Armen Der

    2002-01-01

    The model correction factor method (MCFM) is used in conjunction with the first-order reliability method (FORM) to solve structural reliability problems involving integrals of non-Gaussian random fields. The approach replaces the limit-state function with an idealized one, in which the integrals ...

  17. A Novel Bridgeless Power Factor Correction with Interleaved Boost Stages in Continous Current Mode

    DEFF Research Database (Denmark)

    Li, Qingnan; Andersen, Michael A. E.; Thomsen, Ole Cornelius

    2011-01-01

    The operation and trade-off of Bridgeless Power Factor Correction (BPFC) circuit with interleaved Boost stages are investigated. By using interleaved BPFC, an overall reduction of the size of EMI filter can be achieved without increasing the switching frequency of the converter. And higher...

  18. Development of the heated length to diameter correction factor on critical heat flux using the artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ho; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    With using artificial neural networks (ANNs), an analytical study related to the heated length effect on critical heat flux (CHF) has been carried out to make an improvement of the CHF prediction accuracy based on local condition correlations or table. It has been carried out to suggest a feasible criterion of the threshold length-to-diameter (L/D) value in which heated length could affect CHF. And within the criterion, a L/D correction factor has been developed through conventional regression. In order to validate the developed L/D correction factor, CHF experiments for various heated lengths have been carried out under low and intermediate pressure conditions. The developed threshold L/D correlation provides a new feasible criterion of L/D threshold value. The developed correction factor gives a reasonable accuracy for the original database, showing the error of -2.18% for average and 27.75% for RMS, and promising results for new experimental data. 7 refs., 12 figs., 1 tab. (Author)

  19. Development of the heated length to diameter correction factor on critical heat flux using the artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ho; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    With using artificial neural networks (ANNs), an analytical study related to the heated length effect on critical heat flux (CHF) has been carried out to make an improvement of the CHF prediction accuracy based on local condition correlations or table. It has been carried out to suggest a feasible criterion of the threshold length-to-diameter (L/D) value in which heated length could affect CHF. And within the criterion, a L/D correction factor has been developed through conventional regression. In order to validate the developed L/D correction factor, CHF experiments for various heated lengths have been carried out under low and intermediate pressure conditions. The developed threshold L/D correlation provides a new feasible criterion of L/D threshold value. The developed correction factor gives a reasonable accuracy for the original database, showing the error of -2.18% for average and 27.75% for RMS, and promising results for new experimental data. 7 refs., 12 figs., 1 tab. (Author)

  20. Calculation of dose-rate conversion factors for external exposure to photons and electrons

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1978-01-01

    Methods are presented for the calculation of dose-rate conversion factors for external exposure to photon and electron radiation from radioactive decay. A dose-rate conversion factor is defined as the dose-equivalent rate per unit radionuclide concentration. Exposure modes considered are immersion in contaminated air, immersion in contaminated water, and irradiation from a contaminated ground surface. For each radiation type and exposure mode, dose-rate conversion factors are derived for tissue-equivalent material at the body surface of an exposed individual. In addition, photon dose-rate conversion factors are estimated for 22 body organs. The calculations are based on the assumption that the exposure medium is infinite in extent and that the radionuclide concentration is uniform. The dose-rate conversion factors for immersion in contaminated air and water then follow from the requirement that all of the energy emitted in the radioactive decay is absorbed in the infinite medium. Dose-rate conversion factors for ground-surface exposure are calculated at a reference location above a smooth, infinite plane using the point-kernel integration method and known specific absorbed fractions for photons and electrons in air

  1. Gamma camera correction system and method for using the same

    International Nuclear Information System (INIS)

    Inbar, D.; Gafni, G.; Grimberg, E.; Bialick, K.; Koren, J.

    1986-01-01

    A gamma camera is described which consists of: (a) a detector head that includes photodetectors for producing output signals in response to radiation stimuli which are emitted by a radiation field and which interact with the detector head and produce an event; (b) signal processing circuitry responsive to the output signals of the photodetectors for producing a sum signal that is a measure of the total energy of the event; (c) an energy discriminator having a relatively wide window for comparison with the sum signal; (d) the signal processing circuitry including coordinate computation circuitry for operating on the output signals, and calculating an X,Y coordinate of an event when the sum signal lies within the window of the energy discriminator; (e) an energy correction table containing spatially dependent energy windows for producing a validation signal if the total energy of an event lies within the window associated with the X,Y coordinates of the event; (f) the signal processing circuitry including a dislocation correction table containing spatially dependent correction factors for converting the X,Y coordinates of an event to relocated coordinates in accordance with correction factors determined by the X,Y coordinates; (g) a digital memory for storing a map of the radiation field; and (h) means for recording an event at its relocated coordinates in the memory if the energy correction table produces a validation signal

  2. Proximity formulae for folding potentials. [Saxon-Woods form factors, first order corrections

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, H; Canto, L F [Rio de Janeiro Univ. (Brazil). Inst. de Fisica

    1979-03-05

    The proximity formulae of Brink and Stancu are applied to folding potentials. A numerical study is made for the case of single folding potentials with Saxon-Woods form factors. It is found that a proximity formula is accurate to 1-2% at separations of the order of the radius of the Coulomb barrier and that first order corrections due to first curvature are important. The approximations involved are discussed.

  3. Calculation Analysis of Calibration Factors of Airborne Gamma-ray Spectrometer

    International Nuclear Information System (INIS)

    Zhao Jun; Zhu Jinhui; Xie Honggang; He Qinglin

    2009-01-01

    To determine the calibration factors of an airborne gamma-ray spectrometer measuring large area gamma-ray emitting source at deferent flying height, a series of Monte Carlo simulations were drawn. Response energy spectrums of NaI crystals in airplane caused by nature-decay-series calibration-pads, and calibration factors on different heights above Cs-137 plane source, were obtained. The calculated results agreed with the experimental data well. (authors)

  4. Quality factor calculations for neutron spectra below 4 MeV

    International Nuclear Information System (INIS)

    Borak, T.B.; Stinchcomb, T.G.

    1979-01-01

    A method is described for computing the distribution of absorbed dose, D(L), as a function of linear energy transfer, L, for any neutron spectrum with energies below 4 MeV. The results are used to determine the average quality factor for two distinctly different neutron spectra using the ICRP recommended values of the quality factor, Q(L). A comparison is made between the calculations and measurements of D(L) using a spherical tissue equivalent proportional counter. Heavy ion recoil contributions to the average quality factor are examined in detail. (author)

  5. Analysis of the principal factors that intervene in the quantification of planar images of uniform distributions of 99mTc by the conjugate view method with background correction by simple subtraction

    International Nuclear Information System (INIS)

    Mora Araya, Luis Diego

    2013-01-01

    The activity of uniform distributions of 99m Tc was quantified by the conjugate view method. The necessary factors of calibration and transmission were calculated to realize the quantification. The dependence of the estimated number of accounts within the source region and variability of the value of the transmission factor were determined, according to the size established for the region of interest, keeping constant its geometry. The images of all acquisitions were corrected by environmental background radiation and radiation dispersed, by the dual energy window method (DEW). The impact of corrections in the image were checked, both qualitatively and quantitative. The acquisition to obtain the calibration factor was realized with the same configuration and the same conditions that were used to realize the acquisition for quantification; in which, the same volume and the same geometry were used to contain the distribution of the activity of 99m Tc. The volume and geometry of the same medium attenuator have obtained a calibration factor exactly in the same circumstances in which have quantified. The behavior of the estimation of the calibration factor of the gamma camera was analyzed, according to the decay corrections of the activity and the attenuation that are applied. The dependence of the calibration factors and transmission were analyzed, according to the region of interest used in the corresponding images to estimate their values. The behavior of the estimation of the activity was determined, according to all possible combinations of the factors studied that have intervened in the quantification algorithm of conjugate view, namely, the size of the region of interest corresponding to the source region, the transmission factor , the calibration factor and background correction by simple subtraction. The results obtained of the estimates of the activity were compared. A tendency is established, indicating which have been combinations of the studied factors that

  6. All-cause mortality in HIV-positive adults starting combination antiretroviral therapy: correcting for loss to follow-up.

    Science.gov (United States)

    Anderegg, Nanina; Johnson, Leigh F; Zaniewski, Elizabeth; Althoff, Keri N; Balestre, Eric; Law, Matthew; Nash, Denis; Shepherd, Bryan E; Yiannoutsos, Constantin T; Egger, Matthias

    2017-04-01

    To estimate mortality in HIV-positive patients starting combination antiretroviral therapy (ART) and to discuss different approaches to calculating correction factors to account for loss to follow-up. A total of 222 096 adult HIV-positive patients who started ART 2009-2014 in clinics participating in the International epidemiology Databases to Evaluate AIDS collaboration in 43 countries in sub-Saharan Africa, Asia Pacific, Latin America, and North America were included. To allow for underascertainment of deaths due to loss to follow-up, two correction factors (one for the period 0-6 months on ART and one for later periods) or 168 correction factors (combinations of two sexes, three time periods after ART initiation, four age groups, and seven CD4 groups) based on tracing patients lost in Kenya and data linkages in South Africa were applied. Corrected mortality rates were compared with a worst case scenario assuming all patients lost to follow-up had died. Loss to follow-up differed between regions; rates were lowest in central Africa and highest in east Africa. Compared with using two correction factors (1.64 for the initial ART period and 2.19 for later), applying 168 correction factors (range 1.03-4.75) more often resulted in implausible mortality rates that exceeded the worst case scenario. Corrected mortality rates varied widely, ranging from 0.2 per 100 person-years to 54 per 100 person-years depending on region and covariates. Implausible rates were less common with the simpler approach based on two correction factors. The corrected mortality rates will be useful to international agencies, national programmes, and modellers.

  7. Logarithmic black hole entropy corrections and holographic Rényi entropy

    Science.gov (United States)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Rényi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Rényi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order GD^0. The entropic c-function and the inequalities of the Rényi entropy are also satisfied even with the correction terms.

  8. BENCHMARKING ORTEC ISOTOPIC MEASUREMENTS AND CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dewberry, R; Raymond Sigg, R; Vito Casella, V; Nitin Bhatt, N

    2008-09-29

    This report represents a description of compiled benchmark tests conducted to probe and to demonstrate the extensive utility of the Ortec ISOTOPIC {gamma}-ray analysis computer program. The ISOTOPIC program performs analyses of {gamma}-ray spectra applied to specific acquisition configurations in order to apply finite-geometry correction factors and sample-matrix-container photon absorption correction factors. The analysis program provides an extensive set of preset acquisition configurations to which the user can add relevant parameters in order to build the geometry and absorption correction factors that the program determines from calculus and from nuclear g-ray absorption and scatter data. The Analytical Development Section field nuclear measurement group of the Savannah River National Laboratory uses the Ortec ISOTOPIC analysis program extensively for analyses of solid waste and process holdup applied to passive {gamma}-ray acquisitions. Frequently the results of these {gamma}-ray acquisitions and analyses are to determine compliance with facility criticality safety guidelines. Another use of results is to designate 55-gallon drum solid waste as qualified TRU waste3 or as low-level waste. Other examples of the application of the ISOTOPIC analysis technique to passive {gamma}-ray acquisitions include analyses of standard waste box items and unique solid waste configurations. In many passive {gamma}-ray acquisition circumstances the container and sample have sufficient density that the calculated energy-dependent transmission correction factors have intrinsic uncertainties in the range 15%-100%. This is frequently the case when assaying 55-gallon drums of solid waste with masses of up to 400 kg and when assaying solid waste in extensive unique containers. Often an accurate assay of the transuranic content of these containers is not required, but rather a good defensible designation as >100 nCi/g (TRU waste) or <100 nCi/g (low level solid waste) is required. In

  9. Quantum corrections to nonlinear ion acoustic wave with Landau damping

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)

    2014-07-15

    Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.

  10. Dancoff Correction in Square and Hexagonal Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I

    1966-11-15

    This report presents the results of a series of calculations of Dancoff corrections for square and hexagonal rod lattices. The tables cover a wide range of volume ratios and moderator cross sections. The results were utilized for checking the approximative formula of Sauer and also the modification of Bonalumi to Sauer's formula. The modified formula calculates the Dancoff correction with an accuracy of 0.01 - 0.02 in cases of practical interest. Calculations have also been performed on square lattices with an empty gap surrounding the rods. The results demonstrate the error involved in treating this kind of geometry by means of homogenizing the gap and the moderator. The calculations were made on the Ferranti Mercury computer of AB Atomenergi before it was closed down. Since then FORTRAN routines for Dancoff corrections have been written, and a subroutine DASQHE is included in the report.

  11. Empirical correction for PM7 band gaps of transition-metal oxides.

    Science.gov (United States)

    Liu, Xiang; Sohlberg, Karl

    2016-01-01

    A post-calculation correction is established for PM7 band gaps of transition-metal oxides. The correction is based on the charge on the metal cation of interest, as obtained from MOPAC PM7 calculations. Application of the correction reduces the average error in the PM7 band gap from ~3 eV to ~1 eV. The residual error after correction is shown to be uncorrelated to the Hartree-Fock method upon which PM7 is based. Graphical Abstract Comparison between calculated band gaps and experimental band gaps for binary oxides. The orange crosses are for corrected PM7 band gaps. Blue squares are uncorrected values. The orange crosses fall closer to the diagonal dashed line, showing an overall improvement of the accuracy of calculated values.

  12. Phase correction for a Michelson interferometer with misaligned mirrors

    Science.gov (United States)

    Goorvitch, D.

    1975-01-01

    The phase correction for a Michelson interferometer with misaligned mirrors in converging light is shown to give rise to a quadratic phase shift. In general, the calculation of a spectrum from the measured interferogram needs phase correction. Phase corrections have been well worked out for the cases of a linear phase shift and a phase that is slowly varying. The standard procedures for correcting calculated spectra need to be modified, however, to remove any phase errors resulting from misaligned mirrors.

  13. Power corrections in the N-jettiness subtraction scheme

    Energy Technology Data Exchange (ETDEWEB)

    Boughezal, Radja [High Energy Physics Division, Argonne National Laboratory,Argonne, IL 60439 (United States); Liu, Xiaohui [Department of Physics, Beijing Normal University,Beijing, 100875 (China); Center of Advanced Quantum Studies, Beijing Normal University,Beijing, 100875 (China); Center for High-Energy Physics, Peking University,Beijing, 100871 (China); Maryland Center for Fundamental Physics, University of Maryland,College Park, MD 20742 (United States); Petriello, Frank [Department of Physics & Astronomy, Northwestern University,Evanston, IL 60208 (United States); High Energy Physics Division, Argonne National Laboratory,Argonne, IL 60439 (United States)

    2017-03-30

    We discuss the leading-logarithmic power corrections in the N-jettiness subtraction scheme for higher-order perturbative QCD calculations. We compute the next-to-leading order power corrections for an arbitrary N-jet process, and we explicitly calculate the power correction through next-to-next-to-leading order for color-singlet production for both qq̄ and gg initiated processes. Our results are compact and simple to implement numerically. Including the leading power correction in the N-jettiness subtraction scheme substantially improves its numerical efficiency. We discuss what features of our techniques extend to processes containing final-state jets.

  14. Calculation of calibration factors and layout criteria for gamma scanning of waste drums from nuclear plants

    International Nuclear Information System (INIS)

    Inder Schmitten, W.; Sohnius, B.; Wehner, E.

    1990-01-01

    This paper present a procedure to calculate calibration factors for converting the measured gamma rate of waste drums into activity content and a layout and free release measurement criterion for waste drums. A computer program is developed that simulates drum scanning technique, which calculates calibration factors and eliminates laborious experimental measurements. The calculated calibration factors exhibit good agreement with experimentally determined values. By checking the calculated calibration factors for trial equipment layouts (including the waste drum and the scanning facility) using the layout and free release measurement criterion, a layout can be achieved that clearly determines whether there can be free release of a waste drum

  15. Calculation of intensity factors using weight function theory for a transversely isotropic piezoelectric material

    International Nuclear Information System (INIS)

    Son, In Ho; An, Deuk Man

    2012-01-01

    In fracture mechanics, the weight function can be used for calculating stress intensity factors. In this paper, a two dimensional electroelastic analysis is performed on a transversely isotropic piezoelectric material with an open crack. A plane strain formulation of the piezoelectric problem is solved within the Leknitskii formalism. Weight function theory is extended to piezoelectric materials. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory

  16. Power Factor Correction Capacitors for Multiple Parallel Three-Phase ASD Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    Today’s three-phase Adjustable Speed Drive (ASD) systems still employ Diode Rectifiers (DRs) and Silicon-Controlled Rectifiers (SCRs) as the front-end converters due to structural and control simplicity, small volume, low cost, and high reliability. However, the uncontrollable DRs and phase......-controllable SCRs bring side-effects by injecting high harmonics to the grid, which will degrade the system performance in terms of lowering the overall efficiency and overheating the system if remain uncontrolled or unattenuated. For multiple ASD systems, certain harmonics in the entire system can be mitigated...... the power factor, passive capacitors can be installed, which yet can trigger the system resonance. Hence, this paper analyzes the resonant issues in multiple ASD systems with power factor correction capacitors. Potential damping solutions are summarized. Simulations are carried out, while laboratory tests...

  17. True coincidence-summing corrections for the coincident γ-rays measured with coplanar grid CdZnTe detectors

    International Nuclear Information System (INIS)

    Yuecel, H.; Solmaz, A.N.; Koese, E.; Bor, D.

    2010-01-01

    In this study, true coincidence-summing (TCS) correction factors have been measured for the sources 22 Na, 60 Co, 133 Ba and 152 Eu by use of three large volume coplanar grid CdZnTe (acronym: CZT) detectors. In case of a close-in detection geometry, two different TCS calculation algorithms were used to compute the required TCS correction factors. Both of the algorithms are based on the measured total-to-peak (TTP) ratio and full-energy peak (FEP) efficiency values that were obtained using almost 'single' energy and coincidence-free nuclides. The results for TCS correction factors obtained by two different algorithms were agreeable to each other. The obtained TCS factors were ranged from about 7% to 30.5% in a 2250 mm 3 CZT detector when a close counting geometry was used. For other two detectors with a volume of 1000 and 1687.5 mm 3 , the resulted TCS correction factors were relatively smaller and varied between about 0.1% and 20% at the close counting geometry condition. Therefore, the results indicate that there is a need for the estimation of TCS corrections in CZT detectors, especially when their crystal volumes are greater than 1 cm 3 and these detectors are used in the case of a close-in detection geometry.

  18. Connection factor calculation for isotopic neutron flux measurements with foil detectors

    International Nuclear Information System (INIS)

    Avila L, J.

    1987-01-01

    Thermal and resonance neutron self-shielding factors, neutron flux distortion and edge effects as well as a connection factor for neutron flux profile around a foil detector have been calculated. A general expression for resonance self shielding factor is presented in order to take into account the most important resonances for a given isotope. A computer program SPRESYTER.BAS was written and results for In-115 and Au-197 foils are given

  19. The position dependent influence that sensitivity correction processing gives the signal-to-noise ratio measurement in parallel imaging

    International Nuclear Information System (INIS)

    Murakami, Koichi; Yoshida, Koji; Yanagimoto, Shinichi

    2012-01-01

    We studied the position dependent influence that sensitivity correction processing gave the signal-to-noise ratio (SNR) measurement of parallel imaging (PI). Sensitivity correction processing that referred to the sensitivity distribution of the body coil improved regional uniformity more than the sensitivity uniformity correction filter with a fixed correction factor. In addition, the position dependent influence to give the SNR measurement in PI was different from the sensitivity correction processing. Therefore, if we divide SNR of the sensitivity correction processing image by SNR of the original image in each pixel and calculate SNR ratio, we can show the position dependent influence that sensitivity correction processing gives the SNR measurement in PI. It is with an index of the sensitivity correction processing precision. (author)

  20. Electroweak one-loop corrections for e+e- annihilation into t anti t including hard bremsstrahlung

    International Nuclear Information System (INIS)

    Fleischer, J.; Leike, A.; Riemann, T.; Werthenbach, A.

    2003-01-01

    We present the complete electroweak one-loop corrections to top-pair production at a linear e + e - collider in the continuum region. Besides weak and photonic virtual corrections, real hard bremsstrahlung with simple realistic kinematical cuts is included. For the bremsstrahlung we advocate a semi-analytical approach with a high numerical accuracy. The virtual corrections are parameterized through six independent form factors, suitable for Monte Carlo implementation. Alternatively, our numerical package Topfit, a stand-alone code, can be utilized for the calculation of both differential and integrated cross sections as well as forward-backward asymmetries. (orig.)

  1. Coulomb correction calculations of pp Bremsstrahlung

    International Nuclear Information System (INIS)

    Katsogiannis, A.; Amos, K.; Jetter, M.; von Geramb, H.V.

    1994-01-01

    The effects of the Coulomb interaction upon the photon cross section and analyzing power from pp Bremsstrahlung have been studied in detail. Off-shell properties of the Coulomb T matrices have been considered but the associated, Coulomb modified, hadronic T matrices are important elements in any analyses of low energy, forward proton scattering data. At the lowest energy considered (5 MeV), the full calculations gave cross sections that were half the size of those found without Coulomb effects or with a simple model approximation to them. With increasing energy, the cross sections varied to those characteristic of magnetic interaction dominance and the specific differences due to Coulomb effects diminished. 47 refs., 7 figs

  2. Calculation of infrared radiation in the atmosphere by a numerical method

    International Nuclear Information System (INIS)

    Nunes, G.S.S.; Viswanadham, Y.

    1981-01-01

    A numerical method is described for the calculations of the atmospheric infrared flux and radiative cooling rate in the atmosphere. It is suitable for use at all levels below lower stratosphere. The square root pressure correction factor is incorporated in the computation of the corrected optical depth. The water vapour flux emissivity data of Staley and Jurica are used in the model. The versatility of the computing scheme sugests that this method is adequate to evaluate infrared flux and flux divergence in the problems involving a large amount of atmospheric data. (Author) [pt

  3. Conversion and correction factors for historical measurements of iodine-131 in Hanford-area vegetation 1948--1951

    International Nuclear Information System (INIS)

    Denham, D.H.; Mart, E.I.; Thiede, M.E.

    1993-09-01

    This report is a part of the Hanford Environmental Dose Reconstruction (HEDR) Project, whose goal is to estimate the radiation dose that individuals could have received from emissions since 1944 at the US Department of Energy's (DOE) Hanford Site near Richland, Washington. The key radionuclide emitted that would affect the radiation dose was iodine-131 (Napier 1992). Because the early methods of measuring iodine-131 were not comparable to later techniques, conversion and correction factors are needed to convert the historical measurement data into concentration values that would be determined using today's knowledge and technologies. This report describes the conversion and correction factors developed for reconstructing historical measurements of iodine-131 in Hanford-area vegetation, which was collected from 1948 through the end of December 1951

  4. High-precision calculation of the strange nucleon electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Green, Jeremy [Johannes Gutenberg Univ., Mainz (Germany); Meinel, Stefan [Univ. of Arizona, Tucson, AZ (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Engelhardt, Michael G. [New Mexico State Univ., Las Cruces, NM (United States); Krieg, Stefan [Bergische Univ., Wuppertal (Germany); Julich Supercomputing Centre, Julich (Germany); Laeuchli, Jesse [College of William and Mary, Williamsburg, VA (United States); Negele, John W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pochinsky, Andrew [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Syritsyn, Sergey [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-26

    We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors GsE and GsM in the kinematic range 0 ≤ Q2 ≤ 1.2GeV2. For the first time, both GsE and GsM are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. As a result, we compare our results to parity-violating electron-proton scattering data and to other theoretical studies.

  5. Factors related to stability following the surgical correction of skeletal open bite.

    Science.gov (United States)

    Ito, Goshi; Koh, Myongsun; Fujita, Tadashi; Shirakura, Maya; Ueda, Hiroshi; Tanne, Kazuo

    2014-05-01

    If a skeletal anterior open bite malocclusion is treated by orthognathic surgery directed only at the mandible, the lower jaw is repositioned upward in a counter-clockwise rotation. However, this procedure has a high risk of relapse. In the present study, the key factors associated with post-surgical stability of corrected skeletal anterior open bite malocclusions were investigated. Eighteen orthognathic patients were subjected to cephalometric analysis to assess the dental and skeletal changes following mandibular surgery for the correction of an anterior open bite. The patients were divided into two groups, determined by an increase or decrease in nasion-menton (N-Me) distance as a consequence of surgery. Changes in overbite, the displacements of molars and positional changes in Menton were evaluated immediately before and after surgery and after a minimum of one year post-operatively. The group with a decreased N-Me distance exhibited a significantly greater backward positioning of the mandible. The group with an increased N-Me distance experienced significantly greater dentoalveolar extrusion of the lower molars. A sufficient mandibular backward repositioning is an effective technique in the prevention of open bite relapse. In addition, it is important not to induce molar extrusion during post-surgical orthodontic treatment to preserve stability of the surgical open bite correction.

  6. Dissecting Reactor Antineutrino Flux Calculations

    Science.gov (United States)

    Sonzogni, A. A.; McCutchan, E. A.; Hayes, A. C.

    2017-09-01

    Current predictions for the antineutrino yield and spectra from a nuclear reactor rely on the experimental electron spectra from 235U, 239Pu, 241Pu and a numerical method to convert these aggregate electron spectra into their corresponding antineutrino ones. In the present work we investigate quantitatively some of the basic assumptions and approximations used in the conversion method, studying first the compatibility between two recent approaches for calculating electron and antineutrino spectra. We then explore different possibilities for the disagreement between the measured Daya Bay and the Huber-Mueller antineutrino spectra, including the 238U contribution as well as the effective charge and the allowed shape assumption used in the conversion method. We observe that including a shape correction of about +6 % MeV-1 in conversion calculations can better describe the Daya Bay spectrum. Because of a lack of experimental data, this correction cannot be ruled out, concluding that in order to confirm the existence of the reactor neutrino anomaly, or even quantify it, precisely measured electron spectra for about 50 relevant fission products are needed. With the advent of new rare ion facilities, the measurement of shape factors for these nuclides, for many of which precise beta intensity data from TAGS experiments already exist, would be highly desirable.

  7. Inelastic neutron scattering, Raman, vibrational analysis with anharmonic corrections, and scaled quantum mechanical force field for polycrystalline L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Robert W. [Department of Biomedical Informatics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20815 (United States)], E-mail: bob@bob.usuhs.mil; Schluecker, Sebastian [Institute of Physical Chemistry, University of Wuerzburg, Wuerzburg (Germany); Hudson, Bruce S. [Department of Chemistry, Syracuse University, Syracuse, NY (United States)

    2008-01-22

    A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.

  8. Inelastic neutron scattering, Raman, vibrational analysis with anharmonic corrections, and scaled quantum mechanical force field for polycrystalline L-alanine

    International Nuclear Information System (INIS)

    Williams, Robert W.; Schluecker, Sebastian; Hudson, Bruce S.

    2008-01-01

    A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes

  9. TH-C-BRD-06: A Novel MRI Based CT Artifact Correction Method for Improving Proton Range Calculation in the Presence of Severe CT Artifacts

    International Nuclear Information System (INIS)

    Park, P; Schreibmann, E; Fox, T; Roper, J; Elder, E; Tejani, M; Crocker, I; Curran, W; Dhabaan, A

    2014-01-01

    Purpose: Severe CT artifacts can impair our ability to accurately calculate proton range thereby resulting in a clinically unacceptable treatment plan. In this work, we investigated a novel CT artifact correction method based on a coregistered MRI and investigated its ability to estimate CT HU and proton range in the presence of severe CT artifacts. Methods: The proposed method corrects corrupted CT data using a coregistered MRI to guide the mapping of CT values from a nearby artifact-free region. First patient MRI and CT images were registered using 3D deformable image registration software based on B-spline and mutual information. The CT slice with severe artifacts was selected as well as a nearby slice free of artifacts (e.g. 1cm away from the artifact). The two sets of paired MRI and CT images at different slice locations were further registered by applying 2D deformable image registration. Based on the artifact free paired MRI and CT images, a comprehensive geospatial analysis was performed to predict the correct CT HU of the CT image with severe artifact. For a proof of concept, a known artifact was introduced that changed the ground truth CT HU value up to 30% and up to 5cm error in proton range. The ability of the proposed method to recover the ground truth was quantified using a selected head and neck case. Results: A significant improvement in image quality was observed visually. Our proof of concept study showed that 90% of area that had 30% errors in CT HU was corrected to 3% of its ground truth value. Furthermore, the maximum proton range error up to 5cm was reduced to 4mm error. Conclusion: MRI based CT artifact correction method can improve CT image quality and proton range calculation for patients with severe CT artifacts

  10. A comment on the calculation of the total-factor energy efficiency (TFEE) index

    International Nuclear Information System (INIS)

    Chang, Ming-Chung

    2013-01-01

    This study provides a no-output growth model to conveniently calculate the total-factor energy efficiency (TFEE) index originally proposed by Hu and Wang (2006). The TFEE index serves as a very well-known and popular means of estimating overall energy efficiency. While many previous studies have used the indicator of energy inefficiency, including the indicator of energy intensity (i.e., Energy input/Gross Domestic Product (GDP)) to measure energy efficiency, Hu and Kao (2007) point out that the indicator of energy intensity is not only a partial-factor energy efficiency indicator, but that this partial-factor ratio is also quite inappropriate for analyzing the impact of changing energy use over time. The TFEE index overcomes the disadvantage of the indicator of energy intensity as mentioned above, but five steps are needed to calculate the TFEE score. In this study, we provide a no-output growth model to conveniently calculate the TFEE score. Furthermore, we extend this no-output growth model to an output growth model. This study concludes that the output growth model not only makes it easier to calculate the TFEE index than the model proposed by Hu and Wang (2006) and Hu and Kao (2007), but that it can also obtain better TFEE scores. - Highlights: ► The comment is on the total-factor energy efficiency (TFEE) index. ► Two extension models are no-output growth model and output growth model. ► The model in this study makes it easier to calculate the TFEE index.

  11. Isospin breaking and radiative corrections in K{sub l4} decays; Brisure d'isospin et corrections radiatives au processus K{sub l4}

    Energy Technology Data Exchange (ETDEWEB)

    Cuplov, V

    2004-04-15

    This thesis is dedicated to the impact of electromagnetic corrections on the decays of K{sub l4}. 2 types of electromagnetic contributions have to be considered: first the exchange of virtual photons and secondly the non-perturbative part of meson-photon interactions. We have also considered the effects of isospin breaking. We have shown that the isospin breaking and the electromagnetic corrections affect K{sub l4} decays in the neutral and mixed channels (respectively by 8% and -2%), while the charged channel is unaffected. It also appears that the tree approximation for the computation of the decay rates, is not accurate enough to explain experimental data. In the second part of this work, we give the analytical expressions of the F and G form factors associated with the amplitude of the K{sub l4} process in the charged mode. Infra-red divergencies counterbalance each other in the decay rates calculation when we consider the process K{sub l4{gamma}} where 1 photon is emitted with an energy below the sensitivity of the detector. We have found that the calculation in one loop order represents 75% of the measured value. The impact of radiative corrections is about 0.9% while the isospin breaking effect is about 1.6 per cent.

  12. Cation-exchanged SAPO-34 for adsorption-based hydrocarbon separations: predictions from dispersion-corrected DFT calculations.

    Science.gov (United States)

    Fischer, Michael; Bell, Robert G

    2014-10-21

    The influence of the nature of the cation on the interaction of the silicoaluminophosphate SAPO-34 with small hydrocarbons (ethane, ethylene, acetylene, propane, propylene) is investigated using periodic density-functional theory calculations including a semi-empirical dispersion correction (DFT-D). Initial calculations are used to evaluate which of the guest-accessible cation sites in the chabazite-type structure is energetically preferred for a set of ten cations, which comprises four alkali metals (Li(+), Na(+), K(+), Rb(+)), three alkaline earth metals (Mg(2+), Ca(2+), Sr(2+)), and three transition metals (Cu(+), Ag(+), Fe(2+)). All eight cations that are likely to be found at the SII site (centre of a six-ring) are then included in the following investigation, which studies the interaction with the hydrocarbon guest molecules. In addition to the interaction energies, some trends and peculiarities regarding the adsorption geometries are analysed, and electron density difference plots obtained from the calculations are used to gain insights into the dominant interaction types. In addition to dispersion interactions, electrostatic and polarisation effects dominate for the main group cations, whereas significant orbital interactions are observed for unsaturated hydrocarbons interacting with transition metal (TM) cations. The differences between the interaction energies obtained for pairs of hydrocarbons of interest (such as ethylene-ethane and propylene-propane) deliver some qualitative insights: if this energy difference is large, it can be expected that the material will exhibit a high selectivity in the adsorption-based separation of alkene-alkane mixtures, which constitutes a problem of considerable industrial relevance. While the calculations show that TM-exchanged SAPO-34 materials are likely to exhibit a very high preference for alkenes over alkanes, the strong interaction may render an application in industrial processes impractical due to the large amount

  13. Electroweak one-loop corrections to the decay of the charged vector boson

    International Nuclear Information System (INIS)

    Bardin, D.Yu.; Riemann, S.; Riemann, T.

    1986-01-01

    The electroweak radiative corrections to the decay widths of the W-boson, GITA(W → lanti v, anti ud, anti cs), have been calculated in the standard theory. The results are presented in terms of an electroweak form factor rhosup(W), and their dependence on msub(t) and Msub(Hsub(W)) (masses of t-quark and higgs boson) is studied. Typically value of rhosup(W)-1 is of an order of one per cent. The difference rhosub(qq')sup(W) is negligible, 0.045%. The calculational scheme used is described in detail

  14. Attenuation correction for the collimated gamma ray assay of cylindrical samples

    International Nuclear Information System (INIS)

    Patra, Sabyasachi; Agarwal, Chhavi; Goswami, A.; Gathibandhe, M.

    2015-01-01

    The Hybrid Monte Carlo (HMC) method developed earlier for attenuation correction of non-collimated samples [Agarwal et al., 2008, Nucl. Instrum. Methods A 597, 198], has been extended to the segmented gamma ray assay of cylindrical samples. The method has been validated both experimentally and theoretically. For experimental validation, the results of HMC calculation have been compared with the experimentally obtained attenuation correction factors. The HMC attenuation correction factors have also been compared with the results obtained from literature available near-field and far-field formulae at two sample-to-detector distances (10.3 cm and 20.4 cm). The method has been found to be valid at all sample-to-detector distances over a wide range of transmittance. On the other hand, the literature available near-field and far-field formulae have been found to work over a limited range of sample-to detector distances and transmittances. The HMC method has been further extended to circular collimated geometries where analytical formula for attenuation correction does not exist. - Highlights: • Hybrid Monte Carlo method for attenuation correction developed for SGA system. • Method found to work for all sample-detector geometries for all transmittances. • The near-field formula applicable only after certain sample-detector distance. • The far-field formula applicable only for higher transmittances (>18%). • Hybrid Monte Carlo method further extended to circular collimated geometry

  15. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Rocklin, Gabriel J. [Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550, USA and Biophysics Graduate Program, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550 (United States); Mobley, David L. [Departments of Pharmaceutical Sciences and Chemistry, University of California Irvine, 147 Bison Modular, Building 515, Irvine, California 92697-0001, USA and Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148 (United States); Dill, Ken A. [Laufer Center for Physical and Quantitative Biology, 5252 Stony Brook University, Stony Brook, New York 11794-0001 (United States); Hünenberger, Philippe H., E-mail: phil@igc.phys.chem.ethz.ch [Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich (Switzerland)

    2013-11-14

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol{sup −1}) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non

  16. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    Science.gov (United States)

    Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.

    2013-11-01

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol-1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB

  17. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects.

    Science.gov (United States)

    Rocklin, Gabriel J; Mobley, David L; Dill, Ken A; Hünenberger, Philippe H

    2013-11-14

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol(-1)) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB

  18. The quark induced Mueller-Tang jet impact factor at next-to-leading order

    CERN Document Server

    Hentschinski, M.; Murdaca, B.; Vera, A. Sabio

    2014-01-01

    We present the NLO corrections for the quark induced forward production of a jet with an associated rapidity gap. We make use of Lipatov's QCD high energy effective action to calculate the real emission contributions to the so-called Mueller-Tang impact factor. We combine them with the previously calculated virtual corrections and verify ultraviolet and collinear finiteness of the final result.

  19. Analytical Design of Passive LCL Filter for Three-phase Two-level Power Factor Correction Rectifiers

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2017-01-01

    This paper proposes a comprehensive analytical LCL filter design method for three-phase two-level power factor correction rectifiers (PFCs). The high frequency converter current ripple generates the high frequency current harmonics that need to be attenuated with respect to the grid standards...

  20. Self-absorption corrections of various sample-detector geometries in gamma-ray spectrometry using sample Monte Carlo Simulations

    International Nuclear Information System (INIS)

    Ahmad Saat; Appleby, P.G.; Nolan, P.J.

    1997-01-01

    Corrections for self-absorption in gamma-ray spectrometry have been developed using a simple Monte Carlo simulation technique. The simulation enables the calculation of gamma-ray path lengths in the sample which, using available data, can be used to calculate self-absorption correction factors. The simulation was carried out on three sample geometries: disk, Marinelli beaker, and cylinder (for well-type detectors). Mathematical models and experimental measurements are used to evaluate the simulations. A good agreement of within a few percents was observed. The simulation results are also in good agreement with those reported in the literature. The simulation code was carried out in FORTRAN 90,

  1. Deterministic calculation of grey Dancoff factors in cluster cells with cylindrical outer boundaries

    International Nuclear Information System (INIS)

    Jenisch Rodrigues, L.; Tullio de Vilhena, M.

    2008-01-01

    In the present work, the WIMSD code routine PIJM is modified to compute deterministic Dancoff factors by the collision probability definition in general arrangements of partially absorbing fuel rods. Collision probabilities are calculated by an efficient integration scheme of the third-order Bickley functions, which considers each cell region separately. The effectiveness of the method is assessed by comparing grey Dancoff factors as calculated by PIJM, with those available in the literature by the Monte Carlo method, for the irregular geometry of the Canadian CANDU and CANFLEX assemblies. Dancoff factors at several different fuel pin positions are found in very good agreement with the literature results. (orig.)

  2. An automated Monte-Carlo based method for the calculation of cascade summing factors

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, M.J., E-mail: mark.j.jackson@awe.co.uk; Britton, R.; Davies, A.V.; McLarty, J.L.; Goodwin, M.

    2016-10-21

    A versatile method has been developed to calculate cascade summing factors for use in quantitative gamma-spectrometry analysis procedures. The proposed method is based solely on Evaluated Nuclear Structure Data File (ENSDF) nuclear data, an X-ray energy library, and accurate efficiency characterisations for single detector counting geometries. The algorithm, which accounts for γ–γ, γ–X, γ–511 and γ–e{sup −} coincidences, can be applied to any design of gamma spectrometer and can be expanded to incorporate any number of nuclides. Efficiency characterisations can be derived from measured or mathematically modelled functions, and can accommodate both point and volumetric source types. The calculated results are shown to be consistent with an industry standard gamma-spectrometry software package. Additional benefits including calculation of cascade summing factors for all gamma and X-ray emissions, not just the major emission lines, are also highlighted. - Highlights: • Versatile method to calculate coincidence summing factors for gamma-spectrometry analysis. • Based solely on ENSDF format nuclear data and detector efficiency characterisations. • Enables generation of a CSF library for any detector, geometry and radionuclide. • Improves measurement accuracy and reduces acquisition times required to meet MDA.

  3. Profile correction to electron temperature and enhancement factor in soft-x-ray pulse-height-analysis measurements in tokamaks

    International Nuclear Information System (INIS)

    Sesnic, S.; Diesso, M.; Hill, K.; Holland, A.; Pohl, F.

    1988-01-01

    Because soft-x-ray pulse-height-analysis spectra contain chordal information, the electron temperature and the radiation intensity (enhancement factor) measurements do not represent the local values. The correction factors for the electron temperature and the enhancement factor as a function of the temperature and density profile parameters and the energy are obtained. The spectrum distortion due to pulse pileup effects is also evaluated. A set of curves is given from which the distortion of the spectrum can be obtained if the electron temperature, the Be filter thickness, and the electronic parameters of the acquisition system are known. PG 1810,1812 ID 131801CON N X-ray diagnostics TT Profile correction to electron temperature and enhancement factor in soft-x-ray pulse-height-analysis measurements in tokamaks AU S. Sesnic, M. Diesso, K. Hill, and A. Holland LO Princeton University, Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 AU F. Pohl LO Max-Planck Institut fuer Plasmaphysik, 8046-Garching, Federal Republic of Germany SD (Presented on 16 March 1988) AB Because soft-x-ray pulse-height-analysis spectra contain chordal information, the electron temperature and the radiation intensity (enhancement factor) measurements do not represent the local values. The correction factors for the electron temperature and the enhancement factor as a function of the temperature and density profile parameters and the energy are obtained. The spectrum distortion due to pulse pileup effects is also evaluated. A set of curves is given from which the distortion of the spectrum can be obtained if the electron tempe

  4. Calculation of the fast multiplication factor by the fission matrix method

    International Nuclear Information System (INIS)

    Naumov, V.A.; Rozin, S.G.; Ehl'perin, T.I.

    1976-01-01

    A variation of the Monte Carlo method to calculate an effective breeding factor of a nuclear reactor is described. The evaluation procedure of reactivity perturbations by the Monte Carlo method in the first order perturbation theory is considered. The method consists in reducing an integral neutron transport equation to a set of linear algebraic equations. The coefficients of this set are elements of a fission matrix. The fission matrix being a Grin function of the neutron transport equation, is evaluated by the Monte Carlo method. In the program realizing the suggested algorithm, the game for initial neutron energy of a fission spectrum and then for the region of neutron birth, ΔVsub(f)sup(i)has been played in proportion to the product of Σsub(f)sup(i)ΔVsub(f)sup(i), where Σsub(f)sup(i) is a macroscopic cross section in the region numbered at the birth energy. Further iterations of a space distribution of neutrons in the system are performed by the generation method. In the adopted scheme of simulation of neutron histories the emission of secondary neutrons is controlled by weights; it occurs at every collision and not only in the end on the history. The breeding factor is calculated simultaneously with the space distribution of neutron worth in the system relative to the fission process and neutron flux. Efficiency of the described procedure has been tested on the calculation of the breeding factor for the Godiva assembly, simulating a fast reactor with a hard spectrum. A high accuracy of calculations at moderate number of zones in the core and reasonable statistics has been stated

  5. Calculation of neutron and gamma-ray flux-to-dose-rate conversion factors

    International Nuclear Information System (INIS)

    Kwon, S.G.; Lee, S.Y.; Yook, C.C.

    1981-01-01

    This paper presents flux-to-dose-rate conversion factors for neutrons and gamma rays based on the American National Standard Institute (ANSI) N666. These data are used to calculate the dose rate distribution of neutron and gamma ray in radiation fields. Neutron flux-to-dose-rate conversion factors for energies from 2.5 x 10 -8 to 20 MeV are presented; the corresponding energy range for gamma rays is 0.01 to 15 MeV. Flux-to-dose-rate conversion factors were calculated, under the assumption that radiation energy distribution has nonlinearity in the phantom, have different meaning from those values obtained by monoenergetic radiation. Especially, these values were determined with the cross section library. The flux-to-dose-rate conversion factors obtained in this work were in a good agreement to the values presented by ANSI. Those data will be useful for the radiation shielding analysis and the radiation dosimetry in the case of continuous energy distributions. (author)

  6. Achieving High Accuracy in Calculations of NMR Parameters

    DEFF Research Database (Denmark)

    Faber, Rasmus

    quantum chemical methods have been developed, the calculation of NMR parameters with quantitative accuracy is far from trivial. In this thesis I address some of the issues that makes accurate calculation of NMR parameters so challenging, with the main focus on SSCCs. High accuracy quantum chemical......, but no programs were available to perform such calculations. As part of this thesis the CFOUR program has therefore been extended to allow the calculation of SSCCs using the CC3 method. CC3 calculations of SSCCs have then been performed for several molecules, including some difficult cases. These results show...... vibrations must be included. The calculation of vibrational corrections to NMR parameters has been reviewed as part of this thesis. A study of the basis set convergence of vibrational corrections to nuclear shielding constants has also been performed. The basis set error in vibrational correction...

  7. Peak power factor determination of the RA-6 Argentinean Research Reactor using measurement-calculations correlations

    International Nuclear Information System (INIS)

    Sanchez, F. A.; Blaumann, H.; Lopasso, E.; Longhino, J

    2009-01-01

    The maximum power of a reactor is limited by the power peaking factor. During the design stage it is calculated with neutronic calculation codes. This is not enough for ensuring its value due to modelling approximations. For the RA-6s low enrichment new core a calculus-measurement correlation method have been applied. Position and magnitude of the maximum power density estimated by calculus are used by this method. For this work 249 cooper-gold alloy (1.55% Au) wires have been distributed along the core using 19 aluminium blades. Their positions have been selected using information given by a 5 groups PUMA reactor model. Wire s activity have been measured with a HPGe detector. Gold activity have been used only for verifying the calculated core spectrum. The measured power peaking factor was 2.48±0.3 (3σ), 15% above the calculated value. About 97% of measured points had less than 20% calculation-measurement difference and about 80% had less than 10%. The power peaking factor determined by this method consolidates also the calculations models. [es

  8. First Lattice Calculation of the QED Corrections to Leptonic Decay Rates

    Science.gov (United States)

    Giusti, D.; Lubicz, V.; Tarantino, C.; Martinelli, G.; Sachrajda, C. T.; Sanfilippo, F.; Simula, S.; Tantalo, N.

    2018-02-01

    The leading-order electromagnetic and strong isospin-breaking corrections to the ratio of Kμ 2 and πμ 2 decay rates are evaluated for the first time on the lattice, following a method recently proposed. The lattice results are obtained using the gauge ensembles produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical quarks. Systematic effects are evaluated and the impact of the quenched QED approximation is estimated. Our result for the correction to the tree-level Kμ 2/πμ 2 decay ratio is -1.22 (16 )%, to be compared to the estimate of -1.12 (21 )% based on chiral perturbation theory and adopted by the Particle Data Group.

  9. Comparison of Different Numerical Methods for Quality Factor Calculation of Nano and Micro Photonic Cavities

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2014-01-01

    Four different numerical methods for calculating the quality factor and resonance wavelength of a nano or micro photonic cavity are compared. Good agreement was found for a wide range of quality factors. Advantages and limitations of the different methods are discussed.......Four different numerical methods for calculating the quality factor and resonance wavelength of a nano or micro photonic cavity are compared. Good agreement was found for a wide range of quality factors. Advantages and limitations of the different methods are discussed....

  10. Numerical expressions for the computation of coincidence-summing correction factors in gamma-ray spectrometry with HPGe detectors

    International Nuclear Information System (INIS)

    Rizzo, S.; Tomarchio, E.

    2008-01-01

    Full text: The analytical relations used to compute the coincidence-summing effects on spectral response of Ge semiconductor detectors are quite complex and involve full-energy peak and total efficiencies. For point-sources, a general method for calculating the correction factors for gamma ray coincidences has been formulated by Andreev et al. and used by Schima and Hoppes to obtain γ-X K coincidence correction expressions for 17 nuclides. However, because the higher-order terms are neglected, the expressions supplied do not give reliable results in the case of short sample-detector distances. Using the formulae given by Morel et al.[3] and Lepy et al.[4], we have developed a computer program able to get numerical expressions to compute γ-γ e γ-X K coincidence summing corrections for point sources. Only full-energy peak and total efficiencies are needed. Alternatively, values of peak-to-total ratio can be introduced. For extended sources, the same expressions can be always considered with the introduction of 'effective efficiencies' as defined by Arnold and Sima, i.e. an average over the source volume of the spatial distribution of the elementary photon source total efficiency, weighted by the corresponding peak efficiency. We have considered the most used calibration radioisotopes as well as fission products, activation products and environmental isotopes. All decay data were taken from the most recent volumes of 'Table of Radionuclides', CEA Monographie BIPM-5 and a suitable matrix representation of a decay scheme was adopted. For the sake of brevity, we provide for each nuclide a set of expressions for the more intense gamma emissions, considered sufficient for most applications. However, numerical expressions are available for all the stored gamma transitions and can be obtained on request. As examples of the use of the expressions, the evaluation of correction values for point sources and a particulate sample reduced to a 6x6x0.7 cm packet - with reference

  11. Relativistic corrections to the fine structure of positronium

    International Nuclear Information System (INIS)

    Faustov, R. N.; Martynenko, A. P.

    1997-01-01

    The quasipotential method is used to calculate relativistic corrections in the positronium-fine-structure intervals 2 3 S 1 -2 3 P J . From analysis of one- and two-photon interactions, corrections of order mα 6 are found for positronium S states in the second order of perturbation theory. The contribution of the two-photon annihilation diagrams to the interaction operator for P-wave positronium is determined, and corrections of orders α 5 R ∞ and α 5 ln αR ∞ to the P-wave levels of positronium are calculated

  12. Prevalence and risk factors for Sick Building Syndrome among Italian correctional officers: A pilot study

    Directory of Open Access Journals (Sweden)

    Francesco Chirico

    2017-03-01

    Full Text Available Introduction: Over the past two decades, numerous studies on indoor air and the Sick Building Syndrome (SBS have been conducted, mostly in office environments. However, there is little knowledge about SBS in police officers. This study was aimed to fill this gap. Methods: A cross-sectional questionnaire survey was conducted in 2016 at the Triveneto Penitentiary Center, Northern Italy. Chi-square was used to test the difference of prevalence between office workers (OWs and correctional officers (COs of personal characteristics, cases of SBS, and general and mucocutaneous symptoms associated with SBS. A binary logistic regression was used to identify among individual, environmental, and psychosocial characteristics, factors associated with correctional officers’ Sick Building Syndrome. Results: Chi-squared analyses revealed that there were statistically significant differences in the estimated prevalence of SBS general symptoms (χ2 (1 = 12.22, P < .05, SBS mucocutaneous symptoms (χ2 (1 = 9.04, P < .05, and cases of SBS (χ2 (1 = 4.39, P <.05 between COs and OWs. COs reported that their health had been affected by the passive smoking (β = 2.34, P < .05 and unpleasant odour (β = 2.51, P < .05 as environmental risk factors; work-family conflict (β = 2.14, P < .05, psychological and physical isolation (β = 2.07, P < .05, and negative public image (β = 2.06, P < .05 as psychosocial risk factors. Finally, atopy (β = 2.02, P < .05 and to be current smoker (β = 2.02, P < .05 were statistically significant behavioral predictors of SBS among correctional officers. Discussion: Our survey showed that symptoms compatible with the sick building syndrome are common in correctional officers and that psychosocial work climate and exposure to passive smoking could have a strong influence on the prevalence of both general and mucocutaneous symptoms associated with SBS. A health policy for passive tobacco smoking within prisons, and for work-related stress

  13. Calculation of the power factor using the neutron diffusion hybrid equation

    International Nuclear Information System (INIS)

    Costa da Silva, Adilson; Carvalho da Silva, Fernando; Senra Martinez, Aquilino

    2013-01-01

    Highlights: ► A neutron diffusion hybrid equation with an external neutron source was used. ► Nodal expansion method to obtain the neutron flux was used. ► Nuclear power factors in each fuel element in the reactor core were calculated. ► The results obtained were very accurate. -- Abstract: In this paper, we used a neutron diffusion hybrid equation with an external neutron source to calculate nuclear power factors in each fuel element in the reactor core. We used the nodal expansion method to obtain the neutron flux for a given control rods bank position. The results were compared with results obtained for eigenvalue problem near criticality condition and fixed source problem during the start-up of the reactor, where external neutron sources are extremely important for the stabilization of external neutron detectors.

  14. 46 CFR 401.400 - Calculation of pilotage units and determination of weighting factor.

    Science.gov (United States)

    2010-10-01

    ... weighting factor. 401.400 Section 401.400 Shipping COAST GUARD (GREAT LAKES PILOTAGE), DEPARTMENT OF... § 401.400 Calculation of pilotage units and determination of weighting factor. The equivalent pilotage... meters) Pilot Unit=(Length×Breadth×Depth)/10,000 (measured in feet) (b) Weighting factor table: Range of...

  15. Multi-site Field Verification of Laboratory Derived FDOM Sensor Corrections: The Good, the Bad and the Ugly

    Science.gov (United States)

    Saraceno, J.; Shanley, J. B.; Aulenbach, B. T.

    2014-12-01

    Fluorescent dissolved organic matter (FDOM) is an excellent proxy for dissolved organic carbon (DOC) in natural waters. Through this relationship, in situ FDOM can be utilized to capture both high frequency time series and long term fluxes of DOC in small streams. However, in order to calculate accurate DOC fluxes for comparison across sites, in situ FDOM data must be compensated for matrix effects. Key matrix effects, include temperature, turbidity and the inner filter effect due to color. These interferences must be compensated for to develop a reasonable relationship between FDOM and DOC. In this study, we applied laboratory-derived correction factors to real time data from the five USGS WEBB headwater streams in order to gauge their effectiveness across a range of matrix effects. The good news is that laboratory derived correction factors improved the predicative relationship (higher r2) between DOC and FDOM when compared to uncorrected data. The relative importance of each matrix effect (i.e. temperature) varied by site and by time, implying that each and every matrix effect should be compensated for when available. In general, temperature effects were more important on longer time scales, while corrections for turbidity and DOC inner filter effects were most prevalent during hydrologic events, when the highest instantaneous flux of DOC occurred. Unfortunately, even when corrected for matrix effects, in situ FDOM is a weaker predictor of DOC than A254, a common surrogate for DOC, implying that either DOC fluoresces at varying degrees (but should average out over time), that some matrix effects (e.g. pH) are either unaccounted for or laboratory-derived correction factors do not encompass the site variability of particles and organics. The least impressive finding is that the inherent dependence on three variables in the FDOM correction algorithm increases the likelihood of record data gaps which increases the uncertainty in calculated DOC flux values.

  16. Calculate the maximum expected dose for technical radio physicists a cobalt machine

    International Nuclear Information System (INIS)

    Avila Avila, Rafael; Perez Velasquez, Reytel; Gonzalez Lapez, Nadia

    2009-01-01

    Considering the daily operations carried out by technicians Radiophysics Medical Service Department of Radiation Oncology Hospital V. General Teaching I. Lenin in the city of Holguin, during a working week (Between Monday and Friday) as an important element in calculating the maximum expected dose (MDE). From the exponential decay law which is subject the source activity, we propose corrections to the cumulative doses in the weekly period, leading to obtaining a formula which takes into a cumulative dose during working days and sees no dose accumulation of rest days (Saturday and Sunday). The estimate factor correction is made from a power series expansion convergent is truncated at the n-th term coincides with the week period for which you want to calculate the dose. As initial condition is adopted ambient dose equivalent rate as a given, which allows estimate MDE in the moments after or before this. Calculations were proposed use of an Excel spreadsheet that allows simple and accessible processing the formula obtained. (author)

  17. A Monte Carlo dose calculation tool for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Ma, C.-M.; Li, J.S.; Pawlicki, T.; Jiang, S.B.; Deng, J.; Lee, M.C.; Koumrian, T.; Luxton, M.; Brain, S.

    2002-01-01

    A Monte Carlo user code, MCDOSE, has been developed for radiotherapy treatment planning (RTP) dose calculations. MCDOSE is designed as a dose calculation module suitable for adaptation to host RTP systems. MCDOSE can be used for both conventional photon/electron beam calculation and intensity modulated radiotherapy (IMRT) treatment planning. MCDOSE uses a multiple-source model to reconstruct the treatment beam phase space. Based on Monte Carlo simulated or measured beam data acquired during commissioning, source-model parameters are adjusted through an automated procedure. Beam modifiers such as jaws, physical and dynamic wedges, compensators, blocks, electron cut-outs and bolus are simulated by MCDOSE together with a 3D rectilinear patient geometry model built from CT data. Dose distributions calculated using MCDOSE agreed well with those calculated by the EGS4/DOSXYZ code using different beam set-ups and beam modifiers. Heterogeneity correction factors for layered-lung or layered-bone phantoms as calculated by both codes were consistent with measured data to within 1%. The effect of energy cut-offs for particle transport was investigated. Variance reduction techniques were implemented in MCDOSE to achieve a speedup factor of 10-30 compared to DOSXYZ. (author)

  18. Dispersion correction through movement of the closed orbit

    International Nuclear Information System (INIS)

    Parzen, G.

    1980-01-01

    The closed orbit correction system can be used to correct the vertical dispersion by displacing the orbit at the quadrupoles and sextupoles. The accuracy of the results have been verified by comparison with exact calculations. Results for correcting the horizontal dispersion are also given

  19. Precise method for correcting count-rate losses in scintillation cameras

    International Nuclear Information System (INIS)

    Madsen, M.T.; Nickles, R.J.

    1986-01-01

    Quantitative studies performed with scintillation detectors often require corrections for lost data because of the finite resolving time of the detector. Methods that monitor losses by means of a reference source or pulser have unacceptably large statistical fluctuations associated with their correction factors. Analytic methods that model the detector as a paralyzable system require an accurate estimate of the system resolving time. Because the apparent resolving time depends on many variables, including the window setting, source distribution, and the amount of scattering material, significant errors can be introduced by relying on a resolving time obtained from phantom measurements. These problems can be overcome by curve-fitting the data from a reference source to a paralyzable model in which the true total count rate in the selected window is estimated from the observed total rate. The resolving time becomes a free parameter in this method which is optimized to provide the best fit to the observed reference data. The fitted curve has the inherent accuracy of the reference source method with the precision associated with the observed total image count rate. Correction factors can be simply calculated from the ratio of the true reference source rate and the fitted curve. As a result, the statistical uncertainty of the data corrected by this method is not significantly increased

  20. EPP Energy Efficiency Calculation and Influencing Factor Analysis: Cases in China

    Directory of Open Access Journals (Sweden)

    Jingmin Wang

    2015-01-01

    Full Text Available Efficiency power plant (EPP promotes the use of energy efficiency power plant technology and energy efficient equipment, coupled with its low-input, zero pollution, zero emissions, and other advantages, having an important role in the control of energy consumption and energy saving. In order to carry out scientific EPP investment decisions, the level of energy efficiency is an important basis for investment decisions. This paper introduces total factor energy efficiency (TFEE in energy efficiency calculation of EPP, constructs energy efficiency calculation model considering environmental benefits, and takes the micro and macro cases in China for analysis; the results show that the TFEE of both single energy efficiency project and EPP are at a relatively high level (above 0.7, and there is a huge gap between calculation results considering and without considering the environmental benefit. In order to discuss energy efficiency influencing factors, the paper analyzes generalized technological advances variation feature of China typical provinces implementing EPP based on generalized technological advances decomposition model by Malmquist index, finding that the steady growth of M index in these provinces is derived from the management level of implementation of EPP and the large-scale production capacity of formation and management. We hope the models and conclusions could provide some references on EPP energy efficiency calculation and decision.

  1. Calculation of 125Te NMR Chemical Shifts at the Full Four-Component Relativistic Level with Taking into Account Solvent and Vibrational Corrections: A Gateway to Better Agreement with Experiment.

    Science.gov (United States)

    Rusakova, Irina L; Rusakov, Yuriy Yu; Krivdin, Leonid B

    2017-06-29

    Four-component relativistic calculations of 125 Te NMR chemical shifts were performed in the series of 13 organotellurium compounds, potential precursors of the biologically active species, at the density functional theory level under the nonrelativistic and four-component fully relativistic conditions using locally dense basis set scheme derived from relativistic Dyall's basis sets. The relativistic effects in tellurium chemical shifts were found to be of as much as 20-25% of the total calculated values. The vibrational and solvent corrections to 125 Te NMR chemical shifts are about, accordingly, 6 and 8% of their total values. The PBE0 exchange-correlation functional turned out to give the best agreement of calculated tellurium shifts with their experimental values giving the mean absolute percentage error of 4% in the range of ∼1000 ppm, provided all corrections are taken into account.

  2. Perancangan Zeta Converter yang dilengkapi Power Factor Correction pada Aplikasi Pengaturan Kecepatan Motor Brushless DC

    Directory of Open Access Journals (Sweden)

    Adhika Prajna Nandiwardhana

    2017-01-01

    Full Text Available Penggunaan motor brushless DC telah banyak digunakan dalam berbagai bidang seperti peralatan rumah tangga maupun industri dikarenakan motor ini memiliki struktur yang sederhana, efisiensi dan torsi yang tinggi, serta menggunakan konsep komutasi elektris yang berbeda dari motor DC lainnya. Namun pengoperasian pada umumnya yang menggunakan sumber AC, penyearah serta inverter membuat tingginya nilai harmonisa arus (THD sebesar 73,33% dan power factor sebesar 0,803 dimana nilai ini kurang baik dalam pengaplikasiannya. Pada penelitian ini akan dikaji mengenai proses power factor correction yang mereduksi harmonisa arus (THD sumber AC dengan menggunakan zeta converter dalam pengaplikasian motor brushless DC, serta pengoperasian motor dengan mengamati respon motor terhadap kecepatan referensi yang berubah-ubah dan mengamati kestabilan motor terhadap pembebanan yang bervariasi. Dalam menerapkan metode yang dilakukan pada penelitian ini, pengoperasian motor brushless DC yang telah dirancang dapat bekerja dengan baik meliputi respon motor yang dapat mengikuti kecepatan referensi yang berubah-ubah, serta kestabilan motor dalam mempertahankan kecepatannya pada pembebanan yang bervariasi. Proses power factor correction dapat meningkatkan kualitas daya pada berbagai kecepatan dan mode penerapan yang berbeda-beda, dimana peningkatan tersebut membuktikan kinerja yang baik dalam sistem ini dan memiliki nilai kualitas daya yang baik.

  3. Influence factors and corrections of low-energy γ-ray penetration in ash analysis

    International Nuclear Information System (INIS)

    Cheng Bo; Tuo Xianguo; Zhou Jianbin; Tong Yunfu

    2002-01-01

    The author introduces the system of the coal ash analyzer. This system is based on the low-energy γ-ray source 241 Am emitted two kinds of energy peaks 26.4 keV and 59.6 keV to analyze the ash in coal with the penetration way. The author also offers the factors to influence the accuracy of ash analysis, such as the size of coal, the environmental temperature, the important elements in coal, and water in coal too. At the same time, depending on the cause of the factors, it offer some methods of correction such as the way of the auto-hold energy peak, the way of the auto-compensation way, and so on. The author also mentions the other influence factors of the measurement accuracy to be noticed during the experiment. All these aim at clearing off the influence factors of measurement accuracy through the experiments

  4. Higher order corrections to energy levels of muonic atoms

    International Nuclear Information System (INIS)

    Rinker, G.A. Jr.; Steffen, R.M.

    1975-08-01

    In order to facilitate the analysis of muonic x-ray spectra, the results of numerical computations of all higher order quantum electrodynamical corrections to the energy levels of muonic atoms are presented in tabular and graphical form. These corrections include the vacuum polarization corrections caused by emission and reabsorption of virtual electron pairs to all orders, including ''double-bubble'' and ''cracked-egg'' diagrams. An estimate of the Delbruecke scattering-type correction is presented. The Lamb-shift (second- and fourth-order vertex) corrections have been calculated including the correction for the anomalous magnetic moment of the muon. The relativistic nuclear motion (or recoil) correction as well as the correction caused by the screening of the atomic electrons is presented in graphs. For the sake of completeness a graph of the nuclear polarization as computed on the basis of Chen's approach has been included. All calculations were made with a two-parameter Fermi distribution of the nuclear charge density. 7 figures, 23 references

  5. Supercompressibility factor program. A new calculation method for real gas factors developed by the American Gas Association/Gas Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Luebbe, D.

    1987-07-01

    The innovative US calculation method for natural gas real gas factors is applicable to great pressure and temperature ranges and does not involve any restrictions as to the quality of natural gas. The results obtained for natural gas coming from Northern Germany or for imported natural gas are well consistent with actual measuring results. The model can therefore be applied as a rule for computing in a new technical recommendation and determine real gas factors whenever they are relevant to trading. The respective calculations must be preceded by a complete analysis characterizing the quality of gases. However, the new method allows for the alternative calculation of real gas factors on the basis of a small number of easily measurable factors (for example H/sub 0/, d, CO/sub 2/). This quality seams to be all the more attractive as it allows for an automatic translation of parametric sets at changing gas qualities which for the first time can manage without an expensive online gas chromatography or density translators, respectively.

  6. SU-F-J-108: TMR Correction Factor Based Online Adaptive Radiotherapy for Stereotactic Radiosurgery (SRS) of L-Spine Tumors Using Cone Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Ghaffar, I; Balik, S; Zhuang, T; Chao, S; Xia, P [The Cleveland Clinic Foundation, Cleveland, OH (United States)

    2016-06-15

    Purpose: To investigate the feasibility of using TMR ratio correction factors for a fast online adaptive plan to compensate for anatomical changes in stereotactic radiosurgery (SRS) of L-spine tumors. Methods: Three coplanar treatment plans were made for 11 patients: Uniform (9 IMRT beams equally distributed around the patient); Posterior (IMRT with 9 posterior beams every 20 degree) and VMAT (2 360° arcs). For each patient, the external body and bowel gas were contoured on the planning CT and pre-treatment CBCT. After registering CBCT and the planning CT by aligning to the tumor, the CBCT contours were transferred to the planning CT. To estimate the actual delivered dose while considering patient’s anatomy of the treatment day, a hybrid CT was created by overriding densities in planning CT using the differences between CT and CBCT external and bowel gas contours. Correction factors (CF) were calculated using the effective depth information obtained from the planning system using the hybrid CT: CF = TMR (delivery)/TMR (planning). The adaptive plan was generated by multiplying the planned Monitor Units with the CFs. Results: The mean absolute difference (MAD) in V16Gy of the target between planned and estimated delivery with and without TMR correction was 0.8 ± 0.7% vs. 2.4 ± 1.3% for Uniform and 1.0 ± 0.9% vs. 2.6 ± 1.3% for VMAT plans(p<0.05), respectively. For V12Gy of cauda-equina with and without TMR correction, MAD was 0.24 ± 0.19% vs. 1.2 ± 1.02% for Uniform and 0.23 ± 0.20% vs. 0.78 ± 0.79% for VMAT plans(p<0.05), respectively. The differences between adaptive and original plans were not significant for posterior plans. Conclusion: The online adaptive strategy using TMR ratios and pre-treatment CBCT information was feasible strategy to compensate for anatomical changes for the patients treated for L-spine tumors, particularly for equally spaced IMRT and VMAT plans.

  7. Fatigue analysis - computation of the actual strain range using elastic calculations (factor Ke)

    International Nuclear Information System (INIS)

    Roche, R.L.

    1987-01-01

    Pressure vessels are not eternal, their life is not endless, but must be long enough for profitable use. Fatigue is the most important damage limiting life time. It is due to variable loading and especially to deformation-controlled loading like thermal dilatation (thermal stress). Hence, it is of prime importance to perform an fatigue analysis in the design phase in order to be sure the pressure vessel life meet requirement of the design specification. It is also useful to perform such an analysis for assessing the remaining life. To compute the fatigue damage, knowledge of the strain range is needed. As calculation taking into account non linear behavior of the material are very expensive and not always reliable, the current practice is using elastic computation. The aim of this paper is to discuss the methods for correcting the elastically calculated strain range and to propose a sound and practical method

  8. On the difficulty of computing higher-twist corrections

    International Nuclear Information System (INIS)

    Martinelli, G.; Sachrajda, C.T.

    1996-01-01

    We discuss the evaluation of power corrections to hard scattering and decay processes for which an operator product expansion is applicable. The Wilson coefficient of the leading-twist operator is the difference of two perturbative series, each of which has a renormalon ambiguity of the same order as the power corrections themselves, but which cancel in the difference. We stress the necessity of calculating this coefficient function to sufficiently high orders in perturbation theory so as to make the uncertainty of the same order of or smaller than the relevant power corrections. We investigate in some simple examples whether this can be achieved. Our conclusion is that in most of the theoretical calculations which include power corrections, the uncertainties are at least comparable to the power corrections themselves, and that it will be a very difficult task to improve the situation. (orig.)

  9. DMPD: Type I interferon [corrected] gene induction by the interferon regulatory factorfamily of transcription factors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16979567 Type I interferon [corrected] gene induction by the interferon regulatory factorfamily...ng) (.svg) (.html) (.csml) Show Type I interferon [corrected] gene induction by the interferon regulatory factorfamily...orrected] gene induction by the interferon regulatory factorfamily of transcription factors. Authors Honda K

  10. The nucleon as a test case to calculate vector-isovector form factors at low energies

    Science.gov (United States)

    Leupold, Stefan

    2018-01-01

    Extending a recent suggestion for hyperon form factors to the nucleon case, dispersion theory is used to relate the low-energy vector-isovector form factors of the nucleon to the pion vector form factor. The additionally required input, i.e. the pion-nucleon scattering amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the nucleons and optionally the Delta baryons. Two methods to include pion rescattering are compared: a) solving the Muskhelishvili-Omnès (MO) equation and b) using an N/D approach. It turns out that the results differ strongly from each other. Furthermore the results are compared to a fully dispersive calculation of the (subthreshold) pion-nucleon amplitudes based on Roy-Steiner (RS) equations. In full agreement with the findings from the hyperon sector it turns out that the inclusion of Delta baryons is not an option but a necessity to obtain reasonable results. The magnetic isovector form factor depends strongly on a low-energy constant of the NLO Lagrangian. If it is adjusted such that the corresponding magnetic radius is reproduced, then the results for the corresponding pion-nucleon scattering amplitude (based on the MO equation) agree very well with the RS results. Also in the electric sector the Delta degrees of freedom are needed to obtain the correct order of magnitude for the isovector charge and the corresponding electric radius. Yet quantitative agreement is not achieved. If the subtraction constant that appears in the solution of the MO equation is not taken from nucleon+Delta chiral perturbation theory but adjusted such that the electric radius is reproduced, then one obtains also in this sector a pion-nucleon scattering amplitude that agrees well with the RS results.

  11. The nucleon as a test case to calculate vector-isovector form factors at low energies

    Energy Technology Data Exchange (ETDEWEB)

    Leupold, Stefan [Uppsala Universitet, Institutionen foer Fysik och Astronomi, Uppsala (Sweden)

    2018-01-15

    Extending a recent suggestion for hyperon form factors to the nucleon case, dispersion theory is used to relate the low-energy vector-isovector form factors of the nucleon to the pion vector form factor. The additionally required input, i.e. the pion-nucleon scattering amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the nucleons and optionally the Delta baryons. Two methods to include pion rescattering are compared: a) solving the Muskhelishvili-Omnes (MO) equation and b) using an N/D approach. It turns out that the results differ strongly from each other. Furthermore the results are compared to a fully dispersive calculation of the (subthreshold) pion-nucleon amplitudes based on Roy-Steiner (RS) equations. In full agreement with the findings from the hyperon sector it turns out that the inclusion of Delta baryons is not an option but a necessity to obtain reasonable results. The magnetic isovector form factor depends strongly on a low-energy constant of the NLO Lagrangian. If it is adjusted such that the corresponding magnetic radius is reproduced, then the results for the corresponding pion-nucleon scattering amplitude (based on the MO equation) agree very well with the RS results. Also in the electric sector the Delta degrees of freedom are needed to obtain the correct order of magnitude for the isovector charge and the corresponding electric radius. Yet quantitative agreement is not achieved. If the subtraction constant that appears in the solution of the MO equation is not taken from nucleon+Delta chiral perturbation theory but adjusted such that the electric radius is reproduced, then one obtains also in this sector a pion-nucleon scattering amplitude that agrees well with the RS results. (orig.)

  12. Thermal nucleation of kink-antikink pairs in a deformable chain: Influence of the non-Gaussian correction

    International Nuclear Information System (INIS)

    Woulache, R.L.; Kofane, T.C.; Yemele, D.

    2005-08-01

    Thermal nucleation of kink-antikink pairs in a nonlinear Klein- Gordon model with Remoissenet-Peyrard substrate potential coupled to an applied field is analyzed in the limits of moderate temperature and strong damping. We derive analytically the non- Gaussian correction to the nucleation rate formula of kink- antikink pairs previously calculated by Yemele and Kofane and show that the correction factor depends on the intensity of the applied field, the temperature of the system and the shape of the substrate potential. (author)

  13. 76 FR 12985 - Request for Comments on Trend Factor Methodology Used in the Calculation of Fair Market Rents

    Science.gov (United States)

    2011-03-09

    ... Trend Factor Methodology Used in the Calculation of Fair Market Rents AGENCY: Office of the Assistant... used to calculate the trend factor component of the Fair Market Rent estimates. SUMMARY: Section 8(c)(1... comment regarding the manner in which HUD calculates the trend factor used in the Fair Market Rent (FMR...

  14. Finite-lattice-spacing corrections to masses and g factors on a lattice

    International Nuclear Information System (INIS)

    Roskies, R.; Wu, J.C.

    1986-01-01

    We suggest an alternative method for extracting masses and g factors from lattice calculations. Our method takes account of more of the infrared and ultraviolet lattice effects. It leads to more reasonable results in simulations of QED on a lattice

  15. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions

    OpenAIRE

    Nefiodov, A. V.; Plunien, G.; Soff, G.

    2002-01-01

    The influence of nuclear polarization on the bound-electron $g$ factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron $g$ factor in highly charged ions.

  16. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.

    Science.gov (United States)

    Nefiodov, A V; Plunien, G; Soff, G

    2002-08-19

    The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions.

  17. QED radiative corrections in exclusive ρ0 leptoproduction

    International Nuclear Information System (INIS)

    Kurek, K.

    1996-09-01

    A semi-analytical approach to the model independent calculation of radiative corrections for exclusive ρ 0 meson leptoproduction (i.e. electron and muon scattering experiments) is presented. The corrections to ρ 0 production at large Q 2 as well as to ρ 0 photoproduction are studied in detail. The numerical results are calculated for two different experimental analyses: NMC (muoproduction at large Q 2 ) and ZEUS at HERA (quasi-real photoproduction). It is shown that the corrections are 2-5% for NMC and below 2% for the ZEUS measurement. The application of the presented approach to other vector meson production is straightforward. (orig.)

  18. A subroutine for the calculation of resonance cross sections of U-238 in HTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Cuniberti, R; Marullo, G C

    1971-02-15

    In this paper, a survey of the codes used at Ispra for the calculations of resonance absorption in HTR fuel elements is presented and a subroutine for the calculation of resonance cross-sections, in a seven groups energy structure, for a HTR lattice of annular type is described. A library of homogeneous resonance integrals and a wide tabulation of lump and kernel Bell factors, and moderators efficiency is given. This paper deals mainly with the problem of taking into account the correct slowing down of neutrons in the graphite and with the derivation of Bell factors to be used in a multigroup calculation scheme.

  19. Twisted finite-volume corrections to K{sub l3} decays with partially-quenched and rooted-staggered quarks

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Claude [Department of Physics, Washington University,One Brookings Drive, Saint Louis (United States); Bijnens, Johan [Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, SE 223-62 Lund (Sweden); Gámiz, Elvira [CAFPE and Departamento de Física Teórica y del Cosmos, Universidad de Granada,Campus de Fuente Nueva, E-18002 Granada (Spain); Relefors, Johan [Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, SE 223-62 Lund (Sweden)

    2017-03-23

    The determination of |V{sub us}| from kaon semileptonic decays requires the value of the form factor f{sub +}(q{sup 2}=0) which can be calculated precisely on the lattice. We provide the one-loop partially quenched chiral perturbation theory expressions both with and without including the effects of staggered quarks for all form factors at finite volume and with partially twisted boundary conditions for both the vector current and scalar density matrix elements at all q{sup 2}. We point out that at finite volume there are more form factors than just f{sub +} and f{sub −} for the vector current matrix element but that the Ward identity is fully satisfied. The size of the finite-volume corrections at present lattice sizes is small. This will help improve the lattice determination of f{sub +}(q{sup 2}=0) since the finite-volume error is the dominant error source for some calculations. The size of the finite-volume corrections may be estimated on a single lattice ensemble by comparing results for various twist choices.

  20. The two-photon self-energy and other QED radiative corrections

    International Nuclear Information System (INIS)

    Zschocke, S.

    2001-07-01

    One of the main issues in current nuclear physics is the precise measurement of the Lamb shift of strongly bound electrons in quantum electrodynamic (QED) tests in strong fields in highly charged ions. The currently performed high-precision measurements require extreme accuracy in the theoretical calculation of Lamb shift. This requires consideration of all α and α 2 order QED corrections as well as of precisely all orders in Zα. In the past years most of these QED corrections have been calculated both in 1st order and in 2nd order interference theory. As yet however, it has not been possible to assess the contribution of the two-photon self-energy, which has therefore been the greatest uncertainty factor in predicting Lamb shift in hydrogen-like systems. This study examines the contribution of these processes to Lamb shift. It also provides the first ever derivation of renormalized terms of two-photon vacuum polarisation and self-energy vacuum polarisation. Until now it has only been possible to evaluate these contributions by way of an Uehling approximation [de

  1. Radiative corrections to neutralino annihilation. Recent developments

    International Nuclear Information System (INIS)

    Herrmann, Bjoern

    2010-11-01

    Evaluating the relic density of dark matter is an interesting possibility to constrain the parameter space of new physics models. However, this calculation is affected by several sources of uncertainty. On the particle physics side, considerable progress has been made in the recent years concerning the calculation of the annihilation cross-section of dark matter, which is needed in this context. In particular, within the Minimal Supersymmetric Standard Model, the theoretical uncertainty has been reduced through the calculation of loop corrections. The present contribution gives an overview over the achievements that have been made in QCD corrections to neutralino pair annihilation. The numerical impact is illustrated for a few examples. (orig.)

  2. An examination on the correction of attenuation for calculating the renal RI accumulation

    International Nuclear Information System (INIS)

    Onoue, Koichi; Tachibana, Keizo; Maeda, Yoshihiro; Yanoo, Sanae; Morishita, Etsuko; Kawanaka, Masahiro; Kashiwagi, Toru; Fukuchi, Minoru

    1999-01-01

    An examination was made on the attenuation coefficients for calculation of true renal accumulation rate together with the precision of measurement of depth in the kidney. Kidney phantom for attenuation coefficients was a 20 x 20 cm cube where water was filled and radioactivity source of 99m Tc was placed at various depths. Radioactivity was measured by four kinds of scinti-camera with the collimator LEGP and LEHR. The phantom for radioactivity accumulation in the kidney was a 10 x 5 x 1, 3 or 5 cm box where 99m Tc solution of the standard 30 MBq was filled, and subjected to radioactivity measurement from various angles. Phantom radioactivity was found corrected by the effective attenuation coefficient, 0.131 cm, within the range of 98-114% of the standard counts. The precision of measurement of the depth was examined in sideways scintigrams obtained in clinical practice and was found to have the deviation of 1.1 cm as the mean of maximum ones and the variation coefficient of 7.1%. Measured depth was found to be well correlated with estimated ones by the method of Tonnesen or Ito which had the maximum deviation of 5.4 or 3.5 cm, respectively. (K.H.)

  3. Description of corrections on electrode polarization impedance using isopotential interface factor

    Directory of Open Access Journals (Sweden)

    John Alexander Gomez Sanchez

    2012-08-01

    Full Text Available In this paper, we propose an equation and define the Isopotential Interface Factor (IIF to quantify the contribution of electrode polarization impedance in two tetrapolar electrode shapes. The first tetrapolar electrode geometry shape was adjacent and the second axial concentric, both probes were made of stainless steel (AISI 304. The experiments were carried out with an impedance analyzer (Solartron 1260 using a frequency range between 0.1 Hz and 8 MHz. Based on a theoretical simplification, the experimental results show a lower value of the IIF in the axial concentric tetrapolar electrode system which caused a lower correction of interface value. The higher value of the IIF in the adjacent electrode system was KEEI (1Hz, 0.28 mS/cm = 1.41 and decreased when the frequency and conductance were increased, whereas in the axial concentric electrode system was KEEI (1Hz, 0.28 mS/cm = 0.08. The average isopotential interface factor throughout the whole range of conductivities and frequencies was 0.23 in the adjacent electrode system and 0.02 in the axial concentric electrode system. The index of inherent electrical anisotropy (IEA was used to present an analysis of electrical anisotropy of biceps brachii muscle in vitro using the corrections of both tetrapolar electrode systems. A higher IEA was present in lower frequency where the variation below 1 kHz was 15 % in adjacent electrode configuration and 26 % in the axial concentric probe with respect to full range. The IIF is then shown that it can be used to describe the quality of an electrode system.

  4. Escaping the correction for body surface area when calculating glomerular filtration rate in children

    International Nuclear Information System (INIS)

    Piepsz, Amy; Tondeur, Marianne; Ham, Hamphrey

    2008-01-01

    51 Cr ethylene diamine tetraacetic acid ( 51 Cr EDTA) clearance is nowadays considered as an accurate and reproducible method for measuring glomerular filtration rate (GFR) in children. Normal values in function of age, corrected for body surface area, have been recently updated. However, much criticism has been expressed about the validity of body surface area correction. The aim of the present paper was to present the normal GFR values, not corrected for body surface area, with the associated percentile curves. For that purpose, the same patients as in the previous paper were selected, namely those with no recent urinary tract infection, having a normal left to right 99m Tc MAG3 uptake ratio and a normal kidney morphology on the early parenchymal images. A single blood sample method was used for 51 Cr EDTA clearance measurement. Clearance values, not corrected for body surface area, increased progressively up to the adolescence. The percentile curves were determined and allow, for a single patient, to estimate accurately the level of non-corrected clearance and the evolution with time, whatever the age. (orig.)

  5. The unit cost factors and calculation methods for decommissioning - Cost estimation of nuclear research facilities

    International Nuclear Information System (INIS)

    Kwan-Seong Jeong; Dong-Gyu Lee; Chong-Hun Jung; Kune-Woo Lee

    2007-01-01

    Available in abstract form only. Full text of publication follows: The uncertainties of decommissioning costs increase high due to several conditions. Decommissioning cost estimation depends on the complexity of nuclear installations, its site-specific physical and radiological inventories. Therefore, the decommissioning costs of nuclear research facilities must be estimated in accordance with the detailed sub-tasks and resources by the tasks of decommissioning activities. By selecting the classified activities and resources, costs are calculated by the items and then the total costs of all decommissioning activities are reshuffled to match with its usage and objectives. And the decommissioning cost of nuclear research facilities is calculated by applying a unit cost factor method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning costs of nuclear research facilities are composed of labor cost, equipment and materials cost. Of these three categorical costs, the calculation of labor costs are very important because decommissioning activities mainly depend on labor force. Labor costs in decommissioning activities are calculated on the basis of working time consumed in decommissioning objects and works. The working times are figured out of unit cost factors and work difficulty factors. Finally, labor costs are figured out by using these factors as parameters of calculation. The accuracy of decommissioning cost estimation results is much higher compared to the real decommissioning works. (authors)

  6. QED radiative corrections under the SANC project

    International Nuclear Information System (INIS)

    Christova, P.

    2003-01-01

    Automatic calculations of the QED radiative corrections in the framework of the SANC computer system is described. A collection of the computer programs written in FORM3 language is aimed at compiling a database of analytic results to be used to theoretically support the experiments on high-energy accelerators. Presented here is the scheme of automatic analytical calculations of the QED radiative corrections to the fermionic decays of the Z, H and W boson in the framework of the SANC system

  7. A pencil beam dose calculation model for CyberKnife system

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Bin; Li, Yongbao; Liu, Bo; Zhou, Fugen [Image Processing Center, Beihang University, Beijing 100191 (China); Xu, Shouping [Department of Radiation Oncology, PLA General Hospital, Beijing 100853 (China); Wu, Qiuwen, E-mail: Qiuwen.Wu@Duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2016-10-15

    Purpose: CyberKnife system is initially equipped with fixed circular cones for stereotactic radiosurgery. Two dose calculation algorithms, Ray-Tracing and Monte Carlo, are available in the supplied treatment planning system. A multileaf collimator system was recently introduced in the latest generation of system, capable of arbitrarily shaped treatment field. The purpose of this study is to develop a model based dose calculation algorithm to better handle the lateral scatter in an irregularly shaped small field for the CyberKnife system. Methods: A pencil beam dose calculation algorithm widely used in linac based treatment planning system was modified. The kernel parameters and intensity profile were systematically determined by fitting to the commissioning data. The model was tuned using only a subset of measured data (4 out of 12 cones) and applied to all fixed circular cones for evaluation. The root mean square (RMS) of the difference between the measured and calculated tissue-phantom-ratios (TPRs) and off-center-ratio (OCR) was compared. Three cone size correction techniques were developed to better fit the OCRs at the penumbra region, which are further evaluated by the output factors (OFs). The pencil beam model was further validated against measurement data on the variable dodecagon-shaped Iris collimators and a half-beam blocked field. Comparison with Ray-Tracing and Monte Carlo methods was also performed on a lung SBRT case. Results: The RMS between the measured and calculated TPRs is 0.7% averaged for all cones, with the descending region at 0.5%. The RMSs of OCR at infield and outfield regions are both at 0.5%. The distance to agreement (DTA) at the OCR penumbra region is 0.2 mm. All three cone size correction models achieve the same improvement in OCR agreement, with the effective source shift model (SSM) preferred, due to their ability to predict more accurately the OF variations with the source to axis distance (SAD). In noncircular field validation

  8. The role of screening corrections in high energy photoproduction

    International Nuclear Information System (INIS)

    Gotsman, E.; Maor, U.

    1994-07-01

    The role of screening corrections, calculated using the eikonal model, is discussed in the context of soft photoproduction. A comprehensive calculation is presented considering the total, elastic and diffractive cross sections jointly. The differences between our results and those obtained from the supercritical Pomeron-Reggeon model with no unitary corrections is examined. (author). 16 refs, 2 figs, 1 tab

  9. Mass corrections to Green functions in instanton vacuum model

    International Nuclear Information System (INIS)

    Esaibegyan, S.V.; Tamaryan, S.N.

    1987-01-01

    The first nonvanishing mass corrections to the effective Green functions are calculated in the model of instanton-based vacuum consisting of a superposition of instanton-antiinstanton fluctuations. The meson current correlators are calculated with account of these corrections; the mass spectrum of pseudoscalar octet as well as the value of the kaon axial constant are found. 7 refs

  10. Calculation of electromagnetic observables in few-body systems

    International Nuclear Information System (INIS)

    Gibson, B.F.

    1986-10-01

    An introduction to the calculation of electromagnetic observables in few-body systems is given by studying two examples in the trinucleon system: (1) the elastic electron scattering charge form factor in configuration space and momentum space and (2) the two-body photodisintegration of 3 H leading to a neutron-deuteron final state in a separable potential formalism. In the discussion of charge form factor calculations, a number of related topics are touched upon: the relation of structure in Psi to the properties of simple NN forces, the Faddeev and Schroedinger solution to the harmonic oscillator problem, the Rosenbluth formula for electron scattering from a spin-1/2 nuclear target (e.g., the proton or 3 H), and the charge density operator. Formulae for 3 He and 3 H charge form factors in a central force approximation are given in configuration and momentum space. The physics of these form factors is discussed in light of results from realistic nucleon-nucleon potential model calculations, including the effects of two-pion-exchange three-body force models. Topics covered are the rms charge densities, and the Coulomb energy of 3 He. In the discussion of the 3 H photodisintegration, the Siegert form of the electric dipole operator (in the long wave length limit) is derived as are the separable potential equations which describe the off-shell transition amplitudes which connect nucleon-plus-corrected-pair states. Expressions for the Born amplitudes required to complete the two-body photodisintegration amplitude calculation are given. Numerical results for a model central force problem are discussed and compared with an approximate calculation. Comparisons with 3 H(γ,n)d and 3 He(γ,p)d data are made, and the significant features of the exact theoretical calculation are outlined. 61 refs., 26 figs

  11. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems

    Science.gov (United States)

    Kruse, Holger; Grimme, Stefan

    2012-04-01

    A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model

  12. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems.

    Science.gov (United States)

    Kruse, Holger; Grimme, Stefan

    2012-04-21

    A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model

  13. Application of generalized perturbation theory to flux disadvantage factor calculations

    International Nuclear Information System (INIS)

    Sallam, O.H.; Akimov, I.S.; Naguib, K.; Hamouda, I.

    1979-01-01

    The possibility of using the generalized perturbation theory to calculate the perturbation of the flux disadvantage factors of reactor cell, resulting from the variation of the cell parameters, is studied. For simplicity the one-group diffusion approximation is considered. All necessary equations are derived for variations both of the cell dimensions. Numerical results are presented in the paper

  14. Radiative corrections to neutrino deep inelastic scattering revisited

    International Nuclear Information System (INIS)

    Arbuzov, Andrej B.; Bardin, Dmitry Yu.; Kalinovskaya, Lidia V.

    2005-01-01

    Radiative corrections to neutrino deep inelastic scattering are revisited. One-loop electroweak corrections are re-calculated within the automatic SANC system. Terms with mass singularities are treated including higher order leading logarithmic corrections. Scheme dependence of corrections due to weak interactions is investigated. The results are implemented into the data analysis of the NOMAD experiment. The present theoretical accuracy in description of the process is discussed

  15. Efficiency corrections in determining the (137)Cs inventory of environmental soil samples by using relative measurement method and GEANT4 simulations.

    Science.gov (United States)

    Li, Gang; Liang, Yongfei; Xu, Jiayun; Bai, Lixin

    2015-08-01

    The determination of (137)Cs inventory is widely used to estimate the soil erosion or deposition rate. The generally used method to determine the activity of volumetric samples is the relative measurement method, which employs a calibration standard sample with accurately known activity. This method has great advantages in accuracy and operation only when there is a small difference in elemental composition, sample density and geometry between measuring samples and the calibration standard. Otherwise it needs additional efficiency corrections in the calculating process. The Monte Carlo simulations can handle these correction problems easily with lower financial cost and higher accuracy. This work presents a detailed description to the simulation and calibration procedure for a conventionally used commercial P-type coaxial HPGe detector with cylindrical sample geometry. The effects of sample elemental composition, density and geometry were discussed in detail and calculated in terms of efficiency correction factors. The effect of sample placement was also analyzed, the results indicate that the radioactive nuclides and sample density are not absolutely uniform distributed along the axial direction. At last, a unified binary quadratic functional relationship of efficiency correction factors as a function of sample density and height was obtained by the least square fitting method. This function covers the sample density and height range of 0.8-1.8 g/cm(3) and 3.0-7.25 cm, respectively. The efficiency correction factors calculated by the fitted function are in good agreement with those obtained by the GEANT4 simulations with the determination coefficient value greater than 0.9999. The results obtained in this paper make the above-mentioned relative measurements more accurate and efficient in the routine radioactive analysis of environmental cylindrical soil samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Ab Initio Calculation of XAFS Debye-Waller Factors for Crystalline Materials

    Science.gov (United States)

    Dimakis, Nicholas

    2007-02-01

    A direct an accurate technique for calculating the thermal X-ray absorption fine structure (XAFS) Debye-Waller factors (DWF) for materials of crystalline structure is presented. Using the Density Functional Theory (DFT) under the hybrid X3LYP functional, a library of MnO spin—optimized clusters are built and their phonon spectrum properties are calculated; these properties in the form of normal mode eigenfrequencies and eigenvectors are in turn used for calculation of the single and multiple scattering XAFS DWF. DWF obtained via this technique are temperature dependent expressions and can be used to substantially reduce the number of fitting parameters when experimental spectra are fitted with a hypothetical structure without any ad hoc assumptions. Due to the high computational demand a hybrid approach of mixing the DFT calculated DWF with the correlated Debye model for inner and outer shells respectively is presented. DFT obtained DWFs are compared with corresponding values from experimental XAFS spectra on manganosite. The cluster size effect and the spin parameter on the DFT calculated DWFs are discussed.

  17. Meson-exchange-current corrections to magnetic moments in quantum hadrodynamics

    International Nuclear Information System (INIS)

    Morse, T.M.

    1990-01-01

    Corrections to the magnetic moments of the non-relativistic shell model (Schmidt lines) have a long history. In the early fifties calculations of pion exchange and core polarization contributions to nuclear magnetic moments were initiated. These calculations matured by the early eighties to include other mesons and the delta isobar. Relativistic nuclear shell model calculations are relatively recent. Meson exchange and the delta isobar current contributions to the magnetic moments of the relativistic shell model have remained largely unexplored. The disagreement between the valence values of spherical relativistic mean-field models and experiment was a major problem with early (1975-1985) quantum hydrodynamics (QHD) calculations of magnetic moments. Core polarization calculations (1986-1988) have been found to resolve the large discrepancy, predicting isoscalar magnetic moments to within typically five percent of experiment. The isovector magnetic moments, however, are about twice as far from experiment with an average discrepancy of about ten percent. The pion, being the lightest of the mesons, has historically been expected to dominate isovector corrections. Because this has been found to be true in non-relativistic calculations, the author calculated the pion corrections in the framework of QHD. The seagull and in-flight pion exchange current diagram corrections to the magnetic moments of eight finite nuclei (plus or minus one valence nucleon from the magic A = 16 and A = 40 doubly closed shell systems) are calculated in the framework of QHD, and compared with earlier non-relativistic calculations and experiment

  18. An automated Monte-Carlo based method for the calculation of cascade summing factors

    Science.gov (United States)

    Jackson, M. J.; Britton, R.; Davies, A. V.; McLarty, J. L.; Goodwin, M.

    2016-10-01

    A versatile method has been developed to calculate cascade summing factors for use in quantitative gamma-spectrometry analysis procedures. The proposed method is based solely on Evaluated Nuclear Structure Data File (ENSDF) nuclear data, an X-ray energy library, and accurate efficiency characterisations for single detector counting geometries. The algorithm, which accounts for γ-γ, γ-X, γ-511 and γ-e- coincidences, can be applied to any design of gamma spectrometer and can be expanded to incorporate any number of nuclides. Efficiency characterisations can be derived from measured or mathematically modelled functions, and can accommodate both point and volumetric source types. The calculated results are shown to be consistent with an industry standard gamma-spectrometry software package. Additional benefits including calculation of cascade summing factors for all gamma and X-ray emissions, not just the major emission lines, are also highlighted.

  19. Escaping the correction for body surface area when calculating glomerular filtration rate in children

    Energy Technology Data Exchange (ETDEWEB)

    Piepsz, Amy; Tondeur, Marianne [CHU St. Pierre, Department of Radioisotopes, Brussels (Belgium); Ham, Hamphrey [University Hospital Ghent, Department of Nuclear Medicine, Ghent (Belgium)

    2008-09-15

    {sup 51}Cr ethylene diamine tetraacetic acid ({sup 51}Cr EDTA) clearance is nowadays considered as an accurate and reproducible method for measuring glomerular filtration rate (GFR) in children. Normal values in function of age, corrected for body surface area, have been recently updated. However, much criticism has been expressed about the validity of body surface area correction. The aim of the present paper was to present the normal GFR values, not corrected for body surface area, with the associated percentile curves. For that purpose, the same patients as in the previous paper were selected, namely those with no recent urinary tract infection, having a normal left to right {sup 99m}Tc MAG3 uptake ratio and a normal kidney morphology on the early parenchymal images. A single blood sample method was used for {sup 51}Cr EDTA clearance measurement. Clearance values, not corrected for body surface area, increased progressively up to the adolescence. The percentile curves were determined and allow, for a single patient, to estimate accurately the level of non-corrected clearance and the evolution with time, whatever the age. (orig.)

  20. Should total landings be used to correct estimated catch in numbers or mean-weight-at-age?

    DEFF Research Database (Denmark)

    Lewy, Peter; Lassen, H.

    1997-01-01

    Many ICES fish stock assessment working groups have practised Sum Of Products, SOP, correction. This correction stems from a comparison of total weights of the known landings and the SOP over age of catch in number and mean weight-at-age, which ideally should be identical. In case of SOP...... discrepancies some countries correct catch in numbers while others correct mean weight-at-age by a common factor, the ratio between landing and SOP. The paper shows that for three sampling schemes the SOP corrections are statistically incorrect and should not be made since the SOP is an unbiased estimate...... of the total landings. Calculation of the bias of estimated catch in numbers and mean weight-at-age shows that SOP corrections of either of these estimates may increase the bias. Furthermore, for five demersal and one pelagic North Sea species it is shown that SOP discrepancies greater than 2% from...

  1. The Bouguer Correction Algorithm for Gravity with Limited Range

    OpenAIRE

    MA Jian; WEI Ziqing; WU Lili; YANG Zhenghui

    2017-01-01

    The Bouguer correction is an important item in gravity reduction, while the traditional Bouguer correction, whether the plane Bouguer correction or the spherical Bouguer correction, exists approximation error because of far-zone virtual terrain. The error grows as the calculation point gets higher. Therefore gravity reduction using the Bouguer correction with limited range, which was in accordance with the scope of the topographic correction, was researched in this paper. After that, a simpli...

  2. New buildup factor data for point kernel calculations

    International Nuclear Information System (INIS)

    Trubey, D.K.; Harima, Y.

    1986-01-01

    An American Nuclear Society Standards Committee Working Group, identified as ANS-6.4.3, is developing a set of evaluated gamma-ray isotropic point-source buildup factors and attenuation coefficients for a standard reference data base. As a first step, a largely unpublished set of buildup factors calculated with the moments method has been evaluated by recalculating key values with Monte Carlo, integral transport, and discrete ordinates methods. Attention is being given to frequently-neglected processes such as bremsstrahlung and the effect of introducing a tissue phantom behind the shield. The proposed standard contains data for a source energy range from 15 keV to 15 MeV and for approximately 19 elements and 3 mixtures (water, air, and concrete). The data will also be represented as coefficients for the G-P fitting function. The 1985 data base was released as part of the CCC-493B/QAD-CGGP code package available from the Radiation Shielding Information Center (RSIC)

  3. Geological Corrections in Gravimetry

    Science.gov (United States)

    Mikuška, J.; Marušiak, I.

    2015-12-01

    Applying corrections for the known geology to gravity data can be traced back into the first quarter of the 20th century. Later on, mostly in areas with sedimentary cover, at local and regional scales, the correction known as gravity stripping has been in use since the mid 1960s, provided that there was enough geological information. Stripping at regional to global scales became possible after releasing the CRUST 2.0 and later CRUST 1.0 models in the years 2000 and 2013, respectively. Especially the later model provides quite a new view on the relevant geometries and on the topographic and crustal densities as well as on the crust/mantle density contrast. Thus, the isostatic corrections, which have been often used in the past, can now be replaced by procedures working with an independent information interpreted primarily from seismic studies. We have developed software for performing geological corrections in space domain, based on a-priori geometry and density grids which can be of either rectangular or spherical/ellipsoidal types with cells of the shapes of rectangles, tesseroids or triangles. It enables us to calculate the required gravitational effects not only in the form of surface maps or profiles but, for instance, also along vertical lines, which can shed some additional light on the nature of the geological correction. The software can work at a variety of scales and considers the input information to an optional distance from the calculation point up to the antipodes. Our main objective is to treat geological correction as an alternative to accounting for the topography with varying densities since the bottoms of the topographic masses, namely the geoid or ellipsoid, generally do not represent geological boundaries. As well we would like to call attention to the possible distortions of the corrected gravity anomalies. This work was supported by the Slovak Research and Development Agency under the contract APVV-0827-12.

  4. Perturbative corrections to Λ{sub b}→Λ form factors from QCD light-cone sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Ming [Fakultät für Physik, Universität Wien,Boltzmanngasse 5, 1090 Vienna (Austria); Physik Department T31, Technische Universität München,James-Franck-Straße 1, D-85748 Garching (Germany); Shen, Yue-Long [College of Information Science and Engineering, Ocean University of China,Songling Road 238, Qingdao, Shandong 266100 (China)

    2016-02-29

    We compute radiative corrections to Λ{sub b}→Λ from factors, at next-to-leading logarithmic accuracy, from QCD light-cone sum rules with Λ{sub b}-baryon distribution amplitudes. Employing the diagrammatic approach factorization of the vacuum-to-Λ{sub b}-baryon correlation function is justified at leading power in Λ/m{sub b}, with the aid of the method of regions. Hard functions entering the factorization formulae are identical to the corresponding matching coefficients of heavy-to-light currents from QCD onto soft-collinear effective theory. The universal jet function from integrating out the hard-collinear fluctuations exhibits richer structures compared with the one involved in the factorization expressions of the vacuum-to-B-meson correlation function. Based upon the QCD resummation improved sum rules we observe that the perturbative corrections at O(α{sub s}) shift the Λ{sub b}→Λ from factors at large recoil significantly and the dominant contribution originates from the next-to-leading order jet function instead of the hard coefficient functions. Having at hand the sum rule predictions for the Λ{sub b}→Λ from factors we further investigate several decay observables in the electro-weak penguin Λ{sub b}→Λ ℓ{sup +}ℓ{sup −} transitions in the factorization limit (i.e., ignoring the “non-factorizable' hadronic effects which cannot be expressed in terms of the Λ{sub b}→Λ from factors), including the invariant mass distribution of the lepton pair, the forward-backward asymmetry in the dilepton system and the longitudinal polarization fraction of the leptonic sector.

  5. Calculation Methods of Topographic Factors Modification Using Data Digital Elevation Model (DEM To Predict Erosion

    Directory of Open Access Journals (Sweden)

    Hengki Simanjuntak

    2018-03-01

    Full Text Available Erosion  is a crucial information for sustainable management of land resources within a particular watershed. The information of erosion is needed for land resource management planning, and is generally counted by USLE (Universal Soil Loss Equation. One of the parameters in USLE is topographic factor (LS. The determinations of LS in erosion estimation model are vary, both in terms of LS factor equation, as well as in terms of the length of the slope (λ and slope (s measurements. There are at least 3 methods used to calculate slope factors in spatial operation, i.e (1 Input of the LS Value from Table (INT, (2 Flow accumulation, and (3 Cell Size. The study was designed to obtain a method of calculation that gives the smallest topographic factor and in order to obtain a LS factors that similar to the slope information. Research location in Kampa Sub watershed, The LS determination in Kampa Sub watershed basically are with (INT and without calculating λ and s. INT method is determination without calculating λ and s, LS value is generate from the contour map and DEM SRTM by giving LS value from table reference of LS value. The Flow Accumulation and Cell Size are determination of LS Value by calculating λ and s. The Flow Accumulation method modifies the determination of λ and s using the middle value of s, λ per land use, and λ and s per cell. Cell Size method determines λ using the amount of cell size. The results showed that the “cell size” and "INT" methods were the best method for topographic factor (LS calculation, because LS value of “cell size” and "INT" methods are smaller than the flow accumulation method and the LS value similar to the slope information. LS value from that methods generated weighted value in average of 0,55−0,58. Keywords: cell size, flow accumulation, flow direction, the length of the slope, USLE

  6. Influence of spectral history on PWR full core calculation results

    International Nuclear Information System (INIS)

    Bilodid, Y.; Mittag, S.

    2011-01-01

    The few-group cross section libraries, used by reactor dynamics codes, are affected by the spectral history effect-a dependence of fuel cross sections not only on burnup, but also on local spectral conditions during burnup. A cross section correction method based on Pu-239 concentration was implemented in the reactor dynamic code DYN3D. This paper describes the influence of a cross section correction on full-core calculation results. Steady-state and burnup characteristics of a PWR equilibrium cycle, calculated by DYN3D with and without cross section corrections, are compared. A study has shown a significant influence of spectral history on axial power and burnup distributions as well as on calculated cycle length. An impact of the correction on transient calculations is studied for a control rod ejection example. (Authors)

  7. Methods of control of inaccuracy in calculation of nuclear power plant decommissioning parameters - 16383

    International Nuclear Information System (INIS)

    Ondra, Frantisek; Daniska, Vladimir; Rehak, Ivan; Necas, Vladimir

    2009-01-01

    The aim of the article is a development of analytical methodology for evaluation of input data inaccuracies impact on calculation of cost and other output decommissioning parameters. This methodology is based on analytical model calculations using the OMEGA code and taking into account the probability of input data inaccuracies occurrence also. To achieve about mentioned aim, the article identifies possible sources of input data inaccuracies and analyzes their level of impact on output parameters. Then the methodology for calculation of input parameters inaccuracies impact is developed, based on analytical model calculation. The model calculation takes into consideration output parameters impact on cost and other decommissioning output parameters in analytical way. The methodology used in model calculations is original, more over it implements the international standardized structure (IAEA, OECD/NEA, EC) [6] of decommissioning cost for the first time. A probabilistic occurrence of input data inaccuracies is taken into consideration and implemented in the methodology developed. A correction factors matrix for evaluation of input data inaccuracies impact on decommissioning output parameters is set up. The matrix contains parameters based on model calculations using the proposed methodology. Finally the methodology for application of correction factor matrix is proposed and tested; the methodology is used for calculation of contingency in the standardized structure which reflected the level of input data inaccuracies. The cost for individual decommissioning projects for common nuclear power plants are in the range 300 - 500 mil. EUR. Contingencies are from 10% to 30%, depending on the level of detailed during preparation of decommissioning projects. A implementation about mentioned methodology in the OMEGA code improves the accuracy of contingency. Consequently it makes calculated contingency more trustworthy and makes calculated decommissioning cost closer to reality

  8. Comparison of different boost transformations for the calculation of form factors in relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Theussl, L.; Noguera, S.; Amghar, A.; Desplanques, B.

    2003-01-01

    The effect of different boost expressions, pertinent to the instant, front and point forms of relativistic quantum mechanics, is considered for the calculation of the ground-state form factor of a two-body system in simple scalar models. Results with a Galilean boost as well as an explicitly covariant calculation based on the Bethe-Salpeter approach are given for comparison. It is found that the present so-called point-form calculations of form factors strongly deviate from all the other ones. This suggests that the formalism which underlies them requires further elaboration. A proposition in this sense is made. (author)

  9. Internal dose conversion factors for calculation of dose to the public

    International Nuclear Information System (INIS)

    1988-07-01

    This publication contains 50-year committed dose equivalent factors, in tabular form. The document is intended to be used as the primary reference by the US Department of Energy (DOE) and its contractors for calculating radiation dose equivalents for members of the public, resulting from ingestion or inhalation of radioactive materials. Its application is intended specifically for such materials released to the environment during routine DOE operations, except in those instances where compliance with 40 CFR 61 (National Emission Standards for Hazardous Air Pollutants) requires otherwise. However, the calculated values may be equally applicable to unusual releases or to occupational exposures. The use of these committed dose equivalent tables should ensure that doses to members of the public from internal exposures are calculated in a consistent manner at all DOE facilities

  10. Determining spherical lens correction for astronaut training underwater.

    Science.gov (United States)

    Porter, Jason; Gibson, C Robert; Strauss, Samuel

    2011-09-01

    To develop a model that will accurately predict the distance spherical lens correction needed to be worn by National Aeronautics and Space Administration astronauts while training underwater. The replica space suit's helmet contains curved visors that induce refractive power when submersed in water. Anterior surface powers and thicknesses were measured for the helmet's protective and inside visors. The impact of each visor on the helmet's refractive power in water was analyzed using thick lens calculations and Zemax optical design software. Using geometrical optics approximations, a model was developed to determine the optimal distance spherical power needed to be worn underwater based on the helmet's total induced spherical power underwater and the astronaut's manifest spectacle plane correction in air. The validity of the model was tested using data from both eyes of 10 astronauts who trained underwater. The helmet's visors induced a total power of -2.737 D when placed underwater. The required underwater spherical correction (FW) was linearly related to the spectacle plane spherical correction in air (FAir): FW = FAir + 2.356 D. The mean magnitude of the difference between the actual correction worn underwater and the calculated underwater correction was 0.20 ± 0.11 D. The actual and calculated values were highly correlated (r = 0.971) with 70% of eyes having a difference in magnitude of astronauts. The model accurately predicts the actual values worn underwater and can be applied (more generally) to determine a suitable spectacle lens correction to be worn behind other types of masks when submerged underwater.

  11. BASIC Program for the calculation of radioactive activities

    International Nuclear Information System (INIS)

    Cortes P, A.; Tejera R, A.; Becerril V, A.

    1990-04-01

    When one makes a measure of radioactive activity with a detection system that operates with a gamma radiation detector (Ge or of NaI (Tl) detector), it is necessary to take in account parameters and correction factors that making sufficiently difficult and tedious those calculations to using a considerable time by part of the person that carries out these measures. Also, this frequently, can to take to erroneous results. In this work a computer program in BASIC language that solves this problem is presented. (Author)

  12. Calculation of radiative corrections to virtual compton scattering - absolute measurement of the energy of Jefferson Lab. electron beam (hall A) by a magnetic method: arc project

    International Nuclear Information System (INIS)

    Marchand, D.

    1998-11-01

    This thesis presents the radiative corrections to the virtual compton scattering and the magnetic method adopted in the Hall A at Jefferson Laboratory, to measure the electrons beam energy with an accuracy of 10 4 . The virtual compton scattering experiments allow the access to the generalised polarizabilities of the protons. The extraction of these polarizabilities is obtained by the experimental and theoretical cross sections comparison. That's why the systematic errors and the radiative effects of the experiments have to be controlled very seriously. In this scope, a whole calculation of the internal radiative corrections has been realised in the framework of the quantum electrodynamic. The method of the dimensional regularisation has been used to the treatment of the ultraviolet and infra-red divergences. The absolute measure method of the energy, takes into account the magnetic deviation, made up of eight identical dipoles. The energy is determined from the deviation angle calculation of the beam and the measure of the magnetic field integral along the deviation

  13. Bias correction in the realized stochastic volatility model for daily volatility on the Tokyo Stock Exchange

    Science.gov (United States)

    Takaishi, Tetsuya

    2018-06-01

    The realized stochastic volatility model has been introduced to estimate more accurate volatility by using both daily returns and realized volatility. The main advantage of the model is that no special bias-correction factor for the realized volatility is required a priori. Instead, the model introduces a bias-correction parameter responsible for the bias hidden in realized volatility. We empirically investigate the bias-correction parameter for realized volatilities calculated at various sampling frequencies for six stocks on the Tokyo Stock Exchange, and then show that the dynamic behavior of the bias-correction parameter as a function of sampling frequency is qualitatively similar to that of the Hansen-Lunde bias-correction factor although their values are substantially different. Under the stochastic diffusion assumption of the return dynamics, we investigate the accuracy of estimated volatilities by examining the standardized returns. We find that while the moments of the standardized returns from low-frequency realized volatilities are consistent with the expectation from the Gaussian variables, the deviation from the expectation becomes considerably large at high frequencies. This indicates that the realized stochastic volatility model itself cannot completely remove bias at high frequencies.

  14. In vitro versus in vivo protein digestibility techniques for calculating PDCAAS (protein digestibility-corrected amino acid score) applied to chickpea fractions.

    Science.gov (United States)

    Tavano, Olga Luisa; Neves, Valdir Augusto; da Silva Júnior, Sinézio Inácio

    2016-11-01

    Seven different in vitro methods to determine the protein digestibility for chickpea proteins were considered and also the application of these methodologies for calculating PDCAAS (protein digestibility-corrected amino acid score), seeking their correlations with the in vivo methodology. In vitro digestibility of raw and heated samples were determined using pepsin-pancreatin hydrolysis, considering soluble nitrogen via Kjeldahl (ppKJ) and hydrolysed peptide linkages using trinitrobenzenesulfonic acid and o-phthaldialdehyde. In vitro digestibility was also determined using trypsin, chymotrypsin and peptidase (3-Enz) or trypsin, chymotrypsin, peptidase and pronase solution (4-Enz). None of the correlations between in vitro and in vivo digestibilities were significant (at p<0.0500), but, strong correlations were observed between PDCAAS calculated by in vitro and in vivo results. PDCAAS-ppKJ, PDCAAS-3-Enz and PDCAAS-4-Enz presented the highest correlations with in vivo method, r=0.9316, 0.9442 and 0.9649 (p<0.0500), respectively. The use of in vitro methods for calculating PDCAAS may be promising and deserves more discussions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Calculation of astrophysical S-factor and reaction rate in 12C(p, γ)13N reaction

    Science.gov (United States)

    Moghadasi, A.; Sadeghi, H.; Pourimani, R.

    2018-02-01

    The 12C(p, γ)13N reaction is the first process in the CNO cycle. Also it is a source of low-energy solar neutrinos in various neutrino experiments. Therefore, it is of high interest to gain data of the astrophysical S-factor in low energies. By applying Faddeev's method, we calculated wave functions for the bound state of 13N. Then the cross sections for resonance and non-resonance were calculated through using Breit-Wigner and direct capture cross section formulae, respectively. After that, we calculated the total S-factor and compared it with previous experimental data, revealing a good agreement altogether. Then, we extrapolated the S-factor in zero energy and the result was 1.32 ± 0.19 (keV.b). In the end, we calculated reaction rate and compared it with NACRE data.

  16. Passive correction of persistent current multipoles in superconducting accelerator dipoles

    International Nuclear Information System (INIS)

    Fisk, H.E.; Hanft, R.A.; Kuchnir, M.; McInturff, A.D.

    1986-07-01

    Correction of the magnetization sextupole and decapole fields with strips of superconductor placed just inside the coil winding is discussed. Calculations have been carried out for such a scheme, and tests have been conducted on a 4 cm aperture magnet. The calculated sextupole correction at the injection excitation of 330 A, 5% of full field, was expected to be 77% effective, while the measured correction is 83%, thus suggesting the scheme may be useful for future accelerators such as SSC and LHC

  17. Application of workplace correction factors to dosemeter results for the assessment of personal doses at nuclear facilities

    International Nuclear Information System (INIS)

    Lindborg, L.; Bolognese-Milsztajn, T.; Boschung, M.; Coeck, M.; Curzio, G.; D'Errico, F.; Fiechtner, A.; Hallfarth, D.; Lievens, B.; Lillhoek, J. E.; Loevefors-Daun, A.; Lacoste, V.; Luszik-Bhadra, M.; Reginatto, M.; Schuhmacher, H.; Tanner, R.; Vanhavere, F.

    2007-01-01

    Ratios of H p (10) and H*(10) were determined with reference instruments in a number of workplace fields within the nuclear industry and used to derive workplace-specific correction factors. When commercial survey meter results together with these factors were applied to the results of the locally used personal dosemeters their results improved and became within 0.7 and 1.7 of the reference values or better depending on the response of the survey meter. A similar result was obtained when a correction was determined with a prototype reference instrument for H p (10) after adjustment of its response. Commercially available survey instruments both for photon and neutron H*(10) measurements agreed with the reference instruments in most cases to within 0.5-1.5. Those conclusions are derived from results reported within the EC supported EVIDOS contract. (authors)

  18. Evaluation of dose calculation algorithms using the treatment planning system Xi O with tissue heterogeneity correction turned on

    International Nuclear Information System (INIS)

    Fairbanks, Leandro R.; Barbi, Gustavo L.; Silva, Wiliam T.; Reis, Eduardo G.F.; Borges, Leandro F.; Bertucci, Edenyse C.; Maciel, Marina F.; Amaral, Leonardo L.

    2011-01-01

    Since the cross-section for various radiation interactions is dependent upon tissue material, the presence of heterogeneities affects the final dose delivered. This paper aims to analyze how different treatment planning algorithms (Fast Fourier Transform, Convolution, Superposition, Fast Superposition and Clarkson) work when heterogeneity corrections are used. To that end, a farmer-type ionization chamber was positioned reproducibly (during the time of CT as well as irradiation) inside several phantoms made of aluminum, bone, cork and solid water slabs. The percent difference between the dose measured and calculated by the various algorithms was less than 5%.The convolution method shows better results for high density materials (difference ∼1 %), whereas the Superposition algorithm is more accurate for low densities (around 1,1%). (author)

  19. Leading quantum correction to the Newtonian potential

    International Nuclear Information System (INIS)

    Donoghue, J.F.

    1994-01-01

    I argue that the leading quantum corrections, in powers of the energy or inverse powers of the distance, may be computed in quantum gravity through knowledge of only the low-energy structure of the theory. As an example, I calculate the leading quantum corrections to the Newtonian gravitational potential

  20. ICT: isotope correction toolbox.

    Science.gov (United States)

    Jungreuthmayer, Christian; Neubauer, Stefan; Mairinger, Teresa; Zanghellini, Jürgen; Hann, Stephan

    2016-01-01

    Isotope tracer experiments are an invaluable technique to analyze and study the metabolism of biological systems. However, isotope labeling experiments are often affected by naturally abundant isotopes especially in cases where mass spectrometric methods make use of derivatization. The correction of these additive interferences--in particular for complex isotopic systems--is numerically challenging and still an emerging field of research. When positional information is generated via collision-induced dissociation, even more complex calculations for isotopic interference correction are necessary. So far, no freely available tools can handle tandem mass spectrometry data. We present isotope correction toolbox, a program that corrects tandem mass isotopomer data from tandem mass spectrometry experiments. Isotope correction toolbox is written in the multi-platform programming language Perl and, therefore, can be used on all commonly available computer platforms. Source code and documentation can be freely obtained under the Artistic License or the GNU General Public License from: https://github.com/jungreuc/isotope_correction_toolbox/ {christian.jungreuthmayer@boku.ac.at,juergen.zanghellini@boku.ac.at} Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.