WorldWideScience

Sample records for correcting convolutional codes

  1. An upper bound on the number of errors corrected by a convolutional code

    DEFF Research Database (Denmark)

    Justesen, Jørn

    2000-01-01

    The number of errors that a convolutional codes can correct in a segment of the encoded sequence is upper bounded by the number of distinct syndrome sequences of the relevant length.......The number of errors that a convolutional codes can correct in a segment of the encoded sequence is upper bounded by the number of distinct syndrome sequences of the relevant length....

  2. Upper bounds on the number of errors corrected by a convolutional code

    DEFF Research Database (Denmark)

    Justesen, Jørn

    2004-01-01

    We derive upper bounds on the weights of error patterns that can be corrected by a convolutional code with given parameters, or equivalently we give bounds on the code rate for a given set of error patterns. The bounds parallel the Hamming bound for block codes by relating the number of error...

  3. Fundamentals of convolutional coding

    CERN Document Server

    Johannesson, Rolf

    2015-01-01

    Fundamentals of Convolutional Coding, Second Edition, regarded as a bible of convolutional coding brings you a clear and comprehensive discussion of the basic principles of this field * Two new chapters on low-density parity-check (LDPC) convolutional codes and iterative coding * Viterbi, BCJR, BEAST, list, and sequential decoding of convolutional codes * Distance properties of convolutional codes * Includes a downloadable solutions manual

  4. Supervised Convolutional Sparse Coding

    KAUST Repository

    Affara, Lama Ahmed

    2018-04-08

    Convolutional Sparse Coding (CSC) is a well-established image representation model especially suited for image restoration tasks. In this work, we extend the applicability of this model by proposing a supervised approach to convolutional sparse coding, which aims at learning discriminative dictionaries instead of purely reconstructive ones. We incorporate a supervised regularization term into the traditional unsupervised CSC objective to encourage the final dictionary elements to be discriminative. Experimental results show that using supervised convolutional learning results in two key advantages. First, we learn more semantically relevant filters in the dictionary and second, we achieve improved image reconstruction on unseen data.

  5. Efficient convolutional sparse coding

    Science.gov (United States)

    Wohlberg, Brendt

    2017-06-20

    Computationally efficient algorithms may be applied for fast dictionary learning solving the convolutional sparse coding problem in the Fourier domain. More specifically, efficient convolutional sparse coding may be derived within an alternating direction method of multipliers (ADMM) framework that utilizes fast Fourier transforms (FFT) to solve the main linear system in the frequency domain. Such algorithms may enable a significant reduction in computational cost over conventional approaches by implementing a linear solver for the most critical and computationally expensive component of the conventional iterative algorithm. The theoretical computational cost of the algorithm may be reduced from O(M.sup.3N) to O(MN log N), where N is the dimensionality of the data and M is the number of elements in the dictionary. This significant improvement in efficiency may greatly increase the range of problems that can practically be addressed via convolutional sparse representations.

  6. Convolutional coding techniques for data protection

    Science.gov (United States)

    Massey, J. L.

    1975-01-01

    Results of research on the use of convolutional codes in data communications are presented. Convolutional coding fundamentals are discussed along with modulation and coding interaction. Concatenated coding systems and data compression with convolutional codes are described.

  7. Adaptive decoding of convolutional codes

    Directory of Open Access Journals (Sweden)

    K. Hueske

    2007-06-01

    Full Text Available Convolutional codes, which are frequently used as error correction codes in digital transmission systems, are generally decoded using the Viterbi Decoder. On the one hand the Viterbi Decoder is an optimum maximum likelihood decoder, i.e. the most probable transmitted code sequence is obtained. On the other hand the mathematical complexity of the algorithm only depends on the used code, not on the number of transmission errors. To reduce the complexity of the decoding process for good transmission conditions, an alternative syndrome based decoder is presented. The reduction of complexity is realized by two different approaches, the syndrome zero sequence deactivation and the path metric equalization. The two approaches enable an easy adaptation of the decoding complexity for different transmission conditions, which results in a trade-off between decoding complexity and error correction performance.

  8. Adaptive decoding of convolutional codes

    Science.gov (United States)

    Hueske, K.; Geldmacher, J.; Götze, J.

    2007-06-01

    Convolutional codes, which are frequently used as error correction codes in digital transmission systems, are generally decoded using the Viterbi Decoder. On the one hand the Viterbi Decoder is an optimum maximum likelihood decoder, i.e. the most probable transmitted code sequence is obtained. On the other hand the mathematical complexity of the algorithm only depends on the used code, not on the number of transmission errors. To reduce the complexity of the decoding process for good transmission conditions, an alternative syndrome based decoder is presented. The reduction of complexity is realized by two different approaches, the syndrome zero sequence deactivation and the path metric equalization. The two approaches enable an easy adaptation of the decoding complexity for different transmission conditions, which results in a trade-off between decoding complexity and error correction performance.

  9. Strongly-MDS convolutional codes

    NARCIS (Netherlands)

    Gluesing-Luerssen, H; Rosenthal, J; Smarandache, R

    Maximum-distance separable (MDS) convolutional codes have the property that their free distance is maximal among all codes of the same rate and the same degree. In this paper, a class of MDS convolutional codes is introduced whose column distances reach the generalized Singleton bound at the

  10. Consensus Convolutional Sparse Coding

    KAUST Repository

    Choudhury, Biswarup

    2017-12-01

    Convolutional sparse coding (CSC) is a promising direction for unsupervised learning in computer vision. In contrast to recent supervised methods, CSC allows for convolutional image representations to be learned that are equally useful for high-level vision tasks and low-level image reconstruction and can be applied to a wide range of tasks without problem-specific retraining. Due to their extreme memory requirements, however, existing CSC solvers have so far been limited to low-dimensional problems and datasets using a handful of low-resolution example images at a time. In this paper, we propose a new approach to solving CSC as a consensus optimization problem, which lifts these limitations. By learning CSC features from large-scale image datasets for the first time, we achieve significant quality improvements in a number of imaging tasks. Moreover, the proposed method enables new applications in high-dimensional feature learning that has been intractable using existing CSC methods. This is demonstrated for a variety of reconstruction problems across diverse problem domains, including 3D multispectral demosaicing and 4D light field view synthesis.

  11. Consensus Convolutional Sparse Coding

    KAUST Repository

    Choudhury, Biswarup

    2017-04-11

    Convolutional sparse coding (CSC) is a promising direction for unsupervised learning in computer vision. In contrast to recent supervised methods, CSC allows for convolutional image representations to be learned that are equally useful for high-level vision tasks and low-level image reconstruction and can be applied to a wide range of tasks without problem-specific retraining. Due to their extreme memory requirements, however, existing CSC solvers have so far been limited to low-dimensional problems and datasets using a handful of low-resolution example images at a time. In this paper, we propose a new approach to solving CSC as a consensus optimization problem, which lifts these limitations. By learning CSC features from large-scale image datasets for the first time, we achieve significant quality improvements in a number of imaging tasks. Moreover, the proposed method enables new applications in high dimensional feature learning that has been intractable using existing CSC methods. This is demonstrated for a variety of reconstruction problems across diverse problem domains, including 3D multispectral demosaickingand 4D light field view synthesis.

  12. Consensus Convolutional Sparse Coding

    KAUST Repository

    Choudhury, Biswarup; Swanson, Robin; Heide, Felix; Wetzstein, Gordon; Heidrich, Wolfgang

    2017-01-01

    Convolutional sparse coding (CSC) is a promising direction for unsupervised learning in computer vision. In contrast to recent supervised methods, CSC allows for convolutional image representations to be learned that are equally useful for high-level vision tasks and low-level image reconstruction and can be applied to a wide range of tasks without problem-specific retraining. Due to their extreme memory requirements, however, existing CSC solvers have so far been limited to low-dimensional problems and datasets using a handful of low-resolution example images at a time. In this paper, we propose a new approach to solving CSC as a consensus optimization problem, which lifts these limitations. By learning CSC features from large-scale image datasets for the first time, we achieve significant quality improvements in a number of imaging tasks. Moreover, the proposed method enables new applications in high-dimensional feature learning that has been intractable using existing CSC methods. This is demonstrated for a variety of reconstruction problems across diverse problem domains, including 3D multispectral demosaicing and 4D light field view synthesis.

  13. Design of convolutional tornado code

    Science.gov (United States)

    Zhou, Hui; Yang, Yao; Gao, Hongmin; Tan, Lu

    2017-09-01

    As a linear block code, the traditional tornado (tTN) code is inefficient in burst-erasure environment and its multi-level structure may lead to high encoding/decoding complexity. This paper presents a convolutional tornado (cTN) code which is able to improve the burst-erasure protection capability by applying the convolution property to the tTN code, and reduce computational complexity by abrogating the multi-level structure. The simulation results show that cTN code can provide a better packet loss protection performance with lower computation complexity than tTN code.

  14. Supervised Convolutional Sparse Coding

    KAUST Repository

    Affara, Lama Ahmed; Ghanem, Bernard; Wonka, Peter

    2018-01-01

    coding, which aims at learning discriminative dictionaries instead of purely reconstructive ones. We incorporate a supervised regularization term into the traditional unsupervised CSC objective to encourage the final dictionary elements

  15. Convolutional Codes with Maximum Column Sum Rank for Network Streaming

    OpenAIRE

    Mahmood, Rafid; Badr, Ahmed; Khisti, Ashish

    2015-01-01

    The column Hamming distance of a convolutional code determines the error correction capability when streaming over a class of packet erasure channels. We introduce a metric known as the column sum rank, that parallels column Hamming distance when streaming over a network with link failures. We prove rank analogues of several known column Hamming distance properties and introduce a new family of convolutional codes that maximize the column sum rank up to the code memory. Our construction invol...

  16. The general theory of convolutional codes

    Science.gov (United States)

    Mceliece, R. J.; Stanley, R. P.

    1993-01-01

    This article presents a self-contained introduction to the algebraic theory of convolutional codes. This introduction is partly a tutorial, but at the same time contains a number of new results which will prove useful for designers of advanced telecommunication systems. Among the new concepts introduced here are the Hilbert series for a convolutional code and the class of compact codes.

  17. Symbol synchronization in convolutionally coded systems

    Science.gov (United States)

    Baumert, L. D.; Mceliece, R. J.; Van Tilborg, H. C. A.

    1979-01-01

    Alternate symbol inversion is sometimes applied to the output of convolutional encoders to guarantee sufficient richness of symbol transition for the receiver symbol synchronizer. A bound is given for the length of the transition-free symbol stream in such systems, and those convolutional codes are characterized in which arbitrarily long transition free runs occur.

  18. Quasi-cyclic unit memory convolutional codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Paaske, Erik; Ballan, Mark

    1990-01-01

    Unit memory convolutional codes with generator matrices, which are composed of circulant submatrices, are introduced. This structure facilitates the analysis of efficient search for good codes. Equivalences among such codes and some of the basic structural properties are discussed. In particular......, catastrophic encoders and minimal encoders are characterized and dual codes treated. Further, various distance measures are discussed, and a number of good codes, some of which result from efficient computer search and some of which result from known block codes, are presented...

  19. Feedback equivalence of convolutional codes over finite rings

    Directory of Open Access Journals (Sweden)

    DeCastro-García Noemí

    2017-12-01

    Full Text Available The approach to convolutional codes from the linear systems point of view provides us with effective tools in order to construct convolutional codes with adequate properties that let us use them in many applications. In this work, we have generalized feedback equivalence between families of convolutional codes and linear systems over certain rings, and we show that every locally Brunovsky linear system may be considered as a representation of a code under feedback convolutional equivalence.

  20. Decoding LDPC Convolutional Codes on Markov Channels

    Directory of Open Access Journals (Sweden)

    Kashyap Manohar

    2008-01-01

    Full Text Available Abstract This paper describes a pipelined iterative technique for joint decoding and channel state estimation of LDPC convolutional codes over Markov channels. Example designs are presented for the Gilbert-Elliott discrete channel model. We also compare the performance and complexity of our algorithm against joint decoding and state estimation of conventional LDPC block codes. Complexity analysis reveals that our pipelined algorithm reduces the number of operations per time step compared to LDPC block codes, at the expense of increased memory and latency. This tradeoff is favorable for low-power applications.

  1. Decoding LDPC Convolutional Codes on Markov Channels

    Directory of Open Access Journals (Sweden)

    Chris Winstead

    2008-04-01

    Full Text Available This paper describes a pipelined iterative technique for joint decoding and channel state estimation of LDPC convolutional codes over Markov channels. Example designs are presented for the Gilbert-Elliott discrete channel model. We also compare the performance and complexity of our algorithm against joint decoding and state estimation of conventional LDPC block codes. Complexity analysis reveals that our pipelined algorithm reduces the number of operations per time step compared to LDPC block codes, at the expense of increased memory and latency. This tradeoff is favorable for low-power applications.

  2. Codeword Structure Analysis for LDPC Convolutional Codes

    Directory of Open Access Journals (Sweden)

    Hua Zhou

    2015-12-01

    Full Text Available The codewords of a low-density parity-check (LDPC convolutional code (LDPC-CC are characterised into structured and non-structured. The number of the structured codewords is dominated by the size of the polynomial syndrome former matrix H T ( D , while the number of the non-structured ones depends on the particular monomials or polynomials in H T ( D . By evaluating the relationship of the codewords between the mother code and its super codes, the low weight non-structured codewords in the super codes can be eliminated by appropriately choosing the monomials or polynomials in H T ( D , resulting in improved distance spectrum of the mother code.

  3. Error-correction coding

    Science.gov (United States)

    Hinds, Erold W. (Principal Investigator)

    1996-01-01

    This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.

  4. Error-correction coding for digital communications

    Science.gov (United States)

    Clark, G. C., Jr.; Cain, J. B.

    This book is written for the design engineer who must build the coding and decoding equipment and for the communication system engineer who must incorporate this equipment into a system. It is also suitable as a senior-level or first-year graduate text for an introductory one-semester course in coding theory. Fundamental concepts of coding are discussed along with group codes, taking into account basic principles, practical constraints, performance computations, coding bounds, generalized parity check codes, polynomial codes, and important classes of group codes. Other topics explored are related to simple nonalgebraic decoding techniques for group codes, soft decision decoding of block codes, algebraic techniques for multiple error correction, the convolutional code structure and Viterbi decoding, syndrome decoding techniques, and sequential decoding techniques. System applications are also considered, giving attention to concatenated codes, coding for the white Gaussian noise channel, interleaver structures for coded systems, and coding for burst noise channels.

  5. Polynomial theory of error correcting codes

    CERN Document Server

    Cancellieri, Giovanni

    2015-01-01

    The book offers an original view on channel coding, based on a unitary approach to block and convolutional codes for error correction. It presents both new concepts and new families of codes. For example, lengthened and modified lengthened cyclic codes are introduced as a bridge towards time-invariant convolutional codes and their extension to time-varying versions. The novel families of codes include turbo codes and low-density parity check (LDPC) codes, the features of which are justified from the structural properties of the component codes. Design procedures for regular LDPC codes are proposed, supported by the presented theory. Quasi-cyclic LDPC codes, in block or convolutional form, represent one of the most original contributions of the book. The use of more than 100 examples allows the reader gradually to gain an understanding of the theory, and the provision of a list of more than 150 definitions, indexed at the end of the book, permits rapid location of sought information.

  6. Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes

    International Nuclear Information System (INIS)

    Houshmand, Monireh; Hosseini-Khayat, Saied

    2011-01-01

    Quantum convolutional codes, like their classical counterparts, promise to offer higher error correction performance than block codes of equivalent encoding complexity, and are expected to find important applications in reliable quantum communication where a continuous stream of qubits is transmitted. Grassl and Roetteler devised an algorithm to encode a quantum convolutional code with a ''pearl-necklace'' encoder. Despite their algorithm's theoretical significance as a neat way of representing quantum convolutional codes, it is not well suited to practical realization. In fact, there is no straightforward way to implement any given pearl-necklace structure. This paper closes the gap between theoretical representation and practical implementation. In our previous work, we presented an efficient algorithm to find a minimal-memory realization of a pearl-necklace encoder for Calderbank-Shor-Steane (CSS) convolutional codes. This work is an extension of our previous work and presents an algorithm for turning a pearl-necklace encoder for a general (non-CSS) quantum convolutional code into a realizable quantum convolutional encoder. We show that a minimal-memory realization depends on the commutativity relations between the gate strings in the pearl-necklace encoder. We find a realization by means of a weighted graph which details the noncommutative paths through the pearl necklace. The weight of the longest path in this graph is equal to the minimal amount of memory needed to implement the encoder. The algorithm has a polynomial-time complexity in the number of gate strings in the pearl-necklace encoder.

  7. Error Correcting Codes

    Indian Academy of Sciences (India)

    Science and Automation at ... the Reed-Solomon code contained 223 bytes of data, (a byte ... then you have a data storage system with error correction, that ..... practical codes, storing such a table is infeasible, as it is generally too large.

  8. Error Correcting Codes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Error Correcting Codes - Reed Solomon Codes. Priti Shankar. Series Article Volume 2 Issue 3 March ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  9. High Order Tensor Formulation for Convolutional Sparse Coding

    KAUST Repository

    Bibi, Adel Aamer; Ghanem, Bernard

    2017-01-01

    Convolutional sparse coding (CSC) has gained attention for its successful role as a reconstruction and a classification tool in the computer vision and machine learning community. Current CSC methods can only reconstruct singlefeature 2D images

  10. Error Correcting Codes -34 ...

    Indian Academy of Sciences (India)

    information and coding theory. A large scale relay computer had failed to deliver the expected results due to a hardware fault. Hamming, one of the active proponents of computer usage, was determined to find an efficient means by which computers could detect and correct their own faults. A mathematician by train-.

  11. Convolutional cylinder-type block-circulant cycle codes

    Directory of Open Access Journals (Sweden)

    Mohammad Gholami

    2013-06-01

    Full Text Available In this paper, we consider a class of column-weight two quasi-cyclic low-density paritycheck codes in which the girth can be large enough, as an arbitrary multiple of 8. Then we devote a convolutional form to these codes, such that their generator matrix can be obtained by elementary row and column operations on the parity-check matrix. Finally, we show that the free distance of the convolutional codes is equal to the minimum distance of their block counterparts.

  12. An Implementation of Error Minimization Data Transmission in OFDM using Modified Convolutional Code

    Directory of Open Access Journals (Sweden)

    Hendy Briantoro

    2016-04-01

    Full Text Available This paper presents about error minimization in OFDM system. In conventional system, usually using channel coding such as BCH Code or Convolutional Code. But, performance BCH Code or Convolutional Code is not good in implementation of OFDM System. Error bits of OFDM system without channel coding is 5.77%. Then, we used convolutional code with code rate 1/2, it can reduce error bitsonly up to 3.85%. So, we proposed OFDM system with Modified Convolutional Code. In this implementation, we used Software Define Radio (SDR, namely Universal Software Radio Peripheral (USRP NI 2920 as the transmitter and receiver. The result of OFDM system using Modified Convolutional Code with code rate is able recover all character received so can decrease until 0% error bit. Increasing performance of Modified Convolutional Code is about 1 dB in BER of 10-4 from BCH Code and Convolutional Code. So, performance of Modified Convolutional better than BCH Code or Convolutional Code. Keywords: OFDM, BCH Code, Convolutional Code, Modified Convolutional Code, SDR, USRP

  13. Symbol Stream Combining in a Convolutionally Coded System

    Science.gov (United States)

    Mceliece, R. J.; Pollara, F.; Swanson, L.

    1985-01-01

    Symbol stream combining has been proposed as a method for arraying signals received at different antennas. If convolutional coding and Viterbi decoding are used, it is shown that a Viterbi decoder based on the proposed weighted sum of symbol streams yields maximum likelihood decisions.

  14. Fast convolutional sparse coding using matrix inversion lemma

    Czech Academy of Sciences Publication Activity Database

    Šorel, Michal; Šroubek, Filip

    2016-01-01

    Roč. 55, č. 1 (2016), s. 44-51 ISSN 1051-2004 R&D Projects: GA ČR GA13-29225S Institutional support: RVO:67985556 Keywords : Convolutional sparse coding * Feature learning * Deconvolution networks * Shift-invariant sparse coding Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.337, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/sorel-0459332.pdf

  15. Truncation Depth Rule-of-Thumb for Convolutional Codes

    Science.gov (United States)

    Moision, Bruce

    2009-01-01

    In this innovation, it is shown that a commonly used rule of thumb (that the truncation depth of a convolutional code should be five times the memory length, m, of the code) is accurate only for rate 1/2 codes. In fact, the truncation depth should be 2.5 m/(1 - r), where r is the code rate. The accuracy of this new rule is demonstrated by tabulating the distance properties of a large set of known codes. This new rule was derived by bounding the losses due to truncation as a function of the code rate. With regard to particular codes, a good indicator of the required truncation depth is the path length at which all paths that diverge from a particular path have accumulated the minimum distance of the code. It is shown that the new rule of thumb provides an accurate prediction of this depth for codes of varying rates.

  16. A quantum algorithm for Viterbi decoding of classical convolutional codes

    OpenAIRE

    Grice, Jon R.; Meyer, David A.

    2014-01-01

    We present a quantum Viterbi algorithm (QVA) with better than classical performance under certain conditions. In this paper the proposed algorithm is applied to decoding classical convolutional codes, for instance; large constraint length $Q$ and short decode frames $N$. Other applications of the classical Viterbi algorithm where $Q$ is large (e.g. speech processing) could experience significant speedup with the QVA. The QVA exploits the fact that the decoding trellis is similar to the butter...

  17. A MacWilliams Identity for Convolutional Codes: The General Case

    OpenAIRE

    Gluesing-Luerssen, Heide; Schneider, Gert

    2008-01-01

    A MacWilliams Identity for convolutional codes will be established. It makes use of the weight adjacency matrices of the code and its dual, based on state space realizations (the controller canonical form) of the codes in question. The MacWilliams Identity applies to various notions of duality appearing in the literature on convolutional coding theory.

  18. Error correcting coding for OTN

    DEFF Research Database (Denmark)

    Justesen, Jørn; Larsen, Knud J.; Pedersen, Lars A.

    2010-01-01

    Forward error correction codes for 100 Gb/s optical transmission are currently receiving much attention from transport network operators and technology providers. We discuss the performance of hard decision decoding using product type codes that cover a single OTN frame or a small number...... of such frames. In particular we argue that a three-error correcting BCH is the best choice for the component code in such systems....

  19. Fast Convolutional Sparse Coding in the Dual Domain

    KAUST Repository

    Affara, Lama Ahmed

    2017-09-27

    Convolutional sparse coding (CSC) is an important building block of many computer vision applications ranging from image and video compression to deep learning. We present two contributions to the state of the art in CSC. First, we significantly speed up the computation by proposing a new optimization framework that tackles the problem in the dual domain. Second, we extend the original formulation to higher dimensions in order to process a wider range of inputs, such as color inputs, or HOG features. Our results show a significant speedup compared to the current state of the art in CSC.

  20. Fast Convolutional Sparse Coding in the Dual Domain

    KAUST Repository

    Affara, Lama Ahmed; Ghanem, Bernard; Wonka, Peter

    2017-01-01

    Convolutional sparse coding (CSC) is an important building block of many computer vision applications ranging from image and video compression to deep learning. We present two contributions to the state of the art in CSC. First, we significantly speed up the computation by proposing a new optimization framework that tackles the problem in the dual domain. Second, we extend the original formulation to higher dimensions in order to process a wider range of inputs, such as color inputs, or HOG features. Our results show a significant speedup compared to the current state of the art in CSC.

  1. Linear network error correction coding

    CERN Document Server

    Guang, Xuan

    2014-01-01

    There are two main approaches in the theory of network error correction coding. In this SpringerBrief, the authors summarize some of the most important contributions following the classic approach, which represents messages by sequences?similar to algebraic coding,?and also briefly discuss the main results following the?other approach,?that uses the theory of rank metric codes for network error correction of representing messages by subspaces. This book starts by establishing the basic linear network error correction (LNEC) model and then characterizes two equivalent descriptions. Distances an

  2. Error Correcting Codes

    Indian Academy of Sciences (India)

    successful consumer products of all time - the Compact Disc. (CD) digital audio .... We can make ... only 2 t additional parity check symbols are required, to be able to correct t .... display information (contah'ling music related data and a table.

  3. Performance Analysis of DPSK Signals with Selection Combining and Convolutional Coding in Fading Channel

    National Research Council Canada - National Science Library

    Ong, Choon

    1998-01-01

    The performance analysis of a differential phase shift keyed (DPSK) communications system, operating in a Rayleigh fading environment, employing convolutional coding and diversity processing is presented...

  4. High Order Tensor Formulation for Convolutional Sparse Coding

    KAUST Repository

    Bibi, Adel Aamer

    2017-12-25

    Convolutional sparse coding (CSC) has gained attention for its successful role as a reconstruction and a classification tool in the computer vision and machine learning community. Current CSC methods can only reconstruct singlefeature 2D images independently. However, learning multidimensional dictionaries and sparse codes for the reconstruction of multi-dimensional data is very important, as it examines correlations among all the data jointly. This provides more capacity for the learned dictionaries to better reconstruct data. In this paper, we propose a generic and novel formulation for the CSC problem that can handle an arbitrary order tensor of data. Backed with experimental results, our proposed formulation can not only tackle applications that are not possible with standard CSC solvers, including colored video reconstruction (5D- tensors), but it also performs favorably in reconstruction with much fewer parameters as compared to naive extensions of standard CSC to multiple features/channels.

  5. Concatenated coding systems employing a unit-memory convolutional code and a byte-oriented decoding algorithm

    Science.gov (United States)

    Lee, L.-N.

    1977-01-01

    Concatenated coding systems utilizing a convolutional code as the inner code and a Reed-Solomon code as the outer code are considered. In order to obtain very reliable communications over a very noisy channel with relatively modest coding complexity, it is proposed to concatenate a byte-oriented unit-memory convolutional code with an RS outer code whose symbol size is one byte. It is further proposed to utilize a real-time minimal-byte-error probability decoding algorithm, together with feedback from the outer decoder, in the decoder for the inner convolutional code. The performance of the proposed concatenated coding system is studied, and the improvement over conventional concatenated systems due to each additional feature is isolated.

  6. Biometrics encryption combining palmprint with two-layer error correction codes

    Science.gov (United States)

    Li, Hengjian; Qiu, Jian; Dong, Jiwen; Feng, Guang

    2017-07-01

    To bridge the gap between the fuzziness of biometrics and the exactitude of cryptography, based on combining palmprint with two-layer error correction codes, a novel biometrics encryption method is proposed. Firstly, the randomly generated original keys are encoded by convolutional and cyclic two-layer coding. The first layer uses a convolution code to correct burst errors. The second layer uses cyclic code to correct random errors. Then, the palmprint features are extracted from the palmprint images. Next, they are fused together by XORing operation. The information is stored in a smart card. Finally, the original keys extraction process is the information in the smart card XOR the user's palmprint features and then decoded with convolutional and cyclic two-layer code. The experimental results and security analysis show that it can recover the original keys completely. The proposed method is more secure than a single password factor, and has higher accuracy than a single biometric factor.

  7. A quantum algorithm for Viterbi decoding of classical convolutional codes

    Science.gov (United States)

    Grice, Jon R.; Meyer, David A.

    2015-07-01

    We present a quantum Viterbi algorithm (QVA) with better than classical performance under certain conditions. In this paper, the proposed algorithm is applied to decoding classical convolutional codes, for instance, large constraint length and short decode frames . Other applications of the classical Viterbi algorithm where is large (e.g., speech processing) could experience significant speedup with the QVA. The QVA exploits the fact that the decoding trellis is similar to the butterfly diagram of the fast Fourier transform, with its corresponding fast quantum algorithm. The tensor-product structure of the butterfly diagram corresponds to a quantum superposition that we show can be efficiently prepared. The quantum speedup is possible because the performance of the QVA depends on the fanout (number of possible transitions from any given state in the hidden Markov model) which is in general much less than . The QVA constructs a superposition of states which correspond to all legal paths through the decoding lattice, with phase as a function of the probability of the path being taken given received data. A specialized amplitude amplification procedure is applied one or more times to recover a superposition where the most probable path has a high probability of being measured.

  8. Fast space-varying convolution using matrix source coding with applications to camera stray light reduction.

    Science.gov (United States)

    Wei, Jianing; Bouman, Charles A; Allebach, Jan P

    2014-05-01

    Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy.

  9. A MacWilliams Identity for Convolutional Codes : The General Case

    NARCIS (Netherlands)

    Gluesing-Luerssen, Heide; Schneider, Gert

    A MacWilliams Identity for convolutional codes will be established. It makes use of the weight adjacency matrices of the code and its dual, based on state space realizations (the controller canonical form) of the codes in question. The MacWilliams Identity applies to various notions of duality

  10. Convolutional Sparse Coding for Static and Dynamic Images Analysis

    Directory of Open Access Journals (Sweden)

    B. A. Knyazev

    2014-01-01

    Full Text Available The objective of this work is to improve performance of static and dynamic objects recognition. For this purpose a new image representation model and a transformation algorithm are proposed. It is examined and illustrated that limitations of previous methods make it difficult to achieve this objective. Static images, specifically handwritten digits of the widely used MNIST dataset, are the primary focus of this work. Nevertheless, preliminary qualitative results of image sequences analysis based on the suggested model are presented.A general analytical form of the Gabor function, often employed to generate filters, is described and discussed. In this research, this description is required for computing parameters of responses returned by our algorithm. The recursive convolution operator is introduced, which allows extracting free shape features of visual objects. The developed parametric representation model is compared with sparse coding based on energy function minimization.In the experimental part of this work, errors of estimating the parameters of responses are determined. Also, parameters statistics and their correlation coefficients for more than 106 responses extracted from the MNIST dataset are calculated. It is demonstrated that these data correspond well with previous research studies on Gabor filters as well as with works on visual cortex primary cells of mammals, in which similar responses were observed. A comparative test of the developed model with three other approaches is conducted; speed and accuracy scores of handwritten digits classification are presented. A support vector machine with a linear or radial basic function is used for classification of images and their representations while principal component analysis is used in some cases to prepare data beforehand. High accuracy is not attained due to the specific difficulties of combining our model with a support vector machine (a 3.99% error rate. However, another method is

  11. Experimental demonstration of nonbinary LDPC convolutional codes for DP-64QAM/256QAM

    NARCIS (Netherlands)

    Koike-Akino, T.; Sugihara, K.; Millar, D.S.; Pajovic, M.; Matsumoto, W.; Alvarado, A.; Maher, R.; Lavery, D.; Paskov, M.; Kojima, K.; Parsons, K.; Thomsen, B.C.; Savory, S.J.; Bayvel, P.

    2016-01-01

    We show the great potential of nonbinary LDPC convolutional codes (NB-LDPC-CC) with low-latency windowed decoding. It is experimentally demonstrated that NB-LDPC-CC can offer a performance improvement of up to 5 dB compared with binary coding.

  12. Iterative optimization of quantum error correcting codes

    International Nuclear Information System (INIS)

    Reimpell, M.; Werner, R.F.

    2005-01-01

    We introduce a convergent iterative algorithm for finding the optimal coding and decoding operations for an arbitrary noisy quantum channel. This algorithm does not require any error syndrome to be corrected completely, and hence also finds codes outside the usual Knill-Laflamme definition of error correcting codes. The iteration is shown to improve the figure of merit 'channel fidelity' in every step

  13. Space-Time Convolutional Codes over Finite Fields and Rings for Systems with Large Diversity Order

    Directory of Open Access Journals (Sweden)

    B. F. Uchôa-Filho

    2008-06-01

    Full Text Available We propose a convolutional encoder over the finite ring of integers modulo pk,ℤpk, where p is a prime number and k is any positive integer, to generate a space-time convolutional code (STCC. Under this structure, we prove three properties related to the generator matrix of the convolutional code that can be used to simplify the code search procedure for STCCs over ℤpk. Some STCCs of large diversity order (≥4 designed under the trace criterion for n=2,3, and 4 transmit antennas are presented for various PSK signal constellations.

  14. Advanced hardware design for error correcting codes

    CERN Document Server

    Coussy, Philippe

    2015-01-01

    This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book’s chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. • Examines how to optimize the architecture of hardware design for error correcting codes; • Presents error correction codes from theory to optimized architecture for the current and the next generation standards; • Provides coverage of industrial user needs advanced error correcting techniques.

  15. Alternate symbol inversion for improved symbol synchronization in convolutionally coded systems

    Science.gov (United States)

    Simon, M. K.; Smith, J. G.

    1980-01-01

    Inverting alternate symbols of the encoder output of a convolutionally coded system provides sufficient density of symbol transitions to guarantee adequate symbol synchronizer performance, a guarantee otherwise lacking. Although alternate symbol inversion may increase or decrease the average transition density, depending on the data source model, it produces a maximum number of contiguous symbols without transition for a particular class of convolutional codes, independent of the data source model. Further, this maximum is sufficiently small to guarantee acceptable symbol synchronizer performance for typical applications. Subsequent inversion of alternate detected symbols permits proper decoding.

  16. Further results on binary convolutional codes with an optimum distance profile

    DEFF Research Database (Denmark)

    Johannesson, Rolf; Paaske, Erik

    1978-01-01

    Fixed binary convolutional codes are considered which are simultaneously optimal or near-optimal according to three criteria: namely, distance profiled, free distanced_{ infty}, and minimum number of weightd_{infty}paths. It is shown how the optimum distance profile criterion can be used to limit...... codes. As a counterpart to quick-look-in (QLI) codes which are not "transparent," we introduce rateR = 1/2easy-look-in-transparent (ELIT) codes with a feedforward inverse(1 + D,D). In general, ELIT codes haved_{infty}superior to that of QLI codes....

  17. Off-resonance artifacts correction with convolution in k-space (ORACLE).

    Science.gov (United States)

    Lin, Wei; Huang, Feng; Simonotto, Enrico; Duensing, George R; Reykowski, Arne

    2012-06-01

    Off-resonance artifacts hinder the wider applicability of echo-planar imaging and non-Cartesian MRI methods such as radial and spiral. In this work, a general and rapid method is proposed for off-resonance artifacts correction based on data convolution in k-space. The acquired k-space is divided into multiple segments based on their acquisition times. Off-resonance-induced artifact within each segment is removed by applying a convolution kernel, which is the Fourier transform of an off-resonance correcting spatial phase modulation term. The field map is determined from the inverse Fourier transform of a basis kernel, which is calibrated from data fitting in k-space. The technique was demonstrated in phantom and in vivo studies for radial, spiral and echo-planar imaging datasets. For radial acquisitions, the proposed method allows the self-calibration of the field map from the imaging data, when an alternating view-angle ordering scheme is used. An additional advantage for off-resonance artifacts correction based on data convolution in k-space is the reusability of convolution kernels to images acquired with the same sequence but different contrasts. Copyright © 2011 Wiley-Liss, Inc.

  18. Critical lengths of error events in convolutional codes

    DEFF Research Database (Denmark)

    Justesen, Jørn

    1994-01-01

    If the calculation of the critical length is based on the expurgated exponent, the length becomes nonzero for low error probabilities. This result applies to typical long codes, but it may also be useful for modeling error events in specific codes......If the calculation of the critical length is based on the expurgated exponent, the length becomes nonzero for low error probabilities. This result applies to typical long codes, but it may also be useful for modeling error events in specific codes...

  19. Critical Lengths of Error Events in Convolutional Codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Andersen, Jakob Dahl

    1998-01-01

    If the calculation of the critical length is based on the expurgated exponent, the length becomes nonzero for low error probabilities. This result applies to typical long codes, but it may also be useful for modeling error events in specific codes......If the calculation of the critical length is based on the expurgated exponent, the length becomes nonzero for low error probabilities. This result applies to typical long codes, but it may also be useful for modeling error events in specific codes...

  20. Continuous-variable quantum erasure correcting code

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Sabuncu, Metin; Huck, Alexander

    2010-01-01

    We experimentally demonstrate a continuous variable quantum erasure-correcting code, which protects coherent states of light against complete erasure. The scheme encodes two coherent states into a bi-party entangled state, and the resulting 4-mode code is conveyed through 4 independent channels...

  1. Real-time minimal-bit-error probability decoding of convolutional codes

    Science.gov (United States)

    Lee, L.-N.

    1974-01-01

    A recursive procedure is derived for decoding of rate R = 1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit, subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e., fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications, such as in the inner coding system for concatenated coding.

  2. Real-time minimal bit error probability decoding of convolutional codes

    Science.gov (United States)

    Lee, L. N.

    1973-01-01

    A recursive procedure is derived for decoding of rate R=1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e. fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications such as in the inner coding system for concatenated coding.

  3. Statistical mechanics of error-correcting codes

    Science.gov (United States)

    Kabashima, Y.; Saad, D.

    1999-01-01

    We investigate the performance of error-correcting codes, where the code word comprises products of K bits selected from the original message and decoding is carried out utilizing a connectivity tensor with C connections per index. Shannon's bound for the channel capacity is recovered for large K and zero temperature when the code rate K/C is finite. Close to optimal error-correcting capability is obtained for finite K and C. We examine the finite-temperature case to assess the use of simulated annealing for decoding and extend the analysis to accommodate other types of noisy channels.

  4. Convolutional Code Based PAPR Reduction Scheme for Multicarrier Transmission with Higher Number of Subcarriers

    Directory of Open Access Journals (Sweden)

    SAJJAD ALIMEMON

    2017-10-01

    Full Text Available Multicarrier transmission technique has become a prominent transmission technique in high-speed wireless communication systems. It is due to its frequency diversity,small inter-symbol interference in the multipath fading channel, simple equalizer structure, and high bandwidth efficiency. Nevertheless, in thetime domain, multicarrier transmission signal has high PAPR (Peak-to-Average Power Ratio thatinterprets to low power amplifier efficiencies. To decrease the PAPR, a CCSLM (Convolutional Code Selective Mapping scheme for multicarrier transmission with a high number of subcarriers is proposed in this paper. Proposed scheme is based on SLM method and employs interleaver and convolutional coding. Related works on the PAPR reduction have considered either 128 or 256 number of subcarriers. However, PAPR of multicarrier transmission signal will increase as a number of subcarriers increases. The proposed method achieves significant PAPR reduction for ahigher number of subcarriers as well as better power amplifier efficiency. Simulation outcomes validate the usefulness of projected scheme.

  5. A Systematic Approach to Modified BCJR MAP Algorithms for Convolutional Codes

    Directory of Open Access Journals (Sweden)

    Patenaude François

    2006-01-01

    Full Text Available Since Berrou, Glavieux and Thitimajshima published their landmark paper in 1993, different modified BCJR MAP algorithms have appeared in the literature. The existence of a relatively large number of similar but different modified BCJR MAP algorithms, derived using the Markov chain properties of convolutional codes, naturally leads to the following questions. What is the relationship among the different modified BCJR MAP algorithms? What are their relative performance, computational complexities, and memory requirements? In this paper, we answer these questions. We derive systematically four major modified BCJR MAP algorithms from the BCJR MAP algorithm using simple mathematical transformations. The connections between the original and the four modified BCJR MAP algorithms are established. A detailed analysis of the different modified BCJR MAP algorithms shows that they have identical computational complexities and memory requirements. Computer simulations demonstrate that the four modified BCJR MAP algorithms all have identical performance to the BCJR MAP algorithm.

  6. Imaging in scattering media using correlation image sensors and sparse convolutional coding

    KAUST Repository

    Heide, Felix; Xiao, Lei; Kolb, Andreas; Hullin, Matthias B.; Heidrich, Wolfgang

    2014-01-01

    Correlation image sensors have recently become popular low-cost devices for time-of-flight, or range cameras. They usually operate under the assumption of a single light path contributing to each pixel. We show that a more thorough analysis of the sensor data from correlation sensors can be used can be used to analyze the light transport in much more complex environments, including applications for imaging through scattering and turbid media. The key of our method is a new convolutional sparse coding approach for recovering transient (light-in-flight) images from correlation image sensors. This approach is enabled by an analysis of sparsity in complex transient images, and the derivation of a new physically-motivated model for transient images with drastically improved sparsity.

  7. Imaging in scattering media using correlation image sensors and sparse convolutional coding

    KAUST Repository

    Heide, Felix

    2014-10-17

    Correlation image sensors have recently become popular low-cost devices for time-of-flight, or range cameras. They usually operate under the assumption of a single light path contributing to each pixel. We show that a more thorough analysis of the sensor data from correlation sensors can be used can be used to analyze the light transport in much more complex environments, including applications for imaging through scattering and turbid media. The key of our method is a new convolutional sparse coding approach for recovering transient (light-in-flight) images from correlation image sensors. This approach is enabled by an analysis of sparsity in complex transient images, and the derivation of a new physically-motivated model for transient images with drastically improved sparsity.

  8. Constrained Convolutional Sparse Coding for Parametric Based Reconstruction of Line Drawings

    KAUST Repository

    Shaheen, Sara

    2017-12-25

    Convolutional sparse coding (CSC) plays an essential role in many computer vision applications ranging from image compression to deep learning. In this work, we spot the light on a new application where CSC can effectively serve, namely line drawing analysis. The process of drawing a line drawing can be approximated as the sparse spatial localization of a number of typical basic strokes, which in turn can be cast as a non-standard CSC model that considers the line drawing formation process from parametric curves. These curves are learned to optimize the fit between the model and a specific set of line drawings. Parametric representation of sketches is vital in enabling automatic sketch analysis, synthesis and manipulation. A couple of sketch manipulation examples are demonstrated in this work. Consequently, our novel method is expected to provide a reliable and automatic method for parametric sketch description. Through experiments, we empirically validate the convergence of our method to a feasible solution.

  9. Three-Dimensional Terahertz Coded-Aperture Imaging Based on Matched Filtering and Convolutional Neural Network.

    Science.gov (United States)

    Chen, Shuo; Luo, Chenggao; Wang, Hongqiang; Deng, Bin; Cheng, Yongqiang; Zhuang, Zhaowen

    2018-04-26

    As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI) can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. However, there are still two problems in three-dimensional (3D) TCAI. Firstly, the large-scale reference-signal matrix based on meshing the 3D imaging area creates a heavy computational burden, thus leading to unsatisfactory efficiency. Secondly, it is difficult to resolve the target under low signal-to-noise ratio (SNR). In this paper, we propose a 3D imaging method based on matched filtering (MF) and convolutional neural network (CNN), which can reduce the computational burden and achieve high-resolution imaging for low SNR targets. In terms of the frequency-hopping (FH) signal, the original echo is processed with MF. By extracting the processed echo in different spike pulses separately, targets in different imaging planes are reconstructed simultaneously to decompose the global computational complexity, and then are synthesized together to reconstruct the 3D target. Based on the conventional TCAI model, we deduce and build a new TCAI model based on MF. Furthermore, the convolutional neural network (CNN) is designed to teach the MF-TCAI how to reconstruct the low SNR target better. The experimental results demonstrate that the MF-TCAI achieves impressive performance on imaging ability and efficiency under low SNR. Moreover, the MF-TCAI has learned to better resolve the low-SNR 3D target with the help of CNN. In summary, the proposed 3D TCAI can achieve: (1) low-SNR high-resolution imaging by using MF; (2) efficient 3D imaging by downsizing the large-scale reference-signal matrix; and (3) intelligent imaging with CNN. Therefore, the TCAI based on MF and CNN has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.

  10. Dealiased convolutions for pseudospectral simulations

    International Nuclear Information System (INIS)

    Roberts, Malcolm; Bowman, John C

    2011-01-01

    Efficient algorithms have recently been developed for calculating dealiased linear convolution sums without the expense of conventional zero-padding or phase-shift techniques. For one-dimensional in-place convolutions, the memory requirements are identical with the zero-padding technique, with the important distinction that the additional work memory need not be contiguous with the input data. This decoupling of data and work arrays dramatically reduces the memory and computation time required to evaluate higher-dimensional in-place convolutions. The memory savings is achieved by computing the in-place Fourier transform of the data in blocks, rather than all at once. The technique also allows one to dealias the n-ary convolutions that arise on Fourier transforming cubic and higher powers. Implicitly dealiased convolutions can be built on top of state-of-the-art adaptive fast Fourier transform libraries like FFTW. Vectorized multidimensional implementations for the complex and centered Hermitian (pseudospectral) cases have already been implemented in the open-source software FFTW++. With the advent of this library, writing a high-performance dealiased pseudospectral code for solving nonlinear partial differential equations has now become a relatively straightforward exercise. New theoretical estimates of computational complexity and memory use are provided, including corrected timing results for 3D pruned convolutions and further consideration of higher-order convolutions.

  11. Short binary convolutional codes with maximal free distance for rates 2/3 and 3/4

    DEFF Research Database (Denmark)

    Paaske, Erik

    1974-01-01

    . Farther, the search among the remaining codes is started in a subset in which we expect the possibility of finding codes with large values ofd_{free}to be good. A number of short, optimum (in the sense of maximizingd_{free}), rate-2/3 and 3/4 codes found by the search procedure are listed.......A search procedure is developed to find good short binary(N,N - 1)convolutional codes. It uses simple rules to discard from the complete ensemble of codes a large fraction whose free distanced_{free}either cannot achieve the maximum value or is equal tod_{free}of some code in the remaining set...

  12. Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes

    Science.gov (United States)

    Harrington, James William

    Quantum information theory is concerned with identifying how quantum mechanical resources (such as entangled quantum states) can be utilized for a number of information processing tasks, including data storage, computation, communication, and cryptography. Efficient quantum algorithms and protocols have been developed for performing some tasks (e.g. , factoring large numbers, securely communicating over a public channel, and simulating quantum mechanical systems) that appear to be very difficult with just classical resources. In addition to identifying the separation between classical and quantum computational power, much of the theoretical focus in this field over the last decade has been concerned with finding novel ways of encoding quantum information that are robust against errors, which is an important step toward building practical quantum information processing devices. In this thesis I present some results on the quantum error-correcting properties of oscillator codes (also described as symplectic lattice codes) and toric codes. Any harmonic oscillator system (such as a mode of light) can be encoded with quantum information via symplectic lattice codes that are robust against shifts in the system's continuous quantum variables. I show the existence of lattice codes whose achievable rates match the one-shot coherent information over the Gaussian quantum channel. Also, I construct a family of symplectic self-dual lattices and search for optimal encodings of quantum information distributed between several oscillators. Toric codes provide encodings of quantum information into two-dimensional spin lattices that are robust against local clusters of errors and which require only local quantum operations for error correction. Numerical simulations of this system under various error models provide a calculation of the accuracy threshold for quantum memory using toric codes, which can be related to phase transitions in certain condensed matter models. I also present

  13. A class of burst-correcting array codes

    NARCIS (Netherlands)

    Blaum, M.; Farrell, P.G.; Tilborg, van H.C.A.

    1986-01-01

    The usual (k_{2} + 1) times (k_{1} + 1) array code, in which the last row and the last column contain redundant bits, can correct any single error. However, if the bits are read diagonally instead of horizontally, the code can correct bursts of errors. It is shown that the(_{k}2 + 1) times (k_{1} +

  14. Correction of the tip convolution effects in the imaging of nanostructures studied through scanning force microscopy

    International Nuclear Information System (INIS)

    Canet-Ferrer, Josep; Coronado, Eugenio; Forment-Aliaga, Alicia; Pinilla-Cienfuegos, Elena

    2014-01-01

    AFM images are always affected by artifacts arising from tip convolution effects, resulting in a decrease in the lateral resolution of this technique. The magnitude of such effects is described by means of geometrical considerations, thereby providing better understanding of the convolution phenomenon. We demonstrate that for a constant tip radius, the convolution error is increased with the object height, mainly for the narrowest motifs. Certain influence of the object shape is observed between rectangular and elliptical objects with the same height. Such moderate differences are essentially expected among elongated objects; in contrast they are reduced as the object aspect ratio is increased. Finally, we propose an algorithm to study the influence of the size, shape and aspect ratio of different nanometric motifs on a flat substrate. Indeed, with this algorithm, convolution artifacts can be extended to any kind of motif including real surface roughness. From the simulation results we demonstrate that in most cases the real motif’s width can be estimated from AFM images without knowing its shape in detail. (paper)

  15. Error-correction coding and decoding bounds, codes, decoders, analysis and applications

    CERN Document Server

    Tomlinson, Martin; Ambroze, Marcel A; Ahmed, Mohammed; Jibril, Mubarak

    2017-01-01

    This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of these codes. Part IV deals with decoders desi...

  16. VLSI architectures for modern error-correcting codes

    CERN Document Server

    Zhang, Xinmiao

    2015-01-01

    Error-correcting codes are ubiquitous. They are adopted in almost every modern digital communication and storage system, such as wireless communications, optical communications, Flash memories, computer hard drives, sensor networks, and deep-space probing. New-generation and emerging applications demand codes with better error-correcting capability. On the other hand, the design and implementation of those high-gain error-correcting codes pose many challenges. They usually involve complex mathematical computations, and mapping them directly to hardware often leads to very high complexity. VLSI

  17. New decoding methods of interleaved burst error-correcting codes

    Science.gov (United States)

    Nakano, Y.; Kasahara, M.; Namekawa, T.

    1983-04-01

    A probabilistic method of single burst error correction, using the syndrome correlation of subcodes which constitute the interleaved code, is presented. This method makes it possible to realize a high capability of burst error correction with less decoding delay. By generalizing this method it is possible to obtain probabilistic method of multiple (m-fold) burst error correction. After estimating the burst error positions using syndrome correlation of subcodes which are interleaved m-fold burst error detecting codes, this second method corrects erasure errors in each subcode and m-fold burst errors. The performance of these two methods is analyzed via computer simulation, and their effectiveness is demonstrated.

  18. NP-hardness of decoding quantum error-correction codes

    Science.gov (United States)

    Hsieh, Min-Hsiu; Le Gall, François

    2011-05-01

    Although the theory of quantum error correction is intimately related to classical coding theory and, in particular, one can construct quantum error-correction codes (QECCs) from classical codes with the dual-containing property, this does not necessarily imply that the computational complexity of decoding QECCs is the same as their classical counterparts. Instead, decoding QECCs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expects degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or nondegenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems and suggests the existence of a quantum cryptosystem based on the hardness of decoding QECCs.

  19. NP-hardness of decoding quantum error-correction codes

    International Nuclear Information System (INIS)

    Hsieh, Min-Hsiu; Le Gall, Francois

    2011-01-01

    Although the theory of quantum error correction is intimately related to classical coding theory and, in particular, one can construct quantum error-correction codes (QECCs) from classical codes with the dual-containing property, this does not necessarily imply that the computational complexity of decoding QECCs is the same as their classical counterparts. Instead, decoding QECCs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expects degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or nondegenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems and suggests the existence of a quantum cryptosystem based on the hardness of decoding QECCs.

  20. Unitary Application of the Quantum Error Correction Codes

    International Nuclear Information System (INIS)

    You Bo; Xu Ke; Wu Xiaohua

    2012-01-01

    For applying the perfect code to transmit quantum information over a noise channel, the standard protocol contains four steps: the encoding, the noise channel, the error-correction operation, and the decoding. In present work, we show that this protocol can be simplified. The error-correction operation is not necessary if the decoding is realized by the so-called complete unitary transformation. We also offer a quantum circuit, which can correct the arbitrary single-qubit errors.

  1. Neural network decoder for quantum error correcting codes

    Science.gov (United States)

    Krastanov, Stefan; Jiang, Liang

    Artificial neural networks form a family of extremely powerful - albeit still poorly understood - tools used in anything from image and sound recognition through text generation to, in our case, decoding. We present a straightforward Recurrent Neural Network architecture capable of deducing the correcting procedure for a quantum error-correcting code from a set of repeated stabilizer measurements. We discuss the fault-tolerance of our scheme and the cost of training the neural network for a system of a realistic size. Such decoders are especially interesting when applied to codes, like the quantum LDPC codes, that lack known efficient decoding schemes.

  2. Multiple-Symbol Noncoherent Decoding of Uncoded and Convolutionally Codes Continous Phase Modulation

    Science.gov (United States)

    Divsalar, D.; Raphaeli, D.

    2000-01-01

    Recently, a method for combined noncoherent detection and decoding of trellis-codes (noncoherent coded modulation) has been proposed, which can practically approach the performance of coherent detection.

  3. Toric Varieties and Codes, Error-correcting Codes, Quantum Codes, Secret Sharing and Decoding

    DEFF Research Database (Denmark)

    Hansen, Johan Peder

    We present toric varieties and associated toric codes and their decoding. Toric codes are applied to construct Linear Secret Sharing Schemes (LSSS) with strong multiplication by the Massey construction. Asymmetric Quantum Codes are obtained from toric codes by the A.R. Calderbank P.W. Shor and A.......M. Steane construction of stabilizer codes (CSS) from linear codes containing their dual codes....

  4. Structuring Interactive Correctness Proofs by Formalizing Coding Idioms

    OpenAIRE

    Gast, Holger

    2012-01-01

    This paper examines a novel strategy for developing correctness proofs in interactive software verification for C programs. Rather than proceeding backwards from the generated verification conditions, we start by developing a library of the employed data structures and related coding idioms. The application of that library then leads to correctness proofs that reflect informal arguments about the idioms. We apply this strategy to the low-level memory allocator of the L4 microkernel, a case st...

  5. Energy Efficient Error-Correcting Coding for Wireless Systems

    NARCIS (Netherlands)

    Shao, X.

    2010-01-01

    The wireless channel is a hostile environment. The transmitted signal does not only suffers multi-path fading but also noise and interference from other users of the wireless channel. That causes unreliable communications. To achieve high-quality communications, error correcting coding is required

  6. Syndrome-source-coding and its universal generalization. [error correcting codes for data compression

    Science.gov (United States)

    Ancheta, T. C., Jr.

    1976-01-01

    A method of using error-correcting codes to obtain data compression, called syndrome-source-coding, is described in which the source sequence is treated as an error pattern whose syndrome forms the compressed data. It is shown that syndrome-source-coding can achieve arbitrarily small distortion with the number of compressed digits per source digit arbitrarily close to the entropy of a binary memoryless source. A 'universal' generalization of syndrome-source-coding is formulated which provides robustly effective distortionless coding of source ensembles. Two examples are given, comparing the performance of noiseless universal syndrome-source-coding to (1) run-length coding and (2) Lynch-Davisson-Schalkwijk-Cover universal coding for an ensemble of binary memoryless sources.

  7. Microarray background correction: maximum likelihood estimation for the normal-exponential convolution

    DEFF Research Database (Denmark)

    Silver, Jeremy D; Ritchie, Matthew E; Smyth, Gordon K

    2009-01-01

    exponentially distributed, representing background noise and signal, respectively. Using a saddle-point approximation, Ritchie and others (2007) found normexp to be the best background correction method for 2-color microarray data. This article develops the normexp method further by improving the estimation...... is developed for exact maximum likelihood estimation (MLE) using high-quality optimization software and using the saddle-point estimates as starting values. "MLE" is shown to outperform heuristic estimators proposed by other authors, both in terms of estimation accuracy and in terms of performance on real data...

  8. Optimal quantum error correcting codes from absolutely maximally entangled states

    Science.gov (United States)

    Raissi, Zahra; Gogolin, Christian; Riera, Arnau; Acín, Antonio

    2018-02-01

    Absolutely maximally entangled (AME) states are pure multi-partite generalizations of the bipartite maximally entangled states with the property that all reduced states of at most half the system size are in the maximally mixed state. AME states are of interest for multipartite teleportation and quantum secret sharing and have recently found new applications in the context of high-energy physics in toy models realizing the AdS/CFT-correspondence. We work out in detail the connection between AME states of minimal support and classical maximum distance separable (MDS) error correcting codes and, in particular, provide explicit closed form expressions for AME states of n parties with local dimension \

  9. Quantum secret sharing based on quantum error-correcting codes

    International Nuclear Information System (INIS)

    Zhang Zu-Rong; Liu Wei-Tao; Li Cheng-Zu

    2011-01-01

    Quantum secret sharing(QSS) is a procedure of sharing classical information or quantum information by using quantum states. This paper presents how to use a [2k − 1, 1, k] quantum error-correcting code (QECC) to implement a quantum (k, 2k − 1) threshold scheme. It also takes advantage of classical enhancement of the [2k − 1, 1, k] QECC to establish a QSS scheme which can share classical information and quantum information simultaneously. Because information is encoded into QECC, these schemes can prevent intercept-resend attacks and be implemented on some noisy channels. (general)

  10. The effectiveness of correcting codes in reception in the whole in additive normal white noise

    Science.gov (United States)

    Shtarkov, Y. M.

    1974-01-01

    Some possible criteria for estimating the effectiveness of correcting codes are presented, and the energy effectiveness of correcting codes is studied for symbol-by-symbol reception. Expressions for the energetic effectiveness of binary correcting codes for reception in the whole are produced. Asymptotic energetic effectiveness and finite signal/noise ratio cases are considered.

  11. Detected-jump-error-correcting quantum codes, quantum error designs, and quantum computation

    International Nuclear Information System (INIS)

    Alber, G.; Mussinger, M.; Beth, Th.; Charnes, Ch.; Delgado, A.; Grassl, M.

    2003-01-01

    The recently introduced detected-jump-correcting quantum codes are capable of stabilizing qubit systems against spontaneous decay processes arising from couplings to statistically independent reservoirs. These embedded quantum codes exploit classical information about which qubit has emitted spontaneously and correspond to an active error-correcting code embedded in a passive error-correcting code. The construction of a family of one-detected-jump-error-correcting quantum codes is shown and the optimal redundancy, encoding, and recovery as well as general properties of detected-jump-error-correcting quantum codes are discussed. By the use of design theory, multiple-jump-error-correcting quantum codes can be constructed. The performance of one-jump-error-correcting quantum codes under nonideal conditions is studied numerically by simulating a quantum memory and Grover's algorithm

  12. Quantum error-correcting code for ternary logic

    Science.gov (United States)

    Majumdar, Ritajit; Basu, Saikat; Ghosh, Shibashis; Sur-Kolay, Susmita

    2018-05-01

    Ternary quantum systems are being studied because they provide more computational state space per unit of information, known as qutrit. A qutrit has three basis states, thus a qubit may be considered as a special case of a qutrit where the coefficient of one of the basis states is zero. Hence both (2 ×2 ) -dimensional and (3 ×3 ) -dimensional Pauli errors can occur on qutrits. In this paper, we (i) explore the possible (2 ×2 ) -dimensional as well as (3 ×3 ) -dimensional Pauli errors in qutrits and show that any pairwise bit swap error can be expressed as a linear combination of shift errors and phase errors, (ii) propose a special type of error called a quantum superposition error and show its equivalence to arbitrary rotation, (iii) formulate a nine-qutrit code which can correct a single error in a qutrit, and (iv) provide its stabilizer and circuit realization.

  13. Comparison of rate one-half, equivalent constraint length 24, binary convolutional codes for use with sequential decoding on the deep-space channel

    Science.gov (United States)

    Massey, J. L.

    1976-01-01

    Virtually all previously-suggested rate 1/2 binary convolutional codes with KE = 24 are compared. Their distance properties are given; and their performance, both in computation and in error probability, with sequential decoding on the deep-space channel is determined by simulation. Recommendations are made both for the choice of a specific KE = 24 code as well as for codes to be included in future coding standards for the deep-space channel. A new result given in this report is a method for determining the statistical significance of error probability data when the error probability is so small that it is not feasible to perform enough decoding simulations to obtain more than a very small number of decoding errors.

  14. Consensus Convolutional Sparse Coding

    KAUST Repository

    Choudhury, Biswarup; Swanson, Robin; Heide, Felix; Wetzstein, Gordon; Heidrich, Wolfgang

    2017-01-01

    In this paper, we propose a new approach to solving CSC as a consensus optimization problem, which lifts these limitations. By learning CSC features from large-scale image datasets for the first time, we achieve significant quality improvements in a number of imaging tasks. Moreover, the proposed method enables new applications in high dimensional feature learning that has been intractable using existing CSC methods. This is demonstrated for a variety of reconstruction problems across diverse problem domains, including 3D multispectral demosaickingand 4D light field view synthesis.

  15. Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators

    Science.gov (United States)

    Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.

    2018-03-01

    We establish a symmetry-operator framework for designing quantum error-correcting (QEC) codes based on fundamental properties of the underlying system dynamics. Based on this framework, we propose three hardware-efficient bosonic QEC codes that are suitable for χ(2 )-interaction based quantum computation in multimode Fock bases: the χ(2 ) parity-check code, the χ(2 ) embedded error-correcting code, and the χ(2 ) binomial code. All of these QEC codes detect photon-loss or photon-gain errors by means of photon-number parity measurements, and then correct them via χ(2 ) Hamiltonian evolutions and linear-optics transformations. Our symmetry-operator framework provides a systematic procedure for finding QEC codes that are not stabilizer codes, and it enables convenient extension of a given encoding to higher-dimensional qudit bases. The χ(2 ) binomial code is of special interest because, with m ≤N identified from channel monitoring, it can correct m -photon-loss errors, or m -photon-gain errors, or (m -1 )th -order dephasing errors using logical qudits that are encoded in O (N ) photons. In comparison, other bosonic QEC codes require O (N2) photons to correct the same degree of bosonic errors. Such improved photon efficiency underscores the additional error-correction power that can be provided by channel monitoring. We develop quantum Hamming bounds for photon-loss errors in the code subspaces associated with the χ(2 ) parity-check code and the χ(2 ) embedded error-correcting code, and we prove that these codes saturate their respective bounds. Our χ(2 ) QEC codes exhibit hardware efficiency in that they address the principal error mechanisms and exploit the available physical interactions of the underlying hardware, thus reducing the physical resources required for implementing their encoding, decoding, and error-correction operations, and their universal encoded-basis gate sets.

  16. Design and implementation in VHDL code of the two-dimensional fast Fourier transform for frequency filtering, convolution and correlation operations

    Science.gov (United States)

    Vilardy, Juan M.; Giacometto, F.; Torres, C. O.; Mattos, L.

    2011-01-01

    The two-dimensional Fast Fourier Transform (FFT 2D) is an essential tool in the two-dimensional discrete signals analysis and processing, which allows developing a large number of applications. This article shows the description and synthesis in VHDL code of the FFT 2D with fixed point binary representation using the programming tool Simulink HDL Coder of Matlab; showing a quick and easy way to handle overflow, underflow and the creation registers, adders and multipliers of complex data in VHDL and as well as the generation of test bench for verification of the codes generated in the ModelSim tool. The main objective of development of the hardware architecture of the FFT 2D focuses on the subsequent completion of the following operations applied to images: frequency filtering, convolution and correlation. The description and synthesis of the hardware architecture uses the XC3S1200E family Spartan 3E FPGA from Xilinx Manufacturer.

  17. Coding "Corrective Recasts": The Maintenance of Meaning and More Fundamental Problems

    Science.gov (United States)

    Hauser, Eric

    2005-01-01

    A fair amount of descriptive research in the field of second language acquisition has looked at the presence of what have been labeled corrective recasts. This research has relied on the methodological practice of coding to identify particular turns as "corrective recasts." Often, the coding criteria make use of the notion of the maintenance of…

  18. Methodology for bus layout for topological quantum error correcting codes

    Energy Technology Data Exchange (ETDEWEB)

    Wosnitzka, Martin; Pedrocchi, Fabio L.; DiVincenzo, David P. [RWTH Aachen University, JARA Institute for Quantum Information, Aachen (Germany)

    2016-12-15

    Most quantum computing architectures can be realized as two-dimensional lattices of qubits that interact with each other. We take transmon qubits and transmission line resonators as promising candidates for qubits and couplers; we use them as basic building elements of a quantum code. We then propose a simple framework to determine the optimal experimental layout to realize quantum codes. We show that this engineering optimization problem can be reduced to the solution of standard binary linear programs. While solving such programs is a NP-hard problem, we propose a way to find scalable optimal architectures that require solving the linear program for a restricted number of qubits and couplers. We apply our methods to two celebrated quantum codes, namely the surface code and the Fibonacci code. (orig.)

  19. Correct coding for laboratory procedures during assisted reproductive technology cycles.

    Science.gov (United States)

    2016-04-01

    This document provides updated coding information for services related to assisted reproductive technology procedures. This document replaces the 2012 ASRM document of the same name. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Classification of multispectral or hyperspectral satellite imagery using clustering of sparse approximations on sparse representations in learned dictionaries obtained using efficient convolutional sparse coding

    Science.gov (United States)

    Moody, Daniela; Wohlberg, Brendt

    2018-01-02

    An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. The learned dictionaries may be derived using efficient convolutional sparse coding to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of images over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.

  1. Is a genome a codeword of an error-correcting code?

    Directory of Open Access Journals (Sweden)

    Luzinete C B Faria

    Full Text Available Since a genome is a discrete sequence, the elements of which belong to a set of four letters, the question as to whether or not there is an error-correcting code underlying DNA sequences is unavoidable. The most common approach to answering this question is to propose a methodology to verify the existence of such a code. However, none of the methodologies proposed so far, although quite clever, has achieved that goal. In a recent work, we showed that DNA sequences can be identified as codewords in a class of cyclic error-correcting codes known as Hamming codes. In this paper, we show that a complete intron-exon gene, and even a plasmid genome, can be identified as a Hamming code codeword as well. Although this does not constitute a definitive proof that there is an error-correcting code underlying DNA sequences, it is the first evidence in this direction.

  2. Gallager error-correcting codes for binary asymmetric channels

    International Nuclear Information System (INIS)

    Neri, I; Skantzos, N S; Bollé, D

    2008-01-01

    We derive critical noise levels for Gallager codes on asymmetric channels as a function of the input bias and the temperature. Using a statistical mechanics approach we study the space of codewords and the entropy in the various decoding regimes. We further discuss the relation of the convergence of the message passing algorithm with the endogenous property and complexity, characterizing solutions of recursive equations of distributions for cavity fields

  3. Quantum mean-field decoding algorithm for error-correcting codes

    International Nuclear Information System (INIS)

    Inoue, Jun-ichi; Saika, Yohei; Okada, Masato

    2009-01-01

    We numerically examine a quantum version of TAP (Thouless-Anderson-Palmer)-like mean-field algorithm for the problem of error-correcting codes. For a class of the so-called Sourlas error-correcting codes, we check the usefulness to retrieve the original bit-sequence (message) with a finite length. The decoding dynamics is derived explicitly and we evaluate the average-case performance through the bit-error rate (BER).

  4. Error correction and degeneracy in surface codes suffering loss

    International Nuclear Information System (INIS)

    Stace, Thomas M.; Barrett, Sean D.

    2010-01-01

    Many proposals for quantum information processing are subject to detectable loss errors. In this paper, we give a detailed account of recent results in which we showed that topological quantum memories can simultaneously tolerate both loss errors and computational errors, with a graceful tradeoff between the threshold for each. We further discuss a number of subtleties that arise when implementing error correction on topological memories. We particularly focus on the role played by degeneracy in the matching algorithms and present a systematic study of its effects on thresholds. We also discuss some of the implications of degeneracy for estimating phase transition temperatures in the random bond Ising model.

  5. Convolutional Encoder and Viterbi Decoder Using SOPC For Variable Constraint Length

    DEFF Research Database (Denmark)

    Kulkarni, Anuradha; Dnyaneshwar, Mantri; Prasad, Neeli R.

    2013-01-01

    Convolution encoder and Viterbi decoder are the basic and important blocks in any Code Division Multiple Accesses (CDMA). They are widely used in communication system due to their error correcting capability But the performance degrades with variable constraint length. In this context to have...... detailed analysis, this paper deals with the implementation of convolution encoder and Viterbi decoder using system on programming chip (SOPC). It uses variable constraint length of 7, 8 and 9 bits for 1/2 and 1/3 code rates. By analyzing the Viterbi algorithm it is seen that our algorithm has a better...

  6. Confidentiality of 2D Code using Infrared with Cell-level Error Correction

    Directory of Open Access Journals (Sweden)

    Nobuyuki Teraura

    2013-03-01

    Full Text Available Optical information media printed on paper use printing materials to absorb visible light. There is a 2D code, which may be encrypted but also can possibly be copied. Hence, we envisage an information medium that cannot possibly be copied and thereby offers high security. At the surface, the normal 2D code is printed. The inner layers consist of 2D codes printed using a variety of materials, which absorb certain distinct wavelengths, to form a multilayered 2D code. Information can be distributed among the 2D codes forming the inner layers of the multiplex. Additionally, error correction at cell level can be introduced.

  7. Influence on dose calculation by difference of dose calculation algorithms in stereotactic lung irradiation. Comparison of pencil beam convolution (inhomogeneity correction: batho power law) and analytical anisotropic algorithm

    International Nuclear Information System (INIS)

    Tachibana, Masayuki; Noguchi, Yoshitaka; Fukunaga, Jyunichi; Hirano, Naomi; Yoshidome, Satoshi; Hirose, Takaaki

    2009-01-01

    The monitor unit (MU) was calculated by pencil beam convolution (inhomogeneity correction algorithm: batho power law) [PBC (BPL)] which is the dose calculation algorithm based on measurement in the past in the stereotactic lung irradiation study. The recalculation was done by analytical anisotropic algorithm (AAA), which is the dose calculation algorithm based on theory data. The MU calculated by PBC (BPL) and AAA was compared for each field. In the result of the comparison of 1031 fields in 136 cases, the MU calculated by PBC (BPL) was about 2% smaller than that calculated by AAA. This depends on whether one does the calculation concerning the extension of the second electrons. In particular, the difference in the MU is influenced by the X-ray energy. With the same X-ray energy, when the irradiation field size is small, the lung pass length is long, the lung pass length percentage is large, and the CT value of the lung is low, and the difference of MU is increased. (author)

  8. Remote one-qubit information concentration and decoding of operator quantum error-correction codes

    International Nuclear Information System (INIS)

    Hsu Liyi

    2007-01-01

    We propose the general scheme of remote one-qubit information concentration. To achieve the task, the Bell-correlated mixed states are exploited. In addition, the nonremote one-qubit information concentration is equivalent to the decoding of the quantum error-correction code. Here we propose how to decode the stabilizer codes. In particular, the proposed scheme can be used for the operator quantum error-correction codes. The encoded state can be recreated on the errorless qubit, regardless how many bit-flip errors and phase-flip errors have occurred

  9. Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach

    Science.gov (United States)

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732

  10. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes

    Science.gov (United States)

    Jing, Lin; Brun, Todd; Quantum Research Team

    Quasi-cyclic LDPC codes can approach the Shannon capacity and have efficient decoders. Manabu Hagiwara et al., 2007 presented a method to calculate parity check matrices with high girth. Two distinct, orthogonal matrices Hc and Hd are used. Using submatrices obtained from Hc and Hd by deleting rows, we can alter the code rate. The submatrix of Hc is used to correct Pauli X errors, and the submatrix of Hd to correct Pauli Z errors. We simulated this system for depolarizing noise on USC's High Performance Computing Cluster, and obtained the block error rate (BER) as a function of the error weight and code rate. From the rates of uncorrectable errors under different error weights we can extrapolate the BER to any small error probability. Our results show that this code family can perform reasonably well even at high code rates, thus considerably reducing the overhead compared to concatenated and surface codes. This makes these codes promising as storage blocks in fault-tolerant quantum computation. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes.

  11. A novel approach to correct the coded aperture misalignment for fast neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F. N.; Hu, H. S., E-mail: huasi-hu@mail.xjtu.edu.cn; Wang, D. M.; Jia, J. [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, T. K. [Laser Fusion Research Center, CAEP, Mianyang, 621900 Sichuan (China); Jia, Q. G. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2015-12-15

    Aperture alignment is crucial for the diagnosis of neutron imaging because it has significant impact on the coding imaging and the understanding of the neutron source. In our previous studies on the neutron imaging system with coded aperture for large field of view, “residual watermark,” certain extra information that overlies reconstructed image and has nothing to do with the source is discovered if the peak normalization is employed in genetic algorithms (GA) to reconstruct the source image. Some studies on basic properties of residual watermark indicate that the residual watermark can characterize coded aperture and can thus be used to determine the location of coded aperture relative to the system axis. In this paper, we have further analyzed the essential conditions for the existence of residual watermark and the requirements of the reconstruction algorithm for the emergence of residual watermark. A gamma coded imaging experiment has been performed to verify the existence of residual watermark. Based on the residual watermark, a correction method for the aperture misalignment has been studied. A multiple linear regression model of the position of coded aperture axis, the position of residual watermark center, and the gray barycenter of neutron source with twenty training samples has been set up. Using the regression model and verification samples, we have found the position of the coded aperture axis relative to the system axis with an accuracy of approximately 20 μm. Conclusively, a novel approach has been established to correct the coded aperture misalignment for fast neutron coded imaging.

  12. Machine-learning-assisted correction of correlated qubit errors in a topological code

    Directory of Open Access Journals (Sweden)

    Paul Baireuther

    2018-01-01

    Full Text Available A fault-tolerant quantum computation requires an efficient means to detect and correct errors that accumulate in encoded quantum information. In the context of machine learning, neural networks are a promising new approach to quantum error correction. Here we show that a recurrent neural network can be trained, using only experimentally accessible data, to detect errors in a widely used topological code, the surface code, with a performance above that of the established minimum-weight perfect matching (or blossom decoder. The performance gain is achieved because the neural network decoder can detect correlations between bit-flip (X and phase-flip (Z errors. The machine learning algorithm adapts to the physical system, hence no noise model is needed. The long short-term memory layers of the recurrent neural network maintain their performance over a large number of quantum error correction cycles, making it a practical decoder for forthcoming experimental realizations of the surface code.

  13. Iterative Phase Optimization of Elementary Quantum Error Correcting Codes (Open Access, Publisher’s Version)

    Science.gov (United States)

    2016-08-24

    to the seven-qubit Steane code [29] and also represents the smallest instance of a 2D topological color code [30]. Since the realized quantum error...Quantum Computations on a Topologically Encoded Qubit, Science 345, 302 (2014). [17] M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D...Memory, J. Math . Phys. (N.Y.) 43, 4452 (2002). [20] B. M. Terhal, Quantum Error Correction for Quantum Memories, Rev. Mod. Phys. 87, 307 (2015). [21] D

  14. Fast Convolution Module (Fast Convolution Module)

    National Research Council Canada - National Science Library

    Bierens, L

    1997-01-01

    This report describes the design and realisation of a real-time range azimuth compression module, the so-called 'Fast Convolution Module', based on the fast convolution algorithm developed at TNO-FEL...

  15. Corrections and additions to CONTEMPT-LT computer codes for containment analysis

    International Nuclear Information System (INIS)

    Eerikaeinen, Lauri.

    1980-01-01

    The report presents a new version of CONTEMPT-LT/26 tainment code. The corrections and additions are applicable also to other CONTEMPT-LT versions. Thermodynamical background of corrections are shortly described, and in addition, some essential points which should be taken into account in the analysis of a pressure suppression containment have been pointed out. The results obtained by the corrected version have been compared to those calculated by the original program, and to the measured data in the Marviken containment experiment No 10. Finally, it has been indicated that for reliable pressure suppression analysis a wide ranging condensation model for air-steam mixture is necessary. (author)

  16. Fast decoding techniques for extended single-and-double-error-correcting Reed Solomon codes

    Science.gov (United States)

    Costello, D. J., Jr.; Deng, H.; Lin, S.

    1984-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. For example, some 256K-bit dynamic random access memories are organized as 32K x 8 bit-bytes. Byte-oriented codes such as Reed Solomon (RS) codes provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special high speed decoding techniques for extended single and double error correcting RS codes. These techniques are designed to find the error locations and the error values directly from the syndrome without having to form the error locator polynomial and solve for its roots.

  17. Reliable channel-adapted error correction: Bacon-Shor code recovery from amplitude damping

    NARCIS (Netherlands)

    Á. Piedrafita (Álvaro); J.M. Renes (Joseph)

    2017-01-01

    textabstractWe construct two simple error correction schemes adapted to amplitude damping noise for Bacon-Shor codes and investigate their prospects for fault-tolerant implementation. Both consist solely of Clifford gates and require far fewer qubits, relative to the standard method, to achieve

  18. Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates

    Czech Academy of Sciences Publication Activity Database

    Gál, A.; Hansen, A. K.; Koucký, Michal; Pudlák, Pavel; Viola, E.

    2013-01-01

    Roč. 59, č. 10 (2013), s. 6611-6627 ISSN 0018-9448 R&D Projects: GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : bounded-depth circuits * error-correcting codes * hashing Subject RIV: BA - General Mathematics Impact factor: 2.650, year: 2013 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6578188

  19. Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates

    Czech Academy of Sciences Publication Activity Database

    Gál, A.; Hansen, A. K.; Koucký, Michal; Pudlák, Pavel; Viola, E.

    2013-01-01

    Roč. 59, č. 10 (2013), s. 6611-6627 ISSN 0018-9448 R&D Projects: GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : bounded-depth circuits * error -correcting codes * hashing Subject RIV: BA - General Mathematics Impact factor: 2.650, year: 2013 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6578188

  20. Towards provably correct code generation for a hard real-time programming language

    DEFF Research Database (Denmark)

    Fränzle, Martin; Müller-Olm, Markus

    1994-01-01

    This paper sketches a hard real-time programming language featuring operators for expressing timeliness requirements in an abstract, implementation-independent way and presents parts of the design and verification of a provably correct code generator for that language. The notion of implementation...

  1. Exploiting the Error-Correcting Capabilities of Low Density Parity Check Codes in Distributed Video Coding using Optical Flow

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Søgaard, Jacob; Salmistraro, Matteo

    2012-01-01

    We consider Distributed Video Coding (DVC) in presence of communication errors. First, we present DVC side information generation based on a new method of optical flow driven frame interpolation, where a highly optimized TV-L1 algorithm is used for the flow calculations and combine three flows....... Thereafter methods for exploiting the error-correcting capabilities of the LDPCA code in DVC are investigated. The proposed frame interpolation includes a symmetric flow constraint to the standard forward-backward frame interpolation scheme, which improves quality and handling of large motion. The three...... flows are combined in one solution. The proposed frame interpolation method consistently outperforms an overlapped block motion compensation scheme and a previous TV-L1 optical flow frame interpolation method with an average PSNR improvement of 1.3 dB and 2.3 dB respectively. For a GOP size of 2...

  2. Cooperative MIMO communication at wireless sensor network: an error correcting code approach.

    Science.gov (United States)

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.

  3. Futur d'une infrastructure de correction automatisée : CodeGradX

    OpenAIRE

    Queinnec , Christian; Pons , Olivier

    2016-01-01

    Cet article évoque quelques expériences et nouvelles idées au-tour d'une infrastructure de correction automatisée de programmes. CodeGradX est une infrastructure de correction automatisée de programmes. Elle est en service depuis 2008 (initialement sous le nom de FW4EX) et a depuis corrigé plus de 150 000 soumissions d'étudiants à des exercices principalement en Scheme, utilitaires d'Unix, JavaScript mais aussi en C, Octave, O'Caml, Python sans oublier les compétitions annuelles des Journées ...

  4. Timing group delay and differential code bias corrections for BeiDou positioning

    Science.gov (United States)

    Guo, Fei; Zhang, Xiaohong; Wang, Jinling

    2015-05-01

    This article first clearly figures out the relationship between parameters of timing group delay (TGD) and differential code bias (DCB) for BDS, and demonstrates the equivalence of TGD and DCB correction models combining theory with practice. The TGD/DCB correction models have been extended to various occasions for BDS positioning, and such models have been evaluated by real triple-frequency datasets. To test the effectiveness of broadcast TGDs in the navigation message and DCBs provided by the Multi-GNSS Experiment (MGEX), both standard point positioning (SPP) and precise point positioning (PPP) tests are carried out for BDS signals with different schemes. Furthermore, the influence of differential code biases on BDS positioning estimates such as coordinates, receiver clock biases, tropospheric delays and carrier phase ambiguities is investigated comprehensively. Comparative analysis show that the unmodeled differential code biases degrade the performance of BDS SPP by a factor of two or more, whereas the estimates of PPP are subject to varying degrees of influences. For SPP, the accuracy of dual-frequency combinations is slightly worse than that of single-frequency, and they are much more sensitive to the differential code biases, particularly for the B2B3 combination. For PPP, the uncorrected differential code biases are mostly absorbed into the receiver clock bias and carrier phase ambiguities and thus resulting in a much longer convergence time. Even though the influence of the differential code biases could be mitigated over time and comparable positioning accuracy could be achieved after convergence, it is suggested to properly handle with the differential code biases since it is vital for PPP convergence and integer ambiguity resolution.

  5. Links between N-modular redundancy and the theory of error-correcting codes

    Science.gov (United States)

    Bobin, V.; Whitaker, S.; Maki, G.

    1992-01-01

    N-Modular Redundancy (NMR) is one of the best known fault tolerance techniques. Replication of a module to achieve fault tolerance is in some ways analogous to the use of a repetition code where an information symbol is replicated as parity symbols in a codeword. Linear Error-Correcting Codes (ECC) use linear combinations of information symbols as parity symbols which are used to generate syndromes for error patterns. These observations indicate links between the theory of ECC and the use of hardware redundancy for fault tolerance. In this paper, we explore some of these links and show examples of NMR systems where identification of good and failed elements is accomplished in a manner similar to error correction using linear ECC's.

  6. Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates

    DEFF Research Database (Denmark)

    Gal, A.; Hansen, Kristoffer Arnsfelt; Koucky, Michal

    2013-01-01

    We bound the minimum number w of wires needed to compute any (asymptotically good) error-correcting code C:{0,1}Ω(n)→{0,1}n with minimum distance Ω(n), using unbounded fan-in circuits of depth d with arbitrary gates. Our main results are: 1) if d=2, then w=Θ(n (lgn/lglgn)2); 2) if d=3, then w...

  7. Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates

    DEFF Research Database (Denmark)

    Gál, Anna; Hansen, Kristoffer Arnsfelt; Koucký, Michal

    2012-01-01

    We bound the minimum number w of wires needed to compute any (asymptotically good) error-correcting code C:{0,1}Ω(n) -> {0,1}n with minimum distance Ω(n), using unbounded fan-in circuits of depth d with arbitrary gates. Our main results are: (1) If d=2 then w = Θ(n ({log n/ log log n})2). (2) If d...

  8. What Information is Stored in DNA: Does it Contain Digital Error Correcting Codes?

    Science.gov (United States)

    Liebovitch, Larry

    1998-03-01

    evidence for such error correcting codes in these genes. However, we analyzed only a small amount of DNA and if digitial error correcting schemes are present in DNA, they may be more subtle than such simple linear block codes. The basic issue we raise here, is how information is stored in DNA and an appreciation that digital symbol sequences, such as DNA, admit of interesting schemes to store and protect the fidelity of their information content. Liebovitch, Tao, Todorov, Levine. 1996. Biophys. J. 71:1539-1544. Supported by NIH grant EY6234.

  9. Potts glass reflection of the decoding threshold for qudit quantum error correcting codes

    Science.gov (United States)

    Jiang, Yi; Kovalev, Alexey A.; Pryadko, Leonid P.

    We map the maximum likelihood decoding threshold for qudit quantum error correcting codes to the multicritical point in generalized Potts gauge glass models, extending the map constructed previously for qubit codes. An n-qudit quantum LDPC code, where a qudit can be involved in up to m stabilizer generators, corresponds to a ℤd Potts model with n interaction terms which can couple up to m spins each. We analyze general properties of the phase diagram of the constructed model, give several bounds on the location of the transitions, bounds on the energy density of extended defects (non-local analogs of domain walls), and discuss the correlation functions which can be used to distinguish different phases in the original and the dual models. This research was supported in part by the Grants: NSF PHY-1415600 (AAK), NSF PHY-1416578 (LPP), and ARO W911NF-14-1-0272 (LPP).

  10. Multi-shape pulse pile-up correction: The MCPPU code

    International Nuclear Information System (INIS)

    Sabbatucci, Lorenzo; Scot, Viviana; Fernandez, Jorge E.

    2014-01-01

    In spectroscopic measurements with high counting rate, pulse pile-up (PPU) is a common distortion of the spectrum. It is fully ascribable to the pulse handling circuitry of the detector and it is not comprised in the detector response function which is well explained by a purely physical model. Since PPU occurs after the transport inside the detector, this is the first correction to perform in case of spectrum unfolding. Many producers include electronic rejection circuits to limit the appearance of PPU, but it is never suppressed completely. Therefore, it is always necessary to correct PPU distortions after the measurement. In the present work, it is described the post-processing tool MCPPU (Monte Carlo Pulse Pile-Up), based on the MC algorithm developed by Guo et al. (2004, 2005). MCPPU automatically determines the dead time of the counting system and corrects for PPU effects even in the presence of electronic suppression. The capability of allowing a user defined pulse shape makes the code suitable to be used with any kind of detector. The features of MCPPU are illustrated with some examples. - Highlights: • Pulse pile-up (PPU) is a common distortion in radiation detection. • MCPPU is a Monte Carlo code to perform post-processing PPU correction. • MCPPU evaluates automatically the dead time to use in the pile-up recovery. • The measured pulse shape can be introduced as a normalized discrete distribution. • MCPPU is compatible with detectors using electronic rejection circuitry

  11. Quantum optical coherence can survive photon losses using a continuous-variable quantum erasure-correcting code

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Sabuncu, Metin; Huck, Alexander

    2010-01-01

    A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code that robustly protects the involved fragile quantum states from their environment. Just as classical error-correcting codes are indispensible in today's information...... technologies, it is believed that quantum error-correcting code will play a similarly crucial role in tomorrow's quantum information systems. Here, we report on the experimental demonstration of a quantum erasure-correcting code that overcomes the devastating effect of photon losses. Our quantum code is based...... on linear optics, and it protects a four-mode entangled mesoscopic state of light against erasures. We investigate two approaches for circumventing in-line losses, and demonstrate that both approaches exhibit transmission fidelities beyond what is possible by classical means. Because in-line attenuation...

  12. A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting

    Science.gov (United States)

    Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao

    2014-01-01

    We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813

  13. Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Pastawski, Fernando; Yoshida, Beni [Institute for Quantum Information & Matter and Walter Burke Institute for Theoretical Physics,California Institute of Technology,1200 E. California Blvd., Pasadena CA 91125 (United States); Harlow, Daniel [Princeton Center for Theoretical Science, Princeton University,400 Jadwin Hall, Princeton NJ 08540 (United States); Preskill, John [Institute for Quantum Information & Matter and Walter Burke Institute for Theoretical Physics,California Institute of Technology,1200 E. California Blvd., Pasadena CA 91125 (United States)

    2015-06-23

    We propose a family of exactly solvable toy models for the AdS/CFT correspondence based on a novel construction of quantum error-correcting codes with a tensor network structure. Our building block is a special type of tensor with maximal entanglement along any bipartition, which gives rise to an isometry from the bulk Hilbert space to the boundary Hilbert space. The entire tensor network is an encoder for a quantum error-correcting code, where the bulk and boundary degrees of freedom may be identified as logical and physical degrees of freedom respectively. These models capture key features of entanglement in the AdS/CFT correspondence; in particular, the Ryu-Takayanagi formula and the negativity of tripartite information are obeyed exactly in many cases. That bulk logical operators can be represented on multiple boundary regions mimics the Rindler-wedge reconstruction of boundary operators from bulk operators, realizing explicitly the quantum error-correcting features of AdS/CFT recently proposed in http://dx.doi.org/10.1007/JHEP04(2015)163.

  14. Multiple component codes based generalized LDPC codes for high-speed optical transport.

    Science.gov (United States)

    Djordjevic, Ivan B; Wang, Ting

    2014-07-14

    A class of generalized low-density parity-check (GLDPC) codes suitable for optical communications is proposed, which consists of multiple local codes. It is shown that Hamming, BCH, and Reed-Muller codes can be used as local codes, and that the maximum a posteriori probability (MAP) decoding of these local codes by Ashikhmin-Lytsin algorithm is feasible in terms of complexity and performance. We demonstrate that record coding gains can be obtained from properly designed GLDPC codes, derived from multiple component codes. We then show that several recently proposed classes of LDPC codes such as convolutional and spatially-coupled codes can be described using the concept of GLDPC coding, which indicates that the GLDPC coding can be used as a unified platform for advanced FEC enabling ultra-high speed optical transport. The proposed class of GLDPC codes is also suitable for code-rate adaption, to adjust the error correction strength depending on the optical channel conditions.

  15. Quantum states and their marginals. From multipartite entanglement to quantum error-correcting codes

    International Nuclear Information System (INIS)

    Huber, Felix Michael

    2017-01-01

    At the heart of the curious phenomenon of quantum entanglement lies the relation between the whole and its parts. In my thesis, I explore different aspects of this theme in the multipartite setting by drawing connections to concepts from statistics, graph theory, and quantum error-correcting codes: first, I address the case when joint quantum states are determined by their few-body parts and by Jaynes' maximum entropy principle. This can be seen as an extension of the notion of entanglement, with less complex states already being determined by their few-body marginals. Second, I address the conditions for certain highly entangled multipartite states to exist. In particular, I present the solution of a long-standing open problem concerning the existence of an absolutely maximally entangled state on seven qubits. This sheds light on the algebraic properties of pure quantum states, and on the conditions that constrain the sharing of entanglement amongst multiple particles. Third, I investigate Ulam's graph reconstruction problems in the quantum setting, and obtain legitimacy conditions of a set of states to be the reductions of a joint graph state. Lastly, I apply and extend the weight enumerator machinery from quantum error correction to investigate the existence of codes and highly entangled states in higher dimensions. This clarifies the physical interpretation of the weight enumerators and of the quantum MacWilliams identity, leading to novel applications in multipartite entanglement.

  16. Calculations of electron fluence correction factors using the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Siegbahn, E A; Nilsson, B; Fernandez-Varea, J M; Andreo, P

    2003-01-01

    In electron-beam dosimetry, plastic phantom materials may be used instead of water for the determination of absorbed dose to water. A correction factor φ water plastic is then needed for converting the electron fluence in the plastic phantom to the fluence at an equivalent depth in water. The recommended values for this factor given by AAPM TG-25 (1991 Med. Phys. 18 73-109) and the IAEA protocols TRS-381 (1997) and TRS-398 (2000) disagree, in particular at large depths. Calculations of the electron fluence have been done, using the Monte Carlo code PENELOPE, in semi-infinite phantoms of water and common plastic materials (PMMA, clear polystyrene, A-150, polyethylene, Plastic water TM and Solid water TM (WT1)). The simulations have been carried out for monoenergetic electron beams of 6, 10 and 20 MeV, as well as for a realistic clinical beam. The simulated fluence correction factors differ from the values in the AAPM and IAEA recommendations by up to 2%, and are in better agreement with factors obtained by Ding et al (1997 Med. Phys. 24 161-76) using EGS4. Our Monte Carlo calculations are also in good accordance with φ water plastic values measured by using an almost perturbation-free ion chamber. The important interdependence between depth- and fluence-scaling corrections for plastic phantoms is discussed. Discrepancies between the measured and the recommended values of φ water plastic may then be explained considering the different depth-scaling rules used

  17. The research on multi-projection correction based on color coding grid array

    Science.gov (United States)

    Yang, Fan; Han, Cheng; Bai, Baoxing; Zhang, Chao; Zhao, Yunxiu

    2017-10-01

    There are many disadvantages such as lower timeliness, greater manual intervention in multi-channel projection system, in order to solve the above problems, this paper proposes a multi-projector correction technology based on color coding grid array. Firstly, a color structured light stripe is generated by using the De Bruijn sequences, then meshing the feature information of the color structured light stripe image. We put the meshing colored grid intersection as the center of the circle, and build a white solid circle as the feature sample set of projected images. It makes the constructed feature sample set not only has the perceptual localization, but also has good noise immunity. Secondly, we establish the subpixel geometric mapping relationship between the projection screen and the individual projectors by using the structure of light encoding and decoding based on the color array, and the geometrical mapping relation is used to solve the homography matrix of each projector. Lastly the brightness inconsistency of the multi-channel projection overlap area is seriously interfered, it leads to the corrected image doesn't fit well with the observer's visual needs, and we obtain the projection display image of visual consistency by using the luminance fusion correction algorithm. The experimental results show that this method not only effectively solved the problem of distortion of multi-projection screen and the issue of luminance interference in overlapping region, but also improved the calibration efficient of multi-channel projective system and reduced the maintenance cost of intelligent multi-projection system.

  18. Correction

    DEFF Research Database (Denmark)

    Pinkevych, Mykola; Cromer, Deborah; Tolstrup, Martin

    2016-01-01

    [This corrects the article DOI: 10.1371/journal.ppat.1005000.][This corrects the article DOI: 10.1371/journal.ppat.1005740.][This corrects the article DOI: 10.1371/journal.ppat.1005679.].......[This corrects the article DOI: 10.1371/journal.ppat.1005000.][This corrects the article DOI: 10.1371/journal.ppat.1005740.][This corrects the article DOI: 10.1371/journal.ppat.1005679.]....

  19. HyDEn: A Hybrid Steganocryptographic Approach for Data Encryption Using Randomized Error-Correcting DNA Codes

    Directory of Open Access Journals (Sweden)

    Dan Tulpan

    2013-01-01

    Full Text Available This paper presents a novel hybrid DNA encryption (HyDEn approach that uses randomized assignments of unique error-correcting DNA Hamming code words for single characters in the extended ASCII set. HyDEn relies on custom-built quaternary codes and a private key used in the randomized assignment of code words and the cyclic permutations applied on the encoded message. Along with its ability to detect and correct errors, HyDEn equals or outperforms existing cryptographic methods and represents a promising in silico DNA steganographic approach.

  20. Image content authentication based on channel coding

    Science.gov (United States)

    Zhang, Fan; Xu, Lei

    2008-03-01

    The content authentication determines whether an image has been tampered or not, and if necessary, locate malicious alterations made on the image. Authentication on a still image or a video are motivated by recipient's interest, and its principle is that a receiver must be able to identify the source of this document reliably. Several techniques and concepts based on data hiding or steganography designed as a means for the image authentication. This paper presents a color image authentication algorithm based on convolution coding. The high bits of color digital image are coded by the convolution codes for the tamper detection and localization. The authentication messages are hidden in the low bits of image in order to keep the invisibility of authentication. All communications channels are subject to errors introduced because of additive Gaussian noise in their environment. Data perturbations cannot be eliminated but their effect can be minimized by the use of Forward Error Correction (FEC) techniques in the transmitted data stream and decoders in the receiving system that detect and correct bits in error. This paper presents a color image authentication algorithm based on convolution coding. The message of each pixel is convolution encoded with the encoder. After the process of parity check and block interleaving, the redundant bits are embedded in the image offset. The tamper can be detected and restored need not accessing the original image.

  1. The Application of Social Characteristic and L1 Optimization in the Error Correction for Network Coding in Wireless Sensor Networks.

    Science.gov (United States)

    Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue

    2018-02-03

    One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C /2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C /2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi's model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments.

  2. A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes

    International Nuclear Information System (INIS)

    Bravyi, Sergey; Terhal, Barbara

    2009-01-01

    We study properties of stabilizer codes that permit a local description on a regular D-dimensional lattice. Specifically, we assume that the stabilizer group of a code (the gauge group for subsystem codes) can be generated by local Pauli operators such that the support of any generator is bounded by a hypercube of size O(1). Our first result concerns the optimal scaling of the distance d with the linear size of the lattice L. We prove an upper bound d=O(L D-1 ) which is tight for D=1, 2. This bound applies to both subspace and subsystem stabilizer codes. Secondly, we analyze the suitability of stabilizer codes for building a self-correcting quantum memory. Any stabilizer code with geometrically local generators can be naturally transformed to a local Hamiltonian penalizing states that violate the stabilizer condition. A degenerate ground state of this Hamiltonian corresponds to the logical subspace of the code. We prove that for D=1, 2, different logical states can be mapped into each other by a sequence of single-qubit Pauli errors such that the energy of all intermediate states is upper bounded by a constant independent of the lattice size L. The same result holds if there are unused logical qubits that are treated as 'gauge qubits'. It demonstrates that a self-correcting quantum memory cannot be built using stabilizer codes in dimensions D=1, 2. This result is in sharp contrast with the existence of a classical self-correcting memory in the form of a two-dimensional (2D) ferromagnet. Our results leave open the possibility for a self-correcting quantum memory based on 2D subsystem codes or on 3D subspace or subsystem codes.

  3. On the decoding process in ternary error-correcting output codes.

    Science.gov (United States)

    Escalera, Sergio; Pujol, Oriol; Radeva, Petia

    2010-01-01

    A common way to model multiclass classification problems is to design a set of binary classifiers and to combine them. Error-Correcting Output Codes (ECOC) represent a successful framework to deal with these type of problems. Recent works in the ECOC framework showed significant performance improvements by means of new problem-dependent designs based on the ternary ECOC framework. The ternary framework contains a larger set of binary problems because of the use of a "do not care" symbol that allows us to ignore some classes by a given classifier. However, there are no proper studies that analyze the effect of the new symbol at the decoding step. In this paper, we present a taxonomy that embeds all binary and ternary ECOC decoding strategies into four groups. We show that the zero symbol introduces two kinds of biases that require redefinition of the decoding design. A new type of decoding measure is proposed, and two novel decoding strategies are defined. We evaluate the state-of-the-art coding and decoding strategies over a set of UCI Machine Learning Repository data sets and into a real traffic sign categorization problem. The experimental results show that, following the new decoding strategies, the performance of the ECOC design is significantly improved.

  4. Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI.

    Science.gov (United States)

    Leynes, Andrew P; Yang, Jaewon; Wiesinger, Florian; Kaushik, Sandeep S; Shanbhag, Dattesh D; Seo, Youngho; Hope, Thomas A; Larson, Peder E Z

    2018-05-01

    Accurate quantification of uptake on PET images depends on accurate attenuation correction in reconstruction. Current MR-based attenuation correction methods for body PET use a fat and water map derived from a 2-echo Dixon MRI sequence in which bone is neglected. Ultrashort-echo-time or zero-echo-time (ZTE) pulse sequences can capture bone information. We propose the use of patient-specific multiparametric MRI consisting of Dixon MRI and proton-density-weighted ZTE MRI to directly synthesize pseudo-CT images with a deep learning model: we call this method ZTE and Dixon deep pseudo-CT (ZeDD CT). Methods: Twenty-six patients were scanned using an integrated 3-T time-of-flight PET/MRI system. Helical CT images of the patients were acquired separately. A deep convolutional neural network was trained to transform ZTE and Dixon MR images into pseudo-CT images. Ten patients were used for model training, and 16 patients were used for evaluation. Bone and soft-tissue lesions were identified, and the SUV max was measured. The root-mean-squared error (RMSE) was used to compare the MR-based attenuation correction with the ground-truth CT attenuation correction. Results: In total, 30 bone lesions and 60 soft-tissue lesions were evaluated. The RMSE in PET quantification was reduced by a factor of 4 for bone lesions (10.24% for Dixon PET and 2.68% for ZeDD PET) and by a factor of 1.5 for soft-tissue lesions (6.24% for Dixon PET and 4.07% for ZeDD PET). Conclusion: ZeDD CT produces natural-looking and quantitatively accurate pseudo-CT images and reduces error in pelvic PET/MRI attenuation correction compared with standard methods. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  5. Convolutive ICA for Spatio-Temporal Analysis of EEG

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Makeig, Scott; Hansen, Lars Kai

    2007-01-01

    in the convolutive model can be correctly detected using Bayesian model selection. We demonstrate a framework for deconvolving an EEG ICA subspace. Initial results suggest that in some cases convolutive mixing may be a more realistic model for EEG signals than the instantaneous ICA model....

  6. A transient, Hex-Z nodal code corrected by discontinuity factors

    International Nuclear Information System (INIS)

    Shatilla, Y.A.M.; Henry, A.F.

    1993-01-01

    This document constitutes Volume 1 of the Final Report of a three-year study supported by the special Research Grant Program for Nuclear Energy Research set up by the US Department of Energy. The original motivation for the work was to provide a fast and accurate computer program for the analysis of transients in heavy water or graphite-moderated reactors being considered as candidates for the New Production Reactor. Thus, part of the funding was by way of pass-through money from the Savannah River Laboratory. With this intent in mind, a three-dimensional (Hex-Z), general-energy-group transient, nodal code was created, programmed, and tested. In order to improve accuracy, correction terms, called open-quotes discontinuity factors,close quotes were incorporated into the nodal equations. Ideal values of these factors force the nodal equations to provide node-integrated reaction rates and leakage rates across nodal surfaces that match exactly those edited from a more exact reference calculation. Since the exact reference solution is needed to compute the ideal discontinuity factors, the fact that they result in exact nodal equations would be of little practical interest were it not that approximate discontinuity factors, found at a greatly reduced cost, often yield very accurate results. For example, for light-water reactors, discontinuity factors found from two-dimensional, fine-mesh, multigroup transport solutions for two-dimensional cuts of a fuel assembly provide very accurate predictions of three-dimensional, full-core power distributions. The present document (volume 1) deals primarily with the specification, programming and testing of the three-dimensional, Hex-Z computer program. The program solves both the static (eigenvalue) and transient, general-energy-group, nodal equations corrected by user-supplied discontinuity factors

  7. Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs.

    Science.gov (United States)

    Han, Sangkwon; Bae, Hyung Jong; Kim, Junhoi; Shin, Sunghwan; Choi, Sung-Eun; Lee, Sung Hoon; Kwon, Sunghoon; Park, Wook

    2012-11-20

    A QR-coded microtaggant for the anti-counterfeiting of drugs is proposed that can provide high capacity and error-correction capability. It is fabricated lithographically in a microfluidic channel with special consideration of the island patterns in the QR Code. The microtaggant is incorporated in the drug capsule ("on-dose authentication") and can be read by a simple smartphone QR Code reader application when removed from the capsule and washed free of drug. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Design and Implementation of Convolutional Encoder and Viterbi Decoder Using FPGA.

    Directory of Open Access Journals (Sweden)

    Riham Ali Zbaid

    2018-01-01

    Full Text Available Keeping  the  fineness of data is the most significant thing in communication.There are many factors that affect the accuracy of the data when it is transmitted over the communication channel such as noise etc. to overcome these effects are encoding channels encryption.In this paper is used for one type of channel coding is convolutional codes. Convolution encoding is a Forward Error Correction (FEC method used in incessant one-way and real time communication links .It can offer a great development in the error bit rates so that small, low energy, and devices cheap transmission when used in applications such as satellites. In this paper highlight the design, simulation and implementation of convolution encoder and Viterbi decoder by using MATLAB- program (2011. SIMULINK HDL coder is used to convert MATLAB-SIMULINK models to VHDL using plates Altera Cyclone II code DE2-70. Simulation and evaluation of the implementation of the results coincided with the results of the design show the coinciding with the designed results.

  9. Decoding of DBEC-TBED Reed-Solomon codes. [Double-Byte-Error-Correcting, Triple-Byte-Error-Detecting

    Science.gov (United States)

    Deng, Robert H.; Costello, Daniel J., Jr.

    1987-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256 K bit DRAM's are organized in 32 K x 8 bit-bytes. Byte-oriented codes such as Reed-Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. The paper presents a special decoding technique for double-byte-error-correcting, triple-byte-error-detecting RS codes which is capable of high-speed operation. This technique is designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.

  10. Decoding linear error-correcting codes up to half the minimum distance with Gröbner bases

    NARCIS (Netherlands)

    Bulygin, S.; Pellikaan, G.R.; Sala, M.; Mora, T.; Perret, L.; Sakata, S.; Traverso, C.

    2009-01-01

    In this short note we show how one can decode linear error-correcting codes up to half the minimum distance via solving a system of polynomial equations over a finite field. We also explicitly present the reduced Gröbner basis for the system considered.

  11. Convolution-deconvolution in DIGES

    International Nuclear Information System (INIS)

    Philippacopoulos, A.J.; Simos, N.

    1995-01-01

    Convolution and deconvolution operations is by all means a very important aspect of SSI analysis since it influences the input to the seismic analysis. This paper documents some of the convolution/deconvolution procedures which have been implemented into the DIGES code. The 1-D propagation of shear and dilatational waves in typical layered configurations involving a stack of layers overlying a rock is treated by DIGES in a similar fashion to that of available codes, e.g. CARES, SHAKE. For certain configurations, however, there is no need to perform such analyses since the corresponding solutions can be obtained in analytic form. Typical cases involve deposits which can be modeled by a uniform halfspace or simple layered halfspaces. For such cases DIGES uses closed-form solutions. These solutions are given for one as well as two dimensional deconvolution. The type of waves considered include P, SV and SH waves. The non-vertical incidence is given special attention since deconvolution can be defined differently depending on the problem of interest. For all wave cases considered, corresponding transfer functions are presented in closed-form. Transient solutions are obtained in the frequency domain. Finally, a variety of forms are considered for representing the free field motion both in terms of deterministic as well as probabilistic representations. These include (a) acceleration time histories, (b) response spectra (c) Fourier spectra and (d) cross-spectral densities

  12. Considerations and code for partial volume correcting [18F]-AV-1451 tau PET data

    Directory of Open Access Journals (Sweden)

    Suzanne L. Baker

    2017-12-01

    Full Text Available [18F]-AV-1451 is a leading tracer used with positron emission tomography (PET to quantify tau pathology. However, [18F]-AV-1451 shows “off target” or non-specific binding, which we define as binding of the tracer in unexpected areas unlikely to harbor aggregated tau based on autopsy literature [1]. Along with caudate, putamen, pallidum and thalamus non-specific binding [2,3], we have found binding in the superior portion of the cerebellar gray matter, leading us to use inferior cerebellar gray as the reference region. We also addressed binding in the posterior portion of the choroid plexus. PET signal unlikely to be associated with tau also occurs in skull, meninges and soft tissue (see e.g. [4]. We refer to [18F]-AV-1451 binding in the skull and meninges as extra-cortical hotspots (ECH and find them near lateral and medial orbitofrontal, lateral occipital, inferior and middle temporal, superior and inferior parietal, and inferior cerebellar gray matter. Lastly, the choroid plexus also shows non-specific binding that bleeds into hippocampus. We are providing the code (http://www.runmycode.org/companion/view/2798 used to create different regions of interest (ROIs that we then used to perform Partial Volume Correction (PVC using the Rousset geometric transfer matrix method (GTM, [5]. This method was used in the companion article, “Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer's Disease” ([6], DOI 10.1016/j.neuroimage.2017.05.058.

  13. Improved Iterative Decoding of Network-Channel Codes for Multiple-Access Relay Channel.

    Science.gov (United States)

    Majumder, Saikat; Verma, Shrish

    2015-01-01

    Cooperative communication using relay nodes is one of the most effective means of exploiting space diversity for low cost nodes in wireless network. In cooperative communication, users, besides communicating their own information, also relay the information of other users. In this paper we investigate a scheme where cooperation is achieved using a common relay node which performs network coding to provide space diversity for two information nodes transmitting to a base station. We propose a scheme which uses Reed-Solomon error correcting code for encoding the information bit at the user nodes and convolutional code as network code, instead of XOR based network coding. Based on this encoder, we propose iterative soft decoding of joint network-channel code by treating it as a concatenated Reed-Solomon convolutional code. Simulation results show significant improvement in performance compared to existing scheme based on compound codes.

  14. Convolution based profile fitting

    International Nuclear Information System (INIS)

    Kern, A.; Coelho, A.A.; Cheary, R.W.

    2002-01-01

    Full text: In convolution based profile fitting, profiles are generated by convoluting functions together to form the observed profile shape. For a convolution of 'n' functions this process can be written as, Y(2θ)=F 1 (2θ)x F 2 (2θ)x... x F i (2θ)x....xF n (2θ). In powder diffractometry the functions F i (2θ) can be interpreted as the aberration functions of the diffractometer, but in general any combination of appropriate functions for F i (2θ) may be used in this context. Most direct convolution fitting methods are restricted to combinations of F i (2θ) that can be convoluted analytically (e.g. GSAS) such as Lorentzians, Gaussians, the hat (impulse) function and the exponential function. However, software such as TOPAS is now available that can accurately convolute and refine a wide variety of profile shapes numerically, including user defined profiles, without the need to convolute analytically. Some of the most important advantages of modern convolution based profile fitting are: 1) virtually any peak shape and angle dependence can normally be described using minimal profile parameters in laboratory and synchrotron X-ray data as well as in CW and TOF neutron data. This is possible because numerical convolution and numerical differentiation is used within the refinement procedure so that a wide range of functions can easily be incorporated into the convolution equation; 2) it can use physically based diffractometer models by convoluting the instrument aberration functions. This can be done for most laboratory based X-ray powder diffractometer configurations including conventional divergent beam instruments, parallel beam instruments, and diffractometers used for asymmetric diffraction. It can also accommodate various optical elements (e.g. multilayers and monochromators) and detector systems (e.g. point and position sensitive detectors) and has already been applied to neutron powder diffraction systems (e.g. ANSTO) as well as synchrotron based

  15. Quantum quasi-cyclic low-density parity-check error-correcting codes

    International Nuclear Information System (INIS)

    Yuan, Li; Gui-Hua, Zeng; Lee, Moon Ho

    2009-01-01

    In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some new quantum codes with various lengths and rates of no cycles-length 4 in their Tanner graphs. In addition, these constructed codes have the advantages of simple implementation and low-complexity encoding. Finally, the decoding approach for the proposed quantum QC LDPC is investigated. (general)

  16. Thermal neutron self-shielding correction factors for large sample instrumental neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Tzika, F.; Stamatelatos, I.E.

    2004-01-01

    Thermal neutron self-shielding within large samples was studied using the Monte Carlo neutron transport code MCNP. The code enabled a three-dimensional modeling of the actual source and geometry configuration including reactor core, graphite pile and sample. Neutron flux self-shielding correction factors derived for a set of materials of interest for large sample neutron activation analysis are presented and evaluated. Simulations were experimentally verified by measurements performed using activation foils. The results of this study can be applied in order to determine neutron self-shielding factors of unknown samples from the thermal neutron fluxes measured at the surface of the sample

  17. Codes and standards in repair and replacement process. Importance of corrective action in maintenance activities

    International Nuclear Information System (INIS)

    Aoki, Takayuki; Takagi, Toshiyuki

    2015-01-01

    For creating a corrective measure plan for industrial plant components, it is very important to have a well-grounded basis. Therefore, this paper proposes a method for determining the following three elements of such a plan: an equipment to be repaired, a corrective measure method to be adopted, and a timing of its implementation using a rational approach. And the importance of corrective measure in plant maintenance is also discussed. (author)

  18. Decoding error-correcting codes with Gröbner bases

    NARCIS (Netherlands)

    Bulygin, S.; Pellikaan, G.R.; Veldhuis, R.; Cronie, H.; Hoeksema, H.

    2007-01-01

    The decoding of arbitrary linear block codes is accomplished by solving a system of quadratic equations by means of Buchberger’s algorithm for finding a Gröbner basis. This generalizes the algorithm of Berlekamp-Massey for decoding Reed Solomon, Goppa and cyclic codes up to half the true minimum

  19. Local non-Calderbank-Shor-Steane quantum error-correcting code on a three-dimensional lattice

    International Nuclear Information System (INIS)

    Kim, Isaac H.

    2011-01-01

    We present a family of non-Calderbank-Shor-Steane quantum error-correcting code consisting of geometrically local stabilizer generators on a 3D lattice. We study the Hamiltonian constructed from ferromagnetic interaction of overcomplete set of local stabilizer generators. The degenerate ground state of the system is characterized by a quantum error-correcting code whose number of encoded qubits are equal to the second Betti number of the manifold. These models (i) have solely local interactions; (ii) admit a strong-weak duality relation with an Ising model on a dual lattice; (iii) have topological order in the ground state, some of which survive at finite temperature; and (iv) behave as classical memory at finite temperature.

  20. Local non-Calderbank-Shor-Steane quantum error-correcting code on a three-dimensional lattice

    Science.gov (United States)

    Kim, Isaac H.

    2011-05-01

    We present a family of non-Calderbank-Shor-Steane quantum error-correcting code consisting of geometrically local stabilizer generators on a 3D lattice. We study the Hamiltonian constructed from ferromagnetic interaction of overcomplete set of local stabilizer generators. The degenerate ground state of the system is characterized by a quantum error-correcting code whose number of encoded qubits are equal to the second Betti number of the manifold. These models (i) have solely local interactions; (ii) admit a strong-weak duality relation with an Ising model on a dual lattice; (iii) have topological order in the ground state, some of which survive at finite temperature; and (iv) behave as classical memory at finite temperature.

  1. Five-way Smoking Status Classification Using Text Hot-Spot Identification and Error-correcting Output Codes

    OpenAIRE

    Cohen, Aaron M.

    2008-01-01

    We participated in the i2b2 smoking status classification challenge task. The purpose of this task was to evaluate the ability of systems to automatically identify patient smoking status from discharge summaries. Our submission included several techniques that we compared and studied, including hot-spot identification, zero-vector filtering, inverse class frequency weighting, error-correcting output codes, and post-processing rules. We evaluated our approaches using the same methods as the i2...

  2. Correction

    CERN Multimedia

    2002-01-01

    Tile Calorimeter modules stored at CERN. The larger modules belong to the Barrel, whereas the smaller ones are for the two Extended Barrels. (The article was about the completion of the 64 modules for one of the latter.) The photo on the first page of the Bulletin n°26/2002, from 24 July 2002, illustrating the article «The ATLAS Tile Calorimeter gets into shape» was published with a wrong caption. We would like to apologise for this mistake and so publish it again with the correct caption.

  3. Convolution copula econometrics

    CERN Document Server

    Cherubini, Umberto; Mulinacci, Sabrina

    2016-01-01

    This book presents a novel approach to time series econometrics, which studies the behavior of nonlinear stochastic processes. This approach allows for an arbitrary dependence structure in the increments and provides a generalization with respect to the standard linear independent increments assumption of classical time series models. The book offers a solution to the problem of a general semiparametric approach, which is given by a concept called C-convolution (convolution of dependent variables), and the corresponding theory of convolution-based copulas. Intended for econometrics and statistics scholars with a special interest in time series analysis and copula functions (or other nonparametric approaches), the book is also useful for doctoral students with a basic knowledge of copula functions wanting to learn about the latest research developments in the field.

  4. Multithreaded implicitly dealiased convolutions

    Science.gov (United States)

    Roberts, Malcolm; Bowman, John C.

    2018-03-01

    Implicit dealiasing is a method for computing in-place linear convolutions via fast Fourier transforms that decouples work memory from input data. It offers easier memory management and, for long one-dimensional input sequences, greater efficiency than conventional zero-padding. Furthermore, for convolutions of multidimensional data, the segregation of data and work buffers can be exploited to reduce memory usage and execution time significantly. This is accomplished by processing and discarding data as it is generated, allowing work memory to be reused, for greater data locality and performance. A multithreaded implementation of implicit dealiasing that accepts an arbitrary number of input and output vectors and a general multiplication operator is presented, along with an improved one-dimensional Hermitian convolution that avoids the loop dependency inherent in previous work. An alternate data format that can accommodate a Nyquist mode and enhance cache efficiency is also proposed.

  5. Analysis on applicable error-correcting code strength of storage class memory and NAND flash in hybrid storage

    Science.gov (United States)

    Matsui, Chihiro; Kinoshita, Reika; Takeuchi, Ken

    2018-04-01

    A hybrid of storage class memory (SCM) and NAND flash is a promising technology for high performance storage. Error correction is inevitable on SCM and NAND flash because their bit error rate (BER) increases with write/erase (W/E) cycles, data retention, and program/read disturb. In addition, scaling and multi-level cell technologies increase BER. However, error-correcting code (ECC) degrades storage performance because of extra memory reading and encoding/decoding time. Therefore, applicable ECC strength of SCM and NAND flash is evaluated independently by fixing ECC strength of one memory in the hybrid storage. As a result, weak BCH ECC with small correctable bit is recommended for the hybrid storage with large SCM capacity because SCM is accessed frequently. In contrast, strong and long-latency LDPC ECC can be applied to NAND flash in the hybrid storage with large SCM capacity because large-capacity SCM improves the storage performance.

  6. Correction

    Directory of Open Access Journals (Sweden)

    2012-01-01

    Full Text Available Regarding Gorelik, G., & Shackelford, T.K. (2011. Human sexual conflict from molecules to culture. Evolutionary Psychology, 9, 564–587: The authors wish to correct an omission in citation to the existing literature. In the final paragraph on p. 570, we neglected to cite Burch and Gallup (2006 [Burch, R. L., & Gallup, G. G., Jr. (2006. The psychobiology of human semen. In S. M. Platek & T. K. Shackelford (Eds., Female infidelity and paternal uncertainty (pp. 141–172. New York: Cambridge University Press.]. Burch and Gallup (2006 reviewed the relevant literature on FSH and LH discussed in this paragraph, and should have been cited accordingly. In addition, Burch and Gallup (2006 should have been cited as the originators of the hypothesis regarding the role of FSH and LH in the semen of rapists. The authors apologize for this oversight.

  7. Correction

    CERN Multimedia

    2002-01-01

    The photo on the second page of the Bulletin n°48/2002, from 25 November 2002, illustrating the article «Spanish Visit to CERN» was published with a wrong caption. We would like to apologise for this mistake and so publish it again with the correct caption.   The Spanish delegation, accompanied by Spanish scientists at CERN, also visited the LHC superconducting magnet test hall (photo). From left to right: Felix Rodriguez Mateos of CERN LHC Division, Josep Piqué i Camps, Spanish Minister of Science and Technology, César Dopazo, Director-General of CIEMAT (Spanish Research Centre for Energy, Environment and Technology), Juan Antonio Rubio, ETT Division Leader at CERN, Manuel Aguilar-Benitez, Spanish Delegate to Council, Manuel Delfino, IT Division Leader at CERN, and Gonzalo León, Secretary-General of Scientific Policy to the Minister.

  8. Correction

    Directory of Open Access Journals (Sweden)

    2014-01-01

    Full Text Available Regarding Tagler, M. J., and Jeffers, H. M. (2013. Sex differences in attitudes toward partner infidelity. Evolutionary Psychology, 11, 821–832: The authors wish to correct values in the originally published manuscript. Specifically, incorrect 95% confidence intervals around the Cohen's d values were reported on page 826 of the manuscript where we reported the within-sex simple effects for the significant Participant Sex × Infidelity Type interaction (first paragraph, and for attitudes toward partner infidelity (second paragraph. Corrected values are presented in bold below. The authors would like to thank Dr. Bernard Beins at Ithaca College for bringing these errors to our attention. Men rated sexual infidelity significantly more distressing (M = 4.69, SD = 0.74 than they rated emotional infidelity (M = 4.32, SD = 0.92, F(1, 322 = 23.96, p < .001, d = 0.44, 95% CI [0.23, 0.65], but there was little difference between women's ratings of sexual (M = 4.80, SD = 0.48 and emotional infidelity (M = 4.76, SD = 0.57, F(1, 322 = 0.48, p = .29, d = 0.08, 95% CI [−0.10, 0.26]. As expected, men rated sexual infidelity (M = 1.44, SD = 0.70 more negatively than they rated emotional infidelity (M = 2.66, SD = 1.37, F(1, 322 = 120.00, p < .001, d = 1.12, 95% CI [0.85, 1.39]. Although women also rated sexual infidelity (M = 1.40, SD = 0.62 more negatively than they rated emotional infidelity (M = 2.09, SD = 1.10, this difference was not as large and thus in the evolutionary theory supportive direction, F(1, 322 = 72.03, p < .001, d = 0.77, 95% CI [0.60, 0.94].

  9. Limitations of a convolution method for modeling geometric uncertainties in radiation therapy. I. The effect of shift invariance

    International Nuclear Information System (INIS)

    Craig, Tim; Battista, Jerry; Van Dyk, Jake

    2003-01-01

    Convolution methods have been used to model the effect of geometric uncertainties on dose delivery in radiation therapy. Convolution assumes shift invariance of the dose distribution. Internal inhomogeneities and surface curvature lead to violations of this assumption. The magnitude of the error resulting from violation of shift invariance is not well documented. This issue is addressed by comparing dose distributions calculated using the Convolution method with dose distributions obtained by Direct Simulation. A comparison of conventional Static dose distributions was also made with Direct Simulation. This analysis was performed for phantom geometries and several clinical tumor sites. A modification to the Convolution method to correct for some of the inherent errors is proposed and tested using example phantoms and patients. We refer to this modified method as the Corrected Convolution. The average maximum dose error in the calculated volume (averaged over different beam arrangements in the various phantom examples) was 21% with the Static dose calculation, 9% with Convolution, and reduced to 5% with the Corrected Convolution. The average maximum dose error in the calculated volume (averaged over four clinical examples) was 9% for the Static method, 13% for Convolution, and 3% for Corrected Convolution. While Convolution can provide a superior estimate of the dose delivered when geometric uncertainties are present, the violation of shift invariance can result in substantial errors near the surface of the patient. The proposed Corrected Convolution modification reduces errors near the surface to 3% or less

  10. Bounded distance decoding of linear error-correcting codes with Gröbner bases

    NARCIS (Netherlands)

    Bulygin, S.; Pellikaan, G.R.

    2009-01-01

    The problem of bounded distance decoding of arbitrary linear codes using Gröbner bases is addressed. A new method is proposed, which is based on reducing an initial decoding problem to solving a certain system of polynomial equations over a finite field. The peculiarity of this system is that, when

  11. Forward Error Correcting Codes for 100 Gbit/s Optical Communication Systems

    DEFF Research Database (Denmark)

    Li, Bomin

    , a denser WDM grid changes the shape of the BER curve based on the analysis of the experimental results, which requires a stronger FEC code. Furthermore, a proof-of-the-concept hardware implementation is presented. The tradeoff between the code length, the CG and the complexity requires more consideration......-complexity low-power-consumption FEC hardware implementation plays an important role in the next generation energy efficient networks. Thirdly, a joint research is required for FEC integrated applications as the error distribution in channels relies on many factors such as non-linearity in long distance optical...... and their associated experimental demonstration and hardware implementation. The demonstrated high CG, flexibility, robustness and scalability reveal the important role of FEC techniques in the next generation high-speed, high-capacity, high performance and energy-efficient fiber-optic data transmission networks....

  12. On the problem of non-zero word error rates for fixed-rate error correction codes in continuous variable quantum key distribution

    International Nuclear Information System (INIS)

    Johnson, Sarah J; Ong, Lawrence; Shirvanimoghaddam, Mahyar; Lance, Andrew M; Symul, Thomas; Ralph, T C

    2017-01-01

    The maximum operational range of continuous variable quantum key distribution protocols has shown to be improved by employing high-efficiency forward error correction codes. Typically, the secret key rate model for such protocols is modified to account for the non-zero word error rate of such codes. In this paper, we demonstrate that this model is incorrect: firstly, we show by example that fixed-rate error correction codes, as currently defined, can exhibit efficiencies greater than unity. Secondly, we show that using this secret key model combined with greater than unity efficiency codes, implies that it is possible to achieve a positive secret key over an entanglement breaking channel—an impossible scenario. We then consider the secret key model from a post-selection perspective, and examine the implications for key rate if we constrain the forward error correction codes to operate at low word error rates. (paper)

  13. Do hip prosthesis related infection codes in administrative discharge registers correctly classify periprosthetic hip joint infection?

    DEFF Research Database (Denmark)

    Lange, Jeppe; Pedersen, Alma B; Troelsen, Anders

    2015-01-01

    PURPOSE: Administrative discharge registers could be a valuable and easily accessible single-sources for research data on periprosthetic hip joint infection. The aim of this study was to estimate the positive predictive value of the International Classification of Disease 10th revision (ICD-10...... in future single-source register based studies, but preferably should be used in combination with alternate data sources to ensure higher validity....... decreased to 82% (95% CI: 72-89). CONCLUSIONS: Misclassification must be expected and taken into consideration when using administrative discharge registers for epidemiological research on periprosthetic hip joint infection. We believe that the periprosthetic hip joint infection diagnosis code can be of use...

  14. Five-way smoking status classification using text hot-spot identification and error-correcting output codes.

    Science.gov (United States)

    Cohen, Aaron M

    2008-01-01

    We participated in the i2b2 smoking status classification challenge task. The purpose of this task was to evaluate the ability of systems to automatically identify patient smoking status from discharge summaries. Our submission included several techniques that we compared and studied, including hot-spot identification, zero-vector filtering, inverse class frequency weighting, error-correcting output codes, and post-processing rules. We evaluated our approaches using the same methods as the i2b2 task organizers, using micro- and macro-averaged F1 as the primary performance metric. Our best performing system achieved a micro-F1 of 0.9000 on the test collection, equivalent to the best performing system submitted to the i2b2 challenge. Hot-spot identification, zero-vector filtering, classifier weighting, and error correcting output coding contributed additively to increased performance, with hot-spot identification having by far the largest positive effect. High performance on automatic identification of patient smoking status from discharge summaries is achievable with the efficient and straightforward machine learning techniques studied here.

  15. SimCommSys: taking the errors out of error-correcting code simulations

    Directory of Open Access Journals (Sweden)

    Johann A. Briffa

    2014-06-01

    Full Text Available In this study, we present SimCommSys, a simulator of communication systems that we are releasing under an open source license. The core of the project is a set of C + + libraries defining communication system components and a distributed Monte Carlo simulator. Of principal interest is the error-control coding component, where various kinds of binary and non-binary codes are implemented, including turbo, LDPC, repeat-accumulate and Reed–Solomon. The project also contains a number of ready-to-build binaries implementing various stages of the communication system (such as the encoder and decoder, a complete simulator and a system benchmark. Finally, SimCommSys also provides a number of shell and python scripts to encapsulate routine use cases. As long as the required components are already available in SimCommSys, the user may simulate complete communication systems of their own design without any additional programming. The strict separation of development (needed only to implement new components and use (to simulate specific constructions encourages reproducibility of experimental work and reduces the likelihood of error. Following an overview of the framework, we provide some examples of how to use the framework, including the implementation of a simple codec, the specification of communication systems and their simulation.

  16. Lifting scheme-based method for joint coding 3D stereo digital cinema with luminace correction and optimized prediction

    Science.gov (United States)

    Darazi, R.; Gouze, A.; Macq, B.

    2009-01-01

    Reproducing a natural and real scene as we see in the real world everyday is becoming more and more popular. Stereoscopic and multi-view techniques are used for this end. However due to the fact that more information are displayed requires supporting technologies such as digital compression to ensure the storage and transmission of the sequences. In this paper, a new scheme for stereo image coding is proposed. The original left and right images are jointly coded. The main idea is to optimally exploit the existing correlation between the two images. This is done by the design of an efficient transform that reduces the existing redundancy in the stereo image pair. This approach was inspired by Lifting Scheme (LS). The novelty in our work is that the prediction step is been replaced by an hybrid step that consists in disparity compensation followed by luminance correction and an optimized prediction step. The proposed scheme can be used for lossless and for lossy coding. Experimental results show improvement in terms of performance and complexity compared to recently proposed methods.

  17. Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs). Corrected Copy, Aug. 25, 2014

    Science.gov (United States)

    Prosser, William H.

    2014-01-01

    In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This report contains the outcome of the assessment and the findings, observations, and NESC recommendations to the Agency and individual NASA Centers.

  18. Error Correcting Codes I. Applications of Elementary Algebra to Information Theory. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 346.

    Science.gov (United States)

    Rice, Bart F.; Wilde, Carroll O.

    It is noted that with the prominence of computers in today's technological society, digital communication systems have become widely used in a variety of applications. Some of the problems that arise in digital communications systems are described. This unit presents the problem of correcting errors in such systems. Error correcting codes are…

  19. Error correcting code with chip kill capability and power saving enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Gara, Alan G [Mount Kisco, NY; Chen, Dong [Croton On Husdon, NY; Coteus, Paul W [Yorktown Heights, NY; Flynn, William T [Rochester, MN; Marcella, James A [Rochester, MN; Takken, Todd [Brewster, NY; Trager, Barry M [Yorktown Heights, NY; Winograd, Shmuel [Scarsdale, NY

    2011-08-30

    A method and system are disclosed for detecting memory chip failure in a computer memory system. The method comprises the steps of accessing user data from a set of user data chips, and testing the user data for errors using data from a set of system data chips. This testing is done by generating a sequence of check symbols from the user data, grouping the user data into a sequence of data symbols, and computing a specified sequence of syndromes. If all the syndromes are zero, the user data has no errors. If one of the syndromes is non-zero, then a set of discriminator expressions are computed, and used to determine whether a single or double symbol error has occurred. In the preferred embodiment, less than two full system data chips are used for testing and correcting the user data.

  20. Model selection for convolutive ICA with an application to spatiotemporal analysis of EEG

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Makeig, S.; Hansen, Lars Kai

    2007-01-01

    We present a new algorithm for maximum likelihood convolutive independent component analysis (ICA) in which components are unmixed using stable autoregressive filters determined implicitly by estimating a convolutive model of the mixing process. By introducing a convolutive mixing model...... for the components, we show how the order of the filters in the model can be correctly detected using Bayesian model selection. We demonstrate a framework for deconvolving a subspace of independent components in electroencephalography (EEG). Initial results suggest that in some cases, convolutive mixing may...

  1. FAST-PT: a novel algorithm to calculate convolution integrals in cosmological perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    McEwen, Joseph E.; Fang, Xiao; Hirata, Christopher M.; Blazek, Jonathan A., E-mail: mcewen.24@osu.edu, E-mail: fang.307@osu.edu, E-mail: hirata.10@osu.edu, E-mail: blazek@berkeley.edu [Center for Cosmology and AstroParticle Physics, Department of Physics, The Ohio State University, 191 W Woodruff Ave, Columbus OH 43210 (United States)

    2016-09-01

    We present a novel algorithm, FAST-PT, for performing convolution or mode-coupling integrals that appear in nonlinear cosmological perturbation theory. The algorithm uses several properties of gravitational structure formation—the locality of the dark matter equations and the scale invariance of the problem—as well as Fast Fourier Transforms to describe the input power spectrum as a superposition of power laws. This yields extremely fast performance, enabling mode-coupling integral computations fast enough to embed in Monte Carlo Markov Chain parameter estimation. We describe the algorithm and demonstrate its application to calculating nonlinear corrections to the matter power spectrum, including one-loop standard perturbation theory and the renormalization group approach. We also describe our public code (in Python) to implement this algorithm. The code, along with a user manual and example implementations, is available at https://github.com/JoeMcEwen/FAST-PT.

  2. The convolution transform

    CERN Document Server

    Hirschman, Isidore Isaac

    2005-01-01

    In studies of general operators of the same nature, general convolution transforms are immediately encountered as the objects of inversion. The relation between differential operators and integral transforms is the basic theme of this work, which is geared toward upper-level undergraduates and graduate students. It may be read easily by anyone with a working knowledge of real and complex variable theory. Topics include the finite and non-finite kernels, variation diminishing transforms, asymptotic behavior of kernels, real inversion theory, representation theory, the Weierstrass transform, and

  3. An investigation of error correcting techniques for OMV and AXAF

    Science.gov (United States)

    Ingels, Frank; Fryer, John

    1991-01-01

    The original objectives of this project were to build a test system for the NASA 255/223 Reed/Solomon encoding/decoding chip set and circuit board. This test system was then to be interfaced with a convolutional system at MSFC to examine the performance of the concantinated codes. After considerable work, it was discovered that the convolutional system could not function as needed. This report documents the design, construction, and testing of the test apparatus for the R/S chip set. The approach taken was to verify the error correcting behavior of the chip set by injecting known error patterns onto data and observing the results. Error sequences were generated using pseudo-random number generator programs, with Poisson time distribution between errors and Gaussian burst lengths. Sample means, variances, and number of un-correctable errors were calculated for each data set before testing.

  4. Separating Underdetermined Convolutive Speech Mixtures

    DEFF Research Database (Denmark)

    Pedersen, Michael Syskind; Wang, DeLiang; Larsen, Jan

    2006-01-01

    a method for underdetermined blind source separation of convolutive mixtures. The proposed framework is applicable for separation of instantaneous as well as convolutive speech mixtures. It is possible to iteratively extract each speech signal from the mixture by combining blind source separation...

  5. Correction factors for photon beam quality for cylindrical ionization chambers: Monte Carlo calculations by using the PENELOPE code

    International Nuclear Information System (INIS)

    Barreras Caballero, A. A.; Hernandez Garcia, J.J.; Alfonso Laguardia, R.

    2009-01-01

    Were directly determined correction factors depending on the type camera beam quality, k, Q, and kQ, Qo, instead of the product (w, air p) Q, for three type cylindrical ionization chambers Pinpoint and divergent monoenergetic beams of photons in a wide range of energies (4-20 MV). The method of calculation used dispenses with the approaches taken in the classic procedure considered independent of braking power ratios and the factors disturbance of the camera. A detailed description of the geometry and materials chambers were supplied by the manufacturer and used as data input for the system 2006 of PENELOPE Monte Carlo calculation using a User code that includes correlated sampling, and forced interactions division of particles. We used a photon beam Co-60 as beam reference for calculating the correction factors for beam quality. No data exist for the cameras PTW 31014, 31015 and 31016 in the TRS-398 at they do not compare the results with data calculated or determined experimentally by other authors. (author)

  6. On the Design of Error-Correcting Ciphers

    Directory of Open Access Journals (Sweden)

    Mathur Chetan Nanjunda

    2006-01-01

    Full Text Available Securing transmission over a wireless network is especially challenging, not only because of the inherently insecure nature of the medium, but also because of the highly error-prone nature of the wireless environment. In this paper, we take a joint encryption-error correction approach to ensure secure and robust communication over the wireless link. In particular, we design an error-correcting cipher (called the high diffusion cipher and prove bounds on its error-correcting capacity as well as its security. Towards this end, we propose a new class of error-correcting codes (HD-codes with built-in security features that we use in the diffusion layer of the proposed cipher. We construct an example, 128-bit cipher using the HD-codes, and compare it experimentally with two traditional concatenated systems: (a AES (Rijndael followed by Reed-Solomon codes, (b Rijndael followed by convolutional codes. We show that the HD-cipher is as resistant to linear and differential cryptanalysis as the Rijndael. We also show that any chosen plaintext attack that can be performed on the HD cipher can be transformed into a chosen plaintext attack on the Rijndael cipher. In terms of error correction capacity, the traditional systems using Reed-Solomon codes are comparable to the proposed joint error-correcting cipher and those that use convolutional codes require more data expansion in order to achieve similar error correction as the HD-cipher. The original contributions of this work are (1 design of a new joint error-correction-encryption system, (2 design of a new class of algebraic codes with built-in security criteria, called the high diffusion codes (HD-codes for use in the HD-cipher, (3 mathematical properties of these codes, (4 methods for construction of the codes, (5 bounds on the error-correcting capacity of the HD-cipher, (6 mathematical derivation of the bound on resistance of HD cipher to linear and differential cryptanalysis, (7 experimental comparison

  7. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.

    Science.gov (United States)

    Chen, Liang-Chieh; Papandreou, George; Kokkinos, Iasonas; Murphy, Kevin; Yuille, Alan L

    2018-04-01

    In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.

  8. Protograph-Based Raptor-Like Codes

    Science.gov (United States)

    Divsalar, Dariush; Chen, Tsung-Yi; Wang, Jiadong; Wesel, Richard D.

    2014-01-01

    Theoretical analysis has long indicated that feedback improves the error exponent but not the capacity of pointto- point memoryless channels. The analytic and empirical results indicate that at short blocklength regime, practical rate-compatible punctured convolutional (RCPC) codes achieve low latency with the use of noiseless feedback. In 3GPP, standard rate-compatible turbo codes (RCPT) did not outperform the convolutional codes in the short blocklength regime. The reason is the convolutional codes for low number of states can be decoded optimally using Viterbi decoder. Despite excellent performance of convolutional codes at very short blocklengths, the strength of convolutional codes does not scale with the blocklength for a fixed number of states in its trellis.

  9. Adaptation of penelope Monte Carlo code system to the absorbed dose metrology: characterization of high energy photon beams and calculations of reference dosimeter correction factors

    International Nuclear Information System (INIS)

    Mazurier, J.

    1999-01-01

    This thesis has been performed in the framework of national reference setting-up for absorbed dose in water and high energy photon beam provided with the SATURNE-43 medical accelerator of the BNM-LPRI (acronym for National Bureau of Metrology and Primary standard laboratory of ionising radiation). The aim of this work has been to develop and validate different user codes, based on PENELOPE Monte Carlo code system, to determine the photon beam characteristics and calculate the correction factors of reference dosimeters such as Fricke dosimeters and graphite calorimeter. In the first step, the developed user codes have permitted the influence study of different components constituting the irradiation head. Variance reduction techniques have been used to reduce the calculation time. The phase space has been calculated for 6, 12 and 25 MV at the output surface level of the accelerator head, then used for calculating energy spectra and dose distributions in the reference water phantom. Results obtained have been compared with experimental measurements. The second step has been devoted to develop an user code allowing calculation correction factors associated with both BNM-LPRI's graphite and Fricke dosimeters thanks to a correlated sampling method starting with energy spectra obtained in the first step. Then the calculated correction factors have been compared with experimental and calculated results obtained with the Monte Carlo EGS4 code system. The good agreement, between experimental and calculated results, leads to validate simulations performed with the PENELOPE code system. (author)

  10. The Prerogative of "Corrective Recasts" as a Sign of Hegemony in the Use of Language: Further Thoughts on Eric Hauser's (2005) "Coding 'Corrective Recasts': The Maintenance of Meaning and More Fundamental Problems"

    Science.gov (United States)

    Rajagopalan, Kanavillil

    2006-01-01

    The objective of this response article is to think through some of what I see as the far-reaching implications of a recent paper by Eric Hauser (2005) entitled "Coding 'corrective recasts': the maintenance of meaning and more fundamental problems". Hauser makes a compelling, empirically-backed case for his contention that, contrary to widespread…

  11. Individual TL detector characteristics in automated processing of personnel dosemeters: correction factors as extension to identity codes of dosemeter cards

    International Nuclear Information System (INIS)

    Toivonen, Matti.

    1979-07-01

    One, two and three-component dosemeter cards and their associated processing equipment were developed for personnel monitoring. A novel feature of the TLD system is that the individual sensitivity correction factors of TL detectors for β/γ radiation dosimetry and special timing factors for the readout of neutron detectors are stored on dosemeter cards as an extension of the identity codes. These data are utilized in the automatic TL reading process with the aim of cancelling out the influence of the individual detector characteristics on the measuring results. Stimulation of TL is done with hot nitrogen without removing the detectors from their cards and without any metal contact. Changes in detector characteristics are thus improbable. The reading process can be adjusted in a variety of ways. For example, each detector in the same card can be processed with optimal heating and the specific 250 deg C glow peak of neutron radiation can be roughly separated from the main LiF glow peaks. (author)

  12. The Probabilistic Convolution Tree: Efficient Exact Bayesian Inference for Faster LC-MS/MS Protein Inference

    Science.gov (United States)

    Serang, Oliver

    2014-01-01

    Exact Bayesian inference can sometimes be performed efficiently for special cases where a function has commutative and associative symmetry of its inputs (called “causal independence”). For this reason, it is desirable to exploit such symmetry on big data sets. Here we present a method to exploit a general form of this symmetry on probabilistic adder nodes by transforming those probabilistic adder nodes into a probabilistic convolution tree with which dynamic programming computes exact probabilities. A substantial speedup is demonstrated using an illustration example that can arise when identifying splice forms with bottom-up mass spectrometry-based proteomics. On this example, even state-of-the-art exact inference algorithms require a runtime more than exponential in the number of splice forms considered. By using the probabilistic convolution tree, we reduce the runtime to and the space to where is the number of variables joined by an additive or cardinal operator. This approach, which can also be used with junction tree inference, is applicable to graphs with arbitrary dependency on counting variables or cardinalities and can be used on diverse problems and fields like forward error correcting codes, elemental decomposition, and spectral demixing. The approach also trivially generalizes to multiple dimensions. PMID:24626234

  13. Adaptation of penelope Monte Carlo code system to the absorbed dose metrology: characterization of high energy photon beams and calculations of reference dosimeter correction factors; Adaptation du code Monte Carlo penelope pour la metrologie de la dose absorbee: caracterisation des faisceaux de photons X de haute energie et calcul de facteurs de correction de dosimetres de reference

    Energy Technology Data Exchange (ETDEWEB)

    Mazurier, J

    1999-05-28

    This thesis has been performed in the framework of national reference setting-up for absorbed dose in water and high energy photon beam provided with the SATURNE-43 medical accelerator of the BNM-LPRI (acronym for National Bureau of Metrology and Primary standard laboratory of ionising radiation). The aim of this work has been to develop and validate different user codes, based on PENELOPE Monte Carlo code system, to determine the photon beam characteristics and calculate the correction factors of reference dosimeters such as Fricke dosimeters and graphite calorimeter. In the first step, the developed user codes have permitted the influence study of different components constituting the irradiation head. Variance reduction techniques have been used to reduce the calculation time. The phase space has been calculated for 6, 12 and 25 MV at the output surface level of the accelerator head, then used for calculating energy spectra and dose distributions in the reference water phantom. Results obtained have been compared with experimental measurements. The second step has been devoted to develop an user code allowing calculation correction factors associated with both BNM-LPRI's graphite and Fricke dosimeters thanks to a correlated sampling method starting with energy spectra obtained in the first step. Then the calculated correction factors have been compared with experimental and calculated results obtained with the Monte Carlo EGS4 code system. The good agreement, between experimental and calculated results, leads to validate simulations performed with the PENELOPE code system. (author)

  14. The convolution integral for the forward-backward asymmetry in e+e- annihilation

    International Nuclear Information System (INIS)

    Bardin, D.; Bilenky, M.; Chizhov, A.; Sazonov, A.; Sedykh, Yu.; Riemann, T.; Sachwitz, M.

    1989-01-01

    The complete convolution integral for the forward-backward asymmetry in A FB in e + e - annihilation is obtained in order O(α) with soft photon exponentiation. The influence of these QED corrections on A FB in the vicinity of the Z peak is discussed. The results are used to comment on a recent ad hoc ansatz using convolution weights derived for the total cross section. (orig.)

  15. Solutions to Arithmetic Convolution Equations

    Czech Academy of Sciences Publication Activity Database

    Glöckner, H.; Lucht, L.G.; Porubský, Štefan

    2007-01-01

    Roč. 135, č. 6 (2007), s. 1619-1629 ISSN 0002-9939 R&D Projects: GA ČR GA201/04/0381 Institutional research plan: CEZ:AV0Z10300504 Keywords : arithmetic functions * Dirichlet convolution * polynomial equations * analytic equations * topological algebras * holomorphic functional calculus Subject RIV: BA - General Mathematics Impact factor: 0.520, year: 2007

  16. ORBIT-3.0 - a computer code for simulation and correction of the closed orbit and first turn in synchrotrons

    International Nuclear Information System (INIS)

    Dinev, D.

    1999-01-01

    A new computer program ORBIT-3.0 for simulation and correction of the closed orbit and first turn in synchrotrons is described. The program works under WINDOWS 95/98/NT and is a full object of oriented applications. It has an interactive interface, enhanced graphical capabilities and on-line printing. The original algorithms DINAM - for closed orbit correction and FTURN - for first turn steering are described as well

  17. Down image recognition based on deep convolutional neural network

    Directory of Open Access Journals (Sweden)

    Wenzhu Yang

    2018-06-01

    Full Text Available Since of the scale and the various shapes of down in the image, it is difficult for traditional image recognition method to correctly recognize the type of down image and get the required recognition accuracy, even for the Traditional Convolutional Neural Network (TCNN. To deal with the above problems, a Deep Convolutional Neural Network (DCNN for down image classification is constructed, and a new weight initialization method is proposed. Firstly, the salient regions of a down image were cut from the image using the visual saliency model. Then, these salient regions of the image were used to train a sparse autoencoder and get a collection of convolutional filters, which accord with the statistical characteristics of dataset. At last, a DCNN with Inception module and its variants was constructed. To improve the recognition accuracy, the depth of the network is deepened. The experiment results indicate that the constructed DCNN increases the recognition accuracy by 2.7% compared to TCNN, when recognizing the down in the images. The convergence rate of the proposed DCNN with the new weight initialization method is improved by 25.5% compared to TCNN. Keywords: Deep convolutional neural network, Weight initialization, Sparse autoencoder, Visual saliency model, Image recognition

  18. A code for the correction of field imperfections in iron-core superconducting magnets by shimming of iron

    International Nuclear Information System (INIS)

    Pradhan, J.; Bhunia, U.; Dey, M.K.; Mallik, C.; Bhandari, R.K.

    2005-01-01

    The magnetic field measurement of the median plane of K500 superconducting cyclotron at VECC have been carried out. A code has been developed using the mathematical software to calculate the magnetic field distribution for an arbitrary shaped saturated iron piece, and the various harmonics therein

  19. Adaptive Graph Convolutional Neural Networks

    OpenAIRE

    Li, Ruoyu; Wang, Sheng; Zhu, Feiyun; Huang, Junzhou

    2018-01-01

    Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking data of arbitrary graph structure as input. In that way a task-driven adaptive graph is learned for eac...

  20. System Performance of Concatenated STBC and Block Turbo Codes in Dispersive Fading Channels

    Directory of Open Access Journals (Sweden)

    Kam Tai Chan

    2005-05-01

    Full Text Available A new scheme of concatenating the block turbo code (BTC with the space-time block code (STBC for an OFDM system in dispersive fading channels is investigated in this paper. The good error correcting capability of BTC and the large diversity gain characteristics of STBC can be achieved simultaneously. The resulting receiver outperforms the iterative convolutional Turbo receiver with maximum- a-posteriori-probability expectation maximization (MAP-EM algorithm. Because of its ability to perform the encoding and decoding processes in parallel, the proposed system is easy to implement in real time.

  1. ID card number detection algorithm based on convolutional neural network

    Science.gov (United States)

    Zhu, Jian; Ma, Hanjie; Feng, Jie; Dai, Leiyan

    2018-04-01

    In this paper, a new detection algorithm based on Convolutional Neural Network is presented in order to realize the fast and convenient ID information extraction in multiple scenarios. The algorithm uses the mobile device equipped with Android operating system to locate and extract the ID number; Use the special color distribution of the ID card, select the appropriate channel component; Use the image threshold segmentation, noise processing and morphological processing to take the binary processing for image; At the same time, the image rotation and projection method are used for horizontal correction when image was tilting; Finally, the single character is extracted by the projection method, and recognized by using Convolutional Neural Network. Through test shows that, A single ID number image from the extraction to the identification time is about 80ms, the accuracy rate is about 99%, It can be applied to the actual production and living environment.

  2. Rock images classification by using deep convolution neural network

    Science.gov (United States)

    Cheng, Guojian; Guo, Wenhui

    2017-08-01

    Granularity analysis is one of the most essential issues in authenticate under microscope. To improve the efficiency and accuracy of traditional manual work, an convolutional neural network based method is proposed for granularity analysis from thin section image, which chooses and extracts features from image samples while build classifier to recognize granularity of input image samples. 4800 samples from Ordos basin are used for experiments under colour spaces of HSV, YCbCr and RGB respectively. On the test dataset, the correct rate in RGB colour space is 98.5%, and it is believable in HSV and YCbCr colour space. The results show that the convolution neural network can classify the rock images with high reliability.

  3. Convolution of Distribution-Valued Functions. Applications.

    OpenAIRE

    BARGETZ, CHRISTIAN

    2011-01-01

    In this article we examine products and convolutions of vector-valued functions. For nuclear normal spaces of distributions Proposition 25 in [31,p. 120] yields a vector-valued product or convolution if there is a continuous product or convolution mapping in the range of the vector-valued functions. For specific spaces, we generalize this result to hypocontinuous bilinear maps at the expense of generality with respect to the function space. We consider holomorphic, meromorphic and differentia...

  4. Concatenated coding system with iterated sequential inner decoding

    DEFF Research Database (Denmark)

    Jensen, Ole Riis; Paaske, Erik

    1995-01-01

    We describe a concatenated coding system with iterated sequential inner decoding. The system uses convolutional codes of very long constraint length and operates on iterations between an inner Fano decoder and an outer Reed-Solomon decoder......We describe a concatenated coding system with iterated sequential inner decoding. The system uses convolutional codes of very long constraint length and operates on iterations between an inner Fano decoder and an outer Reed-Solomon decoder...

  5. Effect of ancilla's structure on quantum error correction using the seven-qubit Calderbank-Shor-Steane code

    International Nuclear Information System (INIS)

    Salas, P.J.; Sanz, A.L.

    2004-01-01

    In this work we discuss the ability of different types of ancillas to control the decoherence of a qubit interacting with an environment. The error is introduced into the numerical simulation via a depolarizing isotropic channel. The ranges of values considered are 10 -4 ≤ε≤10 -2 for memory errors and 3x10 -5 ≤γ/7≤10 -2 for gate errors. After the correction we calculate the fidelity as a quality criterion for the qubit recovered. We observe that a recovery method with a three-qubit ancilla provides reasonably good results bearing in mind its economy. If we want to go further, we have to use fault tolerant ancillas with a high degree of parallelism, even if this condition implies introducing additional ancilla verification qubits

  6. LDPC-PPM Coding Scheme for Optical Communication

    Science.gov (United States)

    Barsoum, Maged; Moision, Bruce; Divsalar, Dariush; Fitz, Michael

    2009-01-01

    In a proposed coding-and-modulation/demodulation-and-decoding scheme for a free-space optical communication system, an error-correcting code of the low-density parity-check (LDPC) type would be concatenated with a modulation code that consists of a mapping of bits to pulse-position-modulation (PPM) symbols. Hence, the scheme is denoted LDPC-PPM. This scheme could be considered a competitor of a related prior scheme in which an outer convolutional error-correcting code is concatenated with an interleaving operation, a bit-accumulation operation, and a PPM inner code. Both the prior and present schemes can be characterized as serially concatenated pulse-position modulation (SCPPM) coding schemes. Figure 1 represents a free-space optical communication system based on either the present LDPC-PPM scheme or the prior SCPPM scheme. At the transmitting terminal, the original data (u) are processed by an encoder into blocks of bits (a), and the encoded data are mapped to PPM of an optical signal (c). For the purpose of design and analysis, the optical channel in which the PPM signal propagates is modeled as a Poisson point process. At the receiving terminal, the arriving optical signal (y) is demodulated to obtain an estimate (a^) of the coded data, which is then processed by a decoder to obtain an estimate (u^) of the original data.

  7. Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder.

    Science.gov (United States)

    Zhao, Yu; Dong, Qinglin; Chen, Hanbo; Iraji, Armin; Li, Yujie; Makkie, Milad; Kou, Zhifeng; Liu, Tianming

    2017-12-01

    State-of-the-art functional brain network reconstruction methods such as independent component analysis (ICA) or sparse coding of whole-brain fMRI data can effectively infer many thousands of volumetric brain network maps from a large number of human brains. However, due to the variability of individual brain networks and the large scale of such networks needed for statistically meaningful group-level analysis, it is still a challenging and open problem to derive group-wise common networks as network atlases. Inspired by the superior spatial pattern description ability of the deep convolutional neural networks (CNNs), a novel deep 3D convolutional autoencoder (CAE) network is designed here to extract spatial brain network features effectively, based on which an Apache Spark enabled computational framework is developed for fast clustering of larger number of network maps into fine-granularity atlases. To evaluate this framework, 10 resting state networks (RSNs) were manually labeled from the sparsely decomposed networks of Human Connectome Project (HCP) fMRI data and 5275 network training samples were obtained, in total. Then the deep CAE models are trained by these functional networks' spatial maps, and the learned features are used to refine the original 10 RSNs into 17 network atlases that possess fine-granularity functional network patterns. Interestingly, it turned out that some manually mislabeled outliers in training networks can be corrected by the deep CAE derived features. More importantly, fine granularities of networks can be identified and they reveal unique network patterns specific to different brain task states. By further applying this method to a dataset of mild traumatic brain injury study, it shows that the technique can effectively identify abnormal small networks in brain injury patients in comparison with controls. In general, our work presents a promising deep learning and big data analysis solution for modeling functional connectomes, with

  8. Incomplete convolutions in production and inventory models

    NARCIS (Netherlands)

    Houtum, van G.J.J.A.N.; Zijm, W.H.M.

    1997-01-01

    In this paper, we study incomplete convolutions of continuous distribution functions, as they appear in the analysis of (multi-stage) production and inventory systems. Three example systems are discussed where these incomplete convolutions naturally arise. We derive explicit, nonrecursive formulae

  9. A convolutional approach to reflection symmetry

    DEFF Research Database (Denmark)

    Cicconet, Marcelo; Birodkar, Vighnesh; Lund, Mads

    2017-01-01

    We present a convolutional approach to reflection symmetry detection in 2D. Our model, built on the products of complex-valued wavelet convolutions, simplifies previous edge-based pairwise methods. Being parameter-centered, as opposed to feature-centered, it has certain computational advantages w...

  10. Model structure selection in convolutive mixtures

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Makeig, S.; Hansen, Lars Kai

    2006-01-01

    The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimonious represent......The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimonious...... representation in many practical mixtures. The new filter-CICAAR allows Bayesian model selection and can help answer questions like: ’Are we actually dealing with a convolutive mixture?’. We try to answer this question for EEG data....

  11. Convolutions

    Indian Academy of Sciences (India)

    President's Address to the Association of Mathematics Teachers of India, December 2011. I am expected to tell you, in 25 minutes, something that should interest you, excite you, pique your curiosity, and make you look for more. It is a tall order, but I will try. The word 'interactive' is in fashion these days. So I will leave a few ...

  12. The calculation of wall and non-uniformity correction factors for the BIPM air-kerma standard for 60Co using the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Burns, D.T.

    2002-01-01

    Traditionally, the correction factor k wall for attenuation and scatter in the walls of cavity ionization chamber primary standards has been evaluated experimentally using an extrapolation method. During the past decade, there have been a number of Monte Carlo calculations of k wall indicating that for certain ionization chamber types the extrapolation method may not be valid. In particular, values for k wall have been proposed that, if adopted by each laboratory concerned, would have a significant effect on the results of international comparisons of air-kerma primary standards. The calculations have also proposed new values for the axial component k an of the point-source uniformity correction. Central to the results of international comparisons is the BIPM air-kerma standard. Unlike most others, the BIPM standard is of the parallel-plate design for which the extrapolation method for evaluating k wall should be valid. The value in use at present is k wall =1.0026 (standard uncertainty 0.0008). Rogers and Treurniet calculated the value k wall =1.0014 for the BIPM standard, which is in moderate agreement with the value in use (no overall uncertainty was given). However, they also calculated k an =1.0024 (statistical uncertainty 0.0003) which is very different from the value k an =0.9964 (0.0007) in use at present for the BIPM standard. A new 60 Co facility has recently been installed at the BIPM and the opportunity was taken to re-evaluate the correction factors for the BIPM standard in this new beam. Given that almost all of the Monte Carlo work to date has used the EGS Monte Carlo code, it was decided to use the code PENELOPE. The new source, container, head and collimating jaws were simulated in detail with more that fifty components being modelled, as shown. This model was used to create a phase-space file in the plane 90 cm from the source. The normalized distribution of photon number with energy is shown, where the various sources of scattered photons are

  13. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.

    Science.gov (United States)

    Lu, Xiaoqiang; Chen, Yaxiong; Li, Xuelong

    Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep

  14. Convolutional Neural Network for Image Recognition

    CERN Document Server

    Seifnashri, Sahand

    2015-01-01

    The aim of this project is to use machine learning techniques especially Convolutional Neural Networks for image processing. These techniques can be used for Quark-Gluon discrimination using calorimeters data, but unfortunately I didn’t manage to get the calorimeters data and I just used the Jet data fromminiaodsim(ak4 chs). The Jet data was not good enough for Convolutional Neural Network which is designed for ’image’ recognition. This report is made of twomain part, part one is mainly about implementing Convolutional Neural Network on unphysical data such as MNIST digits and CIFAR-10 dataset and part 2 is about the Jet data.

  15. Source distribution dependent scatter correction for PVI

    International Nuclear Information System (INIS)

    Barney, J.S.; Harrop, R.; Dykstra, C.J.

    1993-01-01

    Source distribution dependent scatter correction methods which incorporate different amounts of information about the source position and material distribution have been developed and tested. The techniques use image to projection integral transformation incorporating varying degrees of information on the distribution of scattering material, or convolution subtraction methods, with some information about the scattering material included in one of the convolution methods. To test the techniques, the authors apply them to data generated by Monte Carlo simulations which use geometric shapes or a voxelized density map to model the scattering material. Source position and material distribution have been found to have some effect on scatter correction. An image to projection method which incorporates a density map produces accurate scatter correction but is computationally expensive. Simpler methods, both image to projection and convolution, can also provide effective scatter correction

  16. Over 10 dB Net Coding Gain Based on 20% Overhead Hard Decision Forward Error Correction in 100G Optical Communication Systems

    DEFF Research Database (Denmark)

    Li, Bomin; Larsen, Knud J.; Zibar, Darko

    2011-01-01

    We propose a product code with shortened BCH component codes for 100G optical communication systems. Simulation result shows that 10 dB net coding gain is promising at post- FEC BER of 1E-15.......We propose a product code with shortened BCH component codes for 100G optical communication systems. Simulation result shows that 10 dB net coding gain is promising at post- FEC BER of 1E-15....

  17. A Note on Cubic Convolution Interpolation

    OpenAIRE

    Meijering, E.; Unser, M.

    2003-01-01

    We establish a link between classical osculatory interpolation and modern convolution-based interpolation and use it to show that two well-known cubic convolution schemes are formally equivalent to two osculatory interpolation schemes proposed in the actuarial literature about a century ago. We also discuss computational differences and give examples of other cubic interpolation schemes not previously studied in signal and image processing.

  18. Photon beam convolution using polyenergetic energy deposition kernels

    International Nuclear Information System (INIS)

    Hoban, P.W.; Murray, D.C.; Round, W.H.

    1994-01-01

    In photon beam convolution calculations where polyenergetic energy deposition kernels (EDKs) are used, the primary photon energy spectrum should be correctly accounted for in Monte Carlo generation of EDKs. This requires the probability of interaction, determined by the linear attenuation coefficient, μ, to be taken into account when primary photon interactions are forced to occur at the EDK origin. The use of primary and scattered EDKs generated with a fixed photon spectrum can give rise to an error in the dose calculation due to neglecting the effects of beam hardening with depth. The proportion of primary photon energy that is transferred to secondary electrons increases with depth of interaction, due to the increase in the ratio μ ab /μ as the beam hardens. Convolution depth-dose curves calculated using polyenergetic EDKs generated for the primary photon spectra which exist at depths of 0, 20 and 40 cm in water, show a fall-off which is too steep when compared with EGS4 Monte Carlo results. A beam hardening correction factor applied to primary and scattered 0 cm EDKs, based on the ratio of kerma to terma at each depth, gives primary, scattered and total dose in good agreement with Monte Carlo results. (Author)

  19. Convolutional neural networks for vibrational spectroscopic data analysis.

    Science.gov (United States)

    Acquarelli, Jacopo; van Laarhoven, Twan; Gerretzen, Jan; Tran, Thanh N; Buydens, Lutgarde M C; Marchiori, Elena

    2017-02-15

    In this work we show that convolutional neural networks (CNNs) can be efficiently used to classify vibrational spectroscopic data and identify important spectral regions. CNNs are the current state-of-the-art in image classification and speech recognition and can learn interpretable representations of the data. These characteristics make CNNs a good candidate for reducing the need for preprocessing and for highlighting important spectral regions, both of which are crucial steps in the analysis of vibrational spectroscopic data. Chemometric analysis of vibrational spectroscopic data often relies on preprocessing methods involving baseline correction, scatter correction and noise removal, which are applied to the spectra prior to model building. Preprocessing is a critical step because even in simple problems using 'reasonable' preprocessing methods may decrease the performance of the final model. We develop a new CNN based method and provide an accompanying publicly available software. It is based on a simple CNN architecture with a single convolutional layer (a so-called shallow CNN). Our method outperforms standard classification algorithms used in chemometrics (e.g. PLS) in terms of accuracy when applied to non-preprocessed test data (86% average accuracy compared to the 62% achieved by PLS), and it achieves better performance even on preprocessed test data (96% average accuracy compared to the 89% achieved by PLS). For interpretability purposes, our method includes a procedure for finding important spectral regions, thereby facilitating qualitative interpretation of results. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Fluence-convolution broad-beam (FCBB) dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Weiguo; Chen Mingli, E-mail: wlu@tomotherapy.co [TomoTherapy Inc., 1240 Deming Way, Madison, WI 53717 (United States)

    2010-12-07

    IMRT optimization requires a fast yet relatively accurate algorithm to calculate the iteration dose with small memory demand. In this paper, we present a dose calculation algorithm that approaches these goals. By decomposing the infinitesimal pencil beam (IPB) kernel into the central axis (CAX) component and lateral spread function (LSF) and taking the beam's eye view (BEV), we established a non-voxel and non-beamlet-based dose calculation formula. Both LSF and CAX are determined by a commissioning procedure using the collapsed-cone convolution/superposition (CCCS) method as the standard dose engine. The proposed dose calculation involves a 2D convolution of a fluence map with LSF followed by ray tracing based on the CAX lookup table with radiological distance and divergence correction, resulting in complexity of O(N{sup 3}) both spatially and temporally. This simple algorithm is orders of magnitude faster than the CCCS method. Without pre-calculation of beamlets, its implementation is also orders of magnitude smaller than the conventional voxel-based beamlet-superposition (VBS) approach. We compared the presented algorithm with the CCCS method using simulated and clinical cases. The agreement was generally within 3% for a homogeneous phantom and 5% for heterogeneous and clinical cases. Combined with the 'adaptive full dose correction', the algorithm is well suitable for calculating the iteration dose during IMRT optimization.

  1. High-speed architecture for the decoding of trellis-coded modulation

    Science.gov (United States)

    Osborne, William P.

    1992-01-01

    Since 1971, when the Viterbi Algorithm was introduced as the optimal method of decoding convolutional codes, improvements in circuit technology, especially VLSI, have steadily increased its speed and practicality. Trellis-Coded Modulation (TCM) combines convolutional coding with higher level modulation (non-binary source alphabet) to provide forward error correction and spectral efficiency. For binary codes, the current stare-of-the-art is a 64-state Viterbi decoder on a single CMOS chip, operating at a data rate of 25 Mbps. Recently, there has been an interest in increasing the speed of the Viterbi Algorithm by improving the decoder architecture, or by reducing the algorithm itself. Designs employing new architectural techniques are now in existence, however these techniques are currently applied to simpler binary codes, not to TCM. The purpose of this report is to discuss TCM architectural considerations in general, and to present the design, at the logic gate level, or a specific TCM decoder which applies these considerations to achieve high-speed decoding.

  2. a Novel Deep Convolutional Neural Network for Spectral-Spatial Classification of Hyperspectral Data

    Science.gov (United States)

    Li, N.; Wang, C.; Zhao, H.; Gong, X.; Wang, D.

    2018-04-01

    Spatial and spectral information are obtained simultaneously by hyperspectral remote sensing. Joint extraction of these information of hyperspectral image is one of most import methods for hyperspectral image classification. In this paper, a novel deep convolutional neural network (CNN) is proposed, which extracts spectral-spatial information of hyperspectral images correctly. The proposed model not only learns sufficient knowledge from the limited number of samples, but also has powerful generalization ability. The proposed framework based on three-dimensional convolution can extract spectral-spatial features of labeled samples effectively. Though CNN has shown its robustness to distortion, it cannot extract features of different scales through the traditional pooling layer that only have one size of pooling window. Hence, spatial pyramid pooling (SPP) is introduced into three-dimensional local convolutional filters for hyperspectral classification. Experimental results with a widely used hyperspectral remote sensing dataset show that the proposed model provides competitive performance.

  3. QR code optical encryption using spatially incoherent illumination

    Science.gov (United States)

    Cheremkhin, P. A.; Krasnov, V. V.; Rodin, V. G.; Starikov, R. S.

    2017-02-01

    Optical encryption is an actively developing field of science. The majority of encryption techniques use coherent illumination and suffer from speckle noise, which severely limits their applicability. The spatially incoherent encryption technique does not have this drawback, but its effectiveness is dependent on the Fourier spectrum properties of the image to be encrypted. The application of a quick response (QR) code in the capacity of a data container solves this problem, and the embedded error correction code also enables errorless decryption. The optical encryption of digital information in the form of QR codes using spatially incoherent illumination was implemented experimentally. The encryption is based on the optical convolution of the image to be encrypted with the kinoform point spread function, which serves as an encryption key. Two liquid crystal spatial light modulators were used in the experimental setup for the QR code and the kinoform imaging, respectively. The quality of the encryption and decryption was analyzed in relation to the QR code size. Decryption was conducted digitally. The successful decryption of encrypted QR codes of up to 129  ×  129 pixels was demonstrated. A comparison with the coherent QR code encryption technique showed that the proposed technique has a signal-to-noise ratio that is at least two times higher.

  4. Analyses of PWR spent fuel composition using SCALE and SWAT code systems to find correction factors for criticality safety applications adopting burnup credit

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Sung; Suyama, Kenya; Mochizuki, Hiroki; Okuno, Hiroshi; Nomura, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-01-01

    The isotopic composition calculations were performed for 26 spent fuel samples from the Obrigheim PWR reactor and 55 spent fuel samples from 7 PWR reactors using the SAS2H module of the SCALE4.4 code system with 27, 44 and 238 group cross-section libraries and the SWAT code system with the 107 group cross-section library. For the analyses of samples from the Obrigheim PWR reactor, geometrical models were constructed for each of SCALE4.4/SAS2H and SWAT. For the analyses of samples from 7 PWR reactors, the geometrical model already adopted in the SCALE/SAS2H was directly converted to the model of SWAT. The four kinds of calculation results were compared with the measured data. For convenience, the ratio of the measured to calculated values was used as a parameter. When the ratio is less than unity, the calculation overestimates the measurement, and the ratio becomes closer to unity, they have a better agreement. For many important nuclides for burnup credit criticality safety evaluation, the four methods applied in this study showed good coincidence with measurements in general. More precise observations showed, however: (1) Less unity ratios were found for Pu-239 and -241 for selected 16 samples out of the 26 samples from the Obrigheim reactor (10 samples were deselected because their burnups were measured with Cs-137 non-destructive method, less reliable than Nd-148 method the rest 16 samples were measured with); (2) Larger than unity ratios were found for Am-241 and Cm-242 for both the 16 and 55 samples; (3) Larger than unity ratios were found for Sm-149 for the 55 samples; (4) SWAT was generally accompanied by larger ratios than those of SAS2H with some exceptions. Based on the measured-to-calculated ratios for 71 samples of a combined set in which 16 selected samples and 55 samples were included, the correction factors that should be multiplied to the calculated isotopic compositions were generated for a conservative estimate of the neutron multiplication factor

  5. Opportunistic error correction for OFDM-based DVB systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2013-01-01

    DVB-T2 (second generation terrestrial digital video broadcasting) employs LDPC (Low Density Parity Check) codes combined with BCH (Bose-Chaudhuri-Hocquengham) codes, which has a better performance in comparison to convolutional and Reed-Solomon codes used in other OFDM-based DVB systems. However,

  6. Real-Time Video Convolutional Face Finder on Embedded Platforms

    Directory of Open Access Journals (Sweden)

    Mamalet Franck

    2007-01-01

    Full Text Available A high-level optimization methodology is applied for implementing the well-known convolutional face finder (CFF algorithm for real-time applications on mobile phones, such as teleconferencing, advanced user interfaces, image indexing, and security access control. CFF is based on a feature extraction and classification technique which consists of a pipeline of convolutions and subsampling operations. The design of embedded systems requires a good trade-off between performance and code size due to the limited amount of available resources. The followed methodology copes with the main drawbacks of the original implementation of CFF such as floating-point computation and memory allocation, in order to allow parallelism exploitation and perform algorithm optimizations. Experimental results show that our embedded face detection system can accurately locate faces with less computational load and memory cost. It runs on a 275 MHz Starcore DSP at 35 QCIF images/s with state-of-the-art detection rates and very low false alarm rates.

  7. Real-Time Video Convolutional Face Finder on Embedded Platforms

    Directory of Open Access Journals (Sweden)

    Franck Mamalet

    2007-03-01

    Full Text Available A high-level optimization methodology is applied for implementing the well-known convolutional face finder (CFF algorithm for real-time applications on mobile phones, such as teleconferencing, advanced user interfaces, image indexing, and security access control. CFF is based on a feature extraction and classification technique which consists of a pipeline of convolutions and subsampling operations. The design of embedded systems requires a good trade-off between performance and code size due to the limited amount of available resources. The followed methodology copes with the main drawbacks of the original implementation of CFF such as floating-point computation and memory allocation, in order to allow parallelism exploitation and perform algorithm optimizations. Experimental results show that our embedded face detection system can accurately locate faces with less computational load and memory cost. It runs on a 275 MHz Starcore DSP at 35 QCIF images/s with state-of-the-art detection rates and very low false alarm rates.

  8. Semantic segmentation of bioimages using convolutional neural networks

    CSIR Research Space (South Africa)

    Wiehman, S

    2016-07-01

    Full Text Available Convolutional neural networks have shown great promise in both general image segmentation problems as well as bioimage segmentation. In this paper, the application of different convolutional network architectures is explored on the C. elegans live...

  9. One weird trick for parallelizing convolutional neural networks

    OpenAIRE

    Krizhevsky, Alex

    2014-01-01

    I present a new way to parallelize the training of convolutional neural networks across multiple GPUs. The method scales significantly better than all alternatives when applied to modern convolutional neural networks.

  10. Gradient Flow Convolutive Blind Source Separation

    DEFF Research Database (Denmark)

    Pedersen, Michael Syskind; Nielsen, Chinton Møller

    2004-01-01

    Experiments have shown that the performance of instantaneous gradient flow beamforming by Cauwenberghs et al. is reduced significantly in reverberant conditions. By expanding the gradient flow principle to convolutive mixtures, separation in a reverberant environment is possible. By use...... of a circular four microphone array with a radius of 5 mm, and applying convolutive gradient flow instead of just applying instantaneous gradient flow, experimental results show an improvement of up to around 14 dB can be achieved for simulated impulse responses and up to around 10 dB for a hearing aid...

  11. Human Face Recognition Using Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Răzvan-Daniel Albu

    2009-10-01

    Full Text Available In this paper, I present a novel hybrid face recognition approach based on a convolutional neural architecture, designed to robustly detect highly variable face patterns. The convolutional network extracts successively larger features in a hierarchical set of layers. With the weights of the trained neural networks there are created kernel windows used for feature extraction in a 3-stage algorithm. I present experimental results illustrating the efficiency of the proposed approach. I use a database of 796 images of 159 individuals from Reims University which contains quite a high degree of variability in expression, pose, and facial details.

  12. CMOS Compressed Imaging by Random Convolution

    OpenAIRE

    Jacques, Laurent; Vandergheynst, Pierre; Bibet, Alexandre; Majidzadeh, Vahid; Schmid, Alexandre; Leblebici, Yusuf

    2009-01-01

    We present a CMOS imager with built-in capability to perform Compressed Sensing. The adopted sensing strategy is the random Convolution due to J. Romberg. It is achieved by a shift register set in a pseudo-random configuration. It acts as a convolutive filter on the imager focal plane, the current issued from each CMOS pixel undergoing a pseudo-random redirection controlled by each component of the filter sequence. A pseudo-random triggering of the ADC reading is finally applied to comp...

  13. Constructing LDPC Codes from Loop-Free Encoding Modules

    Science.gov (United States)

    Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher; Thorpe, Jeremy; Andrews, Kenneth

    2009-01-01

    A method of constructing certain low-density parity-check (LDPC) codes by use of relatively simple loop-free coding modules has been developed. The subclasses of LDPC codes to which the method applies includes accumulate-repeat-accumulate (ARA) codes, accumulate-repeat-check-accumulate codes, and the codes described in Accumulate-Repeat-Accumulate-Accumulate Codes (NPO-41305), NASA Tech Briefs, Vol. 31, No. 9 (September 2007), page 90. All of the affected codes can be characterized as serial/parallel (hybrid) concatenations of such relatively simple modules as accumulators, repetition codes, differentiators, and punctured single-parity check codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. These codes can also be characterized as hybrid turbolike codes that have projected graph or protograph representations (for example see figure); these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The present method comprises two related submethods for constructing LDPC codes from simple loop-free modules with circulant permutations. The first submethod is an iterative encoding method based on the erasure-decoding algorithm. The computations required by this method are well organized because they involve a parity-check matrix having a block-circulant structure. The second submethod involves the use of block-circulant generator matrices. The encoders of this method are very similar to those of recursive convolutional codes. Some encoders according to this second submethod have been implemented in a small field-programmable gate array that operates at a speed of 100 megasymbols per second. By use of density evolution (a computational- simulation technique for analyzing performances of LDPC codes), it has been shown through some examples that as the block size goes to infinity, low iterative decoding thresholds close to

  14. Discrete convolution-operators and radioactive disintegration. [Numerical solution

    Energy Technology Data Exchange (ETDEWEB)

    Kalla, S L; VALENTINUZZI, M E [UNIVERSIDAD NACIONAL DE TUCUMAN (ARGENTINA). FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGIA

    1975-08-01

    The basic concepts of discrete convolution and discrete convolution-operators are briefly described. Then, using the discrete convolution - operators, the differential equations associated with the process of radioactive disintegration are numerically solved. The importance of the method is emphasized to solve numerically, differential and integral equations.

  15. Generalized concatenated quantum codes

    International Nuclear Information System (INIS)

    Grassl, Markus; Shor, Peter; Smith, Graeme; Smolin, John; Zeng Bei

    2009-01-01

    We discuss the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using this method, we construct families of single-error-correcting nonadditive quantum codes, in both binary and nonbinary cases, which not only outperform any stabilizer codes for finite block length but also asymptotically meet the quantum Hamming bound for large block length.

  16. Fully convolutional network with cluster for semantic segmentation

    Science.gov (United States)

    Ma, Xiao; Chen, Zhongbi; Zhang, Jianlin

    2018-04-01

    At present, image semantic segmentation technology has been an active research topic for scientists in the field of computer vision and artificial intelligence. Especially, the extensive research of deep neural network in image recognition greatly promotes the development of semantic segmentation. This paper puts forward a method based on fully convolutional network, by cluster algorithm k-means. The cluster algorithm using the image's low-level features and initializing the cluster centers by the super-pixel segmentation is proposed to correct the set of points with low reliability, which are mistakenly classified in great probability, by the set of points with high reliability in each clustering regions. This method refines the segmentation of the target contour and improves the accuracy of the image segmentation.

  17. Deformable image registration using convolutional neural networks

    NARCIS (Netherlands)

    Eppenhof, Koen A.J.; Lafarge, Maxime W.; Moeskops, Pim; Veta, Mitko; Pluim, Josien P.W.

    2018-01-01

    Deformable image registration can be time-consuming and often needs extensive parameterization to perform well on a specific application. We present a step towards a registration framework based on a three-dimensional convolutional neural network. The network directly learns transformations between

  18. Epileptiform spike detection via convolutional neural networks

    DEFF Research Database (Denmark)

    Johansen, Alexander Rosenberg; Jin, Jing; Maszczyk, Tomasz

    2016-01-01

    The EEG of epileptic patients often contains sharp waveforms called "spikes", occurring between seizures. Detecting such spikes is crucial for diagnosing epilepsy. In this paper, we develop a convolutional neural network (CNN) for detecting spikes in EEG of epileptic patients in an automated...

  19. Convolutional Neural Networks for SAR Image Segmentation

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Nobel-Jørgensen, Morten

    2015-01-01

    Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...

  20. Convolutional Neural Networks - Generalizability and Interpretations

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David

    from data despite it being limited in amount or context representation. Within Machine Learning this thesis focuses on Convolutional Neural Networks for Computer Vision. The research aims to answer how to explore a model's generalizability to the whole population of data samples and how to interpret...

  1. Towards dropout training for convolutional neural networks.

    Science.gov (United States)

    Wu, Haibing; Gu, Xiaodong

    2015-11-01

    Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in convolutional and pooling layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly picking activation based on a multinomial distribution at training time. In light of this insight, we advocate employing our proposed probabilistic weighted pooling, instead of commonly used max-pooling, to act as model averaging at test time. Empirical evidence validates the superiority of probabilistic weighted pooling. We also empirically show that the effect of convolutional dropout is not trivial, despite the dramatically reduced possibility of over-fitting due to the convolutional architecture. Elaborately designing dropout training simultaneously in max-pooling and fully-connected layers, we achieve state-of-the-art performance on MNIST, and very competitive results on CIFAR-10 and CIFAR-100, relative to other approaches without data augmentation. Finally, we compare max-pooling dropout and stochastic pooling, both of which introduce stochasticity based on multinomial distributions at pooling stage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A locality aware convolutional neural networks accelerator

    NARCIS (Netherlands)

    Shi, R.; Xu, Z.; Sun, Z.; Peemen, M.C.J.; Li, A.; Corporaal, H.; Wu, D.

    2015-01-01

    The advantages of Convolutional Neural Networks (CNNs) with respect to traditional methods for visual pattern recognition have changed the field of machine vision. The main issue that hinders broad adoption of this technique is the massive computing workload in CNN that prevents real-time

  3. Trellis and turbo coding iterative and graph-based error control coding

    CERN Document Server

    Schlegel, Christian B

    2015-01-01

    This new edition has been extensively revised to reflect the progress in error control coding over the past few years. Over 60% of the material has been completely reworked, and 30% of the material is original. Convolutional, turbo, and low density parity-check (LDPC) coding and polar codes in a unified framework. Advanced research-related developments such as spatial coupling. A focus on algorithmic and implementation aspects of error control coding.

  4. Digital Tomosynthesis System Geometry Analysis Using Convolution-Based Blur-and-Add (BAA) Model.

    Science.gov (United States)

    Wu, Meng; Yoon, Sungwon; Solomon, Edward G; Star-Lack, Josh; Pelc, Norbert; Fahrig, Rebecca

    2016-01-01

    Digital tomosynthesis is a three-dimensional imaging technique with a lower radiation dose than computed tomography (CT). Due to the missing data in tomosynthesis systems, out-of-plane structures in the depth direction cannot be completely removed by the reconstruction algorithms. In this work, we analyzed the impulse responses of common tomosynthesis systems on a plane-to-plane basis and proposed a fast and accurate convolution-based blur-and-add (BAA) model to simulate the backprojected images. In addition, the analysis formalism describing the impulse response of out-of-plane structures can be generalized to both rotating and parallel gantries. We implemented a ray tracing forward projection and backprojection (ray-based model) algorithm and the convolution-based BAA model to simulate the shift-and-add (backproject) tomosynthesis reconstructions. The convolution-based BAA model with proper geometry distortion correction provides reasonably accurate estimates of the tomosynthesis reconstruction. A numerical comparison indicates that the simulated images using the two models differ by less than 6% in terms of the root-mean-squared error. This convolution-based BAA model can be used in efficient system geometry analysis, reconstruction algorithm design, out-of-plane artifacts suppression, and CT-tomosynthesis registration.

  5. Channel coding techniques for wireless communications

    CERN Document Server

    Deergha Rao, K

    2015-01-01

    The book discusses modern channel coding techniques for wireless communications such as turbo codes, low-density parity check (LDPC) codes, space–time (ST) coding, RS (or Reed–Solomon) codes and convolutional codes. Many illustrative examples are included in each chapter for easy understanding of the coding techniques. The text is integrated with MATLAB-based programs to enhance the understanding of the subject’s underlying theories. It includes current topics of increasing importance such as turbo codes, LDPC codes, Luby transform (LT) codes, Raptor codes, and ST coding in detail, in addition to the traditional codes such as cyclic codes, BCH (or Bose–Chaudhuri–Hocquenghem) and RS codes and convolutional codes. Multiple-input and multiple-output (MIMO) communications is a multiple antenna technology, which is an effective method for high-speed or high-reliability wireless communications. PC-based MATLAB m-files for the illustrative examples are provided on the book page on Springer.com for free dow...

  6. Polynomial weights and code constructions

    DEFF Research Database (Denmark)

    Massey, J; Costello, D; Justesen, Jørn

    1973-01-01

    polynomial included. This fundamental property is then used as the key to a variety of code constructions including 1) a simplified derivation of the binary Reed-Muller codes and, for any primepgreater than 2, a new extensive class ofp-ary "Reed-Muller codes," 2) a new class of "repeated-root" cyclic codes...... of long constraint length binary convolutional codes derived from2^r-ary Reed-Solomon codes, and 6) a new class ofq-ary "repeated-root" constacyclic codes with an algebraic decoding algorithm.......For any nonzero elementcof a general finite fieldGF(q), it is shown that the polynomials(x - c)^i, i = 0,1,2,cdots, have the "weight-retaining" property that any linear combination of these polynomials with coefficients inGF(q)has Hamming weight at least as great as that of the minimum degree...

  7. DCMDN: Deep Convolutional Mixture Density Network

    Science.gov (United States)

    D'Isanto, Antonio; Polsterer, Kai Lars

    2017-09-01

    Deep Convolutional Mixture Density Network (DCMDN) estimates probabilistic photometric redshift directly from multi-band imaging data by combining a version of a deep convolutional network with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) are applied as performance criteria. DCMDN is able to predict redshift PDFs independently from the type of source, e.g. galaxies, quasars or stars and renders pre-classification of objects and feature extraction unnecessary; the method is extremely general and allows the solving of any kind of probabilistic regression problems based on imaging data, such as estimating metallicity or star formation rate in galaxies.

  8. Gas Classification Using Deep Convolutional Neural Networks

    Science.gov (United States)

    Peng, Pai; Zhao, Xiaojin; Pan, Xiaofang; Ye, Wenbin

    2018-01-01

    In this work, we propose a novel Deep Convolutional Neural Network (DCNN) tailored for gas classification. Inspired by the great success of DCNN in the field of computer vision, we designed a DCNN with up to 38 layers. In general, the proposed gas neural network, named GasNet, consists of: six convolutional blocks, each block consist of six layers; a pooling layer; and a fully-connected layer. Together, these various layers make up a powerful deep model for gas classification. Experimental results show that the proposed DCNN method is an effective technique for classifying electronic nose data. We also demonstrate that the DCNN method can provide higher classification accuracy than comparable Support Vector Machine (SVM) methods and Multiple Layer Perceptron (MLP). PMID:29316723

  9. A convolutional neural network neutrino event classifier

    International Nuclear Information System (INIS)

    Aurisano, A.; Sousa, A.; Radovic, A.; Vahle, P.; Rocco, D.; Pawloski, G.; Himmel, A.; Niner, E.; Messier, M.D.; Psihas, F.

    2016-01-01

    Convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology without the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.

  10. Gas Classification Using Deep Convolutional Neural Networks.

    Science.gov (United States)

    Peng, Pai; Zhao, Xiaojin; Pan, Xiaofang; Ye, Wenbin

    2018-01-08

    In this work, we propose a novel Deep Convolutional Neural Network (DCNN) tailored for gas classification. Inspired by the great success of DCNN in the field of computer vision, we designed a DCNN with up to 38 layers. In general, the proposed gas neural network, named GasNet, consists of: six convolutional blocks, each block consist of six layers; a pooling layer; and a fully-connected layer. Together, these various layers make up a powerful deep model for gas classification. Experimental results show that the proposed DCNN method is an effective technique for classifying electronic nose data. We also demonstrate that the DCNN method can provide higher classification accuracy than comparable Support Vector Machine (SVM) methods and Multiple Layer Perceptron (MLP).

  11. Applying Gradient Descent in Convolutional Neural Networks

    Science.gov (United States)

    Cui, Nan

    2018-04-01

    With the development of the integrated circuit and computer science, people become caring more about solving practical issues via information technologies. Along with that, a new subject called Artificial Intelligent (AI) comes up. One popular research interest of AI is about recognition algorithm. In this paper, one of the most common algorithms, Convolutional Neural Networks (CNNs) will be introduced, for image recognition. Understanding its theory and structure is of great significance for every scholar who is interested in this field. Convolution Neural Network is an artificial neural network which combines the mathematical method of convolution and neural network. The hieratical structure of CNN provides it reliable computer speed and reasonable error rate. The most significant characteristics of CNNs are feature extraction, weight sharing and dimension reduction. Meanwhile, combining with the Back Propagation (BP) mechanism and the Gradient Descent (GD) method, CNNs has the ability to self-study and in-depth learning. Basically, BP provides an opportunity for backwardfeedback for enhancing reliability and GD is used for self-training process. This paper mainly discusses the CNN and the related BP and GD algorithms, including the basic structure and function of CNN, details of each layer, the principles and features of BP and GD, and some examples in practice with a summary in the end.

  12. Phylogenetic convolutional neural networks in metagenomics.

    Science.gov (United States)

    Fioravanti, Diego; Giarratano, Ylenia; Maggio, Valerio; Agostinelli, Claudio; Chierici, Marco; Jurman, Giuseppe; Furlanello, Cesare

    2018-03-08

    Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space. Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron. Ph-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user.

  13. Image quality assessment using deep convolutional networks

    Science.gov (United States)

    Li, Yezhou; Ye, Xiang; Li, Yong

    2017-12-01

    This paper proposes a method of accurately assessing image quality without a reference image by using a deep convolutional neural network. Existing training based methods usually utilize a compact set of linear filters for learning features of images captured by different sensors to assess their quality. These methods may not be able to learn the semantic features that are intimately related with the features used in human subject assessment. Observing this drawback, this work proposes training a deep convolutional neural network (CNN) with labelled images for image quality assessment. The ReLU in the CNN allows non-linear transformations for extracting high-level image features, providing a more reliable assessment of image quality than linear filters. To enable the neural network to take images of any arbitrary size as input, the spatial pyramid pooling (SPP) is introduced connecting the top convolutional layer and the fully-connected layer. In addition, the SPP makes the CNN robust to object deformations to a certain extent. The proposed method taking an image as input carries out an end-to-end learning process, and outputs the quality of the image. It is tested on public datasets. Experimental results show that it outperforms existing methods by a large margin and can accurately assess the image quality on images taken by different sensors of varying sizes.

  14. Correcting quantum errors with entanglement.

    Science.gov (United States)

    Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu

    2006-10-20

    We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error-correcting codes, thus allowing us to "quantize" all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.

  15. Coded communications with nonideal interleaving

    Science.gov (United States)

    Laufer, Shaul

    1991-02-01

    Burst error channels - a type of block interference channels - feature increasing capacity but decreasing cutoff rate as the memory rate increases. Despite the large capacity, there is degradation in the performance of practical coding schemes when the memory length is excessive. A short-coding error parameter (SCEP) was introduced, which expresses a bound on the average decoding-error probability for codes shorter than the block interference length. The performance of a coded slow frequency-hopping communication channel is analyzed for worst-case partial band jamming and nonideal interleaving, by deriving expressions for the capacity and cutoff rate. The capacity and cutoff rate, respectively, are shown to approach and depart from those of a memoryless channel corresponding to the transmission of a single code letter per hop. For multiaccess communications over a slot-synchronized collision channel without feedback, the channel was considered as a block interference channel with memory length equal to the number of letters transmitted in each slot. The effects of an asymmetrical background noise and a reduced collision error rate were studied, as aspects of real communications. The performance of specific convolutional and Reed-Solomon codes was examined for slow frequency-hopping systems with nonideal interleaving. An upper bound is presented for the performance of a Viterbi decoder for a convolutional code with nonideal interleaving, and a soft decision diversity combining technique is introduced.

  16. Applications of deep convolutional neural networks to digitized natural history collections

    Directory of Open Access Journals (Sweden)

    Eric Schuettpelz

    2017-11-01

    Full Text Available Natural history collections contain data that are critical for many scientific endeavors. Recent efforts in mass digitization are generating large datasets from these collections that can provide unprecedented insight. Here, we present examples of how deep convolutional neural networks can be applied in analyses of imaged herbarium specimens. We first demonstrate that a convolutional neural network can detect mercury-stained specimens across a collection with 90% accuracy. We then show that such a network can correctly distinguish two morphologically similar plant families 96% of the time. Discarding the most challenging specimen images increases accuracy to 94% and 99%, respectively. These results highlight the importance of mass digitization and deep learning approaches and reveal how they can together deliver powerful new investigative tools.

  17. Applications of deep convolutional neural networks to digitized natural history collections.

    Science.gov (United States)

    Schuettpelz, Eric; Frandsen, Paul B; Dikow, Rebecca B; Brown, Abel; Orli, Sylvia; Peters, Melinda; Metallo, Adam; Funk, Vicki A; Dorr, Laurence J

    2017-01-01

    Natural history collections contain data that are critical for many scientific endeavors. Recent efforts in mass digitization are generating large datasets from these collections that can provide unprecedented insight. Here, we present examples of how deep convolutional neural networks can be applied in analyses of imaged herbarium specimens. We first demonstrate that a convolutional neural network can detect mercury-stained specimens across a collection with 90% accuracy. We then show that such a network can correctly distinguish two morphologically similar plant families 96% of the time. Discarding the most challenging specimen images increases accuracy to 94% and 99%, respectively. These results highlight the importance of mass digitization and deep learning approaches and reveal how they can together deliver powerful new investigative tools.

  18. Report on corrections and future considerations for Appendices II–VIII of the International Code of Nomenclature for Algae, Fungi, and Plants

    Science.gov (United States)

    For the first time, the main text and Appendices II–VIII of the International Code of Nomenclature were separately published following decisions of the Melbourne Nomenclature Section, which contributed to subsequent development of an online resource capable of producing the Appendices in real time. ...

  19. An Algorithm for the Convolution of Legendre Series

    KAUST Repository

    Hale, Nicholas; Townsend, Alex

    2014-01-01

    An O(N2) algorithm for the convolution of compactly supported Legendre series is described. The algorithm is derived from the convolution theorem for Legendre polynomials and the recurrence relation satisfied by spherical Bessel functions. Combining with previous work yields an O(N 2) algorithm for the convolution of Chebyshev series. Numerical results are presented to demonstrate the improved efficiency over the existing algorithm. © 2014 Society for Industrial and Applied Mathematics.

  20. The Urbanik generalized convolutions in the non-commutative ...

    Indian Academy of Sciences (India)

    −sν(dx) < ∞. Now we apply this construction to the Kendall convolution case, starting with the weakly stable measure δ1. Example 1. Let △ be the Kendall convolution, i.e. the generalized convolution with the probability kernel: δ1△δa = (1 − a)δ1 + aπ2 for a ∈ [0, 1] and π2 be the Pareto distribution with the density π2(dx) =.

  1. Recent advances in coding theory for near error-free communications

    Science.gov (United States)

    Cheung, K.-M.; Deutsch, L. J.; Dolinar, S. J.; Mceliece, R. J.; Pollara, F.; Shahshahani, M.; Swanson, L.

    1991-01-01

    Channel and source coding theories are discussed. The following subject areas are covered: large constraint length convolutional codes (the Galileo code); decoder design (the big Viterbi decoder); Voyager's and Galileo's data compression scheme; current research in data compression for images; neural networks for soft decoding; neural networks for source decoding; finite-state codes; and fractals for data compression.

  2. On a Generalized Hankel Type Convolution of Generalized Functions

    Indian Academy of Sciences (India)

    Generalized Hankel type transformation; Parserval relation; generalized ... The classical generalized Hankel type convolution are defined and extended to a class of generalized functions. ... Proceedings – Mathematical Sciences | News.

  3. Enhanced online convolutional neural networks for object tracking

    Science.gov (United States)

    Zhang, Dengzhuo; Gao, Yun; Zhou, Hao; Li, Tianwen

    2018-04-01

    In recent several years, object tracking based on convolution neural network has gained more and more attention. The initialization and update of convolution filters can directly affect the precision of object tracking effective. In this paper, a novel object tracking via an enhanced online convolution neural network without offline training is proposed, which initializes the convolution filters by a k-means++ algorithm and updates the filters by an error back-propagation. The comparative experiments of 7 trackers on 15 challenging sequences showed that our tracker can perform better than other trackers in terms of AUC and precision.

  4. Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code

    International Nuclear Information System (INIS)

    Nasrabadi, M.N.; Jalali, M.; Mohammadi, A.

    2007-01-01

    In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF 3 detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required

  5. Convolutional neural networks and face recognition task

    Science.gov (United States)

    Sochenkova, A.; Sochenkov, I.; Makovetskii, A.; Vokhmintsev, A.; Melnikov, A.

    2017-09-01

    Computer vision tasks are remaining very important for the last couple of years. One of the most complicated problems in computer vision is face recognition that could be used in security systems to provide safety and to identify person among the others. There is a variety of different approaches to solve this task, but there is still no universal solution that would give adequate results in some cases. Current paper presents following approach. Firstly, we extract an area containing face, then we use Canny edge detector. On the next stage we use convolutional neural networks (CNN) to finally solve face recognition and person identification task.

  6. Fourier transforms and convolutions for the experimentalist

    CERN Document Server

    Jennison, RC

    1961-01-01

    Fourier Transforms and Convolutions for the Experimentalist provides the experimentalist with a guide to the principles and practical uses of the Fourier transformation. It aims to bridge the gap between the more abstract account of a purely mathematical approach and the rule of thumb calculation and intuition of the practical worker. The monograph springs from a lecture course which the author has given in recent years and for which he has drawn upon a number of sources, including a set of notes compiled by the late Dr. I. C. Browne from a series of lectures given by Mr. J . A. Ratcliffe of t

  7. Target recognition based on convolutional neural network

    Science.gov (United States)

    Wang, Liqiang; Wang, Xin; Xi, Fubiao; Dong, Jian

    2017-11-01

    One of the important part of object target recognition is the feature extraction, which can be classified into feature extraction and automatic feature extraction. The traditional neural network is one of the automatic feature extraction methods, while it causes high possibility of over-fitting due to the global connection. The deep learning algorithm used in this paper is a hierarchical automatic feature extraction method, trained with the layer-by-layer convolutional neural network (CNN), which can extract the features from lower layers to higher layers. The features are more discriminative and it is beneficial to the object target recognition.

  8. QCDNUM: Fast QCD evolution and convolution

    Science.gov (United States)

    Botje, M.

    2011-02-01

    The QCDNUM program numerically solves the evolution equations for parton densities and fragmentation functions in perturbative QCD. Un-polarised parton densities can be evolved up to next-to-next-to-leading order in powers of the strong coupling constant, while polarised densities or fragmentation functions can be evolved up to next-to-leading order. Other types of evolution can be accessed by feeding alternative sets of evolution kernels into the program. A versatile convolution engine provides tools to compute parton luminosities, cross-sections in hadron-hadron scattering, and deep inelastic structure functions in the zero-mass scheme or in generalised mass schemes. Input to these calculations are either the QCDNUM evolved densities, or those read in from an external parton density repository. Included in the software distribution are packages to calculate zero-mass structure functions in un-polarised deep inelastic scattering, and heavy flavour contributions to these structure functions in the fixed flavour number scheme. Program summaryProgram title: QCDNUM version: 17.00 Catalogue identifier: AEHV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public Licence No. of lines in distributed program, including test data, etc.: 45 736 No. of bytes in distributed program, including test data, etc.: 911 569 Distribution format: tar.gz Programming language: Fortran-77 Computer: All Operating system: All RAM: Typically 3 Mbytes Classification: 11.5 Nature of problem: Evolution of the strong coupling constant and parton densities, up to next-to-next-to-leading order in perturbative QCD. Computation of observable quantities by Mellin convolution of the evolved densities with partonic cross-sections. Solution method: Parametrisation of the parton densities as linear or quadratic splines on a discrete grid, and evolution of the spline

  9. Modified Stieltjes Transform and Generalized Convolutions of Probability Distributions

    Directory of Open Access Journals (Sweden)

    Lev B. Klebanov

    2018-01-01

    Full Text Available The classical Stieltjes transform is modified in such a way as to generalize both Stieltjes and Fourier transforms. This transform allows the introduction of new classes of commutative and non-commutative generalized convolutions. A particular case of such a convolution for degenerate distributions appears to be the Wigner semicircle distribution.

  10. Nuclear norm regularized convolutional Max Pos@Top machine

    KAUST Repository

    Li, Qinfeng; Zhou, Xiaofeng; Gu, Aihua; Li, Zonghua; Liang, Ru-Ze

    2016-01-01

    , named as Pos@Top. Our proposed classification model has a convolutional structure that is composed by four layers, i.e., the convolutional layer, the activation layer, the max-pooling layer and the full connection layer. In this paper, we propose

  11. Multi-Scale Residual Convolutional Neural Network for Haze Removal of Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Hou Jiang

    2018-06-01

    Full Text Available Haze removal is a pre-processing step that operates on at-sensor radiance data prior to the physically based image correction step to enhance hazy imagery visually. Most current haze removal methods focus on point-to-point operations and utilize information in the spectral domain, without taking consideration of the multi-scale spatial information of haze. In this paper, we propose a multi-scale residual convolutional neural network (MRCNN for haze removal of remote sensing images. MRCNN utilizes 3D convolutional kernels to extract spatial–spectral correlation information and abstract features from surrounding neighborhoods for haze transmission estimation. It takes advantage of dilated convolution to aggregate multi-scale contextual information for the purpose of improving its prediction accuracy. Meanwhile, residual learning is utilized to avoid the loss of weak information while deepening the network. Our experiments indicate that MRCNN performs accurately, achieving an extremely low validation error and testing error. The haze removal results of several scenes of Landsat 8 Operational Land Imager (OLI data show that the visibility of the dehazed images is significantly improved, and the color of recovered surface is consistent with the actual scene. Quantitative analysis proves that the dehazed results of MRCNN are superior to the traditional methods and other networks. Additionally, a comparison to haze-free data illustrates the spectral consistency after haze removal and reveals the changes in the vegetation index.

  12. Spherical convolutions and their application in molecular modelling

    DEFF Research Database (Denmark)

    Boomsma, Wouter; Frellsen, Jes

    2017-01-01

    Convolutional neural networks are increasingly used outside the domain of image analysis, in particular in various areas of the natural sciences concerned with spatial data. Such networks often work out-of-the box, and in some cases entire model architectures from image analysis can be carried over...... to other problem domains almost unaltered. Unfortunately, this convenience does not trivially extend to data in non-euclidean spaces, such as spherical data. In this paper, we introduce two strategies for conducting convolutions on the sphere, using either a spherical-polar grid or a grid based...... of spherical convolutions in the context of molecular modelling, by considering structural environments within proteins. We show that the models are capable of learning non-trivial functions in these molecular environments, and that our spherical convolutions generally outperform standard 3D convolutions...

  13. Optimized parallel convolutions for non-linear fluid models of tokamak ηi turbulence

    International Nuclear Information System (INIS)

    Milovich, J.L.; Tomaschke, G.; Kerbel, G.D.

    1993-01-01

    Non-linear computational fluid models of plasma turbulence based on spectral methods typically spend a large fraction of the total computing time evaluating convolutions. Usually these convolutions arise from an explicit or semi implicit treatment of the convective non-linearities in the problem. Often the principal convective velocity is perpendicular to magnetic field lines allowing a reduction of the convolution to two dimensions in an appropriate geometry, but beyond this, different models vary widely in the particulars of which mode amplitudes are selectively evolved to get the most efficient representation of the turbulence. As the number of modes in the problem, N, increases, the amount of computation required for this part of the evolution algorithm then scales as N 2 /timestep for a direct or analytic method and N ln N/timestep for a pseudospectral method. The constants of proportionality depend on the particulars of mode selection and determine the size problem for which the method will perform equally. For large enough N, the pseudospectral method performance is always superior, though some problems do not require correspondingly high resolution. Further, the Courant condition for numerical stability requires that the timestep size must decrease proportionately as N increases, thus accentuating the need to have fast methods for larger N problems. The authors have developed a package for the Cray system which performs these convolutions for a rather arbitrary mode selection scheme using either method. The package is highly optimized using a combination of macro and microtasking techniques, as well as vectorization and in some cases assembly coded routines. Parts of the package have also been developed and optimized for the CM200 and CM5 system. Performance comparisons with respect to problem size, parallelization, selection schemes and architecture are presented

  14. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.

    Science.gov (United States)

    Min, Xu; Zeng, Wanwen; Chen, Ning; Chen, Ting; Jiang, Rui

    2017-07-15

    Experimental techniques for measuring chromatin accessibility are expensive and time consuming, appealing for the development of computational approaches to predict open chromatin regions from DNA sequences. Along this direction, existing methods fall into two classes: one based on handcrafted k -mer features and the other based on convolutional neural networks. Although both categories have shown good performance in specific applications thus far, there still lacks a comprehensive framework to integrate useful k -mer co-occurrence information with recent advances in deep learning. We fill this gap by addressing the problem of chromatin accessibility prediction with a convolutional Long Short-Term Memory (LSTM) network with k -mer embedding. We first split DNA sequences into k -mers and pre-train k -mer embedding vectors based on the co-occurrence matrix of k -mers by using an unsupervised representation learning approach. We then construct a supervised deep learning architecture comprised of an embedding layer, three convolutional layers and a Bidirectional LSTM (BLSTM) layer for feature learning and classification. We demonstrate that our method gains high-quality fixed-length features from variable-length sequences and consistently outperforms baseline methods. We show that k -mer embedding can effectively enhance model performance by exploring different embedding strategies. We also prove the efficacy of both the convolution and the BLSTM layers by comparing two variations of the network architecture. We confirm the robustness of our model to hyper-parameters by performing sensitivity analysis. We hope our method can eventually reinforce our understanding of employing deep learning in genomic studies and shed light on research regarding mechanisms of chromatin accessibility. The source code can be downloaded from https://github.com/minxueric/ismb2017_lstm . tingchen@tsinghua.edu.cn or ruijiang@tsinghua.edu.cn. Supplementary materials are available at

  15. Bilinear Convolutional Neural Networks for Fine-grained Visual Recognition.

    Science.gov (United States)

    Lin, Tsung-Yu; RoyChowdhury, Aruni; Maji, Subhransu

    2017-07-04

    We present a simple and effective architecture for fine-grained recognition called Bilinear Convolutional Neural Networks (B-CNNs). These networks represent an image as a pooled outer product of features derived from two CNNs and capture localized feature interactions in a translationally invariant manner. B-CNNs are related to orderless texture representations built on deep features but can be trained in an end-to-end manner. Our most accurate model obtains 84.1%, 79.4%, 84.5% and 91.3% per-image accuracy on the Caltech-UCSD birds [66], NABirds [63], FGVC aircraft [42], and Stanford cars [33] dataset respectively and runs at 30 frames-per-second on a NVIDIA Titan X GPU. We then present a systematic analysis of these networks and show that (1) the bilinear features are highly redundant and can be reduced by an order of magnitude in size without significant loss in accuracy, (2) are also effective for other image classification tasks such as texture and scene recognition, and (3) can be trained from scratch on the ImageNet dataset offering consistent improvements over the baseline architecture. Finally, we present visualizations of these models on various datasets using top activations of neural units and gradient-based inversion techniques. The source code for the complete system is available at http://vis-www.cs.umass.edu/bcnn.

  16. Coding theory and cryptography the essentials

    CERN Document Server

    Hankerson, DC; Leonard, DA; Phelps, KT; Rodger, CA; Wall, JR; Wall, J R

    2000-01-01

    Containing data on number theory, encryption schemes, and cyclic codes, this highly successful textbook, proven by the authors in a popular two-quarter course, presents coding theory, construction, encoding, and decoding of specific code families in an ""easy-to-use"" manner appropriate for students with only a basic background in mathematics offering revised and updated material on the Berlekamp-Massey decoding algorithm and convolutional codes. Introducing the mathematics as it is needed and providing exercises with solutions, this edition includes an extensive section on cryptography, desig

  17. Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images.

    Science.gov (United States)

    Cheng, Phillip M; Malhi, Harshawn S

    2017-04-01

    The purpose of this study is to evaluate transfer learning with deep convolutional neural networks for the classification of abdominal ultrasound images. Grayscale images from 185 consecutive clinical abdominal ultrasound studies were categorized into 11 categories based on the text annotation specified by the technologist for the image. Cropped images were rescaled to 256 × 256 resolution and randomized, with 4094 images from 136 studies constituting the training set, and 1423 images from 49 studies constituting the test set. The fully connected layers of two convolutional neural networks based on CaffeNet and VGGNet, previously trained on the 2012 Large Scale Visual Recognition Challenge data set, were retrained on the training set. Weights in the convolutional layers of each network were frozen to serve as fixed feature extractors. Accuracy on the test set was evaluated for each network. A radiologist experienced in abdominal ultrasound also independently classified the images in the test set into the same 11 categories. The CaffeNet network classified 77.3% of the test set images accurately (1100/1423 images), with a top-2 accuracy of 90.4% (1287/1423 images). The larger VGGNet network classified 77.9% of the test set accurately (1109/1423 images), with a top-2 accuracy of VGGNet was 89.7% (1276/1423 images). The radiologist classified 71.7% of the test set images correctly (1020/1423 images). The differences in classification accuracies between both neural networks and the radiologist were statistically significant (p convolutional neural networks may be used to construct effective classifiers for abdominal ultrasound images.

  18. Applicability of the Fourier convolution theorem to the analysis of late-type stellar spectra

    International Nuclear Information System (INIS)

    Bruning, D.H.

    1981-01-01

    Solar flux and intensity measurements were obtained at Sacramento Peak Observatory to test the validity of the Fourier convolution method as a means of analyzing the spectral line shapes of late-type stars. Analysis of six iron lines near 6200A shows that, in general, the convolution method is not a suitable approximation for the calculation of the flux profile. The convolution method does reasonably reproduce the line shape for some lines which appear not to vary across the disk of the sun, but does not properly calculate the central line depth of these lines. Even if a central depth correction could be found, it is difficult to predict, especially for stars other than the sun, which lines have nearly constant shapes and could be used with the convolution method. Therefore, explicit disk integrations are promoted as the only reliable method of spectral line analysis for late-type stars. Several methods of performing the disk integration are investigated. Although the Abt (1957) prescription appears suitable for the limited case studied, methods using annuli of equal area, equal flux, or equal width (Soberblom, 1980) are considered better models. The model that is the easiest to use and most efficient computationally is the equal area model. Model atmosphere calculations yield values for the microturbulence and macroturbulence similar to those derived by observers. Since the depth dependence of the microturbulence is ignored in the calculations, the intensity profiles at disk center and the limb do not match the observed intensity profiles with only one set of velocity parameters. Use of these incorrectly calculated intensity profiles in the integration procedure to obtain the flux profile leads to incorrect estimates of the solar macroturbulence

  19. A method of estimating GPS instrumental biases with a convolution algorithm

    Science.gov (United States)

    Li, Qi; Ma, Guanyi; Lu, Weijun; Wan, Qingtao; Fan, Jiangtao; Wang, Xiaolan; Li, Jinghua; Li, Changhua

    2018-03-01

    This paper presents a method of deriving the instrumental differential code biases (DCBs) of GPS satellites and dual frequency receivers. Considering that the total electron content (TEC) varies smoothly over a small area, one ionospheric pierce point (IPP) and four more nearby IPPs were selected to build an equation with a convolution algorithm. In addition, unknown DCB parameters were arranged into a set of equations with GPS observations in a day unit by assuming that DCBs do not vary within a day. Then, the DCBs of satellites and receivers were determined by solving the equation set with the least-squares fitting technique. The performance of this method is examined by applying it to 361 days in 2014 using the observation data from 1311 GPS Earth Observation Network (GEONET) receivers. The result was crosswise-compared with the DCB estimated by the mesh method and the IONEX products from the Center for Orbit Determination in Europe (CODE). The DCB values derived by this method agree with those of the mesh method and the CODE products, with biases of 0.091 ns and 0.321 ns, respectively. The convolution method's accuracy and stability were quite good and showed improvements over the mesh method.

  20. tf_unet: Generic convolutional neural network U-Net implementation in Tensorflow

    Science.gov (United States)

    Akeret, Joel; Chang, Chihway; Lucchi, Aurelien; Refregier, Alexandre

    2016-11-01

    tf_unet mitigates radio frequency interference (RFI) signals in radio data using a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. The code is not tied to a specific segmentation and can be used, for example, to detect radio frequency interference (RFI) in radio astronomy or galaxies and stars in widefield imaging data. This U-Net implementation can outperform classical RFI mitigation algorithms.

  1. Very Deep Convolutional Neural Networks for Morphologic Classification of Erythrocytes.

    Science.gov (United States)

    Durant, Thomas J S; Olson, Eben M; Schulz, Wade L; Torres, Richard

    2017-12-01

    Morphologic profiling of the erythrocyte population is a widely used and clinically valuable diagnostic modality, but one that relies on a slow manual process associated with significant labor cost and limited reproducibility. Automated profiling of erythrocytes from digital images by capable machine learning approaches would augment the throughput and value of morphologic analysis. To this end, we sought to evaluate the performance of leading implementation strategies for convolutional neural networks (CNNs) when applied to classification of erythrocytes based on morphology. Erythrocytes were manually classified into 1 of 10 classes using a custom-developed Web application. Using recent literature to guide architectural considerations for neural network design, we implemented a "very deep" CNN, consisting of >150 layers, with dense shortcut connections. The final database comprised 3737 labeled cells. Ensemble model predictions on unseen data demonstrated a harmonic mean of recall and precision metrics of 92.70% and 89.39%, respectively. Of the 748 cells in the test set, 23 misclassification errors were made, with a correct classification frequency of 90.60%, represented as a harmonic mean across the 10 morphologic classes. These findings indicate that erythrocyte morphology profiles could be measured with a high degree of accuracy with "very deep" CNNs. Further, these data support future efforts to expand classes and optimize practical performance in a clinical environment as a prelude to full implementation as a clinical tool. © 2017 American Association for Clinical Chemistry.

  2. Classifying magnetic resonance image modalities with convolutional neural networks

    Science.gov (United States)

    Remedios, Samuel; Pham, Dzung L.; Butman, John A.; Roy, Snehashis

    2018-02-01

    Magnetic Resonance (MR) imaging allows the acquisition of images with different contrast properties depending on the acquisition protocol and the magnetic properties of tissues. Many MR brain image processing techniques, such as tissue segmentation, require multiple MR contrasts as inputs, and each contrast is treated differently. Thus it is advantageous to automate the identification of image contrasts for various purposes, such as facilitating image processing pipelines, and managing and maintaining large databases via content-based image retrieval (CBIR). Most automated CBIR techniques focus on a two-step process: extracting features from data and classifying the image based on these features. We present a novel 3D deep convolutional neural network (CNN)- based method for MR image contrast classification. The proposed CNN automatically identifies the MR contrast of an input brain image volume. Specifically, we explored three classification problems: (1) identify T1-weighted (T1-w), T2-weighted (T2-w), and fluid-attenuated inversion recovery (FLAIR) contrasts, (2) identify pre vs postcontrast T1, (3) identify pre vs post-contrast FLAIR. A total of 3418 image volumes acquired from multiple sites and multiple scanners were used. To evaluate each task, the proposed model was trained on 2137 images and tested on the remaining 1281 images. Results showed that image volumes were correctly classified with 97.57% accuracy.

  3. Decoding of concatenated codes with interleaved outer codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom; Thommesen, Christian

    2004-01-01

    Recently Bleichenbacher et al. proposed a decoding algorithm for interleaved (N, K) Reed-Solomon codes, which allows close to N-K errors to be corrected in many cases. We discuss the application of this decoding algorithm to concatenated codes.......Recently Bleichenbacher et al. proposed a decoding algorithm for interleaved (N, K) Reed-Solomon codes, which allows close to N-K errors to be corrected in many cases. We discuss the application of this decoding algorithm to concatenated codes....

  4. Codes and curves

    CERN Document Server

    Walker, Judy L

    2000-01-01

    When information is transmitted, errors are likely to occur. Coding theory examines efficient ways of packaging data so that these errors can be detected, or even corrected. The traditional tools of coding theory have come from combinatorics and group theory. Lately, however, coding theorists have added techniques from algebraic geometry to their toolboxes. In particular, by re-interpreting the Reed-Solomon codes, one can see how to define new codes based on divisors on algebraic curves. For instance, using modular curves over finite fields, Tsfasman, Vladut, and Zink showed that one can define a sequence of codes with asymptotically better parameters than any previously known codes. This monograph is based on a series of lectures the author gave as part of the IAS/PCMI program on arithmetic algebraic geometry. Here, the reader is introduced to the exciting field of algebraic geometric coding theory. Presenting the material in the same conversational tone of the lectures, the author covers linear codes, inclu...

  5. Deformable image registration using convolutional neural networks

    Science.gov (United States)

    Eppenhof, Koen A. J.; Lafarge, Maxime W.; Moeskops, Pim; Veta, Mitko; Pluim, Josien P. W.

    2018-03-01

    Deformable image registration can be time-consuming and often needs extensive parameterization to perform well on a specific application. We present a step towards a registration framework based on a three-dimensional convolutional neural network. The network directly learns transformations between pairs of three-dimensional images. The outputs of the network are three maps for the x, y, and z components of a thin plate spline transformation grid. The network is trained on synthetic random transformations, which are applied to a small set of representative images for the desired application. Training therefore does not require manually annotated ground truth deformation information. The methodology is demonstrated on public data sets of inspiration-expiration lung CT image pairs, which come with annotated corresponding landmarks for evaluation of the registration accuracy. Advantages of this methodology are its fast registration times and its minimal parameterization.

  6. An Improved Convolutional Neural Network on Crowd Density Estimation

    Directory of Open Access Journals (Sweden)

    Pan Shao-Yun

    2016-01-01

    Full Text Available In this paper, a new method is proposed for crowd density estimation. An improved convolutional neural network is combined with traditional texture feature. The data calculated by the convolutional layer can be treated as a new kind of features.So more useful information of images can be extracted by different features.In the meantime, the size of image has little effect on the result of convolutional neural network. Experimental results indicate that our scheme has adequate performance to allow for its use in real world applications.

  7. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Fan Hu

    2015-11-01

    Full Text Available Learning efficient image representations is at the core of the scene classification task of remote sensing imagery. The existing methods for solving the scene classification task, based on either feature coding approaches with low-level hand-engineered features or unsupervised feature learning, can only generate mid-level image features with limited representative ability, which essentially prevents them from achieving better performance. Recently, the deep convolutional neural networks (CNNs, which are hierarchical architectures trained on large-scale datasets, have shown astounding performance in object recognition and detection. However, it is still not clear how to use these deep convolutional neural networks for high-resolution remote sensing (HRRS scene classification. In this paper, we investigate how to transfer features from these successfully pre-trained CNNs for HRRS scene classification. We propose two scenarios for generating image features via extracting CNN features from different layers. In the first scenario, the activation vectors extracted from fully-connected layers are regarded as the final image features; in the second scenario, we extract dense features from the last convolutional layer at multiple scales and then encode the dense features into global image features through commonly used feature coding approaches. Extensive experiments on two public scene classification datasets demonstrate that the image features obtained by the two proposed scenarios, even with a simple linear classifier, can result in remarkable performance and improve the state-of-the-art by a significant margin. The results reveal that the features from pre-trained CNNs generalize well to HRRS datasets and are more expressive than the low- and mid-level features. Moreover, we tentatively combine features extracted from different CNN models for better performance.

  8. Discussion on LDPC Codes and Uplink Coding

    Science.gov (United States)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.

  9. DESCRIPCIÓN MODULAR DE UN ESQUEMA DE CODIFICACIÓN CONCATENADO PARA CORRECCIÓN DE ERRORES CON PROGRAMACIÓN DE HARDWARE MODULAR DESIGN OF SCHEME CODING CONCATENATED FOR CORRECTION ERROR WITH PROGRAMMING OF HARDWARE

    Directory of Open Access Journals (Sweden)

    Cecilia E Sandoval Ruiz

    2008-09-01

    Full Text Available Las comunicaciones inalámbricas requieren el empleo de métodos de corrección de errores sobre los datos transmitidos, usándose generalmente técnicas de codificación Reed-Solomon & Viterbi, por razones de desempeño y seguridad es preferible implementarlos sobre hardware. En este trabajo se presenta el diseño modular de la etapa de codificación de éstos códigos para su concatenación usando VHDL (VHSIC Hardware Descriptor Language, orientado a la implementación sobre tecnología de matriz de compuertas programadas por campo (FPGA, Se inicia con una revisión de los conceptos asociados a la definición de los componentes, y el modelo, descripción del comportamiento, luego la arquitectura es diseñada usando la sintaxis en VHDL y es capturado el diseño de hardware, finalmente se presentan los resultados de síntesis.The wireless communication medium require employing forward error correction methods on the data transferred, where Reed-Solomon & Viterbi coding techniques are utilized, because of performance and security reaso. In this paper we present a modular design of phase encoding these codes for concatenation using VHDL (VHSIC Hardware Descriptor Language and oriented to implementation with field programmable gate arrays (FPGA. The work besing with a review of code concept and the definition of the components and the model and the description of the behavioral. Later, the architecture is designed and captures using syntax in VHDL, and finally presents the results of synthesis.

  10. Combinatorial neural codes from a mathematical coding theory perspective.

    Science.gov (United States)

    Curto, Carina; Itskov, Vladimir; Morrison, Katherine; Roth, Zachary; Walker, Judy L

    2013-07-01

    Shannon's seminal 1948 work gave rise to two distinct areas of research: information theory and mathematical coding theory. While information theory has had a strong influence on theoretical neuroscience, ideas from mathematical coding theory have received considerably less attention. Here we take a new look at combinatorial neural codes from a mathematical coding theory perspective, examining the error correction capabilities of familiar receptive field codes (RF codes). We find, perhaps surprisingly, that the high levels of redundancy present in these codes do not support accurate error correction, although the error-correcting performance of receptive field codes catches up to that of random comparison codes when a small tolerance to error is introduced. However, receptive field codes are good at reflecting distances between represented stimuli, while the random comparison codes are not. We suggest that a compromise in error-correcting capability may be a necessary price to pay for a neural code whose structure serves not only error correction, but must also reflect relationships between stimuli.

  11. Adversarial training and dilated convolutions for brain MRI segmentation

    NARCIS (Netherlands)

    Moeskops, P.; Veta, M.; Lafarge, M.W.; Eppenhof, K.A.J.; Pluim, J.P.W.

    2017-01-01

    Convolutional neural networks (CNNs) have been applied to various automatic image segmentation tasks in medical image analysis, including brain MRI segmentation. Generative adversarial networks have recently gained popularity because of their power in generating images that are difficult to

  12. Classification of urine sediment based on convolution neural network

    Science.gov (United States)

    Pan, Jingjing; Jiang, Cunbo; Zhu, Tiantian

    2018-04-01

    By designing a new convolution neural network framework, this paper breaks the constraints of the original convolution neural network framework requiring large training samples and samples of the same size. Move and cropping the input images, generate the same size of the sub-graph. And then, the generated sub-graph uses the method of dropout, increasing the diversity of samples and preventing the fitting generation. Randomly select some proper subset in the sub-graphic set and ensure that the number of elements in the proper subset is same and the proper subset is not the same. The proper subsets are used as input layers for the convolution neural network. Through the convolution layer, the pooling, the full connection layer and output layer, we can obtained the classification loss rate of test set and training set. In the red blood cells, white blood cells, calcium oxalate crystallization classification experiment, the classification accuracy rate of 97% or more.

  13. Convolution of second order linear recursive sequences II.

    Directory of Open Access Journals (Sweden)

    Szakács Tamás

    2017-12-01

    Full Text Available We continue the investigation of convolutions of second order linear recursive sequences (see the first part in [1]. In this paper, we focus on the case when the characteristic polynomials of the sequences have common root.

  14. FPGA-based digital convolution for wireless applications

    CERN Document Server

    Guan, Lei

    2017-01-01

    This book presents essential perspectives on digital convolutions in wireless communications systems and illustrates their corresponding efficient real-time field-programmable gate array (FPGA) implementations. Covering these digital convolutions from basic concept to vivid simulation/illustration, the book is also supplemented with MS PowerPoint presentations to aid in comprehension. FPGAs or generic all programmable devices will soon become widespread, serving as the “brains” of all types of real-time smart signal processing systems, like smart networks, smart homes and smart cities. The book examines digital convolution by bringing together the following main elements: the fundamental theory behind the mathematical formulae together with corresponding physical phenomena; virtualized algorithm simulation together with benchmark real-time FPGA implementations; and detailed, state-of-the-art case studies on wireless applications, including popular linear convolution in digital front ends (DFEs); nonlinear...

  15. Deep Recurrent Convolutional Neural Network: Improving Performance For Speech Recognition

    OpenAIRE

    Zhang, Zewang; Sun, Zheng; Liu, Jiaqi; Chen, Jingwen; Huo, Zhao; Zhang, Xiao

    2016-01-01

    A deep learning approach has been widely applied in sequence modeling problems. In terms of automatic speech recognition (ASR), its performance has significantly been improved by increasing large speech corpus and deeper neural network. Especially, recurrent neural network and deep convolutional neural network have been applied in ASR successfully. Given the arising problem of training speed, we build a novel deep recurrent convolutional network for acoustic modeling and then apply deep resid...

  16. Traffic sign recognition with deep convolutional neural networks

    OpenAIRE

    Karamatić, Boris

    2016-01-01

    The problem of detection and recognition of traffic signs is becoming an important problem when it comes to the development of self driving cars and advanced driver assistance systems. In this thesis we will develop a system for detection and recognition of traffic signs. For the problem of detection we will use aggregate channel features and for the problem of recognition we will use a deep convolutional neural network. We will describe how convolutional neural networks work, how they are co...

  17. Efficient and Invariant Convolutional Neural Networks for Dense Prediction

    OpenAIRE

    Gao, Hongyang; Ji, Shuiwang

    2017-01-01

    Convolutional neural networks have shown great success on feature extraction from raw input data such as images. Although convolutional neural networks are invariant to translations on the inputs, they are not invariant to other transformations, including rotation and flip. Recent attempts have been made to incorporate more invariance in image recognition applications, but they are not applicable to dense prediction tasks, such as image segmentation. In this paper, we propose a set of methods...

  18. Prediction of Electricity Usage Using Convolutional Neural Networks

    OpenAIRE

    Hansen, Martin

    2017-01-01

    Master's thesis Information- and communication technology IKT590 - University of Agder 2017 Convolutional Neural Networks are overwhelmingly accurate when attempting to predict numbers using the famous MNIST-dataset. In this paper, we are attempting to transcend these results for time- series forecasting, and compare them with several regression mod- els. The Convolutional Neural Network model predicted the same value through the entire time lapse in contrast with the other ...

  19. Research of convolutional neural networks for traffic sign recognition

    OpenAIRE

    Stadalnikas, Kasparas

    2017-01-01

    In this thesis the convolutional neural networks application for traffic sign recognition is analyzed. Thesis describes the basic operations, techniques that are commonly used to apply in the image classification using convolutional neural networks. Also, this paper describes the data sets used for traffic sign recognition, their problems affecting the final training results. The paper reviews most popular existing technologies – frameworks for developing the solution for traffic sign recogni...

  20. On the Fresnel sine integral and the convolution

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2003-01-01

    Full Text Available The Fresnel sine integral S(x, the Fresnel cosine integral C(x, and the associated functions S+(x, S−(x, C+(x, and C−(x are defined as locally summable functions on the real line. Some convolutions and neutrix convolutions of the Fresnel sine integral and its associated functions with x+r, xr are evaluated.

  1. Radial Structure Scaffolds Convolution Patterns of Developing Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Mir Jalil Razavi

    2017-08-01

    Full Text Available Commonly-preserved radial convolution is a prominent characteristic of the mammalian cerebral cortex. Endeavors from multiple disciplines have been devoted for decades to explore the causes for this enigmatic structure. However, the underlying mechanisms that lead to consistent cortical convolution patterns still remain poorly understood. In this work, inspired by prior studies, we propose and evaluate a plausible theory that radial convolution during the early development of the brain is sculptured by radial structures consisting of radial glial cells (RGCs and maturing axons. Specifically, the regionally heterogeneous development and distribution of RGCs controlled by Trnp1 regulate the convex and concave convolution patterns (gyri and sulci in the radial direction, while the interplay of RGCs' effects on convolution and axons regulates the convex (gyral convolution patterns. This theory is assessed by observations and measurements in literature from multiple disciplines such as neurobiology, genetics, biomechanics, etc., at multiple scales to date. Particularly, this theory is further validated by multimodal imaging data analysis and computational simulations in this study. We offer a versatile and descriptive study model that can provide reasonable explanations of observations, experiments, and simulations of the characteristic mammalian cortical folding.

  2. Code Cactus; Code Cactus

    Energy Technology Data Exchange (ETDEWEB)

    Fajeau, M; Nguyen, L T; Saunier, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-09-01

    This code handles the following problems: -1) Analysis of thermal experiments on a water loop at high or low pressure; steady state or transient behavior; -2) Analysis of thermal and hydrodynamic behavior of water-cooled and moderated reactors, at either high or low pressure, with boiling permitted; fuel elements are assumed to be flat plates: - Flowrate in parallel channels coupled or not by conduction across plates, with conditions of pressure drops or flowrate, variable or not with respect to time is given; the power can be coupled to reactor kinetics calculation or supplied by the code user. The code, containing a schematic representation of safety rod behavior, is a one dimensional, multi-channel code, and has as its complement (FLID), a one-channel, two-dimensional code. (authors) [French] Ce code permet de traiter les problemes ci-dessous: 1. Depouillement d'essais thermiques sur boucle a eau, haute ou basse pression, en regime permanent ou transitoire; 2. Etudes thermiques et hydrauliques de reacteurs a eau, a plaques, a haute ou basse pression, ebullition permise: - repartition entre canaux paralleles, couples on non par conduction a travers plaques, pour des conditions de debit ou de pertes de charge imposees, variables ou non dans le temps; - la puissance peut etre couplee a la neutronique et une representation schematique des actions de securite est prevue. Ce code (Cactus) a une dimension d'espace et plusieurs canaux, a pour complement Flid qui traite l'etude d'un seul canal a deux dimensions. (auteurs)

  3. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences.

    Science.gov (United States)

    Quang, Daniel; Xie, Xiaohui

    2016-06-20

    Modeling the properties and functions of DNA sequences is an important, but challenging task in the broad field of genomics. This task is particularly difficult for non-coding DNA, the vast majority of which is still poorly understood in terms of function. A powerful predictive model for the function of non-coding DNA can have enormous benefit for both basic science and translational research because over 98% of the human genome is non-coding and 93% of disease-associated variants lie in these regions. To address this need, we propose DanQ, a novel hybrid convolutional and bi-directional long short-term memory recurrent neural network framework for predicting non-coding function de novo from sequence. In the DanQ model, the convolution layer captures regulatory motifs, while the recurrent layer captures long-term dependencies between the motifs in order to learn a regulatory 'grammar' to improve predictions. DanQ improves considerably upon other models across several metrics. For some regulatory markers, DanQ can achieve over a 50% relative improvement in the area under the precision-recall curve metric compared to related models. We have made the source code available at the github repository http://github.com/uci-cbcl/DanQ. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Introducing single-crystal scattering and optical potentials into MCNPX: Predicting neutron emission from a convoluted moderator

    Energy Technology Data Exchange (ETDEWEB)

    Gallmeier, F.X., E-mail: gallmeierfz@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Iverson, E.B.; Lu, W. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Baxter, D.V. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Muhrer, G.; Ansell, S. [European Spallation Source, ESS AB, Lund (Sweden)

    2016-04-01

    Neutron transport simulation codes are indispensable tools for the design and construction of modern neutron scattering facilities and instrumentation. Recently, it has become increasingly clear that some neutron instrumentation has started to exploit physics that is not well-modeled by the existing codes. In particular, the transport of neutrons through single crystals and across interfaces in MCNP(X), Geant4, and other codes ignores scattering from oriented crystals and refractive effects, and yet these are essential phenomena for the performance of monochromators and ultra-cold neutron transport respectively (to mention but two examples). In light of these developments, we have extended the MCNPX code to include a single-crystal neutron scattering model and neutron reflection/refraction physics. We have also generated silicon scattering kernels for single crystals of definable orientation. As a first test of these new tools, we have chosen to model the recently developed convoluted moderator concept, in which a moderating material is interleaved with layers of perfect crystals to provide an exit path for neutrons moderated to energies below the crystal's Bragg cut–off from locations deep within the moderator. Studies of simple cylindrical convoluted moderator systems of 100 mm diameter and composed of polyethylene and single crystal silicon were performed with the upgraded MCNPX code and reproduced the magnitude of effects seen in experiments compared to homogeneous moderator systems. Applying different material properties for refraction and reflection, and by replacing the silicon in the models with voids, we show that the emission enhancements seen in recent experiments are primarily caused by the transparency of the silicon and void layers. Finally we simulated the convoluted moderator experiments described by Iverson et al. and found satisfactory agreement between the measurements and the simulations performed with the tools we have developed.

  5. Metaheuristic Algorithms for Convolution Neural Network.

    Science.gov (United States)

    Rere, L M Rasdi; Fanany, Mohamad Ivan; Arymurthy, Aniati Murni

    2016-01-01

    A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent).

  6. Metaheuristic Algorithms for Convolution Neural Network

    Directory of Open Access Journals (Sweden)

    L. M. Rasdi Rere

    2016-01-01

    Full Text Available A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN, a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent.

  7. Do Convolutional Neural Networks Learn Class Hierarchy?

    Science.gov (United States)

    Bilal, Alsallakh; Jourabloo, Amin; Ye, Mao; Liu, Xiaoming; Ren, Liu

    2018-01-01

    Convolutional Neural Networks (CNNs) currently achieve state-of-the-art accuracy in image classification. With a growing number of classes, the accuracy usually drops as the possibilities of confusion increase. Interestingly, the class confusion patterns follow a hierarchical structure over the classes. We present visual-analytics methods to reveal and analyze this hierarchy of similar classes in relation with CNN-internal data. We found that this hierarchy not only dictates the confusion patterns between the classes, it furthermore dictates the learning behavior of CNNs. In particular, the early layers in these networks develop feature detectors that can separate high-level groups of classes quite well, even after a few training epochs. In contrast, the latter layers require substantially more epochs to develop specialized feature detectors that can separate individual classes. We demonstrate how these insights are key to significant improvement in accuracy by designing hierarchy-aware CNNs that accelerate model convergence and alleviate overfitting. We further demonstrate how our methods help in identifying various quality issues in the training data.

  8. Microaneurysm detection using fully convolutional neural networks.

    Science.gov (United States)

    Chudzik, Piotr; Majumdar, Somshubra; Calivá, Francesco; Al-Diri, Bashir; Hunter, Andrew

    2018-05-01

    Diabetic retinopathy is a microvascular complication of diabetes that can lead to sight loss if treated not early enough. Microaneurysms are the earliest clinical signs of diabetic retinopathy. This paper presents an automatic method for detecting microaneurysms in fundus photographies. A novel patch-based fully convolutional neural network with batch normalization layers and Dice loss function is proposed. Compared to other methods that require up to five processing stages, it requires only three. Furthermore, to the best of the authors' knowledge, this is the first paper that shows how to successfully transfer knowledge between datasets in the microaneurysm detection domain. The proposed method was evaluated using three publicly available and widely used datasets: E-Ophtha, DIARETDB1, and ROC. It achieved better results than state-of-the-art methods using the FROC metric. The proposed algorithm accomplished highest sensitivities for low false positive rates, which is particularly important for screening purposes. Performance, simplicity, and robustness of the proposed method demonstrates its suitability for diabetic retinopathy screening applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Multiscale Convolutional Neural Networks for Hand Detection

    Directory of Open Access Journals (Sweden)

    Shiyang Yan

    2017-01-01

    Full Text Available Unconstrained hand detection in still images plays an important role in many hand-related vision problems, for example, hand tracking, gesture analysis, human action recognition and human-machine interaction, and sign language recognition. Although hand detection has been extensively studied for decades, it is still a challenging task with many problems to be tackled. The contributing factors for this complexity include heavy occlusion, low resolution, varying illumination conditions, different hand gestures, and the complex interactions between hands and objects or other hands. In this paper, we propose a multiscale deep learning model for unconstrained hand detection in still images. Deep learning models, and deep convolutional neural networks (CNNs in particular, have achieved state-of-the-art performances in many vision benchmarks. Developed from the region-based CNN (R-CNN model, we propose a hand detection scheme based on candidate regions generated by a generic region proposal algorithm, followed by multiscale information fusion from the popular VGG16 model. Two benchmark datasets were applied to validate the proposed method, namely, the Oxford Hand Detection Dataset and the VIVA Hand Detection Challenge. We achieved state-of-the-art results on the Oxford Hand Detection Dataset and had satisfactory performance in the VIVA Hand Detection Challenge.

  10. A deep convolutional neural network model to classify heartbeats.

    Science.gov (United States)

    Acharya, U Rajendra; Oh, Shu Lih; Hagiwara, Yuki; Tan, Jen Hong; Adam, Muhammad; Gertych, Arkadiusz; Tan, Ru San

    2017-10-01

    The electrocardiogram (ECG) is a standard test used to monitor the activity of the heart. Many cardiac abnormalities will be manifested in the ECG including arrhythmia which is a general term that refers to an abnormal heart rhythm. The basis of arrhythmia diagnosis is the identification of normal versus abnormal individual heart beats, and their correct classification into different diagnoses, based on ECG morphology. Heartbeats can be sub-divided into five categories namely non-ectopic, supraventricular ectopic, ventricular ectopic, fusion, and unknown beats. It is challenging and time-consuming to distinguish these heartbeats on ECG as these signals are typically corrupted by noise. We developed a 9-layer deep convolutional neural network (CNN) to automatically identify 5 different categories of heartbeats in ECG signals. Our experiment was conducted in original and noise attenuated sets of ECG signals derived from a publicly available database. This set was artificially augmented to even out the number of instances the 5 classes of heartbeats and filtered to remove high-frequency noise. The CNN was trained using the augmented data and achieved an accuracy of 94.03% and 93.47% in the diagnostic classification of heartbeats in original and noise free ECGs, respectively. When the CNN was trained with highly imbalanced data (original dataset), the accuracy of the CNN reduced to 89.07%% and 89.3% in noisy and noise-free ECGs. When properly trained, the proposed CNN model can serve as a tool for screening of ECG to quickly identify different types and frequency of arrhythmic heartbeats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Psoriasis skin biopsy image segmentation using Deep Convolutional Neural Network.

    Science.gov (United States)

    Pal, Anabik; Garain, Utpal; Chandra, Aditi; Chatterjee, Raghunath; Senapati, Swapan

    2018-06-01

    Development of machine assisted tools for automatic analysis of psoriasis skin biopsy image plays an important role in clinical assistance. Development of automatic approach for accurate segmentation of psoriasis skin biopsy image is the initial prerequisite for developing such system. However, the complex cellular structure, presence of imaging artifacts, uneven staining variation make the task challenging. This paper presents a pioneering attempt for automatic segmentation of psoriasis skin biopsy images. Several deep neural architectures are tried for segmenting psoriasis skin biopsy images. Deep models are used for classifying the super-pixels generated by Simple Linear Iterative Clustering (SLIC) and the segmentation performance of these architectures is compared with the traditional hand-crafted feature based classifiers built on popularly used classifiers like K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Random Forest (RF). A U-shaped Fully Convolutional Neural Network (FCN) is also used in an end to end learning fashion where input is the original color image and the output is the segmentation class map for the skin layers. An annotated real psoriasis skin biopsy image data set of ninety (90) images is developed and used for this research. The segmentation performance is evaluated with two metrics namely, Jaccard's Coefficient (JC) and the Ratio of Correct Pixel Classification (RCPC) accuracy. The experimental results show that the CNN based approaches outperform the traditional hand-crafted feature based classification approaches. The present research shows that practical system can be developed for machine assisted analysis of psoriasis disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Voltage measurements at the vacuum post-hole convolute of the Z pulsed-power accelerator

    Directory of Open Access Journals (Sweden)

    E. M. Waisman

    2014-12-01

    Full Text Available Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM. Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator’s vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator’s vacuum-insulator stack (at a radius of 1.6 m by using standard D-dot and B-dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator’s magnetically insulated transmission lines (MITLs and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z. These results are complementary to previous studies [R. D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010

  13. Free-space optical code-division multiple-access system design

    Science.gov (United States)

    Jeromin, Lori L.; Kaufmann, John E.; Bucher, Edward A.

    1993-08-01

    This paper describes an optical direct-detection multiple access communications system for free-space satellite networks utilizing code-division multiple-access (CDMA) and forward error correction (FEC) coding. System performance is characterized by how many simultaneous users operating at data rate R can be accommodated in a signaling bandwidth W. The performance of two CDMA schemes, optical orthogonal codes (OOC) with FEC and orthogonal convolutional codes (OCC), is calculated and compared to information-theoretic capacity bounds. The calculations include the effects of background and detector noise as well as nonzero transmitter extinction ratio and power imbalance among users. A system design for 10 kbps multiple-access communications between low-earth orbit satellites is given. With near- term receiver technology and representative system losses, a 15 W peak-power transmitter provides 10-6 BER performance with seven interfering users and full moon background in the receiver FOV. The receiver employs an array of discrete wide-area avalanche photodiodes (APD) for wide field of view coverage. Issues of user acquisition and synchronization, implementation technology, and system scalability are also discussed.

  14. Self-correcting quantum computers

    International Nuclear Information System (INIS)

    Bombin, H; Chhajlany, R W; Horodecki, M; Martin-Delgado, M A

    2013-01-01

    Is the notion of a quantum computer (QC) resilient to thermal noise unphysical? We address this question from a constructive perspective and show that local quantum Hamiltonian models provide self-correcting QCs. To this end, we first give a sufficient condition on the connectedness of excitations for a stabilizer code model to be a self-correcting quantum memory. We then study the two main examples of topological stabilizer codes in arbitrary dimensions and establish their self-correcting capabilities. Also, we address the transversality properties of topological color codes, showing that six-dimensional color codes provide a self-correcting model that allows the transversal and local implementation of a universal set of operations in seven spatial dimensions. Finally, we give a procedure for initializing such quantum memories at finite temperature. (paper)

  15. Order functions and evaluation codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Pellikaan, Ruud; van Lint, Jack

    1997-01-01

    Based on the notion of an order function we construct and determine the parameters of a class of error-correcting evaluation codes. This class includes the one-point algebraic geometry codes as wella s the generalized Reed-Muller codes and the parameters are detremined without using the heavy...... machinery of algebraic geometry....

  16. Convolutional Dictionary Learning: Acceleration and Convergence

    Science.gov (United States)

    Chun, Il Yong; Fessler, Jeffrey A.

    2018-04-01

    Convolutional dictionary learning (CDL or sparsifying CDL) has many applications in image processing and computer vision. There has been growing interest in developing efficient algorithms for CDL, mostly relying on the augmented Lagrangian (AL) method or the variant alternating direction method of multipliers (ADMM). When their parameters are properly tuned, AL methods have shown fast convergence in CDL. However, the parameter tuning process is not trivial due to its data dependence and, in practice, the convergence of AL methods depends on the AL parameters for nonconvex CDL problems. To moderate these problems, this paper proposes a new practically feasible and convergent Block Proximal Gradient method using a Majorizer (BPG-M) for CDL. The BPG-M-based CDL is investigated with different block updating schemes and majorization matrix designs, and further accelerated by incorporating some momentum coefficient formulas and restarting techniques. All of the methods investigated incorporate a boundary artifacts removal (or, more generally, sampling) operator in the learning model. Numerical experiments show that, without needing any parameter tuning process, the proposed BPG-M approach converges more stably to desirable solutions of lower objective values than the existing state-of-the-art ADMM algorithm and its memory-efficient variant do. Compared to the ADMM approaches, the BPG-M method using a multi-block updating scheme is particularly useful in single-threaded CDL algorithm handling large datasets, due to its lower memory requirement and no polynomial computational complexity. Image denoising experiments show that, for relatively strong additive white Gaussian noise, the filters learned by BPG-M-based CDL outperform those trained by the ADMM approach.

  17. Lidar Cloud Detection with Fully Convolutional Networks

    Science.gov (United States)

    Cromwell, E.; Flynn, D.

    2017-12-01

    The vertical distribution of clouds from active remote sensing instrumentation is a widely used data product from global atmospheric measuring sites. The presence of clouds can be expressed as a binary cloud mask and is a primary input for climate modeling efforts and cloud formation studies. Current cloud detection algorithms producing these masks do not accurately identify the cloud boundaries and tend to oversample or over-represent the cloud. This translates as uncertainty for assessing the radiative impact of clouds and tracking changes in cloud climatologies. The Atmospheric Radiation Measurement (ARM) program has over 20 years of micro-pulse lidar (MPL) and High Spectral Resolution Lidar (HSRL) instrument data and companion automated cloud mask product at the mid-latitude Southern Great Plains (SGP) and the polar North Slope of Alaska (NSA) atmospheric observatory. Using this data, we train a fully convolutional network (FCN) with semi-supervised learning to segment lidar imagery into geometric time-height cloud locations for the SGP site and MPL instrument. We then use transfer learning to train a FCN for (1) the MPL instrument at the NSA site and (2) for the HSRL. In our semi-supervised approach, we pre-train the classification layers of the FCN with weakly labeled lidar data. Then, we facilitate end-to-end unsupervised pre-training and transition to fully supervised learning with ground truth labeled data. Our goal is to improve the cloud mask accuracy and precision for the MPL instrument to 95% and 80%, respectively, compared to the current cloud mask algorithms of 89% and 50%. For the transfer learning based FCN for the HSRL instrument, our goal is to achieve a cloud mask accuracy of 90% and a precision of 80%.

  18. Detecting atrial fibrillation by deep convolutional neural networks.

    Science.gov (United States)

    Xia, Yong; Wulan, Naren; Wang, Kuanquan; Zhang, Henggui

    2018-02-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia. The incidence of AF increases with age, causing high risks of stroke and increased morbidity and mortality. Efficient and accurate diagnosis of AF based on the ECG is valuable in clinical settings and remains challenging. In this paper, we proposed a novel method with high reliability and accuracy for AF detection via deep learning. The short-term Fourier transform (STFT) and stationary wavelet transform (SWT) were used to analyze ECG segments to obtain two-dimensional (2-D) matrix input suitable for deep convolutional neural networks. Then, two different deep convolutional neural network models corresponding to STFT output and SWT output were developed. Our new method did not require detection of P or R peaks, nor feature designs for classification, in contrast to existing algorithms. Finally, the performances of the two models were evaluated and compared with those of existing algorithms. Our proposed method demonstrated favorable performances on ECG segments as short as 5 s. The deep convolutional neural network using input generated by STFT, presented a sensitivity of 98.34%, specificity of 98.24% and accuracy of 98.29%. For the deep convolutional neural network using input generated by SWT, a sensitivity of 98.79%, specificity of 97.87% and accuracy of 98.63% was achieved. The proposed method using deep convolutional neural networks shows high sensitivity, specificity and accuracy, and, therefore, is a valuable tool for AF detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Video Super-Resolution via Bidirectional Recurrent Convolutional Networks.

    Science.gov (United States)

    Huang, Yan; Wang, Wei; Wang, Liang

    2018-04-01

    Super resolving a low-resolution video, namely video super-resolution (SR), is usually handled by either single-image SR or multi-frame SR. Single-Image SR deals with each video frame independently, and ignores intrinsic temporal dependency of video frames which actually plays a very important role in video SR. Multi-Frame SR generally extracts motion information, e.g., optical flow, to model the temporal dependency, but often shows high computational cost. Considering that recurrent neural networks (RNNs) can model long-term temporal dependency of video sequences well, we propose a fully convolutional RNN named bidirectional recurrent convolutional network for efficient multi-frame SR. Different from vanilla RNNs, 1) the commonly-used full feedforward and recurrent connections are replaced with weight-sharing convolutional connections. So they can greatly reduce the large number of network parameters and well model the temporal dependency in a finer level, i.e., patch-based rather than frame-based, and 2) connections from input layers at previous timesteps to the current hidden layer are added by 3D feedforward convolutions, which aim to capture discriminate spatio-temporal patterns for short-term fast-varying motions in local adjacent frames. Due to the cheap convolutional operations, our model has a low computational complexity and runs orders of magnitude faster than other multi-frame SR methods. With the powerful temporal dependency modeling, our model can super resolve videos with complex motions and achieve well performance.

  20. Interactive Video Coding and Transmission over Heterogeneous Wired-to-Wireless IP Networks Using an Edge Proxy

    Directory of Open Access Journals (Sweden)

    Modestino James W

    2004-01-01

    Full Text Available Digital video delivered over wired-to-wireless networks is expected to suffer quality degradation from both packet loss and bit errors in the payload. In this paper, the quality degradation due to packet loss and bit errors in the payload are quantitatively evaluated and their effects are assessed. We propose the use of a concatenated forward error correction (FEC coding scheme employing Reed-Solomon (RS codes and rate-compatible punctured convolutional (RCPC codes to protect the video data from packet loss and bit errors, respectively. Furthermore, the performance of a joint source-channel coding (JSCC approach employing this concatenated FEC coding scheme for video transmission is studied. Finally, we describe an improved end-to-end architecture using an edge proxy in a mobile support station to implement differential error protection for the corresponding channel impairments expected on the two networks. Results indicate that with an appropriate JSCC approach and the use of an edge proxy, FEC-based error-control techniques together with passive error-recovery techniques can significantly improve the effective video throughput and lead to acceptable video delivery quality over time-varying heterogeneous wired-to-wireless IP networks.

  1. Coding Theory and Applications : 4th International Castle Meeting

    CERN Document Server

    Malonek, Paula; Vettori, Paolo

    2015-01-01

    The topics covered in this book, written by researchers at the forefront of their field, represent some of the most relevant research areas in modern coding theory: codes and combinatorial structures, algebraic geometric codes, group codes, quantum codes, convolutional codes, network coding and cryptography. The book includes a survey paper on the interconnections of coding theory with constrained systems, written by an invited speaker, as well as 37 cutting-edge research communications presented at the 4th International Castle Meeting on Coding Theory and Applications (4ICMCTA), held at the Castle of Palmela in September 2014. The event’s scientific program consisted of four invited talks and 39 regular talks by authors from 24 different countries. This conference provided an ideal opportunity for communicating new results, exchanging ideas, strengthening international cooperation, and introducing young researchers into the coding theory community.

  2. Rank error-correcting pairs

    DEFF Research Database (Denmark)

    Martinez Peñas, Umberto; Pellikaan, Ruud

    2017-01-01

    Error-correcting pairs were introduced as a general method of decoding linear codes with respect to the Hamming metric using coordinatewise products of vectors, and are used for many well-known families of codes. In this paper, we define new types of vector products, extending the coordinatewise ...

  3. The denoising of Monte Carlo dose distributions using convolution superposition calculations

    International Nuclear Information System (INIS)

    El Naqa, I; Cui, J; Lindsay, P; Olivera, G; Deasy, J O

    2007-01-01

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction. (note)

  4. NOTE: The denoising of Monte Carlo dose distributions using convolution superposition calculations

    Science.gov (United States)

    El Naqa, I.; Cui, J.; Lindsay, P.; Olivera, G.; Deasy, J. O.

    2007-09-01

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction.

  5. DISP1 code

    International Nuclear Information System (INIS)

    Vokac, P.

    1999-12-01

    DISP1 code is a simple tool for assessment of the dispersion of the fission product cloud escaping from a nuclear power plant after an accident. The code makes it possible to tentatively check the feasibility of calculations by more complex PSA3 codes and/or codes for real-time dispersion calculations. The number of input parameters is reasonably low and the user interface is simple enough to allow a rapid processing of sensitivity analyses. All input data entered through the user interface are stored in the text format. Implementation of dispersion model corrections taken from the ARCON96 code enables the DISP1 code to be employed for assessment of the radiation hazard within the NPP area, in the control room for instance. (P.A.)

  6. Invariant moments based convolutional neural networks for image analysis

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi G.V. Mahesh

    2017-01-01

    Full Text Available The paper proposes a method using convolutional neural network to effectively evaluate the discrimination between face and non face patterns, gender classification using facial images and facial expression recognition. The novelty of the method lies in the utilization of the initial trainable convolution kernels coefficients derived from the zernike moments by varying the moment order. The performance of the proposed method was compared with the convolutional neural network architecture that used random kernels as initial training parameters. The multilevel configuration of zernike moments was significant in extracting the shape information suitable for hierarchical feature learning to carry out image analysis and classification. Furthermore the results showed an outstanding performance of zernike moment based kernels in terms of the computation time and classification accuracy.

  7. Single image super-resolution based on convolutional neural networks

    Science.gov (United States)

    Zou, Lamei; Luo, Ming; Yang, Weidong; Li, Peng; Jin, Liujia

    2018-03-01

    We present a deep learning method for single image super-resolution (SISR). The proposed approach learns end-to-end mapping between low-resolution (LR) images and high-resolution (HR) images. The mapping is represented as a deep convolutional neural network which inputs the LR image and outputs the HR image. Our network uses 5 convolution layers, which kernels size include 5×5, 3×3 and 1×1. In our proposed network, we use residual-learning and combine different sizes of convolution kernels at the same layer. The experiment results show that our proposed method performs better than the existing methods in reconstructing quality index and human visual effects on benchmarked images.

  8. Automatic classification of ovarian cancer types from cytological images using deep convolutional neural networks.

    Science.gov (United States)

    Wu, Miao; Yan, Chuanbo; Liu, Huiqiang; Liu, Qian

    2018-06-29

    Ovarian cancer is one of the most common gynecologic malignancies. Accurate classification of ovarian cancer types (serous carcinoma, mucous carcinoma, endometrioid carcinoma, transparent cell carcinoma) is an essential part in the different diagnosis. Computer-aided diagnosis (CADx) can provide useful advice for pathologists to determine the diagnosis correctly. In our study, we employed a Deep Convolutional Neural Networks (DCNN) based on AlexNet to automatically classify the different types of ovarian cancers from cytological images. The DCNN consists of five convolutional layers, three max pooling layers, and two full reconnect layers. Then we trained the model by two group input data separately, one was original image data and the other one was augmented image data including image enhancement and image rotation. The testing results are obtained by the method of 10-fold cross-validation, showing that the accuracy of classification models has been improved from 72.76 to 78.20% by using augmented images as training data. The developed scheme was useful for classifying ovarian cancers from cytological images. © 2018 The Author(s).

  9. Spacings and pair correlations for finite Bernoulli convolutions

    International Nuclear Information System (INIS)

    Benjamini, Itai; Solomyak, Boris

    2009-01-01

    We consider finite Bernoulli convolutions with a parameter 1/2 N . These sequences are uniformly distributed with respect to the infinite Bernoulli convolution measure ν λ , as N → ∞. Numerical evidence suggests that for a generic λ, the distribution of spacings between appropriately rescaled points is Poissonian. We obtain some partial results in this direction; for instance, we show that, on average, the pair correlations do not exhibit attraction or repulsion in the limit. On the other hand, for certain algebraic λ the behaviour is totally different

  10. A New Reverberator Based on Variable Sparsity Convolution

    DEFF Research Database (Denmark)

    Holm-Rasmussen, Bo; Lehtonen, Heidi-Maria; Välimäki, Vesa

    2013-01-01

    FIR filter coefficients are selected from a velvet noise sequence, which consists of ones, minus ones, and zeros only. In this application, it is sufficient perceptually to use very sparse velvet noise sequences having only about 0.1 to 0.2% non-zero elements, with increasing sparsity along...... the impulse response. The algorithm yields a parametric approximation of the late part of the impulse response, which is more than 100 times more efficient computationally than the direct convolution. The computational load of the proposed algorithm is comparable to that of FFT-based partitioned convolution...

  11. Weed Growth Stage Estimator Using Deep Convolutional Neural Networks

    DEFF Research Database (Denmark)

    Teimouri, Nima; Dyrmann, Mads; Nielsen, Per Rydahl

    2018-01-01

    conditions with regards to soil types, resolution and light settings. Then, 9649 of these images were used for training the computer, which automatically divided the weeds into nine growth classes. The performance of this proposed convolutional neural network approach was evaluated on a further set of 2516...... in estimating the number of leaves and 96% accuracy when accepting a deviation of two leaves. These results show that this new method of using deep convolutional neural networks has a relatively high ability to estimate early growth stages across a wide variety of weed species....

  12. Deep Convolutional Neural Networks: Structure, Feature Extraction and Training

    Directory of Open Access Journals (Sweden)

    Namatēvs Ivars

    2017-12-01

    Full Text Available Deep convolutional neural networks (CNNs are aimed at processing data that have a known network like topology. They are widely used to recognise objects in images and diagnose patterns in time series data as well as in sensor data classification. The aim of the paper is to present theoretical and practical aspects of deep CNNs in terms of convolution operation, typical layers and basic methods to be used for training and learning. Some practical applications are included for signal and image classification. Finally, the present paper describes the proposed block structure of CNN for classifying crucial features from 3D sensor data.

  13. Very deep recurrent convolutional neural network for object recognition

    Science.gov (United States)

    Brahimi, Sourour; Ben Aoun, Najib; Ben Amar, Chokri

    2017-03-01

    In recent years, Computer vision has become a very active field. This field includes methods for processing, analyzing, and understanding images. The most challenging problems in computer vision are image classification and object recognition. This paper presents a new approach for object recognition task. This approach exploits the success of the Very Deep Convolutional Neural Network for object recognition. In fact, it improves the convolutional layers by adding recurrent connections. This proposed approach was evaluated on two object recognition benchmarks: Pascal VOC 2007 and CIFAR-10. The experimental results prove the efficiency of our method in comparison with the state of the art methods.

  14. Spectral interpolation - Zero fill or convolution. [image processing

    Science.gov (United States)

    Forman, M. L.

    1977-01-01

    Zero fill, or augmentation by zeros, is a method used in conjunction with fast Fourier transforms to obtain spectral spacing at intervals closer than obtainable from the original input data set. In the present paper, an interpolation technique (interpolation by repetitive convolution) is proposed which yields values accurate enough for plotting purposes and which lie within the limits of calibration accuracies. The technique is shown to operate faster than zero fill, since fewer operations are required. The major advantages of interpolation by repetitive convolution are that efficient use of memory is possible (thus avoiding the difficulties encountered in decimation in time FFTs) and that is is easy to implement.

  15. High data rate coding for the space station telemetry links.

    Science.gov (United States)

    Lumb, D. R.; Viterbi, A. J.

    1971-01-01

    Coding systems for high data rates were examined from the standpoint of potential application in space-station telemetry links. Approaches considered included convolutional codes with sequential, Viterbi, and cascaded-Viterbi decoding. It was concluded that a high-speed (40 Mbps) sequential decoding system best satisfies the requirements for the assumed growth potential and specified constraints. Trade-off studies leading to this conclusion are viewed, and some sequential (Fano) algorithm improvements are discussed, together with real-time simulation results.

  16. Efficient forward propagation of time-sequences in convolutional neural networks using Deep Shifting

    NARCIS (Netherlands)

    K.L. Groenland (Koen); S.M. Bohte (Sander)

    2016-01-01

    textabstractWhen a Convolutional Neural Network is used for on-the-fly evaluation of continuously updating time-sequences, many redundant convolution operations are performed. We propose the method of Deep Shifting, which remembers previously calculated results of convolution operations in order

  17. Quantum Codes From Cyclic Codes Over The Ring R 2

    International Nuclear Information System (INIS)

    Altinel, Alev; Güzeltepe, Murat

    2016-01-01

    Let R 2 denotes the ring F 2 + μF 2 + υ 2 + μυ F 2 + wF 2 + μwF 2 + υwF 2 + μυwF 2 . In this study, we construct quantum codes from cyclic codes over the ring R 2 , for arbitrary length n, with the restrictions μ 2 = 0, υ 2 = 0, w 2 = 0, μυ = υμ, μw = wμ, υw = wυ and μ (υw) = (μυ) w. Also, we give a necessary and sufficient condition for cyclic codes over R 2 that contains its dual. As a final point, we obtain the parameters of quantum error-correcting codes from cyclic codes over R 2 and we give an example of quantum error-correcting codes form cyclic codes over R 2 . (paper)

  18. Publisher Correction

    DEFF Research Database (Denmark)

    Turcot, Valérie; Lu, Yingchang; Highland, Heather M

    2018-01-01

    In the published version of this paper, the name of author Emanuele Di Angelantonio was misspelled. This error has now been corrected in the HTML and PDF versions of the article.......In the published version of this paper, the name of author Emanuele Di Angelantonio was misspelled. This error has now been corrected in the HTML and PDF versions of the article....

  19. Author Correction

    DEFF Research Database (Denmark)

    Grundle, D S; Löscher, C R; Krahmann, G

    2018-01-01

    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.......A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper....

  20. A convolutional neural network approach to calibrating the rotation axis for X-ray computed tomography.

    Science.gov (United States)

    Yang, Xiaogang; De Carlo, Francesco; Phatak, Charudatta; Gürsoy, Dogˇa

    2017-03-01

    This paper presents an algorithm to calibrate the center-of-rotation for X-ray tomography by using a machine learning approach, the Convolutional Neural Network (CNN). The algorithm shows excellent accuracy from the evaluation of synthetic data with various noise ratios. It is further validated with experimental data of four different shale samples measured at the Advanced Photon Source and at the Swiss Light Source. The results are as good as those determined by visual inspection and show better robustness than conventional methods. CNN has also great potential for reducing or removing other artifacts caused by instrument instability, detector non-linearity, etc. An open-source toolbox, which integrates the CNN methods described in this paper, is freely available through GitHub at tomography/xlearn and can be easily integrated into existing computational pipelines available at various synchrotron facilities. Source code, documentation and information on how to contribute are also provided.

  1. On the Combination of Multi-Layer Source Coding and Network Coding for Wireless Networks

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Fitzek, Frank; Pedersen, Morten Videbæk

    2013-01-01

    quality is developed. A linear coding structure designed to gracefully encapsulate layered source coding provides both low complexity of the utilised linear coding while enabling robust erasure correction in the form of fountain coding capabilities. The proposed linear coding structure advocates efficient...

  2. Coding Across Multicodes and Time in CDMA Systems Employing MMSE Multiuser Detector

    Directory of Open Access Journals (Sweden)

    Park Jeongsoon

    2004-01-01

    Full Text Available When combining a multicode CDMA system with convolutional coding, two methods have been considered in the literature. In one method, coding is across time in each multicode channel while in the other the coding is across both multicodes and time. In this paper, a performance/complexity analysis of decoding metrics and trellis structures for the two schemes is carried out. It is shown that the latter scheme can exploit the multicode diversity inherent in convolutionally coded direct sequence code division multiple access (DS-CDMA systems which employ minimum mean squared error (MMSE multiuser detectors. In particular, when the MMSE detector provides sufficiently different signal-to-interference ratios (SIRs for the multicode channels, coding across multicodes and time can obtain significant performance gain over coding across time, with nearly the same decoding complexity.

  3. Can we recognize horses by their ocular biometric traits using deep convolutional neural networks?

    Science.gov (United States)

    Trokielewicz, Mateusz; Szadkowski, Mateusz

    2017-08-01

    This paper aims at determining the viability of horse recognition by the means of ocular biometrics and deep convolutional neural networks (deep CNNs). Fast and accurate identification of race horses before racing is crucial for ensuring that exactly the horses that were declared are participating, using methods that are non-invasive and friendly to these delicate animals. As typical iris recognition methods require lot of fine-tuning of the method parameters and high-quality data, CNNs seem like a natural candidate to be applied for recognition thanks to their potentially excellent abilities in describing texture, combined with ease of implementation in an end-to-end manner. Also, with such approach we can easily utilize both iris and periocular features without constructing complicated algorithms for each. We thus present a simple CNN classifier, able to correctly identify almost 80% of the samples in an identification scenario, and give equal error rate (EER) of less than 10% in a verification scenario.

  4. ELHnet: a convolutional neural network for classifying cochlear endolymphatic hydrops imaged with optical coherence tomography.

    Science.gov (United States)

    Liu, George S; Zhu, Michael H; Kim, Jinkyung; Raphael, Patrick; Applegate, Brian E; Oghalai, John S

    2017-10-01

    Detection of endolymphatic hydrops is important for diagnosing Meniere's disease, and can be performed non-invasively using optical coherence tomography (OCT) in animal models as well as potentially in the clinic. Here, we developed ELHnet, a convolutional neural network to classify endolymphatic hydrops in a mouse model using learned features from OCT images of mice cochleae. We trained ELHnet on 2159 training and validation images from 17 mice, using only the image pixels and observer-determined labels of endolymphatic hydrops as the inputs. We tested ELHnet on 37 images from 37 mice that were previously not used, and found that the neural network correctly classified 34 of the 37 mice. This demonstrates an improvement in performance from previous work on computer-aided classification of endolymphatic hydrops. To the best of our knowledge, this is the first deep CNN designed for endolymphatic hydrops classification.

  5. Discrete singular convolution for the generalized variable-coefficient ...

    African Journals Online (AJOL)

    Numerical solutions of the generalized variable-coefficient Korteweg-de Vries equation are obtained using a discrete singular convolution and a fourth order singly diagonally implicit Runge-Kutta method for space and time discretisation, respectively. The theoretical convergence of the proposed method is rigorously ...

  6. Face recognition: a convolutional neural-network approach.

    Science.gov (United States)

    Lawrence, S; Giles, C L; Tsoi, A C; Back, A D

    1997-01-01

    We present a hybrid neural-network for human face recognition which compares favourably with other methods. The system combines local image sampling, a self-organizing map (SOM) neural network, and a convolutional neural network. The SOM provides a quantization of the image samples into a topological space where inputs that are nearby in the original space are also nearby in the output space, thereby providing dimensionality reduction and invariance to minor changes in the image sample, and the convolutional neural network provides partial invariance to translation, rotation, scale, and deformation. The convolutional network extracts successively larger features in a hierarchical set of layers. We present results using the Karhunen-Loeve transform in place of the SOM, and a multilayer perceptron (MLP) in place of the convolutional network for comparison. We use a database of 400 images of 40 individuals which contains quite a high degree of variability in expression, pose, and facial details. We analyze the computational complexity and discuss how new classes could be added to the trained recognizer.

  7. Training Convolutional Neural Networks for Translational Invariance on SAR ATR

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Engholm, Rasmus; Østergaard Pedersen, Morten

    2016-01-01

    In this paper we present a comparison of the robustness of Convolutional Neural Networks (CNN) to other classifiers in the presence of uncertainty of the objects localization in SAR image. We present a framework for simulating simple SAR images, translating the object of interest systematically...

  8. An Interactive Graphics Program for Assistance in Learning Convolution.

    Science.gov (United States)

    Frederick, Dean K.; Waag, Gary L.

    1980-01-01

    A program has been written for the interactive computer graphics facility at Rensselaer Polytechnic Institute that is designed to assist the user in learning the mathematical technique of convolving two functions. Because convolution can be represented graphically by a sequence of steps involving folding, shifting, multiplying, and integration, it…

  9. Diffraction and Dirchlet problem for parameter-elliptic convolution ...

    African Journals Online (AJOL)

    In this paper we evaluate the difference between the inverse operators of a Dirichlet problem and of a diffraction problem for parameter-elliptic convolution operators with constant symbols. We prove that the inverse operator of a Dirichlet problem can be obtained as a limit case of such a diffraction problem. Quaestiones ...

  10. Review of the convolution algorithm for evaluating service integrated systems

    DEFF Research Database (Denmark)

    Iversen, Villy Bæk

    1997-01-01

    In this paper we give a review of the applicability of the convolution algorithm. By this we are able to evaluate communication networks end--to--end with e.g. BPP multi-ratetraffic models insensitive to the holding time distribution. Rearrangement, minimum allocation, and maximum allocation...

  11. A convolutional neural network to filter artifacts in spectroscopic MRI.

    Science.gov (United States)

    Gurbani, Saumya S; Schreibmann, Eduard; Maudsley, Andrew A; Cordova, James Scott; Soher, Brian J; Poptani, Harish; Verma, Gaurav; Barker, Peter B; Shim, Hyunsuk; Cooper, Lee A D

    2018-03-09

    Proton MRSI is a noninvasive modality capable of generating volumetric maps of in vivo tissue metabolism without the need for ionizing radiation or injected contrast agent. Magnetic resonance spectroscopic imaging has been shown to be a viable imaging modality for studying several neuropathologies. However, a key hurdle in the routine clinical adoption of MRSI is the presence of spectral artifacts that can arise from a number of sources, possibly leading to false information. A deep learning model was developed that was capable of identifying and filtering out poor quality spectra. The core of the model used a tiled convolutional neural network that analyzed frequency-domain spectra to detect artifacts. When compared with a panel of MRS experts, our convolutional neural network achieved high sensitivity and specificity with an area under the curve of 0.95. A visualization scheme was implemented to better understand how the convolutional neural network made its judgement on single-voxel or multivoxel MRSI, and the convolutional neural network was embedded into a pipeline capable of producing whole-brain spectroscopic MRI volumes in real time. The fully automated method for assessment of spectral quality provides a valuable tool to support clinical MRSI or spectroscopic MRI studies for use in fields such as adaptive radiation therapy planning. © 2018 International Society for Magnetic Resonance in Medicine.

  12. Deep convolutional neural networks for detection of rail surface defects

    NARCIS (Netherlands)

    Faghih Roohi, S.; Hajizadeh, S.; Nunez Vicencio, Alfredo; Babuska, R.; De Schutter, B.H.K.; Estevez, Pablo A.; Angelov, Plamen P.; Del Moral Hernandez, Emilio

    2016-01-01

    In this paper, we propose a deep convolutional neural network solution to the analysis of image data for the detection of rail surface defects. The images are obtained from many hours of automated video recordings. This huge amount of data makes it impossible to manually inspect the images and

  13. Two-level convolution formula for nuclear structure function

    Science.gov (United States)

    Ma, Boqiang

    1990-05-01

    A two-level convolution formula for the nuclear structure function is derived in considering the nucleus as a composite system of baryon-mesons which are also composite systems of quark-gluons again. The results show that the European Muon Colaboration effect can not be explained by the nuclear effects as nucleon Fermi motion and nuclear binding contributions.

  14. Two-level convolution formula for nuclear structure function

    International Nuclear Information System (INIS)

    Ma Boqiang

    1990-01-01

    A two-level convolution formula for the nuclear structure function is derived in considering the nucleus as a composite system of baryon-mesons which are also composite systems of quark-gluons again. The results show that the European Muon Colaboration effect can not be explained by the nuclear effects as nucleon Fermi motion and nuclear binding contributions

  15. Plant species classification using deep convolutional neural network

    DEFF Research Database (Denmark)

    Dyrmann, Mads; Karstoft, Henrik; Midtiby, Henrik Skov

    2016-01-01

    Information on which weed species are present within agricultural fields is important for site specific weed management. This paper presents a method that is capable of recognising plant species in colour images by using a convolutional neural network. The network is built from scratch trained an...

  16. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes

    Science.gov (United States)

    Lin, Shu

    1998-01-01

    A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and

  17. Extravascular lung water: its measurement by simultaneous pulmonary and aortic sampling and iterative convolution

    International Nuclear Information System (INIS)

    Giuntini, C.; Fazio, F.

    1975-01-01

    The inadequacy of the apparent distribution volume of THO during the first passage dilution curve (a) to account for the total lung water in in-vitro measurements in dogs and (b) to measure any increase in lung water, even in patients with obvious clinical pulmonary oedema, prompted the present investigation. Tritiated water, THO, as diffusible indicator, and human serum albumin labelled with 131 I, ALB, as intravascular tracer, are injected into the superior vena cava at the junction with the right atrium. In order to clear the aortic blood samples of recirculation, the recirculating tracers must be determined. This is accomplished by pulmonary artery sampling. Iterative convolution of the pulmonary artery dilution curves with suitable test functions eventually yields products of convolution that fit well the corresponding aortic dilution curves of THO and ALB. The test functions that yield the best fit are taken to represent the frequency functions of the transit time from pulmonary artery to aorta of THO and ALB, respectively. By applying the same procedure of iterative convolution to these frequency functions, we obtain the dilution curve of THO in the extravascular lung space. As a result of this analysis: (a) forward extrapolation is less subject to systematic errors such as overestimation of the mean transit time of ALB, i.e. of the tracer that recirculates more; and (b) the distribution volume of THO can be better defined since the dilution of THO in the extravascular lung space may be followed beyond the point of recirculation. The results indicate that both in normal subjects and in patients with left ventricular insufficiency the computed dilution curves of THO in the extravascular lung space have a long tail which is more pronounced in the patients. These findings suggest the existence in the lungs of extravascular water pools that are slowly exchanging with pulmonary water flow. This may depend both on inhomogeneities of perfusion, with lack of it at

  18. Development and evaluation of attenuation and scatter correction techniques for SPECT using the Monte Carlo method

    International Nuclear Information System (INIS)

    Ljungberg, M.

    1990-05-01

    Quantitative scintigrafic images, obtained by NaI(Tl) scintillation cameras, are limited by photon attenuation and contribution from scattered photons. A Monte Carlo program was developed in order to evaluate these effects. Simple source-phantom geometries and more complex nonhomogeneous cases can be simulated. Comparisons with experimental data for both homogeneous and nonhomogeneous regions and with published results have shown good agreement. The usefulness for simulation of parameters in scintillation camera systems, stationary as well as in SPECT systems, has also been demonstrated. An attenuation correction method based on density maps and build-up functions has been developed. The maps were obtained from a transmission measurement using an external 57 Co flood source and the build-up was simulated by the Monte Carlo code. Two scatter correction methods, the dual-window method and the convolution-subtraction method, have been compared using the Monte Carlo method. The aim was to compare the estimated scatter with the true scatter in the photo-peak window. It was concluded that accurate depth-dependent scatter functions are essential for a proper scatter correction. A new scatter and attenuation correction method has been developed based on scatter line-spread functions (SLSF) obtained for different depths and lateral positions in the phantom. An emission image is used to determine the source location in order to estimate the scatter in the photo-peak window. Simulation studies of a clinically realistic source in different positions in cylindrical water phantoms were made for three photon energies. The SLSF-correction method was also evaluated by simulation studies for 1. a myocardial source, 2. uniform source in the lungs and 3. a tumour located in the lungs in a realistic, nonhomogeneous computer phantom. The results showed that quantitative images could be obtained in nonhomogeneous regions. (67 refs.)

  19. ICT: isotope correction toolbox.

    Science.gov (United States)

    Jungreuthmayer, Christian; Neubauer, Stefan; Mairinger, Teresa; Zanghellini, Jürgen; Hann, Stephan

    2016-01-01

    Isotope tracer experiments are an invaluable technique to analyze and study the metabolism of biological systems. However, isotope labeling experiments are often affected by naturally abundant isotopes especially in cases where mass spectrometric methods make use of derivatization. The correction of these additive interferences--in particular for complex isotopic systems--is numerically challenging and still an emerging field of research. When positional information is generated via collision-induced dissociation, even more complex calculations for isotopic interference correction are necessary. So far, no freely available tools can handle tandem mass spectrometry data. We present isotope correction toolbox, a program that corrects tandem mass isotopomer data from tandem mass spectrometry experiments. Isotope correction toolbox is written in the multi-platform programming language Perl and, therefore, can be used on all commonly available computer platforms. Source code and documentation can be freely obtained under the Artistic License or the GNU General Public License from: https://github.com/jungreuc/isotope_correction_toolbox/ {christian.jungreuthmayer@boku.ac.at,juergen.zanghellini@boku.ac.at} Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Decoding Codes on Graphs

    Indian Academy of Sciences (India)

    having a probability Pi of being equal to a 1. Let us assume ... equal to a 0/1 has no bearing on the probability of the. It is often ... bits (call this set S) whose individual bits add up to zero ... In the context of binary error-correct~ng codes, specifi-.

  1. Generalised Batho correction factor

    International Nuclear Information System (INIS)

    Siddon, R.L.

    1984-01-01

    There are various approximate algorithms available to calculate the radiation dose in the presence of a heterogeneous medium. The Webb and Fox product over layers formulation of the generalised Batho correction factor requires determination of the number of layers and the layer densities for each ray path. It has been shown that the Webb and Fox expression is inefficient for the heterogeneous medium which is expressed as regions of inhomogeneity rather than layers. The inefficiency of the layer formulation is identified as the repeated problem of determining for each ray path which inhomogeneity region corresponds to a particular layer. It has been shown that the formulation of the Batho correction factor as a product over inhomogeneity regions avoids that topological problem entirely. The formulation in terms of a product over regions simplifies the computer code and reduces the time required to calculate the Batho correction factor for the general heterogeneous medium. (U.K.)

  2. Software Certification - Coding, Code, and Coders

    Science.gov (United States)

    Havelund, Klaus; Holzmann, Gerard J.

    2011-01-01

    We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.

  3. Channel coding for underwater acoustic single-carrier CDMA communication system

    Science.gov (United States)

    Liu, Lanjun; Zhang, Yonglei; Zhang, Pengcheng; Zhou, Lin; Niu, Jiong

    2017-01-01

    CDMA is an effective multiple access protocol for underwater acoustic networks, and channel coding can effectively reduce the bit error rate (BER) of the underwater acoustic communication system. For the requirements of underwater acoustic mobile networks based on CDMA, an underwater acoustic single-carrier CDMA communication system (UWA/SCCDMA) based on the direct-sequence spread spectrum is proposed, and its channel coding scheme is studied based on convolution, RA, Turbo and LDPC coding respectively. The implementation steps of the Viterbi algorithm of convolutional coding, BP and minimum sum algorithms of RA coding, Log-MAP and SOVA algorithms of Turbo coding, and sum-product algorithm of LDPC coding are given. An UWA/SCCDMA simulation system based on Matlab is designed. Simulation results show that the UWA/SCCDMA based on RA, Turbo and LDPC coding have good performance such that the communication BER is all less than 10-6 in the underwater acoustic channel with low signal to noise ratio (SNR) from -12 dB to -10dB, which is about 2 orders of magnitude lower than that of the convolutional coding. The system based on Turbo coding with Log-MAP algorithm has the best performance.

  4. Sub-Transport Layer Coding

    DEFF Research Database (Denmark)

    Hansen, Jonas; Krigslund, Jeppe; Roetter, Daniel Enrique Lucani

    2014-01-01

    Packet losses in wireless networks dramatically curbs the performance of TCP. This paper introduces a simple coding shim that aids IP-layer traffic in lossy environments while being transparent to transport layer protocols. The proposed coding approach enables erasure correction while being...... oblivious to the congestion control algorithms of the utilised transport layer protocol. Although our coding shim is indifferent towards the transport layer protocol, we focus on the performance of TCP when ran on top of our proposed coding mechanism due to its widespread use. The coding shim provides gains...

  5. Coding Partitions

    Directory of Open Access Journals (Sweden)

    Fabio Burderi

    2007-05-01

    Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.

  6. Combining morphometric features and convolutional networks fusion for glaucoma diagnosis

    Science.gov (United States)

    Perdomo, Oscar; Arevalo, John; González, Fabio A.

    2017-11-01

    Glaucoma is an eye condition that leads to loss of vision and blindness. Ophthalmoscopy exam evaluates the shape, color and proportion between the optic disc and physiologic cup, but the lack of agreement among experts is still the main diagnosis problem. The application of deep convolutional neural networks combined with automatic extraction of features such as: the cup-to-disc distance in the four quadrants, the perimeter, area, eccentricity, the major radio, the minor radio in optic disc and cup, in addition to all the ratios among the previous parameters may help with a better automatic grading of glaucoma. This paper presents a strategy to merge morphological features and deep convolutional neural networks as a novel methodology to support the glaucoma diagnosis in eye fundus images.

  7. Improving deep convolutional neural networks with mixed maxout units.

    Directory of Open Access Journals (Sweden)

    Hui-Zhen Zhao

    Full Text Available Motivated by insights from the maxout-units-based deep Convolutional Neural Network (CNN that "non-maximal features are unable to deliver" and "feature mapping subspace pooling is insufficient," we present a novel mixed variant of the recently introduced maxout unit called a mixout unit. Specifically, we do so by calculating the exponential probabilities of feature mappings gained by applying different convolutional transformations over the same input and then calculating the expected values according to their exponential probabilities. Moreover, we introduce the Bernoulli distribution to balance the maximum values with the expected values of the feature mappings subspace. Finally, we design a simple model to verify the pooling ability of mixout units and a Mixout-units-based Network-in-Network (NiN model to analyze the feature learning ability of the mixout models. We argue that our proposed units improve the pooling ability and that mixout models can achieve better feature learning and classification performance.

  8. Convolutional over Recurrent Encoder for Neural Machine Translation

    Directory of Open Access Journals (Sweden)

    Dakwale Praveen

    2017-06-01

    Full Text Available Neural machine translation is a recently proposed approach which has shown competitive results to traditional MT approaches. Standard neural MT is an end-to-end neural network where the source sentence is encoded by a recurrent neural network (RNN called encoder and the target words are predicted using another RNN known as decoder. Recently, various models have been proposed which replace the RNN encoder with a convolutional neural network (CNN. In this paper, we propose to augment the standard RNN encoder in NMT with additional convolutional layers in order to capture wider context in the encoder output. Experiments on English to German translation demonstrate that our approach can achieve significant improvements over a standard RNN-based baseline.

  9. Infimal Convolution Regularisation Functionals of BV and Lp Spaces

    KAUST Repository

    Burger, Martin

    2016-02-03

    We study a general class of infimal convolution type regularisation functionals suitable for applications in image processing. These functionals incorporate a combination of the total variation seminorm and Lp norms. A unified well-posedness analysis is presented and a detailed study of the one-dimensional model is performed, by computing exact solutions for the corresponding denoising problem and the case p=2. Furthermore, the dependency of the regularisation properties of this infimal convolution approach to the choice of p is studied. It turns out that in the case p=2 this regulariser is equivalent to the Huber-type variant of total variation regularisation. We provide numerical examples for image decomposition as well as for image denoising. We show that our model is capable of eliminating the staircasing effect, a well-known disadvantage of total variation regularisation. Moreover as p increases we obtain almost piecewise affine reconstructions, leading also to a better preservation of hat-like structures.

  10. 3D Medical Image Interpolation Based on Parametric Cubic Convolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the process of display, manipulation and analysis of biomedical image data, they usually need to be converted to data of isotropic discretization through the process of interpolation, while the cubic convolution interpolation is widely used due to its good tradeoff between computational cost and accuracy. In this paper, we present a whole concept for the 3D medical image interpolation based on cubic convolution, and the six methods, with the different sharp control parameter, which are formulated in details. Furthermore, we also give an objective comparison for these methods using data sets with the different slice spacing. Each slice in these data sets is estimated by each interpolation method and compared with the original slice using three measures: mean-squared difference, number of sites of disagreement, and largest difference. According to the experimental results, we present a recommendation for 3D medical images under the different situations in the end.

  11. Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks.

    Science.gov (United States)

    Yu, Haiyang; Wu, Zhihai; Wang, Shuqin; Wang, Yunpeng; Ma, Xiaolei

    2017-06-26

    Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs), for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs) and long short-term memory (LSTM) neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction.

  12. Deep learning for steganalysis via convolutional neural networks

    Science.gov (United States)

    Qian, Yinlong; Dong, Jing; Wang, Wei; Tan, Tieniu

    2015-03-01

    Current work on steganalysis for digital images is focused on the construction of complex handcrafted features. This paper proposes a new paradigm for steganalysis to learn features automatically via deep learning models. We novelly propose a customized Convolutional Neural Network for steganalysis. The proposed model can capture the complex dependencies that are useful for steganalysis. Compared with existing schemes, this model can automatically learn feature representations with several convolutional layers. The feature extraction and classification steps are unified under a single architecture, which means the guidance of classification can be used during the feature extraction step. We demonstrate the effectiveness of the proposed model on three state-of-theart spatial domain steganographic algorithms - HUGO, WOW, and S-UNIWARD. Compared to the Spatial Rich Model (SRM), our model achieves comparable performance on BOSSbase and the realistic and large ImageNet database.

  13. Trajectory Generation Method with Convolution Operation on Velocity Profile

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon [Hanyang Univ., Seoul (Korea, Republic of); Kim, Doik [Korea Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-03-15

    The use of robots is no longer limited to the field of industrial robots and is now expanding into the fields of service and medical robots. In this light, a trajectory generation method that can respond instantaneously to the external environment is strongly required. Toward this end, this study proposes a method that enables a robot to change its trajectory in real-time using a convolution operation. The proposed method generates a trajectory in real time and satisfies the physical limits of the robot system such as acceleration and velocity limit. Moreover, a new way to improve the previous method, which generates inefficient trajectories in some cases owing to the characteristics of the trapezoidal shape of trajectories, is proposed by introducing a triangle shape. The validity and effectiveness of the proposed method is shown through a numerical simulation and a comparison with the previous convolution method.

  14. Airplane detection in remote sensing images using convolutional neural networks

    Science.gov (United States)

    Ouyang, Chao; Chen, Zhong; Zhang, Feng; Zhang, Yifei

    2018-03-01

    Airplane detection in remote sensing images remains a challenging problem and has also been taking a great interest to researchers. In this paper we propose an effective method to detect airplanes in remote sensing images using convolutional neural networks. Deep learning methods show greater advantages than the traditional methods with the rise of deep neural networks in target detection, and we give an explanation why this happens. To improve the performance on detection of airplane, we combine a region proposal algorithm with convolutional neural networks. And in the training phase, we divide the background into multi classes rather than one class, which can reduce false alarms. Our experimental results show that the proposed method is effective and robust in detecting airplane.

  15. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.

    Science.gov (United States)

    Adhikari, Badri; Hou, Jie; Cheng, Jianlin

    2018-05-01

    Significant improvements in the prediction of protein residue-residue contacts are observed in the recent years. These contacts, predicted using a variety of coevolution-based and machine learning methods, are the key contributors to the recent progress in ab initio protein structure prediction, as demonstrated in the recent CASP experiments. Continuing the development of new methods to reliably predict contact maps is essential to further improve ab initio structure prediction. In this paper we discuss DNCON2, an improved protein contact map predictor based on two-level deep convolutional neural networks. It consists of six convolutional neural networks-the first five predict contacts at 6, 7.5, 8, 8.5 and 10 Å distance thresholds, and the last one uses these five predictions as additional features to predict final contact maps. On the free-modeling datasets in CASP10, 11 and 12 experiments, DNCON2 achieves mean precisions of 35, 50 and 53.4%, respectively, higher than 30.6% by MetaPSICOV on CASP10 dataset, 34% by MetaPSICOV on CASP11 dataset and 46.3% by Raptor-X on CASP12 dataset, when top L/5 long-range contacts are evaluated. We attribute the improved performance of DNCON2 to the inclusion of short- and medium-range contacts into training, two-level approach to prediction, use of the state-of-the-art optimization and activation functions, and a novel deep learning architecture that allows each filter in a convolutional layer to access all the input features of a protein of arbitrary length. The web server of DNCON2 is at http://sysbio.rnet.missouri.edu/dncon2/ where training and testing datasets as well as the predictions for CASP10, 11 and 12 free-modeling datasets can also be downloaded. Its source code is available at https://github.com/multicom-toolbox/DNCON2/. chengji@missouri.edu. Supplementary data are available at Bioinformatics online.

  16. Bandwidth efficient coding

    CERN Document Server

    Anderson, John B

    2017-01-01

    Bandwidth Efficient Coding addresses the major challenge in communication engineering today: how to communicate more bits of information in the same radio spectrum. Energy and bandwidth are needed to transmit bits, and bandwidth affects capacity the most. Methods have been developed that are ten times as energy efficient at a given bandwidth consumption as simple methods. These employ signals with very complex patterns and are called "coding" solutions. The book begins with classical theory before introducing new techniques that combine older methods of error correction coding and radio transmission in order to create narrowband methods that are as efficient in both spectrum and energy as nature allows. Other topics covered include modulation techniques such as CPM, coded QAM and pulse design.

  17. User-generated content curation with deep convolutional neural networks

    OpenAIRE

    Tous Liesa, Rubén; Wust, Otto; Gómez, Mauro; Poveda, Jonatan; Elena, Marc; Torres Viñals, Jordi; Makni, Mouna; Ayguadé Parra, Eduard

    2016-01-01

    In this paper, we report a work consisting in using deep convolutional neural networks (CNNs) for curating and filtering photos posted by social media users (Instagram and Twitter). The final goal is to facilitate searching and discovering user-generated content (UGC) with potential value for digital marketing tasks. The images are captured in real time and automatically annotated with multiple CNNs. Some of the CNNs perform generic object recognition tasks while others perform what we call v...

  18. Abnormality Detection in Mammography using Deep Convolutional Neural Networks

    OpenAIRE

    Xi, Pengcheng; Shu, Chang; Goubran, Rafik

    2018-01-01

    Breast cancer is the most common cancer in women worldwide. The most common screening technology is mammography. To reduce the cost and workload of radiologists, we propose a computer aided detection approach for classifying and localizing calcifications and masses in mammogram images. To improve on conventional approaches, we apply deep convolutional neural networks (CNN) for automatic feature learning and classifier building. In computer-aided mammography, deep CNN classifiers cannot be tra...

  19. Quantifying Translation-Invariance in Convolutional Neural Networks

    OpenAIRE

    Kauderer-Abrams, Eric

    2017-01-01

    A fundamental problem in object recognition is the development of image representations that are invariant to common transformations such as translation, rotation, and small deformations. There are multiple hypotheses regarding the source of translation invariance in CNNs. One idea is that translation invariance is due to the increasing receptive field size of neurons in successive convolution layers. Another possibility is that invariance is due to the pooling operation. We develop a simple ...

  20. Learning Convolutional Text Representations for Visual Question Answering

    OpenAIRE

    Wang, Zhengyang; Ji, Shuiwang

    2017-01-01

    Visual question answering is a recently proposed artificial intelligence task that requires a deep understanding of both images and texts. In deep learning, images are typically modeled through convolutional neural networks, and texts are typically modeled through recurrent neural networks. While the requirement for modeling images is similar to traditional computer vision tasks, such as object recognition and image classification, visual question answering raises a different need for textual...

  1. Shallow and deep convolutional networks for saliency prediction

    OpenAIRE

    Pan, Junting; Sayrol Clols, Elisa; Giró Nieto, Xavier; McGuinness, Kevin; O'Connor, Noel

    2016-01-01

    The prediction of salient areas in images has been traditionally addressed with hand-crafted features based on neuroscience principles. This paper, however, addresses the problem with a completely data-driven approach by training a convolutional neural network (convnet). The learning process is formulated as a minimization of a loss function that measures the Euclidean distance of the predicted saliency map with the provided ground truth. The recent publication of large datasets of saliency p...

  2. Production and reception of meaningful sound in Foville's 'encompassing convolution'.

    Science.gov (United States)

    Schiller, F

    1999-04-01

    In the history of neurology. Achille Louis Foville (1799-1879) is a name deserving to be remembered. In the course of time, his circonvolution d'enceinte of 1844 (surrounding the Sylvian fissure) became the 'convolution encompassing' every aspect of aphasiology, including amusia, ie., the localization in a coherent semicircle of semicircle of cerebral cortext serving the production and perception of language, song and instrumental music in health and disease.

  3. Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks

    OpenAIRE

    Shen, Li; Lin, Zhouchen; Huang, Qingming

    2015-01-01

    Learning deeper convolutional neural networks becomes a tendency in recent years. However, many empirical evidences suggest that performance improvement cannot be gained by simply stacking more layers. In this paper, we consider the issue from an information theoretical perspective, and propose a novel method Relay Backpropagation, that encourages the propagation of effective information through the network in training stage. By virtue of the method, we achieved the first place in ILSVRC 2015...

  4. Maximum likelihood convolutional decoding (MCD) performance due to system losses

    Science.gov (United States)

    Webster, L.

    1976-01-01

    A model for predicting the computational performance of a maximum likelihood convolutional decoder (MCD) operating in a noisy carrier reference environment is described. This model is used to develop a subroutine that will be utilized by the Telemetry Analysis Program to compute the MCD bit error rate. When this computational model is averaged over noisy reference phase errors using a high-rate interpolation scheme, the results are found to agree quite favorably with experimental measurements.

  5. General Dirichlet Series, Arithmetic Convolution Equations and Laplace Transforms

    Czech Academy of Sciences Publication Activity Database

    Glöckner, H.; Lucht, L.G.; Porubský, Štefan

    2009-01-01

    Roč. 193, č. 2 (2009), s. 109-129 ISSN 0039-3223 R&D Projects: GA ČR GA201/07/0191 Institutional research plan: CEZ:AV0Z10300504 Keywords : arithmetic function * Dirichlet convolution * polynomial equation * analytic equation * topological algebra * holomorphic functional calculus * implicit function theorem * Laplace transform * semigroup * complex measure Subject RIV: BA - General Mathematics Impact factor: 0.645, year: 2009 http://arxiv.org/abs/0712.3172

  6. Solving singular convolution equations using the inverse fast Fourier transform

    Czech Academy of Sciences Publication Activity Database

    Krajník, E.; Montesinos, V.; Zizler, P.; Zizler, Václav

    2012-01-01

    Roč. 57, č. 5 (2012), s. 543-550 ISSN 0862-7940 R&D Projects: GA AV ČR IAA100190901 Institutional research plan: CEZ:AV0Z10190503 Keywords : singular convolution equations * fast Fourier transform * tempered distribution Subject RIV: BA - General Mathematics Impact factor: 0.222, year: 2012 http://www.springerlink.com/content/m8437t3563214048/

  7. CICAAR - Convolutive ICA with an Auto-Regressive Inverse Model

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Hansen, Lars Kai

    2004-01-01

    We invoke an auto-regressive IIR inverse model for convolutive ICA and derive expressions for the likelihood and its gradient. We argue that optimization will give a stable inverse. When there are more sensors than sources the mixing model parameters are estimated in a second step by least square...... estimation. We demonstrate the method on synthetic data and finally separate speech and music in a real room recording....

  8. Publisher Correction

    DEFF Research Database (Denmark)

    Stokholm, Jakob; Blaser, Martin J.; Thorsen, Jonathan

    2018-01-01

    The originally published version of this Article contained an incorrect version of Figure 3 that was introduced following peer review and inadvertently not corrected during the production process. Both versions contain the same set of abundance data, but the incorrect version has the children...

  9. Publisher Correction

    DEFF Research Database (Denmark)

    Flachsbart, Friederike; Dose, Janina; Gentschew, Liljana

    2018-01-01

    The original version of this Article contained an error in the spelling of the author Robert Häsler, which was incorrectly given as Robert Häesler. This has now been corrected in both the PDF and HTML versions of the Article....

  10. Correction to

    DEFF Research Database (Denmark)

    Roehle, Robert; Wieske, Viktoria; Schuetz, Georg M

    2018-01-01

    The original version of this article, published on 19 March 2018, unfortunately contained a mistake. The following correction has therefore been made in the original: The names of the authors Philipp A. Kaufmann, Ronny Ralf Buechel and Bernhard A. Herzog were presented incorrectly....

  11. AFM tip-sample convolution effects for cylinder protrusions

    Science.gov (United States)

    Shen, Jian; Zhang, Dan; Zhang, Fei-Hu; Gan, Yang

    2017-11-01

    A thorough understanding about the AFM tip geometry dependent artifacts and tip-sample convolution effect is essential for reliable AFM topographic characterization and dimensional metrology. Using rigid sapphire cylinder protrusions (diameter: 2.25 μm, height: 575 nm) as the model system, a systematic and quantitative study about the imaging artifacts of four types of tips-two different pyramidal tips, one tetrahedral tip and one super sharp whisker tip-is carried out through comparing tip geometry dependent variations in AFM topography of cylinders and constructing the rigid tip-cylinder convolution models. We found that the imaging artifacts and the tip-sample convolution effect are critically related to the actual inclination of the working cantilever, the tip geometry, and the obstructive contacts between the working tip's planes/edges and the cylinder. Artifact-free images can only be obtained provided that all planes and edges of the working tip are steeper than the cylinder sidewalls. The findings reported here will contribute to reliable AFM characterization of surface features of micron or hundreds of nanometers in height that are frequently met in semiconductor, biology and materials fields.

  12. Edgeworth Expansion Based Model for the Convolutional Noise pdf

    Directory of Open Access Journals (Sweden)

    Yonatan Rivlin

    2014-01-01

    Full Text Available Recently, the Edgeworth expansion up to order 4 was used to represent the convolutional noise probability density function (pdf in the conditional expectation calculations where the source pdf was modeled with the maximum entropy density approximation technique. However, the applied Lagrange multipliers were not the appropriate ones for the chosen model for the convolutional noise pdf. In this paper we use the Edgeworth expansion up to order 4 and up to order 6 to model the convolutional noise pdf. We derive the appropriate Lagrange multipliers, thus obtaining new closed-form approximated expressions for the conditional expectation and mean square error (MSE as a byproduct. Simulation results indicate hardly any equalization improvement with Edgeworth expansion up to order 4 when using optimal Lagrange multipliers over a nonoptimal set. In addition, there is no justification for using the Edgeworth expansion up to order 6 over the Edgeworth expansion up to order 4 for the 16QAM and easy channel case. However, Edgeworth expansion up to order 6 leads to improved equalization performance compared to the Edgeworth expansion up to order 4 for the 16QAM and hard channel case as well as for the case where the 64QAM is sent via an easy channel.

  13. Traffic sign recognition based on deep convolutional neural network

    Science.gov (United States)

    Yin, Shi-hao; Deng, Ji-cai; Zhang, Da-wei; Du, Jing-yuan

    2017-11-01

    Traffic sign recognition (TSR) is an important component of automated driving systems. It is a rather challenging task to design a high-performance classifier for the TSR system. In this paper, we propose a new method for TSR system based on deep convolutional neural network. In order to enhance the expression of the network, a novel structure (dubbed block-layer below) which combines network-in-network and residual connection is designed. Our network has 10 layers with parameters (block-layer seen as a single layer): the first seven are alternate convolutional layers and block-layers, and the remaining three are fully-connected layers. We train our TSR network on the German traffic sign recognition benchmark (GTSRB) dataset. To reduce overfitting, we perform data augmentation on the training images and employ a regularization method named "dropout". The activation function we employ in our network adopts scaled exponential linear units (SELUs), which can induce self-normalizing properties. To speed up the training, we use an efficient GPU to accelerate the convolutional operation. On the test dataset of GTSRB, we achieve the accuracy rate of 99.67%, exceeding the state-of-the-art results.

  14. Face recognition via Gabor and convolutional neural network

    Science.gov (United States)

    Lu, Tongwei; Wu, Menglu; Lu, Tao

    2018-04-01

    In recent years, the powerful feature learning and classification ability of convolutional neural network have attracted widely attention. Compared with the deep learning, the traditional machine learning algorithm has a good explanatory which deep learning does not have. Thus, In this paper, we propose a method to extract the feature of the traditional algorithm as the input of convolution neural network. In order to reduce the complexity of the network, the kernel function of Gabor wavelet is used to extract the feature from different position, frequency and direction of target image. It is sensitive to edge of image which can provide good direction and scale selection. The extraction of the image from eight directions on a scale are as the input of network that we proposed. The network have the advantage of weight sharing and local connection and texture feature of the input image can reduce the influence of facial expression, gesture and illumination. At the same time, we introduced a layer which combined the results of the pooling and convolution can extract deeper features. The training network used the open source caffe framework which is beneficial to feature extraction. The experiment results of the proposed method proved that the network structure effectively overcame the barrier of illumination and had a good robustness as well as more accurate and rapid than the traditional algorithm.

  15. Nuclear norm regularized convolutional Max Pos@Top machine

    KAUST Repository

    Li, Qinfeng

    2016-11-18

    In this paper, we propose a novel classification model for the multiple instance data, which aims to maximize the number of positive instances ranked before the top-ranked negative instances. This method belongs to a recently emerged performance, named as Pos@Top. Our proposed classification model has a convolutional structure that is composed by four layers, i.e., the convolutional layer, the activation layer, the max-pooling layer and the full connection layer. In this paper, we propose an algorithm to learn the convolutional filters and the full connection weights to maximize the Pos@Top measure over the training set. Also, we try to minimize the rank of the filter matrix to explore the low-dimensional space of the instances in conjunction with the classification results. The rank minimization is conducted by the nuclear norm minimization of the filter matrix. In addition, we develop an iterative algorithm to solve the corresponding problem. We test our method on several benchmark datasets. The experimental results show the superiority of our method compared with other state-of-the-art Pos@Top maximization methods.

  16. High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks.

    Science.gov (United States)

    Rajkomar, Alvin; Lingam, Sneha; Taylor, Andrew G; Blum, Michael; Mongan, John

    2017-02-01

    The study aimed to determine if computer vision techniques rooted in deep learning can use a small set of radiographs to perform clinically relevant image classification with high fidelity. One thousand eight hundred eighty-five chest radiographs on 909 patients obtained between January 2013 and July 2015 at our institution were retrieved and anonymized. The source images were manually annotated as frontal or lateral and randomly divided into training, validation, and test sets. Training and validation sets were augmented to over 150,000 images using standard image manipulations. We then pre-trained a series of deep convolutional networks based on the open-source GoogLeNet with various transformations of the open-source ImageNet (non-radiology) images. These trained networks were then fine-tuned using the original and augmented radiology images. The model with highest validation accuracy was applied to our institutional test set and a publicly available set. Accuracy was assessed by using the Youden Index to set a binary cutoff for frontal or lateral classification. This retrospective study was IRB approved prior to initiation. A network pre-trained on 1.2 million greyscale ImageNet images and fine-tuned on augmented radiographs was chosen. The binary classification method correctly classified 100 % (95 % CI 99.73-100 %) of both our test set and the publicly available images. Classification was rapid, at 38 images per second. A deep convolutional neural network created using non-radiological images, and an augmented set of radiographs is effective in highly accurate classification of chest radiograph view type and is a feasible, rapid method for high-throughput annotation.

  17. Tensor Networks and Quantum Error Correction

    Science.gov (United States)

    Ferris, Andrew J.; Poulin, David

    2014-07-01

    We establish several relations between quantum error correction (QEC) and tensor network (TN) methods of quantum many-body physics. We exhibit correspondences between well-known families of QEC codes and TNs, and demonstrate a formal equivalence between decoding a QEC code and contracting a TN. We build on this equivalence to propose a new family of quantum codes and decoding algorithms that generalize and improve upon quantum polar codes and successive cancellation decoding in a natural way.

  18. On the Performance of a Multi-Edge Type LDPC Code for Coded Modulation

    NARCIS (Netherlands)

    Cronie, H.S.

    2005-01-01

    We present a method to combine error-correction coding and spectral-efficient modulation for transmission over the Additive White Gaussian Noise (AWGN) channel. The code employs signal shaping which can provide a so-called shaping gain. The code belongs to the family of sparse graph codes for which

  19. Quantum Codes From Negacyclic Codes over Group Ring ( Fq + υFq) G

    International Nuclear Information System (INIS)

    Koroglu, Mehmet E.; Siap, Irfan

    2016-01-01

    In this paper, we determine self dual and self orthogonal codes arising from negacyclic codes over the group ring ( F q + υF q ) G . By taking a suitable Gray image of these codes we obtain many good parameter quantum error-correcting codes over F q . (paper)

  20. New quantum codes constructed from quaternary BCH codes

    Science.gov (United States)

    Xu, Gen; Li, Ruihu; Guo, Luobin; Ma, Yuena

    2016-10-01

    In this paper, we firstly study construction of new quantum error-correcting codes (QECCs) from three classes of quaternary imprimitive BCH codes. As a result, the improved maximal designed distance of these narrow-sense imprimitive Hermitian dual-containing quaternary BCH codes are determined to be much larger than the result given according to Aly et al. (IEEE Trans Inf Theory 53:1183-1188, 2007) for each different code length. Thus, families of new QECCs are newly obtained, and the constructed QECCs have larger distance than those in the previous literature. Secondly, we apply a combinatorial construction to the imprimitive BCH codes with their corresponding primitive counterpart and construct many new linear quantum codes with good parameters, some of which have parameters exceeding the finite Gilbert-Varshamov bound for linear quantum codes.

  1. Convolution equations on lattices: periodic solutions with values in a prime characteristic field

    OpenAIRE

    Zaidenberg, Mikhail

    2006-01-01

    These notes are inspired by the theory of cellular automata. A linear cellular automaton on a lattice of finite rank or on a toric grid is a discrete dinamical system generated by a convolution operator with kernel concentrated in the nearest neighborhood of the origin. In the present paper we deal with general convolution operators. We propose an approach via harmonic analysis which works over a field of positive characteristic. It occurs that a standard spectral problem for a convolution op...

  2. Corrective Jaw Surgery

    Medline Plus

    Full Text Available ... out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment of jaws ... out more. Corrective Jaw Surgery Corrective Jaw Surgery Orthognathic surgery is performed to correct the misalignment of jaws ...

  3. A simple method for estimating the length density of convoluted tubular systems.

    Science.gov (United States)

    Ferraz de Carvalho, Cláudio A; de Campos Boldrini, Silvia; Nishimaru, Flávio; Liberti, Edson A

    2008-10-01

    We present a new method for estimating the length density (Lv) of convoluted tubular structures exhibiting an isotropic distribution. Although the traditional equation Lv=2Q/A is used, the parameter Q is obtained by considering the collective perimeters of tubular sections. This measurement is converted to a standard model of the structure, assuming that all cross-sections are approximately circular and have an average perimeter similar to that of actual circular cross-sections observed in the same material. The accuracy of this method was tested in eight experiments using hollow macaroni bent into helical shapes. After measuring the length of the macaroni segments, they were boiled and randomly packed into cylindrical volumes along with an aqueous suspension of gelatin and India ink. The solidified blocks were cut into slices 1.0 cm thick and 33.2 cm2 in area (A). The total perimeter of the macaroni cross-sections so revealed was stereologically estimated using a test system of straight parallel lines. Given Lv and the reference volume, the total length of macaroni in each section could be estimated. Additional corrections were made for the changes induced by boiling, and the off-axis position of the thread used to measure length. No statistical difference was observed between the corrected estimated values and the actual lengths. This technique is useful for estimating the length of capillaries, renal tubules, and seminiferous tubules.

  4. Improved decoding for a concatenated coding system

    DEFF Research Database (Denmark)

    Paaske, Erik

    1990-01-01

    The concatenated coding system recommended by CCSDS (Consultative Committee for Space Data Systems) uses an outer (255,233) Reed-Solomon (RS) code based on 8-b symbols, followed by the block interleaver and an inner rate 1/2 convolutional code with memory 6. Viterbi decoding is assumed. Two new...... decoding procedures based on repeated decoding trials and exchange of information between the two decoders and the deinterleaver are proposed. In the first one, where the improvement is 0.3-0.4 dB, only the RS decoder performs repeated trials. In the second one, where the improvement is 0.5-0.6 dB, both...... decoders perform repeated decoding trials and decoding information is exchanged between them...

  5. Elements of algebraic coding systems

    CERN Document Server

    Cardoso da Rocha, Jr, Valdemar

    2014-01-01

    Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...

  6. Constrained Convolutional Sparse Coding for Parametric Based Reconstruction of Line Drawings

    KAUST Repository

    Shaheen, Sara; Affara, Lama Ahmed; Ghanem, Bernard

    2017-01-01

    manipulation examples are demonstrated in this work. Consequently, our novel method is expected to provide a reliable and automatic method for parametric sketch description. Through experiments, we empirically validate the convergence of our method to a

  7. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography.

    Science.gov (United States)

    Samala, Ravi K; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A; Wei, Jun; Cha, Kenny

    2016-12-01

    Develop a computer-aided detection (CAD) system for masses in digital breast tomosynthesis (DBT) volume using a deep convolutional neural network (DCNN) with transfer learning from mammograms. A data set containing 2282 digitized film and digital mammograms and 324 DBT volumes were collected with IRB approval. The mass of interest on the images was marked by an experienced breast radiologist as reference standard. The data set was partitioned into a training set (2282 mammograms with 2461 masses and 230 DBT views with 228 masses) and an independent test set (94 DBT views with 89 masses). For DCNN training, the region of interest (ROI) containing the mass (true positive) was extracted from each image. False positive (FP) ROIs were identified at prescreening by their previously developed CAD systems. After data augmentation, a total of 45 072 mammographic ROIs and 37 450 DBT ROIs were obtained. Data normalization and reduction of non-uniformity in the ROIs across heterogeneous data was achieved using a background correction method applied to each ROI. A DCNN with four convolutional layers and three fully connected (FC) layers was first trained on the mammography data. Jittering and dropout techniques were used to reduce overfitting. After training with the mammographic ROIs, all weights in the first three convolutional layers were frozen, and only the last convolution layer and the FC layers were randomly initialized again and trained using the DBT training ROIs. The authors compared the performances of two CAD systems for mass detection in DBT: one used the DCNN-based approach and the other used their previously developed feature-based approach for FP reduction. The prescreening stage was identical in both systems, passing the same set of mass candidates to the FP reduction stage. For the feature-based CAD system, 3D clustering and active contour method was used for segmentation; morphological, gray level, and texture features were extracted and merged with a

  8. Detection and diagnosis of colitis on computed tomography using deep convolutional neural networks.

    Science.gov (United States)

    Liu, Jiamin; Wang, David; Lu, Le; Wei, Zhuoshi; Kim, Lauren; Turkbey, Evrim B; Sahiner, Berkman; Petrick, Nicholas A; Summers, Ronald M

    2017-09-01

    Colitis refers to inflammation of the inner lining of the colon that is frequently associated with infection and allergic reactions. In this paper, we propose deep convolutional neural networks methods for lesion-level colitis detection and a support vector machine (SVM) classifier for patient-level colitis diagnosis on routine abdominal CT scans. The recently developed Faster Region-based Convolutional Neural Network (Faster RCNN) is utilized for lesion-level colitis detection. For each 2D slice, rectangular region proposals are generated by region proposal networks (RPN). Then, each region proposal is jointly classified and refined by a softmax classifier and bounding-box regressor. Two convolutional neural networks, eight layers of ZF net and 16 layers of VGG net are compared for colitis detection. Finally, for each patient, the detections on all 2D slices are collected and a SVM classifier is applied to develop a patient-level diagnosis. We trained and evaluated our method with 80 colitis patients and 80 normal cases using 4 × 4-fold cross validation. For lesion-level colitis detection, with ZF net, the mean of average precisions (mAP) were 48.7% and 50.9% for RCNN and Faster RCNN, respectively. The detection system achieved sensitivities of 51.4% and 54.0% at two false positives per patient for RCNN and Faster RCNN, respectively. With VGG net, Faster RCNN increased the mAP to 56.9% and increased the sensitivity to 58.4% at two false positive per patient. For patient-level colitis diagnosis, with ZF net, the average areas under the ROC curve (AUC) were 0.978 ± 0.009 and 0.984 ± 0.008 for RCNN and Faster RCNN method, respectively. The difference was not statistically significant with P = 0.18. At the optimal operating point, the RCNN method correctly identified 90.4% (72.3/80) of the colitis patients and 94.0% (75.2/80) of normal cases. The sensitivity improved to 91.6% (73.3/80) and the specificity improved to 95.0% (76.0/80) for the Faster RCNN

  9. Speaking Code

    DEFF Research Database (Denmark)

    Cox, Geoff

    Speaking Code begins by invoking the “Hello World” convention used by programmers when learning a new language, helping to establish the interplay of text and code that runs through the book. Interweaving the voice of critical writing from the humanities with the tradition of computing and software...

  10. Electroweak corrections

    International Nuclear Information System (INIS)

    Beenakker, W.J.P.

    1989-01-01

    The prospect of high accuracy measurements investigating the weak interactions, which are expected to take place at the electron-positron storage ring LEP at CERN and the linear collider SCL at SLAC, offers the possibility to study also the weak quantum effects. In order to distinguish if the measured weak quantum effects lie within the margins set by the standard model and those bearing traces of new physics one had to go beyond the lowest order and also include electroweak radiative corrections (EWRC) in theoretical calculations. These higher-order corrections also can offer the possibility of getting information about two particles present in the Glashow-Salam-Weinberg model (GSW), but not discovered up till now, the top quark and the Higgs boson. In ch. 2 the GSW standard model of electroweak interactions is described. In ch. 3 some special techniques are described for determination of integrals which are responsible for numerical instabilities caused by large canceling terms encountered in the calculation of EWRC effects, and methods necessary to get hold of the extensive algebra typical for EWRC. In ch. 4 various aspects related to EWRC effects are discussed, in particular the dependence of the unknown model parameters which are the masses of the top quark and the Higgs boson. The processes which are discussed are production of heavy fermions from electron-positron annihilation and those of the fermionic decay of the Z gauge boson. (H.W.). 106 refs.; 30 figs.; 6 tabs.; schemes

  11. Finding strong lenses in CFHTLS using convolutional neural networks

    Science.gov (United States)

    Jacobs, C.; Glazebrook, K.; Collett, T.; More, A.; McCarthy, C.

    2017-10-01

    We train and apply convolutional neural networks, a machine learning technique developed to learn from and classify image data, to Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) imaging for the identification of potential strong lensing systems. An ensemble of four convolutional neural networks was trained on images of simulated galaxy-galaxy lenses. The training sets consisted of a total of 62 406 simulated lenses and 64 673 non-lens negative examples generated with two different methodologies. An ensemble of trained networks was applied to all of the 171 deg2 of the CFHTLS wide field image data, identifying 18 861 candidates including 63 known and 139 other potential lens candidates. A second search of 1.4 million early-type galaxies selected from the survey catalogue as potential deflectors, identified 2465 candidates including 117 previously known lens candidates, 29 confirmed lenses/high-quality lens candidates, 266 novel probable or potential lenses and 2097 candidates we classify as false positives. For the catalogue-based search we estimate a completeness of 21-28 per cent with respect to detectable lenses and a purity of 15 per cent, with a false-positive rate of 1 in 671 images tested. We predict a human astronomer reviewing candidates produced by the system would identify 20 probable lenses and 100 possible lenses per hour in a sample selected by the robot. Convolutional neural networks are therefore a promising tool for use in the search for lenses in current and forthcoming surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope.

  12. Phase transitions in glassy systems via convolutional neural networks

    Science.gov (United States)

    Fang, Chao

    Machine learning is a powerful approach commonplace in industry to tackle large data sets. Most recently, it has found its way into condensed matter physics, allowing for the first time the study of, e.g., topological phase transitions and strongly-correlated electron systems. The study of spin glasses is plagued by finite-size effects due to the long thermalization times needed. Here we use convolutional neural networks in an attempt to detect a phase transition in three-dimensional Ising spin glasses. Our results are compared to traditional approaches.

  13. Visualizing Vector Fields Using Line Integral Convolution and Dye Advection

    Science.gov (United States)

    Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu

    1996-01-01

    We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.

  14. Salient regions detection using convolutional neural networks and color volume

    Science.gov (United States)

    Liu, Guang-Hai; Hou, Yingkun

    2018-03-01

    Convolutional neural network is an important technique in machine learning, pattern recognition and image processing. In order to reduce the computational burden and extend the classical LeNet-5 model to the field of saliency detection, we propose a simple and novel computing model based on LeNet-5 network. In the proposed model, hue, saturation and intensity are utilized to extract depth cues, and then we integrate depth cues and color volume to saliency detection following the basic structure of the feature integration theory. Experimental results show that the proposed computing model outperforms some existing state-of-the-art methods on MSRA1000 and ECSSD datasets.

  15. Traffic sign classification with dataset augmentation and convolutional neural network

    Science.gov (United States)

    Tang, Qing; Kurnianggoro, Laksono; Jo, Kang-Hyun

    2018-04-01

    This paper presents a method for traffic sign classification using a convolutional neural network (CNN). In this method, firstly we transfer a color image into grayscale, and then normalize it in the range (-1,1) as the preprocessing step. To increase robustness of classification model, we apply a dataset augmentation algorithm and create new images to train the model. To avoid overfitting, we utilize a dropout module before the last fully connection layer. To assess the performance of the proposed method, the German traffic sign recognition benchmark (GTSRB) dataset is utilized. Experimental results show that the method is effective in classifying traffic signs.

  16. Tandem mass spectrometry data quality assessment by self-convolution

    Directory of Open Access Journals (Sweden)

    Tham Wai

    2007-09-01

    Full Text Available Abstract Background Many algorithms have been developed for deciphering the tandem mass spectrometry (MS data sets. They can be essentially clustered into two classes. The first performs searches on theoretical mass spectrum database, while the second based itself on de novo sequencing from raw mass spectrometry data. It was noted that the quality of mass spectra affects significantly the protein identification processes in both instances. This prompted the authors to explore ways to measure the quality of MS data sets before subjecting them to the protein identification algorithms, thus allowing for more meaningful searches and increased confidence level of proteins identified. Results The proposed method measures the qualities of MS data sets based on the symmetric property of b- and y-ion peaks present in a MS spectrum. Self-convolution on MS data and its time-reversal copy was employed. Due to the symmetric nature of b-ions and y-ions peaks, the self-convolution result of a good spectrum would produce a highest mid point intensity peak. To reduce processing time, self-convolution was achieved using Fast Fourier Transform and its inverse transform, followed by the removal of the "DC" (Direct Current component and the normalisation of the data set. The quality score was defined as the ratio of the intensity at the mid point to the remaining peaks of the convolution result. The method was validated using both theoretical mass spectra, with various permutations, and several real MS data sets. The results were encouraging, revealing a high percentage of positive prediction rates for spectra with good quality scores. Conclusion We have demonstrated in this work a method for determining the quality of tandem MS data set. By pre-determining the quality of tandem MS data before subjecting them to protein identification algorithms, spurious protein predictions due to poor tandem MS data are avoided, giving scientists greater confidence in the

  17. The Use of Finite Fields and Rings to Compute Convolutions

    Science.gov (United States)

    1975-06-06

    showed in Ref. 1 that the convolution of two finite sequences of integers (a, ) and (b, ) for k = 1, 2, . . ., d can be obtained as the inverse transform of...since the T.’S are all distinct. Thus T~ exists and (7) can be solved as a = T A the inverse " transform .𔃻 Next let us impose on (7) the...the inverse transform d-1 Cn= (d) I Cka k=0 If an a can be found so that multiplications by powers of a are simple in hardware, the

  18. Tandem mass spectrometry data quality assessment by self-convolution.

    Science.gov (United States)

    Choo, Keng Wah; Tham, Wai Mun

    2007-09-20

    Many algorithms have been developed for deciphering the tandem mass spectrometry (MS) data sets. They can be essentially clustered into two classes. The first performs searches on theoretical mass spectrum database, while the second based itself on de novo sequencing from raw mass spectrometry data. It was noted that the quality of mass spectra affects significantly the protein identification processes in both instances. This prompted the authors to explore ways to measure the quality of MS data sets before subjecting them to the protein identification algorithms, thus allowing for more meaningful searches and increased confidence level of proteins identified. The proposed method measures the qualities of MS data sets based on the symmetric property of b- and y-ion peaks present in a MS spectrum. Self-convolution on MS data and its time-reversal copy was employed. Due to the symmetric nature of b-ions and y-ions peaks, the self-convolution result of a good spectrum would produce a highest mid point intensity peak. To reduce processing time, self-convolution was achieved using Fast Fourier Transform and its inverse transform, followed by the removal of the "DC" (Direct Current) component and the normalisation of the data set. The quality score was defined as the ratio of the intensity at the mid point to the remaining peaks of the convolution result. The method was validated using both theoretical mass spectra, with various permutations, and several real MS data sets. The results were encouraging, revealing a high percentage of positive prediction rates for spectra with good quality scores. We have demonstrated in this work a method for determining the quality of tandem MS data set. By pre-determining the quality of tandem MS data before subjecting them to protein identification algorithms, spurious protein predictions due to poor tandem MS data are avoided, giving scientists greater confidence in the predicted results. We conclude that the algorithm performs well

  19. Classifying medical relations in clinical text via convolutional neural networks.

    Science.gov (United States)

    He, Bin; Guan, Yi; Dai, Rui

    2018-05-16

    Deep learning research on relation classification has achieved solid performance in the general domain. This study proposes a convolutional neural network (CNN) architecture with a multi-pooling operation for medical relation classification on clinical records and explores a loss function with a category-level constraint matrix. Experiments using the 2010 i2b2/VA relation corpus demonstrate these models, which do not depend on any external features, outperform previous single-model methods and our best model is competitive with the existing ensemble-based method. Copyright © 2018. Published by Elsevier B.V.

  20. Weed Growth Stage Estimator Using Deep Convolutional Neural Networks

    DEFF Research Database (Denmark)

    Teimouri, Nima; Dyrmann, Mads; Nielsen, Per Rydahl

    2018-01-01

    This study outlines a new method of automatically estimating weed species and growth stages (from cotyledon until eight leaves are visible) of in situ images covering 18 weed species or families. Images of weeds growing within a variety of crops were gathered across variable environmental conditi...... in estimating the number of leaves and 96% accuracy when accepting a deviation of two leaves. These results show that this new method of using deep convolutional neural networks has a relatively high ability to estimate early growth stages across a wide variety of weed species....

  1. STACK DECODING OF LINEAR BLOCK CODES FOR DISCRETE MEMORYLESS CHANNEL USING TREE DIAGRAM

    Directory of Open Access Journals (Sweden)

    H. Prashantha Kumar

    2012-03-01

    Full Text Available The boundaries between block and convolutional codes have become diffused after recent advances in the understanding of the trellis structure of block codes and the tail-biting structure of some convolutional codes. Therefore, decoding algorithms traditionally proposed for decoding convolutional codes have been applied for decoding certain classes of block codes. This paper presents the decoding of block codes using tree structure. Many good block codes are presently known. Several of them have been used in applications ranging from deep space communication to error control in storage systems. But the primary difficulty with applying Viterbi or BCJR algorithms to decode of block codes is that, even though they are optimum decoding methods, the promised bit error rates are not achieved in practice at data rates close to capacity. This is because the decoding effort is fixed and grows with block length, and thus only short block length codes can be used. Therefore, an important practical question is whether a suboptimal realizable soft decision decoding method can be found for block codes. A noteworthy result which provides a partial answer to this question is described in the following sections. This result of near optimum decoding will be used as motivation for the investigation of different soft decision decoding methods for linear block codes which can lead to the development of efficient decoding algorithms. The code tree can be treated as an expanded version of the trellis, where every path is totally distinct from every other path. We have derived the tree structure for (8, 4 and (16, 11 extended Hamming codes and have succeeded in implementing the soft decision stack algorithm to decode them. For the discrete memoryless channel, gains in excess of 1.5dB at a bit error rate of 10-5 with respect to conventional hard decision decoding are demonstrated for these codes.

  2. Entanglement-assisted quantum MDS codes from negacyclic codes

    Science.gov (United States)

    Lu, Liangdong; Li, Ruihu; Guo, Luobin; Ma, Yuena; Liu, Yang

    2018-03-01

    The entanglement-assisted formalism generalizes the standard stabilizer formalism, which can transform arbitrary classical linear codes into entanglement-assisted quantum error-correcting codes (EAQECCs) by using pre-shared entanglement between the sender and the receiver. In this work, we construct six classes of q-ary entanglement-assisted quantum MDS (EAQMDS) codes based on classical negacyclic MDS codes by exploiting two or more pre-shared maximally entangled states. We show that two of these six classes q-ary EAQMDS have minimum distance more larger than q+1. Most of these q-ary EAQMDS codes are new in the sense that their parameters are not covered by the codes available in the literature.

  3. STDP-based spiking deep convolutional neural networks for object recognition.

    Science.gov (United States)

    Kheradpisheh, Saeed Reza; Ganjtabesh, Mohammad; Thorpe, Simon J; Masquelier, Timothée

    2018-03-01

    Previous studies have shown that spike-timing-dependent plasticity (STDP) can be used in spiking neural networks (SNN) to extract visual features of low or intermediate complexity in an unsupervised manner. These studies, however, used relatively shallow architectures, and only one layer was trainable. Another line of research has demonstrated - using rate-based neural networks trained with back-propagation - that having many layers increases the recognition robustness, an approach known as deep learning. We thus designed a deep SNN, comprising several convolutional (trainable with STDP) and pooling layers. We used a temporal coding scheme where the most strongly activated neurons fire first, and less activated neurons fire later or not at all. The network was exposed to natural images. Thanks to STDP, neurons progressively learned features corresponding to prototypical patterns that were both salient and frequent. Only a few tens of examples per category were required and no label was needed. After learning, the complexity of the extracted features increased along the hierarchy, from edge detectors in the first layer to object prototypes in the last layer. Coding was very sparse, with only a few thousands spikes per image, and in some cases the object category could be reasonably well inferred from the activity of a single higher-order neuron. More generally, the activity of a few hundreds of such neurons contained robust category information, as demonstrated using a classifier on Caltech 101, ETH-80, and MNIST databases. We also demonstrate the superiority of STDP over other unsupervised techniques such as random crops (HMAX) or auto-encoders. Taken together, our results suggest that the combination of STDP with latency coding may be a key to understanding the way that the primate visual system learns, its remarkable processing speed and its low energy consumption. These mechanisms are also interesting for artificial vision systems, particularly for hardware

  4. Real-time object tracking system based on field-programmable gate array and convolution neural network

    Directory of Open Access Journals (Sweden)

    Congyi Lyu

    2016-12-01

    Full Text Available Vision-based object tracking has lots of applications in robotics, like surveillance, navigation, motion capturing, and so on. However, the existing object tracking systems still suffer from the challenging problem of high computation consumption in the image processing algorithms. The problem can prevent current systems from being used in many robotic applications which have limitations of payload and power, for example, micro air vehicles. In these applications, the central processing unit- or graphics processing unit-based computers are not good choices due to the high weight and power consumption. To address the problem, this article proposed a real-time object tracking system based on field-programmable gate array, convolution neural network, and visual servo technology. The time-consuming image processing algorithms, such as distortion correction, color space convertor, and Sobel edge, Harris corner features detector, and convolution neural network were redesigned using the programmable gates in field-programmable gate array. Based on the field-programmable gate array-based image processing, an image-based visual servo controller was designed to drive a two degree of freedom manipulator to track the target in real time. Finally, experiments on the proposed system were performed to illustrate the effectiveness of the real-time object tracking system.

  5. Coding in pigeons: Multiple-coding versus single-code/default strategies.

    Science.gov (United States)

    Pinto, Carlos; Machado, Armando

    2015-05-01

    To investigate the coding strategies that pigeons may use in a temporal discrimination tasks, pigeons were trained on a matching-to-sample procedure with three sample durations (2s, 6s and 18s) and two comparisons (red and green hues). One comparison was correct following 2-s samples and the other was correct following both 6-s and 18-s samples. Tests were then run to contrast the predictions of two hypotheses concerning the pigeons' coding strategies, the multiple-coding and the single-code/default. According to the multiple-coding hypothesis, three response rules are acquired, one for each sample. According to the single-code/default hypothesis, only two response rules are acquired, one for the 2-s sample and a "default" rule for any other duration. In retention interval tests, pigeons preferred the "default" key, a result predicted by the single-code/default hypothesis. In no-sample tests, pigeons preferred the key associated with the 2-s sample, a result predicted by multiple-coding. Finally, in generalization tests, when the sample duration equaled 3.5s, the geometric mean of 2s and 6s, pigeons preferred the key associated with the 6-s and 18-s samples, a result predicted by the single-code/default hypothesis. The pattern of results suggests the need for models that take into account multiple sources of stimulus control. © Society for the Experimental Analysis of Behavior.

  6. Correctional Facilities, United States, 2015, EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains point features that represent correctional facilities associated with a single NAICS code. Establishment-specific information, except...

  7. Isointense infant brain MRI segmentation with a dilated convolutional neural network

    NARCIS (Netherlands)

    Moeskops, P.; Pluim, J.P.W.

    2017-01-01

    Quantitative analysis of brain MRI at the age of 6 months is difficult because of the limited contrast between white matter and gray matter. In this study, we use a dilated triplanar convolutional neural network in combination with a non-dilated 3D convolutional neural network for the segmentation

  8. Linear diffusion-wave channel routing using a discrete Hayami convolution method

    Science.gov (United States)

    Li Wang; Joan Q. Wu; William J. Elliot; Fritz R. Feidler; Sergey. Lapin

    2014-01-01

    The convolution of an input with a response function has been widely used in hydrology as a means to solve various problems analytically. Due to the high computation demand in solving the functions using numerical integration, it is often advantageous to use the discrete convolution instead of the integration of the continuous functions. This approach greatly reduces...

  9. Using convolutional decoding to improve time delay and phase estimation in digital communications

    Science.gov (United States)

    Ormesher, Richard C [Albuquerque, NM; Mason, John J [Albuquerque, NM

    2010-01-26

    The time delay and/or phase of a communication signal received by a digital communication receiver can be estimated based on a convolutional decoding operation that the communication receiver performs on the received communication signal. If the original transmitted communication signal has been spread according to a spreading operation, a corresponding despreading operation can be integrated into the convolutional decoding operation.

  10. Photon Counting Computed Tomography With Dedicated Sharp Convolution Kernels: Tapping the Potential of a New Technology for Stent Imaging.

    Science.gov (United States)

    von Spiczak, Jochen; Mannil, Manoj; Peters, Benjamin; Hickethier, Tilman; Baer, Matthias; Henning, André; Schmidt, Bernhard; Flohr, Thomas; Manka, Robert; Maintz, David; Alkadhi, Hatem

    2018-05-23

    -stent attenuation difference, image sharpness, and image noise were tested using a paired-sample t test corrected for multiple comparisons. Interreader and intrareader reliability were excellent (γ = 0.953, ICCs = 0.891-0.999, and γ = 0.996, ICCs = 0.918-0.999, respectively). Reconstructions using the dedicated sharp convolution kernel yielded significantly better results regarding image quality (B46: 0.4 ± 0.5 vs D70: 2.9 ± 0.3; P < 0.001), in-stent diameter difference (1.5 ± 0.3 vs 1.0 ± 0.3 mm; P < 0.001), and image sharpness (728 ± 246 vs 2069 ± 411 CT numbers/voxel; P < 0.001). Regarding in-stent attenuation difference, no significant difference was observed between the 2 kernels (151 ± 76 vs 158 ± 92 CT numbers; P = 0.627). Noise was significantly higher in all sharp convolution kernel images but was reduced by 41% and 59% by applying SAFIRE levels 3 and 5, respectively (B46: 16 ± 1, D70: 111 ± 3, Q703: 65 ± 2, Q705: 46 ± 2 CT numbers; P < 0.001 for all comparisons). A dedicated sharp convolution kernel for PCD CT imaging of coronary stents yields superior qualitative and quantitative image characteristics compared with conventional reconstruction kernels. Resulting higher noise levels in sharp kernel PCD imaging can be partially compensated with iterative image reconstruction techniques.

  11. Classifying images using restricted Boltzmann machines and convolutional neural networks

    Science.gov (United States)

    Zhao, Zhijun; Xu, Tongde; Dai, Chenyu

    2017-07-01

    To improve the feature recognition ability of deep model transfer learning, we propose a hybrid deep transfer learning method for image classification based on restricted Boltzmann machines (RBM) and convolutional neural networks (CNNs). It integrates learning abilities of two models, which conducts subject classification by exacting structural higher-order statistics features of images. While the method transfers the trained convolutional neural networks to the target datasets, fully-connected layers can be replaced by restricted Boltzmann machine layers; then the restricted Boltzmann machine layers and Softmax classifier are retrained, and BP neural network can be used to fine-tuned the hybrid model. The restricted Boltzmann machine layers has not only fully integrated the whole feature maps, but also learns the statistical features of target datasets in the view of the biggest logarithmic likelihood, thus removing the effects caused by the content differences between datasets. The experimental results show that the proposed method has improved the accuracy of image classification, outperforming other methods on Pascal VOC2007 and Caltech101 datasets.

  12. Cloud Detection by Fusing Multi-Scale Convolutional Features

    Science.gov (United States)

    Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang

    2018-04-01

    Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.

  13. Enhancing neutron beam production with a convoluted moderator

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, E.B., E-mail: iversoneb@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Baxter, D.V. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Muhrer, G. [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Ansell, S.; Dalgliesh, R. [ISIS Facility, Rutherford Appleton Laboratory, Chilton (United Kingdom); Gallmeier, F.X. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kaiser, H. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Lu, W. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-10-21

    We describe a new concept for a neutron moderating assembly resulting in the more efficient production of slow neutron beams. The Convoluted Moderator, a heterogeneous stack of interleaved moderating material and nearly transparent single-crystal spacers, is a directionally enhanced neutron beam source, improving beam emission over an angular range comparable to the range accepted by neutron beam lines and guides. We have demonstrated gains of 50% in slow neutron intensity for a given fast neutron production rate while simultaneously reducing the wavelength-dependent emission time dispersion by 25%, both coming from a geometric effect in which the neutron beam lines view a large surface area of moderating material in a relatively small volume. Additionally, we have confirmed a Bragg-enhancement effect arising from coherent scattering within the single-crystal spacers. We have not observed hypothesized refractive effects leading to additional gains at long wavelength. In addition to confirmation of the validity of the Convoluted Moderator concept, our measurements provide a series of benchmark experiments suitable for developing simulation and analysis techniques for practical optimization and eventual implementation at slow neutron source facilities.

  14. Multi-Branch Fully Convolutional Network for Face Detection

    KAUST Repository

    Bai, Yancheng

    2017-07-20

    Face detection is a fundamental problem in computer vision. It is still a challenging task in unconstrained conditions due to significant variations in scale, pose, expressions, and occlusion. In this paper, we propose a multi-branch fully convolutional network (MB-FCN) for face detection, which considers both efficiency and effectiveness in the design process. Our MB-FCN detector can deal with faces at all scale ranges with only a single pass through the backbone network. As such, our MB-FCN model saves computation and thus is more efficient, compared to previous methods that make multiple passes. For each branch, the specific skip connections of the convolutional feature maps at different layers are exploited to represent faces in specific scale ranges. Specifically, small faces can be represented with both shallow fine-grained and deep powerful coarse features. With this representation, superior improvement in performance is registered for the task of detecting small faces. We test our MB-FCN detector on two public face detection benchmarks, including FDDB and WIDER FACE. Extensive experiments show that our detector outperforms state-of-the-art methods on all these datasets in general and by a substantial margin on the most challenging among them (e.g. WIDER FACE Hard subset). Also, MB-FCN runs at 15 FPS on a GPU for images of size 640 x 480 with no assumption on the minimum detectable face size.

  15. Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks

    Directory of Open Access Journals (Sweden)

    Haiyang Yu

    2017-06-01

    Full Text Available Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs, for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs and long short-term memory (LSTM neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction.

  16. Convolutional Neural Network for Histopathological Analysis of Osteosarcoma.

    Science.gov (United States)

    Mishra, Rashika; Daescu, Ovidiu; Leavey, Patrick; Rakheja, Dinesh; Sengupta, Anita

    2018-03-01

    Pathologists often deal with high complexity and sometimes disagreement over osteosarcoma tumor classification due to cellular heterogeneity in the dataset. Segmentation and classification of histology tissue in H&E stained tumor image datasets is a challenging task because of intra-class variations, inter-class similarity, crowded context, and noisy data. In recent years, deep learning approaches have led to encouraging results in breast cancer and prostate cancer analysis. In this article, we propose convolutional neural network (CNN) as a tool to improve efficiency and accuracy of osteosarcoma tumor classification into tumor classes (viable tumor, necrosis) versus nontumor. The proposed CNN architecture contains eight learned layers: three sets of stacked two convolutional layers interspersed with max pooling layers for feature extraction and two fully connected layers with data augmentation strategies to boost performance. The use of a neural network results in higher accuracy of average 92% for the classification. We compare the proposed architecture with three existing and proven CNN architectures for image classification: AlexNet, LeNet, and VGGNet. We also provide a pipeline to calculate percentage necrosis in a given whole slide image. We conclude that the use of neural networks can assure both high accuracy and efficiency in osteosarcoma classification.

  17. Multi-Input Convolutional Neural Network for Flower Grading

    Directory of Open Access Journals (Sweden)

    Yu Sun

    2017-01-01

    Full Text Available Flower grading is a significant task because it is extremely convenient for managing the flowers in greenhouse and market. With the development of computer vision, flower grading has become an interdisciplinary focus in both botany and computer vision. A new dataset named BjfuGloxinia contains three quality grades; each grade consists of 107 samples and 321 images. A multi-input convolutional neural network is designed for large scale flower grading. Multi-input CNN achieves a satisfactory accuracy of 89.6% on the BjfuGloxinia after data augmentation. Compared with a single-input CNN, the accuracy of multi-input CNN is increased by 5% on average, demonstrating that multi-input convolutional neural network is a promising model for flower grading. Although data augmentation contributes to the model, the accuracy is still limited by lack of samples diversity. Majority of misclassification is derived from the medium class. The image processing based bud detection is useful for reducing the misclassification, increasing the accuracy of flower grading to approximately 93.9%.

  18. Convolutional neural network architectures for predicting DNA–protein binding

    Science.gov (United States)

    Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.

    2016-01-01

    Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608

  19. Transforming Musical Signals through a Genre Classifying Convolutional Neural Network

    Science.gov (United States)

    Geng, S.; Ren, G.; Ogihara, M.

    2017-05-01

    Convolutional neural networks (CNNs) have been successfully applied on both discriminative and generative modeling for music-related tasks. For a particular task, the trained CNN contains information representing the decision making or the abstracting process. One can hope to manipulate existing music based on this 'informed' network and create music with new features corresponding to the knowledge obtained by the network. In this paper, we propose a method to utilize the stored information from a CNN trained on musical genre classification task. The network was composed of three convolutional layers, and was trained to classify five-second song clips into five different genres. After training, randomly selected clips were modified by maximizing the sum of outputs from the network layers. In addition to the potential of such CNNs to produce interesting audio transformation, more information about the network and the original music could be obtained from the analysis of the generated features since these features indicate how the network 'understands' the music.

  20. Siamese convolutional networks for tracking the spine motion

    Science.gov (United States)

    Liu, Yuan; Sui, Xiubao; Sun, Yicheng; Liu, Chengwei; Hu, Yong

    2017-09-01

    Deep learning models have demonstrated great success in various computer vision tasks such as image classification and object tracking. However, tracking the lumbar spine by digitalized video fluoroscopic imaging (DVFI), which can quantitatively analyze the motion mode of spine to diagnose lumbar instability, has not yet been well developed due to the lack of steady and robust tracking method. In this paper, we propose a novel visual tracking algorithm of the lumbar vertebra motion based on a Siamese convolutional neural network (CNN) model. We train a full-convolutional neural network offline to learn generic image features. The network is trained to learn a similarity function that compares the labeled target in the first frame with the candidate patches in the current frame. The similarity function returns a high score if the two images depict the same object. Once learned, the similarity function is used to track a previously unseen object without any adapting online. In the current frame, our tracker is performed by evaluating the candidate rotated patches sampled around the previous frame target position and presents a rotated bounding box to locate the predicted target precisely. Results indicate that the proposed tracking method can detect the lumbar vertebra steadily and robustly. Especially for images with low contrast and cluttered background, the presented tracker can still achieve good tracking performance. Further, the proposed algorithm operates at high speed for real time tracking.

  1. Digital image correlation based on a fast convolution strategy

    Science.gov (United States)

    Yuan, Yuan; Zhan, Qin; Xiong, Chunyang; Huang, Jianyong

    2017-10-01

    In recent years, the efficiency of digital image correlation (DIC) methods has attracted increasing attention because of its increasing importance for many engineering applications. Based on the classical affine optical flow (AOF) algorithm and the well-established inverse compositional Gauss-Newton algorithm, which is essentially a natural extension of the AOF algorithm under a nonlinear iterative framework, this paper develops a set of fast convolution-based DIC algorithms for high-efficiency subpixel image registration. Using a well-developed fast convolution technique, the set of algorithms establishes a series of global data tables (GDTs) over the digital images, which allows the reduction of the computational complexity of DIC significantly. Using the pre-calculated GDTs, the subpixel registration calculations can be implemented efficiently in a look-up-table fashion. Both numerical simulation and experimental verification indicate that the set of algorithms significantly enhances the computational efficiency of DIC, especially in the case of a dense data sampling for the digital images. Because the GDTs need to be computed only once, the algorithms are also suitable for efficiently coping with image sequences that record the time-varying dynamics of specimen deformations.

  2. Convolutional neural network features based change detection in satellite images

    Science.gov (United States)

    Mohammed El Amin, Arabi; Liu, Qingjie; Wang, Yunhong

    2016-07-01

    With the popular use of high resolution remote sensing (HRRS) satellite images, a huge research efforts have been placed on change detection (CD) problem. An effective feature selection method can significantly boost the final result. While hand-designed features have proven difficulties to design features that effectively capture high and mid-level representations, the recent developments in machine learning (Deep Learning) omit this problem by learning hierarchical representation in an unsupervised manner directly from data without human intervention. In this letter, we propose approaching the change detection problem from a feature learning perspective. A novel deep Convolutional Neural Networks (CNN) features based HR satellite images change detection method is proposed. The main guideline is to produce a change detection map directly from two images using a pretrained CNN. This method can omit the limited performance of hand-crafted features. Firstly, CNN features are extracted through different convolutional layers. Then, a concatenation step is evaluated after an normalization step, resulting in a unique higher dimensional feature map. Finally, a change map was computed using pixel-wise Euclidean distance. Our method has been validated on real bitemporal HRRS satellite images according to qualitative and quantitative analyses. The results obtained confirm the interest of the proposed method.

  3. Classification of stroke disease using convolutional neural network

    Science.gov (United States)

    Marbun, J. T.; Seniman; Andayani, U.

    2018-03-01

    Stroke is a condition that occurs when the blood supply stop flowing to the brain because of a blockage or a broken blood vessel. A symptoms that happen when experiencing stroke, some of them is a dropped consciousness, disrupted vision and paralyzed body. The general examination is being done to get a picture of the brain part that have stroke using Computerized Tomography (CT) Scan. The image produced from CT will be manually checked and need a proper lighting by doctor to get a type of stroke. That is why it needs a method to classify stroke from CT image automatically. A method proposed in this research is Convolutional Neural Network. CT image of the brain is used as the input for image processing. The stage before classification are image processing (Grayscaling, Scaling, Contrast Limited Adaptive Histogram Equalization, then the image being classified with Convolutional Neural Network. The result then showed that the method significantly conducted was able to be used as a tool to classify stroke disease in order to distinguish the type of stroke from CT image.

  4. Image Classification Based on Convolutional Denoising Sparse Autoencoder

    Directory of Open Access Journals (Sweden)

    Shuangshuang Chen

    2017-01-01

    Full Text Available Image classification aims to group images into corresponding semantic categories. Due to the difficulties of interclass similarity and intraclass variability, it is a challenging issue in computer vision. In this paper, an unsupervised feature learning approach called convolutional denoising sparse autoencoder (CDSAE is proposed based on the theory of visual attention mechanism and deep learning methods. Firstly, saliency detection method is utilized to get training samples for unsupervised feature learning. Next, these samples are sent to the denoising sparse autoencoder (DSAE, followed by convolutional layer and local contrast normalization layer. Generally, prior in a specific task is helpful for the task solution. Therefore, a new pooling strategy—spatial pyramid pooling (SPP fused with center-bias prior—is introduced into our approach. Experimental results on the common two image datasets (STL-10 and CIFAR-10 demonstrate that our approach is effective in image classification. They also demonstrate that none of these three components: local contrast normalization, SPP fused with center-prior, and l2 vector normalization can be excluded from our proposed approach. They jointly improve image representation and classification performance.

  5. Weed Growth Stage Estimator Using Deep Convolutional Neural Networks.

    Science.gov (United States)

    Teimouri, Nima; Dyrmann, Mads; Nielsen, Per Rydahl; Mathiassen, Solvejg Kopp; Somerville, Gayle J; Jørgensen, Rasmus Nyholm

    2018-05-16

    This study outlines a new method of automatically estimating weed species and growth stages (from cotyledon until eight leaves are visible) of in situ images covering 18 weed species or families. Images of weeds growing within a variety of crops were gathered across variable environmental conditions with regards to soil types, resolution and light settings. Then, 9649 of these images were used for training the computer, which automatically divided the weeds into nine growth classes. The performance of this proposed convolutional neural network approach was evaluated on a further set of 2516 images, which also varied in term of crop, soil type, image resolution and light conditions. The overall performance of this approach achieved a maximum accuracy of 78% for identifying Polygonum spp. and a minimum accuracy of 46% for blackgrass. In addition, it achieved an average 70% accuracy rate in estimating the number of leaves and 96% accuracy when accepting a deviation of two leaves. These results show that this new method of using deep convolutional neural networks has a relatively high ability to estimate early growth stages across a wide variety of weed species.

  6. sEMG-Based Gesture Recognition with Convolution Neural Networks

    Directory of Open Access Journals (Sweden)

    Zhen Ding

    2018-06-01

    Full Text Available The traditional classification methods for limb motion recognition based on sEMG have been deeply researched and shown promising results. However, information loss during feature extraction reduces the recognition accuracy. To obtain higher accuracy, the deep learning method was introduced. In this paper, we propose a parallel multiple-scale convolution architecture. Compared with the state-of-art methods, the proposed architecture fully considers the characteristics of the sEMG signal. Larger sizes of kernel filter than commonly used in other CNN-based hand recognition methods are adopted. Meanwhile, the characteristics of the sEMG signal, that is, muscle independence, is considered when designing the architecture. All the classification methods were evaluated on the NinaPro database. The results show that the proposed architecture has the highest recognition accuracy. Furthermore, the results indicate that parallel multiple-scale convolution architecture with larger size of kernel filter and considering muscle independence can significantly increase the classification accuracy.

  7. Development of a morphological convolution operator for bearing fault detection

    Science.gov (United States)

    Li, Yifan; Liang, Xihui; Liu, Weiwei; Wang, Yan

    2018-05-01

    This paper presents a novel signal processing scheme, namely morphological convolution operator (MCO) lifted morphological undecimated wavelet (MUDW), for rolling element bearing fault detection. In this scheme, a MCO is first designed to fully utilize the advantage of the closing & opening gradient operator and the closing-opening & opening-closing gradient operator for feature extraction as well as the merit of excellent denoising characteristics of the convolution operator. The MCO is then introduced into MUDW for the purpose of improving the fault detection ability of the reported MUDWs. Experimental vibration signals collected from a train wheelset test rig and the bearing data center of Case Western Reserve University are employed to evaluate the effectiveness of the proposed MCO lifted MUDW on fault detection of rolling element bearings. The results show that the proposed approach has a superior performance in extracting fault features of defective rolling element bearings. In addition, comparisons are performed between two reported MUDWs and the proposed MCO lifted MUDW. The MCO lifted MUDW outperforms both of them in detection of outer race faults and inner race faults of rolling element bearings.

  8. Coding Labour

    Directory of Open Access Journals (Sweden)

    Anthony McCosker

    2014-03-01

    Full Text Available As well as introducing the Coding Labour section, the authors explore the diffusion of code across the material contexts of everyday life, through the objects and tools of mediation, the systems and practices of cultural production and organisational management, and in the material conditions of labour. Taking code beyond computation and software, their specific focus is on the increasingly familiar connections between code and labour with a focus on the codification and modulation of affect through technologies and practices of management within the contemporary work organisation. In the grey literature of spreadsheets, minutes, workload models, email and the like they identify a violence of forms through which workplace affect, in its constant flux of crisis and ‘prodromal’ modes, is regulated and governed.

  9. Deep multi-scale convolutional neural network for hyperspectral image classification

    Science.gov (United States)

    Zhang, Feng-zhe; Yang, Xia

    2018-04-01

    In this paper, we proposed a multi-scale convolutional neural network for hyperspectral image classification task. Firstly, compared with conventional convolution, we utilize multi-scale convolutions, which possess larger respective fields, to extract spectral features of hyperspectral image. We design a deep neural network with a multi-scale convolution layer which contains 3 different convolution kernel sizes. Secondly, to avoid overfitting of deep neural network, dropout is utilized, which randomly sleeps neurons, contributing to improve the classification accuracy a bit. In addition, new skills like ReLU in deep learning is utilized in this paper. We conduct experiments on University of Pavia and Salinas datasets, and obtained better classification accuracy compared with other methods.

  10. Object Detection Based on Fast/Faster RCNN Employing Fully Convolutional Architectures

    Directory of Open Access Journals (Sweden)

    Yun Ren

    2018-01-01

    Full Text Available Modern object detectors always include two major parts: a feature extractor and a feature classifier as same as traditional object detectors. The deeper and wider convolutional architectures are adopted as the feature extractor at present. However, many notable object detection systems such as Fast/Faster RCNN only consider simple fully connected layers as the feature classifier. In this paper, we declare that it is beneficial for the detection performance to elaboratively design deep convolutional networks (ConvNets of various depths for feature classification, especially using the fully convolutional architectures. In addition, this paper also demonstrates how to employ the fully convolutional architectures in the Fast/Faster RCNN. Experimental results show that a classifier based on convolutional layer is more effective for object detection than that based on fully connected layer and that the better detection performance can be achieved by employing deeper ConvNets as the feature classifier.

  11. Usage of QR code in tourism industry

    OpenAIRE

    Emek, Mehmet

    2012-01-01

    QR (Quick Response) code scanning allows the user to obtain in-depth information about the scanned item. Apps used for scanning QR codes can be found on nearly all smart phone devices. Travelers who have smart phone, equipped with the correct reader software, can easily access QR coded information (text, photo, video, web page, etc.) when it is available. Travelers can scan QR coded galleries, places, vineyards or monuments when they are visiting and reach the detailed information without usi...

  12. Proving correctness of compilers using structured graphs

    DEFF Research Database (Denmark)

    Bahr, Patrick

    2014-01-01

    it into a compiler implementation using a graph type along with a correctness proof. The implementation and correctness proof of a compiler using a tree type without explicit jumps is simple, but yields code duplication. Our method provides a convenient way of improving such a compiler without giving up the benefits...

  13. Opportunistic Error Correction for WLAN Applications

    NARCIS (Netherlands)

    Shao, X.; Schiphorst, Roelof; Slump, Cornelis H.

    2008-01-01

    The current error correction layer of IEEE 802.11a WLAN is designed for worst case scenarios, which often do not apply. In this paper, we propose a new opportunistic error correction layer based on Fountain codes and a resolution adaptive ADC. The key part in the new proposed system is that only

  14. Evaluation of Extended CCSDS Reed-Solomon Codes for Bandwidth efficiency

    DEFF Research Database (Denmark)

    Andersen, Jakob Dahl; Justesen, Jørn; Larsen, Knud J.

    1999-01-01

    The present CCSDS recommendation for Telemetry Channel Coding was originally written around twenty years ago. The appearance of the Turbo coding scheme has made an inclusion of this powerful scheme desirable, and thus it becomes natural also to perform a major rewriting of the other part of the r....... Finally, we present advantages and disadvantages by placing the frame synchronizer before and after the Viterbi decoder, and we suggest an option where the attached sync marker is not convolutionally encoded....

  15. Deciphering the genetic regulatory code using an inverse error control coding framework.

    Energy Technology Data Exchange (ETDEWEB)

    Rintoul, Mark Daniel; May, Elebeoba Eni; Brown, William Michael; Johnston, Anna Marie; Watson, Jean-Paul

    2005-03-01

    We have found that developing a computational framework for reconstructing error control codes for engineered data and ultimately for deciphering genetic regulatory coding sequences is a challenging and uncharted area that will require advances in computational technology for exact solutions. Although exact solutions are desired, computational approaches that yield plausible solutions would be considered sufficient as a proof of concept to the feasibility of reverse engineering error control codes and the possibility of developing a quantitative model for understanding and engineering genetic regulation. Such evidence would help move the idea of reconstructing error control codes for engineered and biological systems from the high risk high payoff realm into the highly probable high payoff domain. Additionally this work will impact biological sensor development and the ability to model and ultimately develop defense mechanisms against bioagents that can be engineered to cause catastrophic damage. Understanding how biological organisms are able to communicate their genetic message efficiently in the presence of noise can improve our current communication protocols, a continuing research interest. Towards this end, project goals include: (1) Develop parameter estimation methods for n for block codes and for n, k, and m for convolutional codes. Use methods to determine error control (EC) code parameters for gene regulatory sequence. (2) Develop an evolutionary computing computational framework for near-optimal solutions to the algebraic code reconstruction problem. Method will be tested on engineered and biological sequences.

  16. Deep-HiTS: Rotation Invariant Convolutional Neural Network for Transient Detection

    Science.gov (United States)

    Cabrera-Vives, Guillermo; Reyes, Ignacio; Förster, Francisco; Estévez, Pablo A.; Maureira, Juan-Carlos

    2017-02-01

    We introduce Deep-HiTS, a rotation-invariant convolutional neural network (CNN) model for classifying images of transient candidates into artifacts or real sources for the High cadence Transient Survey (HiTS). CNNs have the advantage of learning the features automatically from the data while achieving high performance. We compare our CNN model against a feature engineering approach using random forests (RFs). We show that our CNN significantly outperforms the RF model, reducing the error by almost half. Furthermore, for a fixed number of approximately 2000 allowed false transient candidates per night, we are able to reduce the misclassified real transients by approximately one-fifth. To the best of our knowledge, this is the first time CNNs have been used to detect astronomical transient events. Our approach will be very useful when processing images from next generation instruments such as the Large Synoptic Survey Telescope. We have made all our code and data available to the community for the sake of allowing further developments and comparisons at https://github.com/guille-c/Deep-HiTS. Deep-HiTS is licensed under the terms of the GNU General Public License v3.0.

  17. A Double Dwell High Sensitivity GPS Acquisition Scheme Using Binarized Convolution Neural Network

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2018-05-01

    Full Text Available Conventional GPS acquisition methods, such as Max selection and threshold crossing (MAX/TC, estimate GPS code/Doppler by its correlation peak. Different from MAX/TC, a multi-layer binarized convolution neural network (BCNN is proposed to recognize the GPS acquisition correlation envelope in this article. The proposed method is a double dwell acquisition in which a short integration is adopted in the first dwell and a long integration is applied in the second one. To reduce the search space for parameters, BCNN detects the possible envelope which contains the auto-correlation peak in the first dwell to compress the initial search space to 1/1023. Although there is a long integration in the second dwell, the acquisition computation overhead is still low due to the compressed search space. Comprehensively, the total computation overhead of the proposed method is only 1/5 of conventional ones. Experiments show that the proposed double dwell/correlation envelope identification (DD/CEI neural network achieves 2 dB improvement when compared with the MAX/TC under the same specification.

  18. EnzyNet: enzyme classification using 3D convolutional neural networks on spatial representation.

    Science.gov (United States)

    Amidi, Afshine; Amidi, Shervine; Vlachakis, Dimitrios; Megalooikonomou, Vasileios; Paragios, Nikos; Zacharaki, Evangelia I

    2018-01-01

    During the past decade, with the significant progress of computational power as well as ever-rising data availability, deep learning techniques became increasingly popular due to their excellent performance on computer vision problems. The size of the Protein Data Bank (PDB) has increased more than 15-fold since 1999, which enabled the expansion of models that aim at predicting enzymatic function via their amino acid composition. Amino acid sequence, however, is less conserved in nature than protein structure and therefore considered a less reliable predictor of protein function. This paper presents EnzyNet, a novel 3D convolutional neural networks classifier that predicts the Enzyme Commission number of enzymes based only on their voxel-based spatial structure. The spatial distribution of biochemical properties was also examined as complementary information. The two-layer architecture was investigated on a large dataset of 63,558 enzymes from the PDB and achieved an accuracy of 78.4% by exploiting only the binary representation of the protein shape. Code and datasets are available at https://github.com/shervinea/enzynet.

  19. A deep convolutional neural network to analyze position averaged convergent beam electron diffraction patterns.

    Science.gov (United States)

    Xu, W; LeBeau, J M

    2018-05-01

    We establish a series of deep convolutional neural networks to automatically analyze position averaged convergent beam electron diffraction patterns. The networks first calibrate the zero-order disk size, center position, and rotation without the need for pretreating the data. With the aligned data, additional networks then measure the sample thickness and tilt. The performance of the network is explored as a function of a variety of variables including thickness, tilt, and dose. A methodology to explore the response of the neural network to various pattern features is also presented. Processing patterns at a rate of  ∼ 0.1 s/pattern, the network is shown to be orders of magnitude faster than a brute force method while maintaining accuracy. The approach is thus suitable for automatically processing big, 4D STEM data. We also discuss the generality of the method to other materials/orientations as well as a hybrid approach that combines the features of the neural network with least squares fitting for even more robust analysis. The source code is available at https://github.com/subangstrom/DeepDiffraction. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Towards self-correcting quantum memories

    Science.gov (United States)

    Michnicki, Kamil

    This thesis presents a model of self-correcting quantum memories where quantum states are encoded using topological stabilizer codes and error correction is done using local measurements and local dynamics. Quantum noise poses a practical barrier to developing quantum memories. This thesis explores two types of models for suppressing noise. One model suppresses thermalizing noise energetically by engineering a Hamiltonian with a high energy barrier between code states. Thermalizing dynamics are modeled phenomenologically as a Markovian quantum master equation with only local generators. The second model suppresses stochastic noise with a cellular automaton that performs error correction using syndrome measurements and a local update rule. Several ways of visualizing and thinking about stabilizer codes are presented in order to design ones that have a high energy barrier: the non-local Ising model, the quasi-particle graph and the theory of welded stabilizer codes. I develop the theory of welded stabilizer codes and use it to construct a code with the highest known energy barrier in 3-d for spin Hamiltonians: the welded solid code. Although the welded solid code is not fully self correcting, it has some self correcting properties. It has an increased memory lifetime for an increased system size up to a temperature dependent maximum. One strategy for increasing the energy barrier is by mediating an interaction with an external system. I prove a no-go theorem for a class of Hamiltonians where the interaction terms are local, of bounded strength and commute with the stabilizer group. Under these conditions the energy barrier can only be increased by a multiplicative constant. I develop cellular automaton to do error correction on a state encoded using the toric code. The numerical evidence indicates that while there is no threshold, the model can extend the memory lifetime significantly. While of less theoretical importance, this could be practical for real

  1. APPLICATION OF CONVOLUTIONAL NEURAL NETWORK IN CLASSIFICATION OF HIGH RESOLUTION AGRICULTURAL REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    C. Yao

    2017-09-01

    Full Text Available With the rapid development of Precision Agriculture (PA promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN. For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.

  2. Convolutional neural networks for transient candidate vetting in large-scale surveys

    Science.gov (United States)

    Gieseke, Fabian; Bloemen, Steven; van den Bogaard, Cas; Heskes, Tom; Kindler, Jonas; Scalzo, Richard A.; Ribeiro, Valério A. R. M.; van Roestel, Jan; Groot, Paul J.; Yuan, Fang; Möller, Anais; Tucker, Brad E.

    2017-12-01

    Current synoptic sky surveys monitor large areas of the sky to find variable and transient astronomical sources. As the number of detections per night at a single telescope easily exceeds several thousand, current detection pipelines make intensive use of machine learning algorithms to classify the detected objects and to filter out the most interesting candidates. A number of upcoming surveys will produce up to three orders of magnitude more data, which renders high-precision classification systems essential to reduce the manual and, hence, expensive vetting by human experts. We present an approach based on convolutional neural networks to discriminate between true astrophysical sources and artefacts in reference-subtracted optical images. We show that relatively simple networks are already competitive with state-of-the-art systems and that their quality can further be improved via slightly deeper networks and additional pre-processing steps - eventually yielding models outperforming state-of-the-art systems. In particular, our best model correctly classifies about 97.3 per cent of all 'real' and 99.7 per cent of all 'bogus' instances on a test set containing 1942 'bogus' and 227 'real' instances in total. Furthermore, the networks considered in this work can also successfully classify these objects at hand without relying on difference images, which might pave the way for future detection pipelines not containing image subtraction steps at all.

  3. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network.

    Science.gov (United States)

    Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H M; Tin, Chung

    2017-01-01

    Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications.

  4. Deep convolutional neural networks for building extraction from orthoimages and dense image matching point clouds

    Science.gov (United States)

    Maltezos, Evangelos; Doulamis, Nikolaos; Doulamis, Anastasios; Ioannidis, Charalabos

    2017-10-01

    Automatic extraction of buildings from remote sensing data is an attractive research topic, useful for several applications, such as cadastre and urban planning. This is mainly due to the inherent artifacts of the used data and the differences in viewpoint, surrounding environment, and complex shape and size of the buildings. This paper introduces an efficient deep learning framework based on convolutional neural networks (CNNs) toward building extraction from orthoimages. In contrast to conventional deep approaches in which the raw image data are fed as input to the deep neural network, in this paper the height information is exploited as an additional feature being derived from the application of a dense image matching algorithm. As test sites, several complex urban regions of various types of buildings, pixel resolutions and types of data are used, located in Vaihingen in Germany and in Perissa in Greece. Our method is evaluated using the rates of completeness, correctness, and quality and compared with conventional and other "shallow" learning paradigms such as support vector machines. Experimental results indicate that a combination of raw image data with height information, feeding as input to a deep CNN model, provides potentials in building detection in terms of robustness, flexibility, and efficiency.

  5. Automated species-level identification and segmentation of planktonic foraminifera using convolutional neural networks

    Science.gov (United States)

    Marchitto, T. M., Jr.; Mitra, R.; Zhong, B.; Ge, Q.; Kanakiya, B.; Lobaton, E.

    2017-12-01

    Identification and picking of foraminifera from sediment samples is often a laborious and repetitive task. Previous attempts to automate this process have met with limited success, but we show that recent advances in machine learning can be brought to bear on the problem. As a `proof of concept' we have developed a system that is capable of recognizing six species of extant planktonic foraminifera that are commonly used in paleoceanographic studies. Our pipeline begins with digital photographs taken under 16 different illuminations using an LED ring, which are then fused into a single 3D image. Labeled image sets were used to train various types of image classification algorithms, and performance on unlabeled image sets was measured in terms of precision (whether IDs are correct) and recall (what fraction of the target species are found). We find that Convolutional Neural Network (CNN) approaches achieve precision and recall values between 80 and 90%, which is similar precision and better recall than human expert performance using the same type of photographs. We have also trained a CNN to segment the 3D images into individual chambers and apertures, which can not only improve identification performance but also automate the measurement of foraminifera for morphometric studies. Given that there are only 35 species of extant planktonic foraminifera larger than 150 μm, we suggest that a fully automated characterization of this assemblage is attainable. This is the first step toward the realization of a foram picking robot.

  6. Ear Detection under Uncontrolled Conditions with Multiple Scale Faster Region-Based Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-04-01

    Full Text Available Ear detection is an important step in ear recognition approaches. Most existing ear detection techniques are based on manually designing features or shallow learning algorithms. However, researchers found that the pose variation, occlusion, and imaging conditions provide a great challenge to the traditional ear detection methods under uncontrolled conditions. This paper proposes an efficient technique involving Multiple Scale Faster Region-based Convolutional Neural Networks (Faster R-CNN to detect ears from 2D profile images in natural images automatically. Firstly, three regions of different scales are detected to infer the information about the ear location context within the image. Then an ear region filtering approach is proposed to extract the correct ear region and eliminate the false positives automatically. In an experiment with a test set of 200 web images (with variable photographic conditions, 98% of ears were accurately detected. Experiments were likewise conducted on the Collection J2 of University of Notre Dame Biometrics Database (UND-J2 and University of Beira Interior Ear dataset (UBEAR, which contain large occlusion, scale, and pose variations. Detection rates of 100% and 98.22%, respectively, demonstrate the effectiveness of the proposed approach.

  7. Speech coding

    Energy Technology Data Exchange (ETDEWEB)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the

  8. Optimal codes as Tanner codes with cyclic component codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Pinero, Fernando; Zeng, Peng

    2014-01-01

    In this article we study a class of graph codes with cyclic code component codes as affine variety codes. Within this class of Tanner codes we find some optimal binary codes. We use a particular subgraph of the point-line incidence plane of A(2,q) as the Tanner graph, and we are able to describe ...

  9. Fundamentals of the DIGES code

    Energy Technology Data Exchange (ETDEWEB)

    Simos, N.; Philippacopoulos, A.J.

    1994-08-01

    Recently the authors have completed the development of the DIGES code (Direct GEneration of Spectra) for the US Nuclear Regulatory Commission. This paper presents the fundamental theoretical aspects of the code. The basic modeling involves a representation of typical building-foundation configurations as multi degree-of-freedom dynamic which are subjected to dynamic inputs in the form of applied forces or pressure at the superstructure or in the form of ground motions. Both the deterministic as well as the probabilistic aspects of DIGES are described. Alternate ways of defining the seismic input for the estimation of in-structure spectra and their consequences in terms of realistically appraising the variability of the structural response is discussed in detaiL These include definitions of the seismic input by ground acceleration time histories, ground response spectra, Fourier amplitude spectra or power spectral densities. Conversions of one of these forms to another due to requirements imposed by certain analysis techniques have been shown to lead, in certain cases, in controversial results. Further considerations include the definition of the seismic input as the excitation which is directly applied at the foundation of a structure or as the ground motion of the site of interest at a given point. In the latter case issues related to the transferring of this motion to the foundation through convolution/deconvolution and generally through kinematic interaction approaches are considered.

  10. Axillary Lymph Node Evaluation Utilizing Convolutional Neural Networks Using MRI Dataset.

    Science.gov (United States)

    Ha, Richard; Chang, Peter; Karcich, Jenika; Mutasa, Simukayi; Fardanesh, Reza; Wynn, Ralph T; Liu, Michael Z; Jambawalikar, Sachin

    2018-04-25

    The aim of this study is to evaluate the role of convolutional neural network (CNN) in predicting axillary lymph node metastasis, using a breast MRI dataset. An institutional review board (IRB)-approved retrospective review of our database from 1/2013 to 6/2016 identified 275 axillary lymph nodes for this study. Biopsy-proven 133 metastatic axillary lymph nodes and 142 negative control lymph nodes were identified based on benign biopsies (100) and from healthy MRI screening patients (42) with at least 3 years of negative follow-up. For each breast MRI, axillary lymph node was identified on first T1 post contrast dynamic images and underwent 3D segmentation using an open source software platform 3D Slicer. A 32 × 32 patch was then extracted from the center slice of the segmented tumor data. A CNN was designed for lymph node prediction based on each of these cropped images. The CNN consisted of seven convolutional layers and max-pooling layers with 50% dropout applied in the linear layer. In addition, data augmentation and L2 regularization were performed to limit overfitting. Training was implemented using the Adam optimizer, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. Code for this study was written in Python using the TensorFlow module (1.0.0). Experiments and CNN training were done on a Linux workstation with NVIDIA GTX 1070 Pascal GPU. Two class axillary lymph node metastasis prediction models were evaluated. For each lymph node, a final softmax score threshold of 0.5 was used for classification. Based on this, CNN achieved a mean five-fold cross-validation accuracy of 84.3%. It is feasible for current deep CNN architectures to be trained to predict likelihood of axillary lymph node metastasis. Larger dataset will likely improve our prediction model and can potentially be a non-invasive alternative to core needle biopsy and even sentinel lymph node

  11. Aztheca Code

    International Nuclear Information System (INIS)

    Quezada G, S.; Espinosa P, G.; Centeno P, J.; Sanchez M, H.

    2017-09-01

    This paper presents the Aztheca code, which is formed by the mathematical models of neutron kinetics, power generation, heat transfer, core thermo-hydraulics, recirculation systems, dynamic pressure and level models and control system. The Aztheca code is validated with plant data, as well as with predictions from the manufacturer when the reactor operates in a stationary state. On the other hand, to demonstrate that the model is applicable during a transient, an event occurred in a nuclear power plant with a BWR reactor is selected. The plant data are compared with the results obtained with RELAP-5 and the Aztheca model. The results show that both RELAP-5 and the Aztheca code have the ability to adequately predict the behavior of the reactor. (Author)

  12. Characterizing the velocity of a wandering black hole and properties of the surrounding medium using convolutional neural networks

    Science.gov (United States)

    González, J. A.; Guzmán, F. S.

    2018-03-01

    We present a method for estimating the velocity of a wandering black hole and the equation of state for the gas around it based on a catalog of numerical simulations. The method uses machine-learning methods based on convolutional neural networks applied to the classification of images resulting from numerical simulations. Specifically we focus on the supersonic velocity regime and choose the direction of the black hole to be parallel to its spin. We build a catalog of 900 simulations by numerically solving Euler's equations onto the fixed space-time background of a black hole, for two parameters: the adiabatic index Γ with values in the range [1.1, 5 /3 ], and the asymptotic relative velocity of the black hole with respect to the surroundings v∞, with values within [0.2 ,0.8 ]c . For each simulation we produce a 2D image of the gas density once the process of accretion has approached a stationary regime. The results obtained show that the implemented convolutional neural networks are able to correctly classify the adiabatic index 87.78% of the time within an uncertainty of ±0.0284 , while the prediction of the velocity is correct 96.67% of the time within an uncertainty of ±0.03 c . We expect that this combination of a massive number of numerical simulations and machine-learning methods will help us analyze more complicated scenarios related to future high-resolution observations of black holes, like those from the Event Horizon Telescope.

  13. Vocable Code

    DEFF Research Database (Denmark)

    Soon, Winnie; Cox, Geoff

    2018-01-01

    a computational and poetic composition for two screens: on one of these, texts and voices are repeated and disrupted by mathematical chaos, together exploring the performativity of code and language; on the other, is a mix of a computer programming syntax and human language. In this sense queer code can...... be understood as both an object and subject of study that intervenes in the world’s ‘becoming' and how material bodies are produced via human and nonhuman practices. Through mixing the natural and computer language, this article presents a script in six parts from a performative lecture for two persons...

  14. NSURE code

    International Nuclear Information System (INIS)

    Rattan, D.S.

    1993-11-01

    NSURE stands for Near-Surface Repository code. NSURE is a performance assessment code. developed for the safety assessment of near-surface disposal facilities for low-level radioactive waste (LLRW). Part one of this report documents the NSURE model, governing equations and formulation of the mathematical models, and their implementation under the SYVAC3 executive. The NSURE model simulates the release of nuclides from an engineered vault, their subsequent transport via the groundwater and surface water pathways tot he biosphere, and predicts the resulting dose rate to a critical individual. Part two of this report consists of a User's manual, describing simulation procedures, input data preparation, output and example test cases

  15. Neural Decoder for Topological Codes

    Science.gov (United States)

    Torlai, Giacomo; Melko, Roger G.

    2017-07-01

    We present an algorithm for error correction in topological codes that exploits modern machine learning techniques. Our decoder is constructed from a stochastic neural network called a Boltzmann machine, of the type extensively used in deep learning. We provide a general prescription for the training of the network and a decoding strategy that is applicable to a wide variety of stabilizer codes with very little specialization. We demonstrate the neural decoder numerically on the well-known two-dimensional toric code with phase-flip errors.

  16. A proposed orbit and vertical dispersion correction system for PEP

    International Nuclear Information System (INIS)

    Close, E.; Cornacchia, M.; King, A.S.; Lee, M.J.

    1978-07-01

    The proposed arrangement of position monitors and dipole magnets for the closed orbit correction system in PEP is described. The computer code ALIGN, which simulates and corrects closed orbit displacements, has been used to study the most effective layout of monitors and correctors. The vertical dispersion function has been computed before and after closed orbit correction. The results indicate that the residual vertical dispersion after the orbit is corrected could exceed the tolerable values. A correction procedure for the vertical dispersion has been studied with the compute code CO-OP and this scheme of correction has been verified experimentally in SPEAR. 9 refs., 8 figs., 2 tabs

  17. Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience.

    Science.gov (United States)

    Komeda, Yoriaki; Handa, Hisashi; Watanabe, Tomohiro; Nomura, Takanobu; Kitahashi, Misaki; Sakurai, Toshiharu; Okamoto, Ayana; Minami, Tomohiro; Kono, Masashi; Arizumi, Tadaaki; Takenaka, Mamoru; Hagiwara, Satoru; Matsui, Shigenaga; Nishida, Naoshi; Kashida, Hiroshi; Kudo, Masatoshi

    2017-01-01

    Computer-aided diagnosis (CAD) is becoming a next-generation tool for the diagnosis of human disease. CAD for colon polyps has been suggested as a particularly useful tool for trainee colonoscopists, as the use of a CAD system avoids the complications associated with endoscopic resections. In addition to conventional CAD, a convolutional neural network (CNN) system utilizing artificial intelligence (AI) has been developing rapidly over the past 5 years. We attempted to generate a unique CNN-CAD system with an AI function that studied endoscopic images extracted from movies obtained with colonoscopes used in routine examinations. Here, we report our preliminary results of this novel CNN-CAD system for the diagnosis of colon polyps. A total of 1,200 images from cases of colonoscopy performed between January 2010 and December 2016 at Kindai University Hospital were used. These images were extracted from the video of actual endoscopic examinations. Additional video images from 10 cases of unlearned processes were retrospectively assessed in a pilot study. They were simply diagnosed as either an adenomatous or nonadenomatous polyp. The number of images used by AI to learn to distinguish adenomatous from nonadenomatous was 1,200:600. These images were extracted from the videos of actual endoscopic examinations. The size of each image was adjusted to 256 × 256 pixels. A 10-hold cross-validation was carried out. The accuracy of the 10-hold cross-validation is 0.751, where the accuracy is the ratio of the number of correct answers over the number of all the answers produced by the CNN. The decisions by the CNN were correct in 7 of 10 cases. A CNN-CAD system using routine colonoscopy might be useful for the rapid diagnosis of colorectal polyp classification. Further prospective studies in an in vivo setting are required to confirm the effectiveness of a CNN-CAD system in routine colonoscopy. © 2017 S. Karger AG, Basel.

  18. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images.

    Science.gov (United States)

    Hirasawa, Toshiaki; Aoyama, Kazuharu; Tanimoto, Tetsuya; Ishihara, Soichiro; Shichijo, Satoki; Ozawa, Tsuyoshi; Ohnishi, Tatsuya; Fujishiro, Mitsuhiro; Matsuo, Keigo; Fujisaki, Junko; Tada, Tomohiro

    2018-07-01

    Image recognition using artificial intelligence with deep learning through convolutional neural networks (CNNs) has dramatically improved and been increasingly applied to medical fields for diagnostic imaging. We developed a CNN that can automatically detect gastric cancer in endoscopic images. A CNN-based diagnostic system was constructed based on Single Shot MultiBox Detector architecture and trained using 13,584 endoscopic images of gastric cancer. To evaluate the diagnostic accuracy, an independent test set of 2296 stomach images collected from 69 consecutive patients with 77 gastric cancer lesions was applied to the constructed CNN. The CNN required 47 s to analyze 2296 test images. The CNN correctly diagnosed 71 of 77 gastric cancer lesions with an overall sensitivity of 92.2%, and 161 non-cancerous lesions were detected as gastric cancer, resulting in a positive predictive value of 30.6%. Seventy of the 71 lesions (98.6%) with a diameter of 6 mm or more as well as all invasive cancers were correctly detected. All missed lesions were superficially depressed and differentiated-type intramucosal cancers that were difficult to distinguish from gastritis even for experienced endoscopists. Nearly half of the false-positive lesions were gastritis with changes in color tone or an irregular mucosal surface. The constructed CNN system for detecting gastric cancer could process numerous stored endoscopic images in a very short time with a clinically relevant diagnostic ability. It may be well applicable to daily clinical practice to reduce the burden of endoscopists.

  19. Training strategy for convolutional neural networks in pedestrian gender classification

    Science.gov (United States)

    Ng, Choon-Boon; Tay, Yong-Haur; Goi, Bok-Min

    2017-06-01

    In this work, we studied a strategy for training a convolutional neural network in pedestrian gender classification with limited amount of labeled training data. Unsupervised learning by k-means clustering on pedestrian images was used to learn the filters to initialize the first layer of the network. As a form of pre-training, supervised learning for the related task of pedestrian classification was performed. Finally, the network was fine-tuned for gender classification. We found that this strategy improved the network's generalization ability in gender classification, achieving better test results when compared to random weights initialization and slightly more beneficial than merely initializing the first layer filters by unsupervised learning. This shows that unsupervised learning followed by pre-training with pedestrian images is an effective strategy to learn useful features for pedestrian gender classification.

  20. Accurate lithography simulation model based on convolutional neural networks

    Science.gov (United States)

    Watanabe, Yuki; Kimura, Taiki; Matsunawa, Tetsuaki; Nojima, Shigeki

    2017-07-01

    Lithography simulation is an essential technique for today's semiconductor manufacturing process. In order to calculate an entire chip in realistic time, compact resist model is commonly used. The model is established for faster calculation. To have accurate compact resist model, it is necessary to fix a complicated non-linear model function. However, it is difficult to decide an appropriate function manually because there are many options. This paper proposes a new compact resist model using CNN (Convolutional Neural Networks) which is one of deep learning techniques. CNN model makes it possible to determine an appropriate model function and achieve accurate simulation. Experimental results show CNN model can reduce CD prediction errors by 70% compared with the conventional model.

  1. An effective convolutional neural network model for Chinese sentiment analysis

    Science.gov (United States)

    Zhang, Yu; Chen, Mengdong; Liu, Lianzhong; Wang, Yadong

    2017-06-01

    Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still needs lots of further work. In recent years CNN has also been used to deal with NLP tasks, and already achieved good results. However, these methods ignore the effective use of a large number of existing sentimental resources. For this purpose, we propose a Lexicon-based Sentiment Convolutional Neural Networks (LSCNN) model focus on Weibo's sentiment analysis, which combines two CNNs, trained individually base on sentiment features and word embedding, at the fully connected hidden layer. The experimental results show that our model outperforms the CNN model only with word embedding features on microblog sentiment analysis task.

  2. Classification of decays involving variable decay chains with convolutional architectures

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Vidyo contribution We present a technique to perform classification of decays that exhibit decay chains involving a variable number of particles, which include a broad class of $B$ meson decays sensitive to new physics. The utility of such decays as a probe of the Standard Model is dependent upon accurate determination of the decay rate, which is challenged by the combinatorial background arising in high-multiplicity decay modes. In our model, each particle in the decay event is represented as a fixed-dimensional vector of feature attributes, forming an $n \\times k$ representation of the event, where $n$ is the number of particles in the event and $k$ is the dimensionality of the feature vector. A convolutional architecture is used to capture dependencies between the embedded particle representations and perform the final classification. The proposed model performs outperforms standard machine learning approaches based on Monte Carlo studies across a range of variable final-state decays with the Belle II det...

  3. CONEDEP: COnvolutional Neural network based Earthquake DEtection and Phase Picking

    Science.gov (United States)

    Zhou, Y.; Huang, Y.; Yue, H.; Zhou, S.; An, S.; Yun, N.

    2017-12-01

    We developed an automatic local earthquake detection and phase picking algorithm based on Fully Convolutional Neural network (FCN). The FCN algorithm detects and segments certain features (phases) in 3 component seismograms to realize efficient picking. We use STA/LTA algorithm and template matching algorithm to construct the training set from seismograms recorded 1 month before and after the Wenchuan earthquake. Precise P and S phases are identified and labeled to construct the training set. Noise data are produced by combining back-ground noise and artificial synthetic noise to form the equivalent scale of noise set as the signal set. Training is performed on GPUs to achieve efficient convergence. Our algorithm has significantly improved performance in terms of the detection rate and precision in comparison with STA/LTA and template matching algorithms.

  4. Computational optical tomography using 3-D deep convolutional neural networks

    Science.gov (United States)

    Nguyen, Thanh; Bui, Vy; Nehmetallah, George

    2018-04-01

    Deep convolutional neural networks (DCNNs) offer a promising performance for many image processing areas, such as super-resolution, deconvolution, image classification, denoising, and segmentation, with outstanding results. Here, we develop for the first time, to our knowledge, a method to perform 3-D computational optical tomography using 3-D DCNN. A simulated 3-D phantom dataset was first constructed and converted to a dataset of phase objects imaged on a spatial light modulator. For each phase image in the dataset, the corresponding diffracted intensity image was experimentally recorded on a CCD. We then experimentally demonstrate the ability of the developed 3-D DCNN algorithm to solve the inverse problem by reconstructing the 3-D index of refraction distributions of test phantoms from the dataset from their corresponding diffraction patterns.

  5. Drug-Drug Interaction Extraction via Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Shengyu Liu

    2016-01-01

    Full Text Available Drug-drug interaction (DDI extraction as a typical relation extraction task in natural language processing (NLP has always attracted great attention. Most state-of-the-art DDI extraction systems are based on support vector machines (SVM with a large number of manually defined features. Recently, convolutional neural networks (CNN, a robust machine learning method which almost does not need manually defined features, has exhibited great potential for many NLP tasks. It is worth employing CNN for DDI extraction, which has never been investigated. We proposed a CNN-based method for DDI extraction. Experiments conducted on the 2013 DDIExtraction challenge corpus demonstrate that CNN is a good choice for DDI extraction. The CNN-based DDI extraction method achieves an F-score of 69.75%, which outperforms the existing best performing method by 2.75%.

  6. Finding Neutrinos in LArTPCs using Convolutional Neural Networks

    Science.gov (United States)

    Wongjirad, Taritree

    2017-09-01

    Deep learning algorithms, which have emerged over the last decade, are opening up new ways to analyze data for many particle physics experiments. MicroBooNE, which is a neutrino experiment at Fermilab, has been exploring the use of such algorithms, in particular, convolutional neural networks (CNNS). CNNs are the state-of-the-art method for a large class of problems involving the analysis of images. This makes CNNs an attractive approach for MicroBooNE, whose detector, a liquid argon time projection chamber (LArTPC), produces high-resolution images of particle interactions. In this talk, I will discuss the ways CNNs can be applied to tasks like neutrino interaction detection and particle identification in MicroBooNE and LArTPCs.

  7. Radio frequency interference mitigation using deep convolutional neural networks

    Science.gov (United States)

    Akeret, J.; Chang, C.; Lucchi, A.; Refregier, A.

    2017-01-01

    We propose a novel approach for mitigating radio frequency interference (RFI) signals in radio data using the latest advances in deep learning. We employ a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. We train and assess the performance of this network using the HIDE &SEEK radio data simulation and processing packages, as well as early Science Verification data acquired with the 7m single-dish telescope at the Bleien Observatory. We find that our U-Net implementation is showing competitive accuracy to classical RFI mitigation algorithms such as SEEK's SUMTHRESHOLD implementation. We publish our U-Net software package on GitHub under GPLv3 license.

  8. Forecasting Flare Activity Using Deep Convolutional Neural Networks

    Science.gov (United States)

    Hernandez, T.

    2017-12-01

    Current operational flare forecasting relies on human morphological analysis of active regions and the persistence of solar flare activity through time (i.e. that the Sun will continue to do what it is doing right now: flaring or remaining calm). In this talk we present the results of applying deep Convolutional Neural Networks (CNNs) to the problem of solar flare forecasting. CNNs operate by training a set of tunable spatial filters that, in combination with neural layer interconnectivity, allow CNNs to automatically identify significant spatial structures predictive for classification and regression problems. We will start by discussing the applicability and success rate of the approach, the advantages it has over non-automated forecasts, and how mining our trained neural network provides a fresh look into the mechanisms behind magnetic energy storage and release.

  9. Convolutional neural networks with balanced batches for facial expressions recognition

    Science.gov (United States)

    Battini Sönmez, Elena; Cangelosi, Angelo

    2017-03-01

    This paper considers the issue of fully automatic emotion classification on 2D faces. In spite of the great effort done in recent years, traditional machine learning approaches based on hand-crafted feature extraction followed by the classification stage failed to develop a real-time automatic facial expression recognition system. The proposed architecture uses Convolutional Neural Networks (CNN), which are built as a collection of interconnected processing elements to simulate the brain of human beings. The basic idea of CNNs is to learn a hierarchical representation of the input data, which results in a better classification performance. In this work we present a block-based CNN algorithm, which uses noise, as data augmentation technique, and builds batches with a balanced number of samples per class. The proposed architecture is a very simple yet powerful CNN, which can yield state-of-the-art accuracy on the very competitive benchmark algorithm of the Extended Cohn Kanade database.

  10. Network Intrusion Detection through Stacking Dilated Convolutional Autoencoders

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-01-01

    Full Text Available Network intrusion detection is one of the most important parts for cyber security to protect computer systems against malicious attacks. With the emergence of numerous sophisticated and new attacks, however, network intrusion detection techniques are facing several significant challenges. The overall objective of this study is to learn useful feature representations automatically and efficiently from large amounts of unlabeled raw network traffic data by using deep learning approaches. We propose a novel network intrusion model by stacking dilated convolutional autoencoders and evaluate our method on two new intrusion detection datasets. Several experiments were carried out to check the effectiveness of our approach. The comparative experimental results demonstrate that the proposed model can achieve considerably high performance which meets the demand of high accuracy and adaptability of network intrusion detection systems (NIDSs. It is quite potential and promising to apply our model in the large-scale and real-world network environments.

  11. Fully Convolutional Network Based Shadow Extraction from GF-2 Imagery

    Science.gov (United States)

    Li, Z.; Cai, G.; Ren, H.

    2018-04-01

    There are many shadows on the high spatial resolution satellite images, especially in the urban areas. Although shadows on imagery severely affect the information extraction of land cover or land use, they provide auxiliary information for building extraction which is hard to achieve a satisfactory accuracy through image classification itself. This paper focused on the method of building shadow extraction by designing a fully convolutional network and training samples collected from GF-2 satellite imagery in the urban region of Changchun city. By means of spatial filtering and calculation of adjacent relationship along the sunlight direction, the small patches from vegetation or bridges have been eliminated from the preliminary extracted shadows. Finally, the building shadows were separated. The extracted building shadow information from the proposed method in this paper was compared with the results from the traditional object-oriented supervised classification algorihtms. It showed that the deep learning network approach can improve the accuracy to a large extent.

  12. Finger vein recognition based on convolutional neural network

    Directory of Open Access Journals (Sweden)

    Meng Gesi

    2017-01-01

    Full Text Available Biometric Authentication Technology has been widely used in this information age. As one of the most important technology of authentication, finger vein recognition attracts our attention because of its high security, reliable accuracy and excellent performance. However, the current finger vein recognition system is difficult to be applied widely because its complicated image pre-processing and not representative feature vectors. To solve this problem, a finger vein recognition method based on the convolution neural network (CNN is proposed in the paper. The image samples are directly input into the CNN model to extract its feature vector so that we can make authentication by comparing the Euclidean distance between these vectors. Finally, the Deep Learning Framework Caffe is adopted to verify this method. The result shows that there are great improvements in both speed and accuracy rate compared to the previous research. And the model has nice robustness in illumination and rotation.

  13. Real Time Eye Detector with Cascaded Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Bin Li

    2018-01-01

    Full Text Available An accurate and efficient eye detector is essential for many computer vision applications. In this paper, we present an efficient method to evaluate the eye location from facial images. First, a group of candidate regions with regional extreme points is quickly proposed; then, a set of convolution neural networks (CNNs is adopted to determine the most likely eye region and classify the region as left or right eye; finally, the center of the eye is located with other CNNs. In the experiments using GI4E, BioID, and our datasets, our method attained a detection accuracy which is comparable to existing state-of-the-art methods; meanwhile, our method was faster and adaptable to variations of the images, including external light changes, facial occlusion, and changes in image modality.

  14. Convolution product construction of interactions in probabilistic physical models

    International Nuclear Information System (INIS)

    Ratsimbarison, H.M.; Raboanary, R.

    2007-01-01

    This paper aims to give a probabilistic construction of interactions which may be relevant for building physical theories such as interacting quantum field theories. We start with the path integral definition of partition function in quantum field theory which recall us the probabilistic nature of this physical theory. From a Gaussian law considered as free theory, an interacting theory is constructed by nontrivial convolution product between the free theory and an interacting term which is also a probability law. The resulting theory, again a probability law, exhibits two proprieties already present in nowadays theories of interactions such as Gauge theory : the interaction term does not depend on the free term, and two different free theories can be implemented with the same interaction.

  15. Plane-wave decomposition by spherical-convolution microphone array

    Science.gov (United States)

    Rafaely, Boaz; Park, Munhum

    2004-05-01

    Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.

  16. Deep learning with convolutional neural network in radiology.

    Science.gov (United States)

    Yasaka, Koichiro; Akai, Hiroyuki; Kunimatsu, Akira; Kiryu, Shigeru; Abe, Osamu

    2018-04-01

    Deep learning with a convolutional neural network (CNN) is gaining attention recently for its high performance in image recognition. Images themselves can be utilized in a learning process with this technique, and feature extraction in advance of the learning process is not required. Important features can be automatically learned. Thanks to the development of hardware and software in addition to techniques regarding deep learning, application of this technique to radiological images for predicting clinically useful information, such as the detection and the evaluation of lesions, etc., are beginning to be investigated. This article illustrates basic technical knowledge regarding deep learning with CNNs along the actual course (collecting data, implementing CNNs, and training and testing phases). Pitfalls regarding this technique and how to manage them are also illustrated. We also described some advanced topics of deep learning, results of recent clinical studies, and the future directions of clinical application of deep learning techniques.

  17. Static facial expression recognition with convolution neural networks

    Science.gov (United States)

    Zhang, Feng; Chen, Zhong; Ouyang, Chao; Zhang, Yifei

    2018-03-01

    Facial expression recognition is a currently active research topic in the fields of computer vision, pattern recognition and artificial intelligence. In this paper, we have developed a convolutional neural networks (CNN) for classifying human emotions from static facial expression into one of the seven facial emotion categories. We pre-train our CNN model on the combined FER2013 dataset formed by train, validation and test set and fine-tune on the extended Cohn-Kanade database. In order to reduce the overfitting of the models, we utilized different techniques including dropout and batch normalization in addition to data augmentation. According to the experimental result, our CNN model has excellent classification performance and robustness for facial expression recognition.

  18. Operator quantum error-correcting subsystems for self-correcting quantum memories

    International Nuclear Information System (INIS)

    Bacon, Dave

    2006-01-01

    The most general method for encoding quantum information is not to encode the information into a subspace of a Hilbert space, but to encode information into a subsystem of a Hilbert space. Recently this notion has led to a more general notion of quantum error correction known as operator quantum error correction. In standard quantum error-correcting codes, one requires the ability to apply a procedure which exactly reverses on the error-correcting subspace any correctable error. In contrast, for operator error-correcting subsystems, the correction procedure need not undo the error which has occurred, but instead one must perform corrections only modulo the subsystem structure. This does not lead to codes which differ from subspace codes, but does lead to recovery routines which explicitly make use of the subsystem structure. Here we present two examples of such operator error-correcting subsystems. These examples are motivated by simple spatially local Hamiltonians on square and cubic lattices. In three dimensions we provide evidence, in the form a simple mean field theory, that our Hamiltonian gives rise to a system which is self-correcting. Such a system will be a natural high-temperature quantum memory, robust to noise without external intervening quantum error-correction procedures

  19. The Aster code; Code Aster

    Energy Technology Data Exchange (ETDEWEB)

    Delbecq, J.M

    1999-07-01

    The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)

  20. Signal Constellations for Multilevel Coded Modulation with Sparse Graph Codes

    NARCIS (Netherlands)

    Cronie, H.S.

    2005-01-01

    A method to combine error-correction coding and spectral efficient modulation for transmission over channels with Gaussian noise is presented. The method of modulation leads to a signal constellation in which the constellation symbols have a nonuniform distribution. This gives a so-called shape gain