Calculation of beam quality correction factor using Monte Carlo simulation
International Nuclear Information System (INIS)
Kawachi, T.; Saitoh, H.; Myojoyama, A.; Katayose, T.; Kojima, T.; Fukuda, K.; Inoue, M.
2005-01-01
In recent years, a number of the CyberKnife systems (Accuray C., U.S.) have been increasing significantly. However, the CyberKnife has unique treatment head structure and beam collimating system. Therefore, the global standard protocols can not be adopted for absolute absorbed dose dosimetry in CyberKnife beam. In this work, the energy spectrum of photon and electron from CyberKnife treatment head at 80 cm SSD and several depths in water are simulated with conscientious geometry using by the EGS Monte Carlo method. Furthermore, for calculation of the beam quality correction factor k Q , the mean restricted mass stopping power and the mass energy absorption coefficient of air, water and several chamber wall and waterproofing sleeve materials are calculated. As a result, the factors k Q CyberKnife beam for several ionization chambers are determined. And the relationship between the beam quality index PDD(10) x in CyberKnife beam and k Q is described in this report. (author)
An improved correlated sampling method for calculating correction factor of detector
International Nuclear Information System (INIS)
Wu Zhen; Li Junli; Cheng Jianping
2006-01-01
In the case of a small size detector lying inside a bulk of medium, there are two problems in the correction factors calculation of the detectors. One is that the detector is too small for the particles to arrive at and collide in; the other is that the ratio of two quantities is not accurate enough. The method discussed in this paper, which combines correlated sampling with modified particle collision auto-importance sampling, and has been realized on the MCNP-4C platform, can solve these two problems. Besides, other 3 variance reduction techniques are also combined with correlated sampling respectively to calculate a simple calculating model of the correction factors of detectors. The results prove that, although all the variance reduction techniques combined with correlated sampling can improve the calculating efficiency, the method combining the modified particle collision auto-importance sampling with the correlated sampling is the most efficient one. (authors)
Calculation of the Pitot tube correction factor for Newtonian and non-Newtonian fluids.
Etemad, S Gh; Thibault, J; Hashemabadi, S H
2003-10-01
This paper presents the numerical investigation performed to calculate the correction factor for Pitot tubes. The purely viscous non-Newtonian fluids with the power-law model constitutive equation were considered. It was shown that the power-law index, the Reynolds number, and the distance between the impact and static tubes have a major influence on the Pitot tube correction factor. The problem was solved for a wide range of these parameters. It was shown that employing Bernoulli's equation could lead to large errors, which depend on the magnitude of the kinetic energy and energy friction loss terms. A neural network model was used to correlate the correction factor of a Pitot tube as a function of these three parameters. This correlation is valid for most Newtonian, pseudoplastic, and dilatant fluids at low Reynolds number.
Calculations of electron fluence correction factors using the Monte Carlo code PENELOPE
International Nuclear Information System (INIS)
Siegbahn, E A; Nilsson, B; Fernandez-Varea, J M; Andreo, P
2003-01-01
In electron-beam dosimetry, plastic phantom materials may be used instead of water for the determination of absorbed dose to water. A correction factor φ water plastic is then needed for converting the electron fluence in the plastic phantom to the fluence at an equivalent depth in water. The recommended values for this factor given by AAPM TG-25 (1991 Med. Phys. 18 73-109) and the IAEA protocols TRS-381 (1997) and TRS-398 (2000) disagree, in particular at large depths. Calculations of the electron fluence have been done, using the Monte Carlo code PENELOPE, in semi-infinite phantoms of water and common plastic materials (PMMA, clear polystyrene, A-150, polyethylene, Plastic water TM and Solid water TM (WT1)). The simulations have been carried out for monoenergetic electron beams of 6, 10 and 20 MeV, as well as for a realistic clinical beam. The simulated fluence correction factors differ from the values in the AAPM and IAEA recommendations by up to 2%, and are in better agreement with factors obtained by Ding et al (1997 Med. Phys. 24 161-76) using EGS4. Our Monte Carlo calculations are also in good accordance with φ water plastic values measured by using an almost perturbation-free ion chamber. The important interdependence between depth- and fluence-scaling corrections for plastic phantoms is discussed. Discrepancies between the measured and the recommended values of φ water plastic may then be explained considering the different depth-scaling rules used
Energy Technology Data Exchange (ETDEWEB)
Wang, L. L. W.; La Russa, D. J.; Rogers, D. W. O. [Ottawa Carleton Institute of Physics, Carleton University, Campus Ottawa, Ottawa, Ontario KIS 5B6 (Canada)
2009-05-15
In a previous study [Med. Phys. 35, 1747-1755 (2008)], the authors proposed two direct methods of calculating the replacement correction factors (P{sub repl} or p{sub cav}p{sub dis}) for ion chambers by Monte Carlo calculation. By ''direct'' we meant the stopping-power ratio evaluation is not necessary. The two methods were named as the high-density air (HDA) and low-density water (LDW) methods. Although the accuracy of these methods was briefly discussed, it turns out that the assumption made regarding the dose in an HDA slab as a function of slab thickness is not correct. This issue is reinvestigated in the current study, and the accuracy of the LDW method applied to ion chambers in a {sup 60}Co photon beam is also studied. It is found that the two direct methods are in fact not completely independent of the stopping-power ratio of the two materials involved. There is an implicit dependence of the calculated P{sub repl} values upon the stopping-power ratio evaluation through the choice of an appropriate energy cutoff {Delta}, which characterizes a cavity size in the Spencer-Attix cavity theory. Since the {Delta} value is not accurately defined in the theory, this dependence on the stopping-power ratio results in a systematic uncertainty on the calculated P{sub repl} values. For phantom materials of similar effective atomic number to air, such as water and graphite, this systematic uncertainty is at most 0.2% for most commonly used chambers for either electron or photon beams. This uncertainty level is good enough for current ion chamber dosimetry, and the merits of the two direct methods of calculating P{sub repl} values are maintained, i.e., there is no need to do a separate stopping-power ratio calculation. For high-Z materials, the inherent uncertainty would make it practically impossible to calculate reliable P{sub repl} values using the two direct methods.
International Nuclear Information System (INIS)
Li Chunjuan; Liu Yi'na; Zhang Weihua; Wang Zhiqiang
2014-01-01
The manganese bath method for measuring the neutron emission rate of radionuclide sources requires corrections to be made for emitted neutrons which are not captured by manganese nuclei. The Monte Carlo particle transport code MCNP was used to simulate the manganese bath system of the standards for the measurement of neutron source intensity. The correction factors were calculated and the reliability of the model was demonstrated through the key comparison for the radionuclide neutron source emission rate measurements organized by BIPM. The uncertainties in the calculated values were evaluated by considering the sensitivities to the solution density, the density of the radioactive material, the positioning of the source, the radius of the bath, and the interaction cross-sections. A new method for the evaluation of the uncertainties in Monte Carlo calculation was given. (authors)
New equations to calculate temperature correction factors for PO2 in human blood.
Inaba, H; Ohwada, T; Sato, J; Mizuguchi, T; Hirasawa, H
1986-01-01
Effects of hemoglobin concentration (Hb), pH, and body temperature (T) on the relationships between delta log PO2/delta T and PO2 were studied by means of a mathematical model using a Newton-Raphson iteration method. The functions between delta log PO2/delta T and PO2 were affected by the above three factors. New equations considering the effects of Hb, pH, and T were proposed by modifying the equation reported by Severinghaus: delta log PO2/delta T = (L +(U-L)/(A(vPO237)B + 1))(10(-2) where U = 3.15-0.45(7.4-pH37) L = 0.68-0.09(7.4-pH37) A = 5.86(exp10(0.074(T)-0.294(7.4-pH37)-11))((Hb)0.913) B = 6.33(exp10(-0.0051(T)))((Hb)-0.113) + 0.24(7.4-pH37) and vPO237 is virtual PO237 which may exist when PO237 is corrected to standard conditions (pH = 7.4, BE = 0) by the following equations: vPO237 = PO237(exp10(fB(7.4-pH37)-0.0013(BE))) fB = (PO237/26.6)0.08-1.52 where fB is the Bohr factor. The above equations provided values of delta log PO2/delta T which fit closely to those obtained by the complex iteration method with maximum differences of less than 1.3 X 10(-3) at T = 27, indicating that maximum % errors for PO2 at T (PO2T) are less than 3.0% at T = 27 and that our equations can be applied over a wide range of Hb, pH37 and T.
Generalised Batho correction factor
International Nuclear Information System (INIS)
Siddon, R.L.
1984-01-01
There are various approximate algorithms available to calculate the radiation dose in the presence of a heterogeneous medium. The Webb and Fox product over layers formulation of the generalised Batho correction factor requires determination of the number of layers and the layer densities for each ray path. It has been shown that the Webb and Fox expression is inefficient for the heterogeneous medium which is expressed as regions of inhomogeneity rather than layers. The inefficiency of the layer formulation is identified as the repeated problem of determining for each ray path which inhomogeneity region corresponds to a particular layer. It has been shown that the formulation of the Batho correction factor as a product over inhomogeneity regions avoids that topological problem entirely. The formulation in terms of a product over regions simplifies the computer code and reduces the time required to calculate the Batho correction factor for the general heterogeneous medium. (U.K.)
International Nuclear Information System (INIS)
Barreras Caballero, A. A.; Hernandez Garcia, J.J.; Alfonso Laguardia, R.
2009-01-01
Were directly determined correction factors depending on the type camera beam quality, k, Q, and kQ, Qo, instead of the product (w, air p) Q, for three type cylindrical ionization chambers Pinpoint and divergent monoenergetic beams of photons in a wide range of energies (4-20 MV). The method of calculation used dispenses with the approaches taken in the classic procedure considered independent of braking power ratios and the factors disturbance of the camera. A detailed description of the geometry and materials chambers were supplied by the manufacturer and used as data input for the system 2006 of PENELOPE Monte Carlo calculation using a User code that includes correlated sampling, and forced interactions division of particles. We used a photon beam Co-60 as beam reference for calculating the correction factors for beam quality. No data exist for the cameras PTW 31014, 31015 and 31016 in the TRS-398 at they do not compare the results with data calculated or determined experimentally by other authors. (author)
International Nuclear Information System (INIS)
Nasrabadi, M.N.; Mohammadi, A.; Jalali, M.
2009-01-01
In this paper bulk sample prompt gamma neutron activation analysis (BSPGNAA) was applied to aqueous sample analysis using a relative method. For elemental analysis of an unknown bulk sample, gamma self-shielding coefficient was required. Gamma self-shielding coefficient of unknown samples was estimated by an experimental method and also by MCNP code calculation. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the gamma self-shielding within the sample volume is required.
International Nuclear Information System (INIS)
Martin, G.; Coca, M.; Capote, R.
1996-01-01
Using Monte Carlo method technique , a computer code which simulates the time of flight experiment to measure double differential cross section was developed. The correction factor for flux attenuation and multiple scattering, that make a deformation to the measured spectrum, were calculated. The energy dependence of the correction factor was determined and a comparison with other works is shown. Calculations for Fe 56 at two different scattering angles were made. We also reproduce the experiment performed at the Nuclear Analysis Laboratory for C 12 at 25 celsius degree and the calculated correction factor for the is measured is shown. We found a linear relation between the scatter size and the correction factor for flux attenuation
International Nuclear Information System (INIS)
Mazurier, J.
1999-01-01
This thesis has been performed in the framework of national reference setting-up for absorbed dose in water and high energy photon beam provided with the SATURNE-43 medical accelerator of the BNM-LPRI (acronym for National Bureau of Metrology and Primary standard laboratory of ionising radiation). The aim of this work has been to develop and validate different user codes, based on PENELOPE Monte Carlo code system, to determine the photon beam characteristics and calculate the correction factors of reference dosimeters such as Fricke dosimeters and graphite calorimeter. In the first step, the developed user codes have permitted the influence study of different components constituting the irradiation head. Variance reduction techniques have been used to reduce the calculation time. The phase space has been calculated for 6, 12 and 25 MV at the output surface level of the accelerator head, then used for calculating energy spectra and dose distributions in the reference water phantom. Results obtained have been compared with experimental measurements. The second step has been devoted to develop an user code allowing calculation correction factors associated with both BNM-LPRI's graphite and Fricke dosimeters thanks to a correlated sampling method starting with energy spectra obtained in the first step. Then the calculated correction factors have been compared with experimental and calculated results obtained with the Monte Carlo EGS4 code system. The good agreement, between experimental and calculated results, leads to validate simulations performed with the PENELOPE code system. (author)
Model Correction Factor Method
DEFF Research Database (Denmark)
Christensen, Claus; Randrup-Thomsen, Søren; Morsing Johannesen, Johannes
1997-01-01
The model correction factor method is proposed as an alternative to traditional polynomial based response surface techniques in structural reliability considering a computationally time consuming limit state procedure as a 'black box'. The class of polynomial functions is replaced by a limit...... of the model correction factor method, is that in simpler form not using gradient information on the original limit state function or only using this information once, a drastic reduction of the number of limit state evaluation is obtained together with good approximations on the reliability. Methods...
International Nuclear Information System (INIS)
Grimbergen, T.W.M.; Dijk, E. van; Vries, W. de
1998-01-01
A new method is described for the determination of x-ray quality dependent correction factors for free-air ionization chambers. The method is based on weighting correction factors for mono-energetic photons, which are calculated using the Monte Carlo method, with measured air kerma spectra. With this method, correction factors for electron loss, scatter inside the chamber and transmission through the diaphragm and front wall have been calculated for the NMi free-air chamber for medium-energy x-rays for a wide range of x-ray qualities in use at NMi. The newly obtained correction factors were compared with the values in use at present, which are based on interpolation of experimental data for a specific set of x-ray qualities. For x-ray qualities which are similar to this specific set, the agreement between the correction factors determined with the new method and those based on the experimental data is better than 0.1%, except for heavily filtered x-rays generated at 250 kV. For x-ray qualities dissimilar to the specific set, differences up to 0.4% exist, which can be explained by uncertainties in the interpolation procedure of the experimental data. Since the new method does not depend on experimental data for a specific set of x-ray qualities, the new method allows for a more flexible use of the free-air chamber as a primary standard for air kerma for any x-ray quality in the medium-energy x-ray range. (author)
International Nuclear Information System (INIS)
Burns, D.T.
2002-01-01
Traditionally, the correction factor k wall for attenuation and scatter in the walls of cavity ionization chamber primary standards has been evaluated experimentally using an extrapolation method. During the past decade, there have been a number of Monte Carlo calculations of k wall indicating that for certain ionization chamber types the extrapolation method may not be valid. In particular, values for k wall have been proposed that, if adopted by each laboratory concerned, would have a significant effect on the results of international comparisons of air-kerma primary standards. The calculations have also proposed new values for the axial component k an of the point-source uniformity correction. Central to the results of international comparisons is the BIPM air-kerma standard. Unlike most others, the BIPM standard is of the parallel-plate design for which the extrapolation method for evaluating k wall should be valid. The value in use at present is k wall =1.0026 (standard uncertainty 0.0008). Rogers and Treurniet calculated the value k wall =1.0014 for the BIPM standard, which is in moderate agreement with the value in use (no overall uncertainty was given). However, they also calculated k an =1.0024 (statistical uncertainty 0.0003) which is very different from the value k an =0.9964 (0.0007) in use at present for the BIPM standard. A new 60 Co facility has recently been installed at the BIPM and the opportunity was taken to re-evaluate the correction factors for the BIPM standard in this new beam. Given that almost all of the Monte Carlo work to date has used the EGS Monte Carlo code, it was decided to use the code PENELOPE. The new source, container, head and collimating jaws were simulated in detail with more that fifty components being modelled, as shown. This model was used to create a phase-space file in the plane 90 cm from the source. The normalized distribution of photon number with energy is shown, where the various sources of scattered photons are
Energy Technology Data Exchange (ETDEWEB)
Mazurier, J
1999-05-28
This thesis has been performed in the framework of national reference setting-up for absorbed dose in water and high energy photon beam provided with the SATURNE-43 medical accelerator of the BNM-LPRI (acronym for National Bureau of Metrology and Primary standard laboratory of ionising radiation). The aim of this work has been to develop and validate different user codes, based on PENELOPE Monte Carlo code system, to determine the photon beam characteristics and calculate the correction factors of reference dosimeters such as Fricke dosimeters and graphite calorimeter. In the first step, the developed user codes have permitted the influence study of different components constituting the irradiation head. Variance reduction techniques have been used to reduce the calculation time. The phase space has been calculated for 6, 12 and 25 MV at the output surface level of the accelerator head, then used for calculating energy spectra and dose distributions in the reference water phantom. Results obtained have been compared with experimental measurements. The second step has been devoted to develop an user code allowing calculation correction factors associated with both BNM-LPRI's graphite and Fricke dosimeters thanks to a correlated sampling method starting with energy spectra obtained in the first step. Then the calculated correction factors have been compared with experimental and calculated results obtained with the Monte Carlo EGS4 code system. The good agreement, between experimental and calculated results, leads to validate simulations performed with the PENELOPE code system. (author)
Correction factor for hair analysis by PIXE
International Nuclear Information System (INIS)
Montenegro, E.C.; Baptista, G.B.; Castro Faria, L.V. de; Paschoa, A.S.
1980-01-01
The application of the Particle Induced X-ray Emission (PIXE) technique to analyse quantitatively the elemental composition of hair specimens brings about some difficulties in the interpretation of the data. The present paper proposes a correction factor to account for the effects of the energy loss of the incident particle with penetration depth, and X-ray self-absorption when a particular geometrical distribution of elements in hair is assumed for calculational purposes. The correction factor has been applied to the analysis of hair contents Zn, Cu and Ca as a function of the energy of the incident particle. (orig.)
Correction factor for hair analysis by PIXE
International Nuclear Information System (INIS)
Montenegro, E.C.; Baptista, G.B.; Castro Faria, L.V. de; Paschoa, A.S.
1979-06-01
The application of the Particle Induced X-ray Emission (PIXE) technique to analyse quantitatively the elemental composition of hair specimens brings about some difficulties in the interpretation of the data. The present paper proposes a correction factor to account for the effects of energy loss of the incident particle with penetration depth, and x-ray self-absorption when a particular geometrical distribution of elements in hair is assumed for calculational purposes. The correction factor has been applied to the analysis of hair contents Zn, Cu and Ca as a function of the energy of the incident particle.(Author) [pt
Efficient Color-Dressed Calculation of Virtual Corrections
Giele, Walter; Winter, Jan
2010-01-01
With the advent of generalized unitarity and parametric integration techniques, the construction of a generic Next-to-Leading Order Monte Carlo becomes feasible. Such a generator will entail the treatment of QCD color in the amplitudes. We extend the concept of color dressing to one-loop amplitudes, resulting in the formulation of an explicit algorithmic solution for the calculation of arbitrary scattering processes at Next-to-Leading order. The resulting algorithm is of exponential complexity, that is the numerical evaluation time of the virtual corrections grows by a constant multiplicative factor as the number of external partons is increased. To study the properties of the method, we calculate the virtual corrections to $n$-gluon scattering.
Correction of rhodium detector signals for comparison to design calculations
International Nuclear Information System (INIS)
Judd, J.L.; Chang, R.Y.; Gabel, C.W.
1989-01-01
Rhodium detectors are used in many commercial pressurized water reactors PWRs [pressurized water reactor] as in-core neutron detectors. The signals from the detectors are the result of neutron absorption in 103 Rh and the subsequent beta decay of 104 Rh to 104 Pd. The rhodium depletes ∼1% per full-power month, so corrections are necessary to the detector signal to account for the effects of the rhodium depletion. These corrections result from the change in detector self-shielding with rhodium burnup and the change in rhodium concentration itself. Correction for the change in rhodium concentration is done by multiplication of the factor N(t)/N 0 , where N(t) is the rhodium concentration at time t and N 0 is the initial rhodium concentration. The calculation of the self-shielding factor is more complicated and is presented. A self-shielding factor based on the fraction of rhodium remaining was calculated with the CASMO-3 code. The results obtained from our comparisons of predicted and measured in-core detector signals show that the CASMO-3/SIMULATE-3 code package is an effective tool for estimating pin peaking and power distributions
Calculation of Dancoff correction for cylindrical cells including void
International Nuclear Information System (INIS)
Lima, C.P.B.; Martinez, A.S.
1989-01-01
This paper presents a method developed to the calculation of an analytical expression to the Dancoff Correction for fuel rods surrounded by air gaps. The Dancoff Correction has an important role in the calculation of the multigroup constants. The approximated expression obtained to the Dancoff Correction may be used in the available methods for the multigroup constants calculation, based in its simple and precise form. (author) [pt
Energy Technology Data Exchange (ETDEWEB)
Mille, M; Bergstrom, P [National Institute of Standards and Technology, Gaithersburg, MD (United States)
2015-06-15
Purpose: To use Monte Carlo radiation transport methods to calculate correction factors for a free-air ionization chamber in support of a national air-kerma standard for low-energy, miniature x-ray sources used for electronic brachytherapy (eBx). Methods: The NIST is establishing a calibration service for well-type ionization chambers used to characterize the strength of eBx sources prior to clinical use. The calibration approach involves establishing the well-chamber’s response to an eBx source whose air-kerma rate at a 50 cm distance is determined through a primary measurement performed using the Lamperti free-air ionization chamber. However, the free-air chamber measurements of charge or current can only be related to the reference air-kerma standard after applying several corrections, some of which are best determined via Monte Carlo simulation. To this end, a detailed geometric model of the Lamperti chamber was developed in the EGSnrc code based on the engineering drawings of the instrument. The egs-fac user code in EGSnrc was then used to calculate energy-dependent correction factors which account for missing or undesired ionization arising from effects such as: (1) attenuation and scatter of the x-rays in air; (2) primary electrons escaping the charge collection region; (3) lack of charged particle equilibrium; (4) atomic fluorescence and bremsstrahlung radiation. Results: Energy-dependent correction factors were calculated assuming a monoenergetic point source with the photon energy ranging from 2 keV to 60 keV in 2 keV increments. Sufficient photon histories were simulated so that the Monte Carlo statistical uncertainty of the correction factors was less than 0.01%. The correction factors for a specific eBx source will be determined by integrating these tabulated results over its measured x-ray spectrum. Conclusion: The correction factors calculated in this work are important for establishing a national standard for eBx which will help ensure that dose
NLO corrections to the photon impact factor: Combining real and virtual corrections
International Nuclear Information System (INIS)
Bartels, J.; Colferai, D.; Kyrieleis, A.; Gieseke, S.
2002-08-01
In this third part of our calculation of the QCD NLO corrections to the photon impact factor we combine our previous results for the real corrections with the singular pieces of the virtual corrections and present finite analytic expressions for the quark-antiquark-gluon intermediate state inside the photon impact factor. We begin with a list of the infrared singular pieces of the virtual correction, obtained in the first step of our program. We then list the complete results for the real corrections (longitudinal and transverse photon polarization). In the next step we defined, for the real corrections, the collinear and soft singular regions and calculate their contributions to the impact factor. We then subtract the contribution due to the central region. Finally, we combine the real corrections with the singular pieces of the virtual corrections and obtain our finite results. (orig.)
Automatic Power Factor Correction Using Capacitive Bank
Mr.Anant Kumar Tiwari,; Mrs. Durga Sharma
2014-01-01
The power factor correction of electrical loads is a problem common to all industrial companies. Earlier the power factor correction was done by adjusting the capacitive bank manually [1]. The automated power factor corrector (APFC) using capacitive load bank is helpful in providing the power factor correction. Proposed automated project involves measuring the power factor value from the load using microcontroller. The design of this auto-adjustable power factor correction is ...
Coulomb correction calculations of pp Bremsstrahlung
International Nuclear Information System (INIS)
Katsogiannis, A.; Amos, K.; Jetter, M.; von Geramb, H.V.
1994-01-01
The effects of the Coulomb interaction upon the photon cross section and analyzing power from pp Bremsstrahlung have been studied in detail. Off-shell properties of the Coulomb T matrices have been considered but the associated, Coulomb modified, hadronic T matrices are important elements in any analyses of low energy, forward proton scattering data. At the lowest energy considered (5 MeV), the full calculations gave cross sections that were half the size of those found without Coulomb effects or with a simple model approximation to them. With increasing energy, the cross sections varied to those characteristic of magnetic interaction dominance and the specific differences due to Coulomb effects diminished. 47 refs., 7 figs
Self-consistency corrections in effective-interaction calculations
International Nuclear Information System (INIS)
Starkand, Y.; Kirson, M.W.
1975-01-01
Large-matrix extended-shell-model calculations are used to compute self-consistency corrections to the effective interaction and to the linked-cluster effective interaction. The corrections are found to be numerically significant and to affect the rate of convergence of the corresponding perturbation series. The influence of various partial corrections is tested. It is concluded that self-consistency is an important effect in determining the effective interaction and improving the rate of convergence. (author)
Calculation of pion form factor
International Nuclear Information System (INIS)
Vahedi, N.; Amirarjomand, S.
1975-09-01
The pion form factor is calculated using the structure function Wsub(2), which incorporates kinematical constraints, threshold behaviour and scaling. The Bloom-Gilman sum rule is used and only the two leading Regge trajectories are taken into account
International Nuclear Information System (INIS)
Nasrabadi, M.N.; Jalali, M.; Mohammadi, A.
2007-01-01
In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF 3 detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required
Recoil corrected bag model calculations for semileptonic weak decays
International Nuclear Information System (INIS)
Lie-Svendsen, Oe.; Hoegaasen, H.
1987-02-01
Recoil corrections to various model results for strangeness changing weak decay amplitudes have been developed. It is shown that the spurious reference frame dependence of earlier calculations is reduced. The second class currents are generally less important than obtained by calculations in the static approximation. Theoretical results are compared to observations. The agreement is quite good, although the values for the Cabibbo angle obtained by fits to the decay rates are somewhat to large
DEFF Research Database (Denmark)
Petersen, Jens Højslev; Hoekstra, Eddo J.
The EURL-NRL-FCM Taskforce on the Fourth Amendment of the Plastic Directive 2002/72/EC developed a calculator for the correction of the test results for comparison with the specific migration limit (SML). The calculator calculates the maximum acceptable specific migration under the given experime......The EURL-NRL-FCM Taskforce on the Fourth Amendment of the Plastic Directive 2002/72/EC developed a calculator for the correction of the test results for comparison with the specific migration limit (SML). The calculator calculates the maximum acceptable specific migration under the given...... experimental conditions in food or food stimulant and indicates whether the test result is in compliance with the legislation. This calculator includes the Fat Reduction Factor, the simulant D Reduction Factor and the factor of the difference in surface-to-volume ratio between test and real food contact....
Calculation and Analysis of Differential Corrections for BeiDou
Yang, Sainan; Chen, Junping; Zhang, Yize
2015-04-01
BeiDou Satellite Navigation System has been providing service forAsia-Pacific area. BeiDou uses observations of regional monitoring network to determine satellite orbit, which limits the satellite orbit accuracy. And the satellite clock error is produced by time synchronization system. The time synchronization delay of antenna device is general obtained through prior Calibration, and the residual calibration error is included in the satellite clock, which affects the prediction accuracy of satellite clock error. In this paper, we study the algorithms of Beidou differential corrections to improve the accuracy of satellite signals to improve the user positioning accuracy. In this algorithm, both pseudo-range and phase observations are used to calculate differential corrections. We process pseudo-range observations to obtain equivalent satellite clock error, which include satellite clock errors and orbit radial errors, as well as the average projection of orbit tangential and normal errors in combination. And the epoch-difference of phase observations are processed to eliminate the ambiguity which simplifies algorithms and ensure the relative accuracy (corrections variety between the epochs). Observations more than 10 stations in China are processed, and the equivalent clock error calculation results are analyzed, which shows that the satellite UDRE are significantly reduced and user location accuracy improves when the equivalent clock error corrections are applied. The residuals deducting equivalent satellite clock error contains the projection difference of satellite orbit error in all station (tangential and normal errors are main). We utilize the residuals to solve the tangential and normal orbit errors which cause the projection difference. The same observation data is processed. The results show that after calculating three-dimensional corrections, the satellite UDRE doesn't improve significantly compared to equivalent satellite clock error corrections and user
Wall attenuation and scatter corrections for ion chambers: measurements versus calculations
Energy Technology Data Exchange (ETDEWEB)
Rogers, D W.O.; Bielajew, A F [National Research Council of Canada, Ottawa, ON (Canada). Div. of Physics
1990-08-01
In precision ion chamber dosimetry in air, wall attenuation and scatter are corrected for A{sub wall} (K{sub att} in IAEA terminology, K{sub w}{sup -1} in standards laboratory terminology). Using the EGS4 system the authors show that Monte Carlo calculated A{sub wall} factors predict relative variations in detector response with wall thickness which agree with all available experimental data within a statistical uncertainty of less than 0.1%. They calculated correction factors for use in exposure and air kerma standards are different by up to 1% from those obtained by extrapolating these same measurements. Using calculated correction factors would imply increases of 0.7-1.0% in the exposure and air kerma standards based on spherical and large diameter, large length cylindrical chambers and decreases of 0.3-0.5% for standards based on large diameter pancake chambers. (author).
Self-interaction corrected local spin density calculations of actinides
DEFF Research Database (Denmark)
Petit, Leon; Svane, Axel; Szotek, Z
2010-01-01
We use the self-interaction corrected local spin-density approximation in order to describe localization-delocalization phenomena in the strongly correlated actinide materials. Based on total energy considerations, the methodology enables us to predict the ground-state valency configuration...... of the actinide ions in these compounds from first principles. Here we review a number of applications, ranging from electronic structure calculations of actinide metals, nitrides and carbides to the behaviour under pressure of intermetallics, and O vacancies in PuO2....
Application of a numerical transport correction in diffusion calculations
International Nuclear Information System (INIS)
Tomatis, Daniele; Dall'Osso, Aldo
2011-01-01
Full core calculations by ordinary transport methods can demand considerable computational time, hardly acceptable in the industrial work frame. However, the trend of next generation nuclear cores goes toward more heterogeneous systems, where transport phenomena of neutrons become very important. On the other hand, using diffusion solvers is more practical allowing faster calculations, but a specific formulation of the diffusion coefficient is requested to reproduce the scalar flux with reliable physical accuracy. In this paper, the Ronen method is used to evaluate numerically the diffusion coefficient in the slab reactor. The new diffusion solution is driven toward the solution of the integral neutron transport equation by non linear iterations. Better estimates of currents are computed and diffusion coefficients are corrected at node interfaces, still assuming Fick's law. This method enables obtaining closer results to the transport solution by a common solver in multigroup diffusion. (author)
Status of the NLO Corrections to the Photon Impact Factor
Gieseke, Stefan
2002-01-01
We present the status of the programme of calculating the next-to-leading order corrections to the virtual photon impact factor. In particular, we discuss new results for the transversely polarized photon. We briefly outline the definition of infrared finite terms and the subtraction of the leading logarithmic parts.
Derivation of Batho's correction factor for heterogeneities
International Nuclear Information System (INIS)
Lulu, B.A.; Bjaerngard, B.E.
1982-01-01
Batho's correction factor for dose in a heterogeneous, layered medium is derived from the tissue--air ratio method (TARM). The reason why the Batho factor is superior to the TARM factor at low energy is ascribed to the fact that it accounts for the distribution of the scatter-generating matter along the centerline. The poor behavior of the Batho factor at high energies is explained as a consequence of the lack of electron equilibrium at appreciable depth below the surface. Key words: Batho factor, heterogeneity, inhomogeneity, tissue--air ratio method
Calculation of “LS-curves” for coincidence summing corrections in gamma ray spectrometry
Vidmar, Tim; Korun, Matjaž
2006-01-01
When coincidence summing correction factors for extended samples are calculated in gamma-ray spectrometry from full-energy-peak and total efficiencies, their variation over the sample volume needs to be considered. In other words, the correction factors cannot be computed as if the sample were a point source. A method developed by Blaauw and Gelsema takes the variation of the efficiencies over the sample volume into account. It introduces the so-called LS-curve in the calibration procedure and only requires the preparation of a single standard for each sample geometry. We propose to replace the standard preparation by calculation and we show that the LS-curves resulting from our method yield coincidence summing correction factors that are consistent with the LS values obtained from experimental data.
Automatic calculation of supersymmetric renormalization group equations and loop corrections
Staub, Florian
2011-03-01
SARAH is a Mathematica package for studying supersymmetric models. It calculates for a given model the masses, tadpole equations and all vertices at tree-level. This information can be used by SARAH to write model files for CalcHep/ CompHep or FeynArts/ FormCalc. In addition, the second version of SARAH can derive the renormalization group equations for the gauge couplings, parameters of the superpotential and soft-breaking parameters at one- and two-loop level. Furthermore, it calculates the one-loop self-energies and the one-loop corrections to the tadpoles. SARAH can handle all N=1 SUSY models whose gauge sector is a direct product of SU(N) and U(1) gauge groups. The particle content of the model can be an arbitrary number of chiral superfields transforming as any irreducible representation with respect to the gauge groups. To implement a new model, the user has just to define the gauge sector, the particle, the superpotential and the field rotations to mass eigenstates. Program summaryProgram title: SARAH Catalogue identifier: AEIB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 97 577 No. of bytes in distributed program, including test data, etc.: 2 009 769 Distribution format: tar.gz Programming language: Mathematica Computer: All systems that Mathematica is available for Operating system: All systems that Mathematica is available for Classification: 11.1, 11.6 Nature of problem: A supersymmetric model is usually characterized by the particle content, the gauge sector and the superpotential. It is a time consuming process to obtain all necessary information for phenomenological studies from these basic ingredients. Solution method: SARAH calculates the complete Lagrangian for a given model whose
Scatter factor corrections for elongated fields
International Nuclear Information System (INIS)
Higgins, P.D.; Sohn, W.H.; Sibata, C.H.; McCarthy, W.A.
1989-01-01
Measurements have been made to determine scatter factor corrections for elongated fields of Cobalt-60 and for nominal linear accelerator energies of 6 MV (Siemens Mevatron 67) and 18 MV (AECL Therac 20). It was found that for every energy the collimator scatter factor varies by 2% or more as the field length-to-width ratio increases beyond 3:1. The phantom scatter factor is independent of which collimator pair is elongated at these energies. For 18 MV photons it was found that the collimator scatter factor is complicated by field-size-dependent backscatter into the beam monitor
Correction factor for the experimental prompt neutron decay constant
International Nuclear Information System (INIS)
Talamo, Alberto; Gohar, Y.; Sadovich, S.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.
2013-01-01
Highlights: • Definition of a spatial correction factor for the experimental prompt neutron decay constant. • Introduction of a MCNP6 calculation methodology to simulate Rossi-alpha distribution for pulsed neutron sources. • Comparison of MCNP6 results with experimental data for count rate, Rossi-alpha, and Feynman-alpha distributions. • Improvement of the comparison between numerical and experimental results by taking into account the dead-time effect. - Abstract: This study introduces a new correction factor to obtain the experimental effective multiplication factor of subcritical assemblies by the point kinetics formulation. The correction factor is defined as the ratio between the MCNP6 prompt neutron decay constant obtained in criticality mode and the one obtained in source mode. The correction factor mainly takes into account the longer neutron lifetime in the reflector region and the effects of the external neutron source. For the YALINA Thermal facility, the comparison between the experimental and computational effective multiplication factors noticeably improves after the application of the correction factor. The accuracy of the MCNP6 computational model of the YALINA Thermal subcritical assembly has been verified by reproducing the neutron count rate, Rossi-α, and Feynman-α distributions obtained from the experimental data
QED radiative corrections to impact factors
International Nuclear Information System (INIS)
Kuraev, E.A.; Lipatov, L.N.; Shishkina, T.V.
2001-01-01
We consider radiative corrections to the electron and photon impact factors. The generalized eikonal representation for the e + e - scattering amplitude at high energies and fixed momentum transfers is violated by nonplanar diagrams. An additional contribution to the two-loop approximation appears from the Bethe-Heitler mechanism of fermion pair production with the identity of the fermions in the final state taken into account. The violation of the generalized eikonal representation is also related to the charge parity conservation in QED. A one-loop correction to the photon impact factor for small virtualities of the exchanged photon is obtained using the known results for the cross section of the e + e - production during photon-nuclei interactions
The real corrections to the virtual photon impact factor
International Nuclear Information System (INIS)
Kyrieleis, A.
2003-10-01
We investigate the interaction of two virtual photons in the high energy limit of quantum chromodynamics (QCD). We are motivated by two closely linked problems: the calculation of the γ * γ * total cross section, σ γ * γ * , in the framework NLO BFKL and the NLO extensions to the colour dipole picture. We calculate the squared amplitude for the process γ * + q → qqg + q in arbitrary space-time dimensions for both longitudinal and transverse photon polarisation. In transverse configuration space the result is found to factorise supporting in this way the photon wave function interpretation. This is the first step in the calculation of the qqg Fock component of the γ * wave function. The squared vertex for the transition Reggeon-γ * → qqg is extracted in order to calculate the NLO real corrections to the γ * impact factor. Together with the virtual corrections this will allow for the calculation of σ γ * γ * . The infrared divergences are dimensionally regularised and their cancellation against those from the virtual corrections is performed. After the introduction of Feynman parameters in each Feynman diagram, part of the qqg phase space integration is performed analytically. The various divergences emerging due to the independent treatment of the diagrams are regularised. A procedure is worked out to obtain for each diagram a finite phase space integral. In the case of longitudinal photon polarisation, this method is implemented in a computer program and the full phase space integration is carried out numerically. First numerical tests of the calculation are successfully performed. (orig.)
Absorption correction factor in X-ray fluorescent quantitative analysis
International Nuclear Information System (INIS)
Pimjun, S.
1994-01-01
An experiment on absorption correction factor in X-ray fluorescent quantitative analysis were carried out. Standard samples were prepared from the mixture of Fe 2 O 3 and tapioca flour at various concentration of Fe 2 O 3 ranging from 5% to 25%. Unknown samples were kaolin containing 3.5% to-50% of Fe 2 O 3 Kaolin samples were diluted with tapioca flour in order to reduce the absorption of FeK α and make them easy to prepare. Pressed samples with 0.150 /cm 2 and 2.76 cm in diameter, were used in the experiment. Absorption correction factor is related to total mass absorption coefficient (χ) which varied with sample composition. In known sample, χ can be calculated by conveniently the formula. However in unknown sample, χ can be determined by Emission-Transmission method. It was found that the relationship between corrected FeK α intensity and contents of Fe 2 O 3 in these samples was linear. This result indicate that this correction factor can be used to adjust the accuracy of X-ray intensity. Therefore, this correction factor is essential in quantitative analysis of elements comprising in any sample by X-ray fluorescent technique
Energy Technology Data Exchange (ETDEWEB)
Silva, Cosme Norival Mello da, E-mail: cosme@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiacoes Ionizantes (LNMRI)
2009-07-01
In order to determine the primary standardization in terms of kerma in the air, a graphite ionization chamber is used for calculation some correction factors. A program was elaborated, using the Monte Carlo Penelope for simulate the CC01-110 at the LNMRI/IRD, Rio de Janeiro, Brazil
Development of the Heated Length Correction Factor
International Nuclear Information System (INIS)
Park, Ho-Young; Kim, Kang-Hoon; Nahm, Kee-Yil; Jung, Yil-Sup; Park, Eung-Jun
2008-01-01
The Critical Heat Flux (CHF) on a nuclear fuel is defined by the function of flow channel geometry and flow condition. According to the selection of the explanatory variable, there are three hypotheses to explain CHF at uniformly heated vertical rod (inlet condition hypothesis, exit condition hypothesis, local condition hypothesis). For inlet condition hypothesis, CHF is characterized by function of system pressure, rod diameter, rod length, mass flow and inlet subcooling. For exit condition hypothesis, exit quality substitutes for inlet subcooling. Generally the heated length effect on CHF in exit condition hypothesis is smaller than that of other variables. Heated length is usually excluded in local condition hypothesis to describe the CHF with only local fluid conditions. Most of commercial plants currently use the empirical CHF correlation based on local condition hypothesis. Empirical CHF correlation is developed by the method of fitting the selected sensitive local variables to CHF test data using the multiple non-linear regression. Because this kind of method can not explain physical meaning, it is difficult to reflect the proper effect of complex geometry. So the recent CHF correlation development strategy of nuclear fuel vendor is making the basic CHF correlation which consists of basic flow variables (local fluid conditions) at first, and then the geometrical correction factors are compensated additionally. Because the functional forms of correction factors are determined from the independent test data which represent the corresponding geometry separately, it can be applied to other CHF correlation directly only with minor coefficient modification
Attenuation correction factors for cylindrical, disc and box geometry
International Nuclear Information System (INIS)
Agarwal, Chhavi; Poi, Sanhita; Mhatre, Amol; Goswami, A.; Gathibandhe, M.
2009-01-01
In the present study, attenuation correction factors have been experimentally determined for samples having cylindrical, disc and box geometry and compared with the attenuation correction factors calculated by Hybrid Monte Carlo (HMC) method [ C. Agarwal, S. Poi, A. Goswami, M. Gathibandhe, R.A. Agrawal, Nucl. Instr. and. Meth. A 597 (2008) 198] and with the near-field and far-field formulations available in literature. It has been observed that the near-field formulae, although said to be applicable at close sample-detector geometry, does not work at very close sample-detector configuration. The advantage of the HMC method is that it is found to be valid for all sample-detector geometries.
A Method for Correcting IMRT Optimizer Heterogeneity Dose Calculations
International Nuclear Information System (INIS)
Zacarias, Albert S.; Brown, Mellonie F.; Mills, Michael D.
2010-01-01
Radiation therapy treatment planning for volumes close to the patient's surface, in lung tissue and in the head and neck region, can be challenging for the planning system optimizer because of the complexity of the treatment and protected volumes, as well as striking heterogeneity corrections. Because it is often the goal of the planner to produce an isodose plan with uniform dose throughout the planning target volume (PTV), there is a need for improved planning optimization procedures for PTVs located in these anatomical regions. To illustrate such an improved procedure, we present a treatment planning case of a patient with a lung lesion located in the posterior right lung. The intensity-modulated radiation therapy (IMRT) plan generated using standard optimization procedures produced substantial dose nonuniformity across the tumor caused by the effect of lung tissue surrounding the tumor. We demonstrate a novel iterative method of dose correction performed on the initial IMRT plan to produce a more uniform dose distribution within the PTV. This optimization method corrected for the dose missing on the periphery of the PTV and reduced the maximum dose on the PTV to 106% from 120% on the representative IMRT plan.
Calculation of nucleon electromagnetic form factors
International Nuclear Information System (INIS)
Renner, D.B.; Brower, R.; Dolgov, D.; Eicker, N.; Lippert, Th.; Negele, J.W.; Pochinsky, A.; Schilling, K.
2003-01-01
The formalism is developed to express nucleon matrix elements of the electromagnetic current in terms of form factors consistent with the translational, rotational, and parity symmetries of a cubic lattice. We calculate the number of these form factors and show how appropriate linear combinations approach the continuum limit
49 CFR 325.73 - Microphone distance correction factors. 1
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false Microphone distance correction factors. 1 325.73 Section 325.73 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR... MOTOR CARRIER NOISE EMISSION STANDARDS Correction Factors § 325.73 Microphone distance correction...
Correction factors for assessing immersion suits under harsh conditions.
Power, Jonathan; Tikuisis, Peter; Ré, António Simões; Barwood, Martin; Tipton, Michael
2016-03-01
Many immersion suit standards require testing of thermal protective properties in calm, circulating water while these suits are typically used in harsher environments where they often underperform. Yet it can be expensive and logistically challenging to test immersion suits in realistic conditions. The goal of this work was to develop a set of correction factors that would allow suits to be tested in calm water yet ensure they will offer sufficient protection in harsher conditions. Two immersion studies, one dry and the other with 500 mL of water within the suit, were conducted in wind and waves to measure the change in suit insulation. In both studies, wind and waves resulted in a significantly lower immersed insulation value compared to calm water. The minimum required thermal insulation for maintaining heat balance can be calculated for a given mean skin temperature, metabolic heat production, and water temperature. Combining the physiological limits of sustainable cold water immersion and actual suit insulation, correction factors can be deduced for harsh conditions compared to calm. The minimum in-situ suit insulation to maintain thermal balance is 1.553-0.0624·TW + 0.00018·TW(2) for a dry calm condition. Multiplicative correction factors to the above equation are 1.37, 1.25, and 1.72 for wind + waves, 500 mL suit wetness, and both combined, respectively. Calm water certification tests of suit insulation should meet or exceed the minimum in-situ requirements to maintain thermal balance, and correction factors should be applied for a more realistic determination of minimum insulation for harsh conditions. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Calculation of the collective mass-parameter including RPA corrections
International Nuclear Information System (INIS)
Pal, M.K.; Zawischa, D.; Speth, J.
1975-01-01
A derivation of the vibrational mass-parameter B is given which makes the consistency with RPA calculations explicit. The expected enhancement by the residual particle-hole and particle-particle interaction is demonstrated by solving the quasiparticle-RPA for deformed nuclei in the rare earth region. (orig.) [de
SU-F-T-67: Correction Factors for Monitor Unit Verification of Clinical Electron Beams
Energy Technology Data Exchange (ETDEWEB)
Haywood, J [Mercy Health Partners, Muskegon, MI (United States)
2016-06-15
Purpose: Monitor units calculated by electron Monte Carlo treatment planning systems are often higher than TG-71 hand calculations for a majority of patients. Here I’ve calculated tables of geometry and heterogeneity correction factors for correcting electron hand calculations. Method: A flat water phantom with spherical volumes having radii ranging from 3 to 15 cm was created. The spheres were centered with respect to the flat water phantom, and all shapes shared a surface at 100 cm SSD. D{sub max} dose at 100 cm SSD was calculated for each cone and energy on the flat phantom and for the spherical volumes in the absence of the flat phantom. The ratio of dose in the sphere to dose in the flat phantom defined the geometrical correction factor. The heterogeneity factors were then calculated from the unrestricted collisional stopping power for tissues encountered in electron beam treatments. These factors were then used in patient second check calculations. Patient curvature was estimated by the largest sphere that aligns to the patient contour, and appropriate tissue density was read from the physical properties provided by the CT. The resulting MU were compared to those calculated by the treatment planning system and TG-71 hand calculations. Results: The geometry and heterogeneity correction factors range from ∼(0.8–1.0) and ∼(0.9–1.01) respectively for the energies and cones presented. Percent differences for TG-71 hand calculations drop from ∼(3–14)% to ∼(0–2)%. Conclusion: Monitor units calculated with the correction factors typically decrease the percent difference to under actionable levels, < 5%. While these correction factors work for a majority of patients, there are some patient anatomies that do not fit the assumptions made. Using these factors in hand calculations is a first step in bringing the verification monitor units into agreement with the treatment planning system MU.
Calculated shielding factors for selected European houses
International Nuclear Information System (INIS)
Hedemann Jensen, P.
1984-12-01
Shielding factors for gamma radiation from activity deposited on structures and ground surfaces have been calculated with the computer model DEPSHIELD for single-family and multi-storey buildings in France, United Kingdom and Denmark. For all three countries it was found that the shielding factors for single-family houses are approximately a factor of 2 - 10 higher that those for buildings with five or more storeys. Away from doors and windows the shielding factors for French, British, and Danish single-family houses are in the range 0.03 - 0.1, 0.06 - 0.4, and 0.07 - 0.3, respectively. The uncertainties of the calculations are discussed and DEPSHIELD-results are compared with other methods as well as with experimental results. (author)
Using BRDFs for accurate albedo calculations and adjacency effect corrections
Energy Technology Data Exchange (ETDEWEB)
Borel, C.C.; Gerstl, S.A.W.
1996-09-01
In this paper the authors discuss two uses of BRDFs in remote sensing: (1) in determining the clear sky top of the atmosphere (TOA) albedo, (2) in quantifying the effect of the BRDF on the adjacency point-spread function and on atmospheric corrections. The TOA spectral albedo is an important parameter retrieved by the Multi-angle Imaging Spectro-Radiometer (MISR). Its accuracy depends mainly on how well one can model the surface BRDF for many different situations. The authors present results from an algorithm which matches several semi-empirical functions to the nine MISR measured BRFs that are then numerically integrated to yield the clear sky TOA spectral albedo in four spectral channels. They show that absolute accuracies in the albedo of better than 1% are possible for the visible and better than 2% in the near infrared channels. Using a simplified extensive radiosity model, the authors show that the shape of the adjacency point-spread function (PSF) depends on the underlying surface BRDFs. The adjacency point-spread function at a given offset (x,y) from the center pixel is given by the integral of transmission-weighted products of BRDF and scattering phase function along the line of sight.
Correct fair market value calculation needed to avoid regulatory challenges.
Dietrich, M O
1997-09-01
In valuing a physician practice for acquisition, it is important for buyers and sellers to distinguish between fair market value and strategic value. Although many buyers would willingly pay for the strategic value of a practice, tax-exempt buyers are required by law to consider only the fair market value in setting a bid price. Valuators must adjust group earnings to exclude items that do not apply to any willing seller and include items that do apply to any willing seller to arrive at the fair market value of the practice. In addition, the weighted average cost of capital (WACC), which becomes the discount rate in the valuation model, is critical to the measure of value of the practice. Small medical practices are assumed to have few hard assets and little long-term debt, and the WACC is calculated on the basis of those assumptions. When a small practice has considerable debt, however, this calculated WACC may be inappropriate for valuing the practice. In every case, evidence that shows that a transaction has been negotiated "at arm's length" should stave off any regulatory challenge.
Statistical calculation of hot channel factors
International Nuclear Information System (INIS)
Farhadi, K.
2007-01-01
It is a conventional practice in the design of nuclear reactors to introduce hot channel factors to allow for spatial variations of power generation and flow distribution. Consequently, it is not enough to be able to calculate the nominal temperature distributions of fuel element, cladding, coolant, and central fuel. Indeed, one must be able to calculate the probability that the imposed temperature or heat flux limits in the entire core is not exceeded. In this paper, statistical methods are used to calculate hot channel factors for a particular case of a heterogeneous, Material Testing Reactor (MTR) and compare the results obtained from different statistical methods. It is shown that among the statistical methods available, the semi-statistical method is the most reliable one
Core barrel motion calibration factor calculation
International Nuclear Information System (INIS)
Shahrokhi, F.; Robinson, J.C.
1976-01-01
Neutron transport theory calculations were performed to obtain a calibration factor for inferring core-barrel motion from spectral density data using excore ionization chambers in PWRs. The analysis of core-barrel movement was based on the postulate that the movement is a cantilevered type, with the preferred direction x-x'
Photon energy-fluence correction factor in low energy brachytherapy
International Nuclear Information System (INIS)
Antunes, Paula C.G.; Yoriyaz, Hélio; Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo
2017-01-01
The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D tis ) and dose-to-water (D w ). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the 125 I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)
Photon energy-fluence correction factor in low energy brachytherapy
Energy Technology Data Exchange (ETDEWEB)
Antunes, Paula C.G.; Yoriyaz, Hélio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo, E-mail: pacrisguian@gmail.com [Department of Atomic, Molecular, and Nuclear Physics and Instituto de Física Corpuscular (UV-CSIC), University of Valencia (Spain)
2017-07-01
The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D{sub tis}) and dose-to-water (D{sub w}). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the {sup 125}I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)
Economic benefits of power factor correction at a nuclear facility
International Nuclear Information System (INIS)
Boger, R.M.; Dalos, W.; Juguilon, M.E.
1986-01-01
The economic benefits of correcting poor power factor at an operating nuclear facility are shown. A project approach for achieving rapid return of investment without disrupting plant availability is described. Examples of technical problems associated with using capacitors for power factor correction are presented
'TrueCoinc' software utility for calculation of the true coincidence correction
International Nuclear Information System (INIS)
Sudar, S.
2002-01-01
The true coincidence correction plays an important role in the overall accuracy of the γ ray spectrometry especially in the case of present-day high volume detectors. The calculation of true coincidence corrections needs detailed nuclear structure information. Recently these data are available in computerized form from the Nuclear Data Centers through the Internet or on a CD-ROM of the Table of Isotopes. The aim has been to develop software for this calculation, using available databases for the levels data. The user has to supply only the parameters of the detector to be used. The new computer program runs under the Windows 95/98 operating system. In the framework of the project a new formula was prepared for calculating the summing out correction and calculation of the intensity of alias lines (sum peaks). The file converter for reading the ENDSF-2 type files was completed. Reading and converting the original ENDSF was added to the program. A computer accessible database of the X rays energies and intensities was created. The X ray emissions were taken in account in the 'summing out' calculation. Calculation of the true coincidence 'summing in' correction was done. The output was arranged to show independently two types of corrections and to calculate the final correction as multiplication of the two. A minimal intensity threshold can be set to show the final list only for the strongest lines. The calculation takes into account all the transitions, independently of the threshold. The program calculates the intensity of X rays (K, L lines). The true coincidence corrections for X rays were calculated. The intensities of the alias γ lines were calculated. (author)
A procedure for effective Dancoff factor calculation
International Nuclear Information System (INIS)
Milosevic, M.
2001-01-01
In this paper, a procedure for Dancoff factors calculation based on equivalence principle and its application in the SCALE-4.3 code system is described. This procedure is founded on principle of conservation of neutron absorption for resolved resonance range in a heterogeneous medium and an equivalent medium consisted of an infinite array of two-region pin cells, where the presence of other fuel rods is taken into account through a Dancoff factor. The neutron absorption in both media is obtained using a fine-group elastic slowing-down calculation. This procedure is implemented in a design oriented lattice physics code, which is applicable for any geometry where the method of collision probability is possible to apply to get a flux solution. Proposed procedure was benchmarked for recent exercise that represents a system with a fuel double heterogeneity, i.e., fuel in solid form (pellets) surrounded by fissile material in solution, and for a 5x5 irregular pressurised water reactor assembly, which requires different Dancoff factors. (author)
Determination of epithermal flux correction factor (α) for irradiation ...
African Journals Online (AJOL)
Due to resonance that occur in the epithermal energy region of a reactor, the flux spectra in that region deviates strongly from the ideal I/E law to a I/E1+α with alpha as the correction factor. The factor has to be determined if zirconium as monitor pairs to determine the correction factor for inner irradiation channel 5 and outer ...
Improvements to the Chebyshev expansion of attenuation correction factors for cylindrical samples
International Nuclear Information System (INIS)
Mildner, D.F.R.; Carpenter, J.M.
1990-01-01
The accuracy of the Chebyshev expansion coefficients used for the calculation of attenuation correction factors for cylinderical samples has been improved. An increased order of expansion allows the method to be useful over a greater range of attenuation. It is shown that many of these coefficients are exactly zero, others are rational numbers, and others are rational frations of π -1 . The assumptions of Sears in his asymptotic expression of the attenuation correction factor are also examined. (orig.)
Evaluation of the uniformity of wide circular reference source and application of correction factors
International Nuclear Information System (INIS)
Silva Junior, I.A.; Xavier, M.; Siqueira, P.T.D.; Sordi, G.A.A.; Potiens, M.P.A.
2017-01-01
In this work the uniformity of wide circular reference sources is evaluated. This kind of reference source is still widely used in Brazil. In previous works wide rectangular reference sources were analyzed and it was shown the importance of the application of correction factors in calibration procedures of radiation monitors. Now a transposition of the methods used formerly is performed, evaluating the uniformities of circular reference sources and calculating the associated correction factors. (author)
Quark number density and susceptibility calculation with one correction in mean field potential
International Nuclear Information System (INIS)
Singh, S. Somorendro
2016-01-01
We calculate quark number density and susceptibility of a model which has one loop correction in mean field potential. The calculation shows continuous increasing in the number density and susceptibility up to the temperature T = 0.4 GeV. Then the value of number density and susceptibility approach to the lattice result for higher value of temperature. The result indicates that the calculated values of the model fit well and the result increase the temperature to reach the lattice data with the one loop correction in the mean field potential. (author)
Power factor correction (PFC) converters feeding brushless DC ...
African Journals Online (AJOL)
DR OKE
1Department of Electrical Engineering, Indian Institute of Technology Delhi, INDIA ... Hence, power factor correction (PFC) converters are used for achieving a unity ...... He is currently working as a Systems Engineer (Power IC) in AvantGarde ...
Journal Impact Factor: Do the Numerator and Denominator Need Correction?
Liu, Xue-Li; Gai, Shuang-Shuang; Zhou, Jing
2016-01-01
To correct the incongruence of document types between the numerator and denominator in the traditional impact factor (IF), we make a corresponding adjustment to its formula and present five corrective IFs: IFTotal/Total, IFTotal/AREL, IFAR/AR, IFAREL/AR, and IFAREL/AREL. Based on a survey of researchers in the fields of ophthalmology and mathematics, we obtained the real impact ranking of sample journals in the minds of peer experts. The correlations between various IFs and questionnaire score were analyzed to verify their journal evaluation effects. The results show that it is scientific and reasonable to use five corrective IFs for journal evaluation for both ophthalmology and mathematics. For ophthalmology, the journal evaluation effects of the five corrective IFs are superior than those of traditional IF: the corrective effect of IFAR/AR is the best, IFAREL/AR is better than IFTotal/Total, followed by IFTotal/AREL, and IFAREL/AREL. For mathematics, the journal evaluation effect of traditional IF is superior than those of the five corrective IFs: the corrective effect of IFTotal/Total is best, IFAREL/AR is better than IFTotal/AREL and IFAREL/AREL, and the corrective effect of IFAR/AR is the worst. In conclusion, not all disciplinary journal IF need correction. The results in the current paper show that to correct the IF of ophthalmologic journals may be valuable, but it seems to be meaningless for mathematic journals. PMID:26977697
Volume correction factor in time dose relationships in brachytherapy
International Nuclear Information System (INIS)
Supe, S.J.; Sasane, J.B.
1987-01-01
Paterson's clinical data about the maximum tolerance doses for various volumes of interstitial implants with Ra-226 delivered in seven days was made use of in deriving volume correction factors for TDF and CRE concepts respectively for brachytherapy. The derived volume correction factors for TDF and for CRE differ fromthe one assumed for CRE by Kirk et al. and implied for TDF by Goitein. A normalising volume of 70 cc has been suggested for both CRE and TDF concepts for brachytherapy. A table showing the volume corrected TDF is presented for various volumes and dose rates for continuous irradiation. The use of this table is illustrated with examples. (orig.) [de
Correction of the calculation of beam loading based in the RF power diffusion equation
International Nuclear Information System (INIS)
Silva, R. da.
1980-01-01
It is described an empirical correction based upon experimental datas of others authors in ORELA, GELINA and SLAC accelerators, to the calculation of the energy loss due to the beam loading effect as stated by the RF power diffusion equation theory an accelerating structure. It is obtained a dependence of this correction with the electron pulse full width half maximum, but independent of the electron energy. (author) [pt
Consistent calculation of the polarization electric dipole moment by the shell-correction method
International Nuclear Information System (INIS)
Denisov, V.Yu.
1992-01-01
Macroscopic calculations of the polarization electric dipole moment which arises in nuclei with an octupole deformation are discussed in detail. This dipole moment is shown to depend on the position of the center of gravity. The conditions of consistency of the radii of the proton and neutron potentials and the radii of the proton and neutron surfaces, respectively, are discussed. These conditions must be incorporated in a shell-correction calculation of this dipole moment. A correct calculation of this moment by the shell-correction method is carried out. Dipole transitions between (on the one hand) levels belonging to an octupole vibrational band and (on the other) the ground state in rare-earth nuclei with a large quadrupole deformation are studied. 19 refs., 3 figs
Pencil kernel correction and residual error estimation for quality-index-based dose calculations
International Nuclear Information System (INIS)
Nyholm, Tufve; Olofsson, Joergen; Ahnesjoe, Anders; Georg, Dietmar; Karlsson, Mikael
2006-01-01
Experimental data from 593 photon beams were used to quantify the errors in dose calculations using a previously published pencil kernel model. A correction of the kernel was derived in order to remove the observed systematic errors. The remaining residual error for individual beams was modelled through uncertainty associated with the kernel model. The methods were tested against an independent set of measurements. No significant systematic error was observed in the calculations using the derived correction of the kernel and the remaining random errors were found to be adequately predicted by the proposed method
A study of coarse mesh collision probability correction factors in slab lattices
International Nuclear Information System (INIS)
Buckler, A.N.
1975-07-01
Calculations of collision probability leakage estimates are performed in one dimensional slab geometry with one neutron group to gain some insight into methods of correction for the coarseness of the mesh H. The chief result is that the correction factor, beta, can be written as CD/H where C → 4 for the diffusion limit. An explicit expression for C is derived in terms of the E 3 function, for a linear flux variation across the slabs. (author)
Improved SVR Model for Multi-Layer Buildup Factor Calculation
International Nuclear Information System (INIS)
Trontl, K.; Pevec, D.; Smuc, T.
2006-01-01
The accuracy of point kernel method applied in gamma ray dose rate calculations in shielding design and radiation safety analysis is limited by the accuracy of buildup factors used in calculations. Although buildup factors for single-layer shields are well defined and understood, buildup factors for stratified shields represent a complex physical problem that is hard to express in mathematical terms. The traditional approach for expressing buildup factors of multi-layer shields is through semi-empirical formulas obtained by fitting the results of transport theory or Monte Carlo calculations. Such an approach requires an ad-hoc definition of the fitting function and often results with numerous and usually inadequately explained and defined correction factors added to the final empirical formula. Even more, finally obtained formulas are generally limited to a small number of predefined combinations of materials within relatively small range of gamma ray energies and shield thicknesses. Recently, a new approach has been suggested by the authors involving one of machine learning techniques called Support Vector Machines, i.e., Support Vector Regression (SVR). Preliminary investigations performed for double-layer shields revealed great potential of the method, but also pointed out some drawbacks of the developed model, mostly related to the selection of one of the parameters describing the problem (material atomic number), and the method in which the model was designed to evolve during the learning process. It is the aim of this paper to introduce a new parameter (single material buildup factor) that is to replace the existing material atomic number as an input parameter. The comparison of two models generated by different input parameters has been performed. The second goal is to improve the evolution process of learning, i.e., the experimental computational procedure that provides a framework for automated construction of complex regression models of predefined
International Nuclear Information System (INIS)
Park, Peter C.; Schreibmann, Eduard; Roper, Justin; Elder, Eric; Crocker, Ian; Fox, Tim; Zhu, X. Ronald; Dong, Lei; Dhabaan, Anees
2015-01-01
Purpose: Computed tomography (CT) artifacts can severely degrade dose calculation accuracy in proton therapy. Prompted by the recently increased popularity of magnetic resonance imaging (MRI) in the radiation therapy clinic, we developed an MRI-based CT artifact correction method for improving the accuracy of proton range calculations. Methods and Materials: The proposed method replaces corrupted CT data by mapping CT Hounsfield units (HU number) from a nearby artifact-free slice, using a coregistered MRI. MRI and CT volumetric images were registered with use of 3-dimensional (3D) deformable image registration (DIR). The registration was fine-tuned on a slice-by-slice basis by using 2D DIR. Based on the intensity of paired MRI pixel values and HU from an artifact-free slice, we performed a comprehensive analysis to predict the correct HU for the corrupted region. For a proof-of-concept validation, metal artifacts were simulated on a reference data set. Proton range was calculated using reference, artifactual, and corrected images to quantify the reduction in proton range error. The correction method was applied to 4 unique clinical cases. Results: The correction method resulted in substantial artifact reduction, both quantitatively and qualitatively. On respective simulated brain and head and neck CT images, the mean error was reduced from 495 and 370 HU to 108 and 92 HU after correction. Correspondingly, the absolute mean proton range errors of 2.4 cm and 1.7 cm were reduced to less than 2 mm in both cases. Conclusions: Our MRI-based CT artifact correction method can improve CT image quality and proton range calculation accuracy for patients with severe CT artifacts
Correction factors for clinical dosemeters used in large field dosimetry
International Nuclear Information System (INIS)
Campos, L.L.; Caldas, L.
1989-08-01
The determination of the absorbed dose in high-energy photon and electron beams by the user is carried out as a two-step procedure. First the ionization chamber is calibrated at a reference quality by the user at a standard laboratory, and then the chamber is used to determine the absorbed dose with the user's beam. A number of conversion and correction factors have to be applied. Different sets of factors are needed depending on the physical quantity the calibration refers to, the calibration geometry and the chamber design. Another correction factor to be introduced for the absorbed dose determination in large fields refers to radiation effects on the stem, cable and sometimes connectors. A simple method was developed to be suggested to hospital physicists to be followed during large radiation field dosimetry, in order to evaluate the radiation effects of cables and connectors and to determine correction factors for each system or geometry. (author) [pt
Correction of CT artifacts and its influence on Monte Carlo dose calculations
International Nuclear Information System (INIS)
Bazalova, Magdalena; Beaulieu, Luc; Palefsky, Steven; Verhaegen, Frank
2007-01-01
Computed tomography (CT) images of patients having metallic implants or dental fillings exhibit severe streaking artifacts. These artifacts may disallow tumor and organ delineation and compromise dose calculation outcomes in radiotherapy. We used a sinogram interpolation metal streaking artifact correction algorithm on several phantoms of exact-known compositions and on a prostate patient with two hip prostheses. We compared original CT images and artifact-corrected images of both. To evaluate the effect of the artifact correction on dose calculations, we performed Monte Carlo dose calculation in the EGSnrc/DOSXYZnrc code. For the phantoms, we performed calculations in the exact geometry, in the original CT geometry and in the artifact-corrected geometry for photon and electron beams. The maximum errors in 6 MV photon beam dose calculation were found to exceed 25% in original CT images when the standard DOSXYZnrc/CTCREATE calibration is used but less than 2% in artifact-corrected images when an extended calibration is used. The extended calibration includes an extra calibration point for a metal. The patient dose volume histograms of a hypothetical target irradiated by five 18 MV photon beams in a hypothetical treatment differ significantly in the original CT geometry and in the artifact-corrected geometry. This was found to be mostly due to miss-assignment of tissue voxels to air due to metal artifacts. We also developed a simple Monte Carlo model for a CT scanner and we simulated the contribution of scatter and beam hardening to metal streaking artifacts. We found that whereas beam hardening has a minor effect on metal artifacts, scatter is an important cause of these artifacts
The determination of beam quality correction factors: Monte Carlo simulations and measurements.
González-Castaño, D M; Hartmann, G H; Sánchez-Doblado, F; Gómez, F; Kapsch, R-P; Pena, J; Capote, R
2009-08-07
Modern dosimetry protocols are based on the use of ionization chambers provided with a calibration factor in terms of absorbed dose to water. The basic formula to determine the absorbed dose at a user's beam contains the well-known beam quality correction factor that is required whenever the quality of radiation used at calibration differs from that of the user's radiation. The dosimetry protocols describe the whole ionization chamber calibration procedure and include tabulated beam quality correction factors which refer to 60Co gamma radiation used as calibration quality. They have been calculated for a series of ionization chambers and radiation qualities based on formulae, which are also described in the protocols. In the case of high-energy photon beams, the relative standard uncertainty of the beam quality correction factor is estimated to amount to 1%. In the present work, two alternative methods to determine beam quality correction factors are prescribed-Monte Carlo simulation using the EGSnrc system and an experimental method based on a comparison with a reference chamber. Both Monte Carlo calculations and ratio measurements were carried out for nine chambers at several radiation beams. Four chamber types are not included in the current dosimetry protocols. Beam quality corrections for the reference chamber at two beam qualities were also measured using a calorimeter at a PTB Primary Standards Dosimetry Laboratory. Good agreement between the Monte Carlo calculated (1% uncertainty) and measured (0.5% uncertainty) beam quality correction factors was obtained. Based on these results we propose that beam quality correction factors can be generated both by measurements and by the Monte Carlo simulations with an uncertainty at least comparable to that given in current dosimetry protocols.
International Nuclear Information System (INIS)
Blanco, F; Garcia, G
2009-01-01
A simplified form of the well-known screening-corrected additivity rule procedure for the calculation of electron-molecule cross sections is proposed for the treatment of some very large macro-molecules. While the comparison of the standard and simplified treatments for a DNA dodecamer reveals very similar results, the new treatment presents some important advantages for large molecules.
First-order corrections to random-phase approximation GW calculations in silicon and diamond
Ummels, R.T.M.; Bobbert, P.A.; van Haeringen, W.
1998-01-01
We report on ab initio calculations of the first-order corrections in the screened interaction W to the random-phase approximation polarizability and to the GW self-energy, using a noninteracting Green's function, for silicon and diamond. It is found that the first-order vertex and self-consistency
Energy Technology Data Exchange (ETDEWEB)
Talamo, Alberto, E-mail: alby@anl.gov [Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States); Gohar, Y.; Cao, Y.; Zhong, Z. [Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States); Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C. [Joint Institute for Power and Nuclear Research-Sosny, National Academy of Sciences of Belarus, 99 acad. Krasin str., Minsk 220109 (Belarus)
2012-03-11
In subcritical assemblies, the Bell and Glasstone spatial correction factor is used to correct the measured reactivity from different detector positions. In addition to the measuring position, several other parameters affect the correction factor: the detector material, the detector size, and the energy-angle distribution of source neutrons. The effective multiplication factor calculated by computer codes in criticality mode slightly differs from the average value obtained from the measurements in the different experimental channels of the subcritical assembly, which are corrected by the Bell and Glasstone spatial correction factor. Generally, this difference is due to (1) neutron counting errors; (2) geometrical imperfections, which are not simulated in the calculational model, and (3) quantities and distributions of material impurities, which are missing from the material definitions. This work examines these issues and it focuses on the detector choice and the calculation methodologies. The work investigated the YALINA Booster subcritical assembly of Belarus, which has been operated with three different fuel enrichments in the fast zone either: high (90%) and medium (36%), medium (36%), or low (21%) enriched uranium fuel.
International Nuclear Information System (INIS)
Talamo, Alberto; Gohar, Y.; Cao, Y.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.
2012-01-01
In subcritical assemblies, the Bell and Glasstone spatial correction factor is used to correct the measured reactivity from different detector positions. In addition to the measuring position, several other parameters affect the correction factor: the detector material, the detector size, and the energy-angle distribution of source neutrons. The effective multiplication factor calculated by computer codes in criticality mode slightly differs from the average value obtained from the measurements in the different experimental channels of the subcritical assembly, which are corrected by the Bell and Glasstone spatial correction factor. Generally, this difference is due to (1) neutron counting errors; (2) geometrical imperfections, which are not simulated in the calculational model, and (3) quantities and distributions of material impurities, which are missing from the material definitions. This work examines these issues and it focuses on the detector choice and the calculation methodologies. The work investigated the YALINA Booster subcritical assembly of Belarus, which has been operated with three different fuel enrichments in the fast zone either: high (90%) and medium (36%), medium (36%), or low (21%) enriched uranium fuel.
Regression dilution bias: tools for correction methods and sample size calculation.
Berglund, Lars
2012-08-01
Random errors in measurement of a risk factor will introduce downward bias of an estimated association to a disease or a disease marker. This phenomenon is called regression dilution bias. A bias correction may be made with data from a validity study or a reliability study. In this article we give a non-technical description of designs of reliability studies with emphasis on selection of individuals for a repeated measurement, assumptions of measurement error models, and correction methods for the slope in a simple linear regression model where the dependent variable is a continuous variable. Also, we describe situations where correction for regression dilution bias is not appropriate. The methods are illustrated with the association between insulin sensitivity measured with the euglycaemic insulin clamp technique and fasting insulin, where measurement of the latter variable carries noticeable random error. We provide software tools for estimation of a corrected slope in a simple linear regression model assuming data for a continuous dependent variable and a continuous risk factor from a main study and an additional measurement of the risk factor in a reliability study. Also, we supply programs for estimation of the number of individuals needed in the reliability study and for choice of its design. Our conclusion is that correction for regression dilution bias is seldom applied in epidemiological studies. This may cause important effects of risk factors with large measurement errors to be neglected.
Relativistic and QED corrections to the g factor of Li-like ions
International Nuclear Information System (INIS)
Glazov, D.A.; Shabaev, V.M.; Volotka, A.V.; Tupitsyn, I.I.; Yerokhin, V.A.; Plunien, G.; Soff, G.
2004-01-01
Calculations of various corrections to the g factor of Li-like ions are presented, which result in a significant improvement of the theoretical accuracy in the region Z=6-92. The configuration-interaction Dirac-Fock method is employed for the evaluation of the interelectronic-interaction correction of order 1/Z 2 and higher. This correction is combined with the 1/Z interelectronic-interaction term derived within a rigorous QED approach. The one-electron QED correction of first order in α is obtained by employing our recent results for the self-energy term and by evaluating the vacuum-polarization contribution. The screening of QED corrections is taken into account to the leading orders in αZ and 1/Z
Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.
2017-02-01
The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (ke) and photon scattering correction factor (ksc) are needed. ke factor corrects the charge loss from the collecting volume and ksc factor corrects the scattering of photons into collecting volume. In this work ke and ksc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the ke and ksc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.
International Nuclear Information System (INIS)
Mohammadi, S.M.; Tavakoli-Anbaran, H.; Zeinali, H.Z.
2017-01-01
The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (k e ) and photon scattering correction factor (k sc ) are needed. k e factor corrects the charge loss from the collecting volume and k sc factor corrects the scattering of photons into collecting volume. In this work k e and k sc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the k e and k sc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.
Power factor correction (PFC) converters feeding brushless DC ...
African Journals Online (AJOL)
This paper presents a comprehensive study of power factor correction (PFC) converters for feeding brushless DC (BLDC) motor drive. This work explores various configurations of PFC converters which are classified into five different categories of non-isolated, bridgeless (BL) non-isolated, isolated, BL-isolated PFC ...
Power Factor Correction for Thyristor Equipment in Glass Industry ...
African Journals Online (AJOL)
Thyristor power controllers are now widely used in the glass industry for controlling furnace temperature. While offering a number of operational advantages, they operate at lagging power factors which require correction for minimum power cost. Harmonic resonance with the utility feed, however, complicate the use of ...
Investigating power factor compensation capacity calculation in medium sized industry
International Nuclear Information System (INIS)
Chudhry, M.A.; Hanif, A.
2008-01-01
There are a variety of techniques developed in order to improve the efficiency of electrical systems and reduce cost of providing electricity to the consumer. This paper presents a new technique for power-factor capacity calculation in medium-sized industrial/ commercial setups. Various loads of similar nominal power-factor are categorized and demand-factor of loads is so selected that it has engineering justifications. The developed system works on the principle of low-voltage power-factor correction, which substantially reduces electricity bill and increases loading-capacity of the electrical system. It allows commercial and industrial consumers to save on their power cost appreciably. This work utilizes software, which takes few inputs and produces numerous useful results. Adoption of this system can help the user in computing compensation-capacity, system KVA (size of transformer) and cost of compensation. A feature of this system is prediction of low PF penalty. Moreover, it also suggests the tentative payback period. (author)
Perturbative corrections to B → D form factors in QCD
Wang, Yu-Ming; Wei, Yan-Bing; Shen, Yue-Long; Lü, Cai-Dian
2017-06-01
We compute perturbative QCD corrections to B → D form factors at leading power in Λ/ m b , at large hadronic recoil, from the light-cone sum rules (LCSR) with B-meson distribution amplitudes in HQET. QCD factorization for the vacuum-to- B-meson correlation function with an interpolating current for the D-meson is demonstrated explicitly at one loop with the power counting scheme {m}_c˜ O(√{Λ {m}_b}) . The jet functions encoding information of the hard-collinear dynamics in the above-mentioned correlation function are complicated by the appearance of an additional hard-collinear scale m c , compared to the counterparts entering the factorization formula of the vacuum-to- B-meson correction function for the construction of B → π from factors. Inspecting the next-to-leading-logarithmic sum rules for the form factors of B → Dℓν indicates that perturbative corrections to the hard-collinear functions are more profound than that for the hard functions, with the default theory inputs, in the physical kinematic region. We further compute the subleading power correction induced by the three-particle quark-gluon distribution amplitudes of the B-meson at tree level employing the background gluon field approach. The LCSR predictions for the semileptonic B → Dℓν form factors are then extrapolated to the entire kinematic region with the z-series parametrization. Phenomenological implications of our determinations for the form factors f BD +,0 ( q 2) are explored by investigating the (differential) branching fractions and the R( D) ratio of B → Dℓν and by determining the CKM matrix element |V cb | from the total decay rate of B → Dμν μ .
Reply to comment on 'Model calculation of the scanned field enhancement factor of CNTs'
International Nuclear Information System (INIS)
Ahmad, Amir; Tripathi, V K
2010-01-01
In the paper (Ahmad and Tripathi 2006 Nanotechnology 17 3798), we derived an expression to compute the field enhancement factor of CNTs under any positional distribution of CNTs by using the model of a floating sphere between parallel anode and cathode plates. Using this expression we can compute the field enhancement factor of a CNT in a cluster (non-uniformly distributed CNTs). This expression was used to compute the field enhancement factor of a CNT in an array (uniformly distributed CNTs). We used an approximation to calculate the field enhancement factor. Hence, our expressions are correct in that assumption only. Zhbanov et al (2010 Nanotechnology 21 358001) suggest a correction that can calculate the field enhancement factor without using the approximation. Hence, this correction can improve the applicability of this model. (reply)
DEFF Research Database (Denmark)
Pinkevych, Mykola; Cromer, Deborah; Tolstrup, Martin
2016-01-01
[This corrects the article DOI: 10.1371/journal.ppat.1005000.][This corrects the article DOI: 10.1371/journal.ppat.1005740.][This corrects the article DOI: 10.1371/journal.ppat.1005679.].......[This corrects the article DOI: 10.1371/journal.ppat.1005000.][This corrects the article DOI: 10.1371/journal.ppat.1005740.][This corrects the article DOI: 10.1371/journal.ppat.1005679.]....
Effect of precipitation bias correction on water budget calculation in Upper Yellow River, China
International Nuclear Information System (INIS)
Ye Baisheng; Yang Daqing; Ma Lijuan
2012-01-01
This study quantifies the effect of precipitation bias corrections on basin water balance calculations for the Yellow River Source region (YRS). We analyse long-term (1959–2001) monthly and yearly data of precipitation, runoff, and ERA-40 water budget variables and define a water balance regime. Basin precipitation, evapotranspiration and runoff are high in summer and low in winter. The basin water storage change is positive in summer and negative in winter. Monthly precipitation bias corrections, ranging from 2 to 16 mm, do not significantly alter the pattern of the seasonal water budget. The annual bias correction of precipitation is about 98 mm (19%); this increase leads to the same amount of evapotranspiration increase, since yearly runoff remains unchanged and the long-term storage change is assumed to be zero. Annual runoff and evapotranspiration coefficients change, due to precipitation bias corrections, from 0.33 and 0.67 to 0.28 and 0.72, respectively. These changes will impact the parameterization and calibration of land surface and hydrological models. The bias corrections of precipitation data also improve the relationship between annual precipitation and runoff. (letter)
International Nuclear Information System (INIS)
Hayashi, Naoki; Shibamoto, Yuta; Obata, Yasunori; Kimura, Takashi; Nakazawa, Hisato; Hagiwara, Masahiro; Hashizume, Chisa I.; Mori, Yoshimasa; Kobayashi, Tatsuya
2010-01-01
The purpose of this study was to evaluate the effect of megavoltage photon beam attenuation (PBA) by couch tops and to propose a method for correction of PBA. Four series of phantom measurements were carried out. First, PBA by the exact couch top (ECT, Varian) and Imaging Couch Top (ICT, BrainLAB) was evaluated using a water-equivalent phantom. Second, PBA by Type-S system (Med-Tec), ECT and ICT was compared with a spherical phantom. Third, percentage depth dose (PDD) after passing through ICT was measured to compare with control data of PDD. Forth, the gantry angle dependency of PBA by ICT was evaluated. Then, an equation for PBA correction was elaborated and correction factors for PBA at isocenter were obtained. Finally, this method was applied to a patient with hepatoma. PBA of perpendicular beams by ICT was 4.7% on average. With the increase in field size, the measured values became higher. PBA by ICT was greater than that by Type-S system and ECT. PBA increased significantly as the angle of incidence increased, ranging from 4.3% at 180 deg to 11.2% at 120 deg. Calculated doses obtained by the equation and correction factors agreed quite well with the measured doses between 120 deg and 180 deg of angles of incidence. Also in the patient, PBA by ICT was corrected quite well by the equation and correction factors. In conclusion, PBA and its gantry angle dependency by ICT were observed. This simple method using the equation and correction factors appeared useful to correct the isocenter dose when the PBA effect cannot be corrected by a treatment planning system. (author)
Zoros, E.; Moutsatsos, A.; Pappas, E. P.; Georgiou, E.; Kollias, G.; Karaiskos, P.; Pantelis, E.
2017-09-01
Detector-, field size- and machine-specific correction factors are required for precise dosimetry measurements in small and non-standard photon fields. In this work, Monte Carlo (MC) simulation techniques were used to calculate the k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} and k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors for a series of ionization chambers, a synthetic microDiamond and diode dosimeters, used for reference and/or output factor (OF) measurements in the Gamma Knife Perfexion photon fields. Calculations were performed for the solid water (SW) and ABS plastic phantoms, as well as for a water phantom of the same geometry. MC calculations for the k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors in SW were compared against corresponding experimental results for a subset of ionization chambers and diode detectors. Reference experimental OF data were obtained through the weighted average of corresponding measurements using TLDs, EBT-2 films and alanine pellets. k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} values close to unity (within 1%) were calculated for most of ionization chambers in water. Greater corrections of up to 6.0% were observed for chambers with relatively large air-cavity dimensions and steel central electrode. A phantom correction of 1.006 and 1.024 (breaking down to 1.014 from the ABS sphere and 1.010 from the accompanying ABS phantom adapter) were calculated for the SW and ABS phantoms, respectively, adding up to k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} corrections in water. Both measurements and MC calculations for the diode and microDiamond detectors resulted in lower than unit k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors, due to their denser sensitive volume and encapsulation materials. In comparison, higher than unit k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} results for the ionization chambers suggested field size depended dose underestimations (being significant for the 4 mm field), with magnitude depending on the combination of
Fischer, Michael; Angel, Ross J.
2017-05-01
Density-functional theory (DFT) calculations incorporating a pairwise dispersion correction were employed to optimize the structures of various neutral-framework compounds with zeolite topologies. The calculations used the PBE functional for solids (PBEsol) in combination with two different dispersion correction schemes, the D2 correction devised by Grimme and the TS correction of Tkatchenko and Scheffler. In the first part of the study, a benchmarking of the DFT-optimized structures against experimental crystal structure data was carried out, considering a total of 14 structures (8 all-silica zeolites, 4 aluminophosphate zeotypes, and 2 dense phases). Both PBEsol-D2 and PBEsol-TS showed an excellent performance, improving significantly over the best-performing approach identified in a previous study (PBE-TS). The temperature dependence of lattice parameters and bond lengths was assessed for those zeotypes where the available experimental data permitted such an analysis. In most instances, the agreement between DFT and experiment improved when the experimental data were corrected for the effects of thermal motion and when low-temperature structure data rather than room-temperature structure data were used as a reference. In the second part, a benchmarking against experimental enthalpies of transition (with respect to α-quartz) was carried out for 16 all-silica zeolites. Excellent agreement was obtained with the PBEsol-D2 functional, with the overall error being in the same range as the experimental uncertainty. Altogether, PBEsol-D2 can be recommended as a computationally efficient DFT approach that simultaneously delivers accurate structures and energetics of neutral-framework zeotypes.
Calculating the mounting parameters for Taylor Spatial Frame correction using computed tomography.
Kucukkaya, Metin; Karakoyun, Ozgur; Armagan, Raffi; Kuzgun, Unal
2011-07-01
The Taylor Spatial Frame uses a computer program-based six-axis deformity analysis. However, there is often a residual deformity after the initial correction, especially in deformities with a rotational component. This problem can be resolved by recalculating the parameters and inputting all new deformity and mounting parameters. However, this may necessitate repeated x-rays and delay treatment. We believe that error in the mounting parameters is the main reason for most residual deformities. To prevent these problems, we describe a new calculation technique for determining the mounting parameters that uses computed tomography. This technique is especially advantageous for deformities with a rotational component. Using this technique, exact calculation of the mounting parameters is possible and the residual deformity and number of repeated x-rays can be minimized. This new technique is an alternative method to accurately calculating the mounting parameters.
International Nuclear Information System (INIS)
Chalons, G.
2010-07-01
This thesis focuses on the evaluation of supersymmetric radiative corrections for processes involved in the calculation of the relic density of dark matter, in the MSSM (Minimal Supersymmetric Standard Model) and the standard cosmological scenario, as well as the impact of the choice renormalisation scheme in the neutralino/chargino sector based on the measure of three physical masses. This study has been carried out with the help of an automatic program dedicated the the computation of physical observables at one-loop in the MSSM, called SloopS. For the relic density calculation we investigated scenarios where the most studied dark matter candidate, the neutralino, annihilates into gauge boson pair. We covered cases where its mass was of the order of hundreds of GeV to 2 TeV. The full set of electroweak and strong corrections has been taken into account, involved in sub-leading channels with quarks. In the case of very heavy neutralinos, two important effects were outlined: the Sommerfeld enhancement due to massive gauge bosons and maybe even more important some corrections of Sudakov type. (authors)
Calculating corrections in F-theory from refined BPS invariants and backreacted geometries
Energy Technology Data Exchange (ETDEWEB)
Poretschkin, Maximilian
2015-07-01
This thesis presents various corrections to F-theory compactifications which rely on the computation of refined Bogomol'nyi-Prasad-Sommerfield (BPS) invariants and the analysis of backreacted geometries. Detailed information about rigid supersymmetric theories in five dimensions is contained in an index counting refined BPS invariants. These BPS states fall into representations of SU(2){sub L} x SU(2){sub R}, the little group in five dimensions, which has an induced action on the cohomology of the moduli space of stable pairs. In the first part of this thesis, we present the computation of refined BPS state multiplicities associated to M-theory compactifications on local Calabi-Yau manifolds whose base is given by a del Pezzo or half K3 surface. For geometries with a toric realization we use an algorithm which is based on the Weierstrass normal form of the mirror geometry. In addition we use the refined holomorphic anomaly equation and the gap condition at the conifold locus in the moduli space in order to perform the direct integration and to fix the holomorphic ambiguity. In a second approach, we use the refined Goettsche formula and the refined modular anomaly equation that govern the (refined) genus expansion of the free energy of the half K3 surface. By this procedure, we compute the refined BPS invariants of the half K3 from which the results of the remaining del Pezzo surfaces are obtained by flop transitions and blow-downs. These calculations also make use of the high symmetry of the del Pezzo surfaces whose homology lattice contains the root lattice of exceptional Lie algebras. In cases where both approaches are applicable, we successfully check the compatibility of these two methods. In the second part of this thesis, we apply the results obtained from the calculation of the refined invariants of the del Pezzo respectively the half K3 surfaces to count non-perturbative objects in F-theory. The first application is given by BPS states of the E
Correction factors for photon spectrometry in nuclear parameters study
International Nuclear Information System (INIS)
Patrao, Karla Cristina de Souza
2004-10-01
The goal of this work was the determination, using metrologic severity, the factors of correction for coincidences XX, Xγ and γγ and the factors of transference of efficiency for use in gamma spectrometry. On this way, it was carried through by determination of nuclear parameters of a nuclide used in medicine diagnostic ( 201 Tl) and the standardization of two environmental samples, of regular and irregular geometry, proceeding from the residual (ashes and slag) from the nuclear industry. The results shows that this adopted methodology is valid, and it allows its application for many different nuclides, including complex decay schema nuclides, using only photons spectrometry techniques on semiconductor detectors. (author)
Validation of calculated self-shielding factors for Rh foils
Jaćimović, R.; Trkov, A.; Žerovnik, G.; Snoj, L.; Schillebeeckx, P.
2010-10-01
Rhodium foils of about 5 mm diameter were obtained from IRMM. One foil had thickness of 0.006 mm and three were 0.112 mm thick. They were irradiated in the pneumatic transfer system and in the carousel facility of the TRIGA reactor at the Jožef Stefan Institute. The foils were irradiated bare and enclosed in small cadmium boxes (about 2 g weight) of 1 mm thickness to minimise the perturbation of the local neutron flux. They were co-irradiated with 5 mm diameter and 0.2 mm thick Al-Au (0.1%) alloy monitor foils. The resonance self-shielding corrections for the 0.006 and 0.112 mm thick samples were calculated by the Monte Carlo simulation and amount to about 10% and 60%, respectively. The consistency of measurements confirmed the validity of self-shielding factors. Trial estimates of Q0 and k0 factors for the 555.8 keV gamma line of 104Rh were made and amount to 6.65±0.18 and (6.61±0.12)×10 -2, respectively.
International Nuclear Information System (INIS)
Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A.
1991-01-01
The detailed account of analytic calculation of radiative-recoil correction to muonium hyperfine splitting, induced by electron-line radiative insertions, is presented. The consideration is performed in the framework of the effective two-particle formalism. A good deal of attention is paid to the problem of the divergence cancellation and the selection of graphs, relevant to radiative-recoil corrections. The analysis is greatly facilitated by use of the Fried-Yennie gauge for radiative photons. The obtained set of graphs turns out to be gauge-invariant and actual calculations are performed in the Feynman gauge. The main technical tricks, with the help of which we have effectively utilized the existence in the problem of the small parameter-mass ratio and managed to perform all calculations in the analytic form are described. The main intermediate results, as well as the final answer, δE rr = (α(Ζα)/π 2 )(m/M)E F (6ζ(3) + 3π 2 In 2 + π 2 /2 + 17/8), are also presented
Computer automation for protection factor calculations of buildings
International Nuclear Information System (INIS)
Farafat, M.A.Z.; Madian, A.H.
2011-01-01
The protection factors of buildings are different according to the constructional and architectural specifications. Uk and USA performed a calculation using manual method to calculate the protection factor for any building which may protect the people in it from gamma rays and fall-out.The manual calculation method is very complex which is very difficult to use, for that reason the researchers simplify this method in proposed form which will be easy to understand and use. Also the researchers have designed a computer program ,in visual basic, to calculate the different protection factors for buildings. The program aims to provide the missing time in the calculation processes to calculate the protection in some spaces for any building through entering specifications data for any building .The program will modify the protection factor in very short time which will save the effort and time in comparison with the manual calculation.
Current s - quark mass corrections to the form factors of D - meson semileptonic decays
International Nuclear Information System (INIS)
Hussain, F.; Ivanov, A.N.; Troitskaya, N.I.
1994-11-01
The infinite mass effective theory, when a heavy quark mass tends to infinity, and Chiral perturbation theory at the quark level, based on the extended Nambu - Jona - Lasinio model with linear realization of chiral U(3) x U(3) symmetry, are applied to the calculations of current s - quark mass corrections to the form factors of the D → K-bar e + ν e and D → K-bar * e + ν e decays. These corrections turn out to be quite significant, of the order of 7 - 20%. The theoretical results are compared with experimental data. (author). 17 refs
The effect of correction factors on internal bremsstrahlung spectrum
International Nuclear Information System (INIS)
Elias, M.M.
1985-01-01
Correction factors affecting the experimental spectrum of internal bremsstrahlung (IB) accompanying B-decay have been studied. A wide survey of previous experimental studies, show a discrepancy between experimental results and the available theories of IB production especially for heavy nuclides and forbidden B-transitions, with some agreement in bounded regions in IB spectrum. This is due to the uncertainity in evaluating correction factors and neglecting others. The experimental distributions of IB from 147 Pm, 204 Tl and 90 Y are measured by using two different crystals of NaI(Tl) scintillators (2''x2'' and 3'''x3'') with suitable geometrical arrangements designed to minimize the effect of several factors. The present study covers overlapped ranges of energy from 0.05 to 2.2 MeV to observe the effect of these factors along this wide region of energy. The experimental probabilities are compared with theories. It agrees fairly well with Lewis and Ford theory in case of 14 '7Pm, 204 Tl, and with detour transitions theory in the intermediate region of energies of IB spectrum from 90 Y. Deviation of our results from theories is less than all previous experimental work. 20 tabs.; 43 figs.; 84 refs.; 5 apps
Power correction to the asymptotics of the pion electromagnetic form factor
International Nuclear Information System (INIS)
Geshkenbein, B.V.; Terentyev, M.V.
1982-01-01
The contribution of the power correction approximately (μ 2 /Q 2 ) 2 enhanced by the factor approximately μ 2 /anti m 2 , to the pion form factor (FF) is calculated (here μ is the pion mass, anti m=1/2(msub(u)+msub(α)) is the mean value of the u- and d-quark masses, Q 2 =-(p-p') 2 > 0, where p, p' are meson momenta at initial and final state. It is shown that the only source of large corrections is due to the contribution of the local pseudoscalar current. The main (approximately 1/Q 2 ) asymptotics of FF associated with the axial current contribution, is derived. The contribution (approximately 1/Q 4 ) of the pseudoscalar current is calculated
Energy Technology Data Exchange (ETDEWEB)
Park, Yang-Kyun, E-mail: ykpark@mgh.harvard.edu; Sharp, Gregory C.; Phillips, Justin; Winey, Brian A. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)
2015-08-15
Purpose: To demonstrate the feasibility of proton dose calculation on scatter-corrected cone-beam computed tomographic (CBCT) images for the purpose of adaptive proton therapy. Methods: CBCT projection images were acquired from anthropomorphic phantoms and a prostate patient using an on-board imaging system of an Elekta infinity linear accelerator. Two previously introduced techniques were used to correct the scattered x-rays in the raw projection images: uniform scatter correction (CBCT{sub us}) and a priori CT-based scatter correction (CBCT{sub ap}). CBCT images were reconstructed using a standard FDK algorithm and GPU-based reconstruction toolkit. Soft tissue ROI-based HU shifting was used to improve HU accuracy of the uncorrected CBCT images and CBCT{sub us}, while no HU change was applied to the CBCT{sub ap}. The degree of equivalence of the corrected CBCT images with respect to the reference CT image (CT{sub ref}) was evaluated by using angular profiles of water equivalent path length (WEPL) and passively scattered proton treatment plans. The CBCT{sub ap} was further evaluated in more realistic scenarios such as rectal filling and weight loss to assess the effect of mismatched prior information on the corrected images. Results: The uncorrected CBCT and CBCT{sub us} images demonstrated substantial WEPL discrepancies (7.3 ± 5.3 mm and 11.1 ± 6.6 mm, respectively) with respect to the CT{sub ref}, while the CBCT{sub ap} images showed substantially reduced WEPL errors (2.4 ± 2.0 mm). Similarly, the CBCT{sub ap}-based treatment plans demonstrated a high pass rate (96.0% ± 2.5% in 2 mm/2% criteria) in a 3D gamma analysis. Conclusions: A priori CT-based scatter correction technique was shown to be promising for adaptive proton therapy, as it achieved equivalent proton dose distributions and water equivalent path lengths compared to those of a reference CT in a selection of anthropomorphic phantoms.
International Nuclear Information System (INIS)
Guler, H.
2003-12-01
In the framework of quantum chromodynamics, the nucleon is made of three valence quarks surrounded by a sea of gluons and quark-antiquark pairs. Only the only lightest quarks (u, d and s) contribute significantly to the nucleon properties. In G 0 we use the property of weak interaction to violate parity symmetry, in order to determine separately the contributions of the three types of quarks to nucleon form factors. The experiment, which takes place at Thomas Jefferson laboratory (USA), aims at measuring parity violation asymmetry in electron-proton scattering. By doing several measurements at different momentum squared of the exchanged photons and for different kinematics (forward angle when the proton is detected and backward angle it will be the electron) will permit to determine separately strange quarks electric and magnetic contributions to nucleon form factors. To extract an asymmetry with small errors, it is necessary to correct all the beam parameters, and to have high enough counting rates in detectors. A special electronics was developed to treat information coming from 16 scintillator pairs for each of the 8 sectors of the G 0 spectrometer. A complete calculation of radiative corrections has been done and Monte Carlo simulations with the GEANT program has permitted to determine the shape of the experimental spectra including inelastic background. This work will allow to do a comparison between experimental data and theoretical calculations based on the Standard Model. (author)
Calculation and measurement of radiation corrections for plasmon resonances in nanoparticles
Hung, L.; Lee, S. Y.; McGovern, O.; Rabin, O.; Mayergoyz, I.
2013-08-01
The problem of plasmon resonances in metallic nanoparticles can be formulated as an eigenvalue problem under the condition that the wavelengths of the incident radiation are much larger than the particle dimensions. As the nanoparticle size increases, the quasistatic condition is no longer valid. For this reason, the accuracy of the electrostatic approximation may be compromised and appropriate radiation corrections for the calculation of resonance permittivities and resonance wavelengths are needed. In this paper, we present the radiation corrections in the framework of the eigenvalue method for plasmon mode analysis and demonstrate that the computational results accurately match analytical solutions (for nanospheres) and experimental data (for nanorings and nanocubes). We also demonstrate that the optical spectra of silver nanocube suspensions can be fully assigned to dipole-type resonance modes when radiation corrections are introduced. Finally, our method is used to predict the resonance wavelengths for face-to-face silver nanocube dimers on glass substrates. These results may be useful for the indirect measurements of the gaps in the dimers from extinction cross-section observations.
International Nuclear Information System (INIS)
Calderon, E; Siergiej, D
2014-01-01
Purpose: Output factor determination for small fields (less than 20 mm) presents significant challenges due to ion chamber volume averaging and diode over-response. Measured output factor values between detectors are known to have large deviations as field sizes are decreased. No set standard to resolve this difference in measurement exists. We observed differences between measured output factors of up to 14% using two different detectors. Published Monte Carlo derived correction factors were used to address this challenge and decrease the output factor deviation between detectors. Methods: Output factors for Elekta's linac-based stereotactic cone system were measured using the EDGE detector (Sun Nuclear) and the A16 ion chamber (Standard Imaging). Measurements conditions were 100 cm SSD (source to surface distance) and 1.5 cm depth. Output factors were first normalized to a 10.4 cm × 10.4 cm field size using a daisy-chaining technique to minimize the dependence of field size on detector response. An equation expressing the relation between published Monte Carlo correction factors as a function of field size for each detector was derived. The measured output factors were then multiplied by the calculated correction factors. EBT3 gafchromic film dosimetry was used to independently validate the corrected output factors. Results: Without correction, the deviation in output factors between the EDGE and A16 detectors ranged from 1.3 to 14.8%, depending on cone size. After applying the calculated correction factors, this deviation fell to 0 to 3.4%. Output factors determined with film agree within 3.5% of the corrected output factors. Conclusion: We present a practical approach to applying published Monte Carlo derived correction factors to measured small field output factors for the EDGE and A16 detectors. Using this method, we were able to decrease the percent deviation between both detectors from 14.8% to 3.4% agreement
Determination of true coincidence correction factors using Monte-Carlo simulation techniques
Directory of Open Access Journals (Sweden)
Chionis Dionysios A.
2014-01-01
Full Text Available Aim of this work is the numerical calculation of the true coincidence correction factors by means of Monte-Carlo simulation techniques. For this purpose, the Monte Carlo computer code PENELOPE was used and the main program PENMAIN was properly modified in order to include the effect of the true coincidence phenomenon. The modified main program that takes into consideration the true coincidence phenomenon was used for the full energy peak efficiency determination of an XtRa Ge detector with relative efficiency 104% and the results obtained for the 1173 keV and 1332 keV photons of 60Co were found consistent with respective experimental ones. The true coincidence correction factors were calculated as the ratio of the full energy peak efficiencies was determined from the original main program PENMAIN and the modified main program PENMAIN. The developed technique was applied for 57Co, 88Y, and 134Cs and for two source-to-detector geometries. The results obtained were compared with true coincidence correction factors calculated from the "TrueCoinc" program and the relative bias was found to be less than 2%, 4%, and 8% for 57Co, 88Y, and 134Cs, respectively.
International Nuclear Information System (INIS)
Margaritisz, Tanaszisz
1984-01-01
The Glashow-Weinberg-Salam theory of unified electromagnetic and weak interactions, believed to be the correct quantum theory of these interactions, possesses the great advantage of being renormable. Thus the perturbation theory is applicable to calculate the radiative corrections of the tree-graph results. The present paper describes the detailed calculation of one-loop corrections to beta decay of hyperons. After defining the theory and fixing the gauge and renormalization conventions, the equations of weak and electromagnetic one-loop corrections are derived. Numerical evaluation of the equations was helped by algebraic and integrator computer codes. The results are directly comparable to experimental data. (D.Gy.)
MONOTONIC DERIVATIVE CORRECTION FOR CALCULATION OF SUPERSONIC FLOWS WITH SHOCK WAVES
Directory of Open Access Journals (Sweden)
P. V. Bulat
2015-07-01
Full Text Available Subject of Research. Numerical solution methods of gas dynamics problems based on exact and approximate solution of Riemann problem are considered. We have developed an approach to the solution of Euler equations describing flows of inviscid compressible gas based on finite volume method and finite difference schemes of various order of accuracy. Godunov scheme, Kolgan scheme, Roe scheme, Harten scheme and Chakravarthy-Osher scheme are used in calculations (order of accuracy of finite difference schemes varies from 1st to 3rd. Comparison of accuracy and efficiency of various finite difference schemes is demonstrated on the calculation example of inviscid compressible gas flow in Laval nozzle in the case of continuous acceleration of flow in the nozzle and in the case of nozzle shock wave presence. Conclusions about accuracy of various finite difference schemes and time required for calculations are made. Main Results. Comparative analysis of difference schemes for Euler equations integration has been carried out. These schemes are based on accurate and approximate solution for the problem of an arbitrary discontinuity breakdown. Calculation results show that monotonic derivative correction provides numerical solution uniformity in the breakdown neighbourhood. From the one hand, it prevents formation of new points of extremum, providing the monotonicity property, but from the other hand, causes smoothing of existing minimums and maximums and accuracy loss. Practical Relevance. Developed numerical calculation method gives the possibility to perform high accuracy calculations of flows with strong non-stationary shock and detonation waves. At the same time, there are no non-physical solution oscillations on the shock wave front.
International Nuclear Information System (INIS)
Manduci, L.; Tenailleau, L.; Trolet, J.L.; De Vismes, A.; Lopez, G.; Piccione, M.
2010-01-01
The mass attenuation coefficients for a number of marine and terrestrial bioindicators were measured using γ spectrometry for energies between 22 and 80 keV. These values were then used to find the correction factor k for the apparent radioactivity. The experimental results were compared with a Monte Carlo simulation performed using PENELOPE in order to evaluate the reliability of the simplified calculation and to determine the correction factors.
New method in obtaining correction factor of power confirming
International Nuclear Information System (INIS)
Deng Yongjun; Li Rundong; Liu Yongkang; Zhou Wei
2010-01-01
Westcott theory is the most widely used method in reactor power calibration, which particularly suited to research reactor. But this method is very fussy because lots of correction parameters which rely on empirical formula to special reactor type are needed. The incidence coefficient between foil activity and reactor power was obtained by Monte-Carlo calculation, which was carried out with precise description of the reactor core and the foil arrangement position by MCNP input card. So the reactor power was determined by the core neutron fluence profile and the foil activity placed in the position for normalization use. The characteristic of this new method is simpler, more flexible and accurate than Westcott theory. In this paper, the results of SPRR-300 obtained by the new method in theory were compared with the experimental results, which verified the possibility of this new method. (authors)
1/mQ corrections to form factors and extraction of |Vcb|
International Nuclear Information System (INIS)
Liu, J.; Chao, K.
1997-01-01
Form factors for 0 - →0 - and 0 - →1 - mesonic transitions in the heavy quark limit and the 1/m Q corrections are analyzed model independently within the Bethe-Salpeter (BS) formalism. The analysis shows that the BS formalism has spin-flavor symmetry in the heavy quark limit and respects Luke's theorem when the 1/m Q corrections are taken into account. All form factors for B→D (*) transitions beyond the zero recoil point are estimated in a relativistic constituent quark model based on the BS formalism. Using these form factors we calculate the branching ratios for the semileptonic decays B→D (*) l + ν l and extract the Cabibbo-Kobayashi-Maskawa matrix element |V cb |. We get |V cb |=0.042±0.003 which is consistent with the current world average. copyright 1997 The American Physical Society
Self-interaction corrected density functional calculations of molecular Rydberg states
International Nuclear Information System (INIS)
Gudmundsdóttir, Hildur; Zhang, Yao; Weber, Peter M.; Jónsson, Hannes
2013-01-01
A method is presented for calculating the wave function and energy of Rydberg excited states of molecules. A good estimate of the Rydberg state orbital is obtained using ground state density functional theory including Perdew-Zunger self-interaction correction and an optimized effective potential. The total energy of the excited molecule is obtained using the Delta Self-Consistent Field method where an electron is removed from the highest occupied orbital and placed in the Rydberg orbital. Results are presented for the first few Rydberg states of NH 3 , H 2 O, H 2 CO, C 2 H 4 , and N(CH 3 ) 3 . The mean absolute error in the energy of the 33 molecular Rydberg states presented here is 0.18 eV. The orbitals are represented on a real space grid, avoiding the dependence on diffuse atomic basis sets. As in standard density functional theory calculations, the computational effort scales as NM 2 where N is the number of orbitals and M is the number of grid points included in the calculation. Due to the slow scaling of the computational effort with system size and the high level of parallelism in the real space grid approach, the method presented here makes it possible to estimate Rydberg electron binding energy in large molecules
Moreano, H. R.; Paredes, N.
2011-12-01
The Guayas estuary is the inner area of the Gulf of Guayaquil, it holds a water body of around 5000 km2 and the Puna island divides the water flow in two main streams : El Morro and Estero Salado Channel (length: 90 Km.) and Jambeli and Rio Guayas Channel (length: 125km.). The geometry of the estuarine system with the behavior of the tidal wave (semidiurnal) makes tidal amplitude higher at the head than at the mouth, whereas the wave crest at the head is delayed from one and a half to two hours from that at the mouth and sea level recorded by gages along the estuary are all different because of the wave propagation and mean sea level (msl) calculated for each gage show differences with that of La Libertad which is the base line for all altitudes on land (zero level). A leveling and calculations were made to correct such differences in a way that all gages (msl) records were linked to La Libertad and this in turn allowed a better estimates of flooding areas and draw them on topographic maps where zero level corresponds to the mean sea level at La Libertad. The procedure and mathematical formulation could be applied to any estuary or coastal area and it is a useful tool to calculate such areas especially when impacts are on people or capital goods and related to climate change scenarios.
Calculation of coupling factor for double-period accelerating structure
International Nuclear Information System (INIS)
Bian Xiaohao; Chen Huaibi; Zheng Shuxin
2005-01-01
In the design of the linear accelerating structure, the coupling factor between cavities is a crucial parameter. The error of coupling factor accounts for the electric or magnetic field error mainly. To accurately design the coupling iris, the accurate calculation of coupling factor is essential. The numerical simulation is widely used to calculate the coupling factor now. By using MAFIA code, two methods have been applied to calculate the dispersion characteristics of the single-period structure, one method is to simulate the traveling wave mode by the period boundary condition; another method is to simulate the standing wave mode by the electrical boundary condition. In this work, the authors develop the two methods to calculate the coupling factor of double-period accelerating structure. Compared to experiment, the results for both methods are very similar, and in agreement with measurement within 15% deviation. (authors)
Real-Gas Correction Factors for Hypersonic Flow Parameters in Helium
Erickson, Wayne D.
1960-01-01
The real-gas hypersonic flow parameters for helium have been calculated for stagnation temperatures from 0 F to 600 F and stagnation pressures up to 6,000 pounds per square inch absolute. The results of these calculations are presented in the form of simple correction factors which must be applied to the tabulated ideal-gas parameters. It has been shown that the deviations from the ideal-gas law which exist at high pressures may cause a corresponding significant error in the hypersonic flow parameters when calculated as an ideal gas. For example the ratio of the free-stream static to stagnation pressure as calculated from the thermodynamic properties of helium for a stagnation temperature of 80 F and pressure of 4,000 pounds per square inch absolute was found to be approximately 13 percent greater than that determined from the ideal-gas tabulation with a specific heat ratio of 5/3.
Wang, Lilie
In ionization chamber radiation dosimetry, the introduction of the ion chamber into medium will unavoidably distort the radiation field near the chamber because the chamber cavity material (air) is different from the medium. A replacement correction factor, Prepl was introduced in order to correct the chamber readings to give an accurate radiation dose in the medium without the presence of the chamber. Generally it is very hard to measure the values of Prepl since they are intertwined with the chamber wall effect. In addition, the P repl values always come together with the stopping-power ratio of the two media involved. This makes the problem of determining the P repl values even more complicated. Monte Carlo simulation is an ideal method to investigate the replacement correction factors. In this study, four different methods of calculating the values of Prepl by Monte Carlo simulation are discussed. Two of the methods are designated as 'direct' methods in the sense that the evaluation of the stopping-power ratio is not necessary. The systematic uncertainties of the two direct methods are estimated to be about 0.1-0.2% which comes from the ambiguous definition of the energy cutoff Delta used in the Spencer-Attix cavity theory. The two direct methods are used to calculate the values of P repl for both plane-parallel chambers and cylindrical thimble chambers in either electron beams or photon beams. The calculation results are compared to measurements. For electron beams, good agreements are obtained. For thimble chambers in photon beams, significant discrepancies are observed between calculations and measurements. The experiments are thus investigated and the procedures are simulated by the Monte Carlo method. It is found that the interpretation of the measured data as the replacement correction factors in dosimetry protocols are not correct. In applying the calculation to the BIPM graphite chamber in a 60Co beam, the calculated values of P repl differ from those
Calculation of coincidence summing corrections for a specific small soil sample geometry
Energy Technology Data Exchange (ETDEWEB)
Helmer, R.G.; Gehrke, R.J.
1996-10-01
Previously, a system was developed at the INEL for measuring the {gamma}-ray emitting nuclides in small soil samples for the purpose of environmental monitoring. These samples were counted close to a {approx}20% Ge detector and, therefore, it was necessary to take into account the coincidence summing that occurs for some nuclides. In order to improve the technical basis for the coincidence summing corrections, the authors have carried out a study of the variation in the coincidence summing probability with position within the sample volume. A Monte Carlo electron and photon transport code (CYLTRAN) was used to compute peak and total efficiencies for various photon energies from 30 to 2,000 keV at 30 points throughout the sample volume. The geometry for these calculations included the various components of the detector and source along with the shielding. The associated coincidence summing corrections were computed at these 30 positions in the sample volume and then averaged for the whole source. The influence of the soil and the detector shielding on the efficiencies was investigated.
Quality correction factors of composite IMRT beam deliveries: Theoretical considerations
International Nuclear Information System (INIS)
Bouchard, Hugo
2012-01-01
Purpose: In the scope of intensity modulated radiation therapy (IMRT) dosimetry using ionization chambers, quality correction factors of plan-class-specific reference (PCSR) fields are theoretically investigated. The symmetry of the problem is studied to provide recommendable criteria for composite beam deliveries where correction factors are minimal and also to establish a theoretical limit for PCSR delivery k Q factors. Methods: The concept of virtual symmetric collapsed (VSC) beam, being associated to a given modulated composite delivery, is defined in the scope of this investigation. Under symmetrical measurement conditions, any composite delivery has the property of having a k Q factor identical to its associated VSC beam. Using this concept of VSC, a fundamental property of IMRT k Q factors is demonstrated in the form of a theorem. The sensitivity to the conditions required by the theorem is thoroughly examined. Results: The theorem states that if a composite modulated beam delivery produces a uniform dose distribution in a volume V cyl which is symmetric with the cylindrical delivery and all beams fulfills two conditions in V cyl : (1) the dose modulation function is unchanged along the beam axis, and (2) the dose gradient in the beam direction is constant for a given lateral position; then its associated VSC beam produces no lateral dose gradient in V cyl , no matter what beam modulation or gantry angles are being used. The examination of the conditions required by the theorem lead to the following results. The effect of the depth-dose gradient not being perfectly constant with depth on the VSC beam lateral dose gradient is found negligible. The effect of the dose modulation function being degraded with depth on the VSC beam lateral dose gradient is found to be only related to scatter and beam hardening, as the theorem holds also for diverging beams. Conclusions: The use of the symmetry of the problem in the present paper leads to a valuable theorem showing
International Nuclear Information System (INIS)
Majumdar, Bishnu; Patel, Narayan Prasad; Vijayan, V.
2006-01-01
The aim of this study is to derive the non-uniformity correction factor for the two therapy ionization chambers for the dose measurement near the brachytherapy source. The two ionization chambers of 0.6 cc and 0.1 cc volume were used. The measurement in air was performed for distances between 0.8 cm and 20 cm from the source in specially designed measurement jig. The non-uniformity correction factors were derived from the measured values. The experimentally derived factors were compared with the theoretically calculated non-uniformity correction factors and a close agreement was found between these two studies. The experimentally derived non-uniformity correction factor supports the anisotropic theory. (author)
Marchant, T. E.; Joshi, K. D.; Moore, C. J.
2018-03-01
Radiotherapy dose calculations based on cone-beam CT (CBCT) images can be inaccurate due to unreliable Hounsfield units (HU) in the CBCT. Deformable image registration of planning CT images to CBCT, and direct correction of CBCT image values are two methods proposed to allow heterogeneity corrected dose calculations based on CBCT. In this paper we compare the accuracy and robustness of these two approaches. CBCT images for 44 patients were used including pelvis, lung and head & neck sites. CBCT HU were corrected using a ‘shading correction’ algorithm and via deformable registration of planning CT to CBCT using either Elastix or Niftyreg. Radiotherapy dose distributions were re-calculated with heterogeneity correction based on the corrected CBCT and several relevant dose metrics for target and OAR volumes were calculated. Accuracy of CBCT based dose metrics was determined using an ‘override ratio’ method where the ratio of the dose metric to that calculated on a bulk-density assigned version of the same image is assumed to be constant for each patient, allowing comparison to the patient’s planning CT as a gold standard. Similar performance is achieved by shading corrected CBCT and both deformable registration algorithms, with mean and standard deviation of dose metric error less than 1% for all sites studied. For lung images, use of deformed CT leads to slightly larger standard deviation of dose metric error than shading corrected CBCT with more dose metric errors greater than 2% observed (7% versus 1%).
On the Calculation of the Fast Fission Factor
Energy Technology Data Exchange (ETDEWEB)
Almgren, B
1960-06-15
Definitions of the fast fission factor {epsilon} are discussed. Different methods of calculation of {epsilon} are compared. Group constants for one - , two- and three-group calculations have been evaluated using the best obtainable basic data. The effects of back-scattering, coupling and (n,2n) reactions are discussed.
Electron fluence correction factors for various materials in clinical electron beams
International Nuclear Information System (INIS)
Olivares, M.; Blois, F. de; Podgorsak, E.B.; Seuntjens, J.P.
2001-01-01
Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at d max in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than ±1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83±0.01 and 1.55±0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1σ level. Excluding the data for Cu, electron fluence
DEFF Research Database (Denmark)
Kouchaki, Alireza; Niroumand, Farideh Javidi; Haase, Frerk
2015-01-01
This paper presents an analytical method for designing the inductor of three-phase power factor correction converters (PFCs). The complex behavior of the inductor current complicates the inductor design procedure as well as the core loss and copper loss calculations. Therefore, this paper analyze...... to calculate the core loss in the PFC application. To investigate the impact of the dc link voltage level, two inductors for different dc voltage levels are designed and the results are compared.......This paper presents an analytical method for designing the inductor of three-phase power factor correction converters (PFCs). The complex behavior of the inductor current complicates the inductor design procedure as well as the core loss and copper loss calculations. Therefore, this paper analyzes...... circuit is used to provide the inductor current harmonic spectrum. Therefore, using the harmonic spectrum, the low and high frequency copper losses are calculated. The high frequency minor B-H loops in one switching cycle are also analyzed. Then, the loss map provided by the measurement setup is used...
International Nuclear Information System (INIS)
Emel'yanenko, G.A.; Sek, I.E.
1988-01-01
Many correctable unknown methods for eigenvalue calculation of general tridiagonal matrices with real elements; criteria of singular tridiagonal matrices; necessary and sufficient conditions of tridiagonal matrix degeneracy; process with boundary conditions according to calculation processes of general upper and lower tridiagonal matrix minors are obtained. 6 refs
Calculation of Dose Gamma Ray Build up Factor in Some ...
African Journals Online (AJOL)
The gamma ray buildup factor was calculated by analyzing the narrow- beam and broad-beam geometry equations using Taylor's formula for isotropic sources and homogeneous materials. The buildup factor was programmed using MATLAB software to operate with any radiation energy (E), atomic number (Z) and the ...
International Nuclear Information System (INIS)
Etter, S.
1982-01-01
By current ultrasonic flow measuring equipment (UFME) the mean velocity is measured for one or two measuring paths. This mean velocity is not equal to the velocity averaged over the flow cross-section, by means of which the flow rate is calculated. This difference will be found already for axially symmetrical, fully developed velocity profiles and, to a larger extent, for disturbed profiles varying in flow direction and for nonsteady flow. Corrective factors are defined for steady and nonsteady flows. These factors can be derived from the flow profiles within the UFME. By mathematical simulation of the entrainment effect the influence of cross and swirl flows on various ultrasonic measuring methods is studied. The applied UFME with crossed measuring paths is shown to be largely independent of cross and swirl flows. For evaluation in a computer of velocity network measurements in circular cross-sections the equations for interpolation and integration are derived. Results of the mathematical method are the isotach profile, the flow rate and, for fully developed flow, directly the corrective factor. In the experimental part corrective factors are determined in nonsteady flow in a measuring plane before and in form measuring planes behind a perturbation. (orig./RW) [de
Monte Carlo calculation of Dancoff factors in irregular geometries
International Nuclear Information System (INIS)
Feher, S.; Hoogenboom, J.E.; Leege, P.F.A. de; Valko, J.
1994-01-01
A Monte Carlo program is described that calculates Dancoff factors in arbitrary arrangements of cylindrical or spherical fuel elements. The fuel elements can have different diameters and material compositions, and they are allowed to be black or partially transparent. Calculations of the Dancoff factor is based on its collision probability definition. The Monte Carlo approach is recommended because it is equally applicable in simple and in complicated geometries. It is shown that some of the commonly used algorithms are inaccurate even in infinite regular lattices. An example of application includes the Canada deuterium uranium (CANDU) 37-pin fuel bundle, which requires different Dancoff factors for the symmetrically different fuel pin positions
International Nuclear Information System (INIS)
Caplin, J.L.; Flatman, W.D.; Dymond, D.S.
1985-01-01
There is no consensus as to the best projection or correction method for first-pass radionuclide studies of the right ventricle. We assessed the effects of two commonly used projections, 30 degrees right anterior oblique and anterior-posterior, on the calculation of right ventricular ejection fraction. In addition two background correction methods, planar background correction to account for scatter, and right atrial correction to account for right atrio-ventricular overlap were assessed. Two first-pass radionuclide angiograms were performed in 19 subjects, one in each projection, using gold-195m (half-life 30.5 seconds), and each study was analysed using the two methods of correction. Right ventricular ejection fraction was highest using the right anterior oblique projection with right atrial correction 35.6 +/- 12.5% (mean +/- SD), and lowest when using the anterior posterior projection with planar background correction 26.2 +/- 11% (p less than 0.001). The study design allowed assessment of the effects of correction method and projection independently. Correction method appeared to have relatively little effect on right ventricular ejection fraction. Using right atrial correction correlation coefficient (r) between projections was 0.92, and for planar background correction r = 0.76, both p less than 0.001. However, right ventricular ejection fraction was far more dependent upon projection. When the anterior-posterior projection was used calculated right ventricular ejection fraction was much more dependent on correction method (r = 0.65, p = not significant), than using the right anterior oblique projection (r = 0.85, p less than 0.001)
International Nuclear Information System (INIS)
Alania, M V; Wawrzynczak, A; Sdobnov, V E; Kravtsova, M V
2013-01-01
Forbush decreases (Fd) of the galactic cosmic ray (GCR) intensity and geomagnetic storms are observed almost at the same time. Geomagnetic storm is a reason of significant disturbances of the magnetic cut off rigidity causing the distortion of the time profile of the Fd of the GCR intensity. We show some differences in the temporal changes of the rigidity spectra of Fd calculated by neutron monitors experimental data corrected and uncorrected for the changes of the geomagnetic cut off rigidity. Nevertheless, the general features of the temporal changes of the rigidity spectrum of Fd maintain as it was found in our previous investigations. Namely, at the beginning phase of Fd rigidity spectrum is relatively soft and gradually becomes hard up to reaching the minimum level of the GCR intensity; then the rigidity spectrum gradually becomes soft during the recovery phase of Fd. We also confirm that for the established temporal profiles of the rigidity spectrum of Fd a structural changes of the interplanetary magnetic field turbulence in the range of frequencies, 10 −-6 ÷10 −-5 Hz are responsible.
An examination on the correction of attenuation for calculating the renal RI accumulation
International Nuclear Information System (INIS)
Onoue, Koichi; Tachibana, Keizo; Maeda, Yoshihiro; Yanoo, Sanae; Morishita, Etsuko; Kawanaka, Masahiro; Kashiwagi, Toru; Fukuchi, Minoru
1999-01-01
An examination was made on the attenuation coefficients for calculation of true renal accumulation rate together with the precision of measurement of depth in the kidney. Kidney phantom for attenuation coefficients was a 20 x 20 cm cube where water was filled and radioactivity source of 99m Tc was placed at various depths. Radioactivity was measured by four kinds of scinti-camera with the collimator LEGP and LEHR. The phantom for radioactivity accumulation in the kidney was a 10 x 5 x 1, 3 or 5 cm box where 99m Tc solution of the standard 30 MBq was filled, and subjected to radioactivity measurement from various angles. Phantom radioactivity was found corrected by the effective attenuation coefficient, 0.131 cm, within the range of 98-114% of the standard counts. The precision of measurement of the depth was examined in sideways scintigrams obtained in clinical practice and was found to have the deviation of 1.1 cm as the mean of maximum ones and the variation coefficient of 7.1%. Measured depth was found to be well correlated with estimated ones by the method of Tonnesen or Ito which had the maximum deviation of 5.4 or 3.5 cm, respectively. (K.H.)
The calculation and experiment verification of geometry factors of disk sources and detectors
International Nuclear Information System (INIS)
Shi Zhixia; Minowa, Y.
1993-01-01
In alpha counting the efficiency of counting system is most frequently determined from the counter response to a calibrated source. Whenever this procedure is used, however, question invariably arise as to the integrity of the standard source, or indeed the validity of the primary calibration. As a check, therefore, it is often helped to be able to calculate the disintegration rate from counting rate data. The conclusion are: 1. If the source is thin enough the error E is generally less than 5%. It is acceptable in routine measurement. When the standard source lacks for experiment we can use the geometry factor calculated instead of measured efficiency. 2. The geometry factor calculated can be used to correct the counter system, study the effect of each parameters and identify those parameters needing careful control. 3. The method of overlapping area of the source and the projection of the detector is very believable, simple and convenient for calculating geometry. (5 tabs.)
Resistivity Correction Factor for the Four-Probe Method: Experiment II
Yamashita, Masato; Yamaguchi, Shoji; Nishii, Toshifumi; Kurihara, Hiroshi; Enjoji, Hideo
1989-05-01
Experimental verification of the theoretically derived resistivity correction factor F is presented. Factor F can be applied to a system consisting of a disk sample and a four-probe array. Measurements are made on isotropic graphite disks and crystalline ITO films. Factor F can correct the apparent variations of the data and lead to reasonable resistivities and sheet resistances. Here factor F is compared to other correction factors; i.e. FASTM and FJIS.
Three-loop massive form factors: complete light-fermion corrections for the vector current
Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias
2018-03-01
We compute the three-loop QCD corrections to the massive quark-anti-quark-photon form factors F 1 and F 2 involving a closed loop of massless fermions. This subset is gauge invariant and contains both planar and non-planar contributions. We perform the reduction using FIRE and compute the master integrals with the help of differential equations. Our analytic results can be expressed in terms of Goncharov polylogarithms. We provide analytic results for all master integrals which are not present in the large- N c calculation considered in refs. [1, 2].
Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony
2017-12-01
When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer ® . The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed.
Factors affecting volume calculation with single photon emission tomography (SPECT) method
International Nuclear Information System (INIS)
Liu, T.H.; Lee, K.H.; Chen, D.C.P.; Ballard, S.; Siegel, M.E.
1985-01-01
Several factors may influence the calculation of absolute volumes (VL) from SPECT images. The effect of these factors must be established to optimize the technique. The authors investigated the following on the VL calculations: % of background (BG) subtraction, reconstruction filters, sample activity, angular sampling and edge detection methods. Transaxial images of a liver-trunk phantom filled with Tc-99m from 1 to 3 μCi/cc were obtained in 64x64 matrix with a Siemens Rota Camera and MDS computer. Different reconstruction filters including Hanning 20,32, 64 and Butterworth 20, 32 were used. Angular samplings were performed in 3 and 6 degree increments. ROI's were drawn manually and with an automatic edge detection program around the image after BG subtraction. VL's were calculated by multiplying the number of pixels within the ROI by the slice thickness and the x- and y- calibrations of each pixel. One or 2 pixel per slice thickness was applied in the calculation. An inverse correlation was found between the calculated VL and the % of BG subtraction (r=0.99 for 1,2,3 μCi/cc activity). Based on the authors' linear regression analysis, the correct liver VL was measured with about 53% BG subtraction. The reconstruction filters, slice thickness and angular sampling had only minor effects on the calculated phantom volumes. Detection of the ROI automatically by the computer was not as accurate as the manual method. The authors conclude that the % of BG subtraction appears to be the most important factor affecting the VL calculation. With good quality control and appropriate reconstruction factors, correct VL calculations can be achieved with SPECT
Calculation of coupling factor for the heterogeneous accelerating structure
International Nuclear Information System (INIS)
Bian Xiaohao; Chen Huaibi; Zheng Shuxin
2006-01-01
The converging part of electron accelerator is designed to converge the phase of injecting electrons, improving the beam quality of the accelerator. It is very crucial to calculate the coupling factor between cavities and to design the geometry structure of the coupling irises. By the E module of code MAFIA, the authors calculate the frequency of every single resonant cavity and the two eigenfrequencies of two-cavitiy line. Then we get the coupling factor between the two cavities. This method can be used to design the geometry structure of the coupling isises between every two cavities. Compared to experiment, the results of the method is very accurate. (authors)
2002-01-01
Tile Calorimeter modules stored at CERN. The larger modules belong to the Barrel, whereas the smaller ones are for the two Extended Barrels. (The article was about the completion of the 64 modules for one of the latter.) The photo on the first page of the Bulletin n°26/2002, from 24 July 2002, illustrating the article «The ATLAS Tile Calorimeter gets into shape» was published with a wrong caption. We would like to apologise for this mistake and so publish it again with the correct caption.
75 FR 5536 - Pipeline Safety: Control Room Management/Human Factors, Correction
2010-02-03
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Parts...: Control Room Management/Human Factors, Correction AGENCY: Pipeline and Hazardous Materials Safety... following correcting amendments: PART 192--TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM...
Directory of Open Access Journals (Sweden)
2012-01-01
Full Text Available Regarding Gorelik, G., & Shackelford, T.K. (2011. Human sexual conflict from molecules to culture. Evolutionary Psychology, 9, 564–587: The authors wish to correct an omission in citation to the existing literature. In the final paragraph on p. 570, we neglected to cite Burch and Gallup (2006 [Burch, R. L., & Gallup, G. G., Jr. (2006. The psychobiology of human semen. In S. M. Platek & T. K. Shackelford (Eds., Female infidelity and paternal uncertainty (pp. 141–172. New York: Cambridge University Press.]. Burch and Gallup (2006 reviewed the relevant literature on FSH and LH discussed in this paragraph, and should have been cited accordingly. In addition, Burch and Gallup (2006 should have been cited as the originators of the hypothesis regarding the role of FSH and LH in the semen of rapists. The authors apologize for this oversight.
2002-01-01
The photo on the second page of the Bulletin n°48/2002, from 25 November 2002, illustrating the article «Spanish Visit to CERN» was published with a wrong caption. We would like to apologise for this mistake and so publish it again with the correct caption. The Spanish delegation, accompanied by Spanish scientists at CERN, also visited the LHC superconducting magnet test hall (photo). From left to right: Felix Rodriguez Mateos of CERN LHC Division, Josep Piqué i Camps, Spanish Minister of Science and Technology, César Dopazo, Director-General of CIEMAT (Spanish Research Centre for Energy, Environment and Technology), Juan Antonio Rubio, ETT Division Leader at CERN, Manuel Aguilar-Benitez, Spanish Delegate to Council, Manuel Delfino, IT Division Leader at CERN, and Gonzalo León, Secretary-General of Scientific Policy to the Minister.
International Nuclear Information System (INIS)
Baly, L.; Martín, G.; Quesada, I.; Padilla, F.; Arteche, R.
2015-01-01
A new approach based on the Monte Carlo simulation is used to calculate the infinite matrix dose rate correction factors of gamma, beta and internal conversion radiations for 250 μm diameter grains of quartz and TLD500 chips. Here, the dependence of the correction factor on the radiation energy is initially calculated for each type of emitted particle and with this result the correction factors for the 232 Th and 238 U series and 40 K are determined. This analysis is made for dry soil and also for different levels of water content in it. The obtained beta correction factors for quartz are in good agreement with those previously reported. For the TLD500 chip certain differences with previously reported data are found. The analysis of the gamma water correction factor for quartz based on Zimmerman equation shows the correspondence with the similar correction factor for electrons. In the case of TLD500 chip a gamma water correction factor value of 1.0 was found. - Highlights: • A new approach based on Monte Carlo simulation is used to compute infinite matrix dose rate correction factors. • Infinite matrix models with real dimensions were analyzed within 3% uncertainties. • The dependence of grain size attenuation on particle energy is determined. • The same dependence for water correction factors is also analyzed
Ionization chamber correction factors for MR-linacs.
Pojtinger, Stefan; Dohm, Oliver Steffen; Kapsch, Ralf-Peter; Thorwarth, Daniela
2018-06-07
Previously, readings of air-filled ionization chambers have been described as being influenced by magnetic fields. To use these chambers for dosimetry in magnetic resonance guided radiotherapy (MRgRT), this effect must be taken into account by introducing a correction factor k B . The purpose of this study is to systematically investigate k B for a typical reference setup for commercially available ionization chambers with different magnetic field strengths. The Monte Carlo simulation tool EGSnrc was used to simulate eight commercially available ionization chambers in magnetic fields whose magnetic flux density was in the range of 0-2.5 T. To validate the simulation, the influence of the magnetic field was experimentally determined for a PTW30013 Farmer-type chamber for magnetic flux densities between 0 and 1.425 T. Changes in the detector response of up to 8% depending on the magnetic flux density, on the chamber geometry and on the chamber orientation were obtained. In the experimental setup, a maximum deviation of less than 2% was observed when comparing measured values with simulated values. Dedicated values for two MR-linac systems (ViewRay MRIdian, ViewRay Inc, Cleveland, United States, 0.35 T/ 6 MV and Elekta Unity, Elekta AB, Stockholm, Sweden, 1.5 T/7 MV) were determined for future use in reference dosimetry. Simulated values for thimble-type chambers are in good agreement with experiments as well as with the results of previous publications. After further experimental validation, the results can be considered for definition of standard protocols for purposes of reference dosimetry in MRgRT.
Ionization chamber correction factors for MR-linacs
Pojtinger, Stefan; Steffen Dohm, Oliver; Kapsch, Ralf-Peter; Thorwarth, Daniela
2018-06-01
Previously, readings of air-filled ionization chambers have been described as being influenced by magnetic fields. To use these chambers for dosimetry in magnetic resonance guided radiotherapy (MRgRT), this effect must be taken into account by introducing a correction factor k B. The purpose of this study is to systematically investigate k B for a typical reference setup for commercially available ionization chambers with different magnetic field strengths. The Monte Carlo simulation tool EGSnrc was used to simulate eight commercially available ionization chambers in magnetic fields whose magnetic flux density was in the range of 0–2.5 T. To validate the simulation, the influence of the magnetic field was experimentally determined for a PTW30013 Farmer-type chamber for magnetic flux densities between 0 and 1.425 T. Changes in the detector response of up to 8% depending on the magnetic flux density, on the chamber geometry and on the chamber orientation were obtained. In the experimental setup, a maximum deviation of less than 2% was observed when comparing measured values with simulated values. Dedicated values for two MR-linac systems (ViewRay MRIdian, ViewRay Inc, Cleveland, United States, 0.35 T/ 6 MV and Elekta Unity, Elekta AB, Stockholm, Sweden, 1.5 T/7 MV) were determined for future use in reference dosimetry. Simulated values for thimble-type chambers are in good agreement with experiments as well as with the results of previous publications. After further experimental validation, the results can be considered for definition of standard protocols for purposes of reference dosimetry in MRgRT.
Directory of Open Access Journals (Sweden)
2014-01-01
Full Text Available Regarding Tagler, M. J., and Jeffers, H. M. (2013. Sex differences in attitudes toward partner infidelity. Evolutionary Psychology, 11, 821–832: The authors wish to correct values in the originally published manuscript. Specifically, incorrect 95% confidence intervals around the Cohen's d values were reported on page 826 of the manuscript where we reported the within-sex simple effects for the significant Participant Sex × Infidelity Type interaction (first paragraph, and for attitudes toward partner infidelity (second paragraph. Corrected values are presented in bold below. The authors would like to thank Dr. Bernard Beins at Ithaca College for bringing these errors to our attention. Men rated sexual infidelity significantly more distressing (M = 4.69, SD = 0.74 than they rated emotional infidelity (M = 4.32, SD = 0.92, F(1, 322 = 23.96, p < .001, d = 0.44, 95% CI [0.23, 0.65], but there was little difference between women's ratings of sexual (M = 4.80, SD = 0.48 and emotional infidelity (M = 4.76, SD = 0.57, F(1, 322 = 0.48, p = .29, d = 0.08, 95% CI [−0.10, 0.26]. As expected, men rated sexual infidelity (M = 1.44, SD = 0.70 more negatively than they rated emotional infidelity (M = 2.66, SD = 1.37, F(1, 322 = 120.00, p < .001, d = 1.12, 95% CI [0.85, 1.39]. Although women also rated sexual infidelity (M = 1.40, SD = 0.62 more negatively than they rated emotional infidelity (M = 2.09, SD = 1.10, this difference was not as large and thus in the evolutionary theory supportive direction, F(1, 322 = 72.03, p < .001, d = 0.77, 95% CI [0.60, 0.94].
Application of generalized perturbation theory to flux disadvantage factor calculations
International Nuclear Information System (INIS)
Sallam, O.H.; Akimov, I.S.; Naguib, K.; Hamouda, I.
1979-01-01
The possibility of using the generalized perturbation theory to calculate the perturbation of the flux disadvantage factors of reactor cell, resulting from the variation of the cell parameters, is studied. For simplicity the one-group diffusion approximation is considered. All necessary equations are derived for variations both of the cell dimensions. Numerical results are presented in the paper
International Nuclear Information System (INIS)
Supardjo-AS; Mappa, Djody-Rachim; Nasrun-Syamsul; Syamsul-Hadi
2000-01-01
Exposure rate data of Muria Peninsula were generated from Victoreen-491 measurement and calculation of radioelement content in soil which were measured by Exploranium GR-320, using IAEA formula. However those data are not be comparable so the exposure rate calculated from Gamma Spectrometer data necessarily to be corrected. The correction factor was determinate by measuring the exposure rate of at the NMDC's back yard selected location using Victoreen-491 and Gamma Spectrometer Exploranium GR-320 . Correction factor was created by comparing mean exposure rate data that calculated from 30 data measured by Gamma Spectrometer instrument and to those Victoreen's exposure rate. Conversion factor was gained from comparing of total count data of Gamma Spectrometer Exploranium GR-320 to Victoreen's exposure rate data. The correction factor of Exploranium GR-320's exposure rate is 0.34 μR/hours, and the conversion factor of total count is 0.0092 μR/hours per c/m. Deviation Victoreen 491 = 4.7 % and Gamma Spectrometer Exploranium GR-320 8.6 %
Nandi, Prithwish Kumar; Valsakumar, M C; Chandra, Sharat; Sahu, H K; Sundar, C S
2010-09-01
We calculate properties like equilibrium lattice parameter, bulk modulus and monovacancy formation energy for nickel (Ni), iron (Fe) and chromium (Cr) using Kohn-Sham density functional theory (DFT). We compare the relative performance of local density approximation (LDA) and generalized gradient approximation (GGA) for predicting such physical properties for these metals. We also make a relative study between two different flavors of GGA exchange correlation functional, namely PW91 and PBE. These calculations show that there is a discrepancy between DFT calculations and experimental data. In order to understand this discrepancy in the calculation of vacancy formation energy, we introduce a correction for the surface intrinsic error corresponding to an exchange correlation functional using the scheme implemented by Mattsson et al (2006 Phys. Rev. B 73 195123) and compare the effectiveness of the correction scheme for Al and the 3d transition metals.
Analytic representation of the backscatter correction factor at the exit of high energy photon beams
International Nuclear Information System (INIS)
Kappas, K.; Rosenwald, J.C.
1991-01-01
In high-energy X-ray beams, the dose calculated near the exit surface under electronic equilibrium conditions is generally over-estimated since it is derived from measurements performed in water with large thickness of backscattering material. The resulting error depends on a number of parameters such as beam energy, field dimension, thickness of overlying and underlying material. The authors have systematically measured for 4 different energies and for different para- meters and for different combinations of the above parameters, the reduction of dose due to backscatter. This correction is expressed as a multiplicative factor, called 'Backscatter Correction Factor' (BCF). This BCF is larger for lower energies, larger field sizes and larger depths. The BCF has been represented by an analytical expression which involves an exponential function of the backscattering thickness and linear relationships with depth field size and beam quality index. Using this expression, the BCF can be calculated within 0.5% for any conditions in the energy range investigated. (author). 14 refs.; 4 figs.; 3 tabs
International Nuclear Information System (INIS)
Yan Guanghua; Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G
2008-01-01
The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity
Energy Technology Data Exchange (ETDEWEB)
Yan Guanghua [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Liu, Chihray; Lu Bo; Palta, Jatinder R; Li, Jonathan G [Department of Radiation Oncology, University of Florida, Gainesville, FL 32610-0385 (United States)
2008-04-21
The purpose of this study was to choose an appropriate head scatter source model for the fast and accurate independent planar dose calculation for intensity-modulated radiation therapy (IMRT) with MLC. The performance of three different head scatter source models regarding their ability to model head scatter and facilitate planar dose calculation was evaluated. A three-source model, a two-source model and a single-source model were compared in this study. In the planar dose calculation algorithm, in-air fluence distribution was derived from each of the head scatter source models while considering the combination of Jaw and MLC opening. Fluence perturbations due to tongue-and-groove effect, rounded leaf end and leaf transmission were taken into account explicitly. The dose distribution was calculated by convolving the in-air fluence distribution with an experimentally determined pencil-beam kernel. The results were compared with measurements using a diode array and passing rates with 2%/2 mm and 3%/3 mm criteria were reported. It was found that the two-source model achieved the best agreement on head scatter factor calculation. The three-source model and single-source model underestimated head scatter factors for certain symmetric rectangular fields and asymmetric fields, but similar good agreement could be achieved when monitor back scatter effect was incorporated explicitly. All the three source models resulted in comparable average passing rates (>97%) when the 3%/3 mm criterion was selected. The calculation with the single-source model and two-source model was slightly faster than the three-source model due to their simplicity.
Real-time correction of tsunami site effect by frequency-dependent tsunami-amplification factor
Tsushima, H.
2017-12-01
For tsunami early warning, I developed frequency-dependent tsunami-amplification factor and used it to design a recursive digital filter that can be applicable for real-time correction of tsunami site response. In this study, I assumed that a tsunami waveform at an observing point could be modeled by convolution of source, path and site effects in time domain. Under this assumption, spectral ratio between offshore and the nearby coast can be regarded as site response (i.e. frequency-dependent amplification factor). If the amplification factor can be prepared before tsunamigenic earthquakes, its temporal convolution to offshore tsunami waveform provides tsunami prediction at coast in real time. In this study, tsunami waveforms calculated by tsunami numerical simulations were used to develop frequency-dependent tsunami-amplification factor. Firstly, I performed numerical tsunami simulations based on nonlinear shallow-water theory from many tsuanmigenic earthquake scenarios by varying the seismic magnitudes and locations. The resultant tsunami waveforms at offshore and the nearby coastal observing points were then used in spectral-ratio analysis. An average of the resulted spectral ratios from the tsunamigenic-earthquake scenarios is regarded as frequency-dependent amplification factor. Finally, the estimated amplification factor is used in design of a recursive digital filter that can be applicable in time domain. The above procedure is applied to Miyako bay at the Pacific coast of northeastern Japan. The averaged tsunami-height spectral ratio (i.e. amplification factor) between the location at the center of the bay and the outside show a peak at wave-period of 20 min. A recursive digital filter based on the estimated amplification factor shows good performance in real-time correction of tsunami-height amplification due to the site effect. This study is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI grant 15K16309.
Paradigm shift in LUNG SBRT dose calculation associated with Heterogeneity correction
International Nuclear Information System (INIS)
Zucca Aparicio, D.; Perez Moreno, J. M.; Fernandez Leton, P.; Garcia Ruiz-Zorrilla, J.; Pinto Monedero, M.; Marti Asensjo, J.; Alonso Iracheta, L.
2015-01-01
Treatment of lung injury SBRT requires great dosimetric accuracy, the increasing clinical importance of dose calculation heterogeneities introducing algorithms that adequately model the transport of particles narrow beams in media of low density, as with Monte Carlo calculation. (Author)
Thermal disadvantage factor calculation by the multiregion collision probability method
International Nuclear Information System (INIS)
Ozgener, B.; Ozgener, H.A.
2004-01-01
A multi-region collision probability formulation that is capable of applying white boundary condition directly is presented and applied to thermal neutron transport problems. The disadvantage factors computed are compared with their counterparts calculated by S N methods with both direct and indirect application of white boundary condition. The results of the ABH and collision probability method with indirect application of white boundary condition are also considered and comparisons with benchmark Monte Carlo results are carried out. The studies show that the proposed formulation is capable of calculating thermal disadvantage factor with sufficient accuracy without resorting to the fictitious scattering outer shell approximation associated with the indirect application of the white boundary condition in collision probability solutions
Tyler, D K
2002-01-01
The activity assay of a radiopharmaceutical administration to a patient is normally achieved via the use of a radionuclide calibrator. Because of the different geometries and elemental compositions between plastic syringes and glass vials, the calibration factors for syringes may well be significantly different from those for the glass containers. The magnitude of these differences depends on the energies of the emitted photons. For some radionuclides variations have been observed of 70 %, it is therefore important to recalibrate for syringes or use syringe calibration factors. Calibration factors and volume correction factors have been derived for the NPL secondary standard radionuclide calibrator, for a variety of commonly used syringes and needles, for the most commonly used medical radionuclide.
Calculating gamma dose factors for hot particle exposures
International Nuclear Information System (INIS)
Murphy, P.
1990-01-01
For hot particle exposures to the skin, the beta component of radiation delivers the majority of the dose. However, in order to fully demonstrate regulatory compliance, licenses must ordinarily provide reasonable bases for assuming that both the gamma component of the skin dose and the whole body doses are negligible. While beta dose factors are commonly available in the literature, gamma dose factors are not. This paper describes in detail a method by which gamma skin dose factors may be calculated using the Specific Gamma-ray Constant, even if the particle is not located directly on the skin. Two common hot particle exposure geometries are considered: first, a single square centimeter of skin lying at density thickness of 7 mg/cm 2 and then at 1000 mg/cm 2 . A table provides example gamma dose factors for a number of isotopes encountered at power reactors
Correction of X-ray diffraction profiles in linear-type PSPC by position factor
International Nuclear Information System (INIS)
Takahashi, Toshio
1992-01-01
PSPC (Position Sensitive Proportional Counter) makes it possible to obtain one-dimentional diffraction profiles without mechanical scanning. In a linear-type PSPC, the obtained profiles need correcting, because the position factor influences the intensity of the diffracted X-ray beam and the counting rate at each position on PSPC. The distances from the specimen are not the same at the center and at the edge of the detector, and the intensity decreases at the edge because of radiation and absorption. The counting rate varies with the incident angle of the diffracted beam at each position on PSPC. The position factor f i at channel i of the multichannel-analyser is given by f i = cos 4 α i ·exp{-μR(1/cosα i -1)} where R is the distance between the specimen and the center of PSPC, μ is the linear absorption coefficient and α i is the incident angle of the diffracted beam at channel i. The background profiles of silica gel powder were measured with CrKα and CuKα. The parameters of the model function were fitted to the profiles by the non-linear least squares method. The agreement between these parameters and the calculated values shows that the position factor can correct the measured profiles properly. (author)
Czech Academy of Sciences Publication Activity Database
Kraus, M.; Pitoňák, Michal; Hobza, Pavel; Urban, M.; Neogrady, P.
2012-01-01
Roč. 112, č. 4 (2012), s. 948-959 ISSN 0020-7608 R&D Projects: GA MŠk LC512 Grant - others:Slovak Research and Development Agency(SK) APVV-20-018405; Slovak Grant Agency VEGA(SK) 1/0428/09; Slovak Grant Agency VEGA(SK) 1/0520/10 Institutional research plan: CEZ:AV0Z40550506 Keywords : OVOS * FNO * nocovalent interactions * hydrogen bonding * ctacking Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.306, year: 2012
International Nuclear Information System (INIS)
Piepsz, Amy; Tondeur, Marianne; Ham, Hamphrey
2008-01-01
51 Cr ethylene diamine tetraacetic acid ( 51 Cr EDTA) clearance is nowadays considered as an accurate and reproducible method for measuring glomerular filtration rate (GFR) in children. Normal values in function of age, corrected for body surface area, have been recently updated. However, much criticism has been expressed about the validity of body surface area correction. The aim of the present paper was to present the normal GFR values, not corrected for body surface area, with the associated percentile curves. For that purpose, the same patients as in the previous paper were selected, namely those with no recent urinary tract infection, having a normal left to right 99m Tc MAG3 uptake ratio and a normal kidney morphology on the early parenchymal images. A single blood sample method was used for 51 Cr EDTA clearance measurement. Clearance values, not corrected for body surface area, increased progressively up to the adolescence. The percentile curves were determined and allow, for a single patient, to estimate accurately the level of non-corrected clearance and the evolution with time, whatever the age. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Piepsz, Amy; Tondeur, Marianne [CHU St. Pierre, Department of Radioisotopes, Brussels (Belgium); Ham, Hamphrey [University Hospital Ghent, Department of Nuclear Medicine, Ghent (Belgium)
2008-09-15
{sup 51}Cr ethylene diamine tetraacetic acid ({sup 51}Cr EDTA) clearance is nowadays considered as an accurate and reproducible method for measuring glomerular filtration rate (GFR) in children. Normal values in function of age, corrected for body surface area, have been recently updated. However, much criticism has been expressed about the validity of body surface area correction. The aim of the present paper was to present the normal GFR values, not corrected for body surface area, with the associated percentile curves. For that purpose, the same patients as in the previous paper were selected, namely those with no recent urinary tract infection, having a normal left to right {sup 99m}Tc MAG3 uptake ratio and a normal kidney morphology on the early parenchymal images. A single blood sample method was used for {sup 51}Cr EDTA clearance measurement. Clearance values, not corrected for body surface area, increased progressively up to the adolescence. The percentile curves were determined and allow, for a single patient, to estimate accurately the level of non-corrected clearance and the evolution with time, whatever the age. (orig.)
International Nuclear Information System (INIS)
Tachibana, Masayuki; Noguchi, Yoshitaka; Fukunaga, Jyunichi; Hirano, Naomi; Yoshidome, Satoshi; Hirose, Takaaki
2009-01-01
The monitor unit (MU) was calculated by pencil beam convolution (inhomogeneity correction algorithm: batho power law) [PBC (BPL)] which is the dose calculation algorithm based on measurement in the past in the stereotactic lung irradiation study. The recalculation was done by analytical anisotropic algorithm (AAA), which is the dose calculation algorithm based on theory data. The MU calculated by PBC (BPL) and AAA was compared for each field. In the result of the comparison of 1031 fields in 136 cases, the MU calculated by PBC (BPL) was about 2% smaller than that calculated by AAA. This depends on whether one does the calculation concerning the extension of the second electrons. In particular, the difference in the MU is influenced by the X-ray energy. With the same X-ray energy, when the irradiation field size is small, the lung pass length is long, the lung pass length percentage is large, and the CT value of the lung is low, and the difference of MU is increased. (author)
Definition of correcting factors for absolute radon content measurement formula
International Nuclear Information System (INIS)
Ji Changsong; Xiao Ziyun; Yang Jianfeng
1992-01-01
The absolute method of radio content measurement is based on thomas radon measurement formula. It was found in experiment that the systematic error existed in radon content measurement by means of thomas formula. By the analysis on the behaviour of radon daughter five factors including filter efficiency, detector construction factor, self-absorbance, energy spectrum factor, and gravity factor were introduced into the thomas formula, so that the systematic error was eliminated. The measuring methods of the five factors are given
Takahashi, Masae; Ishikawa, Yoichi; Ito, Hiromasa
2013-03-01
A weak hydrogen bond (WHB) such as CH-O is very important for the structure, function, and dynamics in a chemical and biological system WHB stretching vibration is in a terahertz (THz) frequency region Very recently, the reasonable performance of dispersion-corrected first-principles to WHB has been proven. In this lecture, we report dispersion-corrected first-principles calculation of the vibrational absorption of some organic crystals, and low-temperature THz spectral measurement, in order to clarify WHB stretching vibration. The THz frequency calculation of a WHB crystal has extremely improved by dispersion correction. Moreover, the discrepancy in frequency between an experiment and calculation and is 10 1/cm or less. Dispersion correction is especially effective for intermolecular mode. The very sharp peak appearing at 4 K is assigned to the intermolecular translational mode that corresponds to WHB stretching vibration. It is difficult to detect and control the WHB formation in a crystal because the binding energy is very small. With the help of the latest intense development of experimental and theoretical technique and its careful use, we reveal solid-state WHB stretching vibration as evidence for the WHB formation that differs in respective WHB networks The research was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant No. 22550003).
International Nuclear Information System (INIS)
Mathew, D; Tanny, S; Parsai, E; Sperling, N
2015-01-01
Purpose: The current small field dosimetry formalism utilizes quality correction factors to compensate for the difference in detector response relative to dose deposited in water. The correction factors are defined on a machine-specific basis for each beam quality and detector combination. Some research has suggested that the correction factors may only be weakly dependent on machine-to-machine variations, allowing for determinations of class-specific correction factors for various accelerator models. This research examines the differences in small field correction factors for three detectors across two Varian Truebeam accelerators to determine the correction factor dependence on machine-specific characteristics. Methods: Output factors were measured on two Varian Truebeam accelerators for equivalently tuned 6 MV and 6 FFF beams. Measurements were obtained using a commercial plastic scintillation detector (PSD), two ion chambers, and a diode detector. Measurements were made at a depth of 10 cm with an SSD of 100 cm for jaw-defined field sizes ranging from 3×3 cm 2 to 0.6×0.6 cm 2 , normalized to values at 5×5cm 2 . Correction factors for each field on each machine were calculated as the ratio of the detector response to the PSD response. Percent change of correction factors for the chambers are presented relative to the primary machine. Results: The Exradin A26 demonstrates a difference of 9% for 6×6mm 2 fields in both the 6FFF and 6MV beams. The A16 chamber demonstrates a 5%, and 3% difference in 6FFF and 6MV fields at the same field size respectively. The Edge diode exhibits less than 1.5% difference across both evaluated energies. Field sizes larger than 1.4×1.4cm2 demonstrated less than 1% difference for all detectors. Conclusion: Preliminary results suggest that class-specific correction may not be appropriate for micro-ionization chamber. For diode systems, the correction factor was substantially similar and may be useful for class-specific reference
Energy Technology Data Exchange (ETDEWEB)
Mathew, D; Tanny, S; Parsai, E; Sperling, N [University of Toledo Medical Center, Toledo, OH (United States)
2015-06-15
Purpose: The current small field dosimetry formalism utilizes quality correction factors to compensate for the difference in detector response relative to dose deposited in water. The correction factors are defined on a machine-specific basis for each beam quality and detector combination. Some research has suggested that the correction factors may only be weakly dependent on machine-to-machine variations, allowing for determinations of class-specific correction factors for various accelerator models. This research examines the differences in small field correction factors for three detectors across two Varian Truebeam accelerators to determine the correction factor dependence on machine-specific characteristics. Methods: Output factors were measured on two Varian Truebeam accelerators for equivalently tuned 6 MV and 6 FFF beams. Measurements were obtained using a commercial plastic scintillation detector (PSD), two ion chambers, and a diode detector. Measurements were made at a depth of 10 cm with an SSD of 100 cm for jaw-defined field sizes ranging from 3×3 cm{sup 2} to 0.6×0.6 cm{sup 2}, normalized to values at 5×5cm{sup 2}. Correction factors for each field on each machine were calculated as the ratio of the detector response to the PSD response. Percent change of correction factors for the chambers are presented relative to the primary machine. Results: The Exradin A26 demonstrates a difference of 9% for 6×6mm{sup 2} fields in both the 6FFF and 6MV beams. The A16 chamber demonstrates a 5%, and 3% difference in 6FFF and 6MV fields at the same field size respectively. The Edge diode exhibits less than 1.5% difference across both evaluated energies. Field sizes larger than 1.4×1.4cm2 demonstrated less than 1% difference for all detectors. Conclusion: Preliminary results suggest that class-specific correction may not be appropriate for micro-ionization chamber. For diode systems, the correction factor was substantially similar and may be useful for class
International Nuclear Information System (INIS)
Araki, Fujio
2007-01-01
In some recent dosimetry protocols, plastic is allowed as a phantom material for the determination of an absorbed dose to water in electron beams, especially for low energy with beam qualities R 50 2 . In electron dosimetry with plastic, a depth-scaling factor, c pl , and a chamber-dependent fluence correction factor, h pl , are needed to convert the dose measured at a water-equivalent reference depth in plastic to a dose at a reference depth in water. The purpose of this study is to calculate correction factors for the use of plastic phantoms for clinical electron dosimetry using the EGSnrc Monte Carlo code system. RMI-457 and WE-211 were investigated as phantom materials. First the c pl values for plastic materials were calculated as a function of a half-value depth of maximum ionization, I 50 , in plastic. The c pl values for RMI-457 and WE-211 varied from 0.992 to 1.002 and from 0.971 to 0.979, respectively, in a range of nominal energies from 4 MeV to 18 MeV, and varied slightly as a function of I 50 in plastic. Since h pl values depend on the wall correction factor, P wall , of the chamber used, they are evaluated using a pure electron fluence correction factor, φ pl w , and P wall w and P wall pl for a combination of water or plastic phantoms and plane-parallel ionization chambers (NACP-02, Markus and Roos). The φ pl w and P wall (P wall w and P wall pl ) values were calculated as a function of the water-equivalent depth in plastic materials and at a reference depth as a function of R 50 in water, respectively. The φ pl w values varied from 1.024 at 4 MeV to 1.013 at 18 MeV for RMI-457, and from 1.025 to 1.016 for WE-211. P wall w values for plane-parallel chambers showed values in the order of 1.5% to 2% larger than unity at 4 MeV, consistent with earlier results. The P wall pl values of RMI-457 and WE-211 were close to unity for all the energy beams. Finally, calculated h pl values of RMI-457 ranged from 1.009 to 1.005, from 1.010 to 1.003 and from 1
Microscopic Calculations of Isospin-Breaking Corrections to Superallowed Beta Decay
International Nuclear Information System (INIS)
Satula, W.; Rafalski, M.; Dobaczewski, J.; Nazarewicz, W.
2011-01-01
The superallowed β-decay rates that provide stringent constraints on physics beyond the standard model of particle physics are affected by nuclear structure effects through isospin-breaking corrections. The self-consistent isospin- and angular-momentum-projected nuclear density functional theory is used for the first time to compute those corrections for a number of Fermi transitions in nuclei from A=10 to A=74. The resulting leading element of the Cabibbo-Kobayashi-Maskawa matrix, |V ud |=0.974 47(23), agrees well with the recent result of Towner and Hardy [Phys. Rev. C 77, 025501 (2008)].
A transient, Hex-Z nodal code corrected by discontinuity factors
International Nuclear Information System (INIS)
Shatilla, Y.A.M.; Henry, A.F.
1993-01-01
This document constitutes Volume 1 of the Final Report of a three-year study supported by the special Research Grant Program for Nuclear Energy Research set up by the US Department of Energy. The original motivation for the work was to provide a fast and accurate computer program for the analysis of transients in heavy water or graphite-moderated reactors being considered as candidates for the New Production Reactor. Thus, part of the funding was by way of pass-through money from the Savannah River Laboratory. With this intent in mind, a three-dimensional (Hex-Z), general-energy-group transient, nodal code was created, programmed, and tested. In order to improve accuracy, correction terms, called open-quotes discontinuity factors,close quotes were incorporated into the nodal equations. Ideal values of these factors force the nodal equations to provide node-integrated reaction rates and leakage rates across nodal surfaces that match exactly those edited from a more exact reference calculation. Since the exact reference solution is needed to compute the ideal discontinuity factors, the fact that they result in exact nodal equations would be of little practical interest were it not that approximate discontinuity factors, found at a greatly reduced cost, often yield very accurate results. For example, for light-water reactors, discontinuity factors found from two-dimensional, fine-mesh, multigroup transport solutions for two-dimensional cuts of a fuel assembly provide very accurate predictions of three-dimensional, full-core power distributions. The present document (volume 1) deals primarily with the specification, programming and testing of the three-dimensional, Hex-Z computer program. The program solves both the static (eigenvalue) and transient, general-energy-group, nodal equations corrected by user-supplied discontinuity factors
Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.
2016-10-01
The lateral homogeneity assumption is used in most analytical algorithms for proton dose, such as the pencil-beam algorithms and our simplified analytical random walk model. To improve the dose calculation in the distal fall-off region in heterogeneous media, we analyzed primary proton fluence near heterogeneous media and propose to calculate the lateral fluence with voxel-specific Gaussian distributions. The lateral fluence from a beamlet is no longer expressed by a single Gaussian for all the lateral voxels, but by a specific Gaussian for each lateral voxel. The voxel-specific Gaussian for the beamlet of interest is calculated by re-initializing the fluence deviation on an effective surface where the proton energies of the beamlet of interest and the beamlet passing the voxel are the same. The dose improvement from the correction scheme was demonstrated by the dose distributions in two sets of heterogeneous phantoms consisting of cortical bone, lung, and water and by evaluating distributions in example patients with a head-and-neck tumor and metal spinal implants. The dose distributions from Monte Carlo simulations were used as the reference. The correction scheme effectively improved the dose calculation accuracy in the distal fall-off region and increased the gamma test pass rate. The extra computation for the correction was about 20% of that for the original algorithm but is dependent upon patient geometry.
International Nuclear Information System (INIS)
Gu Xuejun; Jia Xun; Jiang, Steve B; Jelen, Urszula; Li Jinsheng
2011-01-01
Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite-size pencil beam (FSPB) algorithm with a 3D-density correction method on graphics processing unit (GPU). This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework (Gu et al 2009 Phys. Med. Biol. 54 6287-97). Dosimetric evaluations against Monte Carlo dose calculations are conducted on ten IMRT treatment plans (five head-and-neck cases and five lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 s (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (∼5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning.
International Nuclear Information System (INIS)
Streek, Jacco van de; Neumann, Marcus A.
2010-01-01
The accuracy of a dispersion-corrected density functional theory method is validated against 241 experimental organic crystal structures from Acta Cryst. Section E. This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 Å either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect
Spatial correction factors for YALINA Booster facility loaded with medium and low enriched fuels
International Nuclear Information System (INIS)
Talamo, A.; Gohar, Y.; Bournos, V.; Fokov, Y.; Kiyavitskaya, H.; Routkovskaya, C.
2012-01-01
The Bell and Glasstone spatial correction factor is used in analyses of subcritical assemblies to correct the experimental reactivity as function of the detector position. Besides the detector position, several other parameters affect the correction factor: the energy weighting function of the detector, the detector size, the energy-angle distribution of source neutrons, and the reactivity of the subcritical assembly. This work focuses on the dependency of the correction factor on the detector material and it investigates the YALINA Booster subcritical assembly loaded with medium (36%) and low (10%) enriched fuels. (authors)
Spatial correction factors for YALINA Booster facility loaded with medium and low enriched fuels
Energy Technology Data Exchange (ETDEWEB)
Talamo, A.; Gohar, Y. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Bournos, V.; Fokov, Y.; Kiyavitskaya, H.; Routkovskaya, C. [Joint Inst. for Power and Nuclear Research-Sosny, 99 Academician A.K.Krasin Str, Minsk 220109 (Belarus)
2012-07-01
The Bell and Glasstone spatial correction factor is used in analyses of subcritical assemblies to correct the experimental reactivity as function of the detector position. Besides the detector position, several other parameters affect the correction factor: the energy weighting function of the detector, the detector size, the energy-angle distribution of source neutrons, and the reactivity of the subcritical assembly. This work focuses on the dependency of the correction factor on the detector material and it investigates the YALINA Booster subcritical assembly loaded with medium (36%) and low (10%) enriched fuels. (authors)
Correction factors to convert microdosimetry measurements in silicon to tissue in 12C ion therapy.
Bolst, David; Guatelli, Susanna; Tran, Linh T; Chartier, Lachlan; Lerch, Michael L F; Matsufuji, Naruhiro; Rosenfeld, Anatoly B
2017-03-21
Silicon microdosimetry is a promising technology for heavy ion therapy (HIT) quality assurance, because of its sub-mm spatial resolution and capability to determine radiation effects at a cellular level in a mixed radiation field. A drawback of silicon is not being tissue-equivalent, thus the need to convert the detector response obtained in silicon to tissue. This paper presents a method for converting silicon microdosimetric spectra to tissue for a therapeutic 12 C beam, based on Monte Carlo simulations. The energy deposition spectra in a 10 μm sized silicon cylindrical sensitive volume (SV) were found to be equivalent to those measured in a tissue SV, with the same shape, but with dimensions scaled by a factor κ equal to 0.57 and 0.54 for muscle and water, respectively. A low energy correction factor was determined to account for the enhanced response in silicon at low energy depositions, produced by electrons. The concept of the mean path length [Formula: see text] to calculate the lineal energy was introduced as an alternative to the mean chord length [Formula: see text] because it was found that adopting Cauchy's formula for the [Formula: see text] was not appropriate for the radiation field typical of HIT as it is very directional. [Formula: see text] can be determined based on the peak of the lineal energy distribution produced by the incident carbon beam. Furthermore it was demonstrated that the thickness of the SV along the direction of the incident 12 C ion beam can be adopted as [Formula: see text]. The tissue equivalence conversion method and [Formula: see text] were adopted to determine the RBE 10 , calculated using a modified microdosimetric kinetic model, applied to the microdosimetric spectra resulting from the simulation study. Comparison of the RBE 10 along the Bragg peak to experimental TEPC measurements at HIMAC, NIRS, showed good agreement. Such agreement demonstrates the validity of the developed tissue equivalence correction factors and of
Correct use of the Gordon decomposition in the calculation of nucleon magnetic dipole moments
International Nuclear Information System (INIS)
Mekhfi, Mustapha
2008-01-01
We perform the calculation of the nucleon dipole magnetic moment in full detail using the Gordon decomposition of the free quark current. This calculation has become necessary because of frequent misuse of the Gordon decomposition by some authors in computing the nucleon dipole magnetic moment
Correction for adiabatic effects in lethe calculated instantaneous gas consumption of scuba dives
Schellart, Nico A. M.; Le Péchon, Jean-Claude
2015-01-01
Introduction: In scuba-diving practice, instantaneous gas consumption is generally calculated from the fall in cylinder pressure without considering the effects of water temperature (heat transfer) and adiabatic processes. We aimed to develop a simple but precise method for calculating the
Directory of Open Access Journals (Sweden)
V. V. Lahuta
2008-01-01
Full Text Available The numerical method of solution of a differential equation of railway shifts is presented allowing to calculate the quantity of shifts in any point of a railway curve during its straightening. Shifts calculated between the points of measurement of bend arrows can be used as control ones.
Hydrophone area-averaging correction factors in nonlinearly generated ultrasonic beams
International Nuclear Information System (INIS)
Cooling, M P; Humphrey, V F; Wilkens, V
2011-01-01
The nonlinear propagation of an ultrasonic wave can be used to produce a wavefield rich in higher frequency components that is ideally suited to the calibration, or inter-calibration, of hydrophones. These techniques usually use a tone-burst signal, limiting the measurements to harmonics of the fundamental calibration frequency. Alternatively, using a short pulse enables calibration at a continuous spectrum of frequencies. Such a technique is used at PTB in conjunction with an optical measurement technique to calibrate devices. Experimental findings indicate that the area-averaging correction factor for a hydrophone in such a field demonstrates a complex behaviour, most notably varying periodically between frequencies that are harmonics of the centre frequency of the original pulse and frequencies that lie midway between these harmonics. The beam characteristics of such nonlinearly generated fields have been investigated using a finite difference solution to the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a focused field. The simulation results are used to calculate the hydrophone area-averaging correction factors for 0.2 mm and 0.5 mm devices. The results clearly demonstrate a number of significant features observed in the experimental investigations, including the variation with frequency, drive level and hydrophone element size. An explanation for these effects is also proposed.
Hydrophone area-averaging correction factors in nonlinearly generated ultrasonic beams
Cooling, M. P.; Humphrey, V. F.; Wilkens, V.
2011-02-01
The nonlinear propagation of an ultrasonic wave can be used to produce a wavefield rich in higher frequency components that is ideally suited to the calibration, or inter-calibration, of hydrophones. These techniques usually use a tone-burst signal, limiting the measurements to harmonics of the fundamental calibration frequency. Alternatively, using a short pulse enables calibration at a continuous spectrum of frequencies. Such a technique is used at PTB in conjunction with an optical measurement technique to calibrate devices. Experimental findings indicate that the area-averaging correction factor for a hydrophone in such a field demonstrates a complex behaviour, most notably varying periodically between frequencies that are harmonics of the centre frequency of the original pulse and frequencies that lie midway between these harmonics. The beam characteristics of such nonlinearly generated fields have been investigated using a finite difference solution to the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a focused field. The simulation results are used to calculate the hydrophone area-averaging correction factors for 0.2 mm and 0.5 mm devices. The results clearly demonstrate a number of significant features observed in the experimental investigations, including the variation with frequency, drive level and hydrophone element size. An explanation for these effects is also proposed.
Monte Carlo calculations of kQ, the beam quality conversion factor
International Nuclear Information System (INIS)
Muir, B. R.; Rogers, D. W. O.
2010-01-01
Purpose: To use EGSnrc Monte Carlo simulations to directly calculate beam quality conversion factors, k Q , for 32 cylindrical ionization chambers over a range of beam qualities and to quantify the effect of systematic uncertainties on Monte Carlo calculations of k Q . These factors are required to use the TG-51 or TRS-398 clinical dosimetry protocols for calibrating external radiotherapy beams. Methods: Ionization chambers are modeled either from blueprints or manufacturers' user's manuals. The dose-to-air in the chamber is calculated using the EGSnrc user-code egs c hamber using 11 different tabulated clinical photon spectra for the incident beams. The dose to a small volume of water is also calculated in the absence of the chamber at the midpoint of the chamber on its central axis. Using a simple equation, k Q is calculated from these quantities under the assumption that W/e is constant with energy and compared to TG-51 protocol and measured values. Results: Polynomial fits to the Monte Carlo calculated k Q factors as a function of beam quality expressed as %dd(10) x and TPR 10 20 are given for each ionization chamber. Differences are explained between Monte Carlo calculated values and values from the TG-51 protocol or calculated using the computer program used for TG-51 calculations. Systematic uncertainties in calculated k Q values are analyzed and amount to a maximum of one standard deviation uncertainty of 0.99% if one assumes that photon cross-section uncertainties are uncorrelated and 0.63% if they are assumed correlated. The largest components of the uncertainty are the constancy of W/e and the uncertainty in the cross-section for photons in water. Conclusions: It is now possible to calculate k Q directly using Monte Carlo simulations. Monte Carlo calculations for most ionization chambers give results which are comparable to TG-51 values. Discrepancies can be explained using individual Monte Carlo calculations of various correction factors which are more
First Lattice Calculation of the QED Corrections to Leptonic Decay Rates
Giusti, D.; Lubicz, V.; Tarantino, C.; Martinelli, G.; Sachrajda, C. T.; Sanfilippo, F.; Simula, S.; Tantalo, N.
2018-02-01
The leading-order electromagnetic and strong isospin-breaking corrections to the ratio of Kμ 2 and πμ 2 decay rates are evaluated for the first time on the lattice, following a method recently proposed. The lattice results are obtained using the gauge ensembles produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical quarks. Systematic effects are evaluated and the impact of the quenched QED approximation is estimated. Our result for the correction to the tree-level Kμ 2/πμ 2 decay ratio is -1.22 (16 )%, to be compared to the estimate of -1.12 (21 )% based on chiral perturbation theory and adopted by the Particle Data Group.
DEFF Research Database (Denmark)
Kjærgaard, Magnus; Poulsen, Flemming Martin
2011-01-01
Random coil chemical shifts are necessary for secondary chemical shift analysis, which is the main NMR method for identification of secondary structure in proteins. One of the largest challenges in the determination of random coil chemical shifts is accounting for the effect of neighboring residues....... The contributions from the neighboring residues are typically removed by using neighbor correction factors determined based on each residue's effect on glycine chemical shifts. Due to its unusual conformational freedom, glycine may be particularly unrepresentative for the remaining residue types. In this study, we...... in the conformational ensemble are an important source of neighbor effects in disordered proteins. Glutamine derived random coil chemical shifts and correction factors modestly improve our ability to predict (13)C chemical shifts of intrinsically disordered proteins compared to existing datasets, and may thus improve...
van de Streek, Jacco; Neumann, Marcus A
2010-10-01
This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.
International Nuclear Information System (INIS)
Blanco, F.; Rosado, J.; Illana, A.; Garcia, G.
2010-01-01
The SCAR and EGAR procedures have been proposed in order to extend to lower energies the applicability of the additivity rule for calculation of electron-molecule total cross sections. Both those approximate treatments arise after considering geometrical screening corrections due to partial overlapping of atoms in the molecule, as seen by the incident electrons. The main features, results and limitations of both treatments are put here in comparison by means of their application to some different sized species.
International Nuclear Information System (INIS)
Vysotskij, M.I.
1980-01-01
The problem of the search for the Higgs boson in the V → Hγ decay, where V is a vector particle built of anti QQ heavy quark pair is considered. The V → Hγ decay proposed by Wilczek gives possibility to avoid experimental dificulties in detecting Higgs bosons. The probability of this decay and one loop gluan strong corrections to this process have been calculated
Palmans, H; Al-Sulaiti, L; Andreo, P; Shipley, D; Lühr, A; Bassler, N; Martinkovič, J; Dobrovodský, J; Rossomme, S; Thomas, R A S; Kacperek, A
2013-05-21
The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, kfl, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose-to-graphite in a graphite phantom to dose-to-water in a water phantom for 60 MeV mono-energetic protons were calculated using an analytical model and five different Monte Carlo codes (Geant4, FLUKA, MCNPX, SHIELD-HIT and McPTRAN.MEDIA). In general the fluence correction factors are found to be close to unity and the analytical and Monte Carlo codes give consistent values when considering the differences in secondary particle transport. When considering only protons the fluence correction factors are unity at the surface and increase with depth by 0.5% to 1.5% depending on the code. When the fluence of all charged particles is considered, the fluence correction factor is about 0.5% lower than unity at shallow depths predominantly due to the contributions from alpha particles and increases to values above unity near the Bragg peak. Fluence correction factors directly derived from the fluence distributions differential in energy at equivalent depths in water and graphite can be described by kfl = 0.9964 + 0.0024·zw-eq with a relative standard uncertainty of 0.2%. Fluence correction factors derived from a ratio of calculated doses at equivalent depths in water and graphite can be described by kfl = 0.9947 + 0.0024·zw-eq with a relative standard uncertainty of 0.3%. These results are of direct relevance to graphite calorimetry in low-energy protons but given that the fluence
PMBLDC motor drive with power factor correction controller
DEFF Research Database (Denmark)
George, G.J.; Ramachandran, Rakesh; Arun, N.
2012-01-01
reliability, and low maintenance requirements. The proposed Power Factor Controller topology improves power quality by improving performance of PMBLDCM drive, such as reduction of AC main current harmonics, near unity power factor. PFC converter forces the drive to draw sinusoidal supply current in phase...
On the evaluation of the correction factor μ (rho', tau') for the periodic pulse method
International Nuclear Information System (INIS)
Mueller, J.W.
1976-01-01
The inconveniences associated with the purely numerical approach we have chosen to solve some of the problems which arise in connection with the source-pulser method are twofold. On the one hand, there is the trouble of calculating the tables for μ, requiring several nights of computer time. On the other hand, apart from some simple limiting values as μ = 1 for tau' = 0 or 1, μ = 1/0.5 + /0.5 - tau'/ for rho' → 0 (and 0 > 1, no appropriate analytical form for the correction factor μ of sufficient precision is known for the moment. This drawback, we hope, is partly removed by a tabulation which should cover the whole region of practical interest. The computer programs for both the evaluation of μ and the Monte Carlo simulation are available upon request
Numerical tables of anomalous scattering factors calculated by the Cromer and Liberman's method
International Nuclear Information System (INIS)
Sasaki, Satoshi.
1989-02-01
Anomalous scattering factors f' and f'' have been calculated for the atoms Li through Bi, plus U, using the relativistic treatment described by Cromer and Liberman. The final f' value does not include the Jensen's correction term on the magnetic scattering. The tables are presented with the f' and f'' values (i) at 0.01 A intervals in the wavelength range from 0.1 to 2.89 A and (ii) at 0.0001 A intervals in the neighborhood of the K, L 1 , L 2 , and L 3 absorption edges. (author)
Adjustement of Dancoff factor for calculating the cell of fluidized bed nuclear reactor
International Nuclear Information System (INIS)
Borges, V.; Sefidvash, F.
1988-01-01
A new nuclear reactor design based on the fluidized bed concept is under reserch and development. It utilized spherical fuel of slightly enriched zircaloy-clad uranium dioxide fluidized by light water under pressure since the Leopard code has been developed for light water reactor analysis, it was necessary to develop a method to determine the dimensions of the hypothetical fuel rod lattice, which are neutronically equivalent to the spherical fuel pellet lattice. This method is shown to calculate the Dancoff factor correctly. (author) [pt
Continuous correction of differential path length factor in near-infrared spectroscopy.
Talukdar, Tanveer; Moore, Jason H; Diamond, Solomon G
2013-05-01
In continuous-wave near-infrared spectroscopy (CW-NIRS), changes in the concentration of oxyhemoglobin and deoxyhemoglobin can be calculated by solving a set of linear equations from the modified Beer-Lambert Law. Cross-talk error in the calculated hemodynamics can arise from inaccurate knowledge of the wavelength-dependent differential path length factor (DPF). We apply the extended Kalman filter (EKF) with a dynamical systems model to calculate relative concentration changes in oxy- and deoxyhemoglobin while simultaneously estimating relative changes in DPF. Results from simulated and experimental CW-NIRS data are compared with results from a weighted least squares (WLSQ) method. The EKF method was found to effectively correct for artificially introduced errors in DPF and to reduce the cross-talk error in simulation. With experimental CW-NIRS data, the hemodynamic estimates from EKF differ significantly from the WLSQ (p EKF method compared to WLSQ in three physiologically relevant spectral bands 0.04 to 0.15 Hz, 0.15 to 0.4 Hz and 0.4 to 2.0 Hz (p EKF method.
Lattice calculation of electric dipole moments and form factors of the nucleon
Abramczyk, M.; Aoki, S.; Blum, T.; Izubuchi, T.; Ohki, H.; Syritsyn, S.
2017-07-01
We analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF) F3 and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor F2 due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the C P -violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for F3. Finally, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.
International Nuclear Information System (INIS)
Ducatti, C.; Salati, E.
1982-01-01
A review is made of analytical procedures to calculate correction factors, proposed by CRAIG (1957) to determine isotopic enrichment relating to the international PBD standard sample, obtained from analysis of carbon dioxide gas samples by mass spectrometry. Using such correction factors, the isotopic composition of the secondary CENA-standard sample is characterized through calculation of the main isotopic ratios of this sample. It is then possible to obtain correction factors for the determination of the isotopic enrichment relating to the secondary CENA-standard sample itself. New correction factors are proposed taking into account the interference of various isotopic species and the variability in sample and secondary standard preparation, that make possible the detemination of carbon-13 and oxygen-18 isotopic enrichment relating to the international PBD standard sample, with a total analytical error σ = + - 0.2 0 /00 in normal routine work. (Author) [pt
Brandenburg, Jan Gerit; Alessio, Maristella; Civalleri, Bartolomeo; Peintinger, Michael F; Bredow, Thomas; Grimme, Stefan
2013-09-26
We extend the previously developed geometrical correction for the inter- and intramolecular basis set superposition error (gCP) to periodic density functional theory (DFT) calculations. We report gCP results compared to those from the standard Boys-Bernardi counterpoise correction scheme and large basis set calculations. The applicability of the method to molecular crystals as the main target is tested for the benchmark set X23. It consists of 23 noncovalently bound crystals as introduced by Johnson et al. (J. Chem. Phys. 2012, 137, 054103) and refined by Tkatchenko et al. (J. Chem. Phys. 2013, 139, 024705). In order to accurately describe long-range electron correlation effects, we use the standard atom-pairwise dispersion correction scheme DFT-D3. We show that a combination of DFT energies with small atom-centered basis sets, the D3 dispersion correction, and the gCP correction can accurately describe van der Waals and hydrogen-bonded crystals. Mean absolute deviations of the X23 sublimation energies can be reduced by more than 70% and 80% for the standard functionals PBE and B3LYP, respectively, to small residual mean absolute deviations of about 2 kcal/mol (corresponding to 13% of the average sublimation energy). As a further test, we compute the interlayer interaction of graphite for varying distances and obtain a good equilibrium distance and interaction energy of 6.75 Å and -43.0 meV/atom at the PBE-D3-gCP/SVP level. We fit the gCP scheme for a recently developed pob-TZVP solid-state basis set and obtain reasonable results for the X23 benchmark set and the potential energy curve for water adsorption on a nickel (110) surface.
Dral, Pavlo O.; Owens, Alec; Yurchenko, Sergei N.; Thiel, Walter
2017-06-01
We present an efficient approach for generating highly accurate molecular potential energy surfaces (PESs) using self-correcting, kernel ridge regression (KRR) based machine learning (ML). We introduce structure-based sampling to automatically assign nuclear configurations from a pre-defined grid to the training and prediction sets, respectively. Accurate high-level ab initio energies are required only for the points in the training set, while the energies for the remaining points are provided by the ML model with negligible computational cost. The proposed sampling procedure is shown to be superior to random sampling and also eliminates the need for training several ML models. Self-correcting machine learning has been implemented such that each additional layer corrects errors from the previous layer. The performance of our approach is demonstrated in a case study on a published high-level ab initio PES of methyl chloride with 44 819 points. The ML model is trained on sets of different sizes and then used to predict the energies for tens of thousands of nuclear configurations within seconds. The resulting datasets are utilized in variational calculations of the vibrational energy levels of CH3Cl. By using both structure-based sampling and self-correction, the size of the training set can be kept small (e.g., 10% of the points) without any significant loss of accuracy. In ab initio rovibrational spectroscopy, it is thus possible to reduce the number of computationally costly electronic structure calculations through structure-based sampling and self-correcting KRR-based machine learning by up to 90%.
International Nuclear Information System (INIS)
Redon, N.; Meyer, J.; Meyer, M.
1989-01-01
An approximate restoration of the particle number symmetry, a la Lipkin-Nogami, is numerically investigated in the context of Constrained Hartree-Fock plus BCS calculations. Its effect is assessed in a variety of physical situations like potential energy landscapes in transitional nuclei, shape isomerism at low spin and fission barriers of actinide nuclei
International Nuclear Information System (INIS)
McGregor, B.J.; Allen, B.J.
1991-01-01
In previous calculations for total body nitrogen measurements of children, the anterior/posterior thermal neutron flux profile with depth was found to be fairly flat after an initial rise. However, for obese adults significant variations are found in the flux profile with the central flux value being as low as 20% of the peak value. The significance of these flux variations is examined. Correction factors are calculated for the varying attenuation of the nitrogen and hydrogen photons by a range of obese bodies. The calculations included the effect of the thermal flux profile as well as that of an outer layer of low nitrogen content adipose tissue. The bodies are assumed to have a homogeneous hydrogen content. A study of four obese body models with varying sex and fat content shows that the correction factors do not vary much between males and females. This is surprising since the female models are assumed to have a surface fat layer twice as thick as for the male models. The correction factors are found to be only slightly sensitive to the thermal flux variations with depth. 5 refs., 1 tab., 4 figs
International Nuclear Information System (INIS)
Sorriaux, J; Paganetti, H; Testa, M; Giantsoudi, D; Schuemann, J; Bertrand, D; Orban de Xivry, J.; Lee, J; Palmans, H; Vynckier, S; Sterpin, E
2014-01-01
Purpose: In current practice, most proton therapy centers apply IAEA TRS-398 reference dosimetry protocol. Quality correction factors (kQ) take into account in the dose determination process the differences in beam qualities used for calibration unit and for treatment unit. These quality correction factors are valid for specific reference conditions. TRS-398 reference conditions should be achievable in both scattered proton beams (i.e. DS) and scanned proton beams (i.e. PBS). However, it is not a priori clear if TRS-398 kQ data, which are based on Monte Carlo (MC) calculations in scattered beams, can be used for scanned beams. Using TOPAS-Geant4 MC simulations, the study aims to determine whether broad beam quality correction factors calculated in TRS-398 can be directly applied to PBS delivery modality. Methods: As reference conditions, we consider a 10×10×10 cm 3 homogeneous dose distribution delivered by PBS system in a water phantom (32/10 cm range/modulation) and an air cavity placed at the center of the spread-out-Bragg-peak. In order to isolate beam differences, a hypothetical broad beam is simulated. This hypothetical beam reproduces exactly the same range modulation, and uses the same energy layers than the PBS field. Ion chamber responses are computed for the PBS and hypothetical beams and then compared. Results: For an air cavity of 2×2×0.2 cm 3 , the ratio of ion chamber responses for the PBS and hypothetical beam qualities is 0.9991 ± 0.0016. Conclusion: Quality correction factors are insensitive to the delivery pattern of the beam (broad beam or PBS), as long as similar dose distributions are achieved. This investigation, for an air cavity, suggests that broad beam quality correction factors published in TRS-398 can be applied for scanned beams. J. Sorriaux is financially supported by a public-private partnership involving the company Ion Beam Applications (IBA)
International Nuclear Information System (INIS)
Wang Ying; Yuan Chengxun; Gao Ruilin; Zhou Zhongxiang
2012-01-01
Theoretical investigations of a Gaussian laser beam propagating in relativistic plasmas have been performed with the WKB method and complex eikonal function. We consider the relativistic nonlinearity induced by intense laser beam, and present the relativistically generalized forms of the plasma frequency and electron collision frequency in plasmas. The coupled differential equations describing the propagation variations of laser beam are derived and numerically solved. The obtained simulation results present the similar variation tendency with experiments. By changing the plasma density, we theoretically analyze the feasibility of using a plasmas slab of a fixed thickness to compress the laser beam-width and acquire the focused laser intensity. The present work complements the relativistic correction of the electron collision frequency with reasonable derivations, promotes the theoretical approaching to experiments and provides effective instructions to the practical laser-plasma interactions.
Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C; Joyce, Kevin P; Kovalenko, Andriy
2016-11-01
Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing ([Formula: see text] for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining [Formula: see text] compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to [Formula: see text]. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple [Formula: see text] correction improved agreement with experiment from [Formula: see text] to [Formula: see text], despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.
Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C.; Joyce, Kevin P.; Kovalenko, Andriy
2016-11-01
Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing (R=0.98 for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining R=0.73 compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to R=0.93. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple pK_{ {a}} correction improved agreement with experiment from R=0.54 to R=0.66, despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.
Dose-calculation algorithms in the context of inhomogeneity corrections for high energy photon beams
International Nuclear Information System (INIS)
Papanikolaou, Niko; Stathakis, Sotirios
2009-01-01
Radiation therapy has witnessed a plethora of innovations and developments in the past 15 years. Since the introduction of computed tomography for treatment planning there has been a steady introduction of new methods to refine treatment delivery. Imaging continues to be an integral part of the planning, but also the delivery, of modern radiotherapy. However, all the efforts of image guided radiotherapy, intensity-modulated planning and delivery, adaptive radiotherapy, and everything else that we pride ourselves in having in the armamentarium can fall short, unless there is an accurate dose-calculation algorithm. The agreement between the calculated and delivered doses is of great significance in radiation therapy since the accuracy of the absorbed dose as prescribed determines the clinical outcome. Dose-calculation algorithms have evolved greatly over the years in an effort to be more inclusive of the effects that govern the true radiation transport through the human body. In this Vision 20/20 paper, we look back to see how it all started and where things are now in terms of dose algorithms for photon beams and the inclusion of tissue heterogeneities. Convolution-superposition algorithms have dominated the treatment planning industry for the past few years. Monte Carlo techniques have an inherent accuracy that is superior to any other algorithm and as such will continue to be the gold standard, along with measurements, and maybe one day will be the algorithm of choice for all particle treatment planning in radiation therapy.
International Nuclear Information System (INIS)
Nasrun, S; Syamsul-Hadi, M; Sumardi
2000-01-01
Gamma-ray Spectrometer Exploranium GR-320 is the instrument radiometric survey which is able to measure radioelement content directly in field based on partial gamma-ray energy of elements. Because of the instrument is new and it was granted from the lAEA, so it is necessarily to create a correction factor for the instrument due to be gaining the better data. Correction factor was generated from comparing gamma spectrometer's radioelement content to those of chemical analysed data of calibration pad. The correction factor for Potassium (K) is 1.31, uranium is 1.46, and thorium is 0.39
International Nuclear Information System (INIS)
Haddad, Kh.
2009-02-01
Gamma spectrometry forms the most important and capable tool for measuring radioactive materials. Determination of the efficiency and attenuation correction factors is the most tedious problem in the gamma spectrometric assay of bulk samples. A new experimental and easy method for these correction factors determination using self radiation was proposed in this work. An experimental study of the correlation between self attenuation correction factor and sample thickness and its practical application was also introduced. The work was performed on NORM and uranyl nitrate bulk sample. The results of proposed methods agreed with those of traditional ones.(author)
Active Power Factor Correction Using a Sliding Mode Controller
Directory of Open Access Journals (Sweden)
Korhan KAYIŞLI
2008-03-01
Full Text Available In this paper, a sliding mode controller is designed for active shaping of the input current in the boost converter. Robustness of the designed controller is tested with variable output voltage references, different loads and network voltage variations. For the simulations, MATLAB/Simulink programme is used. From simulation results, the same phase was provided between input current and input voltage and nearly unity power factor was obtained.
Calculating the momentum enhancement factor for asteroid deflection studies
International Nuclear Information System (INIS)
Heberling, Tamra; Gisler, Galen; Plesko, Catherine; Weaver, Robert
2017-01-01
The possibility of kinetic-impact deflection of threatening near-Earth asteroids will be tested for the first time in the proposed AIDA (Asteroid Impact Deflection Assessment) mission, involving NASAs DART (Double Asteroid Redirection Test). The impact of the DART spacecraft onto the secondary of the binary asteroid 65803 Didymos at a speed of 5 to 7 km/s is expected to alter the mutual orbit by an observable amount. Furthermore, the velocity transferred to the secondary depends largely on the momentum enhancement factor, typically referred to as beta. Here, we use two hydrocodes developed at Los Alamos, RAGE and PAGOSA, to calculate an approximate value for beta in laboratory-scale benchmark experiments. Convergence studies comparing the two codes show the importance of mesh size in estimating this crucial parameter.
Energy Technology Data Exchange (ETDEWEB)
Radiyanti, Ita Budi; Hamzah, Amir; Pinem, Surian [Multipurpose Reactor Centre Indonesia, Serpong, (Indonesia)
1996-04-15
Foil activation method is commonly used in flux and neutron spectrum measurement in nuclear reactor and other research. The effect of the thickness, type of foil material and neutron spectrum shape on the self shielding correction and activities correction on the edges of the foil have been analyzed. Also the effect of neglecting those correction factors on neutron flux and spectrum measurement were analyzed. The calculation of the correction factor has been done by using the program which had been verified for several foils. The foils used are Au, In. Cu, Co and Dy of 0.00254 cm -0.127 cm thickness and 1.27 cm diameter. The result showed that the correction factor foils were not similar due to the variation of activation cross section and neutron spectrum shape. For the neutron spectrum in RS-2 multi purpose reactor GAS using foils of 0.00254 cm thick. The effect of neglecting correction factor on thermal flux measurement for Au, In, Co and Cu were less than -6%, for Dy was about -25%. On epithermal flux measurement for Au and In were about -60%, Co and Dy was -12% and -6%, for Cu less than -2%. The effect of neglecting correction factor on spectrum measurement was the change on the neutron flux density values along neutron energy region.
Resistivity Correction Factor for the Four-Probe Method: Experiment I
Yamashita, Masato; Yamaguchi, Shoji; Enjoji, Hideo
1988-05-01
Experimental verification of the theoretically derived resistivity correction factor (RCF) is presented. Resistivity and sheet resistance measurements by the four-probe method are made on three samples: isotropic graphite, ITO film and Au film. It is indicated that the RCF can correct the apparent variations of experimental data to yield reasonable resistivities and sheet resistances.
International Nuclear Information System (INIS)
Allahverdi, Mahmoud; Shirazi, Alireza; Geraily, Ghazale; Mohammadkarim, Alireza; Esfehani, Mahbod; Nedaie, Hasanali
2012-01-01
An in vivo dosimetry system, using p-type diode dosimeters, was characterized for clinical applications of treatment machines ranging in megavoltage energies. This paper investigates two different models of diodes for externally wedged beams and explains a new algorithm for the calculation of the target dose at various tissue depths in external radiotherapy. The values of off-axis wedge correction factors were determined at two different positions in the wedged (toward the thick and thin edges) and in the non-wedged directions on entrance and exit surfaces of a polystyrene phantom in 60 Co and 6 MV photon beams. Depth transmission was defined on the entrance and exit surfaces to obtain the off-axis wedge correction factor at any depth. As the sensitivity of the diodes depends on physical characteristics (field size, source-skin distance (SSD), thickness, backscatter), correction factors were applied to the diode reading when measuring conditions different from calibration situations. The results indicate that needful correction factors for 60 Co wedged photons are usually larger than those for 6 MV wedged photon beams. In vivo dosimetry performed with the proposed algorithms at externally wedged beams has negligible probable errors (less than 0.5%) and is a reliable method for patient dose control. (author)
Directory of Open Access Journals (Sweden)
Mahmoud Allahverdi
2012-01-01
Full Text Available An in vivo dosimetry system, using p-type diode dosimeters, was characterized for clinical applications of treatment machines ranging in megavoltage energies. This paper investigates two different models of diodes for externally wedged beams and explains a new algorithm for the calculation of the target dose at various tissue depths in external radiotherapy. The values of off-axis wedge correction factors were determined at two different positions in the wedged (toward the thick and thin edges and in the non-wedged directions on entrance and exit surfaces of a polystyrene phantom in 60 Co and 6 MV photon beams. Depth transmission was defined on the entrance and exit surfaces to obtain the off-axis wedge correction factor at any depth. As the sensitivity of the diodes depends on physical characteristics [field size, source-skin distance (SSD, thickness, backscatter], correction factors were applied to the diode reading when measuring conditions different from calibration situations . The results indicate that needful correction factors for 60 Co wedged photons are usually larger than those for 6 MV wedged photon beams. In vivo dosimetry performed with the proposed algorithms at externally wedged beams has negligible probable errors (less than 0.5% and is a reliable method for patient dose control.
Bias correction factors for near-Earth asteroids
Benedix, Gretchen K.; Mcfadden, Lucy Ann; Morrow, Esther M.; Fomenkova, Marina N.
1992-01-01
Knowledge of the population size and physical characteristics (albedo, size, and rotation rate) of near-Earth asteroids (NEA's) is biased by observational selection effects which are functions of the population's intrinsic properties and the size of the telescope, detector sensitivity, and search strategy used. The NEA population is modeled in terms of orbital and physical elements: a, e, i, omega, Omega, M, albedo, and diameter, and an asteroid search program is simulated using actual telescope pointings of right ascension, declination, date, and time. The position of each object in the model population is calculated at the date and time of each telescope pointing. The program tests to see if that object is within the field of view (FOV = 8.75 degrees) of the telescope and above the limiting magnitude (V = +1.65) of the film. The effect of the starting population on the outcome of the simulation's discoveries is compared to the actual discoveries in order to define a most probable starting population.
Tuneable diode laser spectroscopy correction factor investigation on ammonia measurement
Li, Nilton; El-Hamalawi, Ashraf; Baxter, Jim; Barrett, Richard; Wheatley, Andrew
2018-01-01
Current diesel engine aftertreatment systems, such as Selective Catalyst Reduction (SCR) use ammonia (NH3) to reduce Nitrogen Oxides (NOx) into Nitrogen (N2) and water (H2O). However, if the reaction between NH3 and NOx is unbalanced, it can lead either NH3 or NOx being released into the environment. As NH3 is classified as a dangerous compound in the environment, its accurate measurement is essential. Tuneable Diode Laser (TDL) spectroscopy is one of the methods used to measure raw emissions inside engine exhaust pipes, especially NH3. This instrument requires a real-time exhaust temperature, pressure and other interference compounds in order to adjust itself to reduce the error in NH3 readings. Most researchers believed that exhaust temperature and pressure were the most influential factors in TDL when measuring NH3 inside exhaust pipes. The aim of this paper was to quantify these interference effects on TDL when undertaking NH3 measurement. Surprisingly, the results show that pressure was the least influential factor when compared to temperature, H2O, CO2 and O2 when undertaking NH3 measurement using TDL.
New buildup factor data for point kernel calculations
International Nuclear Information System (INIS)
Trubey, D.K.; Harima, Y.
1986-01-01
An American Nuclear Society Standards Committee Working Group, identified as ANS-6.4.3, is developing a set of evaluated gamma-ray isotropic point-source buildup factors and attenuation coefficients for a standard reference data base. As a first step, a largely unpublished set of buildup factors calculated with the moments method has been evaluated by recalculating key values with Monte Carlo, integral transport, and discrete ordinates methods. Attention is being given to frequently-neglected processes such as bremsstrahlung and the effect of introducing a tissue phantom behind the shield. The proposed standard contains data for a source energy range from 15 keV to 15 MeV and for approximately 19 elements and 3 mixtures (water, air, and concrete). The data will also be represented as coefficients for the G-P fitting function. The 1985 data base was released as part of the CCC-493B/QAD-CGGP code package available from the Radiation Shielding Information Center (RSIC)
Czech Academy of Sciences Publication Activity Database
Mikolajczyk, M. M.; Zalesny, R.; Czyznikowska, Z.; Toman, Petr; Leszczynski, J.; Bartkowiak, W.
2011-01-01
Roč. 17, č. 9 (2011), s. 2143-2149 ISSN 1610-2940 R&D Projects: GA ČR(CZ) GAP205/10/2280; GA MŠk MEB051010 Institutional research plan: CEZ:AV0Z40500505 Keywords : charge-transfer integral * density functional theory * long-range corrected functionals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.797, year: 2011
Calculation of Operations Efficiency Factors for Mars Surface Missions
Layback, Sharon L.
2014-01-01
enough time to capture variations in relay asset interactions, Earth/Mars time phasing, and seasonal variations in holidays). This model is used to estimate the ops efficiency factor for each operations configuration. The second model in a separate Excel spreadsheet is a scenario model, which uses the sol types to rack up the total number of "scenario sols" for that scenario (in other words, the ideal number of sols it would take to perform the scenario objectives). Then, the number of sols requiring ground in the loop is calculated based on the soil types contained in the given scenario. Next, the scenario contains a description of what sequence of operations configurations is used, for how many days each, and this is used with the corresponding ops efficiency factors for each configuration to calculate the "ops duration" corresponding to that scenario. Finally, a margin is applied to determine the minimum surface lifetime required for that scenario. Typically, this level of analysis has not been performed until much later in the mission, and has not been able to influence mission design. Further, the notion of moving to sustainable operations during Prime Mission - and the effect that that move would have on surface mission productivity and mission objective choices - has not been encountered until the most recent rover missions (MSL and Mars 2018).
Merz, E; Thode, C; Eiben, B; Faber, R; Hackelöer, B J; Huesgen, G; Pruggmaier, M; Wellek, S
2011-02-01
In the algorithm developed by the Fetal Medicine Foundation (FMF) Germany designed to evaluate the findings of routine first-trimester screening, the false-positive rate (FPR) was determined for the entire study group without stratification by maternal weight. Based on the data received from the continuous audit we were able to identify an increase in the FPR for the weight-related subgroups of patients, particularly for patients with extremely high body weights. The aim of this study was to demonstrate that the variability of the FPR can be reduced through adjusting the concentrations of free β-HCG and PAPP-A measured in the maternal serum by means of a nonlinear regression function modeling the dependence of these values on maternal weight. The database used to establish a version of the algorithm enabling control of the FPR over the whole range of maternal weight consisted of n = 123 546 pregnancies resulting in the birth of a child without chromosomal anomalies. The group with positive outcomes covered n = 500 cases of trisomy 21 and n = 159 trisomies 13 or 18. The dependency of the serum parameters free β-HCG and PAPP-A on maternal weight was analyzed in the sample of negative outcomes by means of nonlinear regression. The fitted regression curve was of exponential form with negative slope. Using this model, all individual measurements were corrected through multiplication with a factor obtained as the ratio of the concentration level predicted by the model to belong to the average maternal body weight of 68.2 kg, over the ordinate of that point on the regression curve which belongs to the weight actually measured. Subsequently, the totality of all values of free β-HCG and PAPP-A corrected for deviation from average weight were used as input data for carrying out the construction of diagnostic discrimination rules described in our recent paper for a database to which no corrections for over- or under-weight had been applied. This entailed in particular the
Calculation of Operations Efficiency Factors for Mars Surface Missions
Laubach, Sharon
2014-01-01
The duration of a mission--and subsequently, the minimum spacecraft lifetime--is a key component in designing the capabilities of a spacecraft during mission formulation. However, determining the duration is not simply a function of how long it will take the spacecraft to execute the activities needed to achieve mission objectives. Instead, the effects of the interaction between the spacecraft and ground operators must also be taken into account. This paper describes a method, using "operations efficiency factors", to account for these effects for Mars surface missions. Typically, this level of analysis has not been performed until much later in the mission development cycle, and has not been able to influence mission or spacecraft design. Further, the notion of moving to sustainable operations during Prime Mission--and the effect that change would have on operations productivity and mission objective choices--has not been encountered until the most recent rover missions (MSL, the (now-cancelled) joint NASA-ESA 2018 Mars rover, and the proposed rover for Mars 2020). Since MSL had a single control center and sun-synchronous relay assets (like MER), estimates of productivity derived from MER prime and extended missions were used. However, Mars 2018's anticipated complexity (there would have been control centers in California and Italy, and a non-sun-synchronous relay asset) required the development of an explicit model of operations efficiency that could handle these complexities. In the case of the proposed Mars 2018 mission, the model was employed to assess the mission return of competing operations concepts, and as an input to component lifetime requirements. In this paper we provide examples of how to calculate the operations efficiency factor for a given operational configuration, and how to apply the factors to surface mission scenarios. This model can be applied to future missions to enable early effective trades between operations design, science mission
Parametrisation of the collimator scatter correction factors of square and rectangular photon beams
International Nuclear Information System (INIS)
Jager, H.N.; Heukelom, S.; Kleffens, H.J. van; Gasteren, J.J.M. van; Laarse, R. van der; Venselaar, J.L.M.; Westermann, C.F.
1995-01-01
Collimator scatter correction factors S c have been measured with a cylindrical mini-phantom for five types of dual photon energy accelerators with energies between 6 and 25 MV. Using these S c -data three methods to parametrize S c of square fields have been compared including a third-order polynomial of the natural logarithm of the fieldsize normalised by the fieldsize of 10 cm 2 . Also six methods to calculate S c of rectangular fields have been compared including a new one which determines the equivalent fieldsize by extending Sterling's method. The deviation between measured and calculated S c for every accelerator, energy and all methods are determined resulting in the maximum and average deviation per method. Applied to square fields the maximum and average deviation were for the method of Chen 0.64% and 0.15%, of Szymzcyk 0.98% and 0.21%, and of this work 0.41% and 0.10%. For the rectangular fields the deviations were for the method of Sterling 1.89% and 0.50%, of Vadash 1.60% and 0.28%, of Szymczyk et al. 1.21% and 0.25%, of Chen 1.84% and 0.31% and of this work 0.79% and 0.20%. Finally, a recommendation is given how to limit the number of fields at which S c should be measured
DEFF Research Database (Denmark)
Herceg, Matija; Artemieva, Irina; Thybo, Hans
2016-01-01
for the crust and (ii) uncertainties in the seismic crustal structure (thickness and average VP velocities of individual crustal layers, including the sedimentary cover). We examine the propagation of these uncertainties into determinations of lithospheric mantle density and analyse both sources of possible......We investigate how uncertainties in seismic and density structure of the crust propagate to uncertainties in mantle density structure. The analysis is based on interpretation of residual upper-mantle gravity anomalies which are calculated by subtracting (stripping) the gravitational effect...... mantle, knowledge on uncertainties associated with incomplete information on crustal structure is of utmost importance for progress in gravity modelling. Uncertainties in the residual upper-mantle gravity anomalies result chiefly from uncertainties in (i) seismic VP velocity-density conversion...
Self-consistent model calculations of the ordered S-matrix and the cylinder correction
International Nuclear Information System (INIS)
Millan, J.
1977-11-01
The multiperipheral ordered bootstrap of Rosenzweig and Veneziano is studied by using dual triple Regge couplings exhibiting the required threshold behavior. In the interval -0.5 less than or equal to t less than or equal to 0.8 GeV 2 self-consistent reggeon couplings and propagators are obtained for values of Regge slopes and intercepts consistent with the physical values for the leading natural-parity Regge trajectories. Cylinder effects on planar pole positions and couplings are calculated. By use of an unsymmetrical planar π--rho reggeon loop model, self-consistent solutions are obtained for the unnatural-parity mesons in the interval -0.5 less than or equal to t less than or equal to 0.6 GeV 2 . The effects of other Regge poles being neglected, the model gives a value of the π--eta splitting consistent with experiment. 24 figures, 1 table, 25 references
Directory of Open Access Journals (Sweden)
V. Popov
2013-03-01
Full Text Available In the course of microeconomics it is convenient to use additive functions of requirements in educational purposes, in which the volume of requirements is set by the linear function of the price, revenue and other factors. But in arriving at the substitution effect there is a number of problems in which impossible answers come out. The formula adjustment concluded by the author, which will allow to avoid contradictions, is described in the article.
Role of humidity and other correction factors in the AAPM TG-21 dosimetry protocol
International Nuclear Information System (INIS)
Rogers, D.W.; Ross, C.K.
1988-01-01
A detailed derivation is presented of the formulas required to determine Ngas and Dmed in the AAPM TG-21 dosimetry protocol. This protocol specifies how to determine the absorbed dose in an electron or photon beam when using exposure or absorbed dose calibrated ion chambers. It is shown that the expression given in TG-21's recent letter of clarification is incorrect. Accounting for humidity correctly increases, by 0.4%, all absorbed dose determinations using an exposure calibrated ion chamber. Taking into account other correction factors in the equation for exposure could also have varying, but significant effects (possibly over 1%). These are the stem scatter correction, the axial nonuniformity correction and the electrode correction for electrodes made of different materials from the wall. Attention is drawn to differences in the definitions of the exposure and absorbed dose calibration factors, Nx and ND, respectively, as supplied by the NBS and the NRCC
Correction factors for 13C-labelled substrate oxidation at whole-body and muscle level
DEFF Research Database (Denmark)
Van Hall, Gerrit
1999-01-01
acid cycle. Changes in metabolic rate induced, for example, by feeding, hormonal changes and physical activity, as well as infusion time, have been shown to affect both correction factors. The present paper explains the theoretical and physiological basis of these correction factors and makes...... for the proportion of labelled CO2 that is produced via oxidation but not excreted. Furthermore, depending on the substrate and position of the C label(s), there may also be a need to correct for labelled C from the metabolized substrate that does not appear as CO2, but rather becomes temporarily fixed in other...
International Nuclear Information System (INIS)
Cho, Sung Koo; Choi, Sang Hyoun; Kim, Chan Hyeong; Na, Seong Ho
2006-01-01
In recent years, the MOSFET dosimeter has been widely used in various medical applications such as dose verification in radiation therapeutic and diagnostic applications. The MOSFET dosimeter is, however, mainly made of silicon and shows some energy dependence for low energy photons. Therefore, the MOSFET dosimeter tends to overestimate the dose for low energy scattered photons in a phantom. This study determines the correction factors to compensate these dependences of the MOSFET dosimeter in ATOM phantom. For this, we first constructed a computational model of the ATOM phantom based on the 3D CT image data of the phantom. The voxel phantom was then implemented in a Monte Carlo simulation code and used to calculate the energy spectrum of the photon field at each of the MOSFET dosimeter locations in the phantom. Finally, the correction factors were calculated based on the energy spectrum of the photon field at the dosimeter locations and the pre-determined energy and directional dependence of the MOSFET dosimeter. Our result for 60 Co and 137 Cs photon fields shows that the correction factors are distributed within the range of 0.89 and 0.97 considering all the MOSFET dosimeter locations in the phantom
Energy Technology Data Exchange (ETDEWEB)
Barrera, Manuel, E-mail: manuel.barrera@uca.es [Escuela Superior de Ingeniería, University of Cadiz, Avda, Universidad de Cadiz 10, 11519 Puerto Real, Cadiz (Spain); Suarez-Llorens, Alfonso [Facultad de Ciencias, University of Cadiz, Avda, Rep. Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Casas-Ruiz, Melquiades; Alonso, José J.; Vidal, Juan [CEIMAR, University of Cadiz, Avda, Rep. Saharaui s/n, 11510 Puerto Real, Cádiz (Spain)
2017-05-11
A generic theoretical methodology for the calculation of the efficiency of gamma spectrometry systems is introduced in this work. The procedure is valid for any type of source and detector and can be applied to determine the full energy peak and the total efficiency of any source-detector system. The methodology is based on the idea of underlying probability of detection, which describes the physical model for the detection of the gamma radiation at the particular studied situation. This probability depends explicitly on the direction of the gamma radiation, allowing the use of this dependence the development of more realistic and complex models than the traditional models based on the point source integration. The probability function that has to be employed in practice must reproduce the relevant characteristics of the detection process occurring at the particular studied situation. Once the probability is defined, the efficiency calculations can be performed in general by using numerical methods. Monte Carlo integration procedure is especially useful to perform the calculations when complex probability functions are used. The methodology can be used for the direct determination of the efficiency and also for the calculation of corrections that require this determination of the efficiency, as it is the case of coincidence summing, geometric or self-attenuation corrections. In particular, we have applied the procedure to obtain some of the classical self-attenuation correction factors usually employed to correct for the sample attenuation of cylindrical geometry sources. The methodology clarifies the theoretical basis and approximations associated to each factor, by making explicit the probability which is generally hidden and implicit to each model. It has been shown that most of these self-attenuation correction factors can be derived by using a common underlying probability, having this probability a growing level of complexity as it reproduces more precisely
International Nuclear Information System (INIS)
Donaghue, J; Gajdos, S
2016-01-01
Purpose: To determine the correction factor of the correspondence factor for the Standard Imaging IVB 1000 well chamber for commissioning of Elekta’s Leipzig and Valencia skin applicators. Methods: The Leipzig and Valencia applicators are designed to treat small skin lesions by collimating irradiation to the treatment area. Published output factors are used to calculate dose rates for clinical treatments. To validate onsite applicators, a correspondence factor (CFrev) is measured and compared to published values. The published CFrev is based on well chamber model SI HDR 1000 Plus. The CFrev is determined by correlating raw values of the source calibration setup (Rcal,raw) and values taken when each applicator is mounted on the same well chamber with an adapter (Rapp,raw). The CFrev is calculated by using the equation CFrev =Rapp,raw/Rcal,raw. The CFrev was measured for each applicator in both the SI HDR 1000 Plus and the SI IVB 1000. A correction factor, CFIVB for the SI IVB 1000 was determined by finding the ratio of CFrev (SI IVB 1000) and CFrev (SI HDR 1000 Plus). Results: The average correction factors at dwell position 1121 were found to be 1.073, 1.039, 1.209, 1.091, and 1.058 for the Valencia V2, Valencia V3, Leipzig H1, Leipzig H2, and Leipzig H3 respectively. There were no significant variations in the correction factor for dwell positions 1119 through 1121. Conclusion: By using the appropriate correction factor, the correspondence factors for the Leipzig and Valencia surface applicators can be validated with the Standard Imaging IVB 1000. This allows users to correlate their measurements with the Standard Imaging IVB 1000 to the published data. The correction factor is included in the equation for the CFrev as follows: CFrev= Rapp,raw/(CFIVB*Rcal,raw). Each individual applicator has its own correction factor, so care must be taken that the appropriate factor is used.
International Nuclear Information System (INIS)
Kyeremeh, P.O.
2011-01-01
Current-available brachytherapy dose computation algorithms ignore heterogeneities such as tissue-air interfaces, shielded gynaecological colpostats, and tissue-composition variations in source implants despite dose computation errors as large as 40%. A convolution kernel, which takes into consideration anisotropy of the dose distribution around a brachytherapy source, and to compute dose in the presence of tissue and applicator heterogeneities, has been established. Resulting from the convolution kernel are functions with polynomial and exponential terms. the solution to the convolution integral was represented by the Fast Fourier transform. The Fast Fourier transform has shown enough potency in accounting for errors due to these heterogeneities and the versatility of this Fast Fourier transform is evident from its capability of switching in between fields. Thus successful procedures in external beam could be adopted in brachytherapy to a yield similar effect. A dose deposition kernel was developed for a 64x64x64 matrix size with wrap around ordering and convoluted with the distribution of the sources in 3D. With MatLab's inverse Fast Fourier transform, dose rate distribution for a given array of interstitial sources, typical of brachytherapy was calculated. The shape of the dose rate distribution peaks appeared comparable with the output expected from computerized treatment planning systems for brachytherapy. Subsequently, the study confirmed the speed and accuracy of dose computation using the FFT convolution as well juxtaposed. Although, dose rate peaks from both the FFT convolution and the TPS(TG43) did not compare quantitatively, which was mainly due to the TPS(TG43) initiation computations from the origin (0,0,0) unlike the FFT convolution which uses sampling points; N=1,2,3..., there is a strong basis for establishing parity since the dose rate peaks compared qualitatively. With both modes compared, the discrepancies in the dose rates ranged between 3.6% to
Robert, Mark E; Linthicum, Fred H
2016-01-01
Profile count method for estimating cell number in sectioned tissue applies a correction factor for double count (resulting from transection during sectioning) of count units selected to represent the cell. For human spiral ganglion cell counts, we attempted to address apparent confusion between published correction factors for nucleus and nucleolus count units that are identical despite the role of count unit diameter in a commonly used correction factor formula. We examined a portion of human cochlea to empirically derive correction factors for the 2 count units, using 3-dimensional reconstruction software to identify double counts. The Neurotology and House Histological Temporal Bone Laboratory at University of California at Los Angeles. Using a fully sectioned and stained human temporal bone, we identified and generated digital images of sections of the modiolar region of the lower first turn of cochlea, identified count units with a light microscope, labeled them on corresponding digital sections, and used 3-dimensional reconstruction software to identify double-counted count units. For 25 consecutive sections, we determined that double-count correction factors for nucleus count unit (0.91) and nucleolus count unit (0.92) matched the published factors. We discovered that nuclei and, therefore, spiral ganglion cells were undercounted by 6.3% when using nucleolus count units. We determined that correction factors for count units must include an element for undercounting spiral ganglion cells as well as the double-count element. We recommend a correction factor of 0.91 for the nucleus count unit and 0.98 for the nucleolus count unit when using 20-µm sections. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.
Energy Technology Data Exchange (ETDEWEB)
Iwai, P; Lins, L Nadler [AC Camargo Cancer Center, Sao Paulo (Brazil)
2016-06-15
Purpose: There is a lack of studies with significant cohort data about patients using pacemaker (PM), implanted cardioverter defibrillator (ICD) or cardiac resynchronization therapy (CRT) device undergoing radiotherapy. There is no literature comparing the cumulative doses delivered to those cardiac implanted electronic devices (CIED) calculated by different algorithms neither studies comparing doses with heterogeneity correction or not. The aim of this study was to evaluate the influence of the algorithms Pencil Beam Convolution (PBC), Analytical Anisotropic Algorithm (AAA) and Acuros XB (AXB) as well as heterogeneity correction on risk categorization of patients. Methods: A retrospective analysis of 19 3DCRT or IMRT plans of 17 patients was conducted, calculating the dose delivered to CIED using three different calculation algorithms. Doses were evaluated with and without heterogeneity correction for comparison. Risk categorization of the patients was based on their CIED dependency and cumulative dose in the devices. Results: Total estimated doses at CIED calculated by AAA or AXB were higher than those calculated by PBC in 56% of the cases. In average, the doses at CIED calculated by AAA and AXB were higher than those calculated by PBC (29% and 4% higher, respectively). The maximum difference of doses calculated by each algorithm was about 1 Gy, either using heterogeneity correction or not. Values of maximum dose calculated with heterogeneity correction showed that dose at CIED was at least equal or higher in 84% of the cases with PBC, 77% with AAA and 67% with AXB than dose obtained with no heterogeneity correction. Conclusion: The dose calculation algorithm and heterogeneity correction did not change the risk categorization. Since higher estimated doses delivered to CIED do not compromise treatment precautions to be taken, it’s recommend that the most sophisticated algorithm available should be used to predict dose at the CIED using heterogeneity correction.
International Nuclear Information System (INIS)
Iwai, P; Lins, L Nadler
2016-01-01
Purpose: There is a lack of studies with significant cohort data about patients using pacemaker (PM), implanted cardioverter defibrillator (ICD) or cardiac resynchronization therapy (CRT) device undergoing radiotherapy. There is no literature comparing the cumulative doses delivered to those cardiac implanted electronic devices (CIED) calculated by different algorithms neither studies comparing doses with heterogeneity correction or not. The aim of this study was to evaluate the influence of the algorithms Pencil Beam Convolution (PBC), Analytical Anisotropic Algorithm (AAA) and Acuros XB (AXB) as well as heterogeneity correction on risk categorization of patients. Methods: A retrospective analysis of 19 3DCRT or IMRT plans of 17 patients was conducted, calculating the dose delivered to CIED using three different calculation algorithms. Doses were evaluated with and without heterogeneity correction for comparison. Risk categorization of the patients was based on their CIED dependency and cumulative dose in the devices. Results: Total estimated doses at CIED calculated by AAA or AXB were higher than those calculated by PBC in 56% of the cases. In average, the doses at CIED calculated by AAA and AXB were higher than those calculated by PBC (29% and 4% higher, respectively). The maximum difference of doses calculated by each algorithm was about 1 Gy, either using heterogeneity correction or not. Values of maximum dose calculated with heterogeneity correction showed that dose at CIED was at least equal or higher in 84% of the cases with PBC, 77% with AAA and 67% with AXB than dose obtained with no heterogeneity correction. Conclusion: The dose calculation algorithm and heterogeneity correction did not change the risk categorization. Since higher estimated doses delivered to CIED do not compromise treatment precautions to be taken, it’s recommend that the most sophisticated algorithm available should be used to predict dose at the CIED using heterogeneity correction.
International Nuclear Information System (INIS)
Brenk, H.D.; Vogt, K.J.
1977-01-01
An evaluation of the environmental impact of nuclear plants according to paragraph 45 of the Radiation Protection Directive of the Federal Republic of Germany requires the calculation of dose conversion factors indicating the correlation between the contaminated medium and individual radiation exposure. The present study is to be conceived as a contribution to discussion on this subject. For the determination of radiation exposure caused by the waste air of nuclear plants, models are being specified for computing the dose conversion factors for the external exposure pathways of β-submersion, γ-submersion and γ-radiation from contaminated ground as well as the internal exposure pathways of inhalation and ingestion, which further elaborate and improve the models previously applied, especially as far as the ingestion pathway is concerned, which distinguishes between 6 major food categories. The computer models are applied to those radionuclides which are significan for nuclear emitters, in particular nuclear light-water power stations. The results obtained for the individual exposure pathways and affected organs are specified in the form of tables. For this purpose, calculations were first of all carried out for the so-called 'reference man'. The results can be transferred to population groups with different consumption habits (e.g. vegetarians) by the application of correction factors. The models are capable of being extended with a view to covering other age groups. (orig.) [de
International Nuclear Information System (INIS)
Sherbini, Sami; Ilas, Dan; Eckerman, Keith F.; DeCicco, Joseph
2011-01-01
United States Nuclear Regulatory Commission (USNRC) regulations limit the dose to the skin to 500 mSv per year. This is also the dose limit recommended by the International Commission on Radiological Protection (ICRP). The operational quantity recommended by ICRP for quantifying dose to the skin is the personal dose equivalent, Hp(0.07) and is identical to NRC's shallow dose equivalent, Hs, also measured at a skin depth of 7 mg cm 2. However, whereas ICRP recommends averaging the dose to the skin over an area of 1 cm2 regardless of the size of the exposed area of skin, USNRC requires the shallow dose equivalent to be averaged over 10 cm2. To monitor dose to the skin of the hands of workers handling radioactive materials and particularly in radiopharmaceutical manufacturing facilities, which is the focus of this work, workers are frequently required to wear finger ring dosimeters. The dosimeters monitor the dose at the location of the sensitive element, but this is not the dose required to show compliance (i.e., the dose averaged over the highest exposed contiguous 10 cm2 of skin). Therefore, it may be necessary to apply a correction factor that enables estimation of the required skin dose from the dosimeter reading. This work explored the effects of finger ring placement and of the geometry of the radioactive materials being handled by the worker on the relationship between the dosimeter reading and the desired average dose. A mathematical model of the hand was developed for this purpose that is capable of positioning the fingers in any desired grasping configuration, thereby realistically modeling manipulation of any object. The model was then used with the radiation transport code MCNP to calculate the dose distribution on the skin of the hand when handling a variety of radioactive vials and syringes, as well as the dose to the dosimeter element. Correction factors were calculated using the results of these calculations and examined for any patterns that may be
Relativistic corrections to the form factors of Bc into P-wave orbitally excited charmonium
Zhu, Ruilin
2018-06-01
We investigated the form factors of the Bc meson into P-wave orbitally excited charmonium using the nonrelativistic QCD effective theory. Through the analytic computation, the next-to-leading order relativistic corrections to the form factors were obtained, and the asymptotic expressions were studied in the infinite bottom quark mass limit. Employing the general form factors, we discussed the exclusive decays of the Bc meson into P-wave orbitally excited charmonium and a light meson. We found that the relativistic corrections lead to a large correction for the form factors, which makes the branching ratios of the decay channels B (Bc ± →χcJ (hc) +π± (K±)) larger. These results are useful for the phenomenological analysis of the Bc meson decays into P-wave charmonium, which shall be tested in the LHCb experiments.
Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony
2017-01-01
When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction fac...
Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types
Energy Technology Data Exchange (ETDEWEB)
Muir, B. R., E-mail: Bryan.Muir@nrc-cnrc.gc.ca [Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada); Rogers, D. W. O., E-mail: drogers@physics.carleton.ca [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 ColonelBy Drive, Ottawa, Ontario K1S 5B6 (Canada)
2014-11-01
Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers’ effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ′}) are provided. These
International Nuclear Information System (INIS)
Kharita, M. H.; Maghrabi, M.
2006-09-01
Assessment of intake and internal does requires knowing the amount of radioactivity in 24 hours urine sample, sometimes it is difficult to get 24 hour sample because this method is not comfortable and in most cases the workers refuse to collect this amount of urine. This work focuses on finding correction factor of 24 hour sample depending on knowing the amount of creatinine in the sample whatever the size of this sample. Then the 24 hours excretion of radionuclide is calculated assuming the average creatinine excretion rate is 1.7 g per 24 hours, based on the amount of activity and creatinine in the urine sample. Several urine sample were collected from occupationally exposed workers the amount and ratios of creatinine and activity in these samples were determined, then normalized to 24 excretion of radionuclide. The average chemical recovery was 77%. It should be emphasized that this method should only be used if a 24 hours sample was not possible to collect. (author)
Normality test for determining the correction factor of isotopic composition in PWR spent fuel
International Nuclear Information System (INIS)
Lee, Y. H.; Shin, H. S.; Noh, S. K.; Seo, K. S.
2001-01-01
Normality test has been carried out for the ratios of the measured-to-calculated isotopic compositions in PWR spent fuel, using Shapiro-Wilk W, Lilliefors D, Cramer-von Mises and Anderson-Darling. All 38 istopices have been evaluated by means of the 1.5xIQR rule and then outliers have been discarded. As result, it seems that only 20 nuclides are satisfied with the normality at significance level 5 %. 18 Nuclides(samples) including U-235 have higher significance probability(p-value) than 25 % in W-test and p-values obtained by other three tests exceed the upper limit. Besides, in 6 nuclides including Pu-239, it seems that the p-values are between 5 % and 25 % in W test. From these results, in order to predict the isotopic compositions in the conservative point of view, it is decided that the correction factors for the nuclides are determined at the 95/95 probability and confidence level by using tolerance limit-methods with the assumption that only 18 nuclides are satisfied with thr normality
International Nuclear Information System (INIS)
Fairbanks, Leandro R.; Barbi, Gustavo L.; Silva, Wiliam T.; Reis, Eduardo G.F.; Borges, Leandro F.; Bertucci, Edenyse C.; Maciel, Marina F.; Amaral, Leonardo L.
2011-01-01
Since the cross-section for various radiation interactions is dependent upon tissue material, the presence of heterogeneities affects the final dose delivered. This paper aims to analyze how different treatment planning algorithms (Fast Fourier Transform, Convolution, Superposition, Fast Superposition and Clarkson) work when heterogeneity corrections are used. To that end, a farmer-type ionization chamber was positioned reproducibly (during the time of CT as well as irradiation) inside several phantoms made of aluminum, bone, cork and solid water slabs. The percent difference between the dose measured and calculated by the various algorithms was less than 5%.The convolution method shows better results for high density materials (difference ∼1 %), whereas the Superposition algorithm is more accurate for low densities (around 1,1%). (author)
Fischer, Michael; Bell, Robert G
2014-10-21
The influence of the nature of the cation on the interaction of the silicoaluminophosphate SAPO-34 with small hydrocarbons (ethane, ethylene, acetylene, propane, propylene) is investigated using periodic density-functional theory calculations including a semi-empirical dispersion correction (DFT-D). Initial calculations are used to evaluate which of the guest-accessible cation sites in the chabazite-type structure is energetically preferred for a set of ten cations, which comprises four alkali metals (Li(+), Na(+), K(+), Rb(+)), three alkaline earth metals (Mg(2+), Ca(2+), Sr(2+)), and three transition metals (Cu(+), Ag(+), Fe(2+)). All eight cations that are likely to be found at the SII site (centre of a six-ring) are then included in the following investigation, which studies the interaction with the hydrocarbon guest molecules. In addition to the interaction energies, some trends and peculiarities regarding the adsorption geometries are analysed, and electron density difference plots obtained from the calculations are used to gain insights into the dominant interaction types. In addition to dispersion interactions, electrostatic and polarisation effects dominate for the main group cations, whereas significant orbital interactions are observed for unsaturated hydrocarbons interacting with transition metal (TM) cations. The differences between the interaction energies obtained for pairs of hydrocarbons of interest (such as ethylene-ethane and propylene-propane) deliver some qualitative insights: if this energy difference is large, it can be expected that the material will exhibit a high selectivity in the adsorption-based separation of alkene-alkane mixtures, which constitutes a problem of considerable industrial relevance. While the calculations show that TM-exchanged SAPO-34 materials are likely to exhibit a very high preference for alkenes over alkanes, the strong interaction may render an application in industrial processes impractical due to the large amount
Corrections to the bag factor in B- anti B-mixing
Energy Technology Data Exchange (ETDEWEB)
Grozin, Andrey G. [BINP, Novosibirsk (Russian Federation); Klein, Rebecca; Mannel, Thomas; Pivovarov, Alexei A. [Universitaet Siegen (Germany)
2016-07-01
B- anti B-Mixing is parameterized by the matrix elements of local operators O{sub i}. For the computation of these matrix elements a bag factor B{sub i} can be introduced left angle anti B vertical stroke O{sub i} vertical stroke B right angle =B{sub i} left angle anti B vertical stroke O{sub i} vertical stroke B right angle {sup fac}, which is unity in naive factorization. Any deviation from unity describes the accuracy of the naive factorization prescription. Corrections to B{sub i} emerge from QCD radiative corrections and from nonperturbative contributions at order 1/m{sub b}. We present the current status of these corrections to B{sub i}.
New look at displacement factor and point of measurement corrections in ionization chamber dosimetry
International Nuclear Information System (INIS)
Awschalom, M.; Rosenberg, I.; Ten Haken, R.K.
1983-01-01
A new technique is presented for determination of the effective point of measurement when cavity ionization chambers are used to measure the absorbed dose due to ionizing radiation in a dense medium. An algorithm is derived relating the effective point of measurement to the displacement correction factor. This algorithm relates variations of the displacement factor to the radiation field gradient. The technique is applied to derive the magnitudes of the corrections for several chambers in a p(66)Be(49) neutron therapy beam. 30 references, 4 figures, 1 table
Determination of the air attenuation correction factor for a free air ionization chamber
International Nuclear Information System (INIS)
Silva, Natalia F.; Cintra, Felipe B.; Castro, Maysa C. de; Caldas, Linda V.E.
2016-01-01
The objective of this work is to present the experimental and simulation results for the air attenuation correction factor for a free air ionization chamber with concentric cylinders of Victoreen, model 481-5. This correction factor was obtained for the standard mammography qualities established in the Instrument Calibration Laboratory (LCI) of IPEN. The values were compared with the results from the German primary standard laboratory Physikalisch- Technische Bundesanstalt (PTB), and maximum differences of 0.40% in relation to the experimental value and 0.31% in relation to the simulated value were obtained. (author)
New engineering safety factors for Loviisa NPP core calculations
Energy Technology Data Exchange (ETDEWEB)
Kuopanportti, Jaakko; Saarinen, Simo; Lahtinen, Tuukka; Ekstroem, Karoliina [Fortum Power and Heat Ltd., Fortum (Finland)
2017-09-15
In Loviisa NPP, there are two limiting thermal margins called the enthalpy rise margin and the linear heat rate margin that are monitored during normal operation. Engineering safety factors are applied in determination of both of these factors. The factors take into account the effect of various manufacturing tolerances, impact of the irradiation and simulation uncertainties on the local heat rate and on the enthalpy of the coolant. The engineering factors were re-evaluated during 2015 and the factors were approved by the Finnish radiation and nuclear safety authority in 2016. The re-evaluation was performed by considering all of the identified phenomena that affect the local heat rate or the enthalpy of the coolant. This paper summarizes the work that was performed during the re-evaluation of the engineering safety factors and presents the results for each uncertainty component. The new engineering safety factors are 1.115 for the linear heat rate and 1.100 for the enthalpy rise margin when the old factors were 1.12 and 1.16, respectively. The new factors improve the fuel economy by about 1%.
Cashmore, Aaron W; Indig, Devon; Hampton, Stephen E; Hegney, Desley G; Jalaludin, Bin B
2016-11-01
Little is known about the environmental and organisational determinants of workplace violence in correctional health settings. This paper describes the views of health professionals working in these settings on the factors influencing workplace violence risk. All employees of a large correctional health service in New South Wales, Australia, were invited to complete an online survey. The survey included an open-ended question seeking the views of participants about the factors influencing workplace violence in correctional health settings. Responses to this question were analysed using qualitative thematic analysis. Participants identified several factors that they felt reduced the risk of violence in their workplace, including: appropriate workplace health and safety policies and procedures; professionalism among health staff; the presence of prison guards and the quality of security provided; and physical barriers within clinics. Conversely, participants perceived workplace violence risk to be increased by: low health staff-to-patient and correctional officer-to-patient ratios; high workloads; insufficient or underperforming security staff; and poor management of violence, especially horizontal violence. The views of these participants should inform efforts to prevent workplace violence among correctional health professionals.
International Nuclear Information System (INIS)
Marques, Andre Luis Ferreira; Ting, Daniel Kao Sun; Mendonca, Arlindo Gilson
1996-01-01
A calculation methodology of Flux Depression, Self-Shielding and Cadmium Factors is presented, using the ANISN code, for experiments conducted at the IPEN/MB-01 Research Reactor. The correction factors were determined considering thermal neutron flux and 0.125 e 0.250 mm diameter of 197 Au wires. (author)
Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K. W.; Yoshimura, Nagahisa
2016-01-01
Purpose To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. Methods The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Results Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. Conclusions The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction. PMID:26814541
Directory of Open Access Journals (Sweden)
Tomomi Higashide
Full Text Available To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects.The thickness of retinal layers {retinal nerve fiber layer (RNFL, ganglion cell layer plus inner plexiform layer (GCLIPL, RNFL plus GCLIPL (ganglion cell complex, GCC, total retina, total retina minus GCC (outer retina} were measured by macular scans (RS-3000, NIDEK in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters with or without magnification correction. For each layer thickness, a semipartial correlation (sr was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index.Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13 regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33 and a negative sr with GCLIPL (sr2, 0.22 to 0.31, GCC (sr2, 0.03 to 0.17, total retina (sr2, 0.07 to 0.17 and outer retina (sr2, 0.16 to 0.29 in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction.The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction.
Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K W; Yoshimura, Nagahisa
2016-01-01
To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction.
Energy Technology Data Exchange (ETDEWEB)
Sorriaux, J; Lee, J [Molecular Imaging Radiotherapy & Oncology, Universite Catholique de Louvain, Brussels (Belgium); ICTEAM Institute, Universite catholique de Louvain, Louvain-la-Neuve (Belgium); Testa, M; Paganetti, H [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, Massachusetts (United States); Bertrand, D; Orban de Xivry, J [Ion Beam Applications, Louvain-la-neuve, Brabant Wallon (Belgium); Palmans, H [EBG MedAustron GmbH, Wiener Neustadt (Austria); National Physical Laboratory, Teddington (United Kingdom); Vynckier, S [Cliniques Universitaires Saint-Luc, Brussels (Belgium); Sterpin, E [Molecular Imaging Radiotherapy & Oncology, Universite Catholique de Louvain, Brussels (Belgium)
2015-06-15
Purpose: The IAEA TRS-398 code of practice details the reference conditions for reference dosimetry of proton beams using ionization chambers and the required beam quality correction factors (kQ). Pencil beam scanning (PBS) requires multiple spots to reproduce the reference conditions. The objective is to demonstrate, using Monte Carlo (MC) calculations, that kQ factors for broad beams can be used for scanned beams under the same reference conditions with no significant additional uncertainty. We consider hereafter the general Alfonso formalism (Alfonso et al, 2008) for non-standard beam. Methods: To approach the reference conditions and the associated dose distributions, PBS must combine many pencil beams with range modulation and shaping techniques different than those used in passive systems (broad beams). This might lead to a different energy spectrum at the measurement point. In order to evaluate the impact of these differences on kQ factors, ion chamber responses are computed with MC (Geant4 9.6) in a dedicated scanned pencil beam (Q-pcsr) producing a 10×10cm2 composite field with a flat dose distribution from 10 to 16 cm depth. Ion chamber responses are also computed by MC in a broad beam with quality Q-ds (double scattering). The dose distribution of Q -pcsr matches the dose distribution of Q-ds. k-(Q-pcsr,Q-ds) is computed for a 2×2×0.2cm{sup 3} idealized air cavity and a realistic plane-parallel ion chamber (IC). Results: Under reference conditions, quality correction factors for a scanned composite field versus a broad beam are the same for air cavity dose response, k-(Q-pcsr,Q-ds) =1.001±0.001 and for a Roos IC, k-(Q-pcsr,Q-ds) =0.999±0.005. Conclusion: Quality correction factors for ion chamber response in scanned and broad proton therapy beams are identical under reference conditions within the calculation uncertainties. The results indicate that quality correction factors published in IAEA TRS-398 can be used for scanned beams in the SOBP of a
International Nuclear Information System (INIS)
Sorriaux, J; Lee, J; Testa, M; Paganetti, H; Bertrand, D; Orban de Xivry, J; Palmans, H; Vynckier, S; Sterpin, E
2015-01-01
Purpose: The IAEA TRS-398 code of practice details the reference conditions for reference dosimetry of proton beams using ionization chambers and the required beam quality correction factors (kQ). Pencil beam scanning (PBS) requires multiple spots to reproduce the reference conditions. The objective is to demonstrate, using Monte Carlo (MC) calculations, that kQ factors for broad beams can be used for scanned beams under the same reference conditions with no significant additional uncertainty. We consider hereafter the general Alfonso formalism (Alfonso et al, 2008) for non-standard beam. Methods: To approach the reference conditions and the associated dose distributions, PBS must combine many pencil beams with range modulation and shaping techniques different than those used in passive systems (broad beams). This might lead to a different energy spectrum at the measurement point. In order to evaluate the impact of these differences on kQ factors, ion chamber responses are computed with MC (Geant4 9.6) in a dedicated scanned pencil beam (Q-pcsr) producing a 10×10cm2 composite field with a flat dose distribution from 10 to 16 cm depth. Ion chamber responses are also computed by MC in a broad beam with quality Q-ds (double scattering). The dose distribution of Q -pcsr matches the dose distribution of Q-ds. k-(Q-pcsr,Q-ds) is computed for a 2×2×0.2cm 3 idealized air cavity and a realistic plane-parallel ion chamber (IC). Results: Under reference conditions, quality correction factors for a scanned composite field versus a broad beam are the same for air cavity dose response, k-(Q-pcsr,Q-ds) =1.001±0.001 and for a Roos IC, k-(Q-pcsr,Q-ds) =0.999±0.005. Conclusion: Quality correction factors for ion chamber response in scanned and broad proton therapy beams are identical under reference conditions within the calculation uncertainties. The results indicate that quality correction factors published in IAEA TRS-398 can be used for scanned beams in the SOBP of a high
Applicability of perturbative QCD and NLO power corrections for the pion form factor
International Nuclear Information System (INIS)
Yeh Tsungwen
2002-01-01
As is well recognized, the asymptotic of the perturbative QCD prediction for the pion form factor is much smaller than the upper end of the data. We investigate this problem. We first evaluate the next-to-leading-order (NLO) power correction for the pion form factor. The corrected form factor contains nonperturbative parameters which are determined from a χ 2 fit to the data. Interpreting these parameters leads to the fact that the involved strong interaction coupling constant should be identified as an effective coupling constant under a nonperturbative QCD vacuum. If the scale associated with the effective coupling constant is identified as 2 Q 2 , then Q 2 , the momentum transfer square for the pion form factor to be measured, can have a value about 1 GeV 2 , and , the averaged momentum fraction variable, can locate around 0.5. This circumstance is consistent with the asymptotic model for the pion wave function
Model calculation of the scanned field enhancement factor of CNTs
International Nuclear Information System (INIS)
Ahmad, Amir; Tripathi, V K
2006-01-01
The field enhancement factor of a carbon nanotube (CNT) placed in a cluster of CNTs is smaller than an isolated CNT because the electric field on one tube is screened by neighbouring tubes. This screening depends on the length of the CNTs and the spacing between them. We have derived an expression to compute the field enhancement factor of CNTs under any positional distribution of CNTs using a model of a floating sphere between parallel anode and cathode plates. Using this expression we can compute the field enhancement factor of a CNT in a cluster (non-uniformly distributed CNTs). This expression is used to compute the field enhancement factor of a CNT in an array (uniformly distributed CNTs). Comparison has been shown with experimental results and existing models
A Novel Bridgeless Power Factor Correction with Interleaved Boost Stages in Continous Current Mode
DEFF Research Database (Denmark)
Li, Qingnan; Andersen, Michael A. E.; Thomsen, Ole Cornelius
2011-01-01
The operation and trade-off of Bridgeless Power Factor Correction (BPFC) circuit with interleaved Boost stages are investigated. By using interleaved BPFC, an overall reduction of the size of EMI filter can be achieved without increasing the switching frequency of the converter. And higher...
75 FR 72739 - Compliance Testing Procedures: Correction Factor for Room Air Conditioners
2010-11-26
...: Correction Factor for Room Air Conditioners AGENCY: Office of the General Counsel, Department of Energy (DOE... air conditioners. The petition seeks temporary enforcement forbearance, or in the alternative, a... procedures for room air conditioners. Public comment is requested on whether DOE should grant the petition...
Conduction Losses and Common Mode EMI Analysis on Bridgeless Power Factor Correction
DEFF Research Database (Denmark)
Li, Qingnan; Andersen, Michael Andreas E.; Thomsen, Ole Cornelius
2009-01-01
In this paper, a review of Bridgeless Boost power factor correction (PFC) converters is presented at first. Performance comparison on conduction losses and common mode electromagnetic interference (EMI) are analyzed between conventional Boost PFC converter and members of Bridgeless PFC family...
Integrals of random fields treated by the model correction factor method
DEFF Research Database (Denmark)
Franchin, P.; Ditlevsen, Ove Dalager; Kiureghian, Armen Der
2002-01-01
The model correction factor method (MCFM) is used in conjunction with the first-order reliability method (FORM) to solve structural reliability problems involving integrals of non-Gaussian random fields. The approach replaces the limit-state function with an idealized one, in which the integrals ...
DEFF Research Database (Denmark)
Franchin, P.; Ditlevsen, Ove Dalager; Kiureghian, Armen Der
2002-01-01
The model correction factor method (MCFM) is used in conjunction with the first-order reliability method (FORM) to solve structural reliability problems involving integrals of non-Gaussian random fields. The approach replaces the limit-state function with an idealized one, in which the integrals ...
High efficiency three-phase power factor correction rectifier using SiC switches
DEFF Research Database (Denmark)
Kouchaki, Alireza; Nymand, Morten
2017-01-01
This paper presents designing procedure of a high efficiency 5 kW silicon-carbide (SiC) based threephase power factor correction (PFC). SiC switches present low capacitive switching loss compared to the alternative Si switches. Therefore, the switching frequency can be increased and hence the siz...
CI+MBPT calculations of Ar I energies, g factors, and transition line strengths
Savukov, I. M.
2018-03-01
Excited states of noble gas atoms present certain challenges to atomic theory for several reasons: first, relativistic effects are important and LS coupling is not optimal; second, energy intervals can be quite small, leading to strong mixing of states; third, many-body perturbation theory for hole states does not converge well. Previously, some attempts were made to solve this problem, using for example the all-order coupled-cluster approach and particle-hole configuration-interaction many-body perturbation theory (CI-MBPT) with modified denominators. However, while these approaches were promising, the accuracy was still limited. In this paper, we calculate Ar I energies, g factors, and transition amplitudes using ab initio CI-MBPT with eight valence electrons to avoid the problem of slow convergence of MBPT due to strong interaction between 3p and 3s states. We also included in CI many dominant states obtained by double excitations of the ground state configuration. Thus perturbation corrections were needed only for 1s, 2s, 2p core electrons non-included in valence-valence CI, which are quite small. We found that energy, g factors, and electric dipole matrix elements are in reasonable agreement with experiments. It is noteworthy that the theory agreed well with accurately measured g factors. Experimental oscillator strengths have large uncertainty, so in some cases we made a comparison with average values.
International Nuclear Information System (INIS)
Visvikis, D.; Costa, D.C.; Bomanji, J.; Gacinovic, S.; Ell, P.J.; Cheze-LeRest, C.
2001-01-01
Standardised Uptake Values (SUVs) are widely used in positron emission tomography (PET) as a semi-quantitative index of fluorine-18 labelled fluorodeoxyglucose uptake. The objective of this study was to investigate any bias introduced in the calculation of SUVs as a result of employing ordered subsets-expectation maximisation (OSEM) image reconstruction and segmented attenuation correction (SAC). Variable emission and transmission time durations were investigated. Both a phantom and a clinical evaluation of the bias were carried out. The software implemented in the GE Advance PET scanner was used. Phantom studies simulating tumour imaging conditions were performed. Since a variable count rate may influence the results obtained using OSEM, similar acquisitions were performed at total count rates of 34 kcps and 12 kcps. Clinical data consisted of 100 patient studies. Emission datasets of 5 and 15 min duration were combined with 15-, 3-, 2- and 1-min transmission datasets for the reconstruction of both phantom and patient studies. Two SUVs were estimated using the average (SUV avg ) and the maximum (SUV max ) count density from regions of interest placed well inside structures of interest. The percentage bias of these SUVs compared with the values obtained using a reference image was calculated. The reference image was considered to be the one produced by filtered backprojection (FBP) image reconstruction with measured attenuation correction using the 15-min emission and transmission datasets for each phantom and patient study. A bias of 5%-20% was found for the SUV avg and SUV max in the case of FBP with SAC using variable transmission times. In the case of OSEM with SAC, the bias increased to 10%-30%. An overall increase of 5%-10% was observed with the use of SUV max . The 5-min emission dataset led to an increase in the bias of 25%-100%, with the larger increase recorded for the SUV max . The results suggest that OSEM and SAC with 3 and 2 min transmission may be
Advanteges of using Two-Switch Forward in Single-Stage Power Factor Corrected Power Supplies
DEFF Research Database (Denmark)
Petersen, Lars
2000-01-01
A single-Stage power factor corrected power supply using a two-switch forward is proposed to increase efficiency. The converter is operated in the DCM (Discontinues Conduction Mode). This will insure the intermediate DC-bus to be controlled only by means of circuit parameters and therefore...... power supply has been implemented. The measured efficiency and power factor are about 87% and 0.96 respectively....
International Nuclear Information System (INIS)
Alejo Luque, L.; Rodriguez Romero, R.; Castro Tejero, P.; Fandino Lareo, J. M.
2011-01-01
This paper discusses the measures and uncertainties of the correction factors for dose-polarization (k, 1) and recombination (k,) of different ionization chambers plane-parallel and cylindrical. The values ??have been obtained using photon and electron beams of various energies generated by linear accelerators nominal Varian 21EX CLJNAC Tomotherapy Hi-Art and JI. We study the cases in which you can avoid the application of the factors obtained, according to the criteria proposed
Finite-lattice-spacing corrections to masses and g factors on a lattice
International Nuclear Information System (INIS)
Roskies, R.; Wu, J.C.
1986-01-01
We suggest an alternative method for extracting masses and g factors from lattice calculations. Our method takes account of more of the infrared and ultraviolet lattice effects. It leads to more reasonable results in simulations of QED on a lattice
International Nuclear Information System (INIS)
Jowzani-Moghaddam, A.
1981-01-01
An integral transport method of calculating the geometrical shadowing factor in multiregion annular cells for infinite closely packed lattices in cylindrical geometry is developed. This analytical method has been programmed in the TPGS code. This method is based upon a consideration of the properties of the integral transport method for a nonuniform body, which together with Bonalumi's approximations allows the determination of the approximate multiregion collision probability matrix for infinite closely packed lattices with sufficient accuracy. The multiregion geometrical shadowing factors have been calculated for variations in fuel pin annular segment rings in a geometry of annular cells. These shadowing factors can then be used in the calculation of neutron transport from one annulus to another in an infinite lattice. The result of this new geometrical shadowing and collision probability matrix are compared with the Dancoff-Ginsburg correction and the probability matrix using constant shadowing on Yankee fuel elements in an infinite lattice. In these cases the Dancoff-Ginsburg correction factor and collision probability matrix using constant shadowing are in difference by at most 6.2% and 6%, respectively
International Nuclear Information System (INIS)
Alvarez R, Jose T.; Jesus Cejudo, A.; La Cruz H., Daniel de; Tovar M, Victor M.
2013-01-01
The realization of the operational quantities H*, Hp y/0 H'(0.07) for estimating the effective dose E, usually is done by measuring the air kerma Ka air within the field of ionizing radiation of interest and was subsequently applied appropriate conversion factors for both the quality of radiation and the operational quantity of interest. However, the SSDL in performing the Ka to environmental conditions of ININ (3000 m above sea level, P ∼ 710 hPa) with ionization chambers has found that the pressure correction factor and kPT temperature is not sufficient to correct the change in air density. Indeed, in the case of 60 Co the discrepancy between the measurement of a primary standard graphite walls Ka (BEV CC01 be 131) and a side of the plastic walls (Exradin A12) is on the order of 0.4% for the case of the RX BIPM qualities to 100,135, 180 and 250 kV. It was found that for a camera model 30001 PTW (PMMA graphite wall) is needed an additional correction factor k PT ranging from 0.4% to 1.5%, correction factor calculated by MC simulation. For Sk of 125 I brachytherapy sources was given an additional correction lower in 11% compared to conventional k PT value measured with a well chamber Standard Imaging HDR 1000 plus. Finally, it is in the process of studying the behavior of this additional correction factor to the case of 137 Cs
Energy Technology Data Exchange (ETDEWEB)
Guler, Hayg [Univ. of Paris, Orsay (France)
2003-12-17
In the framework of quantum chromodynamics, the nucleon is made of three valence quarks surrpounded by a sea of gluons and quark-antiquark pairs. Only the only lightest quarks (u, d and s) contribute significantly to the nucleon properties. In Go we using the property of weak interaction to violate parity symmetry, in order to determine separately the contributions of the three types of quarks to nucleon form factors. The experiment, which takes place at Thomas Jefferson laboratory (USA), aims at measuring parity violation asymmetry in electron-proton scattering. By doing several measurements at different momentum squared of the exchanged photons and for different kinematics (forward angle when the proton is detected and backward angle it will be the electron) will permit to determine separately strange quarks electric and magnetic contributions to nucleon form factors. To extract an asymmetry with small errors, it is necessary to correct all the beam parameters, and to have high enough counting rates in detectors. A special electronics was developed to treat information coming from 16 scintillator pairs for each of the 8 sectors of the Go spectrometer. A complete calculation of radiative corrections has been clone and Monte Carlo simulations with the GEANT program has permitted to determine the shape of the experimental spectra including inelastic background. This work will allow to do a comparison between experimental data and theoretical calculations based on the Standard Model.
Energy Technology Data Exchange (ETDEWEB)
Guler, H
2003-12-01
In the framework of quantum chromodynamics, the nucleon is made of three valence quarks surrounded by a sea of gluons and quark-antiquark pairs. Only the only lightest quarks (u, d and s) contribute significantly to the nucleon properties. In G{sup 0} we use the property of weak interaction to violate parity symmetry, in order to determine separately the contributions of the three types of quarks to nucleon form factors. The experiment, which takes place at Thomas Jefferson laboratory (USA), aims at measuring parity violation asymmetry in electron-proton scattering. By doing several measurements at different momentum squared of the exchanged photons and for different kinematics (forward angle when the proton is detected and backward angle it will be the electron) will permit to determine separately strange quarks electric and magnetic contributions to nucleon form factors. To extract an asymmetry with small errors, it is necessary to correct all the beam parameters, and to have high enough counting rates in detectors. A special electronics was developed to treat information coming from 16 scintillator pairs for each of the 8 sectors of the G{sup 0} spectrometer. A complete calculation of radiative corrections has been done and Monte Carlo simulations with the GEANT program has permitted to determine the shape of the experimental spectra including inelastic background. This work will allow to do a comparison between experimental data and theoretical calculations based on the Standard Model. (author)
Improved scatter correction with factor analysis for planar and SPECT imaging
Knoll, Peter; Rahmim, Arman; Gültekin, Selma; Šámal, Martin; Ljungberg, Michael; Mirzaei, Siroos; Segars, Paul; Szczupak, Boguslaw
2017-09-01
Quantitative nuclear medicine imaging is an increasingly important frontier. In order to achieve quantitative imaging, various interactions of photons with matter have to be modeled and compensated. Although correction for photon attenuation has been addressed by including x-ray CT scans (accurate), correction for Compton scatter remains an open issue. The inclusion of scattered photons within the energy window used for planar or SPECT data acquisition decreases the contrast of the image. While a number of methods for scatter correction have been proposed in the past, in this work, we propose and assess a novel, user-independent framework applying factor analysis (FA). Extensive Monte Carlo simulations for planar and tomographic imaging were performed using the SIMIND software. Furthermore, planar acquisition of two Petri dishes filled with 99mTc solutions and a Jaszczak phantom study (Data Spectrum Corporation, Durham, NC, USA) using a dual head gamma camera were performed. In order to use FA for scatter correction, we subdivided the applied energy window into a number of sub-windows, serving as input data. FA results in two factor images (photo-peak, scatter) and two corresponding factor curves (energy spectra). Planar and tomographic Jaszczak phantom gamma camera measurements were recorded. The tomographic data (simulations and measurements) were processed for each angular position resulting in a photo-peak and a scatter data set. The reconstructed transaxial slices of the Jaszczak phantom were quantified using an ImageJ plugin. The data obtained by FA showed good agreement with the energy spectra, photo-peak, and scatter images obtained in all Monte Carlo simulated data sets. For comparison, the standard dual-energy window (DEW) approach was additionally applied for scatter correction. FA in comparison with the DEW method results in significant improvements in image accuracy for both planar and tomographic data sets. FA can be used as a user
Relationship between γ detection dead-time and count correction factor
International Nuclear Information System (INIS)
Wu Huailong; Zhang Jianhua; Chu Chengsheng; Hu Guangchun; Zhang Changfan; Hu Gen; Gong Jian; Tian Dongfeng
2015-01-01
The relationship between dead-time and count correction factor was investigated by using interference source for purpose of high γ activity measurement. The count rates maintain several 10 s"-"l with γ energy of 0.3-1.3 MeV for 10"4-10"5 Bq radioactive source. It is proved that the relationship between count loss and dead-time is unconcerned at various energy and various count intensities. The same correction formula can be used for any nuclide measurement. (authors)
Neutron activation analysis of copper traces: a study for sodium correction factor
International Nuclear Information System (INIS)
Tripathi, A.B.R.; Bhadkambekar, C.A.; Basu, A.K.; Chattopadhyay, N.
2007-01-01
Peak ratio correction factors for accurate quantitative determination of copper by NAA via 64 Cu radioisotope in presence of high 24 Na radioactivities has been established. Copper is the principal element as a marker of bullet residues on targets in connection to forensic ballistics cases. Reliable and precise estimation of copper by NAA either via non-destructive way or by resorting to radiochemical separation is of importance in forensic analysis for arriving at definitive inferences. However, majority of samples originating from wearing apparels, paper, leather, skin, glass or any other metal exhibit matrices contain high levels of sodium. The NAA scheme for determination of copper rests on measurements of net counts at 511 KeV which is the positron annihilation peak of 64 Cu. 24 Na also contributes significantly exactly at 511 KeV of gamma energy albeit by different mechanism i.e., by pair production. Therefore, total signal at 511 KeV is contributed by both. The easiest approach for correct estimation of copper traces has been established by the peak ratio correction factor. This has significance as both 64 Cu and 24 Na have comparable half lives, hence, as such time gap measurements cannot improve the situation. The consistency of peak ratio correction factor could be established for a particular geometry. (author)
Design of The High Efficiency Power Factor Correction Circuit for Power Supply
Directory of Open Access Journals (Sweden)
Atiye Hülya OBDAN
2017-12-01
Full Text Available Designing power factor correction circuits for switched power supplies has become important in recent years in terms of efficient use of energy. Power factor correction techniques play a significant role in high power density and energy efficiency. For these purposes, bridgeless PFC topologies and control strategies have been developed alongside basic boost PFC circuits. The power density can be increased using bridgeless structures by means of reducing losses in the circuit. This article examines bridgeless PFC structures and compares their performances in terms of losses and power factor. A semi-bridgeless PFC, which is widely used at high power levels, was analyzed and simulated. The designed circuit simulation using the current mode control method was performed in the PSIM program. A prototype of a 900 W semi-bridgeless PFC circuit was implemented and the results obtained from the circuit are presented
Self-Excited Single-Stage Power Factor Correction Driving Circuit for LED Lighting
Directory of Open Access Journals (Sweden)
Yong-Nong Chang
2014-01-01
Full Text Available This pa\tper proposes a self-excited single-stage high power factor LED lighting driving circuit. Being featured with power factor correction capability without needing any control devices, the proposed circuit structure is with low cost and suitable for commercial production. The power factor correction function is accomplished by using inductor in combination with a half-bridge quasi resonant converter to achieve active switching and yield out voltage regulation according to load requirement. Furthermore, the zero-voltage switching in the half-bridge converter can be attained to promote the overall performance efficiency of the proposed circuit. Finally, the validity and production availability of the proposed circuit will be verified as well.
International Nuclear Information System (INIS)
Barrett, J C; Knill, C
2016-01-01
Purpose: To determine small field correction factors for PTW’s microDiamond detector in Elekta’s Gamma Knife Model-C unit. These factors allow the microDiamond to be used in QA measurements of output factors in the Gamma Knife Model-C; additionally, the results also contribute to the discussion on the water equivalence of the relatively-new microDiamond detector and its overall effectiveness in small field applications. Methods: The small field correction factors were calculated as k correction factors according to the Alfonso formalism. An MC model of the Gamma Knife and microDiamond was built with the EGSnrc code system, using BEAMnrc and DOSRZnrc user codes. Validation of the model was accomplished by simulating field output factors and measurement ratios for an available ABS plastic phantom and then comparing simulated results to film measurements, detector measurements, and treatment planning system (TPS) data. Once validated, the final k factors were determined by applying the model to a more waterlike solid water phantom. Results: During validation, all MC methods agreed with experiment within the stated uncertainties: MC determined field output factors agreed within 0.6% of the TPS and 1.4% of film; and MC simulated measurement ratios matched physically measured ratios within 1%. The final k correction factors for the PTW microDiamond in the solid water phantom approached unity to within 0.4%±1.7% for all the helmet sizes except the 4 mm; the 4 mm helmet size over-responded by 3.2%±1.7%, resulting in a k factor of 0.969. Conclusion: Similar to what has been found in the Gamma Knife Perfexion, the PTW microDiamond requires little to no corrections except for the smallest 4 mm field. The over-response can be corrected via the Alfonso formalism using the correction factors determined in this work. Using the MC calculated correction factors, the PTW microDiamond detector is an effective dosimeter in all available helmet sizes. The authors would like to
Energy Technology Data Exchange (ETDEWEB)
Barrett, J C [Wayne State University, Detroit, MI (United States); Karmanos Cancer Institute McLaren-Macomb, Clinton Township, MI (United States); Knill, C [Wayne State University, Detroit, MI (United States); Beaumont Hospital, Canton, MI (United States)
2016-06-15
Purpose: To determine small field correction factors for PTW’s microDiamond detector in Elekta’s Gamma Knife Model-C unit. These factors allow the microDiamond to be used in QA measurements of output factors in the Gamma Knife Model-C; additionally, the results also contribute to the discussion on the water equivalence of the relatively-new microDiamond detector and its overall effectiveness in small field applications. Methods: The small field correction factors were calculated as k correction factors according to the Alfonso formalism. An MC model of the Gamma Knife and microDiamond was built with the EGSnrc code system, using BEAMnrc and DOSRZnrc user codes. Validation of the model was accomplished by simulating field output factors and measurement ratios for an available ABS plastic phantom and then comparing simulated results to film measurements, detector measurements, and treatment planning system (TPS) data. Once validated, the final k factors were determined by applying the model to a more waterlike solid water phantom. Results: During validation, all MC methods agreed with experiment within the stated uncertainties: MC determined field output factors agreed within 0.6% of the TPS and 1.4% of film; and MC simulated measurement ratios matched physically measured ratios within 1%. The final k correction factors for the PTW microDiamond in the solid water phantom approached unity to within 0.4%±1.7% for all the helmet sizes except the 4 mm; the 4 mm helmet size over-responded by 3.2%±1.7%, resulting in a k factor of 0.969. Conclusion: Similar to what has been found in the Gamma Knife Perfexion, the PTW microDiamond requires little to no corrections except for the smallest 4 mm field. The over-response can be corrected via the Alfonso formalism using the correction factors determined in this work. Using the MC calculated correction factors, the PTW microDiamond detector is an effective dosimeter in all available helmet sizes. The authors would like to
Hršak, Hrvoje; Majer, Marija; Grego, Timor; Bibić, Juraj; Heinrich, Zdravko
2014-12-01
Dosimetry for Gamma-Knife requires detectors with high spatial resolution and minimal angular dependence of response. Angular dependence and end effect time for p-type silicon detectors (PTW Diode P and Diode E) and PTW PinPoint ionization chamber were measured with Gamma-Knife beams. Weighted angular dependence correction factors were calculated for each detector. The Gamma-Knife output factors were corrected for angular dependence and end effect time. For Gamma-Knife beams angle range of 84°-54°. Diode P shows considerable angular dependence of 9% and 8% for the 18 mm and 14, 8, 4 mm collimator, respectively. For Diode E this dependence is about 4% for all collimators. PinPoint ionization chamber shows angular dependence of less than 3% for 18, 14 and 8 mm helmet and 10% for 4 mm collimator due to volumetric averaging effect in a small photon beam. Corrected output factors for 14 mm helmet are in very good agreement (within ±0.3%) with published data and values recommended by vendor (Elekta AB, Stockholm, Sweden). For the 8 mm collimator diodes are still in good agreement with recommended values (within ±0.6%), while PinPoint gives 3% less value. For the 4 mm helmet Diodes P and E show over-response of 2.8% and 1.8%, respectively. For PinPoint chamber output factor of 4 mm collimator is 25% lower than Elekta value which is generally not consequence of angular dependence, but of volumetric averaging effect and lack of lateral electronic equilibrium. Diodes P and E represent good choice for Gamma-Knife dosimetry. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions
Nefiodov, A. V.; Plunien, G.; Soff, G.
2002-01-01
The influence of nuclear polarization on the bound-electron $g$ factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron $g$ factor in highly charged ions.
Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.
Nefiodov, A V; Plunien, G; Soff, G
2002-08-19
The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions.
g-factor calculations from the generalized seniority approach
Maheshwari, Bhoomika; Jain, Ashok Kumar
2018-05-01
The generalized seniority approach proposed by us to understand the B(E1)/B(E2)/B(E3) properties of semi-magic nuclei has been widely successful in the explanation of the same and has led to an expansion in the scope of seniority isomers. In the present paper, we apply the generalized seniority scheme to understand the behavior of g-factors in semi-magic nuclei. We find that the magnetic moment and the gfactors do show a particle number independent behavior as expected and the understanding is consistent with the explanation of transition probabilities.
International Nuclear Information System (INIS)
Koivunoro, H.; Uusi-Simola, J.; Savolainen, S.; Kotiluoto, P.; Auterinen, I.; Kosunen, A.
2006-01-01
At FiR 1 BNCT facility in Finland, neutron-insensitive Mg(Ar) ionization chambers are used for photon dose measurements in an epithermal neutron beam. Previously, photon sensitivity factors for the chamber for the measurements in a water phantom in FiR 1 beam have been determined experimentally from measurements in 60 Co gamma and in a 6 MV clinical accelerator photon beams. However, the response of the ionization chamber in a water phantom depends on energy spectrum and angle of the photons and the secondary electrons created inside the phantom and may differ depending on type of the irradiation source (accelerator vs. an epithermal neutron beam). Also, the experimental sensitivity factor does not take into account the possible perturbations in the photon production in phantom caused by the ionization chamber materials. Therefore, it is necessary to determine the photon quality correction factors (k Qγ ) for the Mg(Ar) chamber at the FiR 1 beam through computer simulations. In this study, the k Qγ factors have been determined for Mg(Ar) chamber from Monte Carlo calculations of absorbed photon dose at two depths in a water phantom using MCNP code. The k qγ factors obtained with this method are compared to the sensitivity factors determined with measurements in an accelerator photon beam and to the k Qγ factors published previously. (author)
A pedestal temperature model with self-consistent calculation of safety factor and magnetic shear
International Nuclear Information System (INIS)
Onjun, T; Siriburanon, T; Onjun, O
2008-01-01
A pedestal model based on theory-motivated models for the pedestal width and the pedestal pressure gradient is developed for the temperature at the top of the H-mode pedestal. The pedestal width model based on magnetic shear and flow shear stabilization is used in this study, where the pedestal pressure gradient is assumed to be limited by first stability of infinite n ballooning mode instability. This pedestal model is implemented in the 1.5D BALDUR integrated predictive modeling code, where the safety factor and magnetic shear are solved self-consistently in both core and pedestal regions. With the self-consistently approach for calculating safety factor and magnetic shear, the effect of bootstrap current can be correctly included in the pedestal model. The pedestal model is used to provide the boundary conditions in the simulations and the Multi-mode core transport model is used to describe the core transport. This new integrated modeling procedure of the BALDUR code is used to predict the temperature and density profiles of 26 H-mode discharges. Simulations are carried out for 13 discharges in the Joint European Torus and 13 discharges in the DIII-D tokamak. The average root-mean-square deviation between experimental data and the predicted profiles of the temperature and the density, normalized by their central values, is found to be about 14%
Energy Technology Data Exchange (ETDEWEB)
Hwang, Dong Hyeon; Cho, Sung-San [Hongik University, Seoul (Korea, Republic of)
2017-03-15
A fretting fatigue life estimation method that takes into account the stress gradient effect was developed by the authors [Journal of Mechanical Science and Technology, 28 (2014) 2153-2159]. In the developed method, fatigue damage value at the cracking location is corrected with fatigue damage gradient and the corrected value is compared directly with the plain fatigue data for life estimation. In other words, the correction factor is the ratio of plain fatigue damage to fretting fatigue damage at the same life and a function of fatigue damage gradient. Since reliability of the method was verified only for cylinder-on-flat contact configuration in the previous study, the present study extends application of the method to flat-on-flat contact configurations by developing the correction factor for both the contact configuration. Fretting fatigue experiments were conducted to obtain fatigue life data for various fretting pads. Finite element analyses were conducted to evaluate the Smith-Watson-Topper (SWT) fatigue damage parameter in the cracking region. It is revealed that the SWT parameter in fat-on-flat contact configuration decreases exponentially away from the surface as in cylinder-on-flat contact configuration, and thus the SWT gradient at the surface can be evaluated reliably. Moreover, it is found that decrease in the SWT parameter around the cracking location can be expressed by piecewise exponential curves. If the gradient of SWT at the surface is used as a representative value of SWT gradient, it is impossible to establish functional relationship between the SWT gradient and the correction factor for both the contact configurations although it was possible for cylinder-on-flat contact configuration. However, if weighted average of the SWT gradient values obtained from each exponential curve in the piecewise exponential curve is used as a representative value, the correction factor for both the contact configurations becomes a function of the SWT gradient
An Effective Method to Accurately Calculate the Phase Space Factors for β"-β"- Decay
International Nuclear Information System (INIS)
Horoi, Mihai; Neacsu, Andrei
2016-01-01
Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the phase space factors with good accuracy relative to the most exact methods available in the recent literature.
Calculation of quality factor for monoenergetic neutrons - in accordance with ICRU Report 40
International Nuclear Information System (INIS)
Bregadze, Y.I.; Maslyaev, P.F.; Nurlibaev, K.N.
1988-01-01
The quality factors for heavy particle dose in tissue from first interactions of monoenergetic neutrons calculated directly from the new quality factor determination given in ICRU Report 40 are presented as a function of neutron energy. The results of the calculation are compared with previously published calculations based on old concepts. For neutron energies from 100 keV up to 1 MeV these differences are about a factor of two. (author)
International Nuclear Information System (INIS)
Inder Schmitten, W.; Sohnius, B.; Wehner, E.
1990-01-01
This paper present a procedure to calculate calibration factors for converting the measured gamma rate of waste drums into activity content and a layout and free release measurement criterion for waste drums. A computer program is developed that simulates drum scanning technique, which calculates calibration factors and eliminates laborious experimental measurements. The calculated calibration factors exhibit good agreement with experimentally determined values. By checking the calculated calibration factors for trial equipment layouts (including the waste drum and the scanning facility) using the layout and free release measurement criterion, a layout can be achieved that clearly determines whether there can be free release of a waste drum
International Nuclear Information System (INIS)
Jeong, Kwan Seong; Lee, Dong Gyu; Jung, Chong Hun; Lee, Kune Woo
2006-01-01
The estimated decommissioning cost of nuclear research reactor is calculated by applying a unit cost factor-based engineering cost calculation method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning cost of nuclear research reactor is composed of labor cost, equipment and materials cost. Labor cost of decommissioning costs in decommissioning works are calculated on the basis of working time consumed in decommissioning objects. In this paper, the unit cost factors and work difficulty factors which are needed to calculate the labor cost in estimating decommissioning cost of nuclear research reactor are derived and figured out.
International Nuclear Information System (INIS)
Lim, Teik-Cheng
2016-01-01
For moderately thick plates, the use of First order Shear Deformation Theory (FSDT) with a constant shear correction factor of 5/6 is sufficient to take into account the plate deflection arising from transverse shear deformation. For very thick plates, the use of Third order Shear Deformation Theory (TSDT) is preferred as it allows the shear strain distribution to be varied through the plate thickness. Therefore no correction factor is required in TSDT, unlike FSDT. Due to the complexity involved in TSDT, this paper obtains a more accurate shear correction factor for use in FSDT of very thick simply supported and uniformly loaded isosceles right triangular plates based on the TSDT. By matching the maximum deflections for this plate according to FSDT and TSDT, a variable shear correction factor is obtained. Results show that the shear correction factor for the simplified TSDT, i.e. 14/17, is least accurate. The commonly adopted shear correction factor of 5/6 in FSDT is valid only for very thin or highly auxetic plates. This paper provides a variable shear correction for FSDT deflection that matches the plate deflection by TSDT. This variable shear correction factor allows designers to justify the use of a commonly adopted shear correction factor of 5/6 even for very thick plates as long as the Poisson’s ratio of the plate material is sufficiently negative. (paper)
The nucleon as a test case to calculate vector-isovector form factors at low energies
Leupold, Stefan
2018-01-01
Extending a recent suggestion for hyperon form factors to the nucleon case, dispersion theory is used to relate the low-energy vector-isovector form factors of the nucleon to the pion vector form factor. The additionally required input, i.e. the pion-nucleon scattering amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the nucleons and optionally the Delta baryons. Two methods to include pion rescattering are compared: a) solving the Muskhelishvili-Omnès (MO) equation and b) using an N/D approach. It turns out that the results differ strongly from each other. Furthermore the results are compared to a fully dispersive calculation of the (subthreshold) pion-nucleon amplitudes based on Roy-Steiner (RS) equations. In full agreement with the findings from the hyperon sector it turns out that the inclusion of Delta baryons is not an option but a necessity to obtain reasonable results. The magnetic isovector form factor depends strongly on a low-energy constant of the NLO Lagrangian. If it is adjusted such that the corresponding magnetic radius is reproduced, then the results for the corresponding pion-nucleon scattering amplitude (based on the MO equation) agree very well with the RS results. Also in the electric sector the Delta degrees of freedom are needed to obtain the correct order of magnitude for the isovector charge and the corresponding electric radius. Yet quantitative agreement is not achieved. If the subtraction constant that appears in the solution of the MO equation is not taken from nucleon+Delta chiral perturbation theory but adjusted such that the electric radius is reproduced, then one obtains also in this sector a pion-nucleon scattering amplitude that agrees well with the RS results.
The nucleon as a test case to calculate vector-isovector form factors at low energies
Energy Technology Data Exchange (ETDEWEB)
Leupold, Stefan [Uppsala Universitet, Institutionen foer Fysik och Astronomi, Uppsala (Sweden)
2018-01-15
Extending a recent suggestion for hyperon form factors to the nucleon case, dispersion theory is used to relate the low-energy vector-isovector form factors of the nucleon to the pion vector form factor. The additionally required input, i.e. the pion-nucleon scattering amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the nucleons and optionally the Delta baryons. Two methods to include pion rescattering are compared: a) solving the Muskhelishvili-Omnes (MO) equation and b) using an N/D approach. It turns out that the results differ strongly from each other. Furthermore the results are compared to a fully dispersive calculation of the (subthreshold) pion-nucleon amplitudes based on Roy-Steiner (RS) equations. In full agreement with the findings from the hyperon sector it turns out that the inclusion of Delta baryons is not an option but a necessity to obtain reasonable results. The magnetic isovector form factor depends strongly on a low-energy constant of the NLO Lagrangian. If it is adjusted such that the corresponding magnetic radius is reproduced, then the results for the corresponding pion-nucleon scattering amplitude (based on the MO equation) agree very well with the RS results. Also in the electric sector the Delta degrees of freedom are needed to obtain the correct order of magnitude for the isovector charge and the corresponding electric radius. Yet quantitative agreement is not achieved. If the subtraction constant that appears in the solution of the MO equation is not taken from nucleon+Delta chiral perturbation theory but adjusted such that the electric radius is reproduced, then one obtains also in this sector a pion-nucleon scattering amplitude that agrees well with the RS results. (orig.)
Evaluation on correction factor for in-line X-ray phase contrast computed tomography
Energy Technology Data Exchange (ETDEWEB)
Jin, Mingli; Huang, Zhifeng; Zhang, Li; Zhang, Ran [Tsinghua Univ., Beijing (China). Dept. of Engineering Physics; Ministry of Education, Beijing (China). Key Laboratory of Particle and Radiation Imaging; Yin, Hongxia; Liu, Yunfu; Wang, Zhenchang [Capital Medical Univ., Beijing (China). Medical Imaging Center; Xiao, Tiqiao [Chinese Academy of Sciences, Shanghai (China). Shanghai Inst. of Applied Physics
2011-07-01
X-ray in-line phase contrast computed tomography (CT) is an effective nondestructive tool, providing 3D distribution of the refractive index of weakly absorbing low-Z object with high resolution and image contrast, especially with high-brilliance third-generation synchrotron radiation sources. Modified Bronnikov's algorithm (MBA), one of the in-line phase contrast CT reconstruction algorithms, can reconstruct the refractive index distribution of a pure phase object with a single computed tomographic data set. The key idea of the MBA is to use a correction factor in the filter function to stabilize the behavior at low frequencies. In this paper, we evaluate the influences of the correction factor to the final reconstruction results of the absorption-phase-mixed objects with analytical simulation and actual experiments. The limitations of the MBA are discussed finally. (orig.)
Low Capacitive Inductors for Fast Switching Devices in Active Power Factor Correction Applications
DEFF Research Database (Denmark)
Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.
2014-01-01
This paper examines different winding strategies for reduced capacitance inductors in active power factor correction circuits (PFC). The effect of the parasitic capacitance is analyzed from an electro magnetic compatibility (EMI) and efficiency point of views. The purpose of this work is to inves......This paper examines different winding strategies for reduced capacitance inductors in active power factor correction circuits (PFC). The effect of the parasitic capacitance is analyzed from an electro magnetic compatibility (EMI) and efficiency point of views. The purpose of this work...... is to investigate different winding approaches and identify suitable solutions for high switching frequency/high speed transition PFC designs. A low parasitic capacitance PCB based inductor design is proposed to address the challenges imposed by high switching frequency PFC Boost converters....
International Nuclear Information System (INIS)
Santos, Talita O.; Rocha, Zildete; Knupp, Eliana A.N.; Kastner, Geraldo F.; Oliveira, Arno H. de; Oliveira, Arno H. de
2015-01-01
Gamma spectrometry technique has been used in order to obtain the activity concentrations of natural and artificial radionuclides in environmental samples of different origins, compositions and densities. These samples characteristics may influence the calibration condition by the self-attenuation effect. The sample density has been considered the most important factor. For reliable results, it is necessary to determine self-attenuation correction factor which has been subject of great interest due to its effect on activity concentration. In this context, the aim of this work is to show the calibration process considering the correction by self-attenuation in the evaluation of the concentration of each radionuclide to a gamma HPGEe detector spectrometry system. (author)
International Nuclear Information System (INIS)
Palmans, H.; Verhaegen, F.
1995-01-01
In the last decade, several clinical proton beam therapy facilities have been developed. To satisfy the demand for uniformity in clinical (routine) proton beam dosimetry two dosimetry protocols (ECHED and AAPM) have been published. Both protocols neglect the influence of ion chamber dependent parameters on dose determination in proton beams because of the scatter properties of these beams, although the problem has not been studied thoroughly yet. A comparison between water calorimetry and ionisation chamber dosimetry showed a discrepancy of 2.6% between the former method and ionometry following the ECHED protocol. Possibly, a small part of this difference can be attributed to chamber dependent correction factors. Indications for this possibility are found in ionometry measurements. To allow the simulation of complex geometries with different media necessary for the study of those corrections, an existing proton Monte Carlo code (PTRAN, Berger) has been modified. The original code, that applies Mollire's multiple scattering theory and Vavilov's energy straggling theory, calculates depth dose profiles, energy distributions and radial distributions for pencil beams in water. Comparisons with measurements and calculations reported in the literature are done to test the program's accuracy. Preliminary results of the influence of chamber design and chamber materials on dose to water determination are presented
Energy Technology Data Exchange (ETDEWEB)
Palmans, H [Ghent Univ. (Belgium). Dept. of Biomedical Physics; Verhaegen, F
1995-12-01
In the last decade, several clinical proton beam therapy facilities have been developed. To satisfy the demand for uniformity in clinical (routine) proton beam dosimetry two dosimetry protocols (ECHED and AAPM) have been published. Both protocols neglect the influence of ion chamber dependent parameters on dose determination in proton beams because of the scatter properties of these beams, although the problem has not been studied thoroughly yet. A comparison between water calorimetry and ionisation chamber dosimetry showed a discrepancy of 2.6% between the former method and ionometry following the ECHED protocol. Possibly, a small part of this difference can be attributed to chamber dependent correction factors. Indications for this possibility are found in ionometry measurements. To allow the simulation of complex geometries with different media necessary for the study of those corrections, an existing proton Monte Carlo code (PTRAN, Berger) has been modified. The original code, that applies Mollire`s multiple scattering theory and Vavilov`s energy straggling theory, calculates depth dose profiles, energy distributions and radial distributions for pencil beams in water. Comparisons with measurements and calculations reported in the literature are done to test the program`s accuracy. Preliminary results of the influence of chamber design and chamber materials on dose to water determination are presented.
Development of guide thimble stress peaking factor calculation methodology
International Nuclear Information System (INIS)
Lee, Seong Ki; Jeon, Sang Youn; Kim, Jae Ik; Jeon, Kyeong Lak; Kim, Kyu Tae
2004-01-01
The Nuclear Fuel Assembly for light water reactor which provides for 236 fuel rods consists of guide tubes, spacer grids, top/bottom nozzles. The guide tubes form the main structural components in conjunction with the grids, act as the main load carrying members of fuel assembly and serve as a support structure and a guide path for the control element, neutron sources and incore instruments after they are secured to upper and lower end areas. Top/bottom nozzles make the end parts of fuel assembly. And the spacer girds maintain the fuel rod array by providing positive lateral restraint to the fuel rod to the fuel rod but only frictional restraint to axial fuel rod motion. When the fuel assembly is in reactor, the tensional and compressional forces are applied to guide thimble through the top nozzle. The stresses vary with the location of guide thimble on the top nozzle plate since the different flow plate thickness between center and outer areas causes a different flexibility. The relative stress shall be considered during designing this kind of structure. And it is useful to know a coefficient to represent this relative stress difference and this value is called stress peaking factor
Seasonal correction factors in radon exposure assessment: are they help or hindrance?
International Nuclear Information System (INIS)
Denman, A.R.; Groves-Kirkby, C.J.; Phillips, P.S.; Woolridge, A.C.; Crockett, R.G.M.
2008-01-01
Northern Hemisphere radon levels are generally higher in Winter than in Summer, primarily due to the increased interior/exterior temperature difference during the heating season, which results in greater atmospheric pressure differential and enhanced radon ingress. Following a survey of domestic radon levels in the United Kingdom (UK), the former National Radiological Protection Board (NRPB) established measurement protocols and promulgated nationally-applicable Seasonal Correction Factors (SCF). These factors convert a one-month or three-month radon concentration measurement, commencing in any month of the year, to an annual mean radon concentration. Subsequent study suggests that this approach may not be sufficiently sensitive to local conditions, and a major independent investigation reported seasonal correction factors specific to nine geographic regions, together with a composite set applicable to all regions. Similar geographical variability has been observed in other countries. In a recent evaluation of the applicability of short-term exposures in quantifying long-term domestic radon levels, radon levels in 34 houses were monitored over a 12-month period with 1-week, 1-month and 3-month exposures. Radon concentration variation departed significantly from that expected on the basis of the recommended SCFs, with year-end discontinuities at all exposure durations. Weekly monitoring with electrets was continued in three of these locations for four years. Short-term variations in radon levels were observed, particularly during the shorter exposures, and this dataset has also shown year-on-year variations. Overall, SCFs derived from this dataset are significantly lower than those recommended, but are comparable with other results from the UK and elsewhere, particularly those that recognise geological diversity and are consequently prepared on a regional rather than a national basis. These findings call into question the validity of using nationally
Proximity formulae for folding potentials. [Saxon-Woods form factors, first order corrections
Energy Technology Data Exchange (ETDEWEB)
Schechter, H; Canto, L F [Rio de Janeiro Univ. (Brazil). Inst. de Fisica
1979-03-05
The proximity formulae of Brink and Stancu are applied to folding potentials. A numerical study is made for the case of single folding potentials with Saxon-Woods form factors. It is found that a proximity formula is accurate to 1-2% at separations of the order of the radius of the Coulomb barrier and that first order corrections due to first curvature are important. The approximations involved are discussed.
International Nuclear Information System (INIS)
Ofori, Y. T.
2013-07-01
Ghana Research Reactor-1 (GHARR-1), an MNSR (Miniature Neutron Source Reactor) is to be converted from HEU (Highly Enriched Uranium) to LEU (Low Enriched Uranium) fuel, along with all current MNSRs in various other countries. The purpose of the conversion is to minimize the use of HEU for non-proliferation of high-grade nuclear fuel. In this research work, a comparative study has been performed for the determination of the Dancoff, thermal utilization and thermal disadvantage factors of highly enriched uranium (HEU) and potential low enriched uranium (LEU) cores of GHARR-1. A one group transport theory and collision probability based methodologies was used to develop mathematical formulations for thermal utilization factor and thermal disadvantage factor assuming isotropic scattering. This methodology was implemented in a FORTRAN 95 based computer program THERMCALC, which uses Bessell and BesselK as subroutines developed to calculate the modified Bessel functions I n and K n respectively using the polynomial approximation method. Furthermore, a Dancoff correction factor of 0.1519 thermal utilization factor of 0.9767 and a thermal disadvantage factor of 1.894 were obtained for the 90.2% highly enriched Uranium core of GHARR-1. The results compare favorably with literature. Thus THERMCALC can be used as a reliable tool for the calculation of Dancoff, thermal utilization and disadvantage factors of MNSR cores. Other potential LEU cores; UO 2 (with different fuel meat densities and enrichments) and U 3 Si 2 have also been analysed. UO 2 with 12.6% of Uranium-235 was chosen as the most potential LEU core for the GHARR-1. (au)
DEFF Research Database (Denmark)
Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug
2014-01-01
Four different numerical methods for calculating the quality factor and resonance wavelength of a nano or micro photonic cavity are compared. Good agreement was found for a wide range of quality factors. Advantages and limitations of the different methods are discussed.......Four different numerical methods for calculating the quality factor and resonance wavelength of a nano or micro photonic cavity are compared. Good agreement was found for a wide range of quality factors. Advantages and limitations of the different methods are discussed....
Veselsky, T; Novotny, J; Pastykova, V; Koniarova, I
2017-12-01
The aim of this study was to determine small field correction factors for a synthetic single-crystal diamond detector (PTW microDiamond) for routine use in clinical dosimetric measurements. Correction factors following small field Alfonso formalism were calculated by comparison of PTW microDiamond measured ratio M Qclin fclin /M Qmsr fmsr with Monte Carlo (MC) based field output factors Ω Qclin,Qmsr fclin,fmsr determined using Dosimetry Diode E or with MC simulation itself. Diode measurements were used for the CyberKnife and Varian Clinac 2100C/D linear accelerator. PTW microDiamond correction factors for Leksell Gamma Knife (LGK) were derived using MC simulated reference values from the manufacturer. PTW microDiamond correction factors for CyberKnife field sizes 25-5 mm were mostly smaller than 1% (except for 2.9% for 5 mm Iris field and 1.4% for 7.5 mm fixed cone field). The correction of 0.1% and 2.0% for 8 mm and 4 mm collimators, respectively, needed to be applied to PTW microDiamond measurements for LGK Perfexion. Finally, PTW microDiamond M Qclin fclin /M Qmsr fmsr for the linear accelerator varied from MC corrected Dosimetry Diode data by less than 0.5% (except for 1 × 1 cm 2 field size with 1.3% deviation). Regarding low resulting correction factor values, the PTW microDiamond detector may be considered an almost ideal tool for relative small field dosimetry in a large variety of stereotactic and radiosurgery treatment devices. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Fernandez, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1963-07-01
A calculation for double scattering and absorption corrections in fast neutron scattering experiments using Monte-Carlo method is given. Application to cylindrical target is presented in FORTRAN symbolic language. (author) [French] Un calcul des corrections de double diffusion et d'absorption dans les experiences de diffusion de neutrons rapides par la methode de Monte-Carlo est presente. L'application au cas d'une cible cylindrique est traitee en langage symbolique FORTRAN. (auteur)
International Nuclear Information System (INIS)
Miller, C.; Filipow, L.; Jackson, S.; Riauka, T.
1996-01-01
A new method to correct for attenuation and the buildup of scatter in planar imaging quantification is presented. The method is based on the combined use of 3D density information provided by computed tomography to correct for attenuation and the application of Monte Carlo simulated buildup factors to correct for buildup in the projection pixels. CT and nuclear medicine images were obtained for a purpose-built nonhomogeneous phantom that models the human anatomy in the thoracic and abdominal regions. The CT transverse slices of the phantom were converted to a set of consecutive density maps. An algorithm was developed that projects the 3D information contained in the set of density maps to create opposing pairs of accurate 2D correction maps that were subsequently applied to planar images acquired from a dual-head gamma camera. A comparison of results obtained by the new method and the geometric mean approach based on published techniques is presented for some of the source arrangements used. Excellent results were obtained for various source - phantom configurations used to evaluate the method. Activity quantification of a line source at most locations in the nonhomogeneous phantom produced errors of less than 2%. Additionally, knowledge of the actual source depth is not required for accurate activity quantification. Quantification of volume sources placed in foam, Perspex and aluminium produced errors of less than 7% for the abdominal and thoracic configurations of the phantom. (author)
International Nuclear Information System (INIS)
Raveendran, Nanda; Baburajan, A.; Ravi, P.M.
2018-01-01
The laboratories accredited by AERB undertake the measurement of gross alpha and gross beta in packaged drinking water from manufactures across the country and analyze as per the procedure of Bureau of Indian standards. The accurate measurements of gross alpha in the drinking water sample is a challenge due to the self absorption of alpha particle from varying precipitate (Fe(OH) 3 +BaSO 4 ) thickness and total dissolved solids (TDS). This paper deals with a study on tracer recovery generation and self absorption correction factor (SAF). ESL, Tarapur has participated in an inter-laboratory comparison exercise conducted by IDS, RSSD, BARC as per the recommendation of AERB for the accredited laboratories. The thickness of the precipitate is an important aspect which affected the counting process. The activity was reported after conducting multiple experiments with uranium tracer recovery and precipitate thickness. Later on to make our efforts simplified, an average tracer recovery and Self Absorption correction Factor (SAF) was derived by the present experiment and the same was used for the re-calculation of activity from the count rate reported earlier
Calculating disadvantage factor for fuel taking into account the neutron energy distribution
International Nuclear Information System (INIS)
Pop-Jordanov, J.
1964-01-01
Errors in calculating the disadvantage factor are caused by applying the diffusion approximation and one-group method. This paper describes the method for calculating the fuel disadvantage factor by applying a non-diffusion method taking into account neutron thermalization
Influence factors and corrections of low-energy γ-ray penetration in ash analysis
International Nuclear Information System (INIS)
Cheng Bo; Tuo Xianguo; Zhou Jianbin; Tong Yunfu
2002-01-01
The author introduces the system of the coal ash analyzer. This system is based on the low-energy γ-ray source 241 Am emitted two kinds of energy peaks 26.4 keV and 59.6 keV to analyze the ash in coal with the penetration way. The author also offers the factors to influence the accuracy of ash analysis, such as the size of coal, the environmental temperature, the important elements in coal, and water in coal too. At the same time, depending on the cause of the factors, it offer some methods of correction such as the way of the auto-hold energy peak, the way of the auto-compensation way, and so on. The author also mentions the other influence factors of the measurement accuracy to be noticed during the experiment. All these aim at clearing off the influence factors of measurement accuracy through the experiments
Recommendations on dose buildup factors used in models for calculating gamma doses for a plume
International Nuclear Information System (INIS)
Hedemann Jensen, P.; Thykier-Nielsen, S.
1980-09-01
Calculations of external γ-doses from radioactivity released to the atmosphere have been made using different dose buildup factor formulas. Some of the dose buildup factor formulas are used by the Nordic countries in their respective γ-dose models. A comparison of calculated γ-doses using these dose buildup factors shows that the γ-doses can be significantly dependent on the buildup factor formula used in the calculation. Increasing differences occur for increasing plume height, crosswind distance, and atmospheric stability and also for decreasing downwind distance. It is concluded that the most accurate γ-dose can be calculated by use of Capo's polynomial buildup factor formula. Capo-coefficients have been calculated and shown in this report for γ-energies below the original lower limit given by Capo. (author)
Perturbative corrections to Λ_b→Λ form factors from QCD light-cone sum rules
International Nuclear Information System (INIS)
Wang, Yu-Ming; Shen, Yue-Long
2016-01-01
We compute radiative corrections to Λ_b→Λ from factors, at next-to-leading logarithmic accuracy, from QCD light-cone sum rules with Λ_b-baryon distribution amplitudes. Employing the diagrammatic approach factorization of the vacuum-to-Λ_b-baryon correlation function is justified at leading power in Λ/m_b, with the aid of the method of regions. Hard functions entering the factorization formulae are identical to the corresponding matching coefficients of heavy-to-light currents from QCD onto soft-collinear effective theory. The universal jet function from integrating out the hard-collinear fluctuations exhibits richer structures compared with the one involved in the factorization expressions of the vacuum-to-B-meson correlation function. Based upon the QCD resummation improved sum rules we observe that the perturbative corrections at O(α_s) shift the Λ_b→Λ from factors at large recoil significantly and the dominant contribution originates from the next-to-leading order jet function instead of the hard coefficient functions. Having at hand the sum rule predictions for the Λ_b→Λ from factors we further investigate several decay observables in the electro-weak penguin Λ_b→Λ ℓ"+ℓ"− transitions in the factorization limit (i.e., ignoring the “non-factorizable' hadronic effects which cannot be expressed in terms of the Λ_b→Λ from factors), including the invariant mass distribution of the lepton pair, the forward-backward asymmetry in the dilepton system and the longitudinal polarization fraction of the leptonic sector.
Directory of Open Access Journals (Sweden)
Andrey N. Ishchenko
2014-01-01
Full Text Available In this article the possibility of automation of an expert study on the questionof correctness of tax calculation proﬁ t organization. Considered are the problemsof formalization of the expert research inthis ﬁeld, specify the structure of imprisonment. The author proposes a conceptual structural-logic diagram automation expertresearch in this area.
International Nuclear Information System (INIS)
Lee, K.W.; Sheu, R.J.
2015-01-01
High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with 252 Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing 252 Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6-8 extended-range sphere versus the 6'' standard sphere). (authors)
International Nuclear Information System (INIS)
Soh, R; Lee, J; Harianto, F
2014-01-01
Purpose: To determine and compare the correction factors obtained for TLDs in 2 × 2cm 2 small field in lung heterogenous phantom using Acuros XB (AXB) and EGSnrc. Methods: This study will simulate the correction factors due to the perturbation of TLD-100 chips (Harshaw/Thermoscientific, 3 × 3 × 0.9mm 3 , 2.64g/cm 3 ) in small field lung medium for Stereotactic Body Radiation Therapy (SBRT). A physical lung phantom was simulated by a 14cm thick composite cork phantom (0.27g/cm 3 , HU:-743 ± 11) sandwiched between 4cm thick Plastic Water (CIRS,Norfolk). Composite cork has been shown to be a good lung substitute material for dosimetric studies. 6MV photon beam from Varian Clinac iX (Varian Medical Systems, Palo Alto, CA) with field size 2 × 2cm 2 was simulated. Depth dose profiles were obtained from the Eclipse treatment planning system Acuros XB (AXB) and independently from DOSxyznrc, EGSnrc. Correction factors was calculated by the ratio of unperturbed to perturbed dose. Since AXB has limitations in simulating actual material compositions, EGSnrc will also simulate the AXB-based material composition for comparison to the actual lung phantom. Results: TLD-100, with its finite size and relatively high density, causes significant perturbation in 2 × 2cm 2 small field in a low lung density phantom. Correction factors calculated by both EGSnrc and AXB was found to be as low as 0.9. It is expected that the correction factor obtained by EGSnrc wlll be more accurate as it is able to simulate the actual phantom material compositions. AXB have a limited material library, therefore it only approximates the composition of TLD, Composite cork and Plastic water, contributing to uncertainties in TLD correction factors. Conclusion: It is expected that the correction factors obtained by EGSnrc will be more accurate. Studies will be done to investigate the correction factors for higher energies where perturbation may be more pronounced
Calculation of the Nucleon Axial Form Factor Using Staggered Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Meyer, Aaron S. [Fermilab; Hill, Richard J. [Perimeter Inst. Theor. Phys.; Kronfeld, Andreas S. [Fermilab; Li, Ruizi [Indiana U.; Simone, James N. [Fermilab
2016-10-14
The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we present preliminary results on a blinded calculation of $g_A$ and the axial form factor using HISQ staggered baryons with 2+1+1 flavors of sea quarks. Calculations are done using physical light quark masses and are absolutely normalized. We discuss fitting form factor data with the model-independent $z$ expansion parametrization.
Correction factors for safe performance of API X65 pipeline steel
International Nuclear Information System (INIS)
Hashemi, Sayyed H.
2009-01-01
Prediction of required Charpy energy for fracture arrest is vital for safe performance of gas transportation pipelines. This is commonly estimated through failure models calibrated in the past on fracture data from combined Charpy tests and full-thickness burst experiments. Unfortunately, such pipeline failure models are unable to correctly predict the minimum arrest toughness of thermo-mechanical controlled rolled (TMCR) steels. To refine the existing failure models, different empirical adjustments have been proposed in recent years. In this paper, similar correction factors were derived from fracture information of instrumented Charpy impact tests on API X65 steel. The contribution of different fracture mechanisms of impact test specimens was determined through energy partitioning analysis. Parts of the energy contribution were correlated then to the source of uncertainty observed in similar experiments. The applied technique was similar to that of previous studies on X70 and X100 steels, and proved to be encouraging in giving consistent results compared to available test data.
A Study on Vehicle Emission Factor Correction Based on Fuel Consumption Measurement
Wang, Xiaoning; Li, Meng; Peng, Bo
2018-01-01
The objective of this study is to address the problem of obvious differences between the calculated and measured emissions of pollutants from motor vehicle by using the existing "Environmental Impact Assessment Specification of Highway Construction Projects". First, a field study collects the vehicle composition ratio, speed, slope, fuel consumption and other essential data. Considering practical applications, the emission factors corresponding to 40km/h and 110km/h and 120km/h velocity are introduced by data fitting. Then, the emission factors of motor vehicle are revised based on the measured fuel consumption, and the pollutant emission modified formula was calculated and compared with the standard recommendation formula. The results show the error between calculated and measured values are within 5%, which can better reflect the actual discharge of the motor vehicle.
International Nuclear Information System (INIS)
Son, In Ho; An, Deuk Man
2012-01-01
In fracture mechanics, the weight function can be used for calculating stress intensity factors. In this paper, a two dimensional electroelastic analysis is performed on a transversely isotropic piezoelectric material with an open crack. A plane strain formulation of the piezoelectric problem is solved within the Leknitskii formalism. Weight function theory is extended to piezoelectric materials. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory
On the use of the correction factor with Japanese ozonesonde data
Directory of Open Access Journals (Sweden)
G. A. Morris
2013-02-01
Full Text Available In submitting data to the World Meteorological Organization (WMO World Ozone and Ultraviolet Data Center (WOUDC, numerous ozonesonde stations include a correction factor (CF that multiplies ozone concentration profile data so that the columns computed agree with column measurements from co-located ground-based and/or overpassing satellite instruments. We evaluate this practice through an examination of data from four Japanese ozonesonde stations: Kagoshima, Naha, Sapporo, and Tsukuba. While agreement between the sonde columns and Total Ozone Mapping Spectrometer (TOMS or Ozone Mapping Instrument (OMI is improved by use of the CF, agreement between the sonde ozone concentrations reported near the surface and data from surface monitors near the launch sites is negatively impacted. In addition, we find the agreement between the mean sonde columns without the CF and the ground-based Dobson instrument columns is improved by ~1.5 % by using the McPeters et al. (1997 balloon burst climatology rather than the constant mixing ratio assumption (that has been used for the data in the WOUDC archive for the above burst height column estimate. Limited comparisons of coincident ozonesonde profiles from Hokkaido University with those in the WOUDC database suggest that while the application of the CFs in the stratosphere improves agreement, it negatively impacts the agreement in the troposphere. Finally and importantly, unexplained trends and changing trends in the CFs appear over the last 20 years. The overall trend in the reported CFs for the four Japanese ozonesonde stations from 1990–2010 is (−0.264 ± 0.036 × 10^{−2} yr^{−1}; but from 1993–1999 the trend is (−2.18 ± 0.14 × 10^{−2} yr^{−1} and from 1999–2009 is (1.089 ± 0.075 × 10^{−2} yr^{−1}, resulting in a statistically significant difference in CF trends between these two periods of (3.26 ± 0.16 × 10^{−2} yr
Energy Technology Data Exchange (ETDEWEB)
Ribeiro, M. [Centro de Pesquisas Avancadas Wernher von Braun, Av. Alice de Castro P.N. Mattosinho 301, CEP 13098-392 Campinas, SP (Brazil); Ferreira, L.G. [Departamento de Fisica dos Materiais e Mecanica, Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo, SP (Brazil); Fonseca, L.R.C. [Center for Semiconductor Components, State University of Campinas, R. Pandia Calogeras 90, 13083-870 Campinas, SP (Brazil); Ramprasad, R. [Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269 (United States)
2012-09-20
We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe, and their interface band alignments on the CdSe in-plane lattice parameters. For this, we employed the LDA-1/2 self-energy correction scheme to obtain corrected band gaps and band offsets. Our calculations include the spin-orbit effects for the bulk cases, which have shown to be of importance for the equilibrium systems and are possibly degraded in these strained semiconductors. Therefore, the SO showed reduced importance for the band alignment of this particular system. Moreover, the electronic structure calculated along the transition region across the CdSe/CdTe interface shows an interesting non-monotonic variation of the band gap in the range 0.8-1.8 eV, which may enhance the absorption of light for corresponding frequencies at the interface between these two materials in photovoltaic applications.
Stanke, Monika; Bralin, Amir; Bubin, Sergiy; Adamowicz, Ludwik
2018-01-01
In this work we report progress in the development and implementation of quantum-mechanical methods for calculating bound ground and excited states of small atomic systems. The work concerns singlet states with the L =1 total orbital angular momentum (P states). The method is based on the finite-nuclear-mass (non-Born-Oppenheimer; non-BO) approach and the use of all-particle explicitly correlated Gaussian functions for expanding the nonrelativistic wave function of the system. The development presented here includes derivation and implementation of algorithms for calculating the leading relativistic corrections for singlet states. The corrections are determined in the framework of the perturbation theory as expectation values of the corresponding effective operators using the non-BO wave functions. The method is tested in the calculations of the ten lowest 1P states of the helium atom and the four lowest 1P states of the beryllium atom.
Development of a correction factor for Xe-133 vials for use with a dose calibrator
International Nuclear Information System (INIS)
Gels, G.L.; Piltingsrud, H.V.
1982-01-01
Manufacturers of dose calibrators who give calibration settings for various radionuclies sometimes do not specify the type of radionuclide container the calibration is for. The container, moreover, may not be of the same type as those a user might purchase. When these factors are not considered, the activity administered to the patient may be significantly different from that intended. An experiment is described in which calibration factors are determined for measurement of Xe-133 activity in vials in a dose calibrator. This was accomplished by transferring the Xe-133 from the commercial vials to standard NBS calibration ampules. Based on ten such transfers, the resulting correction factor for the dose calibrator was 1.22
International Nuclear Information System (INIS)
Rodrigues, L.L.C.
1988-01-01
A simple method was developed to be suggested to hospital physicists in order to be followed during large radiation field dosimetry, to evaluate the effects of cables, connectors and extension cables irradiation and to determine correction factors for each system or geometry. All quality control tests were performed according to the International Electrotechnical Commission for three clinical dosimeters. Photon and electron irradiation effects for cables, connectors and extention cables were investigated under different experimental conditions by means of measurements of chamber sensitivity to a standard radiation source of 90 Sr. The radiation induced leakage current was also measured for cables, connectors and extension cables irradiated by photons and electrons. All measurements were performed at standard dosimetry conditions. Finally, measurements were performed in large fields. Cable factors and leakage factors were determined by the relation between chamber responses for irradiated and unirradiated cables. (author) [pt
International Nuclear Information System (INIS)
Correia, Amanda Ribeiro
2011-01-01
In order to reach therapy and diagnosis objectives, the activity must be determined with high accuracy to administer a radiopharmaceutical to a patient. Initially, a glass vial with the radiopharmaceutical is placed into the radionuclide calibrator to determine its activity. Subsequently, an aliquot is transferred to a syringe and again its activity is measured on the calibrator before being administered to the patient. The glass vial and the syringe are different in many aspects as the calibration factors too, which may cause incorrect activities administered to the patient. This study aims to determine the correction factors, as well as the values of the uncertainties associated to two distinct models of calibrators: one that uses ionization chamber and another Geiger-Mueller as detectors. The radionuclides chosen were 99 Tc m and 123 1 and the containers were glass vials (type lOR and P6) and plastic syringes of 3 and 5 mL. The correction factors for each type of vials or syringe were determined as a function of volume and type of calibrator. Activity measurements comparison was also made involving several radionuclide calibrators of different models belonging to four nuclear medicine hospitals and to National Metrology Laboratory of lionizing Radiation (LNMRI). In the measurements of activity values larger than allowed by CNEN NN-3.05 norm, results have shown deviations for syringes in calibrator with Geiger-Mueller detectors and for both radionuclides. (author)
Directory of Open Access Journals (Sweden)
Adhika Prajna Nandiwardhana
2017-01-01
Full Text Available Penggunaan motor brushless DC telah banyak digunakan dalam berbagai bidang seperti peralatan rumah tangga maupun industri dikarenakan motor ini memiliki struktur yang sederhana, efisiensi dan torsi yang tinggi, serta menggunakan konsep komutasi elektris yang berbeda dari motor DC lainnya. Namun pengoperasian pada umumnya yang menggunakan sumber AC, penyearah serta inverter membuat tingginya nilai harmonisa arus (THD sebesar 73,33% dan power factor sebesar 0,803 dimana nilai ini kurang baik dalam pengaplikasiannya. Pada penelitian ini akan dikaji mengenai proses power factor correction yang mereduksi harmonisa arus (THD sumber AC dengan menggunakan zeta converter dalam pengaplikasian motor brushless DC, serta pengoperasian motor dengan mengamati respon motor terhadap kecepatan referensi yang berubah-ubah dan mengamati kestabilan motor terhadap pembebanan yang bervariasi. Dalam menerapkan metode yang dilakukan pada penelitian ini, pengoperasian motor brushless DC yang telah dirancang dapat bekerja dengan baik meliputi respon motor yang dapat mengikuti kecepatan referensi yang berubah-ubah, serta kestabilan motor dalam mempertahankan kecepatannya pada pembebanan yang bervariasi. Proses power factor correction dapat meningkatkan kualitas daya pada berbagai kecepatan dan mode penerapan yang berbeda-beda, dimana peningkatan tersebut membuktikan kinerja yang baik dalam sistem ini dan memiliki nilai kualitas daya yang baik.
Correction factors for {gamma}-ray relative intensities in the {sup 66}Ga radioisotope
Energy Technology Data Exchange (ETDEWEB)
Schmid, G.J. [Duke Univ., Durham, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Chasteler, R.M. [Duke Univ., Durham, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Laymon, C.M. [Duke Univ., Durham, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Weller, H.R. [Duke Univ., Durham, NC (United States)]|[Triangle Universities Nuclear Lab., Durham, NC (United States); Moore, E.F. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Bybee, C.R. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Drake, J.M. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Tilley, D.R. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Vavrina, G. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States); Wallace, P.M. [Triangle Universities Nuclear Lab., Durham, NC (United States)]|[North Carolina State Univ., Raleigh, NC (United States)
1996-09-16
We present here strong evidence that recently published values for the relative intensities of {gamma}-ray lines in the {sup 66}Ga({beta}{sup +}+EC){sup 66}Zn decay are incorrect at the higher energies ({proportional_to}30% too low at 4.8 MeV). In particular, we find that our current results are consistent with a set of correction factors which were first suggested 20 years ago, but have gone largely ignored until now. Our validation of these little known correction factors will have bearing on experiments which use the {sup 66}Ga radioisotope to extrapolate absolute detector efficiencies to higher energies. In particular, we discuss the conclusions of a recent D(p, {gamma}){sup 3}He experiment which will be strongly affected by our current results. The astrophysical S-factor data derived from this D(p, {gamma}){sup 3}He experiment are now seen to be systematically too low by {proportional_to}30%. (orig.).
International Nuclear Information System (INIS)
Marie, S.; Nedelec, M.
2007-01-01
For the assessment of an under-clad defect in a vessel subjected to a cold pressurised thermal shock, plasticity is considered through the amplification β of the elastic stress intensity factor K I in the ferritic part of the vessel. An important effort has been made recently by CEA to improve the analytical tools in the frame of R and D activities funded by IRSN. The current solution in the French RSE-M code has been developed from fitted F.E. calculation results. A more physical solution is proposed in this paper. This takes into account two phenomena: the amplification of the elastic K I due to plasticity in the cladding and a plastic zone size correction in the ferritic part. The first correction has been established by representing the cladding plasticity by an imposed displacement on the crack faces at the interface between the cladding and the ferritic vessel. The corresponding elastic stress intensity factor is determined from the elastic plane strain asymptotic solution for the opening displacement. Plasticity in the ferritic steel is considered through a classical plastic zone size correction. The application of the solution to axisymmetric defects is first checked. The case of semi-elliptical defects is also investigated. For the correction determined at the interface between the cladding and the ferritic vessel, an amplification of the correction proposed for the deepest point is determined from a fitting of the 3D F.E. calculation results. It is also shown that the proposition of RSE-M, which consists in applying the same β correction at the deepest point and the interface point is not suitable. The applicability to a thermal shock, eventually combined with an internal pressure has been verified. For the deepest point, the proposed correction leads to similar results to the RSE-M method, but presents an extended domain of validity (no limits on the crack length are imposed)
A Preliminary Study on Calculation of Inter-Pebble Dancoff Factor in a Pebble Type Core
International Nuclear Information System (INIS)
Kim, Song Hyun; Kim, Hong Chul; Kim, Soon Young; Noh, Jae Man; Kim, Jong Kyung
2009-01-01
The Dancoff factor is an entering probability of the neutron escaped from specific fuel kernel to another one without the interaction with moderators. Currently, Dancoff factors are mainly evaluated from stochastic methods, hence a research on analytical method is considerably insufficient in this field. In order to analytically evaluate Dancoff factor considering double-heterogeneous effect, inter-pebble and intra-pebble Dancoff factors should be calculated, respectively. Intra-pebble Dancoff factor related with the fuel kernels in one pebble was analyzed in past study. For the evaluation of inter-pebble Dancoff factor, fuel region to region Dancoff factor (FRDF) was defined and the method to calculate the FRDF is developed in this study. The result is compared with the calculation result of the MCNP5 code
International Nuclear Information System (INIS)
Inoue, Masaki; Abe, Kazuyuki; Sato, Isamu
2000-01-01
A reliable method has been developed for determining an effective porosity correction factor for calculating a realistic thermal conductivity for fast reactor uranium-plutonium (mixed) oxide fuel pellets. By using image analysis of the ceramographs of transverse sections of mixed-oxide fuel pellets, the fuel morphology could be classified into two basic types. One is a 'two-phase' type that consists of small pores dispersed in the fuel matrix. The other is a 'three-phase' type that has large pores in addition to the small pores dispersed in the fuel matrix. The pore sizes are divided into two categories, large and small, at the 30 μm area equivalent diameter. These classifications lead to an equation for calculating an effective porosity correction factor by accounting for the small and large pore volume fractions and coefficients. This new analytical method for determining the effective porosity correction factor for calculating the realistic thermal conductivity of mixed-oxide fuel was also experimentally confirmed for high-, medium- and low-density fuel pellets
Energy Technology Data Exchange (ETDEWEB)
Bonte, Stijn [IBiTech, Ghent, (Belgium); Ghent University, iMinds - Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Ghent (Belgium); University Hospital, Department of Radiology and Nuclear Medicine, Ghent (Belgium); Vandemaele, Pieter; Deblaere, Karel; Goethals, Ingeborg [University Hospital, Department of Radiology and Nuclear Medicine, Ghent (Belgium); Verleden, Stijn; Audenaert, Kurt [University Hospital, Department of Psychiatry, Ghent (Belgium); Holen, Roel van [Ghent University, iMinds - Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Ghent (Belgium)
2017-05-15
The mechanisms of ageing of the healthy brain are not entirely clarified to date. In recent years several authors have tried to elucidate this topic by using {sup 18}F-FDG positron emission tomography. However, when correcting for partial volume effects (PVE), divergent results were reported. Therefore, it is necessary to evaluate these methods in the presence of atrophy due to ageing. In this paper we first evaluate the performance of two PVE correction techniques with a phantom study: the Rousset method and iterative deconvolution. We show that the ability of the latter method to recover the true activity in a small region decreases with increasing age due to brain atrophy. Next, we have calculated age-dependent recovery factors to correct for this incomplete recovery. These factors were applied to PVE-corrected {sup 18}F-FDG PET scans of healthy subjects for mapping the agedependent metabolism in the brain. Many regions in the brain show a reduced metabolism with ageing, especially in grey matter in the frontal and temporal lobe. An increased metabolism is found in grey matter of the cerebellum and thalamus. Our study resulted in age-dependent recovery factors which can be applied following standard PVE correction methods. Cancelling the effect of atrophy, we found regional changes in {sup 18}F-FDG metabolism with ageing. A decreasing trend is found in the frontal and temporal lobe, whereas an increasing metabolism with ageing is observed in the thalamus and cerebellum.
International Nuclear Information System (INIS)
Lai, Y.C.; Huang, Y. F.; Chen, Y.W.
2008-01-01
Full text: Short-term environment dose-rate assessments using real-time digital dosimeters within a Nuclear Medicine Department (NMD) are gaining more world-wide uses recently. In the past, conventional ion chamber-type survey-meters are used dominantly in environmental dose rates evaluation. Although it has suffered less gamma energy-dependency, but it is less sensitive in comparison with other digital dosimeters and more bulky in design that can hardly make it into a pocket size application. With modern electronic advancement and its shrinking in physical size, real-time personal dosimeter nowadays has gaining more popular to use a miniature G-M counter or a solid-state diode sensor, or even a NaI(Tl) scintillation device for ambient radiation monitoring. Radiation sensor operated in pulse-mode can never been used in doses or dose rates determination since each digital pulse has carried no energy information of the impinging gamma ray being interactive with, especially in the G-M counter or the diode sensor case. The raw count rates measured from a pulse-mode device are heavily dependent on the packaging of the sensor to make it less energy-sensitive. The doses or dose rates are then calculated by using a built-in conversion factor, based on a Cs-137 beam source calibration data conducted by various manufacturing vendors, to convert its raw counts into a so-called dose or dose-rate unit. In this study, we have focused our interests in the low energy response of the digital dosimeters from several brands currently for our in-house uses. Mainly, Tc-99m and I-131 in point sources and water phantoms detection configurations have been deployed to simulate our NMD outpatients for environment radiation monitoring purpose. The energy-dependent correction factors of the digital dosimeters will be evaluated by using calibrated Tc-99m or I-131 standard sources directly that has much lower gamma energy than the Cs-137 beam source of 661 keV. In the near future, we would
High Efficiency Three-phase Power Factor Correction Rectifier using Wide Band-Gap Devices
DEFF Research Database (Denmark)
Kouchaki, Alireza
Improving the conversion efficiency of power factor correction (PFC) rectifiers has become compelling due to their wide applications such as adjustable speed drives, uninterruptible power supplies (UPS), and battery chargers for electric vehicles (EVs). The attention to PFCs has increased even more....... Therefore, current controllers are also important to be investigated in this project. In this PhD research work, a comprehensive design of a two-level three-phase PFC rectifier using silicon-carbide (SiC) switches to achieve high efficiency is presented. The work is divided into two main parts: 1) Optimum...
DEFF Research Database (Denmark)
Li, Qingnan; Andersen, Michael A. E.; Thomsen, Ole Cornelius
2011-01-01
Nowadays, efficiency and power density are the most important issues for Power Factor Correction (PFC) converters development. However, it is a challenge to reach both high efficiency and power density in a system at the same time. In this paper, taking a Bridgeless PFC (BPFC) as an example......, a useful compromise between efficiency and power density of the Boost inductors on 3.2kW is achieved using an optimized design procedure. The experimental verifications based on the optimized inductor are carried out from 300W to 3.2kW at 220Vac input....
Factors related to stability following the surgical correction of skeletal open bite.
Ito, Goshi; Koh, Myongsun; Fujita, Tadashi; Shirakura, Maya; Ueda, Hiroshi; Tanne, Kazuo
2014-05-01
If a skeletal anterior open bite malocclusion is treated by orthognathic surgery directed only at the mandible, the lower jaw is repositioned upward in a counter-clockwise rotation. However, this procedure has a high risk of relapse. In the present study, the key factors associated with post-surgical stability of corrected skeletal anterior open bite malocclusions were investigated. Eighteen orthognathic patients were subjected to cephalometric analysis to assess the dental and skeletal changes following mandibular surgery for the correction of an anterior open bite. The patients were divided into two groups, determined by an increase or decrease in nasion-menton (N-Me) distance as a consequence of surgery. Changes in overbite, the displacements of molars and positional changes in Menton were evaluated immediately before and after surgery and after a minimum of one year post-operatively. The group with a decreased N-Me distance exhibited a significantly greater backward positioning of the mandible. The group with an increased N-Me distance experienced significantly greater dentoalveolar extrusion of the lower molars. A sufficient mandibular backward repositioning is an effective technique in the prevention of open bite relapse. In addition, it is important not to induce molar extrusion during post-surgical orthodontic treatment to preserve stability of the surgical open bite correction.
46 CFR 401.400 - Calculation of pilotage units and determination of weighting factor.
2010-10-01
... weighting factor. 401.400 Section 401.400 Shipping COAST GUARD (GREAT LAKES PILOTAGE), DEPARTMENT OF... § 401.400 Calculation of pilotage units and determination of weighting factor. The equivalent pilotage... meters) Pilot Unit=(Length×Breadth×Depth)/10,000 (measured in feet) (b) Weighting factor table: Range of...
TU-F-CAMPUS-T-05: A Cloud-Based Monte Carlo Dose Calculation for Electron Cutout Factors
Energy Technology Data Exchange (ETDEWEB)
Mitchell, T; Bush, K [Stanford School of Medicine, Stanford, CA (United States)
2015-06-15
Purpose: For electron cutouts of smaller sizes, it is necessary to verify electron cutout factors due to perturbations in electron scattering. Often, this requires a physical measurement using a small ion chamber, diode, or film. The purpose of this study is to develop a fast Monte Carlo based dose calculation framework that requires only a smart phone photograph of the cutout and specification of the SSD and energy to determine the electron cutout factor, with the ultimate goal of making this cloud-based calculation widely available to the medical physics community. Methods: The algorithm uses a pattern recognition technique to identify the corners of the cutout in the photograph as shown in Figure 1. It then corrects for variations in perspective, scaling, and translation of the photograph introduced by the user’s positioning of the camera. Blob detection is used to identify the portions of the cutout which comprise the aperture and the portions which are cutout material. This information is then used define physical densities of the voxels used in the Monte Carlo dose calculation algorithm as shown in Figure 2, and select a particle source from a pre-computed library of phase-spaces scored above the cutout. The electron cutout factor is obtained by taking a ratio of the maximum dose delivered with the cutout in place to the dose delivered under calibration/reference conditions. Results: The algorithm has been shown to successfully identify all necessary features of the electron cutout to perform the calculation. Subsequent testing will be performed to compare the Monte Carlo results with a physical measurement. Conclusion: A simple, cloud-based method of calculating electron cutout factors could eliminate the need for physical measurements and substantially reduce the time required to properly assure accurate dose delivery.
Directory of Open Access Journals (Sweden)
Francesco Chirico
2017-03-01
Full Text Available Introduction: Over the past two decades, numerous studies on indoor air and the Sick Building Syndrome (SBS have been conducted, mostly in office environments. However, there is little knowledge about SBS in police officers. This study was aimed to fill this gap. Methods: A cross-sectional questionnaire survey was conducted in 2016 at the Triveneto Penitentiary Center, Northern Italy. Chi-square was used to test the difference of prevalence between office workers (OWs and correctional officers (COs of personal characteristics, cases of SBS, and general and mucocutaneous symptoms associated with SBS. A binary logistic regression was used to identify among individual, environmental, and psychosocial characteristics, factors associated with correctional officers’ Sick Building Syndrome. Results: Chi-squared analyses revealed that there were statistically significant differences in the estimated prevalence of SBS general symptoms (χ2 (1 = 12.22, P < .05, SBS mucocutaneous symptoms (χ2 (1 = 9.04, P < .05, and cases of SBS (χ2 (1 = 4.39, P <.05 between COs and OWs. COs reported that their health had been affected by the passive smoking (β = 2.34, P < .05 and unpleasant odour (β = 2.51, P < .05 as environmental risk factors; work-family conflict (β = 2.14, P < .05, psychological and physical isolation (β = 2.07, P < .05, and negative public image (β = 2.06, P < .05 as psychosocial risk factors. Finally, atopy (β = 2.02, P < .05 and to be current smoker (β = 2.02, P < .05 were statistically significant behavioral predictors of SBS among correctional officers. Discussion: Our survey showed that symptoms compatible with the sick building syndrome are common in correctional officers and that psychosocial work climate and exposure to passive smoking could have a strong influence on the prevalence of both general and mucocutaneous symptoms associated with SBS. A health policy for passive tobacco smoking within prisons, and for work-related stress
Estimation of the self-attenuation correction factor for gamma rays emission from nuclear materials
International Nuclear Information System (INIS)
Badawy, A.; El-Gammal, W.A.
2001-01-01
This work presents an investigation of the self-attenuation of gamma-rays emission from nuclear materials (NMs) for measuring the U-235 enrichment, U-235 mass content and isotopic composition of NMs by non-destructive assay technique [NDA]. The measurements then would not need the use of suitable NM Standards which may not be available in many situations. The self-attenuation correction factor (F) may be estimated by the use of the linear attenuation factor of the assayed sample, the geometrical configuration of the assay set-up and the position of the assayed sample relative to the detector. A developed mathematical analysis makes use of specific parameters which affect the estimation of the self-attenuation of the source-detector system which emits passive gamma-rays at certain prominent signatures
Power Factor Correction Capacitors for Multiple Parallel Three-Phase ASD Systems
DEFF Research Database (Denmark)
Yang, Yongheng; Blaabjerg, Frede
2017-01-01
Today’s three-phase Adjustable Speed Drive (ASD) systems still employ Diode Rectifiers (DRs) and Silicon-Controlled Rectifiers (SCRs) as the front-end converters due to structural and control simplicity, small volume, low cost, and high reliability. However, the uncontrollable DRs and phase......-controllable SCRs bring side-effects by injecting high harmonics to the grid, which will degrade the system performance in terms of lowering the overall efficiency and overheating the system if remain uncontrolled or unattenuated. For multiple ASD systems, certain harmonics in the entire system can be mitigated...... the power factor, passive capacitors can be installed, which yet can trigger the system resonance. Hence, this paper analyzes the resonant issues in multiple ASD systems with power factor correction capacitors. Potential damping solutions are summarized. Simulations are carried out, while laboratory tests...
International Nuclear Information System (INIS)
1984-02-01
This report presents a method of calculating the availability of buried radioactive and nonradioactive materials via an inhalation pathway. Availability is the relationship between the concentration of a substance in the soil and the dose rate to a human receptor. Algorithms presented for calculating availabiliy of elemental inorganic substances are based on atmospheric enrichment factors; those presented for calculating availability of organic substances are based on vapor pressures. The basis, use, and limitations of the developed equations are discussed. 32 references, 5 tables
Home radon levels and seasonal correction factors for the Isle of Man
International Nuclear Information System (INIS)
Grainger, P.; Preece, A.W.; Goodfellow, S.A.
2000-01-01
Ionizing radiation dose levels due to home radon can rise to levels that would be illegal for workers in the nuclear industry. It is well known that radon levels within homes and from home to home, and also from month to month, vary considerably. To define an Isle of Man radon seasonal correction factor, readings were taken in eight homes over a 12 month period. An average island indoor exposure of 48 Bq m -3 (range 4-518 Bq m -3 ) was determined from 285 homes selected from a cohort of 1300 families participating in the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) in the Isle of Man. This compares with a UK home average of 20 Bq m -3 and a European Union average (excluding UK) of 68 Bq m -3 . Ten homes of those measured were found to have radon levels above the National Radiological Protection Board 200 Bq m -3 action level. There are 29 377 homes on the Isle of Man, suggesting that there could be some 900 or more homes above the action level. No statistical difference was found between the NRPB and Isle of Man seasonal correction factors. (author)
Application of geometry correction factors for low-level waste package dose measurements. Revision 1
International Nuclear Information System (INIS)
Chandler, M.C.; Parish, B.
1995-01-01
Plans are to determine the Cs-137 content of low-level waste packages generated in High-Level Waste by measuring the radiation level at a specified distance from the package with a hand-held radiation instrument. The measurement taken at this specified distance, either 3 or 5 feet, is called the far-field measurement. This report documents a method for adjusting the gamma exposure rate (mR/hr) reading used in dose-to-curie determinations when the far-field measurement equals the background reading. This adjustment is necessary to reduce the conservatism resulting from using a minimum detection limit exposure rate for the dose-to-curie determination for the far-field measurement position. To accomplish this adjustment, the near-field (5 cm) measurement is multiplied by a geometry correction factor to obtain an estimate of the far field exposure rate (which is below instrument sensitivity). This estimate of the far field exposure rate is used to estimate the Cs-137 curie content of the package. This report establishes the geometry correction factors for the dose-to-curie determination when the far-field gamma exposure measurement equals the background reading. This report also provides a means of demonstrating compliance to 1S Manual requirements for exposure rate readings at different locations from waste packages while specifying only two measurement positions. This demonstration of compliance is necessary to minimize the number of locations exposure rate measurements that are required, i.e., ALARA
Directory of Open Access Journals (Sweden)
mandana Saki
2009-04-01
Full Text Available Background: Social damage is one of the problems which destroys the active manpower and young population in the country and also prevents social development. Family is the first environment in which social ground for the child is provided.Any dispute, controversy or inferiority complex in the family may lead to wrong doings The present study aims at the effective family and personality factors on felony in felon adolescents kept in Khorramabad bouse of correction. Materials and Methods: This descriptive- analytic study was carried out on all of the adolescents in Khorramabad house of correction as case group selected using census random sampling and high school students as control group selected by cluster random sampling. Data gathering tool was a 2-part questionnaire including demographic information and standard SCL 90 questionnaire. Results: Results showed that there is a significant relationship between the place of residence, failure in school program, economic status of the family, parents presence, fathers job and education, mothers job and education, parents inter personal relationship and family conflicting. The results also showed that aggression, anxiety, depression, somatic complain, obsessive compulsive, inter personality sensitivity, Psychotic, paranoid and phobia had a significant difference in the case and control groups. Conclusion: Regarding the fact that family environment is considered as the most important educative factor and no social damage has not occurred out of family influence, so no society can claim to be healthy unless to have healthy families.
Lifescience Database Archive (English)
Full Text Available 16979567 Type I interferon [corrected] gene induction by the interferon regulatory factorfamily...ng) (.svg) (.html) (.csml) Show Type I interferon [corrected] gene induction by the interferon regulatory factorfamily...orrected] gene induction by the interferon regulatory factorfamily of transcription factors. Authors Honda K
Calculations of the stress intensity factor on a specimen for a four-point bend
International Nuclear Information System (INIS)
Lauerova, D.
1995-02-01
The stress intensity factor K I was calculated in dependence on the crack length in a sample for a (non-standard) four-point bend assuming elastic properties of the material. It is shown that the SYSTUS code gives the best results when calculating the K I value from the J-integral. 4 tabs., 12 figs., 4 refs
Energy Technology Data Exchange (ETDEWEB)
Dominguez Gonzalez, Gustavo [Petroleos Mexicanos, Refineria Miguel Hidalgo, Tula de Allende (Mexico)
1993-12-31
In this paper the theoretical fundament and formulae of the power factor are analyzed and a relationship among kilowatts, kilovars and power factor, is shown; also it deals with power factor in combination with load groups, as well as the numerical calculation of the required kvar for the desired improvement of the power factor. Additionally the technical and economical aspects of the capacitors and synchronous motors are contemplated, as well as their location in the electric system in order to achieve the maximum benefits. Finally, the savings obtained with the installation of capacitors in the electric power system of the Miguel Hidalgo refinery, are explained. [Espanol] En el presente trabajo se analizan los fundamentos teoricos y formulas del factor de potencia y se muestra la relacion entre kilowatts, kilovars y factor de potencia; tambien trata al factor de potencia combinado de grupos de cargas, asi como el calculo numerico de los KVAR necesarios para la mejora deseada del factor de potencia. Ademas se contemplan aspectos tecnicos y economicos de los capacitores y los motores sincronos, asi como la ubicacion de los mismos en el sistema electrico para lograr los maximos beneficios. Finalmente se explican las ganancias economicas que se obtuvieron al instalarse capacitores en el sistema electrico de potencia de la refineria Miguel Hidalgo.
Energy Technology Data Exchange (ETDEWEB)
Dominguez Gonzalez, Gustavo [Petroleos Mexicanos, Refineria Miguel Hidalgo, Tula de Allende (Mexico)
1992-12-31
In this paper the theoretical fundament and formulae of the power factor are analyzed and a relationship among kilowatts, kilovars and power factor, is shown; also it deals with power factor in combination with load groups, as well as the numerical calculation of the required kvar for the desired improvement of the power factor. Additionally the technical and economical aspects of the capacitors and synchronous motors are contemplated, as well as their location in the electric system in order to achieve the maximum benefits. Finally, the savings obtained with the installation of capacitors in the electric power system of the Miguel Hidalgo refinery, are explained. [Espanol] En el presente trabajo se analizan los fundamentos teoricos y formulas del factor de potencia y se muestra la relacion entre kilowatts, kilovars y factor de potencia; tambien trata al factor de potencia combinado de grupos de cargas, asi como el calculo numerico de los KVAR necesarios para la mejora deseada del factor de potencia. Ademas se contemplan aspectos tecnicos y economicos de los capacitores y los motores sincronos, asi como la ubicacion de los mismos en el sistema electrico para lograr los maximos beneficios. Finalmente se explican las ganancias economicas que se obtuvieron al instalarse capacitores en el sistema electrico de potencia de la refineria Miguel Hidalgo.
International Nuclear Information System (INIS)
Ramakumar, K.L.; Sesha Sayi, Y.; Shankaran, P.S.; Chhapru, G.C; Yadav, C.S.; Venugopal, V.
2004-01-01
The limitation of commercially available dedicated equipment based on Inert Gas Fusion- Thermal Conductivity Detection (IGF - TCD) for the determination of hydrogen+deuterium is described. For a given molar concentration, deuterium is underestimated vis a vis hydrogen because of lower thermal conductivity and not considering its molecular weight in calculations. An empirical correction factor based on the differences between the thermal conductivities of hydrogen, deuterium and the carrier gas argon, and the mole fraction of deuterium in the sample has been derived to correct the observed hydrogen+deuterium concentration. The corrected results obtained by IGF - TCD technique have been validated by determining hydrogen and deuterium contents in a few samples using an independent method based on hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). Knowledge of mole fraction of deuterium (XD) is necessary to effect the correction. The correction becomes insignificant at low X D values (XD < 0.2) as the precision in the IGF measurements is comparable with the extent of correction. (author)
Cady, John W.
1977-01-01
An equation derived for the vertical gravity field due to a body with polygonal cross section and finite strike length. The equations consists of the 2-dimensional equation of Talwani, Worzel, and Landisman (1959), with the addition of end corrections. Equations for the magnetic field due to a similar body were derived by Shuey and Pasquale (1973). They coined the term "2 1/2-dimensional" to describe the geometry.
Palmer, David S; Frolov, Andrey I; Ratkova, Ekaterina L; Fedorov, Maxim V
2010-12-15
We report a simple universal method to systematically improve the accuracy of hydration free energies calculated using an integral equation theory of molecular liquids, the 3D reference interaction site model. A strong linear correlation is observed between the difference of the experimental and (uncorrected) calculated hydration free energies and the calculated partial molar volume for a data set of 185 neutral organic molecules from different chemical classes. By using the partial molar volume as a linear empirical correction to the calculated hydration free energy, we obtain predictions of hydration free energies in excellent agreement with experiment (R = 0.94, σ = 0.99 kcal mol (- 1) for a test set of 120 organic molecules).
International Nuclear Information System (INIS)
Palmer, David S; Frolov, Andrey I; Ratkova, Ekaterina L; Fedorov, Maxim V
2010-01-01
We report a simple universal method to systematically improve the accuracy of hydration free energies calculated using an integral equation theory of molecular liquids, the 3D reference interaction site model. A strong linear correlation is observed between the difference of the experimental and (uncorrected) calculated hydration free energies and the calculated partial molar volume for a data set of 185 neutral organic molecules from different chemical classes. By using the partial molar volume as a linear empirical correction to the calculated hydration free energy, we obtain predictions of hydration free energies in excellent agreement with experiment (R = 0.94, σ = 0.99 kcal mol -1 for a test set of 120 organic molecules). (fast track communication)
Leach, K. G.; Garrett, P. E.; Towner, I. S.; Ball, G. C.; Bildstein, V.; Brown, B. A.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Krücken, R.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.; Wong, J.
2013-06-01
With the recent inclusion of core orbitals to the radial-overlap component of the isospin-symmetry-breaking (ISB) corrections for superallowed Fermi β decay, experimental data are needed to test the validity of the theoretical model. This work reports measurements of single-neutron pickup reaction spectroscopic factors into 63Zn, one neutron away from 62Zn, the superallowed daughter of 62Ga. The experiment was performed using a 22-MeV polarized deuteron beam, a Q3D magnetic spectrograph, and a cathode-strip focal-plane detector to analyze outgoing tritons at nine angles between 10∘ and 60∘. Angular distributions and vector analyzing powers were obtained for all 162 observed states in 63Zn, including 125 newly observed levels, up to an excitation energy of 4.8 MeV. Spectroscopic factors are extracted and compared to several shell-model predictions, and implications for the ISB calculations are discussed.
DEFF Research Database (Denmark)
Larsen, Ole H; Stentoft, Jesper; Radia, Deepti
2013-01-01
Haemostatic treatment modalities alternative to platelet transfusion are desirable to control serious acute bleeds in primary immune thrombocytopenia (ITP). This study challenged the hypothesis that recombinant activated factor VII (rFVIIa) combined with fibrinogen concentrate may correct whole b...
International Nuclear Information System (INIS)
Theussl, L.; Noguera, S.; Amghar, A.; Desplanques, B.
2003-01-01
The effect of different boost expressions, pertinent to the instant, front and point forms of relativistic quantum mechanics, is considered for the calculation of the ground-state form factor of a two-body system in simple scalar models. Results with a Galilean boost as well as an explicitly covariant calculation based on the Bethe-Salpeter approach are given for comparison. It is found that the present so-called point-form calculations of form factors strongly deviate from all the other ones. This suggests that the formalism which underlies them requires further elaboration. A proposition in this sense is made. (author)
Nurhuda, Maryam; Aziz Majidi, Muhammad
2018-04-01
The role of excitons in semiconducting materials carries potential applications. Experimental results show that excitonic signals also appear in optical absorption spectra of semiconductor system with narrow gap, such as Gallium Arsenide (GaAs). While on the theoretical side, calculation of optical spectra based purely on Density Functional Theory (DFT) without taking electron-hole (e-h) interactions into account does not lead to the appearance of any excitonic signal. Meanwhile, existing DFT-based algorithms that include a full vertex correction through Bethe-Salpeter equation may reveal an excitonic signal, but the algorithm has not provided a way to analyze the excitonic signal further. Motivated to provide a way to isolate the excitonic effect in the optical response theoretically, we develop a method of calculation for the optical conductivity of a narrow band-gap semiconductor GaAs within the 8-band k.p model that includes electron-hole interactions through first-order electron-hole vertex correction. Our calculation confirms that the first-order e-h vertex correction reveals excitonic signal around 1.5 eV (the band gap edge), consistent with the experimental data.
Li, Runze; Peng, Tong; Liang, Yansheng; Yang, Yanlong; Yao, Baoli; Yu, Xianghua; Min, Junwei; Lei, Ming; Yan, Shaohui; Zhang, Chunmin; Ye, Tong
2017-10-01
Focusing and imaging through scattering media has been proved possible with high resolution wavefront shaping. A completely scrambled scattering field can be corrected by applying a correction phase mask on a phase only spatial light modulator (SLM) and thereby the focusing quality can be improved. The correction phase is often found by global searching algorithms, among which Genetic Algorithm (GA) stands out for its parallel optimization process and high performance in noisy environment. However, the convergence of GA slows down gradually with the progression of optimization, causing the improvement factor of optimization to reach a plateau eventually. In this report, we propose an interleaved segment correction (ISC) method that can significantly boost the improvement factor with the same number of iterations comparing with the conventional all segment correction method. In the ISC method, all the phase segments are divided into a number of interleaved groups; GA optimization procedures are performed individually and sequentially among each group of segments. The final correction phase mask is formed by applying correction phases of all interleaved groups together on the SLM. The ISC method has been proved significantly useful in practice because of its ability to achieve better improvement factors when noise is present in the system. We have also demonstrated that the imaging quality is improved as better correction phases are found and applied on the SLM. Additionally, the ISC method lowers the demand of dynamic ranges of detection devices. The proposed method holds potential in applications, such as high-resolution imaging in deep tissue.
A novel correction factor based on extended volume to complement the conformity index.
Jin, F; Wang, Y; Wu, Y-Z
2012-08-01
We propose a modified conformity index (MCI), based on extended volume, that improves on existing indices by correcting for the insensitivity of previous conformity indices to reference dose shape to assess the quality of high-precision radiation therapy and present an evaluation of its application. In this paper, the MCI is similar to the conformity index suggested by Paddick (CI(Paddick)), but with a different correction factor. It is shown for three cases: with an extended target volume, with an extended reference dose volume and without an extended volume. Extended volume is generated by expanding the original volume by 0.1-1.1 cm isotropically. Focusing on the simulation model, measurements of MCI employ a sphere target and three types of reference doses: a sphere, an ellipsoid and a cube. We can constrain the potential advantage of the new index by comparing MCI with CI(Paddick). The measurements of MCI in head-neck cancers treated with intensity-modulated radiation therapy and volumetric-modulated arc therapy provide a window on its clinical practice. The results of MCI for a simulation model and clinical practice are presented and the measurements are corrected for limited spatial resolution. The three types of MCI agree with each other, and comparisons between the MCI and CI(Paddick) are also provided. The results from our analysis show that the proposed MCI can provide more objective and accurate conformity measurement for high-precision radiation therapy. In combination with a dose-volume histogram, it will be a more useful conformity index.
International Nuclear Information System (INIS)
Munoz-Cobo, J.L.; Pena, J.; Chiva, S.; Mendez, S.
2007-01-01
This paper presents a study of the estimation of the correction factors for the interfacial area concentration and the bubble velocity in two phase flow measurements using the double sensor conductivity probe. Monte-Carlo calculations of these correction factors have been performed for different values of the relative distance (ΔS/D) between the tips of the conductivity probe and different values of the relative bubble velocity fluctuation parameter. Also this paper presents the Monte-Carlo calculation of the expected value of the calibration factors for bubbly flow assuming a log-normal distribution of the bubble sizes. We have computed the variation of the expected values of the calibration factors with the relative distance (ΔS/D) between the tips and the velocity fluctuation parameter. Finally, we have performed a sensitivity study of the variation of the average values of the calibration factors for bubbly flow with the geometrical standard deviation of the log-normal distribution of bubble sizes. The results of these calculations show that the total interfacial area correction factor is very close to 2, and depends very weakly on the velocity fluctuation, and the relative distance between tips. For the velocity calibration factor, the Monte-Carlo results show that for moderate values of the relative bubble velocity fluctuation parameter (H max ≤ 0.3) and values of the relative distance between tips not too small (ΔS/D ≥ 0.2), the correction velocity factor for the bubble sensor conductivity probe is close to unity, ranging from 0.96 to 1
International Nuclear Information System (INIS)
Petit, Steven F.; Elmpt, Wouter J. C. van; Nijsten, Sebastiaan M. J. J. G.; Lambin, Philippe; Dekker, Andre L. A. J.
2008-01-01
Megavoltage cone-beam CT (MV CBCT) is used for three-dimensional imaging of the patient anatomy on the treatment table prior to or just after radiotherapy treatment. To use MV CBCT images for radiotherapy dose calculation purposes, reliable electron density (ED) distributions are needed. Patient scatter, beam hardening and softening effects result in cupping artifacts in MV CBCT images and distort the CT number to ED conversion. A method based on transmission images is presented to correct for these effects without using prior knowledge of the object's geometry. The scatter distribution originating from the patient is calculated with pencil beam scatter kernels that are fitted based on transmission measurements. The radiological thickness is extracted from the scatter subtracted transmission images and is then converted to the primary transmission used in the cone-beam reconstruction. These corrections are performed in an iterative manner, without using prior knowledge regarding the geometry and composition of the object. The method was tested using various homogeneous and inhomogeneous phantoms with varying shapes and compositions, including a phantom with different electron density inserts, phantoms with large density variations, and an anthropomorphic head phantom. For all phantoms, the cupping artifact was substantially removed from the images and a linear relation between the CT number and electron density was found. After correction the deviations in reconstructed ED from the true values were reduced from up to 0.30 ED units to 0.03 for the majority of the phantoms; the residual difference is equal to the amount of noise in the images. The ED distributions were evaluated in terms of absolute dose calculation accuracy for homogeneous cylinders of different size; errors decreased from 7% to below 1% in the center of the objects for the uncorrected and corrected images, respectively, and maximum differences were reduced from 17% to 2%, respectively. The
Eric van Steenis
2013-01-01
This paper illustrates how to use an excel spreadsheet as a decision-making tool to determine optimum sowing factor to minimize seedling production cost. Factors incorporated into the spreadsheet calculations include germination percentage, seeder accuracy, cost per seed, cavities per block, costs of handling, thinning, and transplanting labor, and more. In addition to...
Correction of build-up factor one x-ray hvl measurement
International Nuclear Information System (INIS)
Yuliati, Helfi; Akhadi, Mukhlis
2000-01-01
Research to obtain the value build-up factor (b) on half value layers (HVL) measurement of diagnostic X-Rays using pocket dosimeter behind aluminium (AI) filter with its thickness vary from 1 to 4 mm. From the measurement it was obtained HVL value of 1.997, 2.596 and 2.718 mmAI for X-Rays of kVp : 80 Kv with 1, 2, 3 and 4 mm filter thickness respectively. HVL value significantly increase with increasing AI filter thickness. Increasing of HVL means increasing filter thickness. From the calculation it was obtained increasing b value relative to 1 mm AI filter of 18.26 and 46% for filter thickness of 2, 3 and 4 mm respectively. Experiment result shows the need of involving b value in HVL calculation of X-Rays if the filter is relatively thick. Calculation of HVL of X-Rays can be carried out with thin layers filter. Key words : x-rays, half value layer, build up factor
International Nuclear Information System (INIS)
Rizzo, S.; Tomarchio, E.
2008-01-01
Full text: The analytical relations used to compute the coincidence-summing effects on spectral response of Ge semiconductor detectors are quite complex and involve full-energy peak and total efficiencies. For point-sources, a general method for calculating the correction factors for gamma ray coincidences has been formulated by Andreev et al. and used by Schima and Hoppes to obtain γ-X K coincidence correction expressions for 17 nuclides. However, because the higher-order terms are neglected, the expressions supplied do not give reliable results in the case of short sample-detector distances. Using the formulae given by Morel et al.[3] and Lepy et al.[4], we have developed a computer program able to get numerical expressions to compute γ-γ e γ-X K coincidence summing corrections for point sources. Only full-energy peak and total efficiencies are needed. Alternatively, values of peak-to-total ratio can be introduced. For extended sources, the same expressions can be always considered with the introduction of 'effective efficiencies' as defined by Arnold and Sima, i.e. an average over the source volume of the spatial distribution of the elementary photon source total efficiency, weighted by the corresponding peak efficiency. We have considered the most used calibration radioisotopes as well as fission products, activation products and environmental isotopes. All decay data were taken from the most recent volumes of 'Table of Radionuclides', CEA Monographie BIPM-5 and a suitable matrix representation of a decay scheme was adopted. For the sake of brevity, we provide for each nuclide a set of expressions for the more intense gamma emissions, considered sufficient for most applications. However, numerical expressions are available for all the stored gamma transitions and can be obtained on request. As examples of the use of the expressions, the evaluation of correction values for point sources and a particulate sample reduced to a 6x6x0.7 cm packet - with reference
Calculation of mixed mode stress intensity factors using an alternating method
International Nuclear Information System (INIS)
Sakai, Takayuki
1999-01-01
In this study, mixed mode stress intensity factors (K I and K II ) of a square plate with a notch were calculated using a finite element alternating method. The obtained results were compared with the ones by a finite element method, and it was shown that the finite element alternating method can accurately estimate mixed mode stress intensity factors. Then, using this finite element alternating method, mixed mode stress intensity factors were calculated as changing the size and position of the notch, and its simplified equations were proposed. (author)
Deterministic calculation of grey Dancoff factors in cluster cells with cylindrical outer boundaries
International Nuclear Information System (INIS)
Jenisch Rodrigues, L.; Tullio de Vilhena, M.
2008-01-01
In the present work, the WIMSD code routine PIJM is modified to compute deterministic Dancoff factors by the collision probability definition in general arrangements of partially absorbing fuel rods. Collision probabilities are calculated by an efficient integration scheme of the third-order Bickley functions, which considers each cell region separately. The effectiveness of the method is assessed by comparing grey Dancoff factors as calculated by PIJM, with those available in the literature by the Monte Carlo method, for the irregular geometry of the Canadian CANDU and CANFLEX assemblies. Dancoff factors at several different fuel pin positions are found in very good agreement with the literature results. (orig.)
International Nuclear Information System (INIS)
Kuahara, Lilian T.; Correa, Eduardo L.; Potiens, Maria da Penha A.
2015-01-01
The aim of this study is to present the geometry correction factors and their respective uncertainties to P6 and 10R vials and 3 mL and 5 mL plastic syringes using the reference activity meters present at the Laboratorio de Calibracao de Instrumentos (LCI), IPEN the secondary standard system Capintec NPL-CRC radionuclide calibrator, with traceability to the National Physics Laboratory (NPL), England and the work standard Capintec CRC-15BT and the Capintec CRC-25R. The procedure was made using 99m Tc, which is responsible for about 80 % of the routine procedures in a nuclear medicine service. Variations of up to 40 % between different vials using the same radionuclide were found. (author)
Correction factors and performance of a 4 degrees C sealed water calorimeter.
Seuntjens, J; Palmans, H
1999-03-01
In the past two decades, the water calorimetry technique for determination of absorbed dose to water in several types of radiation beams has moved significantly closer to being a recognized method. In this paper we summarize the constructional details of a 4 degrees C sealed water calorimeter currently in operation at the University of Gent. This sealed water (SW) calorimeter is of the Domen type and has been improved in several aspects compared with its original design. The relevant correction factors for heat transport and for field perturbation are described. Using relative response measurements in 60Co, we experimentally verified the relative heat defect for two distinct chemical systems, using two different detection vessel arrangements. The overall 1sigma uncertainty on the absorbed dose to water at 60Co based on this system amounts to 0.7%.
Mitigation of voltage sag, swell and power factor correction using solid-state transformer b
Directory of Open Access Journals (Sweden)
M.R. Banaei
2014-09-01
Full Text Available This paper presents a novel topology of solid-state transformer (SST. In the design process, the AC/DC, DC/AC and AC/AC converters have been integrated to achieve higher efficiency. To obtain higher efficiency from other SST with DC-link topologies, the AC/DC and DC/AC converters have been integrated in one matrix converter. The proposed SST performs typical functions and has advantages such as power factor correction, voltage sag and swell elimination, voltage flicker reduction and protection capability in fault situations. In addition, it has other benefits such as light weight, low volume and elimination of hazardous liquid dielectrics because it uses medium frequency transformer. The operation and some performances of the proposed SST have been verified by the simulation results.
International Nuclear Information System (INIS)
Park, P; Schreibmann, E; Fox, T; Roper, J; Elder, E; Tejani, M; Crocker, I; Curran, W; Dhabaan, A
2014-01-01
Purpose: Severe CT artifacts can impair our ability to accurately calculate proton range thereby resulting in a clinically unacceptable treatment plan. In this work, we investigated a novel CT artifact correction method based on a coregistered MRI and investigated its ability to estimate CT HU and proton range in the presence of severe CT artifacts. Methods: The proposed method corrects corrupted CT data using a coregistered MRI to guide the mapping of CT values from a nearby artifact-free region. First patient MRI and CT images were registered using 3D deformable image registration software based on B-spline and mutual information. The CT slice with severe artifacts was selected as well as a nearby slice free of artifacts (e.g. 1cm away from the artifact). The two sets of paired MRI and CT images at different slice locations were further registered by applying 2D deformable image registration. Based on the artifact free paired MRI and CT images, a comprehensive geospatial analysis was performed to predict the correct CT HU of the CT image with severe artifact. For a proof of concept, a known artifact was introduced that changed the ground truth CT HU value up to 30% and up to 5cm error in proton range. The ability of the proposed method to recover the ground truth was quantified using a selected head and neck case. Results: A significant improvement in image quality was observed visually. Our proof of concept study showed that 90% of area that had 30% errors in CT HU was corrected to 3% of its ground truth value. Furthermore, the maximum proton range error up to 5cm was reduced to 4mm error. Conclusion: MRI based CT artifact correction method can improve CT image quality and proton range calculation for patients with severe CT artifacts
Description of corrections on electrode polarization impedance using isopotential interface factor
Directory of Open Access Journals (Sweden)
John Alexander Gomez Sanchez
2012-08-01
Full Text Available In this paper, we propose an equation and define the Isopotential Interface Factor (IIF to quantify the contribution of electrode polarization impedance in two tetrapolar electrode shapes. The first tetrapolar electrode geometry shape was adjacent and the second axial concentric, both probes were made of stainless steel (AISI 304. The experiments were carried out with an impedance analyzer (Solartron 1260 using a frequency range between 0.1 Hz and 8 MHz. Based on a theoretical simplification, the experimental results show a lower value of the IIF in the axial concentric tetrapolar electrode system which caused a lower correction of interface value. The higher value of the IIF in the adjacent electrode system was KEEI (1Hz, 0.28 mS/cm = 1.41 and decreased when the frequency and conductance were increased, whereas in the axial concentric electrode system was KEEI (1Hz, 0.28 mS/cm = 0.08. The average isopotential interface factor throughout the whole range of conductivities and frequencies was 0.23 in the adjacent electrode system and 0.02 in the axial concentric electrode system. The index of inherent electrical anisotropy (IEA was used to present an analysis of electrical anisotropy of biceps brachii muscle in vitro using the corrections of both tetrapolar electrode systems. A higher IEA was present in lower frequency where the variation below 1 kHz was 15 % in adjacent electrode configuration and 26 % in the axial concentric probe with respect to full range. The IIF is then shown that it can be used to describe the quality of an electrode system.
International Nuclear Information System (INIS)
Vivanco, M.G. Bernui de; Cardenas R, A.
2006-01-01
The ocular brachytherapy many times unique alternative to conserve the visual organ in patients of ocular cancer, one comes carrying out in the National Institute of Neoplastic Illnesses (INEN) using threads of Iridium 192; those which, they are placed in radial form on the interior surface of a spherical cap of gold of 18 K; the cap remains in the eye until reaching the prescribed dose by the doctor. The main objective of this work is to be able to calculate in a correct and practical way the one time that the treatment of ocular brachytherapy should last to reach the dose prescribed by the doctor. To reach this objective I use the Sievert integral corrected by attenuation effects and scattering (Meisberg polynomials); calculating it by the Simpson method. In the calculations by means of the Sievert integral doesn't take into account the scattering produced by the gold cap neither the variation of the constant of frequency of exposure with the distance. The calculations by means of Sievert integral are compared with those obtained using the Monte Carlo Penelope simulation code, where it is observed that they agree at distances of the surface of the cap greater or equal to 2mm. (Author)
International Nuclear Information System (INIS)
Raskach, K. F.
2012-01-01
In multigroup calculations of reactivity and sensitivity coefficients, methodical errors can appear if the interdependence of multigroup constants is not taken into account. For this effect to be taken into account, so-called implicit components of the aforementioned values are introduced. A simple technique for computing these values is proposed. It is based on the use of subgroup parameters.
Connection factor calculation for isotopic neutron flux measurements with foil detectors
International Nuclear Information System (INIS)
Avila L, J.
1987-01-01
Thermal and resonance neutron self-shielding factors, neutron flux distortion and edge effects as well as a connection factor for neutron flux profile around a foil detector have been calculated. A general expression for resonance self shielding factor is presented in order to take into account the most important resonances for a given isotope. A computer program SPRESYTER.BAS was written and results for In-115 and Au-197 foils are given
Energy Technology Data Exchange (ETDEWEB)
Hess-Flores, Mauricio [Univ. of California, Davis, CA (United States)
2011-11-10
Scene reconstruction from video sequences has become a prominent computer vision research area in recent years, due to its large number of applications in fields such as security, robotics and virtual reality. Despite recent progress in this field, there are still a number of issues that manifest as incomplete, incorrect or computationally-expensive reconstructions. The engine behind achieving reconstruction is the matching of features between images, where common conditions such as occlusions, lighting changes and texture-less regions can all affect matching accuracy. Subsequent processes that rely on matching accuracy, such as camera parameter estimation, structure computation and non-linear parameter optimization, are also vulnerable to additional sources of error, such as degeneracies and mathematical instability. Detection and correction of errors, along with robustness in parameter solvers, are a must in order to achieve a very accurate final scene reconstruction. However, error detection is in general difficult due to the lack of ground-truth information about the given scene, such as the absolute position of scene points or GPS/IMU coordinates for the camera(s) viewing the scene. In this dissertation, methods are presented for the detection, factorization and correction of error sources present in all stages of a scene reconstruction pipeline from video, in the absence of ground-truth knowledge. Two main applications are discussed. The first set of algorithms derive total structural error measurements after an initial scene structure computation and factorize errors into those related to the underlying feature matching process and those related to camera parameter estimation. A brute-force local correction of inaccurate feature matches is presented, as well as an improved conditioning scheme for non-linear parameter optimization which applies weights on input parameters in proportion to estimated camera parameter errors. Another application is in
A new approximating formula for calculating gamma-ray buildup factors in multilayer shields
International Nuclear Information System (INIS)
Assad, A.; Chiron, M.; Nimal, J.C.; Diop, C.M.; Ridoux, P.
1999-01-01
This study proposes a new approximating formula for calculating gamma-ray buildup factors in multilayer shields. The formula combines the buildup factors of single-layer shields with products and quotients. The feasibility of the formula for reproducing the buildup factors was tested by using point isotropic buildup factors calculated with the SN1D discrete ordinates code as reference data. The dose buildup factors of single-, double-, and multilayer shields composed of water, aluminum, iron, and lead were calculated for a spherical geometry in the energy range between 10 MeV and 40 keV and for total thicknesses of up to 30 mean free paths. The calculation of the buildup factors takes into account the bound electron effect of Compton scattering (incoherent scattering), the coherent scattering, the pair production, and the secondary sources of bremsstrahlung and fluorescence. The tests have shown that the approximating formula reproduces the reference data of double-layer shields very well for most cases. With the same parameters and with a new physical consideration that takes into account in a global way the degradation of the gamma-ray energy spectrum, the buildup factors of three- and five-layer shields were also very well reproduced
International Nuclear Information System (INIS)
Kwan-Seong Jeong; Dong-Gyu Lee; Chong-Hun Jung; Kune-Woo Lee
2007-01-01
Available in abstract form only. Full text of publication follows: The uncertainties of decommissioning costs increase high due to several conditions. Decommissioning cost estimation depends on the complexity of nuclear installations, its site-specific physical and radiological inventories. Therefore, the decommissioning costs of nuclear research facilities must be estimated in accordance with the detailed sub-tasks and resources by the tasks of decommissioning activities. By selecting the classified activities and resources, costs are calculated by the items and then the total costs of all decommissioning activities are reshuffled to match with its usage and objectives. And the decommissioning cost of nuclear research facilities is calculated by applying a unit cost factor method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning costs of nuclear research facilities are composed of labor cost, equipment and materials cost. Of these three categorical costs, the calculation of labor costs are very important because decommissioning activities mainly depend on labor force. Labor costs in decommissioning activities are calculated on the basis of working time consumed in decommissioning objects and works. The working times are figured out of unit cost factors and work difficulty factors. Finally, labor costs are figured out by using these factors as parameters of calculation. The accuracy of decommissioning cost estimation results is much higher compared to the real decommissioning works. (authors)
DEFF Research Database (Denmark)
Patrick, Christopher; Thygesen, Kristian Sommer
2016-01-01
In non-self-consistent calculations of the total energy within the random-phase approximation (RPA) for electronic correlation, it is necessary to choose a single-particle Hamiltonian whose solutions are used to construct the electronic density and noninteracting response function. Here we...... investigate the effect of including a Hubbard-U term in this single-particle Hamiltonian, to better describe the on-site correlation of 3d electrons in the transitionmetal compounds ZnS, TiO2, and NiO.We find that the RPA lattice constants are essentially independent of U, despite large changes...... in the underlying electronic structure. We further demonstrate that the non-selfconsistent RPA total energies of these materials have minima at nonzero U. Our RPA calculations find the rutile phase of TiO2 to be more stable than anatase independent of U, a result which is consistent with experiments...
Factors affecting neutron measurements and calculations. Part F. Water content in granite
International Nuclear Information System (INIS)
Iwatani, Kazuo; Hasai, Hiromi; Shizuma, Kiyoshi; Hoshi, Masaharu; Endo, Satoru; Oka, Takamitsu; Imanaka, Tetsuji
2005-01-01
As part of the DS02 studies to reevaluate neutrons from the atomic bomb, we cored rock samples from a pillar of Motoyasu Bridge, located at a distance of 128 m from the hypocenter in Hiroshima, and measured the depth profile of induced 152 Eu radioactivity in the rock (Hasai et al. 1987). By use of the MCNP neutron transport calculation code, the depth profile of 152 Eu in the rock was calculated, assuming a neutron distribution at the given location around the pillar based on the DS86 calculations. The depth profile was then compared with the distribution of measurements (Endo et al. 1999). For the calculation, it is necessary to know the major components of the rock. It is also necessary to estimate the water content correctly, since the cross section of hydrogen-neutron reactions is large, and neutron moderation effects of hydrogen are significant. For this purpose, the basic characteristics of water content in rock were studied, based on a few characteristic experiments to estimate the water content, which was then used in neutron transport calculations. The following describes our concepts and methods. (author)
International Nuclear Information System (INIS)
Sanchez, F. A.; Blaumann, H.; Lopasso, E.; Longhino, J
2009-01-01
The maximum power of a reactor is limited by the power peaking factor. During the design stage it is calculated with neutronic calculation codes. This is not enough for ensuring its value due to modelling approximations. For the RA-6s low enrichment new core a calculus-measurement correlation method have been applied. Position and magnitude of the maximum power density estimated by calculus are used by this method. For this work 249 cooper-gold alloy (1.55% Au) wires have been distributed along the core using 19 aluminium blades. Their positions have been selected using information given by a 5 groups PUMA reactor model. Wire s activity have been measured with a HPGe detector. Gold activity have been used only for verifying the calculated core spectrum. The measured power peaking factor was 2.48±0.3 (3σ), 15% above the calculated value. About 97% of measured points had less than 20% calculation-measurement difference and about 80% had less than 10%. The power peaking factor determined by this method consolidates also the calculations models. [es
International Nuclear Information System (INIS)
Bruynooghe, Christiane; Noel, Marc
2009-01-01
This work is part of the European Clearinghouse on Nuclear Power Plant Operational Experience Feedback (NPP-OEF) activity carried out at the Joint Research Centre/Institute for Energy (JRC/IE) with the participation of nine EU Regulatory Authorities. It investigates the 1999 Shika-1 criticality event together with other shortcomings in reactivity management reported to the IAE4 Incident Reporting System in the period 1981-2008. The aim of the work was to identify reactivity control failure modes, reactor status and corrective actions. Initiating factors and associated root causes were also analysed. Five of the 7 factors identified for all events were present in the 1999 Shika-1 event where criticality has been unexpectedly reached and maintained during 15 minutes. Most of the events resulted in changes in procedures, material or staff and management training. The analysis carried out put in evidence that in several instances appropriate communication based on operational experience feedback would have prevented incident to occur. This paper also summarises the action taken at power plants and by the regulatory bodies in different countries to avoid repetition of similar events. It identifies insights that might be useful to reduce the likelihood of operational events caused by shortcomings in reactivity management. (orig.)
International Nuclear Information System (INIS)
Piermattei, A.; Azario, L.; Arcovito, G.
1996-01-01
The large range of reference air kerma rates of brachytherapy sources involves the use of large-volume ionization chambers. When such ionization chambers are used the ion-recombination correction factor k sat has to be determined. In this paper three spherical ion chambers with volume ranging from 30 to 10 4 cm 3 have been irradiated by photons of a 192 Ir source to determine the k sat factors. The ionization currents of the ion chambers as a function of the applied voltage and the air kerma rate have been analysed to determine the contribution of the initial and general ion recombination. The k sat values for large-volume ionization chambers obtained by considering the general ion recombination as predominant (Almond's approach) are in disagreement with the results obtained using methods that consider both initial and general ion-recombination contributions (Niatel's approach). Such disagreement can reach 0.7% when high currents are measured for a high-activity source calibration in terms of reference air kerma rate. In this study a new 'two-voltage' method, independent of the voltage ratio given by a dosimetry system, is proposed for practical dosimetry of continuous x-and gamma-radiation beams. In the case where the Almond approach is utilized, the voltage ratio V 1 /V 2 should be less than 2 instead of Almond's limit of V 1 /V 2 <5. (Author)
Gohel, M C; Sarvaiya, K G; Shah, A R; Brahmbhatt, B K
2009-03-01
The objective of the present work was to propose a method for calculating weight in the Moore and Flanner Equation. The percentage coefficient of variation in reference and test formulations at each time point was considered for calculating weight. The literature reported data are used to demonstrate applicability of the method. The advantages and applications of new approach are narrated. The results show a drop in the value of similarity factor as compared to the approach proposed in earlier work. The scientists who need high accuracy in calculation may use this approach.
Fatigue analysis - computation of the actual strain range using elastic calculations (factor Ke)
International Nuclear Information System (INIS)
Roche, R.L.
1987-01-01
Pressure vessels are not eternal, their life is not endless, but must be long enough for profitable use. Fatigue is the most important damage limiting life time. It is due to variable loading and especially to deformation-controlled loading like thermal dilatation (thermal stress). Hence, it is of prime importance to perform an fatigue analysis in the design phase in order to be sure the pressure vessel life meet requirement of the design specification. It is also useful to perform such an analysis for assessing the remaining life. To compute the fatigue damage, knowledge of the strain range is needed. As calculation taking into account non linear behavior of the material are very expensive and not always reliable, the current practice is using elastic computation. The aim of this paper is to discuss the methods for correcting the elastically calculated strain range and to propose a sound and practical method
Calculation method of efficiency factor in Alford's force
Energy Technology Data Exchange (ETDEWEB)
Ding, X.; Yang, Y.; Chen, W.; Huang, S.; Zheng, C. [Huazhong University of Science and Technology, Wuhan (China). College of Energy and Power Engineering
2006-07-01
The mechanism of gas excitation for wheel eccentricity and to calculate Alford's force are introduced. On the basis of the blade-and-flow parameters a new formulation is derived and validated. The calculation results are consistent with current theory and experimental conclusions. The physical meaning of the ranges of numerical values of the efficiency factor are discussed. This gets rid of the difficulty of selecting the efficiency factor in Alford's formulation and lays a theoretical foundation for the stability analysis to increases turbine rotor stability. (author)
Energy Technology Data Exchange (ETDEWEB)
Abdallah, A M; Elsherbiny, E M; Sobhy, M [Reactor departement, nuclear research centre, Inshaas, (Egypt)
1995-10-01
The P{sub n}-spatial expansion method has been used for calculating the one speed transport utilization factor in heterogenous slab cells in which neutrons may scatter anisotropically; by considering the P{sup 1-} approximation with a two-term scattering kernel in both the fuel and moderator regions, an analytical expression for the disadvantage factor has been derived. The numerical results obtained have been shown to be much better than those calculated by the usual P{sup 1-} and P{sup 3-} approximations and comparable with those obtained by some exact methods. 3 tabs.
Gusso, André; Burnham, Nancy A.
2016-09-01
It has long been recognized that stochastic surface roughness can considerably change the van der Waals (vdW) force between interacting surfaces and particles. However, few analytical expressions for the vdW force between rough surfaces have been presented in the literature. Because they have been derived using perturbative methods or the proximity force approximation the expressions are valid when the roughness correction is small and for a limited range of roughness parameters and surface separation. In this work, a nonperturbative approach, the effective density method (EDM) is proposed to circumvent some of these limitations. The method simplifies the calculations of the roughness correction based on pairwise summation (PWS), and allows us to derive simple expressions for the vdW force and energy between two semispaces covered with stochastic rough surfaces. Because the range of applicability of PWS and, therefore, of our results, are not known a priori, we compare the predictions based on the EDM with those based on the multilayer effective medium model, whose range of validity can be defined more properly and which is valid when the roughness correction is comparatively large. We conclude that the PWS can be used for roughness characterized by a correlation length of the order of its rms amplitude, when this amplitude is of the order of or smaller than a few nanometers, and only for typically insulating materials such as silicon dioxide, silicon nitride, diamond, and certain glasses, polymers and ceramics. The results are relevant for the correct modeling of systems where the vdW force can play a significant role such as micro and nanodevices, for the calculation of the tip-sample force in atomic force microscopy, and in problems involving adhesion.
The tree-alpha Faddeev calculation on 12C bound states with a Pauli correct alpha-alpha potential
International Nuclear Information System (INIS)
Kamada, Hiroyuki; Oryu, Shinsho
1986-01-01
The three-alpha model of 12 C is investigated by the Faddeev formalism with the UIM alpha-alpha potential, in which the Pauli effect between two-alpha system was taken into account adequately. The potential can reproduce the on- and off-shell effects of the alpha-alpha interaction by the rank-4 separable type for the S-wave, the rank-3 one for the D-wave, and the rank-2 one for the G-wave, in which two of the ranks in the S-wave, and one in the D-wave are prepared to eliminate the Pauli forbidden states. We obtained three even states J π = 0 + , 2 + , 4 + , and two odd states 1 - , 3 - , below the alpha- 8 Be(0 + g.s) threshold energy. The even parity states gain larger binding energies than those which have been obtained by former Faddeev calculation with the rank-1 Kukulin and Neudatchin (KN) potential. On the other hand, for the odd parity states, we obtained smaller binding energies than the former one. It is found that our Faddeev calculation with the UIM potential does not miss any important low-lying levels of 12 C, in which any spurious states do not appear. (author)
International Nuclear Information System (INIS)
Du Jincheng; Rene Corrales, L.; Tsemekhman, Kiril; Bylaska, Eric J.
2007-01-01
Density functional theory (DFT) calculations were employed to understand the refractive index change in germanium doped silica glasses for the trapped states of electronic excitations induced by UV irradiation. Local structure relaxation and excess electron density distribution were calculated upon self-trapping of an excess electron, hole, and exciton in germanium doped silica glass. The results show that both the trapped exciton and excess electron are highly localized on germanium ion and, to some extent, on its oxygen neighbors. Exciton self-trapping is found to lead to the formation of a Ge E' center and a non-bridging hole center. Electron trapping changes the GeO 4 tetrahedron structure into trigonal bi-pyramid with the majority of the excess electron density located along the equatorial line. The self-trapped hole is localized on bridging oxygen ions that are not coordinated to germanium atoms that lead to elongation of the Si-O bonds and change of the Si-O-Si bond angles. We carried out a comparative study of standard DFT versus DFT with a hybrid PBE0 exchange and correlation functional. The results show that the two methods give qualitatively similar relaxed structure and charge distribution for electron and exciton trapping in germanium doped silica glass; however, only the PBE0 functional produces the self-trapped hole
2011-03-09
... Trend Factor Methodology Used in the Calculation of Fair Market Rents AGENCY: Office of the Assistant... used to calculate the trend factor component of the Fair Market Rent estimates. SUMMARY: Section 8(c)(1... comment regarding the manner in which HUD calculates the trend factor used in the Fair Market Rent (FMR...
International Nuclear Information System (INIS)
Li Rui; Zhang Jiaxing; Hou Shimin; Qian Zekan; Shen Ziyong; Zhao Xingyu; Xue Zengquan
2007-01-01
We discuss two problems in the conventional approach for studying charge transport in molecular electronic devices that is based on the non-equilibrium Green's function formalism and density functional theory, i.e., the bound states and the numerical integration of the non-equilibrium density matrix. A scheme of filling the bound states in the bias window and a method of patching the non-equilibrium integration are proposed, both of which are referred to as the non-equilibrium correction. The discussion is illustrated by means of calculations on a model system consisting of a 4,4 bipyridine molecule connected to two semi-infinite gold monatomic chains
Method of calculating the safety factor profile on the HT-7 tokamak
International Nuclear Information System (INIS)
Zhang Xianmei; Lu Yuancheng; Wan Baonian
2001-01-01
A method of calculating the safety factor profile on the HT-7 tokamak has been described. It is derived from Maxwell's equations, among which the authors mainly use two of them: one is the magnetic field diffusion equation, and the other is Ampere's Law. This method can be also used to evaluate the safety factor on other devices with a circular cross sections. It is helpful to the study of the plasma MHD behavior on the HT-7 tokamak
Calculation Analysis of Calibration Factors of Airborne Gamma-ray Spectrometer
International Nuclear Information System (INIS)
Zhao Jun; Zhu Jinhui; Xie Honggang; He Qinglin
2009-01-01
To determine the calibration factors of an airborne gamma-ray spectrometer measuring large area gamma-ray emitting source at deferent flying height, a series of Monte Carlo simulations were drawn. Response energy spectrums of NaI crystals in airplane caused by nature-decay-series calibration-pads, and calibration factors on different heights above Cs-137 plane source, were obtained. The calculated results agreed with the experimental data well. (authors)
Monte Carlo based electron treatment planning and cutout output factor calculations
Mitrou, Ellis
Electron radiotherapy (RT) offers a number of advantages over photons. The high surface dose, combined with a rapid dose fall-off beyond the target volume presents a net increase in tumor control probability and decreases the normal tissue complication for superficial tumors. Electron treatments are normally delivered clinically without previously calculated dose distributions due to the complexity of the electron transport involved and greater error in planning accuracy. This research uses Monte Carlo (MC) methods to model clinical electron beams in order to accurately calculate electron beam dose distributions in patients as well as calculate cutout output factors, reducing the need for a clinical measurement. The present work is incorporated into a research MC calculation system: McGill Monte Carlo Treatment Planning (MMCTP) system. Measurements of PDDs, profiles and output factors in addition to 2D GAFCHROMICRTM EBT2 film measurements in heterogeneous phantoms were obtained to commission the electron beam model. The use of MC for electron TP will provide more accurate treatments and yield greater knowledge of the electron dose distribution within the patient. The calculation of output factors could invoke a clinical time saving of up to 1 hour per patient.
Calculation of dose-rate conversion factors for external exposure to photons and electrons
International Nuclear Information System (INIS)
Kocher, D.C.
1978-01-01
Methods are presented for the calculation of dose-rate conversion factors for external exposure to photon and electron radiation from radioactive decay. A dose-rate conversion factor is defined as the dose-equivalent rate per unit radionuclide concentration. Exposure modes considered are immersion in contaminated air, immersion in contaminated water, and irradiation from a contaminated ground surface. For each radiation type and exposure mode, dose-rate conversion factors are derived for tissue-equivalent material at the body surface of an exposed individual. In addition, photon dose-rate conversion factors are estimated for 22 body organs. The calculations are based on the assumption that the exposure medium is infinite in extent and that the radionuclide concentration is uniform. The dose-rate conversion factors for immersion in contaminated air and water then follow from the requirement that all of the energy emitted in the radioactive decay is absorbed in the infinite medium. Dose-rate conversion factors for ground-surface exposure are calculated at a reference location above a smooth, infinite plane using the point-kernel integration method and known specific absorbed fractions for photons and electrons in air
DEFF Research Database (Denmark)
Hinrichsen, Yvonne; Finck, Robert; Östlund, Karl
2018-01-01
building used was a standard prefabricated structure obtained from a commercial manufacturer. Four reference positions for the gamma radiation detectors were used inside the building. Theoretical dose rate calculations were performed using the Monte Carlo code MCNP6, and additional calculations were......Experimentally and theoretically determined shielding factors for a common light construction dwelling type were obtained and compared. Sources of the gamma-emitting radionuclides 60Co and 137Cs were positioned around and on top of a modular building to represent homogeneous fallout. The modular...... performed that compared the shielding factor for 137Cs and 134Cs. This work demonstrated the applicability of using MCNP6 for theoretical calculations of radioactive fallout scenarios. Furthermore, the work showed that the shielding effect for modular buildings is almost the same for 134Cs as for 137Cs....
An automated Monte-Carlo based method for the calculation of cascade summing factors
Jackson, M. J.; Britton, R.; Davies, A. V.; McLarty, J. L.; Goodwin, M.
2016-10-01
A versatile method has been developed to calculate cascade summing factors for use in quantitative gamma-spectrometry analysis procedures. The proposed method is based solely on Evaluated Nuclear Structure Data File (ENSDF) nuclear data, an X-ray energy library, and accurate efficiency characterisations for single detector counting geometries. The algorithm, which accounts for γ-γ, γ-X, γ-511 and γ-e- coincidences, can be applied to any design of gamma spectrometer and can be expanded to incorporate any number of nuclides. Efficiency characterisations can be derived from measured or mathematically modelled functions, and can accommodate both point and volumetric source types. The calculated results are shown to be consistent with an industry standard gamma-spectrometry software package. Additional benefits including calculation of cascade summing factors for all gamma and X-ray emissions, not just the major emission lines, are also highlighted.
International Nuclear Information System (INIS)
Toelli, H.; Bielajew, A. F.; Mattsson, O.; Sernbo, G.
1995-01-01
When ionization chambers are used in brachytherapy dosimetry, the measurements must be corrected for the non-uniformity of the incident photon fluence. The theory for determination of non-uniformity correction factors, developed by Kondo and Randolph (Rad. Res. 1960) assumes that the electron fluence within the air cavity is isotropic and does not take into account material differences in the chamber wall. The theory was extended by Bielajew (PMB 1990) using an anisotropic electron angular fluence in the cavity. In contrast to the theory by Kondo and Randolph, the anisotropic theory predicts a wall material dependence in the non-uniformity correction factors. This work presents experimental determination of non-uniformity correction factors at distances between 10 and 140 mm from an Ir-192 source. The experimental work makes use of a PTW23331-chamber and Farmer-type chambers (NE2571 and NE2581) with different materials in the walls. The results of the experiments agree well with the anisotropic theory. Due to the geometrical shape of the NE-type chambers, it is shown that the full length of the these chambers, 24.1mm, is not an appropriate input parameter when theoretical non-uniformity correction factors are evaluated
Wang, Shuoliang; Liu, Pengcheng; Zhao, Hui; Zhang, Yuan
2017-11-29
Micro-tube experiment has been implemented to understand the mechanisms of governing microcosmic fluid percolation and is extensively used in both fields of micro electromechanical engineering and petroleum engineering. The measured pressure difference across the microtube is not equal to the actual pressure difference across the microtube. Taking into account the additional pressure losses between the outlet of the micro tube and the outlet of the entire setup, we propose a new method for predicting the dynamic capillary pressure using the Level-set method. We first demonstrate it is a reliable method for describing microscopic flow by comparing the micro-model flow-test results against the predicted results using the Level-set method. In the proposed approach, Level-set method is applied to predict the pressure distribution along the microtube when the fluids flow along the microtube at a given flow rate; the microtube used in the calculation has the same size as the one used in the experiment. From the simulation results, the pressure difference across a curved interface (i.e., dynamic capillary pressure) can be directly obtained. We also show that dynamic capillary force should be properly evaluated in the micro-tube experiment in order to obtain the actual pressure difference across the microtube.
Schowalter, M; Müller, K; Rosenauer, A
2012-01-01
Modified atomic scattering amplitudes (MASAs), taking into account the redistribution of charge due to bonds, and the respective correction factors considering the effect of static atomic displacements were computed for the chemically sensitive 002 reflection for ternary III-V and II-VI semiconductors. MASAs were derived from computations within the density functional theory formalism. Binary eight-atom unit cells were strained according to each strain state s (thin, intermediate, thick and fully relaxed electron microscopic specimen) and each concentration (x = 0, …, 1 in 0.01 steps), where the lattice parameters for composition x in strain state s were calculated using continuum elasticity theory. The concentration dependence was derived by computing MASAs for each of these binary cells. Correction factors for static atomic displacements were computed from relaxed atom positions by generating 50 × 50 × 50 supercells using the lattice parameter of the eight-atom unit cells. Atoms were randomly distributed according to the required composition. Polynomials were fitted to the composition dependence of the MASAs and the correction factors for the different strain states. Fit parameters are given in the paper.
Directory of Open Access Journals (Sweden)
Kee-yong Ha
2013-01-01
Full Text Available Background: Degenerative lumbar scoliosis surgery can lead to development of adjacent segment degeneration (ASD after lumbar or thoracolumbar fusion. Its incidence, risk factors, morbidity and correlation between radiological and clinical symptoms of ASD have no consensus. We evaluated the correlation between the occurrence of radiologic adjacent segment disease and certain imperative parameters. Materials and Methods: 98 patients who had undergone surgical correction and lumbar/thoracolumbar fusion with pedicle screw instrumentation for degenerative lumbar scoliosis with a minimum 5 year followup were included in the study. We evaluated the correlation between the occurrence of radiologic adjacent segment disease and imperative patient parameters like age at operation, sex, body mass index (BMI, medical comorbidities and bone mineral density (BMD. The radiological parameters taken into consideration were Cobb′s angle, angle type, lumbar lordosis, pelvic incidence, intercristal line, preoperative existence of an ASD on plain radiograph and magnetic resonance imaging (MRI and surgical parameters were number of the fusion level, decompression level, floating OP (interlumbar fusion excluding L5-S1 level and posterolateral lumbar interbody fusion (PLIF. Clinical outcomes were assessed with the Visual Analogue Score (VAS and Oswestry Disability Index (ODI. Results: ASD was present in 44 (44.9% patients at an average period of 48.0 months (range 6-98 months. Factors related to occurrence of ASD were preoperative existence of disc degeneration (as revealed by MRI and age at operation ( P = 0.0001, 0.0364. There were no statistically significant differences between radiological adjacent segment degeneration and clinical results (VAS, P = 0.446; ODI, P = 0.531. Conclusions: Patients over the age of 65 years and with preoperative disc degeneration (as revealed by plain radiograph and MRI were at a higher risk of developing ASD.
Kajbafzadeh, Abdol-Mohammad; Tourchi, Ali; Aryan, Zahra
2013-02-01
To identify independent factors that may predict vesicoureteral reflux (VUR) resolution after endoscopic treatment using dextranomer/hyaluronic acid copolymer (Deflux) in children free of anatomical anomalies. A retrospective study was conducted in our pediatric referral center from 1998 to 2011 on children with primary VUR who underwent endoscopic injection of Deflux with or without concomitant autologous blood injection (called HABIT or HIT, respectively). Children with secondary VUR or incomplete records were excluded from the study. Potential factors were divided into three categories including preoperative, intraoperative and postoperative. Success was defined as no sign of VUR on postoperative voiding cystourethrogram. Univariate and multivariate logistic regression models were constructed to identify independent factors that may predict success. Odds ratio (OR) and 95 % confidence interval (95 % CI) for prediction of success were estimated for each factor. From 485 children received Deflux injection, a total of 372 with a mean age of 3.10 years (ranged from 6 months to 12 years) were included in the study and endoscopic management was successful in 322 (86.6 %) of them. Of the patients, 185 (49.7 %) underwent HIT and 187 (50.3 %) underwent HABIT technique. On univariate analysis, VUR grade from preoperative category (OR = 4.79, 95 % CI = 2.22-10.30, p = 0.000), operation technique (OR = 0.33, 95 % CI = 0.17-0.64, p = 0.001) and presence of mound on postoperative sonography (OR = 0.06, 95 % CI = 0.02-0.16, p = 0.000) were associated with success. On multivariate analysis, preoperative VUR grade (OR = 4.85, 95 % CI = 2.49-8.96, p = 0.000) and identification of mound on postoperative sonography (OR = 0.07, 95 % CI = 0.01-0.18, p = 0.000) remained as independent success predictors. Based on this study, successful VUR correction after the endoscopic injection of Deflux can be predicted with respect to preoperative VUR grade and presence of mound after operation.
Meulemans, O.
A new method of calculating the percentages of serum protein is discussed. This method has a smaller distribution curve than the factor that is generally used for the correction of the extinction of the albumin fraction obtained with the elution method. The magnitude of the new factor is 1.22 ±
International Nuclear Information System (INIS)
Chen, Qianghua; Zhang, Mengce; Liu, Shuaijie; He, Yongxi; Luo, Huifu; Luo, Jun; Lv, Weiwei
2016-01-01
At present the formulae proposed by G Boensch and E Potulski in 1998 (Boensch and Potulski 1998 Metrologia 35 133–9) are mostly used to calculate the air refractive index. However, the humidity correction equation in the formulae is derived by using the light source of a Cd lamp whose light frequency stability is poor and at a narrow temperature range, around 20 °C. So it is no longer suitable in present optical precision measurements. To solve this problem, we propose a refractive index measurement system based on phase step interferometer with three frequency stabilized lasers (532 nm, 633 nm, 780 nm), corrected coefficients of the humidity are measured and a corresponding revised humidity correction equation is acquired. Meanwhile, the application temperature range is extended from 14.6 °C to 25.0 °C. The experiment comparison results at the temperature of 22.2–23.2 °C show the accuracy by the presented equation is better than that of Boensch and Potulski. (paper)
Quality factor calculations for neutron spectra below 4 MeV
International Nuclear Information System (INIS)
Borak, T.B.; Stinchcomb, T.G.
1979-01-01
A method is described for computing the distribution of absorbed dose, D(L), as a function of linear energy transfer, L, for any neutron spectrum with energies below 4 MeV. The results are used to determine the average quality factor for two distinctly different neutron spectra using the ICRP recommended values of the quality factor, Q(L). A comparison is made between the calculations and measurements of D(L) using a spherical tissue equivalent proportional counter. Heavy ion recoil contributions to the average quality factor are examined in detail. (author)
International Nuclear Information System (INIS)
Marchand, D.
1998-11-01
This thesis presents the radiative corrections to the virtual compton scattering and the magnetic method adopted in the Hall A at Jefferson Laboratory, to measure the electrons beam energy with an accuracy of 10 4 . The virtual compton scattering experiments allow the access to the generalised polarizabilities of the protons. The extraction of these polarizabilities is obtained by the experimental and theoretical cross sections comparison. That's why the systematic errors and the radiative effects of the experiments have to be controlled very seriously. In this scope, a whole calculation of the internal radiative corrections has been realised in the framework of the quantum electrodynamic. The method of the dimensional regularisation has been used to the treatment of the ultraviolet and infra-red divergences. The absolute measure method of the energy, takes into account the magnetic deviation, made up of eight identical dipoles. The energy is determined from the deviation angle calculation of the beam and the measure of the magnetic field integral along the deviation
Kruse, Holger; Grimme, Stefan
2012-04-21
A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model
Kruse, Holger; Grimme, Stefan
2012-04-01
A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model
Calculation of neutron fluence-to-dose conversion factors for extremities
International Nuclear Information System (INIS)
Stewart, R.D.; Harty, R.; McDonald, J.C.; Tanner, J.E.
1993-04-01
The Pacific Northwest Laboratory is developing a standard for the performance testing of personnel extremity dosimeters for the US Department of Energy. Part of this effort requires the calculation of neutron fluence-to-dose conversion factors for finger and wrist extremities. This study focuses on conversion factors for two types of extremity models: namely the polymethyl methacrylate (PMMA) phantom (as specified in the draft standard for performance testing of extremity dosimeters) and more realistic extremity models composed of tissue-and-bone. Calculations for each type of model are based on both bare and D 2 O-moderated 252 Cf sources. The results are then tabulated and compared with whole-body conversion factors. More appropriate energy-averaged quality factors for the extremity models have also been computed from the neutron fluence in 50 equally spaced energy bins with energies from 2.53 x 10 -8 to 15 MeV. Tabulated results show that conversion factors for both types of extremity phantom are 15 to 30% lower than the corresponcung whole-body phantom conversion factors for 252 Cf neutron sources. This difference in extremity and whole-body conversion factors is attributable to the proportionally smaller amount of back-scattering that occurs in the extremity phantoms compared with whole-body phantoms
Huang, David; Tang, Maolong; Wang, Li; Zhang, Xinbo; Armour, Rebecca L.; Gattey, Devin M.; Lombardi, Lorinna H.; Koch, Douglas D.
2013-01-01
Purpose: To use optical coherence tomography (OCT) to measure corneal power and improve the selection of intraocular lens (IOL) power in cataract surgeries after laser vision correction. Methods: Patients with previous myopic laser vision corrections were enrolled in this prospective study from two eye centers. Corneal thickness and power were measured by Fourier-domain OCT. Axial length, anterior chamber depth, and automated keratometry were measured by a partial coherence interferometer. An OCT-based IOL formula was developed. The mean absolute error of the OCT-based formula in predicting postoperative refraction was compared to two regression-based IOL formulae for eyes with previous laser vision correction. Results: Forty-six eyes of 46 patients all had uncomplicated cataract surgery with monofocal IOL implantation. The mean arithmetic prediction error of postoperative refraction was 0.05 ± 0.65 diopter (D) for the OCT formula, 0.14 ± 0.83 D for the Haigis-L formula, and 0.24 ± 0.82 D for the no-history Shammas-PL formula. The mean absolute error was 0.50 D for OCT compared to a mean absolute error of 0.67 D for Haigis-L and 0.67 D for Shammas-PL. The adjusted mean absolute error (average prediction error removed) was 0.49 D for OCT, 0.65 D for Haigis-L (P=.031), and 0.62 D for Shammas-PL (P=.044). For OCT, 61% of the eyes were within 0.5 D of prediction error, whereas 46% were within 0.5 D for both Haigis-L and Shammas-PL (P=.034). Conclusions: The predictive accuracy of OCT-based IOL power calculation was better than Haigis-L and Shammas-PL formulas in eyes after laser vision correction. PMID:24167323
An automated Monte-Carlo based method for the calculation of cascade summing factors
Energy Technology Data Exchange (ETDEWEB)
Jackson, M.J., E-mail: mark.j.jackson@awe.co.uk; Britton, R.; Davies, A.V.; McLarty, J.L.; Goodwin, M.
2016-10-21
A versatile method has been developed to calculate cascade summing factors for use in quantitative gamma-spectrometry analysis procedures. The proposed method is based solely on Evaluated Nuclear Structure Data File (ENSDF) nuclear data, an X-ray energy library, and accurate efficiency characterisations for single detector counting geometries. The algorithm, which accounts for γ–γ, γ–X, γ–511 and γ–e{sup −} coincidences, can be applied to any design of gamma spectrometer and can be expanded to incorporate any number of nuclides. Efficiency characterisations can be derived from measured or mathematically modelled functions, and can accommodate both point and volumetric source types. The calculated results are shown to be consistent with an industry standard gamma-spectrometry software package. Additional benefits including calculation of cascade summing factors for all gamma and X-ray emissions, not just the major emission lines, are also highlighted. - Highlights: • Versatile method to calculate coincidence summing factors for gamma-spectrometry analysis. • Based solely on ENSDF format nuclear data and detector efficiency characterisations. • Enables generation of a CSF library for any detector, geometry and radionuclide. • Improves measurement accuracy and reduces acquisition times required to meet MDA.
International Nuclear Information System (INIS)
Laitano, R.F.; Toni, M.P.; Pimpinella, M.; Bovi, M.
2002-01-01
The factor K wall to correct for photon attenuation and scatter in the wall of ionization chambers for 60 Co air-kerma measurement has been traditionally determined by a procedure based on a linear extrapolation of the chamber current to zero wall thickness. Monte Carlo calculations by Rogers and Bielajew (1990 Phys. Med. Biol. 35 1065-78) provided evidence, mostly for chambers of cylindrical and spherical geometry, of appreciable deviations between the calculated values of K wall and those obtained by the traditional extrapolation procedure. In the present work an experimental method other than the traditional extrapolation procedure was used to determine the K wall factor. In this method the dependence of the ionization current in a cylindrical chamber was analysed as a function of an effective wall thickness in place of the physical (radial) wall thickness traditionally considered in this type of measurement. To this end the chamber wall was ideally divided into distinct regions and for each region an effective thickness to which the chamber current correlates was determined. A Monte Carlo calculation of attenuation and scatter effects in the different regions of the chamber wall was also made to compare calculation to measurement results. The K wall values experimentally determined in this work agree within 0.2% with the Monte Carlo calculation. The agreement between these independent methods and the appreciable deviation (up to about 1%) between the results of both these methods and those obtained by the traditional extrapolation procedure support the conclusion that the two independent methods providing comparable results are correct and the traditional extrapolation procedure is likely to be wrong. The numerical results of the present study refer to a cylindrical cavity chamber like that adopted as the Italian national air-kerma standard at INMRI-ENEA (Italy). The method used in this study applies, however, to any other chamber of the same type. (author)
A comment on the calculation of the total-factor energy efficiency (TFEE) index
International Nuclear Information System (INIS)
Chang, Ming-Chung
2013-01-01
This study provides a no-output growth model to conveniently calculate the total-factor energy efficiency (TFEE) index originally proposed by Hu and Wang (2006). The TFEE index serves as a very well-known and popular means of estimating overall energy efficiency. While many previous studies have used the indicator of energy inefficiency, including the indicator of energy intensity (i.e., Energy input/Gross Domestic Product (GDP)) to measure energy efficiency, Hu and Kao (2007) point out that the indicator of energy intensity is not only a partial-factor energy efficiency indicator, but that this partial-factor ratio is also quite inappropriate for analyzing the impact of changing energy use over time. The TFEE index overcomes the disadvantage of the indicator of energy intensity as mentioned above, but five steps are needed to calculate the TFEE score. In this study, we provide a no-output growth model to conveniently calculate the TFEE score. Furthermore, we extend this no-output growth model to an output growth model. This study concludes that the output growth model not only makes it easier to calculate the TFEE index than the model proposed by Hu and Wang (2006) and Hu and Kao (2007), but that it can also obtain better TFEE scores. - Highlights: ► The comment is on the total-factor energy efficiency (TFEE) index. ► Two extension models are no-output growth model and output growth model. ► The model in this study makes it easier to calculate the TFEE index.
CWF and TABLE - Two Fortran programmes for the calculation of Coulomb penetration and shift factors
International Nuclear Information System (INIS)
Norton, D.S.; James, M.F.
1965-12-01
CWF and TABLE are Fortran programmes, written for the IBM 7090 and English-Electric Leo Marconi KDF9 computers, that calculate the penetration and shift factors for a charged particle in a Coulomb field. The numerical methods used are those of Lutz and Karvelis. The two programmes are very similar. Input to TABLE is in the form of the centre-of-mass co-ordinates. CWF is intended for use in calculating cross-sections for neutron-induced reactions which result in charged particle emission, and the input is in the form of the neutron energy in the laboratory frame of reference, together with other necessary reaction data. (author)
Regional-scale calculation of the LS factor using parallel processing
Liu, Kai; Tang, Guoan; Jiang, Ling; Zhu, A.-Xing; Yang, Jianyi; Song, Xiaodong
2015-05-01
With the increase of data resolution and the increasing application of USLE over large areas, the existing serial implementation of algorithms for computing the LS factor is becoming a bottleneck. In this paper, a parallel processing model based on message passing interface (MPI) is presented for the calculation of the LS factor, so that massive datasets at a regional scale can be processed efficiently. The parallel model contains algorithms for calculating flow direction, flow accumulation, drainage network, slope, slope length and the LS factor. According to the existence of data dependence, the algorithms are divided into local algorithms and global algorithms. Parallel strategy are designed according to the algorithm characters including the decomposition method for maintaining the integrity of the results, optimized workflow for reducing the time taken for exporting the unnecessary intermediate data and a buffer-communication-computation strategy for improving the communication efficiency. Experiments on a multi-node system show that the proposed parallel model allows efficient calculation of the LS factor at a regional scale with a massive dataset.
Directory of Open Access Journals (Sweden)
Hengki Simanjuntak
2018-03-01
Full Text Available Erosion is a crucial information for sustainable management of land resources within a particular watershed. The information of erosion is needed for land resource management planning, and is generally counted by USLE (Universal Soil Loss Equation. One of the parameters in USLE is topographic factor (LS. The determinations of LS in erosion estimation model are vary, both in terms of LS factor equation, as well as in terms of the length of the slope (λ and slope (s measurements. There are at least 3 methods used to calculate slope factors in spatial operation, i.e (1 Input of the LS Value from Table (INT, (2 Flow accumulation, and (3 Cell Size. The study was designed to obtain a method of calculation that gives the smallest topographic factor and in order to obtain a LS factors that similar to the slope information. Research location in Kampa Sub watershed, The LS determination in Kampa Sub watershed basically are with (INT and without calculating λ and s. INT method is determination without calculating λ and s, LS value is generate from the contour map and DEM SRTM by giving LS value from table reference of LS value. The Flow Accumulation and Cell Size are determination of LS Value by calculating λ and s. The Flow Accumulation method modifies the determination of λ and s using the middle value of s, λ per land use, and λ and s per cell. Cell Size method determines λ using the amount of cell size. The results showed that the “cell size” and "INT" methods were the best method for topographic factor (LS calculation, because LS value of “cell size” and "INT" methods are smaller than the flow accumulation method and the LS value similar to the slope information. LS value from that methods generated weighted value in average of 0,55−0,58. Keywords: cell size, flow accumulation, flow direction, the length of the slope, USLE
Fradi, Aniss
The ability to allocate the active power (MW) loading on transmission lines and transformers, is the basis of the "flow based" transmission allocation system developed by the North American Electric Reliability Council. In such a system, the active power flows must be allocated to each line or transformer in proportion to the active power being transmitted by each transaction imposed on the system. Currently, this is accomplished through the use of the linear Power Transfer Distribution Factors (PTDFs). Unfortunately, no linear allocation models exist for other energy transmission quantities, such as MW and MVAR losses, MVAR and MVA flows, etc. Early allocation schemes were developed to allocate MW losses due to transactions to branches in a transmission system, however they exhibited diminished accuracy, since most of them are based on linear power flow modeling of the transmission system. This thesis presents a new methodology to calculate Energy Transaction Allocation factors (ETA factors, or eta factors), using the well-known process of integration of a first derivative function, as well as consistent and well-established mathematical and AC power flow models. The factors give a highly accurate allocation of any non-linear system quantity to transactions placed on the transmission system. The thesis also extends the new ETA factors calculation procedure to restructure a new economic dispatch scheme where multiple sets of generators are economically dispatched to meet their corresponding load and their share of the losses.
Internal dose conversion factors for calculation of dose to the public
International Nuclear Information System (INIS)
1988-07-01
This publication contains 50-year committed dose equivalent factors, in tabular form. The document is intended to be used as the primary reference by the US Department of Energy (DOE) and its contractors for calculating radiation dose equivalents for members of the public, resulting from ingestion or inhalation of radioactive materials. Its application is intended specifically for such materials released to the environment during routine DOE operations, except in those instances where compliance with 40 CFR 61 (National Emission Standards for Hazardous Air Pollutants) requires otherwise. However, the calculated values may be equally applicable to unusual releases or to occupational exposures. The use of these committed dose equivalent tables should ensure that doses to members of the public from internal exposures are calculated in a consistent manner at all DOE facilities
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov; Friis-Hansen, Peter; Berggreen, Christian
2013-01-01
by the composite failure criteria. Each failure mode has been considered in a separate component reliability analysis, followed by a system analysis which gives the total probability of failure of the structure. The Model Correction Factor method used in connection with FORM (First-Order Reliability Method) proved...
Analytical Design of Passive LCL Filter for Three-phase Two-level Power Factor Correction Rectifiers
DEFF Research Database (Denmark)
Kouchaki, Alireza; Nymand, Morten
2017-01-01
This paper proposes a comprehensive analytical LCL filter design method for three-phase two-level power factor correction rectifiers (PFCs). The high frequency converter current ripple generates the high frequency current harmonics that need to be attenuated with respect to the grid standards...
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Friis-Hansen, P.; Nielsen, J.S.
2006-01-01
failure/collapse of jacket type platforms with wave in deck loads using the so-called Model Correction Factor Method (MCFM). A simple representative model for the RSR measure is developed and used in the MCFM technique. A realistic example is evaluated and it is seen that it is possible to perform...
DEFF Research Database (Denmark)
Palmans, Hugo; Al-Sulaiti, L; Andreo, P
2013-01-01
, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose...
International Nuclear Information System (INIS)
Bourva, L.C.A.; Croft, S.
1999-01-01
The general purpose neutron-photon-electron Monte Carlo N-Particle code, MCNP TM , has been used to simulate the neutronic characteristics of the on-site laboratory passive neutron coincidence counter to be installed, under Euratom Safeguards Directorate supervision, at the Sellafield reprocessing plant in Cumbria, UK. This detector is part of a series of nondestructive assay instruments to be installed for the accurate determination of the plutonium content of nuclear materials. The present work focuses on one aspect of this task, namely, the accurate calculation of the coincidence gate utilisation factor. This parameter is an important term in the interpretative model used to analyse the passive neutron coincidence count data acquired using pulse train deconvolution electronics based on the shift register technique. It accounts for the limited proportion of neutrons detected within the time interval for which the electronics gate is open. The Monte Carlo code MCF, presented in this work, represents a new evaluation technique for the estimation of gate utilisation factors. It uses the die-away profile of a neutron coincidence chamber generated either by MCNP TM , or by other means, to simulate the neutron detection arrival time pattern originating from independent spontaneous fission events. A shift register simulation algorithm, embedded in the MCF code, then calculates the coincidence counts scored within the electronics gate. The gate utilisation factor is then deduced by dividing the coincidence counts obtained with that obtained in the same Monte Carlo run, but for an ideal detection system with a coincidence gate utilisation factor equal to unity. The MCF code has been benchmarked against analytical results calculated for both single and double exponential die-away profiles. These results are presented along with the development of the closed form algebraic expressions for the two cases. Results of this validity check showed very good agreement. On this
International Nuclear Information System (INIS)
Pena, J; Sanchez-Doblado, F; Capote, R; Terron, J A; Gomez, F
2006-01-01
Reference dosimetry of photon fields is a well-established subject and currently available protocols (such as the IAEA TRS-398 and AAPM TG-51) provide methods for converting the ionization chamber (IC) reading into dose to water, provided reference conditions of charged particle equilibrium (CPE) are fulfilled. But these protocols cannot deal with the build-up region, where the lack of CPE limits the applicability of the cavity theorems and so the chamber correction factors become depth dependent. By explicitly including the IC geometry in the Monte Carlo simulations, depth-dependent dose correction factors are calculated for a PTW 30001 0.6 cm 3 ion chamber in the build-up region of the 6 MV photon beam. The corrected percentage depth dose (PDD) agrees within 2% with that measured using the NACP 02 plane-parallel ion chamber in the build-up region at depths greater than 0.4 cm, where the Farmer chamber wall reaches the phantom surface
High-precision calculation of the strange nucleon electromagnetic form factors
Energy Technology Data Exchange (ETDEWEB)
Green, Jeremy [Johannes Gutenberg Univ., Mainz (Germany); Meinel, Stefan [Univ. of Arizona, Tucson, AZ (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Engelhardt, Michael G. [New Mexico State Univ., Las Cruces, NM (United States); Krieg, Stefan [Bergische Univ., Wuppertal (Germany); Julich Supercomputing Centre, Julich (Germany); Laeuchli, Jesse [College of William and Mary, Williamsburg, VA (United States); Negele, John W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pochinsky, Andrew [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Syritsyn, Sergey [Brookhaven National Lab. (BNL), Upton, NY (United States)
2015-08-26
We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors G^{s}_{E} and G^{s}_{M} in the kinematic range 0 ≤ Q^{2} ≤ 1.2GeV^{2}. For the first time, both G^{s}_{E} and G^{s}_{M} are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. As a result, we compare our results to parity-violating electron-proton scattering data and to other theoretical studies.
Calculation of the power factor using the neutron diffusion hybrid equation
International Nuclear Information System (INIS)
Costa da Silva, Adilson; Carvalho da Silva, Fernando; Senra Martinez, Aquilino
2013-01-01
Highlights: ► A neutron diffusion hybrid equation with an external neutron source was used. ► Nodal expansion method to obtain the neutron flux was used. ► Nuclear power factors in each fuel element in the reactor core were calculated. ► The results obtained were very accurate. -- Abstract: In this paper, we used a neutron diffusion hybrid equation with an external neutron source to calculate nuclear power factors in each fuel element in the reactor core. We used the nodal expansion method to obtain the neutron flux for a given control rods bank position. The results were compared with results obtained for eigenvalue problem near criticality condition and fixed source problem during the start-up of the reactor, where external neutron sources are extremely important for the stabilization of external neutron detectors.
Improvements on the calculation of the epithermal disadvantage factor for thermal nuclear reactors
Energy Technology Data Exchange (ETDEWEB)
Aboustta, Mohamed A.; Martinez, Aquilino S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia
1997-12-01
The disadvantage factor takes into account the neutron flux variation through the fuel cell. In the fuel the flux is depressed in relation to its level in the moderator region. In order to avoid detailed calculations for each different set of cell dimensions, which turns out necessary the development of problem-dependent neutron cross section libraries, a disadvantage factor based on a two-region equivalence theory was proposed for the EPRI-CELL code. However, it uses a rational approximation to the neutron escape probability to describe the neutron transport between cell regions. Such approximation allows the use of the equivalence principals but introduces a non negligible error which results in an underestimation of the cell neutron fluxes. A new proposed treatment, that will be presented in this work, remarkably improves the numerical calculation and reduces the error of the above mentioned method. (author). 4 refs., 2 figs.
Improvements on the calculation of the epithermal disadvantage factor for thermal nuclear reactors
International Nuclear Information System (INIS)
Aboustta, Mohamed A.; Martinez, Aquilino S.
1997-01-01
The disadvantage factor takes into account the neutron flux variation through the fuel cell. In the fuel the flux is depressed in relation to its level in the moderator region. In order to avoid detailed calculations for each different set of cell dimensions, which turns out necessary the development of problem-dependent neutron cross section libraries, a disadvantage factor based on a two-region equivalence theory was proposed for the EPRI-CELL code. However, it uses a rational approximation to the neutron escape probability to describe the neutron transport between cell regions. Such approximation allows the use of the equivalence principals but introduces a non negligible error which results in an underestimation of the cell neutron fluxes. A new proposed treatment, that will be presented in this work, remarkably improves the numerical calculation and reduces the error of the above mentioned method. (author). 4 refs., 2 figs
Calculation of point isotropic buildup factors of gamma rays for water and lead
Directory of Open Access Journals (Sweden)
A. S. H.
2001-12-01
Full Text Available Exposure buildup factors for water and lead have been calculated by the Monte-Carlo method for an isotropic point source in an infinite homogeneous medium, using the latest cross secions available on the Internet. The types of interactions considered are ,photoelectric effect, incoherent (or bound-electron Compton. Scattering, coherent (or Rayleigh scattering and pair production. Fluorescence radiations have also been taken into acount for lead. For each material, calculations were made at 10 gamma ray energies in the 40 keV to 10 MeV range and up to penetration depths of 10 mean free paths at each energy point. The results presented in this paper can be considered as modified gamma ray exposure buildup factors and be used in radiation shielding designs.
International Nuclear Information System (INIS)
Li, Y.; Krieger, J.B.; Norman, M.R.; Iafrate, G.J.
1991-01-01
The optimized-effective-potential (OEP) method and a method developed recently by Krieger, Li, and Iafrate (KLI) are applied to the band-structure calculations of noble-gas and alkali halide solids employing the self-interaction-corrected (SIC) local-spin-density (LSD) approximation for the exchange-correlation energy functional. The resulting band gaps from both calculations are found to be in fair agreement with the experimental values. The discrepancies are typically within a few percent with results that are nearly the same as those of previously published orbital-dependent multipotential SIC calculations, whereas the LSD results underestimate the band gaps by as much as 40%. As in the LSD---and it is believed to be the case even for the exact Kohn-Sham potential---both the OEP and KLI predict valence-band widths which are narrower than those of experiment. In all cases, the KLI method yields essentially the same results as the OEP
Tavano, Olga Luisa; Neves, Valdir Augusto; da Silva Júnior, Sinézio Inácio
2016-11-01
Seven different in vitro methods to determine the protein digestibility for chickpea proteins were considered and also the application of these methodologies for calculating PDCAAS (protein digestibility-corrected amino acid score), seeking their correlations with the in vivo methodology. In vitro digestibility of raw and heated samples were determined using pepsin-pancreatin hydrolysis, considering soluble nitrogen via Kjeldahl (ppKJ) and hydrolysed peptide linkages using trinitrobenzenesulfonic acid and o-phthaldialdehyde. In vitro digestibility was also determined using trypsin, chymotrypsin and peptidase (3-Enz) or trypsin, chymotrypsin, peptidase and pronase solution (4-Enz). None of the correlations between in vitro and in vivo digestibilities were significant (at p<0.0500), but, strong correlations were observed between PDCAAS calculated by in vitro and in vivo results. PDCAAS-ppKJ, PDCAAS-3-Enz and PDCAAS-4-Enz presented the highest correlations with in vivo method, r=0.9316, 0.9442 and 0.9649 (p<0.0500), respectively. The use of in vitro methods for calculating PDCAAS may be promising and deserves more discussions. Copyright © 2016 Elsevier Ltd. All rights reserved.
EPP Energy Efficiency Calculation and Influencing Factor Analysis: Cases in China
Directory of Open Access Journals (Sweden)
Jingmin Wang
2015-01-01
Full Text Available Efficiency power plant (EPP promotes the use of energy efficiency power plant technology and energy efficient equipment, coupled with its low-input, zero pollution, zero emissions, and other advantages, having an important role in the control of energy consumption and energy saving. In order to carry out scientific EPP investment decisions, the level of energy efficiency is an important basis for investment decisions. This paper introduces total factor energy efficiency (TFEE in energy efficiency calculation of EPP, constructs energy efficiency calculation model considering environmental benefits, and takes the micro and macro cases in China for analysis; the results show that the TFEE of both single energy efficiency project and EPP are at a relatively high level (above 0.7, and there is a huge gap between calculation results considering and without considering the environmental benefit. In order to discuss energy efficiency influencing factors, the paper analyzes generalized technological advances variation feature of China typical provinces implementing EPP based on generalized technological advances decomposition model by Malmquist index, finding that the steady growth of M index in these provinces is derived from the management level of implementation of EPP and the large-scale production capacity of formation and management. We hope the models and conclusions could provide some references on EPP energy efficiency calculation and decision.
External dose-rate conversion factors for calculation of dose to the public
Energy Technology Data Exchange (ETDEWEB)
1988-07-01
This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.
International Nuclear Information System (INIS)
Gnyp, I.P.; Ganulich, B.K.; Pokhmurskij, V.I.
1982-01-01
Reliable methods of estimation of cracking resistance of low-strength plastic materials using the notched samples acceptable for laboratory tests are analysed. Experimental data on the fracture of round notched samples for a number of steels are given. A perfect comparability of calculational and experimental data confirms the legitimacy of the proposed scheme of estimation of the scale factor effect. The necessity of taking into account the strain hardening coefficient at the choice of a sample size for determining the stress intensity factor is pointed out
Q resolution calculation of small angle neutron scattering spectrometer and analysis of form factor
International Nuclear Information System (INIS)
Chen Liang; Peng Mei; Wang Yan; Sun Liangwei; Chen Bo
2011-01-01
The calculational methods of Small Angle Neutron Scattering (SANS) spectrometer Q resolution function and its correlative Q standard difference were introduced. The effects of Q standard difference were analysed with the geometry lay out of spectrometer and the spread of neutron wavelength. The one dimension Q resolution Gaussian function were analysed. The form factor curve of ideal solid sphere and two different instrument arrangement parameter was convoluted respectively and the different smearing curve of form factor was obtained. The combination of using the Q resolution function to more accurately analysis SANS data. (authors)
Shivakumar, K. N.; Tan, P. W.; Newman, J. C., Jr.
1988-01-01
A three-dimensional virtual crack-closure technique is presented which calculates the strain energy release rates and the stress intensity factors using only nodal forces and displacements from a standard finite element analysis. The technique is an extension of the Rybicki-Kanninen (1977) method, and it assumes that any continuous function can be approximated by a finite number of straight line segments. Results obtained by the method for surface cracked plates with and without notches agree favorably with previous results.
International Nuclear Information System (INIS)
Sasaki, Satoshi.
1984-01-01
Anomalous scattering factors f' and f'' have been calculated for the atoms Li through Bi, plus U, using the relativistic treatment described by Cromer and Liberman (1970, 1981). The tables presented in this paper include values (i) in the wavelength range from 0.1 to 2.89 A in 0.01 A intervals and (ii) in the neighborhood of the K,L 1 ,L 2 , and L 3 absorption edges in 0.0001 A intervals. (author)
INTER, ENDF/B Thermal Cross-Sections, Resonance Integrals, G-Factors Calculation
International Nuclear Information System (INIS)
Dunford, Charles L.
2007-01-01
1 - Description of program or function: INTER calculates thermal cross sections, g-factors, resonance integrals, fission spectrum averaged cross sections and 14.0 MeV (or other energy) cross sections for major reactions in an ENDF-6 or ENDF-5 format data file. Version 7.01 (Jan 2005): set success flag after return from beginning. 2 - Method of solution: INTER performs integrations by using the trapezoidal rule
International Nuclear Information System (INIS)
Spiers, F.W.; Whitwell, J.R.; Beddoe, A.H.
1978-01-01
The method of calculating dose factors for the haemopoietic marrow and endosteal tissues in human trabecular bone, used by Whitwell and Spiers for volume-seeking radionuclides, has been developed for the case of radionuclides which are deposited as very thin layers on bone surfaces. The Monte Carlo method is again used, but modifications to the computer program are made to allow for a surface rather than a volume source of particle emission. The principal change is the introduction of a surface-orientation factor which is shown to have a value of approximately 2, varying slightly with bone structure. Results are given for β-emitting radionuclides ranging from 171 Tm(anti Esub(β) = 0.025 MeV) to 90 Y(anti Esub(β) = 0.93 MeV), and also for the α-emitter 239 Pu. It is shown that where the particle ranges are short compared with the dimensions of the bone structures the dose factors for the surface seekers are much greater than those for the volume seekers. For long range particles the dose factors for surface- and volume-seeking radionuclides converge. Comparisons are given relating the dose factors calculated in this paper on the basis of measured bone structures to those of other workers based on single plane geometry. (author)
Ab Initio Calculation of XAFS Debye-Waller Factors for Crystalline Materials
Dimakis, Nicholas
2007-02-01
A direct an accurate technique for calculating the thermal X-ray absorption fine structure (XAFS) Debye-Waller factors (DWF) for materials of crystalline structure is presented. Using the Density Functional Theory (DFT) under the hybrid X3LYP functional, a library of MnO spin—optimized clusters are built and their phonon spectrum properties are calculated; these properties in the form of normal mode eigenfrequencies and eigenvectors are in turn used for calculation of the single and multiple scattering XAFS DWF. DWF obtained via this technique are temperature dependent expressions and can be used to substantially reduce the number of fitting parameters when experimental spectra are fitted with a hypothetical structure without any ad hoc assumptions. Due to the high computational demand a hybrid approach of mixing the DFT calculated DWF with the correlated Debye model for inner and outer shells respectively is presented. DFT obtained DWFs are compared with corresponding values from experimental XAFS spectra on manganosite. The cluster size effect and the spin parameter on the DFT calculated DWFs are discussed.
Energy Technology Data Exchange (ETDEWEB)
Wang, Yizhen; Younge, Kelly; Nielsen, Michelle; Mutanga, Theodore [Peel Regional Cancer Center, Trillium Health Partners, Mississauga, ON (Canada); Cui, Congwu [Peel Regional Cancer Center, Trillium Health Partners, Mississauga, ON (Canada); Department of Radiation Oncology, University of Toronto, Toronto, ON (Canada); Das, Indra J. [Radiation Oncology Dept., Indiana University- School of Medicine, Indianapolis, IN (United States)
2014-08-15
Small field dosimetry measurements including output factors are difficult due to lack of charged-particle equilibrium, occlusion of the radiation source, the finite size of detectors, and non-water equivalence of detector components. With available detectors significant variations could be measured that will lead to incorrect delivered dose to patients. IAEA/AAPM have provided a framework and formulation to correct the detector response in small photon fields. Monte Carlo derived correction factors for some commonly used small field detectors are now available, however validation has not been performed prior to this study. An Exradin A16 chamber, EDGE detector and SFD detector were used to perform the output factor measurement for a series of conical fields (5–30mm) on a Varian iX linear accelerator. Discrepancies up to 20%, 10% and 6% were observed for 5, 7.5 and 10 mm cones between the initial output factors measured by the EDGE detector and the A16 ion chamber, while the discrepancies for the conical fields larger than 10 mm were less than 4%. After the application of the correction, the output factors agree well with each other to within 1%. Caution is needed when determining the output factors for small photon fields, especially for fields 10 mm in diameter or smaller. More than one type of detector should be used, each with proper corrections applied to the measurement results. It is concluded that with the application of correction factors to appropriately chosen detectors, output can be measured accurately for small fields.
International Nuclear Information System (INIS)
Moraes, Marco Antonio Proenca Vieira de; Pugliesi, Reinaldo
1996-01-01
The objective of the present work was to establish simple criteria to choose the best combination of electronic modules to achieve an adequate high resolution gamma spectrometer. Linearity, live time correction factors and softwares of a gamma spectrometric system composed by a Hp Ge detector have been studied by using several kinds of spectrometric amplifiers: Canberra 2021, Canberra 2025, Ortec 673 and Tennelec 244 and the MCA cards Ortec and Nucleus. The results showed low values of integral non-linearity for all spectrometric amplifiers connected to the Ortec and Nucleus boards. The MCA card should be able to correct amplifier dead time for 17 kcps count rates. (author)
Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth
Forth, Scott C.; Herman, Dave J.; James, Mark A.
2003-01-01
Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).
Calculation of the fast multiplication factor by the fission matrix method
International Nuclear Information System (INIS)
Naumov, V.A.; Rozin, S.G.; Ehl'perin, T.I.
1976-01-01
A variation of the Monte Carlo method to calculate an effective breeding factor of a nuclear reactor is described. The evaluation procedure of reactivity perturbations by the Monte Carlo method in the first order perturbation theory is considered. The method consists in reducing an integral neutron transport equation to a set of linear algebraic equations. The coefficients of this set are elements of a fission matrix. The fission matrix being a Grin function of the neutron transport equation, is evaluated by the Monte Carlo method. In the program realizing the suggested algorithm, the game for initial neutron energy of a fission spectrum and then for the region of neutron birth, ΔVsub(f)sup(i)has been played in proportion to the product of Σsub(f)sup(i)ΔVsub(f)sup(i), where Σsub(f)sup(i) is a macroscopic cross section in the region numbered at the birth energy. Further iterations of a space distribution of neutrons in the system are performed by the generation method. In the adopted scheme of simulation of neutron histories the emission of secondary neutrons is controlled by weights; it occurs at every collision and not only in the end on the history. The breeding factor is calculated simultaneously with the space distribution of neutron worth in the system relative to the fission process and neutron flux. Efficiency of the described procedure has been tested on the calculation of the breeding factor for the Godiva assembly, simulating a fast reactor with a hard spectrum. A high accuracy of calculations at moderate number of zones in the core and reasonable statistics has been stated
Cheng, Chih-Wen; Hua, Jian; Hwang, Daw-Shang
2017-10-01
An important marine pollution issue identified by the International Maritime Organization (IMO) is NO x emissions; however, the stipulated method for determining the NO x certification value does not reflect the actual high emission factors of slow-speed two-stroke diesel engines over long-term slow steaming. In this study, an accurate method is presented for calculating the NO x emission factors and total amount of NO x emissions by using the actual power probabilities of the diesel engines in four types of bulk carriers. The proposed method is suitable for all types and purposes of diesel engines, is not restricted to any operating modes, and is highly accurate. Moreover, it is recommended that the IMO-stipulated certification value calculation method be modified accordingly to genuinely reduce the amount of NO x emissions. The successful achievement of this level of reduction will help improve the air quality, especially in coastal and port areas, and the health of local residents. As per the IMO, the NO x emission certification value of marine diesel engines having a rated power over 130 kW must be obtained using specified weighting factor (WF)-based calculation. However, this calculation fails to represent the current actual situation. Effective emission reductions of 6.91% (at sea) and 31.9% (in ports) were achieved using a mathematical model of power probability functions. Thus, we strongly recommend amending the certification value of NO x Technical Code 2008 (NTC 2008) by removing the WF constraints, such that the NO x emissions of diesel engines is lower than the Tier-limits at any load level to obtain genuine NO x emission reductions.
Calculation of neutron and gamma-ray flux-to-dose-rate conversion factors
International Nuclear Information System (INIS)
Kwon, S.G.; Lee, S.Y.; Yook, C.C.
1981-01-01
This paper presents flux-to-dose-rate conversion factors for neutrons and gamma rays based on the American National Standard Institute (ANSI) N666. These data are used to calculate the dose rate distribution of neutron and gamma ray in radiation fields. Neutron flux-to-dose-rate conversion factors for energies from 2.5 x 10 -8 to 20 MeV are presented; the corresponding energy range for gamma rays is 0.01 to 15 MeV. Flux-to-dose-rate conversion factors were calculated, under the assumption that radiation energy distribution has nonlinearity in the phantom, have different meaning from those values obtained by monoenergetic radiation. Especially, these values were determined with the cross section library. The flux-to-dose-rate conversion factors obtained in this work were in a good agreement to the values presented by ANSI. Those data will be useful for the radiation shielding analysis and the radiation dosimetry in the case of continuous energy distributions. (author)
A framework for the calculation of the ΔNγ* transition form factors on the lattice
International Nuclear Information System (INIS)
Agadjanov, Andria; Bernard, Véronique; Meißner, Ulf-G.; Rusetsky, Akaki
2014-01-01
Using the non-relativistic effective field theory framework in a finite volume, we discuss the extraction of the ΔNγ * transition form factors from lattice data. A counterpart of the Lüscher approach for the matrix elements of unstable states is formulated. In particular, we thoroughly discuss various kinematic settings, which are used in the calculation of the above matrix element on the lattice. The emerging Lüscher–Lellouch factor and the analytic continuation of the matrix elements into the complex plane are also considered in detail. A full group-theoretical analysis of the problem is made, including the partial-wave mixing and projecting out the invariant form factors from data
Gonçalves, Leonel C; Endrass, Jérôme; Rossegger, Astrid; Dirkzwager, Anja J E
2016-04-06
Despite the high prevalence rate of mental health problems among young prisoners, little is known about the longitudinal course and covariates of their mental health symptoms during incarceration, especially the influence of the correctional climate. The current study aimed: (1) to examine changes in young prisoners' mental health symptoms during incarceration, (2) to identify personal factors associated with their mental health symptoms and perceptions of the correctional climate, and (3) to test the incremental effect of perceptions of the correctional climate on mental health symptoms. Data were obtained from a sample of 75 youths (aged 17 to 22 years) detained in a Portuguese young offender prison. Data were gathered 1, 3, and 6 months after their admission in this facility. Socio-demographic, clinical and criminological variables were collected. Mental health symptoms and perceptions of the correctional climate were assessed through self-report assessment tools. Linear and logistic (multi-level) regressions and tests for differences between means were performed to analyze the data. Overall, mental health symptoms marginally declined by the sixth month in prison. Prisoners with a history of mental health treatment were more likely to have increased symptoms. Higher levels of mental health symptoms were associated with a history of mental health treatment, remand status, and a lower educational level. Better perceptions of the correctional climate were associated with Black race and participation in prison activities. A negative perception of the correctional climate was the strongest covariate of young prisoners' mental health symptoms and had incremental validity over that of personal variables. The results highlight that both characteristics of the prisoners and of the prison environment influence young prisoners' mental health. Prison management can try to reduce young prisoners' mental health problems by developing scientific procedures for their mental
Clouvas, A; Antonopoulos-Domis, M; Silva, J
2000-01-01
The dose rate conversion factors D/sub CF/ (absorbed dose rate in air per unit activity per unit of soil mass, nGy h/sup -1/ per Bq kg/sup -1/) are calculated 1 m above ground for photon emitters of natural radionuclides uniformly distributed in the soil. Three Monte Carlo codes are used: 1) The MCNP code of Los Alamos; 2) The GEANT code of CERN; and 3) a Monte Carlo code developed in the Nuclear Technology Laboratory of the Aristotle University of Thessaloniki. The accuracy of the Monte Carlo results is tested by the comparison of the unscattered flux obtained by the three Monte Carlo codes with an independent straightforward calculation. All codes and particularly the MCNP calculate accurately the absorbed dose rate in air due to the unscattered radiation. For the total radiation (unscattered plus scattered) the D/sub CF/ values calculated from the three codes are in very good agreement between them. The comparison between these results and the results deduced previously by other authors indicates a good ag...
Directory of Open Access Journals (Sweden)
Marco Gonzalez
Full Text Available Abstract The analysis of cracked brittle mechanical components considering linear elastic fracture mechanics is usually reduced to the evaluation of stress intensity factors (SIFs. The SIF calculation can be carried out experimentally, theoretically or numerically. Each methodology has its own advantages but the use of numerical methods has become very popular. Several schemes for numerical SIF calculations have been developed, the J-integral method being one of the most widely used because of its energy-like formulation. Additionally, some variations of the J-integral method, such as displacement-based methods, are also becoming popular due to their simplicity. In this work, a simple displacement-based scheme is proposed to calculate SIFs, and its performance is compared with contour integrals. These schemes are all implemented with the Boundary Element Method (BEM in order to exploit its advantages in crack growth modelling. Some simple examples are solved with the BEM and the calculated SIF values are compared against available solutions, showing good agreement between the different schemes.
Directory of Open Access Journals (Sweden)
Tjaša POGAČAR
2016-04-01
Full Text Available Climate factors that are proposed to determine agriculturally less favoured areas (LFA in Slovenia were analyzed for the period 1981–2010. Following the instructions of European Commission prepared by Joint Research Centre (JRC 30-years averages of low air temperatures criteria (the vegetation period duration and sums of effective air temperatures and aridity criteria (aridity index AI have to be calculated. Calculations were additionally done using Slovenian Environment Agency (ARSO method, which is slightly different when determining temperature thresholds. Only hilly areas are below the LFA low air temperatures threshold with the lowest located meteorological station in Rateče. According to aridity criteria no area in Slovenia is below the threshold, so meteorological water balance was also examined. Average water balance in the period 1981–2010 was in most of locations lower than in the period 1971–2000. Climate change impacts are already expressed as trend presence in time series of studied variables, so it is recommended to calculate trends and take them into account or to perform regular iterations of calculations.
Experiment calculated ascertainment of factors affecting the energy release in IGR reactor core
International Nuclear Information System (INIS)
Kurpesheva, A.M.; Zhotabayev, Zh.R.
2006-01-01
Full text: At present energy supply resources problem is important. Nuclear reactors can, of course, solve this problem, but at the same time there is another issue, concerning safety exploitation of nuclear reactors. That is why, for the last seven years, such experiments as 'Investigation of the processes, conducting severe accidents with core melting' are being carried out at our IGR (impulse graphite reactor) reactor. Leaving out other difficulties of such experiments, it is necessary to notice, that such experiments require more accurate IGR core energy release calculations. The final aim of the present research is verification and correction of the existing method or creation of new method of IGR core energy release calculation. IGR reactor is unique and there is no the same reactor in the world. Therefore, application of the other research reactor methods here is quite useful. This work is based on evaluation of factors affecting core energy release (physical weight of experimental device, different configuration of reactor core, i.e. location of absorbers, initial temperature of core, etc), as well as interference of absorbers group. As it is known, energy release is a value of integral reactor power. During experiments with rays, Reactor power depends on currents of ion production chambers (IPC), located round the core. It is worth to notice that each ion production chamber (IPC) in the same start-up has its own ratio coefficient between IPC current and reactor present power. This task is complicated due to 'IPC current - reactor power' ratio coefficients, that change continuously, probably, because of new loading of experimental facility and different position of control rods. That is why, in order to try about reactor power, before every start-up, we have to re-determine the 'IPC current - reactor power' ratio coefficients for each ion production chamber (IPC). Therefore, the present work will investigate the behavior of ratio coefficient within the
The calculation of relative output factor and depth dose for irregular electron fields in water
International Nuclear Information System (INIS)
Dunscombe, Peter; McGhee, Peter; Chu, Terence
1996-01-01
Purpose: A technique, based on sector integration and interpolation, has been developed for the computation of both relative output factor and depth dose of irregular electron fields in water. The purpose of this study was to determine the minimum experimental data set required for the technique to yield results within accepted dosimetric tolerances. Materials and Methods: PC based software has been written to perform the calculations necessary to dosimetrically characterize irregular shaped electron fields. The field outline is entered via digitiser and the SSD and energy via the keyboard. The irregular field is segmented into sectors of specified angle (2 deg. was used for this study) and the radius of each sector computed. The central ray depth dose is reconstructed by summing the contributions from each sector deduced from calibration depth doses measured for circular fields. Relative output factors and depth doses at SSDs at which calibrations were not performed are found by interpolation. Calibration data were measured for circular fields from 2 to 9 cm diameter at 100, 105, 110, and 115 cm SSD. A clinical cut out can be characterized in less than 2 minutes including entry of the outline using this software. The performance of the technique was evaluated by comparing calculated relative output factors, surface dose and the locations of d 80 , d 50 and d 20 with experimental measurements on a variety of cut out shapes at 9 and 18 MeV. The calibration data set (derived from circular cut outs) was systematically reduced to identify the minimum required to yield an accuracy consistent with current recommendations. Results: The figure illustrates the ability of the technique to calculate the depth dose for an irregular field (shown in the insert). It was found that to achieve an accuracy of 2% in relative output factor and 2% or 2 mm (our criterion) in percentage depth dose, calibration data from five circular fields at the four SSDs spanning the range 100-115 cm
Khvostichenko, Daria; Choi, Andrew; Boulatov, Roman
2008-04-24
We investigated the effect of several computational variables, including the choice of the basis set, application of symmetry constraints, and zero-point energy (ZPE) corrections, on the structural parameters and predicted ground electronic state of model 5-coordinate hemes (iron(II) porphines axially coordinated by a single imidazole or 2-methylimidazole). We studied the performance of B3LYP and B3PW91 with eight Pople-style basis sets (up to 6-311+G*) and B97-1, OLYP, and TPSS functionals with 6-31G and 6-31G* basis sets. Only hybrid functionals B3LYP, B3PW91, and B97-1 reproduced the quintet ground state of the model hemes. With a given functional, the choice of the basis set caused up to 2.7 kcal/mol variation of the quintet-triplet electronic energy gap (DeltaEel), in several cases, resulting in the inversion of the sign of DeltaEel. Single-point energy calculations with triple-zeta basis sets of the Pople (up to 6-311G++(2d,2p)), Ahlrichs (TZVP and TZVPP), and Dunning (cc-pVTZ) families showed the same trend. The zero-point energy of the quintet state was approximately 1 kcal/mol lower than that of the triplet, and accounting for ZPE corrections was crucial for establishing the ground state if the electronic energy of the triplet state was approximately 1 kcal/mol less than that of the quintet. Within a given model chemistry, effects of symmetry constraints and of a "tense" structure of the iron porphine fragment coordinated to 2-methylimidazole on DeltaEel were limited to 0.3 kcal/mol. For both model hemes the best agreement with crystallographic structural data was achieved with small 6-31G and 6-31G* basis sets. Deviation of the computed frequency of the Fe-Im stretching mode from the experimental value with the basis set decreased in the order: nonaugmented basis sets, basis sets with polarization functions, and basis sets with polarization and diffuse functions. Contraction of Pople-style basis sets (double-zeta or triple-zeta) affected the results
International Nuclear Information System (INIS)
Li Lijun; Zhu Haijun; Zhang Xinzhong; Li Feizhou; Song Hongyu
2004-01-01
Objective: To evaluate the method of measurement of total scatter calibrate factor (Sc, p). Methods: To measure the Sc, p at different depths on central axis of 6MV, 15MV photon beams through different ways. Results: It was found that the measured data of Sc, p changed with the different depths to a range of 1% - 7%. Using the direct method, the Sc, p measured depth should be the same as the depth in dose normalization point of the prescription dose. If the Sc, p (fsz, d) was measured at the other depths, it could be obtained indirectly by the calculation formula. Conclusions: The Sc, p in the prescription dose can be obtained either by the direct measure method or the indirect calculation formula. But emphasis should be laid on the proper measure depth. (authors)
Uranium and radium in Finnsjoen - an experimental approach for calculation of transfer factors
International Nuclear Information System (INIS)
Evans, S.; Bergman, R.
1981-01-01
The radiological safety studies for underground disposal of HLW show that the future individual and collective doses to an important extent may originate from groundwater borne radium and uranium which reach the biosphere. Indications that the dispersion rates presently used give rise to overestimations of calculated doses justified an investigation for more realistic turnover rates of radium and uranium than those which now are in use. Within one of the sites selected for testing, the area around lake Finnsjoen, a small number of environmental samples were collected and analyzed with respect to radium and uranium and the new transfer coefficients between soil and lake water were derived. The dose rates obtained with the new transfer factors show a close agreement for radium and a slight increase for uranium compared with earlier calculations. (Auth.)
Cluster form factor calculation in the ab initio no-core shell model
International Nuclear Information System (INIS)
Navratil, Petr
2004-01-01
We derive expressions for cluster overlap integrals or channel cluster form factors for ab initio no-core shell model (NCSM) wave functions. These are used to obtain the spectroscopic factors and can serve as a starting point for the description of low-energy nuclear reactions. We consider the composite system and the target nucleus to be described in the Slater determinant (SD) harmonic oscillator (HO) basis while the projectile eigenstate to be expanded in the Jacobi coordinate HO basis. This is the most practical case. The spurious center of mass components present in the SD bases are removed exactly. The calculated cluster overlap integrals are translationally invariant. As an illustration, we present results of cluster form factor calculations for 5 He vertical bar 4 He+n>, 5 He vertical bar 3 H+d>, 6 Li vertical bar 4 He+d>, 6 Be vertical bar 3 He+ 3 He>, 7 Li vertical bar 4 He+ 3 H>, 7 Li vertical bar 6 Li+n>, 8 Be vertical bar 6 Li+d>, 8 Be vertical bar 7 Li+p>, 9 Li vertical bar 8 Li+n>, and 13 C vertical bar 12 C+n>, with all the nuclei described by multi-(ℎ/2π)Ω NCSM wave functions
Energy Technology Data Exchange (ETDEWEB)
Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division
2016-06-01
This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.
International Nuclear Information System (INIS)
Talamo, Alberto; Gohar, Yousry
2016-01-01
This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.
Sharaf, J. M.; Saleh, H.
2015-05-01
The shielding properties of three different construction styles, and building materials, commonly used in Jordan, were evaluated using parameters such as attenuation coefficients, equivalent atomic number, penetration depth and energy buildup factor. Geometric progression (GP) method was used to calculate gamma-ray energy buildup factors of limestone, concrete, bricks, cement plaster and air for the energy range 0.05-3 MeV, and penetration depths up to 40 mfp. It has been observed that among the examined building materials, limestone offers highest value for equivalent atomic number and linear attenuation coefficient and the lowest values for penetration depth and energy buildup factor. The obtained buildup factors were used as basic data to establish the total equivalent energy buildup factors for three different multilayer construction styles using an iterative method. The three styles were then compared in terms of fractional transmission of photons at different incident photon energies. It is concluded that, in case of any nuclear accident, large multistory buildings with five layers exterior walls, style A, could effectively attenuate radiation more than small dwellings of any construction style.
International Nuclear Information System (INIS)
Sesnic, S.; Diesso, M.; Hill, K.; Holland, A.; Pohl, F.
1988-01-01
Because soft-x-ray pulse-height-analysis spectra contain chordal information, the electron temperature and the radiation intensity (enhancement factor) measurements do not represent the local values. The correction factors for the electron temperature and the enhancement factor as a function of the temperature and density profile parameters and the energy are obtained. The spectrum distortion due to pulse pileup effects is also evaluated. A set of curves is given from which the distortion of the spectrum can be obtained if the electron temperature, the Be filter thickness, and the electronic parameters of the acquisition system are known. PG 1810,1812 ID 131801CON N X-ray diagnostics TT Profile correction to electron temperature and enhancement factor in soft-x-ray pulse-height-analysis measurements in tokamaks AU S. Sesnic, M. Diesso, K. Hill, and A. Holland LO Princeton University, Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 AU F. Pohl LO Max-Planck Institut fuer Plasmaphysik, 8046-Garching, Federal Republic of Germany SD (Presented on 16 March 1988) AB Because soft-x-ray pulse-height-analysis spectra contain chordal information, the electron temperature and the radiation intensity (enhancement factor) measurements do not represent the local values. The correction factors for the electron temperature and the enhancement factor as a function of the temperature and density profile parameters and the energy are obtained. The spectrum distortion due to pulse pileup effects is also evaluated. A set of curves is given from which the distortion of the spectrum can be obtained if the electron tempe
Slope Safety Factor Calculations With Non-Linear Yield Criterion Using Finite Elements
DEFF Research Database (Denmark)
Clausen, Johan; Damkilde, Lars
2006-01-01
The factor of safety for a slope is calculated with the finite element method using a non-linear yield criterion of the Hoek-Brown type. The parameters of the Hoek-Brown criterion are found from triaxial test data. Parameters of the linear Mohr-Coulomb criterion are calibrated to the same triaxial...... are carried out at much higher stress levels than present in a slope failure, this leads to the conclusion that the use of the non-linear criterion leads to a safer slope design...
Assessments of fluid friction factors for use in leak rate calculations
Energy Technology Data Exchange (ETDEWEB)
Chivers, T.C. [Berkeley Technology Centre, Glos (United Kingdom)
1997-04-01
Leak before Break procedures require estimates of leakage, and these in turn need fluid friction to be assessed. In this paper available data on flow rates through idealized and real crack geometries are reviewed in terms of a single friction factor k It is shown that for {lambda} < 1 flow rates can be bounded using correlations in terms of surface R{sub a} values. For {lambda} > 1 the database is less precise, but {lambda} {approx} 4 is an upper bound, hence in this region flow calculations can be assessed using 1 < {lambda} < 4.
International Nuclear Information System (INIS)
Lindborg, L.; Bolognese-Milsztajn, T.; Boschung, M.; Coeck, M.; Curzio, G.; D'Errico, F.; Fiechtner, A.; Hallfarth, D.; Lievens, B.; Lillhoek, J. E.; Loevefors-Daun, A.; Lacoste, V.; Luszik-Bhadra, M.; Reginatto, M.; Schuhmacher, H.; Tanner, R.; Vanhavere, F.
2007-01-01
Ratios of H p (10) and H*(10) were determined with reference instruments in a number of workplace fields within the nuclear industry and used to derive workplace-specific correction factors. When commercial survey meter results together with these factors were applied to the results of the locally used personal dosemeters their results improved and became within 0.7 and 1.7 of the reference values or better depending on the response of the survey meter. A similar result was obtained when a correction was determined with a prototype reference instrument for H p (10) after adjustment of its response. Commercially available survey instruments both for photon and neutron H*(10) measurements agreed with the reference instruments in most cases to within 0.5-1.5. Those conclusions are derived from results reported within the EC supported EVIDOS contract. (authors)
International Nuclear Information System (INIS)
Denham, D.H.; Mart, E.I.; Thiede, M.E.
1993-09-01
This report is a part of the Hanford Environmental Dose Reconstruction (HEDR) Project, whose goal is to estimate the radiation dose that individuals could have received from emissions since 1944 at the US Department of Energy's (DOE) Hanford Site near Richland, Washington. The key radionuclide emitted that would affect the radiation dose was iodine-131 (Napier 1992). Because the early methods of measuring iodine-131 were not comparable to later techniques, conversion and correction factors are needed to convert the historical measurement data into concentration values that would be determined using today's knowledge and technologies. This report describes the conversion and correction factors developed for reconstructing historical measurements of iodine-131 in Hanford-area vegetation, which was collected from 1948 through the end of December 1951
Directory of Open Access Journals (Sweden)
J. H. Lee
2013-01-01
Full Text Available The aim of the present study was to estimate the wall effect of the self-made spherical graphite-walled cavity chamber with the Monte Carlo method for establishing the air-kerma primary standard of high-dose-rate (HDR 192Ir brachytherapy sources at the Institute of Nuclear Energy Research (INER, Taiwan. The Monte Carlo method established in this paper was also employed to respectively simulate wall correction factors of the 192Ir air-kerma standard chambers used at the National Institute of Standards and Technology (NIST, USA and the National Physical Laboratory (NPL, UK for comparisons and verification. The chamber wall correction calculation results will be incorporated into INER's HDR 192Ir primary standard in the future. For the brachytherapy treatment in the esophagus or in the bronchi, the position of the isotope may have displacement in the cavity. Thus the delivered dose would differ from the prescribed dose in the treatment plan. We also tried assessing dose distribution due to the position displacement of HDR 192Ir brachytherapy source in a phantom with a central cavity by the Monte Carlo method. The calculated results could offer a clinical reference for the brachytherapy within the human organs with cavity.
Martins,Priscila Silveira; Mello,Rosane Reis de; Silva,Kátia Silveira da
2010-01-01
OBJECTIVE: The study aimed to assess bronchopulmonary dysplasia (BPD) as a predisposing factor for alteration in the psychomotor development index (PDI) in premature infants and verify the incidence of neuromotor alterations at 6 months corrected age. METHOD: This was a prospective cohort study that followed the neuromotor development of 152 very low birth weight premature infants, with psychomotor development index as the outcome. The study used the Bayley Scale of Infant Development at 6 mo...
International Nuclear Information System (INIS)
Cauchetier, Ph.
1993-01-01
To obtain the needed precision in the calibration of an accountability tank by bubbling pressure method, it requires to use very slow bubbling. The measured data (mass and pressure) must be transformed into physical sizes of the vessel (height and cubic capacity). All corrections to take in account (buoyancy, calibration curve of the sensor, density of the liquid, weight of the gas column, bubbling overpressure, temperature...) are reviewed and valuated. We give the used equations. (author). 3 figs., 1 tab., 2 refs
Francesco Chirico; Giuseppe Ferrari; Giuseppe Taino; Enrico Oddone; Ines Giorgi; Marcello Imbriani
2017-01-01
Introduction: Over the past two decades, numerous studies on indoor air and the Sick Building Syndrome (SBS) have been conducted, mostly in office environments. However, there is little knowledge about SBS in police officers. This study was aimed to fill this gap. Methods: A cross-sectional questionnaire survey was conducted in 2016 at the Triveneto Penitentiary Center, Northern Italy. Chi-square was used to test the difference of prevalence between office workers (OWs) and correctional of...
DEFF Research Database (Denmark)
Sauer, Stephan P. A.; Paidarová, Ivana; Oddershede, Jens
2011-01-01
The vibrational g factor, that is, the nonadiabatic correction to the vibrational reduced mass, of LiH has been calculated for internuclear distances over a wide range. Based on multiconfigurational wave functions with a large complete active space and an extended set of gaussian type basis...
International Nuclear Information System (INIS)
Lima Barros, M. de.
1982-04-01
The multiplication factors of several systems with low enrichment, 3,5% and 3,2% in the isotope 235 U, aiming at the storage of fuel of ANGRA-I and ANGRA II, through the method of Monte Carlo, by the computacional code KENO-IV and the library of section of cross Hansen - Roach with 16 groups of energy. The method of Monte Carlo is specially suitable to the calculation of the factor of multiplication, because it is one of the most acurate models of solution and allows the description of complex tridimensional systems. Various tests of sensibility of this method have been done in order to present the most convenient way of working with KENO-IV code. The safety on criticality of stores of fissile material of the 'Fabrica de Elementos Combustiveis ', has been analyzed through the method of Monte Carlo. (Author) [pt
Calculations of electromagnetic nucleon form factors and electroexcitation amplitudes of isobars
International Nuclear Information System (INIS)
Warns, M.; Schroeder, H.; Pfeil, W.; Rollnik, H.
1989-03-01
In this paper, we present numerical results for electroproduction amplitudes of proton resonances and electromagnetic nucleon form factors calculated in a relativized quark model. Interactions with both transversely and longitudinally polarized virtual photons were considered. Contributions of the different effects included in our approach have been analysed through a sample comparison with the available data. We also discuss the validity of the usual single-quark transition ansatz and possible parametrizations of the potential acting between the constituent quarks of the baryon. Impressive agreement is obtained with the nucleon form factor data up to squared momentum transfers of 2.5 GeV 2 , but still some problems remain with the Δ(1232) and higher resonances. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lee, Yong Ho; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1999-12-31
With using artificial neural networks (ANNs), an analytical study related to the heated length effect on critical heat flux (CHF) has been carried out to make an improvement of the CHF prediction accuracy based on local condition correlations or table. It has been carried out to suggest a feasible criterion of the threshold length-to-diameter (L/D) value in which heated length could affect CHF. And within the criterion, a L/D correction factor has been developed through conventional regression. In order to validate the developed L/D correction factor, CHF experiments for various heated lengths have been carried out under low and intermediate pressure conditions. The developed threshold L/D correlation provides a new feasible criterion of L/D threshold value. The developed correction factor gives a reasonable accuracy for the original database, showing the error of -2.18% for average and 27.75% for RMS, and promising results for new experimental data. 7 refs., 12 figs., 1 tab. (Author)
Energy Technology Data Exchange (ETDEWEB)
Lee, Yong Ho; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
With using artificial neural networks (ANNs), an analytical study related to the heated length effect on critical heat flux (CHF) has been carried out to make an improvement of the CHF prediction accuracy based on local condition correlations or table. It has been carried out to suggest a feasible criterion of the threshold length-to-diameter (L/D) value in which heated length could affect CHF. And within the criterion, a L/D correction factor has been developed through conventional regression. In order to validate the developed L/D correction factor, CHF experiments for various heated lengths have been carried out under low and intermediate pressure conditions. The developed threshold L/D correlation provides a new feasible criterion of L/D threshold value. The developed correction factor gives a reasonable accuracy for the original database, showing the error of -2.18% for average and 27.75% for RMS, and promising results for new experimental data. 7 refs., 12 figs., 1 tab. (Author)
Energy Technology Data Exchange (ETDEWEB)
Hueso-Gonzalez, F [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Dresden (Germany); Vijande, J [University of Valencia, Burjassot and IFIC (CSIC-UV) (Spain); Ballester, F [University of Valencia, Burjassot (Spain); Perez-Calatayud, J [Hospital Clinica Benidorm, Benidorm, and Hospital Universitari i Politecnic La Fe, Valencia (Spain); Siebert, F [Clinic of Radiotherapy (Radiooncology), Kiel (Germany)
2016-06-15
Purpose: Tissue heterogeneities and calcifications have significant impact on the dosimetry of low energy brachytherapy (BT). RayStretch is an analytical algorithm developed in our institution to incorporate heterogeneity corrections in LDR prostate brachytherapy. The aim of this work is to study its application in clinical cases by comparing its predictions with the results obtained with TG-43 and Monte Carlo (MC) simulations. Methods: A clinical implant (71 I-125 seeds, 15 needles) from a real patient was considered. On this patient, different volumes with calcifications were considered. Its properties were evaluated in three ways by i) the Treatment planning system (TPS) (TG-43), ii) a MC study using the Penelope2009 code, and iii) RayStretch. To analyse the performance of RayStretch, calcifications located in the prostate lobules covering 11% of the total prostate volume and larger calcifications located in the lobules and underneath the urethra for a total occupied volume of 30% were considered. Three mass densities (1.05, 1.20, and 1.35 g/cm3) were explored for the calcifications. Therefore, 6 different scenarios ranging from small low density calcifications to large high density ones have been discussed. Results: DVH and D90 results given by RayStretch agree within 1% with the full MC simulations. Although no effort has been done to improve RayStretch numerical performance, its present implementation is able to evaluate a clinical implant in a few seconds to the same level of accuracy as a detailed MC calculation. Conclusion: RayStretch is a robust method for heterogeneity corrections in prostate BT supported on TG-43 data. Its compatibility with commercial TPSs and its high calculation speed makes it feasible for use in clinical settings for improving treatment quality. It will allow in a second phase of this project, its use during intraoperative ultrasound planning. This study was partly supported by a fellowship grant from the Spanish Ministry of
International Nuclear Information System (INIS)
Tzika, F.; Stamatelatos, I.E.
2004-01-01
Thermal neutron self-shielding within large samples was studied using the Monte Carlo neutron transport code MCNP. The code enabled a three-dimensional modeling of the actual source and geometry configuration including reactor core, graphite pile and sample. Neutron flux self-shielding correction factors derived for a set of materials of interest for large sample neutron activation analysis are presented and evaluated. Simulations were experimentally verified by measurements performed using activation foils. The results of this study can be applied in order to determine neutron self-shielding factors of unknown samples from the thermal neutron fluxes measured at the surface of the sample
Calculation of the Power Peaking Factor Using CFNN and Its Uncertainty Analysis
Energy Technology Data Exchange (ETDEWEB)
Back, Ju Hyun; Kim, Dong Yeong; Yoo, Kwae Hwan; Choi, Geon Pil; Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of)
2016-05-15
The local power density (LPD) and DNBR must be calculated in order to perform the main functions of the core protection calculator (CPC) and the core operation limit supervisory system (COLSS). CPC and COLSS play a role in the protection and monitoring systems of the optimized power reactor 1000 (OPR1000) and the advanced power reactor 1400 (APR1400). LPD should be estimated accurately to prevent fuel rods from melting. LPD at the hottest part of the core is called the power peaking factor (PPF, F{sub q} ). LPD at the hottest part of the core is more important than LPD at any other position in a reactor core. DNBR and PPF are the most important factors that must be continuously monitored from a safety aspect. The aim of the study is to calculate PPF in a reactor core by a cascaded fuzzy neural networks (CFNN) model according to operating conditions. The operation condition is reactor power, core inlet temperature, pressurizer pressure, mass flowrate, axial shape index (ASI), and variety of control rod position. The proposed CFNN model that is a PPF estimation algorithm is verified by using the nuclear and thermal data acquired from numerical simulations of OPR1000. The CFNN regression models were optimized by using the data set prepared as training data and tested by using verification data. The developed CFNN models were applied to the OPR 1000. As a result, the RMS error of the estimated PPF values is below 0.05%. In addition, their uncertainty was analyzed by a bootstrap method using 100 sampled development data sets.
Rodny, Marek; Nolz, Reinhard
2017-04-01
Evapotranspiration (ET) is a fundamental component of the hydrological cycle, but challenging to be quantified. Lysimeter facilities, for example, can be installed and operated to determine ET, but they are costly and represent only point measurements. Therefore, lysimeter data are traditionally used to develop, calibrate, and validate models that allow calculating reference evapotranspiration (ET0) based on meteorological data, which can be measured more easily. The standardized form of the well-known FAO Penman-Monteith equation (ASCE-EWRI) is recommended as a standard procedure for estimating ET0 and subsequently plant water requirements. Applied and validated under different climatic conditions, the Penman-Monteith equation is generally known to deliver proper results. On the other hand, several studies documented deviations between measured and calculated ET0 depending on environmental conditions. Potential reasons are, for example, differing or varying surface characteristics of the lysimeter and the location where the weather instruments are placed. Advection of sensible heat (transport of dry and hot air from surrounding areas) might be another reason for deviating ET-values. However, elaborating causal processes is complex and requires comprehensive data of high quality and specific analysis techniques. In order to assess influencing factors, we correlated differences between measured and calculated ET0 with pre-selected meteorological parameters and related system parameters. Basic data were hourly ET0-values from a weighing lysimeter (ET0_lys) with a surface area of 2.85 m2 (reference crop: frequently irrigated grass), weather data (air and soil temperature, relative humidity, air pressure, wind velocity, and solar radiation), and soil water content in different depths. ET0_ref was calculated in hourly time steps according to the standardized procedure after ASCE-EWRI (2005). Deviations between both datasets were calculated as ET0_lys-ET0_ref and
Minerals sampling: sensibility analysis and correction factors for Pierre Gy's equation
International Nuclear Information System (INIS)
Vallebuona, G.; Niedbalski, F.
2005-01-01
Pierre Gy's equation is widely used in ore sampling. This equation is based in four parameters: shape factor, size distribution factor, mineralogical factor and liberation factor. The usual practice is to consider fixed values for the shape and size distribution factors. This practice does not represent well several important ores. The mineralogical factor considers only one specie of interest and the gangue, leaving out other cases such as polymetallic ores where there are more than one species of interest. A sensibility analysis to the Gy's equation factors was done and a procedure to determine specific values for them was developed and presented in this work. mean ore characteristics, associated with an insecure use of the actual procedure, were determined. finally, for a case study, the effects of using each alternative were evaluated. (Author) 4 refs
International Nuclear Information System (INIS)
Fontes, Ladyjane Pereira; Potiens, Maria da Penha Albuquerque
2017-01-01
The pencil-type ionization chamber widely used in computed tomography (CT) dosimetry, is a measuring instrument that has a cylindrical shape and provides uniform response independent of the angle of incidence of ionizing radiation. Calibration and measurements performed with the pencil-type ionization chamber are done in terms of Kerma product in air-length (P k,l ) and values are given in Gy.cm. To obtain the values of (P k,l ) during clinical measurements, the readings performed with the ionization chamber are multiplied by the calibration coefficient (N k,l ) and the correction factor C for quality (K q ) which are given in Calibration certificates of the chambers. The application of the correction factor for radiation quality K q is done as a function of the effective energy of the beam that is determined by the Half Value layer (HVL) calculation. In order to estimate the HVL values in this work, a Tandem system made up of cylindrical aluminum and PMMA absorber layers was used as a low cost and easy to apply method. From the Tandem curve, it was possible to construct the calibration curve and obtain the appropriate K q to the beam of the computed tomography equipment studied. (author)
Energy Technology Data Exchange (ETDEWEB)
Fontes, Ladyjane Pereira; Potiens, Maria da Penha Albuquerque, E-mail: lpfontes@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2017-11-01
The pencil-type ionization chamber widely used in computed tomography (CT) dosimetry, is a measuring instrument that has a cylindrical shape and provides uniform response independent of the angle of incidence of ionizing radiation. Calibration and measurements performed with the pencil-type ionization chamber are done in terms of Kerma product in air-length (P{sub k,l}) and values are given in Gy.cm. To obtain the values of (P{sub k,l}) during clinical measurements, the readings performed with the ionization chamber are multiplied by the calibration coefficient (N{sub k,l}) and the correction factor C for quality (K{sub q}) which are given in Calibration certificates of the chambers. The application of the correction factor for radiation quality K{sub q} is done as a function of the effective energy of the beam that is determined by the Half Value layer (HVL) calculation. In order to estimate the HVL values in this work, a Tandem system made up of cylindrical aluminum and PMMA absorber layers was used as a low cost and easy to apply method. From the Tandem curve, it was possible to construct the calibration curve and obtain the appropriate K{sub q} to the beam of the computed tomography equipment studied. (author)
International Nuclear Information System (INIS)
Faddegon, B.A.; Villarreal-Barajas, J.E.
2005-01-01
The Final Aperture Superposition Technique (FAST) is described and applied to accurate, near instantaneous calculation of the relative output factor (ROF) and central axis percentage depth dose curve (PDD) for clinical electron beams used in radiotherapy. FAST is based on precalculation of dose at select points for the two extreme situations of a fully open final aperture and a final aperture with no opening (fully shielded). This technique is different than conventional superposition of dose deposition kernels: The precalculated dose is differential in position of the electron or photon at the downstream surface of the insert. The calculation for a particular aperture (x-ray jaws or MLC, insert in electron applicator) is done with superposition of the precalculated dose data, using the open field data over the open part of the aperture and the fully shielded data over the remainder. The calculation takes explicit account of all interactions in the shielded region of the aperture except the collimator effect: Particles that pass from the open part into the shielded part, or visa versa. For the clinical demonstration, FAST was compared to full Monte Carlo simulation of 10x10,2.5x2.5, and 2x8 cm 2 inserts. Dose was calculated to 0.5% precision in 0.4x0.4x0.2 cm 3 voxels, spaced at 0.2 cm depth intervals along the central axis, using detailed Monte Carlo simulation of the treatment head of a commercial linear accelerator for six different electron beams with energies of 6-21 MeV. Each simulation took several hours on a personal computer with a 1.7 Mhz processor. The calculation for the individual inserts, done with superposition, was completed in under a second on the same PC. Since simulations for the pre calculation are only performed once, higher precision and resolution can be obtained without increasing the calculation time for individual inserts. Fully shielded contributions were largest for small fields and high beam energy, at the surface, reaching a maximum
Kuppusamy, Vijayalakshmi; Nagarajan, Vivekanandan; Jeevanandam, Prakash; Murugan, Lavanya
2016-02-01
The study was aimed to compare two different monitor unit (MU) or dose verification software in volumetric modulated arc therapy (VMAT) using modified Clarkson's integration technique for 6 MV photons beams. In-house Excel Spreadsheet based monitor unit verification calculation (MUVC) program and PTW's DIAMOND secondary check software (SCS), version-6 were used as a secondary check to verify the monitor unit (MU) or dose calculated by treatment planning system (TPS). In this study 180 patients were grouped into 61 head and neck, 39 thorax and 80 pelvic sites. Verification plans are created using PTW OCTAVIUS-4D phantom and also measured using 729 detector chamber and array with isocentre as the suitable point of measurement for each field. In the analysis of 154 clinically approved VMAT plans with isocentre at a region above -350 HU, using heterogeneity corrections, In-house Spreadsheet based MUVC program and Diamond SCS showed good agreement TPS. The overall percentage average deviations for all sites were (-0.93% + 1.59%) and (1.37% + 2.72%) for In-house Excel Spreadsheet based MUVC program and Diamond SCS respectively. For 26 clinically approved VMAT plans with isocentre at a region below -350 HU showed higher variations for both In-house Spreadsheet based MUVC program and Diamond SCS. It can be concluded that for patient specific quality assurance (QA), the In-house Excel Spreadsheet based MUVC program and Diamond SCS can be used as a simple and fast accompanying to measurement based verification for plans with isocentre at a region above -350 HU. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Perturbative corrections to Λ{sub b}→Λ form factors from QCD light-cone sum rules
Energy Technology Data Exchange (ETDEWEB)
Wang, Yu-Ming [Fakultät für Physik, Universität Wien,Boltzmanngasse 5, 1090 Vienna (Austria); Physik Department T31, Technische Universität München,James-Franck-Straße 1, D-85748 Garching (Germany); Shen, Yue-Long [College of Information Science and Engineering, Ocean University of China,Songling Road 238, Qingdao, Shandong 266100 (China)
2016-02-29
We compute radiative corrections to Λ{sub b}→Λ from factors, at next-to-leading logarithmic accuracy, from QCD light-cone sum rules with Λ{sub b}-baryon distribution amplitudes. Employing the diagrammatic approach factorization of the vacuum-to-Λ{sub b}-baryon correlation function is justified at leading power in Λ/m{sub b}, with the aid of the method of regions. Hard functions entering the factorization formulae are identical to the corresponding matching coefficients of heavy-to-light currents from QCD onto soft-collinear effective theory. The universal jet function from integrating out the hard-collinear fluctuations exhibits richer structures compared with the one involved in the factorization expressions of the vacuum-to-B-meson correlation function. Based upon the QCD resummation improved sum rules we observe that the perturbative corrections at O(α{sub s}) shift the Λ{sub b}→Λ from factors at large recoil significantly and the dominant contribution originates from the next-to-leading order jet function instead of the hard coefficient functions. Having at hand the sum rule predictions for the Λ{sub b}→Λ from factors we further investigate several decay observables in the electro-weak penguin Λ{sub b}→Λ ℓ{sup +}ℓ{sup −} transitions in the factorization limit (i.e., ignoring the “non-factorizable' hadronic effects which cannot be expressed in terms of the Λ{sub b}→Λ from factors), including the invariant mass distribution of the lepton pair, the forward-backward asymmetry in the dilepton system and the longitudinal polarization fraction of the leptonic sector.
Modal analysis and simulation on effect of correction factor (cf) in ...
African Journals Online (AJOL)
DR OKE
Determination of load distribution along the tooth width during meshing process is a basis for gear drive design, due to the ... simulation of static and dynamic contact analysis particularly for the contact/impact problems of gear drives. ..... three-dimensional contact calculations, Mechanism and Machine Theory, Vol.62, pp.
Neutron Buildup Factors Calculation for Support Vector Regression Application in Shielding Analysis
International Nuclear Information System (INIS)
Duckic, P.; Matijevic, M.; Grgic, D.
2016-01-01
In this paper initial set of data for neutron buildup factors determination using Support Vector Regression (SVR) method is prepared. The performance of SVR technique strongly depends on the quality of information used for model training. Thus it is very important to provide representable data to the SVR. SVR is a supervised type of learning so it demands data in the input/output form. In the case of neutron buildup factors estimation, the input parameters are the incident neutron energy, shielding thickness and shielding material and the output parameter is the neutron buildup factor value. So far the initial sets of data for different shielding configurations have been obtained using SCALE4.4 sequence SAS3. However, this results were obtained using group constants, thus the incident neutron energy was determined as the average value for each energy group. Obtained this way, the data provided to the SVR are fewer and therefore insufficient. More valuable information is obtained using SCALE6.2beta5 sequence MAVRIC which can perform calculations for the explicit incident neutron energy, which leads to greater maneuvering possibilities when active learning measures are employed, and consequently improves the quality of the developed SVR model.(author).
Improvement of Power Flow Calculation with Optimization Factor Based on Current Injection Method
Directory of Open Access Journals (Sweden)
Lei Wang
2014-01-01
Full Text Available This paper presents an improvement in power flow calculation based on current injection method by introducing optimization factor. In the method proposed by this paper, the PQ buses are represented by current mismatches while the PV buses are represented by power mismatches. It is different from the representations in conventional current injection power flow equations. By using the combined power and current injection mismatches method, the number of the equations required can be decreased to only one for each PV bus. The optimization factor is used to improve the iteration process and to ensure the effectiveness of the improved method proposed when the system is ill-conditioned. To verify the effectiveness of the method, the IEEE test systems are tested by conventional current injection method and the improved method proposed separately. Then the results are compared. The comparisons show that the optimization factor improves the convergence character effectively, especially that when the system is at high loading level and R/X ratio, the iteration number is one or two times less than the conventional current injection method. When the overloading condition of the system is serious, the iteration number in this paper appears 4 times less than the conventional current injection method.
Owlia, P; Vasei, M; Goliaei, B; Nassiri, I
2011-04-01
The interests in journal impact factor (JIF) in scientific communities have grown over the last decades. The JIFs are used to evaluate journals quality and the papers published therein. JIF is a discipline specific measure and the comparison between the JIF dedicated to different disciplines is inadequate, unless a normalization process is performed. In this study, normalized impact factor (NIF) was introduced as a relatively simple method enabling the JIFs to be used when evaluating the quality of journals and research works in different disciplines. The NIF index was established based on the multiplication of JIF by a constant factor. The constants were calculated for all 54 disciplines of biomedical field during 2005, 2006, 2007, 2008 and 2009 years. Also, ranking of 393 journals in different biomedical disciplines according to the NIF and JIF were compared to illustrate how the NIF index can be used for the evaluation of publications in different disciplines. The findings prove that the use of the NIF enhances the equality in assessing the quality of research works produced by researchers who work in different disciplines. Copyright © 2010 Elsevier Inc. All rights reserved.
Service factor calculated from an experimental simulation of chronic occupational irradiation
International Nuclear Information System (INIS)
Berikashvili, V.Sh.
1975-01-01
A correlation has been studied between the body weight, basal metabolism, lifespan, the period of water exchange, average life of erythrocytes and average rate of pulse-beat, and values LDsub(50/30-60), half-recovery period after irradiation and time of leucopenia occurrence in different species of laboratory animals and man. An authentic degree-interrelation of these indices has been revealed, and the dependency of radiobiological effects on the body weight of animals has been estimated. Similarity conditions of dose accumulation upon chronic irradiation of animals and man have been obtained on the basis of Blair's and Davidson's equations for an effective dose of a single exposure. Service factor and coefficients of intensity and duration of irradiation of various animals have been calculated, simulating professional irradiation with 5 rad/a within 20 years
Bourva, L C A
1999-01-01
The general purpose neutron-photon-electron Monte Carlo N-Particle code, MCNP sup T sup M , has been used to simulate the neutronic characteristics of the on-site laboratory passive neutron coincidence counter to be installed, under Euratom Safeguards Directorate supervision, at the Sellafield reprocessing plant in Cumbria, UK. This detector is part of a series of nondestructive assay instruments to be installed for the accurate determination of the plutonium content of nuclear materials. The present work focuses on one aspect of this task, namely, the accurate calculation of the coincidence gate utilisation factor. This parameter is an important term in the interpretative model used to analyse the passive neutron coincidence count data acquired using pulse train deconvolution electronics based on the shift register technique. It accounts for the limited proportion of neutrons detected within the time interval for which the electronics gate is open. The Monte Carlo code MCF, presented in this work, represents...
Calculation of the anti-trap factor in heavy water lattices
International Nuclear Information System (INIS)
Naudet, R.; Mougey, J.
1965-01-01
The calculation of the anti-trap factor of a lattice is complex when a large fraction of captures occurs in a range of energies where the spectrum in the fuel is considerably different from the simple dE/E law. This is particularly true for heavy water lattices in which the distances. between the bars are generally fairly large with respect to the slowing-down length. In order to take into account this effect it is necessary both to know the constitution of the effective resonance integral as a function of the energy, and to be able to calculate the distribution in the fuel. This report is devoted to these two problems. An improved method of treating the statistical domain makes it possible to plot the curves of the cross-sections per unit lethargy for various shapes of the fuel. Furthermore, the slowing-down of the neutrons is studied using a Monte-Carlo method which makes it possible in particular to take into account the perturbations caused by the non-moderating rods. A study is also made of the problem of shielding effects due to the captures themselves. (authors) [fr
Ways to Correct Modified Risk Factors in the Management of Diabetic Foot Syndrome
Directory of Open Access Journals (Sweden)
О.V. Marchenko
2015-08-01
Full Text Available The article presents modified risk factors that influence the development and clinical course of ulcers of the feet in patients with diabetes mellitus (DM and diabetic foot syndrome (DFS. Most DM patients on admission to hospital for DFS have: prolonged decompensation of DM, lipid metabolism disorders, concomitant cardiovascular disease (coronary heart disease, hypertension. It was found that the formation of sensorimotor neuropathy in patients with DM is a major risk factor for ulcers of the feet. At the time of ulcer detection, most patients have combination of sensorimotor neuropathy with other risk factors — foot deformity, presence of ulcers and/or amputations in past medical history, macroangiopathy. The presence of infection in the ulcerous defect is a significant risk factor for unfavorable course of DFS. Stable compensation of DM, the target values of blood lipids and blood pressure made it possible to achieve the healing of the ulcer in a shorter period.
Energy Technology Data Exchange (ETDEWEB)
Young, M.; Antonarakis, S.E. [Univ. of Geneva (Switzerland); Inaba, Hiroshi [Tokyo Medical College (Japan)] [and others
1997-03-01
Although the molecular defect in patients in a Japanese family with mild to moderately severe hemophilia A was a deletion of a single nucleotide T within an A{sub 8}TA{sub 2} sequence of exon 14 of the factor VIII gene, the severity of the clinical phenotype did not correspond to that expected of a frameshift mutation. A small amount of functional factor VIII protein was detected in the patient`s plasma. Analysis of DNA and RNA molecules from normal and affected individuals and in vitro transcription/translation suggested a partial correction of the molecular defect, because of the following: (i) DNA replication/RNA transcription errors resulting in restoration of the reading frame and/or (ii) {open_quotes}ribosomal frameshifting{close_quotes} resulting in the production of normal factor VIII polypeptide and, thus, in a milder than expected hemophilia A. All of these mechanisms probably were promoted by the longer run of adenines, A{sub 10} instead of A{sub 8}TA{sub 2}, after the delT. Errors in the complex steps of gene expression therefore may partially correct a severe frameshift defect and ameliorate an expected severe phenotype. 36 refs., 6 figs.
International Nuclear Information System (INIS)
Correia, Amanda Ribeiro; Rezende, Eduarda Alexandre; Iwahara, Akira; Oliveira, Antonio Eduardo de; Oliveira, Estela Maria de; Tauhata, Luiz; Chaves, Taina Olivieri
2012-01-01
To determine correction factors for the variation in volume of radiopharmaceuticals in containers of different geometries, comparing the influence of such factors on the determination of 99m Tc and 123 I activity with two types of calibrators - one with ionization chamber and another with Geiger-Mueller (G-M) detector -; and to evaluate calibrators performance in the measurement of 99m Tc and 1 '2 3 I activities. Materials and Methods: Eight calibrators, 10R glass vials, 3 and 5 mL plastic syringes and 99m Tc and 123 I solutions were utilized. The correction factors were determined with basis on practical measurements of the variation in the calibrators' response according to the volume of radionuclide solution in the glass vials. The performance was evaluated according to the acceptance criterion of +- 10% accuracy required by the Brazilian standard. Results: The variation of the calibrators' response according to the variation in radionuclide volume was reasonably greater in the calibrator with G-M detector. It was also greater for 123 I than for 99m Tc. Conclusion: The results confirm that the calibrators' response depends on the radionuclide volume contained in the vials. Such dependence is more critical for the calibrators equipped with G-M detector and for 123 I as compared with 99m Tc. (author)
Adan, N. F.; Soomro, D. M.
2017-01-01
Power factor correction capacitor (PFCC) is commonly installed in industrial applications for power factor correction (PFC). With the expanding use of non-linear equipment such as ASDs, power converters, etc., power factor (PF) improvement has become difficult due to the presence of harmonics. The resulting capacitive impedance of the PFCC may form a resonant circuit with the source inductive reactance at a certain frequency, which is likely to coincide with one of the harmonic frequency of the load. This condition will trigger large oscillatory currents and voltages that may stress the insulation and cause subsequent damage to the PFCC and equipment connected to the power system (PS). Besides, high PF cannot be achieved due to power distortion. This paper presents the design of a three-phase hybrid filter consisting of a single tuned passive filter (STPF) and shunt active power filter (SAPF) to mitigate harmonics and resonance in the PS through simulation using PSCAD/EMTDC software. SAPF was developed using p-q theory. The hybrid filter has resulted in significant improvement on both total harmonic distortion for voltage (THDV) and total demand distortion for current (TDDI) with maximum values of 2.93% and 9.84% respectively which were within the recommended IEEE 519-2014 standard limits. Regarding PF improvement, the combined filters have achieved PF close to desired PF at 0.95 for firing angle, α values up to 40°.
Model calculating annual mean atmospheric dispersion factor for coastal site of nuclear power plant
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper describes an atmospheric dispersion field experiment performed on the coastal site of nuclear power plant in the east part of China during 1995 to 1996. The three-dimension joint frequency are obtained by hourly observation of wind and temperature on a 100m high tower; the frequency of the “event day of land and sea breezes” are given by observation of surface wind and land and sea breezes; the diffusion parameters are got from measurements of turbulent and wind tunnel simulation test.A new model calculating the annual mean atmospheric dispersion factor for coastal site of nuclear power plant is developed and established.This model considers not only the effect from mixing release and mixed layer but also the effect from the internal boundary layer and variation of diffusion parameters due to the distance from coast.The comparison between results obtained by the new model and current model shows that the ratio of annual mean atmospheric dispersion factor gained by the new model and the current one is about 2.0.
Calculation of conversion factor of Kerma in the air for ambient dose equivalent in radiotherapy
International Nuclear Information System (INIS)
Lima, Marco Antonio Frota
2000-03-01
This work aims to estimate the average conversion factor of Kerma in air to H * (10) using photon beams coming from clinic linear accelerators, transmitted through concrete walls of a radiotherapic treatment room. The transmitted photon spectra by both 1 meter and 2 meters concrete walls, in an area of 40 x 40 cm 2 , were calculated when the primary beam impart in an angle of 0 deg. The (secondary) photon beams transmitted respectively by 0,5 meter, 1,0 meter, 1,0 meter and 2,0 meter concrete walls, after they scattered by an angle of 90 deg in a cylindric phantom inside the room, were also determined. Generally, 50 millions of histories were computed for each simulation made for the primary beam. For the 90 deg spread, the number of histories was 100 millions. The computational code used on this work was the MCNP4B. The most common clinic accelerators used on radiotheraphic treatments were used on this work CLINAC-4, CLINAC-6, CLINAC-18 and CLINAC-2500. From the spectra analysis obtained in this work, it was possible to dispose the conversion factor for realistic beams found in radiotherapeutic establishment. (author)
In Vivo Gene Therapy of Hemophilia B: Sustained Partial Correction in Factor IX-Deficient Dogs
Kay, Mark A.; Rothenberg, Steven; Landen, Charles N.; Bellinger, Dwight A.; Leland, Frances; Toman, Carol; Finegold, Milton; Thompson, Arthur R.; Read, M. S.; Brinkhous, Kenneth M.; Woo, Savio L. C.
1993-10-01
The liver represents a model organ for gene therapy. A method has been developed for hepatic gene transfer in vivo by the direct infusion of recombinant retroviral vectors into the portal vasculature, which results in the persistent expression of exogenous genes. To determine if these technologies are applicable for the treatment of hemophilia B patients, preclinical efficacy studies were done in a hemophilia B dog model. When the canine factor IX complementary DNA was transduced directly into the hepatocytes of affected dogs in vivo, the animals constitutively expressed low levels of canine factor IX for more than 5 months. Persistent expression of the clotting. factor resulted in reductions of whole blood clotting and partial thromboplastin times of the treated animals. Thus, long-term treatment of hemophilia B patients may be feasible by direct hepatic gene therapy in vivo.
International Nuclear Information System (INIS)
Mart, E.I.; Denham, D.H.; Thiede, M.E.
1993-12-01
This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project whose goal is to estimate the radiation dose that individuals could have received from emissions since 1944 at the U.S. Department of Energy's (DOE) Hanford Site near Richland, Washington. The HEDR Project is conducted by Battelle, Pacific Northwest Laboratories (BNW). One of the radionuclides emitted that would affect the radiation dose was iodine-131. This report describes in detail the reconstructed conversion and correction factors for historical measurements of iodine-131 in Hanford-area vegetation which was collected from the beginning of October 1945 through the end of December 1947
Martín, Kevin; F., Pablo; G., Diego; Sebastián, Javier; Álvarez, Santiago
2017-01-01
This work analyzes different options to implement low power consumption in Switching Mode Power Supplies (SMPSs) with Power Factor Correction (PFC) when they are in standby mode. The standard SMPSs for power levels higher than 100 W are made up of two stages: a classical PFC stage based on a Boost Converter operating in the Continuous Conduction Mode and a second stage based on any type of isolated DC-DC converter. The value of the resistive sensors needed by the PFC control stage determines ...
Kosar, Naveen; Mahmood, Tariq; Ayub, Khurshid
2017-12-01
Benchmark study has been carried out to find a cost effective and accurate method for bond dissociation energy (BDE) of carbon halogen (Csbnd X) bond. BDE of C-X bond plays a vital role in chemical reactions, particularly for kinetic barrier and thermochemistry etc. The compounds (1-16, Fig. 1) with Csbnd X bond used for current benchmark study are important reactants in organic, inorganic and bioorganic chemistry. Experimental data of Csbnd X bond dissociation energy is compared with theoretical results. The statistical analysis tools such as root mean square deviation (RMSD), standard deviation (SD), Pearson's correlation (R) and mean absolute error (MAE) are used for comparison. Overall, thirty-one density functionals from eight different classes of density functional theory (DFT) along with Pople and Dunning basis sets are evaluated. Among different classes of DFT, the dispersion corrected range separated hybrid GGA class along with 6-31G(d), 6-311G(d), aug-cc-pVDZ and aug-cc-pVTZ basis sets performed best for bond dissociation energy calculation of C-X bond. ωB97XD show the best performance with less deviations (RMSD, SD), mean absolute error (MAE) and a significant Pearson's correlation (R) when compared to experimental data. ωB97XD along with Pople basis set 6-311g(d) has RMSD, SD, R and MAE of 3.14 kcal mol-1, 3.05 kcal mol-1, 0.97 and -1.07 kcal mol-1, respectively.
Jethani, Jitendra; Dave, Paaraj; Jethani, Monica; Desai, Yogesh; Patel, Purvi
2016-01-01
To determine the applicability of central corneal thickness (CCT) based correction factor for non-contact tonometer (NCT) measured intraocular pressure (IOP) readings. A prospective, non-randomized study involved 346 eyes of 173 consecutive patients with age ⩾21 years undergoing laser-assisted in situ keratomileusis (LASIK) for myopia and/or myopic astigmatism. The CCT and IOP were measured before and after the LASIK procedure. The IOP pre and post-LASIK was compared after applying the correction factor for CCT. Patients not completing the 3 month postoperative follow-up were excluded. The median spherical equivalent before undergoing LASIK was -4.25D (inter-quartile range, -3.25D). The mean preoperative CCT was 536.82 ± 33.71 μm which reduced to 477.55 ± 39.3 μm (p < 0.01) post-LASIK. The mean IOP reduced from a preoperative value of 14.6 ± 2.32 mmHg to 10.64 ± 2.45 mmHg postoperatively (p < 0.01). On applying correction for the corneal thickness, the pre and postoperative IOP was 15.14 ± 2.8 mmHg and 15.37 ± 2.65 mmHg (p = 0.06) respectively with a strong positive correlation (r = 0.7, p < 0.01). Three hundred eyes (86.7%) had an absolute difference in IOP of less than 3.0 mmHg post-CCT correction which is within the retest variability of NCT. Only 46 eyes (13.3%) had an absolute difference of more than 3.0 mmHg. The modified Ehler's correction algorithm used in this study can be effectively applied in the normal IOP range in a majority of patients.
Energy Technology Data Exchange (ETDEWEB)
Silva Junior, I.A.; Xavier, M.; Siqueira, P.T.D.; Sordi, G.A.A.; Potiens, M.P.A., E-mail: iremarjr@gmail.com [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)
2017-07-01
In this work the uniformity of wide circular reference sources is evaluated. This kind of reference source is still widely used in Brazil. In previous works wide rectangular reference sources were analyzed and it was shown the importance of the application of correction factors in calibration procedures of radiation monitors. Now a transposition of the methods used formerly is performed, evaluating the uniformities of circular reference sources and calculating the associated correction factors. (author)