WorldWideScience

Sample records for corrected hawking radiation

  1. Hawking radiation and secularly growing loop corrections

    CERN Document Server

    Akhmedov, Emil T; Popov, Fedor K

    2016-01-01

    We study the expectation value of the energy momentum tensor during thin shell collapse for a massive, real, scalar field theory. At tree-level, we find thermal, Hawking-type, behaviour for the energy flux. Using the Schwinger-Keldysh technique, we calculate two-loop corrections to the tree-level correlation functions and show that they exhibit secular growth, suggesting the breakdown of the perturbation theory.

  2. Hawking radiation

    Science.gov (United States)

    Parentani, Renaud; Spindel, Philippe

    2011-12-01

    Hawking radiation is the thermal radiation predicted to be spontaneously emitted by black holes. It arises from the steady conversion of quantum vacuum fluctuations into pairs of particles, one of which escaping at infinity while the other is trapped inside the black hole horizon. It is named after the physicist Stephen Hawking who derived its existence in 1974. This radiation reduces the mass of black holes and is therefore also known as black hole evaporation.

  3. Corrections to the Hawking tunneling radiation in extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Dehghani, M., E-mail: dehghan22@gmail.com

    2015-10-07

    Although the tunneling approach is fully established for black hole radiation, much work has been done to support the extension of this approach to more general settings. In this paper the Parikh–Kraus–Wilczeck tunneling proposal of black hole tunneling radiation is considered. The thermodynamics of the higher dimensional Schwarzschild black hole is studied based on the generalized uncertainty principle (GUP) and the modified dispersion relation (MDR) analysis, separately. It is shown that entropy and the rate of the higher dimensional Schwarzschild black hole tunneling radiation receive some corrections. The leading-order corrections does not contain the logarithmic term of the entropy, if the dimensions of the space–time is an odd number. Through the comparison, it is found that the results of these two alternative approaches are identical if one uses the suitable expansion coefficients.

  4. Corrected Hawking Radiation of Dirac Particles from a General Static Riemann Black Hole

    Directory of Open Access Journals (Sweden)

    Ge-Rui Chen

    2013-01-01

    Full Text Available Considering energy conservation and the back reaction of radiating particles to the spacetime, we investigate the massive Dirac particles' Hawking radiation from a general static Riemann black hole using improved Damour-Ruffini method. A direct consequence is that the radiation spectrum is not strictly thermal. The correction to the thermal spectrum is consistent with an underlying unitary quantum theory and this may have profound implications for the black hole information loss paradox.

  5. Corrections to the Hawking Tunneling Radiation from MDR

    Science.gov (United States)

    Kamali, A. D.; Aspoukeh, P.

    2016-10-01

    We investigate some aspects of black hole (BH) thermodynamics in the framework of a modified dispersion relation. We calculate a minimal length and a maximal momentum to find a relation between spacetime dimensions and the presence of logarithmic prefactor in the black hole entropy relation. We show that the logarithmic prefactor appears not only in an even number of dimensions but also in an odd number of dimensions. In addition, the sign of the logarithmic factor is different for positive values of α in all dimensions. Using the corrected entropy, the black hole radiation probability is calculated in the tunneling formalism, which is corrected up to the same order of the Planck length and shows a more probable quantum tunneling.

  6. Fading Hawking Radiation

    CERN Document Server

    Sakalli, I; Pasaoglu, H

    2012-01-01

    In this study, we explore a particular type Hawking radiation which ends with zero temperature and entropy. The appropriate black holes for this purpose are the linear dilaton black holes. In addition to the black hole choice, a recent formalism in which the Parikh-Wilczek's tunneling formalism amalgamated with quantum corrections to all orders in \\hbar is considered. The adjustment of the coefficients of the quantum corrections plays a crucial role on this particular Hawking radiation. The obtained tunneling rate indicates that the radiation is not pure thermal anymore, and hence correlations of outgoing quanta are capable of carrying away information encoded within them. Finally, we show in detail that when the linear dilaton black hole completely evaporates through such a particular radiation, entropy of the radiation becomes identical with the entropy of the black hole, which corresponds to "no information loss".

  7. Correction to Hawking Radiation Characteristics of Stationary Demianski-Newman Black Hole

    Institute of Scientific and Technical Information of China (English)

    JIANG Qing-Quan; YANG Shu-Zheng

    2006-01-01

    The pure thermal spectrum in dragging coordinate system and the tunneling radiation characteristics across the event horizon for stationary Demianski-Newman black hole are researched. The result shows that the tunneling rate of the particle is relevant to Bekenstein-Hawking entropy, and the derived radiate spectrum is not strictly pure thermal,but is consistent with underlying unitary theory. Finally, we use the obtained results to reduce to stationary Kerr black hole and static Schwarzschild black hole, and find that only when ignoring the spectrum at higher energies is the tunneling radiation spectrum consistent with Hawking pure thermal one.

  8. Non-Thermal Corrections to Hawking Radiation Versus the Information Paradox

    CERN Document Server

    Dvali, Gia

    2015-01-01

    We provide a model-independent argument indicating that for a black hole of entropy N the non-thermal deviations from Hawking radiation, per each emission time, are of order 1/N, as opposed to exp(-N). This fact abolishes the standard a priory basis for the information paradox.

  9. Non-thermal corrections to Hawking radiation versus the information paradox

    Energy Technology Data Exchange (ETDEWEB)

    Dvali, Gia [Arnold Sommerfeld Center for Theoretical Physics, Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany); Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY (United States)

    2016-01-15

    We provide a model-independent argument indicating that for a black hole of entropy N the non-thermal deviations from Hawking radiation, per each emission time, are of order 1/N, as opposed to e{sup -N}. This fact abolishes the standard a priory basis for the information paradox. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Hawking radiation from a collapsing quantum shell

    Science.gov (United States)

    Pullin, Jorge; Eyheralde, Rodrigo; Gambini, Rodolfo

    2017-01-01

    We study Hawking radiation from a collapsing shell with uncertainty in its position and momentum. We see there are deviations from the usual spectrum early on in the evolution, tending asymptotically to the usual spectrum plus small corrections.

  11. The third order correction on Hawking radiation and entropy conservation during black hole evaporation process

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hao-Peng; Liu, Wen-Biao, E-mail: wbliu@bnu.edu.cn

    2016-08-10

    Using Parikh–Wilczek tunneling framework, we calculate the tunneling rate from a Schwarzschild black hole under the third order WKB approximation, and then obtain the expressions for emission spectrum and black hole entropy to the third order correction. The entropy contains four terms including the Bekenstein–Hawking entropy, the logarithmic term, the inverse area term, and the square of inverse area term. In addition, we analyse the correlation between sequential emissions under this approximation. It is shown that the entropy is conserved during the process of black hole evaporation, which consists with the request of quantum mechanics and implies the information is conserved during this process. We also compare the above result with that of pure thermal spectrum case, and find that the non-thermal correction played an important role.

  12. The third order correction on Hawking radiation and entropy conservation during black hole evaporation process

    Directory of Open Access Journals (Sweden)

    Hao-Peng Yan

    2016-08-01

    Full Text Available Using Parikh–Wilczek tunneling framework, we calculate the tunneling rate from a Schwarzschild black hole under the third order WKB approximation, and then obtain the expressions for emission spectrum and black hole entropy to the third order correction. The entropy contains four terms including the Bekenstein–Hawking entropy, the logarithmic term, the inverse area term, and the square of inverse area term. In addition, we analyse the correlation between sequential emissions under this approximation. It is shown that the entropy is conserved during the process of black hole evaporation, which consists with the request of quantum mechanics and implies the information is conserved during this process. We also compare the above result with that of pure thermal spectrum case, and find that the non-thermal correction played an important role.

  13. Hawking Radiation in Dispersive Media

    CERN Document Server

    Robertson, Scott James

    2011-01-01

    Hawking radiation, despite its presence in theoretical physics for over thirty years, remains elusive and undetected. It also suffers, in its original context of gravitational black holes, from conceptual difficulties. Of particular note is the trans-Planckian problem, which is concerned with the apparent origin of the radiation in absurdly high frequencies. In order to gain better theoretical understanding and, it is hoped, experimental verification of Hawking radiation, much study is being devoted to systems which model the spacetime geometry of black holes, and which, by analogy, are also thought to emit Hawking radiation. These analogue systems typically exhibit dispersion, which regularizes the wave behaviour at the horizon but does not lend itself well to analytic treatment, thus rendering Hawking's prediction less secure. A general analytic method for dealing with Hawking radiation in dispersive systems has proved difficult to find. This thesis presents new numerical and analytic results for Hawking em...

  14. Uninformed Hawking Radiation

    CERN Document Server

    Sakalli, I

    2014-01-01

    We show in detail that the Parikh-Wilczek tunneling method (PWTM), which was designed for resolving the information loss problem in Hawking radiation (HR)fails whenever the radiation occurs from an isothermal process. The PWTM aims to produce a non-thermal HR which adumbrates the resolution of the problem of unitarity in quantum mechanics (QM), and consequently the entropy (or information) conservation problem. The effectiveness of the method has been satisfactorily tested on numerous black holes (BHs). However, it has been shown that the isothermal HR, which results from the emission of the uncharged particles of the linear dilaton BH (LDBH) described in the Einstein-Maxwell-Dilaton (EMD) theory, the PWTM has vulnerability in having non-thermal radiation. In particular, we consider Painlev\\'{e}-Gullstrand coordinates (PGCs) and isotropic coordinates (ICs) in order to prove the aformentioned failure in the PWTM. While carrying out calculations in the ICs, we also highlight the effect of the refractive index o...

  15. Uninformed Hawking radiation

    Science.gov (United States)

    Sakalli, I.; Ovgun, A.

    2015-04-01

    We show in detail that the Parikh-Wilczek tunneling method (PWTM), which was designed for resolving the information loss problem in Hawking radiation (HR) fails whenever the radiation occurs from an isothermal process. The PWTM aims to produce a non-thermal HR which adumbrates the resolution of the problem of unitarity in quantum mechanics (QM), and consequently the entropy (or information) conservation problem. The effectiveness of the method has been satisfactorily tested on numerous black holes (BHs). However, it has been shown that the isothermal HR, which results from the emission of the uncharged particles of the linear dilaton BH (LDBH) described in the Einstein-Maxwell-Dilaton (EMD) theory, the PWTM has vulnerability in having non-thermal radiation. In particular, we consider Painlevé-Gullstrand coordinates (PGCs) and isotropic coordinates (ICs) in order to prove the aforementioned failure in the PWTM. While carrying out calculations in the ICs, we also highlight the effect of the refractive index on the null geodesics.

  16. Hawking radiation without black hole entropy

    CERN Document Server

    Visser, M

    1998-01-01

    In this Letter I point out that Hawking radiation is a purely kinematic effect that is generic to Lorentzian geometries. Hawking radiation arises for any test field on any Lorentzian geometry containing an event horizon regardless of whether or not the Lorentzian geometry satisfies the dynamical Einstein equations of general relativity. On the other hand, the classical laws of black hole mechanics are intrinsically linked to the Einstein equations of general relativity (or their perturbative extension into either semiclassical quantum gravity or string-inspired scenarios). In particular, the laws of black hole thermodynamics, and the identification of the entropy of a black hole with its area, are inextricably linked with the dynamical equations satisfied by the Lorentzian geometry: entropy is proportional to area (plus corrections) if and only if the dynamical equations are the Einstein equations (plus corrections). It is quite possible to have Hawking radiation occur in physical situations in which the laws...

  17. Vacuum polarization and Hawking radiation

    Science.gov (United States)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  18. Hawking radiation is corpuscular

    CERN Document Server

    Mück, Wolfgang

    2016-01-01

    The total number of Hawking quanta emitted during the evaporation of a Schwarzschild black hole is proportional to the square of the initial mass and proportional to the Bekenstein entropy. This simple, but seemingly unnoticed, fact is interpreted in terms of the recent discovery of black hole soft hair.

  19. Hawking radiation without transplanckian frequencies

    CERN Document Server

    Brout, R; Parentani, R; Spindel, P

    1995-01-01

    In a recent work, Unruh showed that Hawking radiation is unaffected by a truncation of free field theory at the Planck scale. His analysis was performed numerically and based on a hydrodynamical model. In this work, by analytical methods, the mathematical and physical origin of Unruh's result is revealed. An alternative truncation scheme which may be more appropriate for black hole physics is proposed and analyzed. In both schemes the thermal Hawking radiation remains unaffected even though transplanckian energies no longer appear. The universality of this result is explained by working in momentum space. In that representation, in the presence of a horizon, the d'Alembertian equation becomes a singular first order equation. In addition, the boundary conditions corresponding to vacuum before the black hole formed are that the in--modes contain positive momenta only. Both properties remain valid when the spectrum is truncated and they suffice to obtain Hawking radiation.

  20. Hawking Radiation and Classical Tunneling

    CERN Document Server

    Tracy, Eugene R

    2015-01-01

    Acoustic waves in fluids undergoing the transition from sub- to supersonic flow satisfy governing equations similar to those for light waves in the immediate vicinity of a black hole event horizon. This acoustic analogy has been used by Unruh and others as a conceptual model for `Hawking radiation.' Here we use variational methods, originally introduced by Brizard for the study of linearized MHD, and ray phase space methods, to analyze linearized acoustics in the presence of background flows. The variational formulation endows the evolution equations with natural Hermitian and symplectic structures that prove useful for later analysis. We derive a $2\\times 2$ normal form governing the wave evolution in the vicinity of the `event horizon.' This shows that the acoustic model can be reduced locally (in ray phase space) to a standard (scalar) tunneling process weakly coupled to a unidirectional non-dispersive wave (the `incoming wave'). Given the normal form, the Hawking `thermal spectrum' can be derived by invok...

  1. GUP assisted Hawking radiation of rotating acoustic black holes

    Science.gov (United States)

    Sakalli, I.; Övgün, A.; Jusufi, K.

    2016-10-01

    Recent studies (Steinhauer in Nat. Phys. 10:864, 2014, Phys. Rev. D 92:024043, 2015) provide compelling evidences that Hawking radiation could be experimentally proven by using an analogue black hole. In this paper, taking this situation into account we study the quantum gravitational effects on the Hawking radiation of rotating acoustic black holes. For this purpose, we consider the generalized uncertainty principle (GUP) in the phenomenon of quantum tunneling. We firstly take the modified commutation relations into account to compute the GUP modified Hawking temperature when the massive scalar particles tunnel from this black hole. Then, we find a remarkably instructive expression for the GUP entropy to derive the quantum gravity corrected Hawking temperature of the rotating acoustic black hole.

  2. GUP Assisted Hawking Radiation of Rotating Acoustic Black Holes

    CERN Document Server

    Sakalli, I; Jusufi, K

    2016-01-01

    Recent studies [J. Steinhauer, Nature Phys., $\\textbf{10}$, 864 (2014); Phys. Rev. D $\\textbf{92}$, 024043 (2015)] provide compelling evidences that Hawking radiation could be experimentally proven by using an analogue black hole. In this paper, taking this situation into account we study the quantum gravitational effects on the Hawking radiation of rotating acoustic black holes. For this purpose, we consider the generalized uncertainty principle (GUP) in the phenomenon of quantum tunneling. We firstly take the modified commutation relations into account to compute the GUP modified Hawking temperature when the massive scalar particles tunnel from this black hole. Then, we find a remarkably instructive expression for the GUP entropy to derive the quantum gravity corrected Hawking temperature of the rotating acoustic black hole.

  3. Correction value to charged Bekenstein-Hawking black hole entropy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recently,based on the study of black hole Hawking radiation with the tunnel effect method,we found that the radiation spectrum of the black hole is not a strict pure thermal spectrum. It is a very interesting problem to determine how the departure of the black hole radiation spectrum from the pure thermal spectrum affects entropy. We calculate the partition function by the energy spectrum obtained using tunnel effect. Using the relation between the partition function and entropy,we derive the correction value to Bekenstein-Hawking entropy of the charged black hole. Fur-thermore,we obtain the conditions that various thermodynamic quantities must satisfy,when phase transition of the charged black hole occurs.

  4. Origin of Hawking Radiation: Firewall or Atmosphere?

    CERN Document Server

    Kim, Wontae

    2016-01-01

    The Unruh vacuum not admitting any outgoing flux at the horizon implies that the origin of the outgoing Hawking radiation would be the atmosphere of a near-horizon quantum region without resort to the firewall; however, the existence of the firewall of superplanckian excitations at the horizon might be supported by the infinite Tolman temperature of the infinitely blueshifted Hawking temperature at the horizon. Using an exactly soluble model, we show that the firewall necessarily emerges out of the Unruh vacuum such that the Tolman temperature in the Unruh vacuum is divergent in essence due to the infinitely blueshifted negative ingoing flux crossing the horizon rather than the outgoing flux. It is also shown that the outgoing Hawking radiation in the Unruh vacuum indeed originates from the atmosphere, not just at the horizon, which is of no relevance to the infinite blueshift. Consequently, we find that the firewall induced from the infinite Tolman temperature and the Hawking radiation coming from the atmosp...

  5. Hawking radiation from a five-dimensional Lovelock black hole

    CERN Document Server

    Saleh, Mahamat; Crepin, Kofane Timoleon

    2016-01-01

    We investigate Hawking radiation from a five-dimensional Lovelock black hole using the Hamilton-Jacobi method. The behavior of the rate of radiation is plotted for various values of the ultraviolet correction parameter and the cosmological constant. The results show that, owing to the ultraviolet correction and the presence of dark energy represented by the cosmological constant, the black hole radiates at a slower rate in comparison to the case without ultraviolet correction or cosmological constant. Moreover, the presence of the cosmological constant makes the effect of the ultraviolet correction on the black hole radiation negligible.

  6. Comment on Hawking radiation and trapping horizons

    CERN Document Server

    Baier, Rudolf

    2015-01-01

    We consider dynamical black hole formation from a collapsing fluid described by a symmetric and flat FRW metric. Using the Hamilton-Jacobi method the local Hawking temperature for the formed trapping/apparent horizon is calculated. The local Hawking temperature depends on the tunneling path, which we take to be along a null direction $(\\Delta s=0)$. We find that the local Hawking temperature depends directly on the equation of state of the collapsing fluid. We argue that Hawking radiation by quantum tunnelling from future inner and future outer trapping horizons is possible. However, only radiation from a space-like dynamical horizon has a chance to be observed by an external observer. Some comparison to existing literature is made.

  7. Hawking Radiation via Tunnelling from Arbitrarily Dimensional Schwarzschild Black Holes

    Institute of Scientific and Technical Information of China (English)

    REN Jun; ZHAO Zheng; GAO Chang-Jun

    2005-01-01

    @@ We extend Parikh's recent work to the arbitrarily dimensional Schwarzschild black holes whose Arnowitt-DeserMisner (ADM) mass is identical to its mass parameter. We view Hawking radiation as a tunnelling process across the event horizon. From the tunnelling probability we also find a leading correction to the semiclassical emission rate. The result consists with an underlying unitary theory.

  8. Hawking radiation conference, book of proceedings

    CERN Document Server

    Mersini-Houghton, Laura

    2016-01-01

    Proceedings of the 'Hawking Radiation' conference in Stockholm, Sweden 2015. It includes a link to the video recording of the conference and all the talks, discussions, and communications, that took place during the week of the conference . We hope the recorded discussions will be helpful, especially to the current and future young researchers and students.

  9. Origin of Hawking radiation: firewall or atmosphere?

    Science.gov (United States)

    Kim, Wontae

    2017-02-01

    The Unruh vacuum not admitting any outgoing flux at the horizon implies that the origin of the outgoing Hawking radiation is the atmosphere of a near-horizon quantum region without resort to the firewall; however, the existence of the firewall of superplanckian excitations at the horizon can be supported by the infinite Tolman temperature at the horizon. In an exactly soluble model, we explicitly show that the firewall necessarily emerges out of the Unruh vacuum so that the Tolman temperature in the Unruh vacuum is divergent in essence due to the infinitely blueshifted negative ingoing flux crossing the horizon rather than the outgoing flux. We also show that the outgoing Hawking radiation in the Unruh vacuum indeed originates from the atmosphere, not just at the horizon, which is of no relevance to the infinite blueshift. Consequently, the firewall from the infinite Tolman temperature and the Hawking radiation from the atmosphere turn out to be compatible, once we waive the claim that the Hawking radiation in the Unruh vacuum originates from the infinitely blueshifted outgoing excitations at the horizon.

  10. Krein Quantization Approach to Hawking Radiation

    CERN Document Server

    Pejhan, H

    2014-01-01

    We prove that in the context of Krein method, by applying the results of the accelerated-mirror to a black hole, one can recover the result obtained by Hawking for black hole radiation even considering the fact that vacuum expectation value of the energy-momentum tensor of the free theory is zero.

  11. Hawking radiation in the kappa-spacetime

    CERN Document Server

    Harikumar, E

    2016-01-01

    In this paper, we analyze the Hawking radiation of kappa-deformed Schwarzchild black hole and obtain the deformed Hawking temperature. For this, we first derive deformed metric for the kappa-spacetime, which in the generic case, is not a symmetric tensor and also has a momentum dependence. We show that the Schwarzchild metric obtained in the kappa-deformed spacetime has a dependence on energy. We use the fact that the deformed metric is conformally flat in the 1+1 dimensions, to solve the kappa-deformed Klein-Gordon equation in the background of the Schwarzchild metric. The method of Boguliobov coefficients is then used to calculate the thermal spectrum of kappa-deformed-Schwarzchild black hole and show that the Hawking temperature is modified by the non-commutativity of the kappa-spacetime.

  12. Hawking radiation of scalar particles from accelerating and rotating black holes

    Energy Technology Data Exchange (ETDEWEB)

    Gillani, Usman A.; Rehman, Mudassar; Saifullah, K., E-mail: mani_precious2001@yahoo.com, E-mail: mudassar051@yahoo.com, E-mail: saifullah@qau.edu.pk [Department of Mathematics, Quaid-i-Azam University, Islamabad (Pakistan)

    2011-06-01

    Hawking radiation of uncharged and charged scalar particles from accelerating and rotating black holes is studied. We calculate the tunneling probabilities of these particles from the rotation and acceleration horizons of these black holes. Using this method we recover the correct Hawking temperature as well.

  13. Corrected Hawking Temperature in Snyder's Quantized Space-time

    Science.gov (United States)

    Ma, Meng-Sen; Liu, Fang; Zhao, Ren

    2015-06-01

    In the quantized space-time of Snyder, generalized uncertainty relation and commutativity are both included. In this paper we analyze the possible form for the corrected Hawking temperature and derive it from the both effects. It is shown that the corrected Hawking temperature has a form similar to the one of noncommutative geometry inspired Schwarzschild black hole, however with an requirement for the noncommutative parameter 𝜃 and the minimal length a.

  14. Casimir Effect, Hawking Radiation and Trace Anomaly

    CERN Document Server

    Setare, M R

    2001-01-01

    The Casimir energy for massless scalar field of two parallel conductor, in two dimensional Schwarzchild black hole background, with Dirichlet boundary conditions is calculated by making use of general properties of renormalized stress tensor. We show that vacuum expectation value of stress tensor can be obtain by Casimir effect, trace anomaly and Hawking radiation. Four-dimensional of this problem, by this method, is under progress by this author.

  15. Entropy/information flux in Hawking radiation

    CERN Document Server

    Alonso-Serrano, Ana

    2015-01-01

    Blackbody radiation contains (on average) an entropy of $3.9\\pm2.5$ bits per photon. This applies not only to the proverbial case of "burning a lump of coal", but also to the Hawking radiation from both analogue black holes and general relativistic black holes. The flip side of this observation is the information budget: If the emission process is unitary, (as it certainly is for normal physical/chemical burning, and also for the Hawking emission from analogue black holes), then this entropy is exactly compensated by the "hidden information" in the correlations. We shall now extend this argument to the Hawking radiation from general relativistic black holes, (where previous discussion is both heated and inconclusive), demonstrating that the assumption of unitarity leads to a perfectly reasonable entropy/information budget without any hint of a "firewall". The assumption of unitarity instead has a different implication --- the horizon (if present) cannot be an *event* horizon, it must be an *apparent/trapping*...

  16. Time dependence of Hawking radiation entropy

    Science.gov (United States)

    Page, Don N.

    2013-09-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM02, or about 7.509M02 ≈ 6.268 × 1076(M0/Msolar)2, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M02 ≈ 1.254 × 1077(M0/Msolar)2, and then decreases back down to 4πM02 = 1.049 × 1077(M0/Msolar)2.

  17. Hawking radiation a particle physics perspective

    CERN Document Server

    Visser, M

    1993-01-01

    It has recently become fashionable to regard black holes as elementary particles. By taking this suggestion seriously it is possible to cobble together an elementary particle physics based estimate for the decay rate $(\\hbox{black hole})_i \\to (\\hbox{black hole})_f + (\\hbox{massless quantum})$. This estimate of the spontaneous emission rate contains two free parameters which may be fixed by demanding that the high energy end of the spectrum of emitted quanta match a blackbody spectrum at the Hawking temperature. The calculation, though technically trivial, has important conceptual implications: (1) The existence of Hawking radiation from black holes is ultimately dependent only on the fact that massless quanta (and all other forms of matter) couple to gravity. (2) The thermal nature of the Hawking spectrum depends only on the fact that the number of internal states of a large mass black hole is enormous. (3) Remarkably, the resulting formula for the decay rate gives meaningful answers even when extrapolated t...

  18. Time Dependence of Hawking Radiation Entropy

    CERN Document Server

    Page, Don N

    2013-01-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4 pi M_0^2, or about 7.509 M_0^2 \\approx 6.268\\times 10^{76}(M_0/M_\\odot)^2, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the...

  19. Hawking radiation of Schwarzschild-de Sitter black hole by Hamilton-Jacobi method

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M. Atiqur, E-mail: atirubd@yahoo.com [Department of Applied Mathematics, Rajshahi University (Bangladesh); Hossain, M. Ilias, E-mail: ilias_math@yahoo.com [Department of Mathematics, Rajshahi University, Rajshahi, 6205 (Bangladesh)

    2012-05-30

    We investigate the Hawking radiation of Schwarzschild-de Sitter (SdS) black hole by massive particles tunneling method. We consider the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles and show that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum when energy and angular momentum are conserved. Our result is also in accordance with Parikh and Wilczek's opinion and gives a correction to the Hawking radiation of SdS black hole.

  20. Hawking radiation of Kerr-de Sitter black holes using Hamilton-Jacobi method

    Science.gov (United States)

    Ibungochouba Singh, T.; Ablu Meitei, I.; Yugindro Singh, K.

    2013-05-01

    Hawking radiation of Kerr-de Sitter black hole is investigated using Hamilton-Jacobi method. When the well-behaved Painleve coordinate system and Eddington coordinate are used, we get the correct result of Bekenstein-Hawking entropy before and after radiation but a direct computation will lead to a wrong result via Hamilton-Jacobi method. Our results show that the tunneling probability is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal but it is consistent with underlying unitary theory.

  1. Hawking radiation of Schwarzschild-de Sitter black hole by Hamilton-Jacobi method

    Science.gov (United States)

    Rahman, M. Atiqur; Hossain, M. Ilias

    2012-05-01

    We investigate the Hawking radiation of Schwarzschild-de Sitter (SdS) black hole by massive particles tunneling method. We consider the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles and show that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum when energy and angular momentum are conserved. Our result is also in accordance with Parikh and Wilczek's opinion and gives a correction to the Hawking radiation of SdS black hole.

  2. Hawking Radiation of Schwarzschild-de Sitter Black Hole by Hamilton-Jacobi method

    CERN Document Server

    Rahman, M Atiqur; 10.1016/j.physletb.2012.04.049

    2012-01-01

    We investigate the Hawking radiation of Schwarzschild-de Sitter (SdS) black hole by massive particles tunneling method. We consider the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles and show that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum when energy and angular momentum are conserved. Our result is also in accordance with Parikh and Wilczek\\rq s opinion and gives a correction to the Hawking radiation of SdS black hole.

  3. Hawking Radiation from Plane Symmetric Black Hole Covariant Anomaly

    Institute of Scientific and Technical Information of China (English)

    ZENG Xiao-Xiong; HAN Yi-Wen; YANG Shu-Zheng

    2009-01-01

    Based on the covariant anomaly cancellation method, which is believed to be more refined than the initial approach of Robinson and Wilczek, we discuss Hawking radiation from the plane symmetric black hole. The result shows that Hawking radiation from the non-spherical symmetric black holes also can be derived from the viewpoint of anomaly.

  4. Hawking radiation inside a Schwarzschild black hole

    CERN Document Server

    Hamilton, Andrew J S

    2016-01-01

    The boundary of any observer's spacetime is the boundary that divides what the observer can see from what they cannot see. The boundary of an observer's spacetime in the presence of a black hole is not the true (future event) horizon of the black hole, but rather the illusory horizon, the dimming, redshifting surface of the star that collapsed to the black hole long ago. The illusory horizon is the source of Hawking radiation seen by observers both outside and inside the true horizon. The perceived acceleration (gravity) on the illusory horizon sets the characteristic frequency scale of Hawking radiation, even if that acceleration varies dynamically, as it must do from the perspective of an infalling observer. The acceleration seen by a non-rotating free-faller both on the illusory horizon below and in the sky above is calculated for a Schwarzschild black hole. Remarkably, as an infaller approaches the singularity, the acceleration becomes isotropic, and diverging as a power law. The isotropic, power-law char...

  5. Hawking radiation as perceived by different observers

    CERN Document Server

    Barbado, Luis C; Garay, Luis J

    2011-01-01

    We use a method recently introduced in Barcel\\'o et al, arXiv:1011.5593 [gr-qc] to analyse Hawking radiation in a Schwarzschild black hole as perceived by different observers in the system. The method is based on the introduction of an "effective temperature" function that varies with time. First we introduce a non-stationary vacuum state for a quantum scalar field, which interpolates between the Boulware vacuum state at early times and the Unruh vacuum state at late times. In this way we mimic the process of switching on Hawking radiation in realistic collapse scenarios. Then, we analyse this vacuum state from the perspective of static observers at different radial positions, observers undergoing a free-fall trajectory from infinity, and observers standing at rest at a radial distance and then released to fall freely towards the horizon. The physical image that emerges from these analyses is rather rich and compelling. Among many other results, we find that generic freely-falling observes do not perceive vac...

  6. Hawking radiation, the Stefan–Boltzmann law, and unitarization

    Energy Technology Data Exchange (ETDEWEB)

    Giddings, Steven B., E-mail: giddings@physics.ucsb.edu

    2016-03-10

    Where does Hawking radiation originate? A common picture is that it arises from excitations very near or at the horizon, and this viewpoint has supported the “firewall” argument and arguments for a key role for the UV-dependent entanglement entropy in describing the quantum mechanics of black holes. However, closer investigation of both the total emission rate and the stress tensor of Hawking radiation supports the statement that its source is a near-horizon quantum region, or “atmosphere,” whose radial extent is set by the horizon radius scale. This is potentially important, since Hawking radiation needs to be modified to restore unitarity, and a natural assumption is that the scales relevant to such modifications are comparable to those governing the Hawking radiation. Moreover, related discussion suggests a resolution to questions regarding extra energy flux in “nonviolent” scenarios, that does not spoil black hole thermodynamics as governed by the Bekenstein–Hawking entropy.

  7. Landauer Transport Model for Hawking Radiation from a Black Hole

    CERN Document Server

    Nation, P D; Nori, Franco

    2010-01-01

    We investigate the Hawking radiation energy and entropy flow rates from a black hole viewed as a one-dimensional (1D) Landauer transport process. The conformal symmetry in the near-horizon region leads directly to radiation rates that are identical to those of a single 1D quantum channel connected to a thermal reservoir at the Hawking temperature. The particle statistics independence of the 1D energy and entropy currents is applied to a black hole radiating into vacuum as well as one near thermal equilibrium with its environment. The Hawking radiation entropy production ratio is also examined.

  8. Correlations in Hawking radiation and the infall problem

    CERN Document Server

    Mathur, Samir D

    2011-01-01

    It is sometimes believed that small quantum gravity effects can encode information as `delicate correlations' in Hawking radiation, thus saving unitarity while maintaining a semiclassical horizon. A recently derived inequality showed that this belief is incorrect: one must have order unity corrections to low energy evolution at the horizon (i.e. fuzzballs) to remove entanglement between radiation and the hole. In this paper we take several models of `small corrections' and compute the entanglement entropy numerically; in each case this entanglement is seen to monotonically grow, in agreement with the general inequality. We also construct a model of `burning paper', where the entanglement is found to rise and then return to zero, in agreement with the general arguments of Page. We then note that the fuzzball structure of string microstates offers a version of `complementarity'. Low energy evolution is modified by order unity, resolving the information problem, while for high energy infalling modes ($E>> kT$) w...

  9. Permeable Surface Corrections for Ffowcs Williams and Hawkings Integrals

    Science.gov (United States)

    Lockard, David P.; Casper, Jay H.

    2005-01-01

    The acoustic prediction methodology discussed herein applies an acoustic analogy to calculate the sound generated by sources in an aerodynamic simulation. Sound is propagated from the computed flow field by integrating the Ffowcs Williams and Hawkings equation on a suitable control surface. Previous research suggests that, for some applications, the integration surface must be placed away from the solid surface to incorporate source contributions from within the flow volume. As such, the fluid mechanisms in the input flow field that contribute to the far-field noise are accounted for by their mathematical projection as a distribution of source terms on a permeable surface. The passage of nonacoustic disturbances through such an integration surface can result in significant error in an acoustic calculation. A correction for the error is derived in the frequency domain using a frozen gust assumption. The correction is found to work reasonably well in several test cases where the error is a small fraction of the actual radiated noise. However, satisfactory agreement has not been obtained between noise predictions using the solution from a three-dimensional, detached-eddy simulation of flow over a cylinder.

  10. Non-thermal Hawking radiation from the Kerr black hole

    Institute of Scientific and Technical Information of China (English)

    HAN Yi-Wen; HAO Jia-Bo

    2009-01-01

    We present a short and direct derivation of Hawking radiation by using the Damour-Ruffini method, as taking into account the self-gravitational interaction from the Kerr black hole. It is found that the radiation is not exactly thermal, and because the derivation obeys conservation laws, the non-thermal Hawking radiation can carry information from the black hole. So it can be used to explain the black hole information paradox, and the process satisfies unitary.

  11. The theory of Hawking radiation in laboratory analogues

    CERN Document Server

    Robertson, Scott

    2015-01-01

    Hawking radiation, despite being known to theoretical physics for nearly forty years, remains elusive and undetected. It also suffers, in its original context of gravitational black holes, from practical and conceptual difficulties. Of particular note is the trans-Planckian problem, which is concerned with the apparent origin of the radiation in absurdly high frequencies. In order to gain better theoretical understanding and, it is hoped, experimental verification of Hawking radiation, much study is being devoted to laboratory systems which use moving media to model the spacetime geometry of black holes, and which, by analogy, are also thought to emit Hawking radiation. These analogue systems typically exhibit dispersion, which regularizes the wave behaviour at the horizon at the cost of a more complicated theoretical framework. This tutorial serves as an introduction to Hawking radiation and its analogues, developing the moving medium analogy for black holes and demonstrating how dispersion can be incorporat...

  12. Rotating embedded black holes: Entropy and Hawking's radiation

    OpenAIRE

    2004-01-01

    In this paper we derive a class of rotating embedded black holes. Then we study Hawking's radiation effects on these embedded black holes. The surface gravity, entropy and angular velocity are given for each of these black holes.

  13. Questioning the recent observation of quantum Hawking radiation

    CERN Document Server

    Leonhardt, Ulf

    2016-01-01

    A recent paper [J. Steinhauer, doi:10.1038/nphys3863, arXiv:1510.00621] has claimed the observation of quantum Hawking radiation and its entanglement in an analogue black hole. However, while the author has achieved an extraordinary experimental feat, the claims of the paper do not stand up to scrutiny: they are not sufficiently supported by evidence, are obtained with biased methods and violate hard theoretical bounds, which raises severe doubts on the observation of Hawking radiation.

  14. Anomaly Analysis of Hawking Radiation from Acoustic Black Hole

    CERN Document Server

    Kim, Wontae

    2007-01-01

    The Hawking radiation from the three dimensional rotating acoustic black hole is considered from the viewpoint of anomaly cancellation method initiated by Robinson and Wilczek. Quantum field near the horizon is effectively described by two dimensional charged field with a charge identified as the angular momentum m. The fluxes of charge and energy are obtained from the anomaly cancellation condition and regularity at the horizon, and are shown to match with those of the two dimensional black body radiation at the Hawking temperature.

  15. Why Hawking Radiation Cannot Be Decoded

    CERN Document Server

    Ong, Yen Chin; Chen, Pisin

    2014-01-01

    One of the great difficulties in the theory of black hole evaporation is that the most decisive phenomena tend to occur when the black hole is extremely hot: that is, when the physics is most poorly understood. Fortunately, a crucial step in the Harlow-Hayden approach to the firewall paradox, concerning the time available for decoding of Hawking radiation emanating from charged AdS black holes, can be made to work without relying on the unknown physics of black holes with extremely high temperatures; in fact, it relies on the properties of cold black holes. Here we clarify this surprising point. The approach is based on ideas borrowed from applications of the AdS/CFT correspondence to the quark-gluon plasma. Firewalls aside, our work presents a detailed analysis of the thermodynamics and evolution of evaporating charged AdS black holes with flat event horizons. We show that, in one way or another, these black holes are always eventually destroyed in a time which, while long by normal standards, is short relat...

  16. Hawking radiation from quasilocal dynamical horizons

    Indian Academy of Sciences (India)

    Ayan Chatterjee

    2016-02-01

    In completely local settings, we establish that a dynamically evolving spherically symmetric black hole horizon can be assigned a Hawking temperature and with the emission of flux, radius of the horizon shrinks.

  17. Hawking radiation from magnetized Kerr-Newman black hole

    Science.gov (United States)

    Rizwan, Muhammad; Saifullah, K.

    2016-12-01

    Hawking radiation of charged scalar and Dirac particles from the event horizon of magnetized Kerr-Newman black holes is studied using the Hamilton-Jacobi method and WKB approximation. This is done by calculating tunneling probabilities of these particles from the horizons of magnetized black holes. This method yields the Hawking temperature of magnetized Kerr-Newman black holes as well. It is interesting to note that while the tunneling probabilities depend upon the background magnetic field, the Hawking temperature is not affected by magnetization.

  18. Hawking radiation of a uniformly accelerating black hole

    Institute of Scientific and Technical Information of China (English)

    Ren Jun; Cao Jiang-Ling; Zhao Zheng

    2006-01-01

    In this paper, we study the Hawking radiation via tunnelling from a uniformly accelerating black hole. Although the Bekenstein-Hawking entropy is proportional also to the area of the event horizon, the radius of it, rH, is a function of θ, which leads to the difficulties in the calculation of the emission rate. In order to overcome the mathematical difficulties, we propose a new technique to calculate the emission rate and the result obtained is reasonable.

  19. Hawking radiation of non-asymptotically flat rotating black holes

    Science.gov (United States)

    Sakalli, Izzet; Aslan, Onur Atilla

    2016-04-01

    We study the Hawking radiation of non-asymptotically flat rotating linear dilaton black holes, which are the solutions to the 4D Einstein-Maxwell-dilaton-axion action by using the semi-classical radiation spectrum method. Using scalar perturbations, we show that both angular and radial equations produce exact analytical solutions. Thus, we obtain a precise radiation spectrum for the rotating linear dilaton black hole. The high-frequency regime does not yield the standard Hawking temperature of this black hole computed from the surface gravity. However, we show in detail that the specific low-frequency band of the radiation spectrum allows for the original Hawking temperature of the rotating linear dilaton black hole. The computations are also exhibited graphically.

  20. Hawking radiation, the Stefan–Boltzmann law, and unitarization

    Directory of Open Access Journals (Sweden)

    Steven B. Giddings

    2016-03-01

    Full Text Available Where does Hawking radiation originate? A common picture is that it arises from excitations very near or at the horizon, and this viewpoint has supported the “firewall” argument and arguments for a key role for the UV-dependent entanglement entropy in describing the quantum mechanics of black holes. However, closer investigation of both the total emission rate and the stress tensor of Hawking radiation supports the statement that its source is a near-horizon quantum region, or “atmosphere,” whose radial extent is set by the horizon radius scale. This is potentially important, since Hawking radiation needs to be modified to restore unitarity, and a natural assumption is that the scales relevant to such modifications are comparable to those governing the Hawking radiation. Moreover, related discussion suggests a resolution to questions regarding extra energy flux in “nonviolent” scenarios, that does not spoil black hole thermodynamics as governed by the Bekenstein–Hawking entropy.

  1. On the Mutual Information in Hawking Radiation

    CERN Document Server

    Iizuka, Norihiro

    2013-01-01

    We compute the mutual information of two Hawking particles emitted consecutively by an evaporating black hole. Following Page, we find that the mutual information is of order exp(-S) where S is the entropy of the black hole. We speculate on implications for black hole unitarity, in particular on a possible failure of locality at large distances.

  2. Hawking non-thermal and Purely thermal radiations of Kerr-de Sitter black hole by Hamilton-Jacobi method

    CERN Document Server

    Hossain, M Ilias

    2013-01-01

    Incorporating Parikh and Wilczek's opinion to the Kerr de-Sitter (KdS) black hole Hawking non-thermal and purely thermal radiations have been investigated using Hamilton-Jacobi method. We have taken the background spacetime of KdS black hole as dynamical, involving the self-gravitation effect of the emitted particles, energy and angular momentum has been taken as conserved and show that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The explored results gives a correction to the Hawking radiation of KdS black hole.

  3. New Form of Kerr-Newman Solution and Its Hawking Radiation via Tunneling

    Institute of Scientific and Technical Information of China (English)

    JIANG Qing-Quan; WU Shuang-Qing; YANG Shu-Zheng; CHEN De-You

    2006-01-01

    Parikh-Wilzcek's recent work, which treats the Hawking radiation as semi-classical tunneling processfrom the event horizon of static Schwarzshild and Reissner-Nordstr(o)m black holes, indicates that the factually radiant spectrum deviates from the precisely thermal spectrum after taking the self-gravitation interaction into account. In this paper, we extend Parikh-Wilzcek's work to research the Hawking radiation via tunneling from new form of rotating Kerr-Newman solution and obtain a corrected radiant spectrum, which is related to the change of Bekenstein-Hawking entropy, and is not pure thermal, but is consistent with the underlying unitary theory. Meanwhile, we point out that the information conservation is only suitable for the reversible process and in highly unstable evaporating black hole (irreversible process) the information loss is possible.

  4. Tunnelling Effect and Hawking Radiation from a Vaidya Black Hole

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-Yi; ZHAO Zheng

    2006-01-01

    @@ We extend Parikh's study to the non-stationary black hole. As an example of the non-stationary black hole, we investigate the tunnelling effect and Hawking radiation from a Vaidya black hole whose Bondi mass is identical to its mass parameter. The Hawking radiation is considered as a tunnelling process across the event horizon and we calculate the tunnelling probability. It is found that the result is different from Parikh's study because drH/dv is the function of Bondi mass m(v).

  5. Dirac Particles' Hawking Radiation from a Schwarzschild Black Hole

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-Kai; LIU Wen-Biao

    2007-01-01

    @@ Considering energy conservation and the backreaction of particles to spacetime, we investigate the massless/massive Dirac particles' Hawking radiation from a Schwarzschild black hole. The exact expression of the emission rate near the horizon is obtained and the result indicates that Hawking radiation spectrum is not purely thermal. The result obtained is consistent with the results obtained before. It satisfies the underlying unitary theory and offers a possible mechanism to explain the information loss paradox. Whereas the improved Damour-Ruffini method is more concise and understandable.

  6. Hawking radiation of five-dimensional charged black holes with scalar fields

    Science.gov (United States)

    Miao, Yan-Gang; Xu, Zhen-Ming

    2017-09-01

    We investigate the Hawking radiation cascade from the five-dimensional charged black hole with a scalar field coupled to higher-order Euler densities in a conformally invariant manner. We give the semi-analytic calculation of greybody factors for the Hawking radiation. Our analysis shows that the Hawking radiation cascade from this five-dimensional black hole is extremely sparse. The charge enhances the sparsity of the Hawking radiation, while the conformally coupled scalar field reduces this sparsity.

  7. A New Method to Study Hawking Radiation of Charged Particle from Stationary Axisymmetric Sen Black Hole

    Institute of Scientific and Technical Information of China (English)

    YANG Shu-Zheng; CHEN De-You

    2007-01-01

    @@ Taking the self-gravitation interaction and energy conservation, charge conservation and angular momentum conservation into account, we discuss the tunnelling characteristics of the charged particle from Sen black hole by the Hamilton-Jacobi method. The result shows that the tunnelling probability is related to the change of Bekenstein-Hawking entropy, and the actual radiation spectrum deviates from the pure thermal one, which is consistent with the result of Parikh and Wilczek and gives a new method to correct the Hawking pure thermal spectrum of Sen black hole.

  8. The Hawking radiation of the charged particle via tunnelling from the axisymmetric Sen black hole

    Institute of Scientific and Technical Information of China (English)

    Jiang Qing-Quan; Yang Shu-Zheng; Chen De-You

    2006-01-01

    Extending Parikh's semi-classical quantum tunnelling model, this paper has studied the Hawking radiation of the charged particle via tunnelling from the horizon of the axisymmetric Sen black hole. Different from the uncharged massless particle, the geodesies of the charged massive particle tunnelling from the horizon is not light-like. The derived result supports Parikh's opinion and provides a correct modification to Hawking strictly thermal spectrum developed by the fixed background space-time and not considering the energy conservation and the self-gravitation interaction.

  9. Coordinates Used in Derivation of Hawking Radiation via Hamilton-Jacobi Method

    Science.gov (United States)

    Liu, Bo; He, Xiaokai; Liu, Wenbiao

    2009-05-01

    Coordinates used in derivation of Hawking radiation via Hamilton-Jacobi method are investigated more deeply. In the case of a 4-dimensional Schwarzschild black hole, a direct computation leads to a wrong result. In the meantime, making use of the isotropic coordinate or invariant radial distance, we can get the correct conclusion. More coordinates including Painleve and Eddington-Finkelstein are tried to calculate the semi-classical Hawking emission rate. The reason of the discrepancy between naive coordinate and well-behaved coordinates is also discussed.

  10. Hawking radiation via tunnelling from general stationary axisymmetric black holes

    Institute of Scientific and Technical Information of China (English)

    Zhang Jing-Yi; Fan Jun-Hui

    2007-01-01

    Hawking radiation is viewed as a tunnelling process. In this way the emission rates of massless particles and massive particles tunnelling across the event horizon of general stationary axisymmetric black holes are calculated,separately. The emission spectra of these two different kinds of outgoing particles have the same functional form and both are consistent with an underlying unitary theory.

  11. Comment on 'Hawking radiation from fluctuating black holes'

    NARCIS (Netherlands)

    Khavkine, I.

    2010-01-01

    Takahashi and Soda (2010 Class. Quantum Grav. 27 175008) have recently considered the effect (at lowest non-trivial order) of dynamical, quantized gravitational fluctuations on the spectrum of scalar Hawking radiation from a collapsing Schwarzschild black hole. However, due to an unfortunate choice

  12. On Hawking Radiation of 3D Rotating Hairy Black Holes

    CERN Document Server

    Belhaj, A; Moumni, H EL; Masmar, K; Sedra, M B

    2015-01-01

    We study the Hawking radiation of 3D rotating hairy black holes. More concretely, we compute the transition probability of a bosonic and fermionic particle in such backgrounds. Thew, we show that the transition probability is independent of the nature of the particle. It is observed that the charge of the scalar hair B and the rotation parameter a control such a probability.

  13. Hawking Radiation from Topological Kerr Anti-de-Sitter Black Hole with One Rotational Parameter via Covariant Anomalies

    Institute of Scientific and Technical Information of China (English)

    LIN Kai; ZENG Xiao-Xiong; YANG Shu-Zheng

    2008-01-01

    Using anomalous viewpoint,we study the Hawking radiation from a kind of topological Kerr Anti-de-Sitter(Kerr AdS)black hole with ode rotational parameter.We employ the covariant gauge and gravitational anomalies.The result supports the Robinson-Wilczek opinion and shows that the Hawking temperature can be correctly determined by cancelling covariant gauge and gravitational anomalies at the horizon.

  14. Quantum Signature of Analog Hawking Radiation in Momentum Space.

    Science.gov (United States)

    Boiron, D; Fabbri, A; Larré, P-É; Pavloff, N; Westbrook, C I; Ziń, P

    2015-07-10

    We consider a sonic analog of a black hole realized in the one-dimensional flow of a Bose-Einstein condensate. Our theoretical analysis demonstrates that one- and two-body momentum distributions accessible by present-day experimental techniques provide clear direct evidence (i) of the occurrence of a sonic horizon, (ii) of the associated acoustic Hawking radiation, and (iii) of the quantum nature of the Hawking process. The signature of the quantum behavior persists even at temperatures larger than the chemical potential.

  15. Hawking radiation from gravity's rainbow via gravitational anomaly

    Institute of Scientific and Technical Information of China (English)

    Zeng Xiao-Xiong; Yang Shu-Zheng; Chen De-You

    2008-01-01

    Based on the anomaly cancellation method,initiated by Robinson and Wilczek,we investigates Hawking radiation from the modified Schwarzschild black hole from gravity's rainbow from the anomaly point of view.Unlike the general Schwarzschild space-time,the metric of this black hole depends on the energies of probes.The obtained result shows to restore the underlying general covariance at the quantum level in the effective field,the covariant compensating flux of energy-momentum tensor,which is related to the energies of the probes,should precisely equal to that of a (1+1)-dimensional blackbody at the Hawking temperature.

  16. Lorentz Invariance Violation and Modified Hawking Fermions Tunneling Radiation

    Directory of Open Access Journals (Sweden)

    Shu-Zheng Yang

    2016-01-01

    Full Text Available Recently the modified Dirac equation with Lorentz invariance violation has been proposed, which would be helpful to resolve some issues in quantum gravity theory and high energy physics. In this paper, the modified Dirac equation has been generalized in curved spacetime, and then fermion tunneling of black holes is researched under this correctional Dirac field theory. We also use semiclassical approximation method to get correctional Hamilton-Jacobi equation, so that the correctional Hawking temperature and correctional black hole’s entropy are derived.

  17. Hawking radiation as perceived by different observers (ERE2011 proceedings)

    CERN Document Server

    Barbado, Luis C; Garay, Luis J

    2012-01-01

    We study the perception of Hawking radiation by different observers outside a black hole. The analysis is done in terms of an effective-temperature function that varies along the trajectory of each observer. The vacuum state of the radiation field is chosen to be non-stationary, so as to mimic the switching-on of Hawking radiation that would appear in a real black hole collapse. We analyse how this vacuum is perceived by observers staying at a fixed radius, by observers coming in free-fall from radial infinity at different times, and by observers in free-fall released from finite radial positions. Results found have a compelling physical interpretation. One main result, at first unexpected, is that in general free-falling observers do perceive particle emission by the black hole when crossing the event horizon. This happens because of a diverging Doppler shift at the event horizon.

  18. Quantum Tunnelling and Hawking Radiation of Schwarzchild-Anti-de Sitter Black Hole with Topological Defect

    Institute of Scientific and Technical Information of China (English)

    HAN Yi-Wen; YANG Shu-Zheng

    2005-01-01

    @@ We extend Parikh's recent work to Schwarzchild-anti-de Sitter black hole with topological defect whose ArnowittDeser-Misner (ADM) mass is no longer identical to its mass parameter. We view the Hawking radiation as a tunnelling process across the event horizon and the cosmological horizon. From the tunnelling probability, we find a leading correction to the semi-classical emission rate. The result employs an underlying unitary theory.

  19. Modulated Hawking radiation and a nonviolent channel for information release

    Directory of Open Access Journals (Sweden)

    Steven B. Giddings

    2014-11-01

    Full Text Available Unitarization of black hole evaporation requires that quantum information escapes a black hole; an important question is to identify the mechanism or channel by which it does so. Accurate counting of black hole states via the Bekenstein–Hawking entropy would indicate this information should be encoded in radiation with average energy flux matching Hawking's. Information can be encoded with no change in net flux via fine-grained modulation of the Hawking radiation. In an approximate effective field theory description, couplings to the stress tensor of the black hole atmosphere that depend on the internal state of the black hole are a promising alternative for inducing such modulation. These can be picturesquely thought of as due to state-dependent metric fluctuations in the vicinity of the horizon. Such couplings offer the prospect of emitting information without extra energy flux, and can be shown to do so at linear order in the couplings, with motivation given for possible extension of this result to higher orders. The potential advantages of such couplings to the stress tensor thus extend beyond their universality, which is helpful in addressing constraints from black hole mining.

  20. Hawking Radiation of Linear Dilaton Black Holes in Various Theories

    CERN Document Server

    Pasaoglu, H

    2009-01-01

    Using the Damour-Ruffini-Sannan, the Parikh-Wilczek and the thin film brick-wall models, we investigate the Hawking radiation of uncharged massive particles from 4-dimensional linear dilaton black holes, which are the solutions to Einstein-Maxwell-Dilaton, Einstein-Yang-Mills-Dilaton and Einstein-Yang-Mills-Born-Infeld-Dilaton theories. Our results show that the tunneling rate is related to the change of Bekenstein-Hawking entropy. Contrary to the many studies in the literature, here the emission spectrum is precisely thermal. This implies that the derived emission spectrum is not consistent with the unitarity of the quantum theory, which would possibly lead to the information loss.

  1. Observation of quantum Hawking radiation and its entanglement in an analogue black hole

    Science.gov (United States)

    Steinhauer, Jeff

    2016-10-01

    We observe spontaneous Hawking radiation, stimulated by quantum vacuum fluctuations, emanating from an analogue black hole in an atomic Bose-Einstein condensate. Correlations are observed between the Hawking particles outside the black hole and the partner particles inside. These correlations indicate an approximately thermal distribution of Hawking radiation. We find that the high-energy pairs are entangled, while the low-energy pairs are not, within the reasonable assumption that excitations with different frequencies are not correlated. The entanglement verifies the quantum nature of the Hawking radiation. The results are consistent with a driven oscillation experiment and a numerical simulation.

  2. Radiation spectrum of rotating Gdel black hole and correction entropy

    Institute of Scientific and Technical Information of China (English)

    张丽春; 林海; 李怀繁; 赵仁

    2011-01-01

    We study the Hawking radiation of the scalar field in the rotating Gdel black hole in minimal five-dimensional supergravity. We not only derive radiation spectra that satisfy the unitary principle but also obtain the correction term of Bekenstein-Hawking

  3. Dark Spinors Hawking Radiation in String Theory Black Holes

    Directory of Open Access Journals (Sweden)

    R. T. Cavalcanti

    2016-01-01

    Full Text Available The Hawking radiation spectrum of Kerr-Sen axion-dilaton black holes is derived, in the context of dark spinors tunnelling across the horizon. Since a black hole has a well defined temperature, it should radiate in principle all the standard model particles, similar to a black body at that temperature. We investigate the tunnelling of mass dimension one spin-1/2 dark fermions, which are beyond the standard model and are prime candidates to the dark matter. Their interactions with the standard model matter and gauge fields are suppressed by at least one power of unification scale, being restricted just to the Higgs field and to the graviton likewise. The tunnelling method for the emission and absorption of mass dimension one particles across the event horizon of Kerr-Sen axion-dilaton black holes is shown here to provide further evidence for the universality of black hole radiation, further encompassing particles beyond the standard model.

  4. Hawking Non-thermal and Thermal Radiations of Schwarzschild Anti-de Sitter Black Hole by Hamilton-Jacobi method

    CERN Document Server

    Rahman, M Atiqur

    2013-01-01

    The massive particles tunneling method has been used to investigate the Hawking non-thermal and purely thermal radiations of Schwarzschild Anti-de Sitter (SAdS) black hole. Considering the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles the imaginary part of the action has been derived from Hamilton-Jacobi equation. Using the conservation laws of energy and angular momentum we have showed that the non-thermal and purely thermal tunneling rates are related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The result obtained for SAdS black hole is also in accordance with Parikh and Wilczek\\rq s opinion and gives a correction to the Hawking radiation of SAdS black hole.

  5. Hawking non-thermal and thermal radiations of Schwarzschild anti-de Sitter black hole by Hamilton-Jacobi method

    Science.gov (United States)

    Rahman, M. Atiqur; Hossain, M. Ilias

    2013-06-01

    The massive particles tunneling method has been used to investigate the Hawking non-thermal and purely thermal radiations of Schwarzschild Anti-de Sitter (SAdS) black hole. Considering the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles the imaginary part of the action has been derived from Hamilton-Jacobi equation. Using the conservation laws of energy and angular momentum we have showed that the non-thermal and purely thermal tunneling rates are related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The result obtained for SAdS black hole is also in accordance with Parikh and Wilczek's opinion and gives a correction to the Hawking radiation of SAdS black hole.

  6. Hawking radiation from Kerr-Newman de Sitter black hole via anomalies

    Institute of Scientific and Technical Information of China (English)

    Lin Kai; Yang Shu-Zheng; Zeng Xiao-Xiong

    2008-01-01

    In this paper, Hawking radiation from the Kerr-Newman de Sitter black hole is studied via gauge anomaly and gravitational anomaly. The obtained results of Hawking radiation from the event horizon and the cosmological horizon accord with those by other methods.

  7. Hawking Radiation via Damour-Ruffini Method in Squashed Charged Rotating Kaluza-Klein Black Holes

    Science.gov (United States)

    Hu, Ji-Wan; Wu, Jing-He; Liu, Xian-Ming

    2017-02-01

    Using the Damour-Ruffini method, Hawking radiation of charged particles from squashed charged rotating five-dimensional Kaluza-Klein black holes is investigated extensively. Under the generalized tortoise coordinate transformation, Hawking temperature of the black holes is calculated by using charged scalar particles and Dirac fermions respectively. We find that the obtained Hawking temperature for charged Dirac fermions is the same as for charged scalar particles. What's more, the spectrum of Hawking radiation contains the information of the size of the extra dimension, which could provide insight for further investigation of large extra dimensions in the future.

  8. Information-carrying Hawking radiation and the number of microstate for a black hole

    CERN Document Server

    Cai, Qing-yu; You, Li

    2016-01-01

    We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein-Hawking entropies for Schwarzschild black holes and Reissner-Nordstr\\"om black holes can be calculated by counting the microstates of their Hawking radiations. In particular, for the extremal Reissner-Nordstr\\"om black hole, its number of microstate and the corresponding entropy we obtain are found to be consistent with the string theory results. Our finding helps to refute the dispute about the Bekenstein-Hawking entropy of extremal black holes in the semiclassical limit.

  9. Finite width of the sonic event horizon and grey body Hawking radiation

    CERN Document Server

    Vinish, Y

    2014-01-01

    Finite width of the analog event horizon is determined by the nonlinearity length in the Kerr nonlinear optical system, which is discussed here, or by the healing length in Bose-Einstein condensates. The various eigen modes of fluctuations are found in the immediate vicinity of the event horizon and the scattering matrix due to the finite width horizon is calculated to within the leading order correction in the nonlinearity length. The Hawking radiation is found to be that of a grey body with the emissivity larger than one. A procedure of paraxial quantization of the fluctuation field is discussed and its connection to the conventional quantization of the electromagnetic field is demonstrated.

  10. Hawking Radiation from the Horowitz-Strominger Black Hole

    Institute of Scientific and Technical Information of China (English)

    FANG Heng-Zhong; HU Ya-Peng; ZHAO Zheng

    2005-01-01

    @@ When a black hole radiates particles, it losses energy and shrinks, the horizon contracts from its original radius to a new smaller radius. This leads to the separation between the initial and finalradii, which sets the barrier for the particles to tunnel. We develop the work of Parikh [Phys. Rev. Lett. 85 (2000) 5042; Gen. Rel. Gray.36 (2004) 2419] to a Horowitz-Strominger black hole, i.e. applying the Wentzel-Kramers-Brillouin approximation and semi-classical method to calculate the rate of the Hawking radiation. The result agrees with Γ~ e-2ImI =e△SBH. It is also proven that the energy spectrum deviates from exact thermality.

  11. Hawking radiation and classical tunneling: A ray phase space approach

    Science.gov (United States)

    Tracy, E. R.; Zhigunov, D.

    2016-01-01

    Acoustic waves in fluids undergoing the transition from sub- to supersonic flow satisfy governing equations similar to those for light waves in the immediate vicinity of a black hole event horizon. This acoustic analogy has been used by Unruh and others as a conceptual model for "Hawking radiation." Here, we use variational methods, originally introduced by Brizard for the study of linearized MHD, and ray phase space methods, to analyze linearized acoustics in the presence of background flows. The variational formulation endows the evolution equations with natural Hermitian and symplectic structures that prove useful for later analysis. We derive a 2 × 2 normal form governing the wave evolution in the vicinity of the "event horizon." This shows that the acoustic model can be reduced locally (in ray phase space) to a standard (scalar) tunneling process weakly coupled to a unidirectional non-dispersive wave (the "incoming wave"). Given the normal form, the Hawking "thermal spectrum" can be derived by invoking standard tunneling theory, but only by ignoring the coupling to the incoming wave. Deriving the normal form requires a novel extension of the modular ray-based theory used previously to study tunneling and mode conversion in plasmas. We also discuss how ray phase space methods can be used to change representation, which brings the problem into a form where the wave functions are less singular than in the usual formulation, a fact that might prove useful in numerical studies.

  12. Hawking Radiation of Scalar and Vector Particles From 5D Myers-Perry Black Holes

    CERN Document Server

    Jusufi, Kimet

    2016-01-01

    In the present paper we explore the Hawking radiation as a quantum tunneling effect from a rotating 5 dimensional Myers-Perry (5D-MPBH) black hole with two independent angular momentum componentes. First, we investigate the Hawking temperature by considering the tunneling of massive scalar particles and spin-1 vector particles from the 5D-MPBH in the Painlev\\'e coordinates and then in the corotating frames. More specifically, we solve the Klein-Gordon and Proca equation by applying the WKB method and Hamilton-Jacobi equation in both cases. Finally, we recover the Hawking temperature and show that coordinates systems do not affect the Hawking temperature.

  13. Hawking Radiation of Scalar and Vector Particles from 5D Myers-Perry Black Holes

    Science.gov (United States)

    Jusufi, Kimet; Övgün, Ali

    2017-06-01

    In the present paper we explore the Hawking radiation as a quantum tunneling effect from a rotating 5 dimensional Myers-Perry black hole (5D-MPBH) with two independent angular momentum components. First, we investigate the Hawking temperature by considering the tunneling of massive scalar particles and spin-1 vector particles from the 5D-MPBH in the Painlevé coordinates and then in the corotating frames. More specifically, we solve the Klein-Gordon and Proca equations by applying the WKB method and Hamilton-Jacobi equation in both cases. Finally, we recover the Hawking temperature and show that coordinates systems do not affect the Hawking temperature.

  14. Hawking Radiation of Scalar and Vector Particles from 5D Myers-Perry Black Holes

    Science.gov (United States)

    Jusufi, Kimet; Övgün, Ali

    2017-02-01

    In the present paper we explore the Hawking radiation as a quantum tunneling effect from a rotating 5 dimensional Myers-Perry black hole (5D-MPBH) with two independent angular momentum components. First, we investigate the Hawking temperature by considering the tunneling of massive scalar particles and spin-1 vector particles from the 5D-MPBH in the Painlevé coordinates and then in the corotating frames. More specifically, we solve the Klein-Gordon and Proca equations by applying the WKB method and Hamilton-Jacobi equation in both cases. Finally, we recover the Hawking temperature and show that coordinates systems do not affect the Hawking temperature.

  15. Hawking Radiation and Nonequilibrium Quantum Critical Current Noise

    Science.gov (United States)

    Sonner, Julian; Green, A. G.

    2012-08-01

    The dynamical scaling of quantum critical systems in thermal equilibrium may be inherited in the driven steady state, leading to universal out-of-equilibrium behavior. This attractive notion has been demonstrated in just a few cases. We demonstrate how holography—a mapping between the quantum critical system and a gravity dual—provides an illuminating perspective and new results. Nontrivial out-of-equilibrium universality is particularly apparent in current noise, which is dual to Hawking radiation in the gravitational system. We calculate this in a two-dimensional system driven by a strong in-plane electric field and deduce a universal scaling function interpolating between previously established equilibrium and far-from-equilibrium current noise. Since this applies at all fields, out-of-equilibrium experiments no longer require very high fields for comparison with theory.

  16. Backreaction of Hawking radiation on a gravitationally collapsing star I: Black holes?

    Directory of Open Access Journals (Sweden)

    Laura Mersini-Houghton

    2014-11-01

    Full Text Available Particle creation leading to Hawking radiation is produced by the changing gravitational field of the collapsing star. The two main initial conditions in the far past placed on the quantum field from which particles arise, are the Hartle–Hawking vacuum and the Unruh vacuum. The former leads to a time-symmetric thermal bath of radiation, while the latter to a flux of radiation coming out of the collapsing star. The energy of Hawking radiation in the interior of the collapsing star is negative and equal in magnitude to its value at future infinity. This work investigates the backreaction of Hawking radiation on the interior of a gravitationally collapsing star, in a Hartle–Hawking initial vacuum. It shows that due to the negative energy Hawking radiation in the interior, the collapse of the star stops at a finite radius, before the singularity and the event horizon of a black hole have a chance to form. That is, the star bounces instead of collapsing to a black hole. A trapped surface near the last stage of the star's collapse to its minimum size may still exist temporarily. Its formation depends on the details of collapse. Results for the case of Hawking flux of radiation with the Unruh initial state, will be given in a companion paper II.

  17. No Information Is Lost: a Revisit of Hawking Radiation as Tunneling

    CERN Document Server

    Zhang, Baocheng; Zhan, Ming-sheng; You, Li

    2009-01-01

    We revisit in detail the paradox of black hole information loss due to Hawking radiation as tunneling. We compute the amount of information encoded in correlations among Hawking radiations for a variety of black holes, including the Schwarzchild black hole, the Reissner-Nordstr\\"{o}m black hole, the Kerr black hole, and the Kerr-Newman black hole. The special cases of tunneling through a quantum horizon and geometrically non-commutative black holes are also considered. Within a phenomenological treatment based on the accepted emission probability spectrum from a black hole, we find that information is leaked out hidden in the correlations of Hawking radiation. The recovery of this previously unaccounted for information helps to conserve the total entropy of a system composed of a black hole plus its radiations. We thus conclude, irrespective of the microscopic picture for black hole collapsing, the associated radiation process: Hawking radiation as tunneling, must be a unitary process.

  18. Spherically Symmetric Static Solution for a Schwarzschild Black Hole with Its Hawking Radiation

    Institute of Scientific and Technical Information of China (English)

    HUANG Chao-Guang

    2000-01-01

    A black hole and its Hawking radiation may be in stable thermal equilibrium. In this letter, the static spherically symmetric numerical solution for a Schwarzschild black hole with its Hawking radiation are obtained. In the calculation, the equilibrium system is supposed to consist of a black hole, thermal radiation and a two-dimensional surface layer. The solutions obtained are compared with the York's back-reaction approach and the Zhao-Liu thermodynamic approach.

  19. Hawking radiation with dispersion versus breakdown of WKB

    CERN Document Server

    Schützhold, R

    2013-01-01

    Inspired by the condensed matter analogues of black holes (a.k.a. dumb holes), we study Hawking radiation in the presence of a modified dispersion relation which becomes super-luminal at large wave-numbers. In the usual stationary coordinates $(t,x)$, one can describe the asymptotic evolution of the wave-packets in WKB, but this WKB approximation breaks down in the vicinity of the horizon, thereby allowing for a mixing between initial and final creation and annihilation operators. Thus, one might be tempted to identify this point where WKB breaks down with the moment of particle creation. However, using different coordinates $(\\tau,U)$, we find that one can evolve the waves so that WKB in these coordinates is valid throughout this transition region -- which contradicts the above identification of the breakdown of WKB as the cause of the radiation. Instead, our analysis suggests that the tearing apart of the waves into two different asymptotic regions (inside and outside the horizon) is the major ingredient of...

  20. Search for QCD Hawking Radiation in Heavy Ion Collisions

    Science.gov (United States)

    Stiles, Laura; Murray, Michael

    2008-04-01

    A wide variety of measurements at RHIC, for example v2 and energy loss, suggest that the partonic matter created in heavy collisions thermalizes early. One possible mechanism for this is the creation of the QCD analogue to gravitational black holes [1]. Such objects have no memory of their creation and radiate with a characteristic temperature, T, that can depend only on their energy, charge, and angular momentum. This hypothesis is consistent with the growth of multiplicity with s in e+e- collisions and thermal temperature observed at LEP. For central heavy ion collisions the angular momentum of the system is approximately zero and the model predicts a universal dependence of the chemical freezeout temperature on the ratios of charge to transverse energy. To test this prediction against BRAHMS data, We have fitted data on π, K, p and p from central Au + Au collisions at several rapidities and energies, using the THERMUS code. The experimental dependence of the temperature on the ratio of charge to transverse energy will be compared to the Hawking radiation predictions. By comparing data sets at different energy, centrality and rapidity we can select systems with the same ratio of baryon number to energy but different rapidities. This may allow us to test for any effect of angular momentum on temperature. [1] P. Castorina, D. Kharzeev and H. Satz, Eur. Phys. J. C 52, 187 (2007)

  1. Covariant anomalies and Hawking radiation from Kaluza–Klein AdS black holes

    Indian Academy of Sciences (India)

    Chuan-Yi Bai

    2013-02-01

    In this paper, Hawking radiation is studied from four-dimensional (4D) Kaluza–Klein (KK) AdS black holes via the method of anomaly cancellation. The {|bf KK-AdS} black hole considered is a non-extremal charged rotating solution in the theory of 4D gauged supergravity. Its Hawking fluxes of electric charge, angular momentum and energy momentum tensor are derived here. Our results support the common view that Hawking radiation is the quantum effect arising at the event horizon.

  2. Hawking radiation from the dilaton-(anti) de Sitter black hole via covariant anomaly

    Institute of Scientific and Technical Information of China (English)

    Han Yi-Wen; Bao Zhi-Qing; Hong Yun

    2009-01-01

    Adopting the anomaly cancellation method, initiated by Robinson and Wilczek recently, this paper discusses Hawking radiation from the dilaton-(anti) de Sitter black hole. To save the underlying gauge and general covariance, it introduces covariant fluxes of gauge and energy-momentum tensor to cancel the gauge and gravitational anomalies. The result shows that the introduced compensating fluxes are equivalent to those of a 2-dimensional blackbody radiation at Hawking temperature with appropriate chemical potential.

  3. Non-Riemannian effective spacetime effects on Hawking radiation in superfluids

    CERN Document Server

    Garcia de Andrade, L C

    2005-01-01

    Riemannian effective spacetime description of Hawking radiation in $^{3}He-A$ superfluids is extended to non-Riemannian effective spacetime. An example is given of non-Riemannian effective geometry of the rotational motion of the superfluid vacuum around the vortex where the effective spacetime Cartan torsion can be associated to the Hawking giving rise to a physical interpretation of effective torsion recently introduced in the literature in the form of an acoustic torsion in superfluid $^{4}He$ (PRD-70(2004),064004). Curvature and torsion singularities of this $^{3}He-A$ fermionic superfluid are investigated. This Lense-Thirring effective metric, representing the superfluid vacuum in rotational motion, is shown not support Hawking radiation when the isotropic $^{4}He$ is restored at far distances from the vortex axis. Hawking radiation can be expressed also in topological solitons (moving domain walls) in fermionic superfluids in non-Riemannian (teleparallel) $(1+1)$ dimensional effective spacetime. A telep...

  4. Hawking radiation of Reissner-Nordstrom-de Sitter black hole by Hamilton-Jacobi method

    CERN Document Server

    Hossain, M Ilias

    2013-01-01

    In Refs. (M. Atiqur Rahman, M. Ilias Hossain (2012) Phys. Lett. B {\\bf 712} 1), we have developed Hamilton-Jacobi method for dynamical spacetime and discussed Hawking radiation of Schwarzschild-de Sitter black hole by massive particle tunneling method. In this letter, we have investigated the hawking purely thermal and nonthermal radiations of Reissner-Nordstr\\"{o}m-de Sitter (RNdS) black hole. We have considered energy and angular momentum as conserved and shown that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The results we have obtained for RNdS black hole is also in accordance with Parikh and Wilczek\\rq s opinion and recovered the new result for Hawking radiation of RNdS black hole.

  5. Radiative Corrections and Z'

    CERN Document Server

    Erler, Jens

    2009-01-01

    Radiative corrections to parity violating deep inelastic electron scattering are reviewed including a discussion of the renormalization group evolution of the weak mixing angle. Recently obtained results on hypothetical Z' bosons - for which parity violating observables play an important role - are also presented.

  6. Information-carrying Hawking radiation and the number of microstate for a black hole

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qing-yu, E-mail: qycai@wipm.ac.cn [State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Sun, Chang-pu, E-mail: cpsun@csrc.ac.cn [Beijing Computational Science Research Center, Beijing 100084 (China); Collaborative Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); You, Li, E-mail: lyou@mail.tsinghua.edu.cn [State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2016-04-15

    We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein–Hawking entropies for Schwarzschild black holes and Reissner–Nordström black holes can be calculated by counting the microstates of their Hawking radiations. In particular, for the extremal Reissner–Nordström black hole, its number of microstate and the corresponding entropy we obtain are found to be consistent with the string theory results. Our finding helps to refute the dispute about the Bekenstein–Hawking entropy of extremal black holes in the semiclassical limit.

  7. Information-carrying Hawking radiation and the number of microstate for a black hole

    Directory of Open Access Journals (Sweden)

    Qing-yu Cai

    2016-04-01

    Full Text Available We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein–Hawking entropies for Schwarzschild black holes and Reissner–Nordström black holes can be calculated by counting the microstates of their Hawking radiations. In particular, for the extremal Reissner–Nordström black hole, its number of microstate and the corresponding entropy we obtain are found to be consistent with the string theory results. Our finding helps to refute the dispute about the Bekenstein–Hawking entropy of extremal black holes in the semiclassical limit.

  8. The GUP effect on Hawking radiation of the 2 + 1 dimensional black hole

    Science.gov (United States)

    Gecim, Ganim; Sucu, Yusuf

    2017-10-01

    We investigate the Generalized Uncertainty Principle (GUP) effect on the Hawking radiation of the 2 + 1 dimensional Martinez-Zanelli black hole by using the Hamilton-Jacobi method. In this connection, we discuss the tunneling probabilities and Hawking temperature of the spin-1/2 and spin-0 particles for the black hole. Therefore, we use the modified Klein-Gordon and Dirac equations based on the GUP. Then, we observe that the Hawking temperature of the scalar and Dirac particles depend on not only the black hole properties, but also the properties of the tunneling particle, such as angular momentum, energy and mass. And, in this situation, we see that the tunneling probability and the Hawking radiation of the Dirac particle is different from that of the scalar particle.

  9. Hawking Radiation from Regular Black Hole as a Possible Probe for Black Hole Interior Structure

    CERN Document Server

    Deng, Yanbin

    2016-01-01

    The notion of the black hole singularity and the proof of the singularity theorem in general relativity were considered great successes in gravitational physics. On the other hand they also presented deep puzzles to physicists. Conceptual challenges were set up by the intractability of the singularity. The existence of black hole horizons which cover up the interior, including the singularity of the black hole from outside observers, builds an information curtain, further hindering physicists from understanding the nature of the singularity and the interior structure of black holes. The regular black hole is a concept produced out of multiple attempts to establish a tractable and understandable interior structure for black hole and to avoid the singularity inside the black hole body. A method is needed to check the correctness of the new constructions of black holes. After studying the Hawking radiation by fermion tunnelling from one type of regular black hole, structure dependent results were obtained. The r...

  10. Hawking radiation from the Schwarzschild black hole with a global monopole via gravitational anomaly

    Institute of Scientific and Technical Information of China (English)

    Peng Jun-Jin; Wu Shuang-Qing

    2008-01-01

    This paper derives the Hawking flux from the Schwarzschild black hole with a global monopole by using Robinson and Wilczek's method.Adopting a dimensional reduction technique, it can describe the effective quantum field in the (3+1)-dimensional global monopole background by an infinite collection of the (1+1)-dimensional maesless fields if neglecting the ingoing modes near the horizon, where the gravitational anomaly can be cancelled by the (1+1)-dimensional black body radiation at the Hawking temperature.

  11. Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sakalli, I.; Ovgun, A., E-mail: ali.ovgun@emu.edu.tr [Eastern Mediterranean University Famagusta, North Cyprus, Department of Physics (Turkey)

    2015-09-15

    We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton–Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.

  12. Black hole and hawking radiation by type-II Weyl fermions

    Science.gov (United States)

    Volovik, G. E.

    2016-11-01

    The type-II Weyl and type-II Dirac fermions may emerge behind the event horizon of black holes. Correspondingly, the black hole can be simulated by creation of the region with overtilted Weyl or Dirac cones. The filling of the electronic states inside the "black hole" is accompanied by Hawking radiation. The Hawking temperature in the Weyl semimetals can reach the room temperature, if the black hole region is sufficiently small, and thus the effective gravity at the horizon is large.

  13. Hawking Radiation of Spin-1 Particles From Three Dimensional Rotating Hairy Black Hole

    CERN Document Server

    Sakalli, I

    2015-01-01

    In the present article, we study the Hawking radiation (HR) of spin-1 particles -- so-called vector particles -- from a three dimensional (3D) rotating black hole with scalar hair (RBHWSH) using Hamilton-Jacobi (HJ) ansatz. Putting the Proca equation amalgamated with the WKB approximation in process, the tunneling spectrum of vector particles is obtained. We recover the standard Hawking temperature corresponding to the emission of these particles from RBHWSH.

  14. Hawking Radiation of Vector Particles via Tunneling From 4-Dimensional And 5-Dimensional Black Holes

    CERN Document Server

    Feng, Zhongwen; Zu, Xiaotao

    2016-01-01

    Using Proca equation and WKB approximation, we investigate Hawking radiation of vector particles via tunneling from 4-dimensional Kerr-de Sitter black hole and 5-dimensional Schwarzschild-Tangherlini black hole. The results show that the tunneling rates and Hawking temperatures are depended on the properties of spacetime (event horizon, mass and angular momentum). Besides, our results are the same as scalars and fermions tunneling from 4-dimensional Kerr-de Sitter black hole and 5-dimensional Schwarzschild-Tangherlini black hole.

  15. Black hole and Hawking radiation by type-II Weyl fermions

    CERN Document Server

    Volovik, G E

    2016-01-01

    The type-II Weyl and type-II Dirac fermions may emerge behind the event horizon of black holes. Correspondingly the black hole can be simulated by creation of the region with overtilted Weyl or Dirac cones. The filling of the electronic states inside the "black hole" is accompanied by Hawking radiation. The Hawking temperature in the Weyl semimetals can reach the room temperature, if the black hole region is sufficiently small, and thus the effective gravity at the horizon is large.

  16. The Trilinear Hamiltonian: A Zero Dimensional Model of Hawking Radiation from a Quantized Source

    OpenAIRE

    Nation, P. D.; Blencowe, M. P.

    2010-01-01

    We investigate a quantum parametric amplifier with dynamical pump mode, viewed as a zero-dimensional model of Hawking radiation from an evaporating black hole. The conditions are derived under which the spectrum of particles generated from vacuum fluctuations deviates from the thermal spectrum predicted for the conventional parametric amplifier. We find that significant deviations arise when the pump mode (black hole) has emitted nearly half of its initial energy into the signal (Hawking radi...

  17. Analogue Hawking Radiation in a dc-SQUID Array Transmission Line

    Science.gov (United States)

    Nation, P. D.; Blencowe, M. P.; Rimberg, A. J.; Buks, E.

    2009-08-01

    We propose the use of a superconducting transmission line formed from an array of direct-current superconducting quantum interference devices for investigating analogue Hawking radiation. Biasing the array with a space-time varying flux modifies the propagation velocity of the transmission line, leading to an effective metric with a horizon. Being a fundamentally quantum mechanical device, this setup allows for investigations of quantum effects such as backreaction and analogue space-time fluctuations on the Hawking process.

  18. Radiative corrections to DIS

    CERN Document Server

    Krasny, Mieczyslaw Witold

    2008-01-01

    Early deep inelastic scattering (DIS) experiments at SLAC discovered partons, identified them as quarks and gluons, and restricted the set of the candidate theories for strong interactions to those exhibiting the asymptotic freedom property. The next generation DIS experiments at FNAL and CERN confirmed the predictions of QCD for the size of the scaling violation effects in the nucleon structure functions. The QCD fits to their data resulted in determining the momentum distributions of the point-like constituents of nucleons. Interpretation of data coming from all these experiments and, in the case of the SLAC experiments, even an elaboration of the running strategies, would not have been possible without a precise understanding of the electromagnetic radiative corrections. In this note I recollect the important milestones, achieved in the period preceding the HERA era, in the high precision calculations of the radiative corrections to DIS, and in the development of the methods of their experimental control. ...

  19. Non-equilibrium Landauer transport model for Hawking radiation from a black hole

    Science.gov (United States)

    Nation, P. D.; Blencowe, M. P.; Nori, Franco

    2012-03-01

    We propose that the Hawking radiation energy and entropy flow rates from a black hole can be viewed as a one-dimensional (1D), non-equilibrium Landauer transport process. Support for this viewpoint comes from previous calculations invoking conformal symmetry in the near-horizon region, which give radiation rates that are identical to those of a single 1D quantum channel connected to a thermal reservoir at the Hawking temperature. The Landauer approach shows in a direct way the particle statistics independence of the energy and entropy fluxes of a black hole radiating into vacuum, as well as one near thermal equilibrium with its environment. As an application of the Landauer approach, we show that Hawking radiation gives a net entropy production that is 50% larger than that obtained assuming standard 3D emission into vacuum.

  20. Hawking radiation with dispersion: the broadened horizon paradigm

    CERN Document Server

    Coutant, Antonin

    2014-01-01

    We study the spatial properties of the modes responsible for the Hawking effect in the presence of high frequency dispersion. Near the horizon, the modes are regularized on a small distance which only depends on the surface gravity and the scale of dispersion. The regularization explains why the spectrum is hardly affected by dispersion as long as the background geometry does not significantly vary over this composite length. For relevant frequencies, the regularization differs from the usual WKB resolution of wave singularity near a turning point. The latter only applies when the frequency is so high that the Hawking effect is negligible.

  1. Hawking radiation of charged Einstein-aether black holes at both Killing and universal horizons

    Science.gov (United States)

    Ding, Chikun; Wang, Anzhong; Wang, Xinwen; Zhu, Tao

    2016-12-01

    We study analytically quantum tunneling of relativistic and non-relativistic particles at both Killing and universal horizons of Einstein-Maxwell-aether black holes, after high-order curvature corrections are taken into account, for which the dispersion relation of the particles becomes nonlinear. Our results at the Killing horizons confirm the previous ones, i.e., at high frequencies the corresponding radiation remains thermal and the nonlinearity of the dispersion does not alter the Hawking radiation significantly. In contrary, non-relativistic particles are created at universal horizons and are radiated out to infinity. The radiation also has a thermal spectrum, and the corresponding temperature takes the form, TUHz = 2κUH (z - 1) / (2 πz), where z (z ≥ 2) denotes the power of the leading term in the nonlinear dispersion relation, κUH is the surface gravity of the universal horizon, defined by peering behavior of ray trajectories at the universal horizon. We also study the Smarr formula by assuming that: (a) the entropy is proportional to the area of the universal horizon, and (b) the first law of black hole thermodynamics holds, whereby we derive the Smarr mass, which in general is different from the total mass obtained at infinity. This indicates that one or both of these assumptions must be modified.

  2. Hawking-like radiation and the density matrix for an infalling observer during gravitational collapse

    CERN Document Server

    Saini, Anshul

    2016-01-01

    We study time-dependant Hawking-like radiation as seen by an infalling observer during gravitational collapse of a thin shell. We calculate the occupation number of particles whose frequencies are measured in the proper time of an infalling observer in Eddington-Finkelstein coordinates. We solve the equations for the whole process from the beginning of the collapse till the moment when the collapsing shell reaches zero radius. The radiation distribution is not thermal in the whole frequency regime, but it is approximately thermal for the wavelengths of the order of the Schwarzschild radius of the collapsing shell. After the Schwarzschild radius is crossed, the temperature increases without limits as the singularity is approached. We also calculate the density matrix associated with this radiation. It turns out that the off-diagonal correlation terms to the diagonal Hawking's leading order terms are very important. While the trace of the diagonal (Hawking's) density matrix squared decreases during the evolutio...

  3. The Trilinear Hamiltonian: A Zero Dimensional Model of Hawking Radiation from a Quantized Source

    CERN Document Server

    Nation, P D

    2010-01-01

    We investigate a quantum parametric amplifier with dynamical pump mode, viewed as a zero-dimensional model of Hawking radiation from an evaporating black hole. The conditions are derived under which the spectrum of particles generated from vacuum fluctuations deviates from the thermal spectrum predicted for the conventional parametric amplifier. We find that significant deviations arise when the pump mode (black hole) has emitted nearly half of its initial energy into the signal (Hawking radiation) and idler (in-falling particle) modes. As a model of black hole dynamics, this finding lends support to the view that late-time Hawking radiation contains information about the quantum state of the black hole and is entangled with the black hole's quantum gravitational degrees of freedom.

  4. The trilinear Hamiltonian: a zero-dimensional model of Hawking radiation from a quantized source

    Energy Technology Data Exchange (ETDEWEB)

    Nation, Paul D; Blencowe, Miles P, E-mail: paul.d.nation@dartmouth.ed [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States)

    2010-09-15

    We investigate a quantum parametric amplifier with dynamical pump mode, viewed as a zero-dimensional model of Hawking radiation from an evaporating black hole. We derive the conditions under which the spectrum of particles generated from vacuum fluctuations deviates from the thermal spectrum predicted for the conventional parametric amplifier. We find that significant deviations arise when the pump mode (black hole) has emitted nearly half of its initial energy into the signal (Hawking radiation) and idler (in-falling particle) modes. As a model of black hole dynamics, this finding lends support to the view that late-time Hawking radiation contains information about the quantum state of the black hole and is entangled with the black hole's quantum gravitational degrees of freedom.

  5. Analytical solutions in rotating linear dilaton black holes: Hawking radiation of charged massive scalar particles

    CERN Document Server

    Sakalli, I

    2016-01-01

    Hawking radiation of charged massive spin-0 particles are studied in the gravitational, electromagnetic, dilaton, and axion fields of rotating linear dilaton black holes. In this geometry, we separate the covariant Klein--Gordon equation into radial and angular parts and obtain the exact solutions of both the equations in terms of the confluent Heun functions. Using the radial solution, we analyze the behavior of the wave solutions near the event horizon of the rotating linear dilaton black hole and derive its Hawking radiation spectrum via the Damour--Ruffini--Sannan method.

  6. Hawking radiation of charged Dirac particles in Vaidya-Bonner space-time

    Institute of Scientific and Technical Information of China (English)

    朱建阳; 张建华; 赵峥

    1995-01-01

    The dynamical properties of charged Dirac spinor particles in the Vaidya-Bonner space-time are investigated. The asymptotic solution to the radial part of the charged Dirac equation near the event horizon of the black hole is obtained. The Hawking temperature and the event horizon of the charged evaporating black hole, as well as the spectrum of the Hawking radiation of the Dirac particles, are exactly shown. Thereby, a new approach to the back-reaction of radiation from the non-stationary black holes is established.

  7. Hawking Radiation of a Kaluza-Klein Black Hole Described by Landauer Transport Model

    Institute of Scientific and Technical Information of China (English)

    兰小刚; 韦联福

    2012-01-01

    We investigate the Hawking radiation of a Kaluza-Klein black hole by using one-dimensional(1D),non-equilibrium,Landauer transport model.The derived Hawking radiation temperature is in consistence with that obtained by using the usual anomaly method.With the Landauer transport model,we calculate the entropy flow out of the Kaluza-Klein black hole and the relevant entropy production rate.How these quantities depending on the physical parameters of the black hole is also discussed.

  8. Hawking radiation from the charged and magnetized BTZ black hole via covariant anomaly

    Institute of Scientific and Technical Information of China (English)

    Zeng Xiao-Xiong; Yang Shu-Zheng

    2009-01-01

    This paper discusses Hawking radiation from the charged and magnetized Bafiados-Teitelboim-Zanelli (BTZ) black hole from the viewpoint of anomaly, initiated by Robinson and Wilczek recently. It reconstructs the electromagnetic field tensor and the Lagrangian of the field corresponding to the source with electric and magnetic charges to redefine an equivalent charge and gauge potential. It employs the covariant anomaly cancellation method to determine thecompensating fluxes of charge flow and energy-momentum tensor, which are shown to match with those of the 2- dimensional blackbody radiation at the Hawking temperature exactly.

  9. Remarks on Hawking radiation as tunneling from a uniformly accelerating black hole

    Indian Academy of Sciences (India)

    Xiao-Xiong Zeng; Jian-Song Hou; Shu-Zheng Yang

    2008-03-01

    Motivated by the Hamilton-Jacobi method of Angheben et al, we investigate the Hawking tunneling radiation from a uniformly accelerating rectilinear black hole for which the horizons and entropy are functions of . After several coordinate transformations, we conclude that when the self-gravitational interaction and energy conservation are taken into account, the actual radiation spectrum deviates from the thermal one and the tunneling rate is the function of though it is still related to the change of the Bekenstein-Hawking entropy.

  10. Hawking radiation from astrophysical black holes to analogous systems in lab

    CERN Document Server

    Belgiorno, Francesco D

    2017-01-01

    The aim of this book is to provide the reader with a guide to Hawking radiation through a dual approach to the problem. In the first part of the book, we summarize some basic knowledge about black holes and quantum field theory in curved spacetime. In the second part, we present a survey of methods for deriving and studying Hawking radiation from astrophysical black holes, from the original calculation by S W Hawking to the most recent contributions involving gravitational anomalies and tunneling. In the third part, we introduce analogue gravity models, with particular attention to dielectric black hole systems, to which the studies of the present authors are devoted. The mutual interchange of knowledge between the aforementioned parts is addressed to render a more comprehensive picture of this very fascinating quantum phenomenon associated with black holes.

  11. Radiation camera motion correction system

    Science.gov (United States)

    Hoffer, P.B.

    1973-12-18

    The device determines the ratio of the intensity of radiation received by a radiation camera from two separate portions of the object. A correction signal is developed to maintain this ratio at a substantially constant value and this correction signal is combined with the camera signal to correct for object motion. (Official Gazette)

  12. Hawking Radiation of Dirac Particles on Rindler Horizon to a Uniformly Accelerating Observer

    Institute of Scientific and Technical Information of China (English)

    ZHANGJinK-Yi

    2003-01-01

    Following the method of Damour and Ruffini, the Hawking radiation of Dirac particles on Rindler horison to a uniformly accelerating observer is studied this paper. The temperature on Rindler horizon surface and the thermal spectrum formula of Dirac particles are obtained. The result is discussed.

  13. Hawking Radiation of Dirac Particles on Rindler Horizon to a Uniformly Accelerating Observer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-Yi

    2003-01-01

    Following the method of Damour and Ruffini, the Hawking radiation of Dirac particles on Rindler horizonto a uniformly accelerating observer is studied in this paper. The temperature on Rindler horizon surface and the thermalspectrum formula of Dirac particles are obtained. The result is discussed.

  14. Hawking radiation from Kerr-Newman-Kasuya black hole via quantum anomalies

    Institute of Scientific and Technical Information of China (English)

    He Tang-Mei; Fan Jun-Hui; Wang Yong-Jiu

    2008-01-01

    We have studied the Hawking radiation of the Kerr-Newman-Kasuya black hole via gauge and gravitational anomaly in the dragging coordinates. The fluxes of the electromagnetic current and the energy momentum tensor for each partial wave in two-dimensional field are obtained.

  15. Hawking Radiation of Massive Vector Particles From Warped AdS$_{\\text{3}}$ Black Hole

    CERN Document Server

    Gursel, H

    2015-01-01

    Hawking radiation (HR) of massive vector particles from a rotating Warped Anti-de Sitter black hole in 2+1 dimensions (WAdS$_{\\text{3}}$BH) is studied in detail. The quantum tunneling approach with the Hamilton-Jacobi method (HJM) is applied in the Proca equation (PE), and we show that the radial function yields the tunneling rate of the outgoing particles. Comparing the result obtained with the Boltzmann factor, we satisfactorly reproduce the Hawking temperature (HT) of the WAdS$_{\\text{3}}$BH.

  16. Cavity Optical Pulse Extraction: ultra-short pulse generation as seeded Hawking radiation.

    Science.gov (United States)

    Eilenberger, Falk; Kabakova, Irina V; de Sterke, C Martijn; Eggleton, Benjamin J; Pertsch, Thomas

    2013-01-01

    We show that light trapped in an optical cavity can be extracted from that cavity in an ultrashort burst by means of a trigger pulse. We find a simple analytic description of this process and show that while the extracted pulse inherits its pulse length from that of the trigger pulse, its wavelength can be completely different. Cavity Optical Pulse Extraction is thus well suited for the development of ultrashort laser sources in new wavelength ranges. We discuss similarities between this process and the generation of Hawking radiation at the optical analogue of an event horizon with extremely high Hawking temperature. Our analytic predictions are confirmed by thorough numerical simulations.

  17. Integral method for the calculation of Hawking radiation in dispersive media. II. Asymmetric asymptotics.

    Science.gov (United States)

    Robertson, Scott

    2014-11-01

    Analog gravity experiments make feasible the realization of black hole space-times in a laboratory setting and the observational verification of Hawking radiation. Since such analog systems are typically dominated by dispersion, efficient techniques for calculating the predicted Hawking spectrum in the presence of strong dispersion are required. In the preceding paper, an integral method in Fourier space is proposed for stationary 1+1-dimensional backgrounds which are asymptotically symmetric. Here, this method is generalized to backgrounds which are different in the asymptotic regions to the left and right of the scattering region.

  18. Hawking radiation via tunneling from the spacetime of a spinning cosmic string black holes

    CERN Document Server

    Jusufi, Kimet

    2015-01-01

    In this paper, we study Hawking radiation as a massless particles tunneling process across the event horizon from the Schwarzschild and Reissner-Nordstr\\"om black holes pierced by an infinitely long spinning cosmic string and a global monopole. Applying the WKB approximation and using a generalized Painlev\\'e line element for stationary axisymmetric spacetimes, also by taking into account that the ADM mass of the black hole decreases due to the presence of topological defects, it is shown that the Hawking temperature remains unchanged for these black holes. The tunneling of charged massive particles from Reissner-Nordstr\\"om black holes is also studied, in both cases the tunneling rate is related to the change of the Bekenstein-Hawking entropy. The results extend the work of Parikh and Wilczek and are consistent with an underlying unitary theory.

  19. Tunneling method for Hawking radiation in the Nariai case

    Science.gov (United States)

    Belgiorno, F.; Cacciatori, S. L.; Dalla Piazza, F.

    2017-08-01

    We revisit the tunneling picture for the Hawking effect in light of the charged Nariai manifold, because this general relativistic solution, which displays two horizons, provides the bonus to allow the knowledge of exact solutions of the field equations. We first perform a revisitation of the tunneling ansatz in the framework of particle creation in external fields à la Nikishov, which corroborates the interpretation of the semiclassical emission rate Γ_{emission} as the conditional probability rate for the creation of a couple of particles from the vacuum. Then, particle creation associated with the Hawking effect on the Nariai manifold is calculated in two ways. On the one hand, we apply the Hamilton-Jacobi formalism for tunneling, in the case of a charged scalar field on the given background. On the other hand, the knowledge of the exact solutions for the Klein-Gordon equations on Nariai manifold, and their analytic properties on the extended manifold, allow us a direct computation of the flux of particles leaving the horizon, and, as a consequence, we obtain a further corroboration of the semiclassical tunneling picture from the side of S-matrix formalism.

  20. Hawking Radiation of an Arbitrarily Accelerating Kinnersley Black Hole: Spin-Acceleration Coupling Effect

    Institute of Scientific and Technical Information of China (English)

    吴双清; 闫沐霖

    2003-01-01

    The Hawking radiation of Weyl neutrinos in an arbitrarily accelerating Kinnersley black hole is investigated using a method of the generalized tortoise coordinate transformation.Both the location and temperature of the event horizon depend on the time and on the angles.They are in agreement with the previous results,but thethermal radiation spectrum of massless spinor particles displays a type of spin-acceleration coupling effect.

  1. Tunneling method for Hawking radiation in the Nariai case

    CERN Document Server

    Belgiorno, F; Piazza, F Dalla

    2016-01-01

    Particle creation associated with the Hawking effect is calculated in the case of the charged Nariai solution, for the case both of the event horizon and of the cosmological horizon. We apply the Hamilton-Jacobi formalism, and, after a revisitation in the framework of particle creation in external fields {\\sl \\`a la} Nikishov, we consider in particular the case of a charged scalar field on the given background. Due to the knowledge of the exact solutions for the Klein-Gordon equations on Nariai manifold, and to their analytic properties on the extended manifold, we can corroborate the tunneling picture also by means of a direct computation of the flux of particles leaving the horizon.

  2. A silence black hole: Hawking radiation at the Hagedorn temperature

    CERN Document Server

    Lorente-Espin, O

    2008-01-01

    We compute semi-classically the Hawking emission for different types of black hole in type II string theory. In particular we analyze the thermal transition between NS5 branes and Little String Theory, finding compelling evidence for information recovering. We find that once the near horizon limit is taken the emission of a full family of models is exactly thermal even if back-reaction is taken into account. Consequently these theories are non-unitary and can not convey any information about the black hole internal states. It is argue that this behaviour matches the string theory expectations. We suggest a plausible reason for the vanishing of the jet-quenching parameter in such theories.

  3. Analogy of QCD hadronization and Hawking-Unruh radiation at NICA

    Energy Technology Data Exchange (ETDEWEB)

    Nasser Tawfik, Abdel [Modern University for Technology and Information (MTI), Egyptian Center for Theoretical Physics (ECTP), Cairo (Egypt); World Laboratory for Cosmology And Particle Physics (WLCAPP), Cairo (Egypt); Academy for Scientific Research and Technology (ASRT), Network for Nuclear Sciences (NNS), Cairo (Egypt)

    2016-08-15

    The proposed analogy of particle production from high-energy collisions and Hawking-Unruh radiation from black holes is extended to finite density (collisions) and finite electric charge (black holes). Assuming that the electric charge is directly proportional to the density (or the chemical potential), it becomes clear that for at least two freezeout conditions; constant s/T{sup 3} and E/N, the proposed analogy works very well. Dependence of radiation (freezeout) temperature on finite electric charge leads to an excellent estimation for kaon-to-pion ratio, for instance, especially in the energy range covered by NICA. The precise and complete measurements for various light-flavored particle yields and ratios are essential in characterizing Hawking-Unruh radiation from charged black holes and the QCD hadronization at finite density, as well. (orig.)

  4. Entanglement in a model for Hawking radiation: An Application of Quadratic Algebras

    CERN Document Server

    Bambah, Bindu A; Shreecharan, T; Prasad, K Siva

    2012-01-01

    Quadratic polynomially deformed $su(1,1)$ and $su(2)$ algebras are utilised in model Hamiltonians to show how the gravitational system consisting of a black hole, infalling radiation and outgoing (Hawking) radiation can be solved exactly. The models allow us to study the long-time behaviour of the black hole and its outgoing modes. In particular, we calculate the bipartite entanglement entropies of subsystems consisting of a) infalling plus outgoing modes and b) black hole modes plus the infalling modes,using the Janus-faced nature of the model.The long-time behaviour also gives us glimpses of modifications in the character of Hawking radiation. Lastly, we study the phenomenon of superradiance in our model in analogy with atomic Dicke superradiance.

  5. Hawking-Like Radiation from the Trapping Horizon of Both Homogeneous and Inhomogeneous Spherically Symmetric Spacetime Model of the Universe

    National Research Council Canada - National Science Library

    Chakraborty, Subenoy; Saha, Subhajit; Corda, Christian

    2016-01-01

      The present work deals with the semi-classical tunnelling approach and the Hamilton-Jacobi method to study Hawking radiation from the dynamical horizon of both the homogeneous Friedmann-Robertson-Walker (FRW...

  6. Mechanism of stimulated Hawking radiation in a laboratory Bose-Einstein condensate

    Science.gov (United States)

    Wang, Yi-Hsieh; Jacobson, Ted; Edwards, Mark; Clark, Charles W.

    2017-08-01

    We model a sonic black-hole analog in a quasi-one-dimensional Bose-Einstein condensate, using a Gross-Pitaevskii equation matching the configuration of a recent experiment by Steinhauer [Nat. Phys. 10, 864 (2014), 10.1038/nphys3104]. The model agrees well with important features of the experimental observations, demonstrating their hydrodynamic nature. We find that a zero-frequency bow wave is generated at the inner (white-hole) horizon, which grows in proportion to the square of the background condensate density. The relative motion of the black- and white-hole horizons produces a Doppler shift of the bow wave at the black hole, where it stimulates the emission of monochromatic Hawking radiation. The mechanism is confirmed using temporal and spatial windowed Fourier spectra of the condensate. Mean field behavior similar to that in the experiment can thus be fully explained without the presence of self-amplifying Hawking radiation.

  7. Horizon in random matrix theory, the Hawking radiation, and flow of cold atoms.

    Science.gov (United States)

    Franchini, Fabio; Kravtsov, Vladimir E

    2009-10-16

    We propose a Gaussian scalar field theory in a curved 2D metric with an event horizon as the low-energy effective theory for a weakly confined, invariant random matrix ensemble (RME). The presence of an event horizon naturally generates a bath of Hawking radiation, which introduces a finite temperature in the model in a nontrivial way. A similar mapping with a gravitational analogue model has been constructed for a Bose-Einstein condensate (BEC) pushed to flow at a velocity higher than its speed of sound, with Hawking radiation as sound waves propagating over the cold atoms. Our work suggests a threefold connection between a moving BEC system, black-hole physics and unconventional RMEs with possible experimental applications.

  8. Violation of unitarity by Hawking radiation does not violate energy-momentum conservation

    CERN Document Server

    Nikolic, H

    2015-01-01

    An argument by Banks, Susskind and Peskin (BSP), according to which violation of unitarity would violate either locality or energy-momentum conservation, is widely believed to be a strong argument against non-unitarity of Hawking radiation. We find that the whole BSP argument rests on the crucial assumption that the Hamiltonian is not highly degenerate, and point out that this assumption is wrong. Using Lindblad equation, we show that high degeneracy of the Hamiltonian allows local non-unitary evolution without violating energy-momentum conservation. Moreover, since energy-momentum is the source of gravity, we argue that energy-momentum is necessarily conserved for a large class of non-unitary systems with gravity. Finally, we explicitly calculate the Lindblad operators for non-unitary Hawking radiation and show that they conserve energy-momentum.

  9. Violation of unitarity by Hawking radiation does not violate energy-momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Nikolić, Hrvoje [Theoretical Physics Division, Rudjer Bošković Institute, P.O.B. 180, HR-10002 Zagreb (Croatia)

    2015-04-02

    An argument by Banks, Susskind and Peskin (BSP), according to which violation of unitarity would violate either locality or energy-momentum conservation, is widely believed to be a strong argument against non-unitarity of Hawking radiation. We find that the whole BSP argument rests on the crucial assumption that the Hamiltonian is not highly degenerate, and point out that this assumption is not satisfied for systems with many degrees of freedom. Using Lindblad equation, we show that high degeneracy of the Hamiltonian allows local non-unitary evolution without violating energy-momentum conservation. Moreover, since energy-momentum is the source of gravity, we argue that energy-momentum is necessarily conserved for a large class of non-unitary systems with gravity. Finally, we explicitly calculate the Lindblad operators for non-unitary Hawking radiation and show that they conserve energy-momentum.

  10. Baryogenesis via Hawking-like radiation in the FRW space-time

    Energy Technology Data Exchange (ETDEWEB)

    Modak, Sujoy K. [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico City, Distrito Federal (Mexico); Singleton, Douglas [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico City, Distrito Federal (Mexico); California State University, Department of Physics, Fresno, CA (United States)

    2015-05-15

    We present a phenomenological model for baryogenesis based on particle creation in the Friedman-Robertson-Walker (FRW) space-time. This study is a continuation of our proposal that Hawking-like radiation in FRW space-time explains several physical aspects of the early Universe including inflation. In this model we study a coupling between the FRW space-time, in the form of the derivative of the Ricci scalar, and the B-L current, J{sub B-L}{sup μ}, which leads to a different chemical potential between baryons and anti-baryons, resulting in an excess of baryons over anti-baryons with the right order of magnitude. In this model the generation of baryon asymmetry, in principle, occurs over the entire history of the Universe, starting from the beginning of the radiation phase. However, in practice, almost the entire contribution to the baryon asymmetry only comes from the very beginning of the Universe and is negligible thereafter. There is a free parameter in our model which can be interpreted as defining the boundary between the unknown quantum gravity regime and the inflation/baryogenesis regime covered by our model. When this parameter is adjusted to give the observed value of baryon asymmetry we get a higher than usual energy scale for our inflation model which, however, may be in line with the Grand Unified Theory scale for inflation in view of the BICEP2 and Planck results. In addition our model provides the correct temperature for the CMB photons at the time of decoupling. (orig.)

  11. Electroweak Domain Wall by Hawking Radiation Baryogenesis and Dark Matter from Several Hundred kg Black Holes

    CERN Document Server

    Nagatani, Y

    2001-01-01

    We show that a spherical electroweak domain wall is formed around a small black hole and this is a general property of the Hawking radiation in the vacuum of the Standard Model. The wall appears not only for the first order phase transition in the electroweak theory but also for the second order one because the black hole heats up its neighborhood locally by the Hawking radiation in any case. We propose a model for unifying the origin of the baryon number and the cold dark matter in our universe by using properties of the primordial black hole with a mass of several hundred kilograms. The interaction between our wall and the Hawking-radiated-particles can create a baryon number which is proportional to the mass of the black hole as well as the CP broken phase in the extension of the Standard Model. Our model can explain both the baryon-entropy ratio B/S \\sim 10^{-10} and the energy density of the dark matter, provided that the following three conditions are satisfied: (i) the primordial black holes dominate i...

  12. W∞ algebras, Hawking radiation, and information retention by stringy black holes

    Science.gov (United States)

    Ellis, John; Mavromatos, Nick E.; Nanopoulos, D. V.

    2016-07-01

    We have argued previously, based on the analysis of two-dimensional stringy black holes, that information in stringy versions of four-dimensional Schwarzschild black holes (the singular regions of which are represented by appropriate Wess-Zumino-Witten models) is retained by quantum W symmetries when the horizon area is not preserved due to Hawking radiation. It is key that the exactly marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole requires a contribution from W∞ generators in its vertex function. The latter correspond to delocalized, nonpropagating, string excitations that guarantee the transfer of information between the string black hole and external particles. When infalling matter crosses the horizon, these topological states are excited via a process: (stringy black hole) + infalling matter → (stringy black hole)⋆ , where the black hole is viewed as a stringy state with a specific configuration of W∞ charges that are conserved. Hawking radiation is then the reverse process, with conservation of the W∞ charges retaining information. The Hawking radiation spectrum near the horizon of a Schwarzschild or Kerr black hole is specified by matrix elements of higher-order currents that form a phase-space W1 +∞ algebra. We show that an appropriate gauging of this algebra preserves the horizon two-dimensional area classically, as expected because the latter is a conserved Noether charge.

  13. On the paradox of Hawking radiation in a maximally extended Schwarzschild solution

    CERN Document Server

    Ellis, George F R

    2013-01-01

    This paper considers the effect of Hawking radiation on an eternal black hole - that is. a maximally extended Schwarzschild solution. Symmetry considerations that hold independent of the details of the emission mechanism show there is an inconsistency in the claim that such a blackhole evaporates away in a finite time. In essence: because the external domain is static, there is an infinite time available for the process to take place, so whenever the evaporation process is claimed to come to completion, it should have happened earlier. The problem is identified to lie in the claim that the locus of emission of Hawking radiation lies just outside the globally defined event horizon. Rather, the emission domain must be mainly located inside the event horizon, so most of the Hawking radiation ends up at this singularity rather than at infinity and the black hole never evaporates away. This result supports a previous claim [arXiv:1310.4771] that astrophysical black holes do not evaporate.

  14. Radiative corrections to Bose condensation

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A. (Academia de Ciencias de Cuba, La Habana. Inst. de Matematica, Cibernetica y Computacion)

    1985-04-01

    The Bose condensation of the scalar field in a theory behaving in the Coleman-Weinberg mode is considered. The effective potential of the model is computed within the semiclassical approximation in a dimensional regularization scheme. Radiative corrections are shown to introduce certain ..mu..-dependent ultraviolet divergences in the effective potential coming from the Many-Particle theory. The weight of radiative corrections in the dynamics of the system is strongly modified by the charge density.

  15. 球形磁单极荷电黑洞的Hawking辐射%The Hawking Radiation of the Charged Black Hole with a Global Monopole

    Institute of Scientific and Technical Information of China (English)

    刘晶晶; 陈德友

    2008-01-01

    Applying Hamliton-Jacobi method, the tunneling characteristic of the charged black hole with a global monopole is investigated by taking the self-gravitational interaction as well as the energy conservation and charge conservation into account. The radiation spectrum deviates from the purely thermal one and the tunneling probability is related to the change of Bekenstein-Hawking entropy. The result satisfies an underlying unitary theory and gives a correction to the Hawking radiation.%利用Hamliton-Jacobi方法,考虑自引力作用及能量和电荷守恒研究了球形磁单极荷电黑洞的隧穿辐射特性,得到的隧穿辐射谱不再是纯热谱,其隧穿几率与Hawking熵有关,所得到结果满足幺正性原理且对Hawking辐射进行了修正.

  16. Collective properties of quantum matter: from Hawking radiation analogues to quantum Hall effect in graphene

    CERN Document Server

    de Nova, J R M

    2015-01-01

    The work is divided in three parts. We devote the first part to the study of analog Hawking radiation in Bose-Einstein condensates. We study numerically the birth of a sonic black hole in an outcoupled Bose-Einstein condensate after relaxing the confinement provided by an optical lattice. We also study possible signatures of spontaneous Hawking radiation. We propose that the violation of CS inequalities is a smoking gun of the presence of the Hawking effect. We compare this criterion with the presence of entaglement, finding that both are equivalent under usual assumptions. Finally, we study a different gravitational analogue: the so-called black-hole laser. The most interesting result is the appearance of a regime of continuous and periodic emission of solitons, providing the most strong analogue with optical lasers. In the second part, we analyze the effect of the introduction of a short Bragg pulse in a thermal cloud. We show that the induced periodic density pattern decays to the equilibrium profile. Howe...

  17. Towards the observation of Hawking radiation in Bose--Einstein condensates

    CERN Document Server

    Barcelo, C; Visser, M; Barcelo, Carlos; Liberati, Stefano; Visser, Matt

    2001-01-01

    Acoustic analogues of black holes (dumb holes) are generated when a supersonic fluid flow entrains sound waves and forms a trapped region from which sound cannot escape. The surface of no return, the acoustic horizon, is qualitatively very similar to the event horizon of a general relativity black hole. In particular Hawking radiation (a thermal bath of phonons with temperature proportional to the ``surface gravity'') is expected to occur. In this note we consider quasi-one-dimensional supersonic flow of a Bose--Einstein condensate (BEC) in a Laval nozzle (converging-diverging nozzle), with a view to finding which experimental settings could magnify this effect and provide an observable signal. We identify an experimentally plausible configuration with a Hawking temperature of order 70 n K; to be contrasted with a condensation temperature of the order of 90 n K.

  18. Quantum Noise in Amplifiers and Hawking/Dumb-Hole Radiation as Amplifier Noise

    CERN Document Server

    Unruh, W G

    2011-01-01

    The quantum noise in a linear amplifier is shown to be thermal noise. The theory of linear amplifiers is applied first to the simplest, single or double oscillator model of an amplifier, and then to linear model of an amplifier with continuous fields and input and outputs. Finally it is shown that the thermal noise emitted by black holes first demonstrated by Hawking, and of dumb holes (sonic and other analogs to black holes), arises from the same analysis as for linear amplifiers. The amplifier noise of black holes acting as amplifiers on the quantum fields living in the spacetime surrounding the black hole is the radiation discovered by Hawking. For any amplifier, that quantum noise is completely characterized by the attributes of the system regarded as a classical amplifier, and arises out of those classical amplification factors and the commutation relations of quantum mechanics.

  19. Hawking radiation as tunnelling from arbitrarily dimensional Reissner-Nordstr(o)m de Sitter black hole

    Institute of Scientific and Technical Information of China (English)

    Jiang Qing-Quan; Yang Shu-Zheng; Wu Shuang-Qing

    2006-01-01

    This paper extends Parikh-Wilzcek's recent work, which treats the Hawking radiation as a semi-classical tunnelling process from the event horizon of four dimensional Schwarzshild and Reissner-Nordstr(o)m black holes, to that of arbitrarily dimensional Reissner-Nordstr(o)m de Sitter black hole. The result shows that the tunnelling rate is related to the change of Bekenstein-Hawking entropy and the factually radiant spectrum is no longer precisely thermal after taking the dynamical black hole background and energy conservation into account, but is consistent with the underlying unitary theory and then satisfies the first law of the black hole thermodynamics. Meanwhile, in Parikh-Wilzcek's framework, this paper points out that the information conservation is only suitable for the reversible process but in highly unstable evaporating black hole (irreversible process) the information loss is possible.

  20. Emergent horizon, Hawking radiation and chaos in the collapsed polymer model of a black hole

    CERN Document Server

    Brustein, Ram

    2016-01-01

    We have proposed that the interior of a macroscopic Schwarzschild black hole (BH) consists of highly excited, long, closed, interacting strings and, as such, can be modeled as a collapsed polymer. It was previously shown that the scaling relations of the collapsed-polymer model agree with those of the BH. The current paper further substantiates this proposal with an investigation into some of its dynamical consequences. In particular, we show that the model predicts, without relying on gravitational effects, an emergent horizon. We further show that the horizon fluctuates quantum mechanically as it should and that the strength of the fluctuations is inversely proportional to the BH entropy. It is then demonstrated that the emission of Hawking radiation is realized microscopically by the quantum-induced escape of small pieces of string, with the rate of escape and the energy per emitted piece both parametrically matching the Hawking temperature. We also show, using standard methods from statistical mechanics a...

  1. Hawking Radiation of Mass Generating Particles From Dyonic Reissner Nordstrom Black Hole

    CERN Document Server

    Sakalli, I

    2016-01-01

    The Hawking radiation is considered as a quantum tunneling process, which can be studied in the framework of the Hamilton-Jacobi method. In this study, we present the wave equation for a mass generating massive and charged scalar particle (boson). In sequel, we analyze the quantum tunneling of these bosons from a generic 4-dimensional spherically symmetric black hole. We apply the Hamilton-Jacobi formalism to derive the radial integral solution for the classically forbidden action which leads to the tunneling probability. To support our arguments, we take the dyonic Reissner-Nordstr\\"{o}m black hole as a test background. Comparing the tunneling probability obtained with the Boltzmann formula, we succeed to read the standard Hawking temperature of the dyonic Reissner-Nordstr\\"{o}m black hole.

  2. Hawking Radiation of Mass Generating Particles from Dyonic Reissner–Nordström Black Hole

    Indian Academy of Sciences (India)

    I. Sakalli; A Ovgun

    2016-09-01

    The Hawking radiation is considered as a quantum tunneling process, which can be studied in the framework of the Hamilton--Jacobi method. In this study, we present the wave equation for a mass generating massive and charged scalar particle (boson). In sequel, we analyse the quantum tunneling of these bosons from a generic 4-dimensional spherically symmetric black hole. We apply the Hamilton--Jacobi formalism to derive the radial integral solution for the classically forbidden action which leads to the tunneling probability. To support our arguments, we take the dyonic Reissner--Nordström black hole as a test background. Comparing the tunneling probability obtained with the Boltzmann formula, we succeed in reading the standard Hawking temperature of the dyonic Reissner–Nordström black hole.

  3. Hawking and Unruh radiation perception by different observers: applications of the effective temperature function (in Spanish)

    CERN Document Server

    Barbado, Luis C

    2015-01-01

    We study the perception of the radiation phenomena of Hawking radiation and Unruh effect by using two main tools: the Unruh-DeWitt detectors and the effective temperature function (ETF), this last tool based on Bogoliubov transformations. Using the Unruh-DeWitt detectors we find an adiabatic expansion of the detection properties along linear trajectories with slowly varying acceleration in Minkowski, which allows us to calculate the spectrum detected, finding the thermal spectrum as the zeroth order contribution. Using the ETF we study the perception of Hawking radiation by observers following radial trajectories outside a Schwarzschild black hole. One of the most important results is that, in general, free-falling observers crossing the event horizon do detect some radiation, even when the field is in the Unruh vacuum state, due to a Doppler blue-shift that diverges at the horizon. We give a general expression for the ETF, which has a clear interpretation in terms of well-known physical phenomena. We discuss...

  4. Pre-Hawking radiation may allow for reconstruction of the mass distribution of the collapsing object

    Energy Technology Data Exchange (ETDEWEB)

    Dai, De-Chang, E-mail: diedachung@gmail.com [Institute of Natural Sciences, Shanghai Key Lab for Particle Physics and Cosmology, and Center for Astrophysics and Astronomy, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Stojkovic, Dejan [HEPCOS, Department of Physics, SUNY, University at Buffalo, Buffalo, NY 14260-1500 (United States)

    2016-07-10

    Hawking radiation explicitly depends only on the black hole's total mass, charge and angular momentum. It is therefore generally believed that one cannot reconstruct the information about the initial mass distribution of an object that made the black hole. However, instead of looking at radiation from a static black hole, we can study the whole time-dependent process of the gravitational collapse, and pre-Hawking radiation which is excited because of the time-dependent metric. We compare radiation emitted by a single collapsing shell with that emitted by two concentric shells of the equivalent total mass. We calculate the gravitational trajectory and the momentum energy tensor. We show that the flux of energy emitted during the collapse by a single shell is significantly different from the flux emitted by two concentric shells of the equivalent total mass. When the static black hole is formed, the fluxes become indistinguishable. This implies that an observer studying the flux of particles from a collapsing object could in principle reconstruct information not only about the total mass of the collapsing object, but also about the mass distribution.

  5. Pre-Hawking radiation may allow for reconstruction of the mass distribution of the collapsing object

    Directory of Open Access Journals (Sweden)

    De-Chang Dai

    2016-07-01

    Full Text Available Hawking radiation explicitly depends only on the black hole's total mass, charge and angular momentum. It is therefore generally believed that one cannot reconstruct the information about the initial mass distribution of an object that made the black hole. However, instead of looking at radiation from a static black hole, we can study the whole time-dependent process of the gravitational collapse, and pre-Hawking radiation which is excited because of the time-dependent metric. We compare radiation emitted by a single collapsing shell with that emitted by two concentric shells of the equivalent total mass. We calculate the gravitational trajectory and the momentum energy tensor. We show that the flux of energy emitted during the collapse by a single shell is significantly different from the flux emitted by two concentric shells of the equivalent total mass. When the static black hole is formed, the fluxes become indistinguishable. This implies that an observer studying the flux of particles from a collapsing object could in principle reconstruct information not only about the total mass of the collapsing object, but also about the mass distribution.

  6. Hawking Radiation of the Charged Particle via Tunneling from the Kaluza-Klein Black Hole

    Science.gov (United States)

    Pu, Jin; Han, Yan

    2016-12-01

    In this paper, by applying the Lagrangian analysis on the action, we first redefine the geodesic equation of the charged massive particle. Then, basing on the new definition of the geodesic equation, we revisit the Hawking radiation of the charged massive particle via tunneling from the event horizon of the Kaluza-Klein black hole. In our treatment, the geodesic equation of the charged massive particle is defined uniformly with that of the massless particle, which overcomes the shortcomings of its previous definition, and is more suitable for the tunneling mechanism. The highlight of our work is a new and important development for the Parikh-Wilczek's tunneling method.

  7. Hawking radiation screening and Penrose process shielding in the Kerr black hole

    Energy Technology Data Exchange (ETDEWEB)

    Mc Caughey, Eamon [Dublin Institute of Technology, School of Mathematical Sciences, Dublin 8 (Ireland)

    2016-04-15

    The radial motion of massive particles in the equatorial plane of a Kerr black hole is considered. Screening of the Hawking radiation and shielding of the Penrose process are examined (both inside and outside the ergosphere) and their effect on the evaporation of the black hole is studied. In particular, the locus and width of a classically forbidden region and their dependence on the particle's angular momentum and energy is analysed. Tunneling of particles between the boundaries of this region is considered and the transmission coefficient determined. (orig.)

  8. Integral method for the calculation of Hawking radiation in dispersive media. I. Symmetric asymptotics.

    Science.gov (United States)

    Robertson, Scott; Leonhardt, Ulf

    2014-11-01

    Hawking radiation has become experimentally testable thanks to the many analog systems which mimic the effects of the event horizon on wave propagation. These systems are typically dominated by dispersion and give rise to a numerically soluble and stable ordinary differential equation only if the rest-frame dispersion relation Ω^{2}(k) is a polynomial of relatively low degree. Here we present a new method for the calculation of wave scattering in a one-dimensional medium of arbitrary dispersion. It views the wave equation as an integral equation in Fourier space, which can be solved using standard and efficient numerical techniques.

  9. Emerging Hawking-Like Radiation from Gravitational Bremsstrahlung Beyond the Planck Scale.

    Science.gov (United States)

    Ciafaloni, Marcello; Colferai, Dimitri; Veneziano, Gabriele

    2015-10-23

    We argue that, as a consequence of the graviton's spin-2, its bremsstrahlung in trans-Planckian-energy (E≫M(P)) gravitational scattering at small deflection angle can be nicely expressed in terms of helicity-transformation phases and their transfer within the scattering process. The resulting spectrum exhibits deeply sub-Planckian characteristic energies of order M(P)(2)/E≪M(P) (reminiscent of Hawking radiation), a suppressed fragmentation region, and a reduced rapidity plateau, in broad agreement with recent classical estimates.

  10. Hawking Radiation of the Charged Particle via Tunneling from the Kaluza-Klein Black Hole

    Science.gov (United States)

    Pu, Jin; Han, Yan

    2016-08-01

    In this paper, by applying the Lagrangian analysis on the action, we first redefine the geodesic equation of the charged massive particle. Then, basing on the new definition of the geodesic equation, we revisit the Hawking radiation of the charged massive particle via tunneling from the event horizon of the Kaluza-Klein black hole. In our treatment, the geodesic equation of the charged massive particle is defined uniformly with that of the massless particle, which overcomes the shortcomings of its previous definition, and is more suitable for the tunneling mechanism. The highlight of our work is a new and important development for the Parikh-Wilczek's tunneling method.

  11. Spin zero Hawking radiation for non-zero-angular momentum mode

    Energy Technology Data Exchange (ETDEWEB)

    Ngampitipan, Tritos [Department of Physics, Chulalongkorn University, Bangkok 10330 (Thailand); Bonserm, Petarpa [Department of Mathematics and Computer Science, Chulalongkorn University, Bangkok 10330 (Thailand); Visser, Matt [School of Mathematics, Statistics, and Operations Research, Victoria University of Wellington, PO Box 600, Wellington 6140 (New Zealand)

    2015-05-15

    Black hole greybody factors carry some quantum black hole information. Studying greybody factors may lead to understanding the quantum nature of black holes. However, solving for exact greybody factors in many black hole systems is impossible. One way to deal with this problem is to place some rigorous analytic bounds on the greybody factors. In this paper, we calculate rigorous bounds on the greybody factors for spin zero hawking radiation for non-zero-angular momentum mode from the Kerr-Newman black holes.

  12. Hawking radiation screening and Penrose process shielding in the Kerr black hole

    CERN Document Server

    Caughey, Eamon Mc

    2016-01-01

    The radial motion of massive particles in the equatorial plane of the Kerr black hole is considered. Screening of the Hawking radiation and shielding of the Penrose process are examined (both insides and outside the ergosphere) and their effects on the evaporation of the black hole is studied. In particular, the locus and width of a classically forbidden region and their dependence on the particle's angular momentum and energy is analysed. Tunneling of particles between the boundaries of this region is considered and the transmission coefficient is determined.

  13. Mechanism of stimulated Hawking radiation in a laboratory Bose-Einstein condensate

    CERN Document Server

    Wang, Yi-Hsieh; Edwards, Mark; Clark, Charles W

    2016-01-01

    We model a sonic black hole analog in a quasi one-dimensional Bose-Einstein condensate, using a Gross-Pitaevskii equation matching the configuration of a recent experiment by Steinhauer. The model agrees well with the experimental observations, with no adjustable parameters, demonstrating their hydrodynamic nature. With enhanced but experimentally feasible parameters we establish by spectral analysis that a growing bow wave is generated at the inner (white hole) horizon, stimulating the emission of Hawking radiation. The black hole laser effect plays no role.

  14. Hawking Radiation of a Quantum Black Hole in an Inflationary Universe

    CERN Document Server

    Huang, W H

    1992-01-01

    The quantum stress-energy tensor of a massless scalar field propagating in the two-dimensional Vaidya-de Sitter metric, which describes a classical model spacetime for a dynamical evaporating black hole in an inflationary universe, is analyzed. We present a possible way to obtain the Hawking radiation terms for the model with arbitrary functions of mass. It is used to see how the expansion of universe will affect the dynamical process of black hole evaporation. The results show that the cosmological inflation has an inclination to depress the black hole evaporation. However, if the cosmological constant is sufficiently large then the back-reaction effect has the inclination to increase the black hole evaporation. We also present a simple method to show that it will always produce a divergent flux of outgoing radiation along the Cauchy horizon where the curvature is a finite value. This means that the Hawking radiation will be very large in there and shall modify the classical spacetime drastically. Therefore ...

  15. Analogy of QCD hadronization and Hawking-Unruh radiation at NICA

    CERN Document Server

    Tawfik, Abdel Nasser

    2016-01-01

    The proposed analogy of particle production from high-energy collisions and Hawking-Unruh radiation from black holes is extended to finite density (collisions) and finite-electric charge (black holes). Assuming that the electric charge is directly proportional to the density (or the chemical potential), it becomes clear that for at least two freezeout conditions; constant $s/T^3$ and $E/N$, the proposed analogy works very well. Dependence of radiation (freezeout) temperature on finite electric-charge leads to an excellent estimation for Kaon-to-pion ratio, for instance, especially in the energy range covered by NICA. The precise and complete measurements for various light-flavored particle yields and ratios are essential in characterizing Hawing-Unruh radiation from charged black holes and the QCD hadronization at finite density, as well.

  16. Hawking Radiation from Horizons of Reissner-Nordstr6m de Sitter Black Hole with a Global Monopole via Anomalies

    Institute of Scientific and Technical Information of China (English)

    CHEN Shi-Wu; LIU Xiong-Wei; LIN Kai; ZENG Xiao-Xiong; YANG Shu-Zheng

    2008-01-01

    Hawking radiation from cosmological horizon and event horizon of the Reissner-Nordstrom de Sitter black hole with a global monopole is studied via a new method that was propounded by Robinson and Wilzek and elaborated by Banerjee and Kulkarni. The results show that the gauge current and energy-momentum tensor fluxes, which required keeping gauge covariance and general coordinate invaxiance at the quantum level in the effective field theory, axe exactly equivalent to those of Hawking radiation from the event horizon and the cosmological horizon, respectively.

  17. Hawking Radiation as a Possible Probe for the Interior Structure of Regular Black Holes

    Science.gov (United States)

    Deng, Yanbin; Cleaver, Gerald

    2017-03-01

    The notion of black hole singularity and the proof of the singularity theorem were considered great successes in classical general relativity whereas they meanwhile brought with deep puzzles. Conceptual challenges were set up by the intractability of the singularity. The existence of black hole horizons which cover up the black hole interior including the singularity from outside observers, builds an information curtain, further hindering physicists from understanding the nature of the singularity and the interior structure of black holes. The regular black hole is a concept produced out of multiple attempts of establishing a tractable and understandable interior structure for black holes as well as avoiding the singularity behind the black hole horizon. The practicality of the new constructions of black holes would be considered more reliable if there can be found some connection between the interior of regular black holes and some far-reaching signals released from the black hole. After studying the Hawking radiation by fermion tunnelling from one type of regular black hole, structure dependent results were obtained. The result being structure dependent hints the prospects of employing the Hawking radiation as a method to probe into the structure of black holes.

  18. Mechanism of stimulated Hawking radiation in a laboratory Bose-Einstein condensate

    Science.gov (United States)

    Jacobson, Ted; Wang, Yi-Hsieh; Edwards, Mark; Clark, Charles W.

    2017-01-01

    Analog black/white hole pairs have been achieved in recent experiment by J. Steinhauer, using an elongated Bose-Einstein condensate. He reported observations of self-amplifying Hawking radiation, via a lasing mechanism operating between the black and white hole horizons. Through the simulations using the 1D Gross-Pitaevskii equation, we find that the experimental observations should be attributed not to the black hole laser effect, but rather to a growing zero-frequency bow wave, generated at the white-hole horizon. The relative motion of the black and white hole horizons produces a Doppler shift of the bow wave at the black hole, where it stimulates the emission of monochromatic Hawking radiation. This mechanism is confirmed using temporal and spatial windowed Fourier spectra of the condensate. We also find that shot-to-shot atom number variations, of the type normally realized in ultracold-atom experiments, and quantum fluctuations of condensates, as computed in the Bogoliubov-De Gennes approximation, give density-density correlations consistent with those reported in the experiments. In particular, atom number variations can produce a spurious correlation signal.

  19. Hawking radiation and the Stefan-Boltzmann law: The effective radius of the black-hole quantum atmosphere

    CERN Document Server

    Hod, Shahar

    2016-01-01

    It has recently been suggested [S. B. Giddings, Phys. Lett. B {\\bf 754}, 39 (2016)] that the Hawking black-hole radiation spectrum originates from an effective quantum "atmosphere" which extends well outside the black-hole horizon. In particular, comparing the Hawking radiation power of a $(3+1)$-dimensional Schwarzschild black hole of horizon radius $r_{\\text{H}}$ with the familiar Stefan-Boltzmann radiation power of a $(3+1)$-dimensional flat space perfect blackbody emitter, Giddings concluded that the source of the Hawking semi-classical black-hole radiation is a quantum region outside the Schwarzschild black-hole horizon whose effective radius $r_{\\text{A}}$ is characterized by the relation $\\Delta r\\equiv r_{\\text{A}}-r_{\\text{H}}\\sim r_{\\text{H}}$. It is of considerable physical interest to test the general validity of Giddings's intriguing conclusion. To this end, we study the Hawking radiation of $(D+1)$-dimensional Schwarzschild black holes. We find that the dimensionless radii $r_{\\text{A}}/r_{\\text...

  20. Strangeness production in high-energy collisions and Hawking-Unruh radiation

    Science.gov (United States)

    Tawfik, Abdel Nasser; Yassin, Hayam; Abo Elyazeed, Eman R.

    The assumption that the production of quark-antiquark pairs and their sequential string-breaking takes place, likely as a tunneling process, through the event horizon of the color confinement determines the freezeout temperature and gives a plausible interpretation for the thermal pattern of elementary and nucleus-nucleus collisions. When relating the black-hole electric charges to the baryon-chemical potentials, it was found that the phenomenologically deduced parameters from the ratios of various particle species and the higher-order moments of net-proton multiplicity in the statistical thermal models and Polyakov linear-sigma model agree well with the ones determined from the thermal radiation from charged black hole. Accordingly, the resulting freezeout conditions, such as normalized entropy density s/T3 = 7 and average energy per particle /≃ 1GeV, are confirmed at finite chemical potentials as well. Furthermore, the problem of strangeness production in elementary collisions can be interpreted by thermal particle production from the Hawking-Unruh radiation. Consequently, the freezeout temperature depends on the quark masses. This leads to a deviation from full equilibrium and thus a suppression of the strangeness production in the elementary collisions. But in nucleus-nucleus collisions, an average temperature should be introduced in order to dilute the quark masses. This nearly removes the strangeness suppression. An extension to finite chemical potentials is introduced. The particle ratios of kaon-to-pion (K+/π+), phi-to-kaon (ϕ/K‑) and antilambda-to-pion (Λ¯/π‑) are determined from Hawking-Unruh radiation and compared with the thermal calculations and the measurements in different experiments. We conclude that these particle ratios can be reproduced, at least qualitatively, as Hawking-Unruh radiation at finite chemical potential. With increasing energy, both K+/π+ and ϕ/K‑ keep their maximum values at low SPS energies. But the further energy

  1. Nonlinear electromagnetic quasinormal modes and Hawking radiation of a regular black hole with magnetic charge

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jin [Chongqing University, Department of Physics, Chongqing (China); Lin, Kai [Universidade de Sao Paulo, Instituto de Fisica, CP 66318, Sao Paulo (Brazil); Yang, Nan [Huazhong University of Science and Technology, Department of Physics, Wuhan (China)

    2015-03-01

    Based on a regular exact black hole (BH) from nonlinear electrodynamics (NLED) coupled to general relativity, we investigate the stability of such BH through the Quasinormal Modes (QNMs) of electromagnetic (EM) field perturbations and its thermodynamics through Hawking radiation. In perturbation theory, we can deduce the effective potential from a nonlinear EM field. The comparison of the potential function between regular and RN BHs could predict similar QNMs. The QNM frequencies tell us the effect of the magnetic charge q, the overtone n, and the angular momentum number l on the dynamic evolution of NLED EM field. Furthermore we also discuss the cases of near-extreme conditions of such a magnetically charged regular BH. The corresponding QNM spectrum illuminates some special properties in the near-extreme cases. For the thermodynamics, we employ the Hamilton-Jacobi method to calculate the near-horizon Hawking temperature of the regular BH and reveal the relationship between the classical parameters of the black hole and its quantum effects. (orig.)

  2. Emergent horizon, Hawking radiation and chaos in the collapsed polymer model of a black hole

    Energy Technology Data Exchange (ETDEWEB)

    Brustein, Ram [Department of Physics, Ben-Gurion University, Beer-Sheva (Israel); Medved, A.J.M. [Department of Physics and Electronics, Rhodes University, Grahamstown (South Africa); National Institute for Theoretical Physics (NITheP), Western Cape (South Africa)

    2017-02-15

    We have proposed that the interior of a macroscopic Schwarzschild black hole (BH) consists of highly excited, long, closed, interacting strings and, as such, can be modeled as a collapsed polymer. It was previously shown that the scaling relations of the collapsed-polymer model agree with those of the BH. The current paper further substantiates this proposal with an investigation into some of its dynamical consequences. In particular, we show that the model predicts, without relying on gravitational effects, an emergent horizon. We further show that the horizon fluctuates quantum mechanically as it should and that the strength of the fluctuations is inversely proportional to the BH entropy. It is then demonstrated that the emission of Hawking radiation is realized microscopically by the quantum-induced escape of small pieces of string, with the rate of escape and the energy per emitted piece both parametrically matching the Hawking temperature. We also show, using standard methods from statistical mechanics and chaos theory, how our model accounts for some other known properties of BHs. These include the accepted results for the scrambling time and the viscosity-to-entropy ratio, which in our model apply not only at the horizon but throughout the BH interior. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Quantum Corrected Non-Thermal Radiation Spectrum from the Tunnelling Mechanism

    Directory of Open Access Journals (Sweden)

    Subenoy Chakraborty

    2015-06-01

    Full Text Available The tunnelling mechanism is today considered a popular and widely used method in describing Hawking radiation. However, in relation to black hole (BH emission, this mechanism is mostly used to obtain the Hawking temperature by comparing the probability of emission of an outgoing particle with the Boltzmann factor. On the other hand, Banerjee and Majhi reformulated the tunnelling framework deriving a black body spectrum through the density matrix for the outgoing modes for both the Bose-Einstein distribution and the Fermi-Dirac distribution. In contrast, Parikh and Wilczek introduced a correction term performing an exact calculation of the action for a tunnelling spherically symmetric particle and, as a result, the probability of emission of an outgoing particle corresponds to a non-strictly thermal radiation spectrum. Recently, one of us (C. Corda introduced a BH effective state and was able to obtain a non-strictly black body spectrum from the tunnelling mechanism corresponding to the probability of emission of an outgoing particle found by Parikh and Wilczek. The present work introduces the quantum corrected effective temperature and the corresponding quantum corrected effective metric is written using Hawking’s periodicity arguments. Thus, we obtain further corrections to the non-strictly thermal BH radiation spectrum as the final distributions take into account both the BH dynamical geometry during the emission of the particle and the quantum corrections to the semiclassical Hawking temperature.

  4. Response to the recent note concerning the observation of quantum Hawking radiation and its entanglement in an analogue black hole

    CERN Document Server

    Steinhauer, Jeff

    2016-01-01

    The observation of quantum Hawking radiation and its entanglement in an analogue black hole was recently reported. A subsequent note (arXiv:1609.03803) criticized the study. We answer all of the comments in the note and show that the criticisms are not valid. We also answer a comment made by the author of the note in a different forum.

  5. Hawking effect and quantum nonthermal radiation of an arbitrarily accelerating charged black hole using a new tortoise coordinate transformation

    Institute of Scientific and Technical Information of China (English)

    Pan Wei-Zhen; Yang Xue-Jun; Xie Zhi-Kun

    2011-01-01

    Using a new tortoise coordinate transformation, this paper investigates the Hawking effect from an arbitrarily accelerating charged black hole by the improved Damour-Ruffini method. After the tortoise coordinate transformation,the Klein-Gordon equation can be written as the standard form at the event horizon. Then extending the outgoing wave from outside to inside of the horizon analytically, the surface gravity and Hawking temperature can be obtained automatically. It is found that the Hawking temperatures of different points on the surface are different. The quantum nonthermal radiation characteristics of a black hole near the event horizon is also discussed by studying the Hamilton Jacobi equation in curved spacetime and the maximum overlap of the positive and negative energy levels near the event horizon is given. There is a dimensional problem in the standard tortoise coordinate and the present results may be more reasonable.

  6. $W_\\infty$ Algebras, Hawking Radiation and Information Retention by Stringy Black Holes

    CERN Document Server

    Ellis, John; Nanopoulos, Dimitri V

    2016-01-01

    We have argued previously, based on the analysis of two-dimensional stringy black holes, that information in stringy versions of four-dimensional Schwarzschild black holes (whose singular regions are represented by appropriate Wess-Zumino-Witten models) is retained by quantum $W$-symmetries when the horizon area is not preserved due to Hawking radiation. It is key that the exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole requires a contribution from $W_\\infty$ generators in its vertex function. The latter correspond to delocalised, non-propagating, string excitations that guarantee the transfer of information between the string black hole and external particles. When infalling matter crosses the horizon, these topological states are excited via a process: (Stringy black hole) + infalling matter $\\rightarrow $ (Stringy black hole)$^\\star$, where the black hole is viewed as a stringy state with a specific configuration of $W_\\infty$ charges...

  7. Quasinormal modes of BTZ black hole and Hawking-like radiation in graphene

    CERN Document Server

    Kandemir, B S

    2016-01-01

    The Ba\\~{n}ados-Teitelboim-Zanelli (BTZ) black hole model corresponds to a solution of (2+1)-dimensional Einstein gravity with negative cosmological constant, and by a conformal rescaling its metric can be mapped onto the hyperbolic pseudosphere surface (Beltrami trumpet) with negative curvature. Beltrami trumpet shaped graphene sheets have been predicted to emit Hawking radiation that is experimentally detectable by a scanning tunnelling microscope. Here, for the first time we present an analytical algorithm that allows variational solutions to the Dirac Hamiltonian of graphene pseudoparticles in BTZ black hole gravitational field by using an approach based on the formalism of pseudo-Hermitian Hamiltonians within a discrete-basis-set method. We show that our model not only reproduces the exact results for the real part of quasinormal mode frequencies of (2+1)-dimensional spinless BTZ black hole, but also provides analytical results for the real part of quasinormal modes of spinning BTZ black hole, and also o...

  8. Hawking radiation from a Vaidya black hole by Hamilton-Jacobi method

    Science.gov (United States)

    Ding, Han; Liu, Wen-Biao

    2011-03-01

    Using the Hamilton-Jacobi method, Hawking radiation from the apparent horizon of a dynamical Vaidya black hole is calculated. The black hole thermodynamics can be built successfully on the apparent horizon. If a relativistic perturbation is given to the apparent horizon, a similar calculation can also lead to a purely thermal spectrum, which corresponds to a modified temperature from the former. The first law of thermodynamics can also be constructed successfully at a new supersurface which has a small deviation from the apparent horizon. When the event horizon is thought as such a deviation from the apparent horizon, the expressions of the characteristic position and temperature are consistent with the previous result that asserts that thermodynamics should be built on the event horizon. It is concluded that the thermodynamics should be constructed on the apparent horizon exactly while the event horizon thermodynamics is just one of the perturbations near the apparent horizon.

  9. Radiative corrections in bumblebee electrodynamics

    Directory of Open Access Journals (Sweden)

    R.V. Maluf

    2015-10-01

    Full Text Available We investigate some quantum features of the bumblebee electrodynamics in flat spacetimes. The bumblebee field is a vector field that leads to a spontaneous Lorentz symmetry breaking. For a smooth quadratic potential, the massless excitation (Nambu–Goldstone boson can be identified as the photon, transversal to the vacuum expectation value of the bumblebee field. Besides, there is a massive excitation associated with the longitudinal mode and whose presence leads to instability in the spectrum of the theory. By using the principal-value prescription, we show that no one-loop radiative corrections to the mass term is generated. Moreover, the bumblebee self-energy is not transverse, showing that the propagation of the longitudinal mode cannot be excluded from the effective theory.

  10. Baryogenesis via Hawking-like Radiation in the FRW Space-time

    CERN Document Server

    Modak, Sujoy K

    2014-01-01

    We present a phenomenological model for baryogenesis based on particle creation in the Friedman-Robertson-Walker (FRW) space-time. This study is a continuation of our proposal that Hawking-like radiation in FRW space-time explains several physical aspects of the early Universe including inflation. In this model we study a coupling between the FRW space-time, in the form of the derivative of the Ricci scalar, and the $B-L$ current, $J^{\\mu} _{B-L}$, which leads to a different chemical potential between baryons and anti-baryons resulting in an excess of baryons over anti-baryons with the right order of magnitude. In this model the generation of baryon asymmetry, in principle, occurs over the entire history of the Universe starting from the beginning of the radiation phase. However, in practice, almost the entire contribution to the baryon asymmetry only comes from the very beginning of the Universe and is negligible thereafter. There is a free parameter in our model which can be interpreted as defining the boun...

  11. The Hawking Corpuscular Cascading from the Backreacted Black Hole

    CERN Document Server

    Övgün, A

    2016-01-01

    Exciting peculiarities of the Planck scale physics have an immediate effect on the Hawking radiation (HR) from black hole (BH). In this paper, by using the tunneling formalism we determine the Hawking temperature for the vector particles from a backreacted black hole (BBH), which is constructed from the conformal scalar field surrounded by BTZ black hole. Then we extend our calculations for scalar particles with the effect of generalized uncertainty principle (GUP) to understand the effect of quantum gravity. Then we calculate an evaporation time of the BBH, total number of Hawking particles and its quantum corrections. We observe that the remnants in the black hole evaporation are occured and they affect the Hawking temperature of the BBH and also the total number of Hawking particles.

  12. Confluent Heun functions and the physics of black holes: Resonant frequencies, Hawking radiation and scattering of scalar waves

    Science.gov (United States)

    Vieira, H. S.; Bezerra, V. B.

    2016-10-01

    We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr-Newman-Kasuya spacetime (dyon black hole) and a Reissner-Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein-Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild black hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied.

  13. On unitary evolution of a massless scalar field in a Schwarzschild background: Hawking radiation and the information paradox

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, Kirill

    2002-08-08

    We develop a Hamiltonian formalism which can be used to discuss the physics of a massless scalar field in a gravitational background of a Schwarzschild black hole. Using this formalism we show that the time evolution of the system is unitary and yet all known results such as the existence of Hawking radiation can be readily understood. We then point out that the Hamiltonian formalism leads to interesting observations about black hole entropy and the information paradox.

  14. Quantum corrected non-thermal radiation spectrum from the tunnelling mechanism

    CERN Document Server

    Chakraborty, Subenoy; Corda, Christian

    2015-01-01

    Tunnelling mechanism is today considered a popular and widely used method in describing Hawking radiation. However, in relation to black hole (BH) emission, this mechanism is mostly used to obtain the Hawking temperature by comparing the probability of emission of an outgoing particle with the Boltzmann factor. On the other hand, Banerjee and Majhi reformulated the tunnelling framework deriving a black body spectrum through the density matrix for the outgoing modes for both the Bose-Einstein distribution and the Fermi-Dirac distribution. In contrast, Parikh and Wilczek introduced a correction term performing an exact calculation of the action for a tunnelling spherically symmetric particle and, as a result, the probability of emission of an outgoing particle corresponds to a non-strictly thermal radiation spectrum. Recently, one of us (C. Corda) introduced a BH effective state and was able to obtain a non-strictly black body spectrum from the tunnelling mechanism corresponding to the probability of emission o...

  15. Chemical freeze-out in Hawking-Unruh radiation and quark-hadron transition

    CERN Document Server

    Tawfik, Abdel Nasser; Elyazeed, Eman R Abo

    2015-01-01

    The proposed analogy between hadron production in high-energy collisions and Hawking-Unruh radiation process in the black holes shall be extended. This mechanism provides a theoretical basis for the freeze-out parameters, the temperature ($T$) and the baryon chemical potential ($\\mu$), characterizing the final state of particle production. The results from charged black holes, in which the electric charge is related to $\\mu$, are found comparable with the phenomenologically deduced parameters from the ratios of various particle species and the higher-order moments of net-proton multiplicity in thermal statistical models and Polyakov linear-sigma model. Furthermore, the resulting freeze-out condition $\\langle E\\rangle/\\langle N\\rangle\\simeq 1~$GeV for average energy per particle is in good agreement with the hadronization process in the high-energy experiments. For the entropy density ($s$), the freeze-out condition $s/T^3\\simeq7$ remains valid for $\\mu\\lesssim 0.3~$GeV. Then, due to the dependence of $T$ on $...

  16. Semiclassical analysis of black holes in loop quantum gravity: Modeling Hawking radiation with volume fluctuations

    Science.gov (United States)

    Heidmann, P.; Liu, H.; Noui, K.

    2017-02-01

    We introduce the notion of fluid approximation of a quantum spherical black hole in the context of loop quantum gravity. In this limit, the microstates of the black hole are intertwiners between "large" representations si that typically scale as si˜√{aH } where aH denotes the area of the horizon in Planck units. The punctures with large colors are, for the black hole horizon, similar to what the fluid parcels are for a classical fluid. We dub them puncels. Hence, in the fluid limit, the horizon is composed by puncels that are themselves interpreted as composed (in the sense of the tensor product) by a large number of more fundamental intertwiners. We study the spectrum of the Euclidean volume acting on puncels and we compute its quantum fluctuations. Then, we propose an interpretation of black hole radiation based on the properties of the quantum fluctuations of the Euclidean volume operator. We estimate a typical temperature of the black hole and we show that it scales as the Hawking temperature.

  17. Quasinormal modes of BTZ black hole and Hawking-like radiation in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kandemir, B.S.; Ertem, Uemit [Department of Physics, Ankara University, Faculty of Sciences, 06100, Tandogan-Ankara (Turkey)

    2017-04-15

    The Banados-Teitelboim-Zanelli (BTZ) black hole model corresponds to a solution of (2+1)-dimensional Einstein gravity with negative cosmological constant, and by a conformal rescaling its metric can be mapped onto the hyperbolic pseudosphere surface (Beltrami trumpet) with negative curvature. Beltrami trumpet shaped graphene sheets have been predicted to emit Hawking radiation that is experimentally detectable by a scanning tunnelling microscope. Here, for the first time we present an analytical algorithm that allows variational solutions to the Dirac Hamiltonian of graphene pseudoparticles in BTZ black hole gravitational field by using an approach based on the formalism of pseudo-Hermitian Hamiltonians within a discrete-basis-set method. We show that our model not only reproduces the exact results for the real part of quasinormal mode frequencies of (2+1)-dimensional spinless BTZ black hole, but also provides analytical results for the real part of quasinormal modes of spinning BTZ black hole, and also offers some predictions for the observable effects with a view to gravity-like phenomena in a curved graphene sheet. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Hawking Radiation of Warped Anti de Sitter and Rotating Hairy Black Holes with Scalar Hair

    CERN Document Server

    Gursel, H

    2015-01-01

    This thesis mainly focuses on the Hawking radiation (HR) evacuating from the surface of the objects that have earned a reputation as the most extraordinary objects existing so far; the black holes (BHs). Throughout this study, quantum tunneling (QT) process serves as the model for the HR of scalar, vector and Dirac particles. The scalar and Dirac particles are anticipated to be tunneling through the horizon of rotating scalar hairy black holes (RHSBHs); whilst the vector particles are associated with a rotating warped anti de-Sitter black hole (WAdS3BH) embedded in a (2+1) dimensional fabric. It is no coincidence that for all three cases; the standard HT expression is derived. Additionally, the engagement of conformal field theory (CFT) with anti de-Sitter (AdS) space presents itself to the reader and the methodologies of Klein-Gordon equation (KGE), Dirac equation and Proca equations (PEs) are introduced. For all three cases, Hamilton-Jacobi (HJ) approach is used, together with Wentzel-Kramers-Brillouin (WKB...

  19. Hawking Radiation from Spherically Symmetrical Gravitational Collapse to an Extremal R-N Black Hole for a Charged Scalar Field

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-Bao; CAO Zhou-Jian; GAO Chong-Shou

    2004-01-01

    Si-Jie Gao has recently investigated Hawking radiation from spherically symmetrical gravitational collapse to an extremal R-N black hole for a real scalar field. Especially he estimated the upper bound for the expected number of particles in any wave packet belonging to Hout spontaneously produced from the state |0>in, which confirms the traditional belief that extremal black holes do not radiate particles. Making some modifications, we demonstrate that the analysis can go through for a charged scalar field.

  20. Radiation Emitting Product Corrective Actions and Recalls

    Data.gov (United States)

    U.S. Department of Health & Human Services — This database provides descriptions of radiation-emitting products that have been recalled under an approved corrective action plan to remove defective and...

  1. Tortoise Coordinates and Hawking Radiation in a Dynamical Spherically Symmetric Spacetime

    Institute of Scientific and Technical Information of China (English)

    YANG Jian; ZHAO Zheng; TIAN Gui-Hua; LIU Wen-Biao

    2009-01-01

    Hawking effect from dynamical spherical Vaidya black hole,Vaidya-Bonner black hole,and Vaidya-de Sitter black hole is investigated using the improved Damour-Ruffini method.After the new tortoise coordinate transformation in which the position τ of event horizon is an undetermined function and the temperature parameter κ is an undetermined constant,the Klein-Gordon equation can be written as the standard form at the event horizon,and both τ and κ can be determined automatically.Then extending the outgoing wave from outside to inside of the horizon analytically,the Hawking temperature can also be obtained automatically.

  2. Radiative corrections to electron-proton scattering

    NARCIS (Netherlands)

    Maximon, LC; Tjon, JA

    2000-01-01

    The radiative corrections to elastic electron-proton scattering are analyzed in a hadronic model including the finite size of the nucleon. For initial electron energies above 8 GeV and large scattering angles, the proton vertex correction in this model increases by at least 2% of the overall factor

  3. Addendum: Hawking Radiation of Photons in a Variable-mass Kerr Black Hole

    OpenAIRE

    S. Q. Wu; Cai, X

    2001-01-01

    Hawking evaporation of photons in a variable-mass Kerr space-time is investigated by using a method of the generalized tortoise coordinate transformation. The blackbody radiant spectrum of photons displays a new spin-rotation coupling effect obviously dependent on different helicity states of photons.

  4. Supersymmetric radiative corrections at large tan {beta}

    Energy Technology Data Exchange (ETDEWEB)

    Logan, H.E.

    2001-02-20

    In the minimal supersymmetric extension of the Standard Model (MSSM), fermion masses and Yukawa couplings receive radiative corrections at one loop from diagrams involving the supersymmetric particles. The corrections to the relation between down-type fermion masses and Yukawa couplings are enhanced by tan {beta}, which makes them potentially very significant at large tan {beta}. These corrections affect a wide range of processes in the MSSM, including neutral and charged Higgs phenomenology, rare B meson decays, and renormalization of the CKM matrix. We give a pedagogical review of the sources and phenomenological effects of these corrections.

  5. Hawking Radiation of Charged Particles via Tunne ling from a Cylindrically Symmetric Black Hole in Anti-de Sitter Space-Time

    Institute of Scientific and Technical Information of China (English)

    YANG Shu-Zheng; JIANG Qing-Quan; LI Hui-Ling

    2006-01-01

    Applying Parikh-Wilzcek's semi-classical quantum tunneling model, we study the Hawking radiation of charged particles as tunneling from the event horizon of a cylindrically symmetric black hole in anti-de Sitter space-time.The derived result shows that the tunneling rate of charged particles is related to the change of Bekenstein-Hawking entropy and that the radiation spectrum is not strictly pure thermal after taking the black hole background dynamical and self-gravitation interaction into account, but is consistent with the underlying unitary theory.

  6. Electroweak\\/GUT Domain Wall by Hawking Radiation Baryogenesis and Dark Matter from Several Hundred kg Black Holes

    CERN Document Server

    Nagatani, Y

    2001-01-01

    A spherical domain wall around a small black hole is formed by the Hawking radiation from the black hole in the symmetry-broken-phase of the field theory, e.g., the Standard Model (SM) and the Grand Unified Theory (GUT) which have a property of the phase transition. We have obtained two types of the spherical domain wall; (a) thermalized wall which is formed by the local heating up near black hole and symmetry restore locally and (b) dynamical wall which is formed by the balance between the pressure from the Hawking radiation and the pressure from the wall tensions. The electroweak wall is formed as a thermalized wall around a black hole with mass of the several hundred kilogram. The GUT wall is formed as a dynamical wall around much smaller black hole. The electroweak wall around a black hole can produce baryon number by the assumption of the CP-broken phase in the wall. The GUT wall can supply charge into the black hole, namely, the wall causes the spontaneous charging up of the black hole. We propose a cos...

  7. Analytic solutions in the dyon black hole with a cosmic string: Scalar fields, Hawking radiation and energy flux

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Silva, G.V., E-mail: gislainevs@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)

    2015-11-15

    Charged massive scalar fields are considered in the gravitational and electromagnetic field produced by a dyonic black hole with a cosmic string along its axis of symmetry. Exact solutions of both angular and radial parts of the covariant Klein–Gordon equation in this background are obtained, and are given in terms of the confluent Heun functions. The role of the presence of the cosmic string in these solutions is showed up. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation spectrum and the energy flux. -- Highlights: •A cosmic string is introduced along the axis of symmetry of the dyonic black hole. •The covariant Klein–Gordon equation for a charged massive scalar field in this background is analyzed. •Both angular and radial parts are transformed to a confluent Heun equation. •The resulting Hawking radiation spectrum and the energy flux are obtained.

  8. Radiative Equilibrium and Temperature Correction in Monte Carlo Radiation Transfer

    OpenAIRE

    Bjorkman, J. E.; Wood, Kenneth

    2001-01-01

    We describe a general radiative equilibrium and temperature correction procedure for use in Monte Carlo radiation transfer codes with sources of temperature-independent opacity, such as astrophysical dust. The technique utilizes the fact that Monte Carlo simulations track individual photon packets, so we may easily determine where their energy is absorbed. When a packet is absorbed, it heats a particular cell within the envelope, raising its temperature. To enforce radiative equilibrium, the ...

  9. Hawking non-thermal and thermal radiations of Reissner Nordström anti-de Sitter black hole by Hamilton-Jacobi method

    Science.gov (United States)

    Ilias Hossain, M.; Atiqur Rahman, M.

    2013-09-01

    We have investigated Hawking non-thermal and purely thermal Radiations of Reissner Nordström anti-de Sitter (RNAdS) black hole by massive particles tunneling method. The spacetime background has taken as dynamical, incorporate the self-gravitation effect of the emitted particles the imaginary part of the action has derived from Hamilton-Jacobi equation. We have supposed that energy and angular momentum are conserved and have shown that the non-thermal and thermal tunneling rates are related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The results for RNAdS black hole is also in the same manner with Parikh and Wilczek's opinion and explored the new result for Hawking radiation of RNAdS black hole.

  10. Kirchhoff voltage law corrected for radiating circuits

    CERN Document Server

    Lara, Vitor

    2014-01-01

    When a circular loop composed by a RLC is put to oscillate, the oscillation will eventually vanish in an exponentially decaying current, even considering superconducting wires, due to the emission of electric and magnetic dipole radiation. In this work we propose a modification on the Kirchhoff voltage law by adding the radiative contributions to the energy loss as an effective resistance, whose value is relatively small when compared to typical resistance value, but fundamental to describe correctly real circuits. We have also analysed the change in the pattern of the radiation spectra emitted by the circuit as we vary both the effective and electrical resistance.

  11. Analytic solutions in the acoustic black hole analogue of the conical Kerr metric: massless scalar fields and Hawking-Unruh radiation

    CERN Document Server

    Vieira, H S

    2016-01-01

    We study the sound perturbation of the rotating acoustic black hole in the presence of a disclination. The radial part of the massless Klein-Gordon equation is written into a Heun form, and its analytical solution is obtained. These solutions have an explicit dependence on the parameter of the disclination. We obtain the exact Hawking-Unruh radiation spectrum.

  12. Black hole fluctuations and dynamics from back-reaction of Hawking radiation: Current work and further studies based on stochastic gravity

    CERN Document Server

    Hu, B L; Roura, Albert

    2006-01-01

    We give a progress report of our research on spacetime fluctuations induced by quantum fields in an evaporating black hole and a black hole in quasi-equilibrium with its Hawking radiation. We note the main issues involved in these two classes of problems and outline the key steps for a systematic quantitative investigation. This report contains unpublished new ideas for further studies.

  13. On arithmetic detection of grey pulses with application to Hawking radiation

    CERN Document Server

    Rosu, H C

    2002-01-01

    Micron-sized black holes do not necessarily have a constant horizon temperature distribution. The black hole remote-sensing problem means to find out the `surface' temperature distribution of a small black hole from the spectral measurement of its (Hawking) grey pulse. This problem has been previously considered by Rosu, who used Chen's modified Moebius inverse transform. Here, we hint on a Ramanujan generalization of Chen's modified MOebius inverse transform that may be considered as a special wavelet processing of the remote-sensed grey signal coming from a black hole or any other distant grey source

  14. Hawking radiation for non asymptotically flat dilatonic black holes using gravitational anomaly

    CERN Document Server

    Fabris, J C

    2012-01-01

    The $d$-dimensional scalar field action may be reduced, in the background geometry of a black hole, to a 2-dimensional effective action. In the near horizon region, it appears a gravitational anomaly: the energy-momentum tensor of the scalar field is not conserved anymore. This anomaly is removed by introducing a term related to the Hawking temperature of the black hole. Even if the temperature term introduced is not covariant, a gauge transformation may restore the covariance. We apply this method to compute the temperature of the black hole of the dilatonic non asymptotically flat black holes. We compare the results with those obtained through other methods.

  15. Analytical solutions in rotating linear dilaton black holes: Resonant frequencies, quantization, greybody factor, and Hawking radiation

    Science.gov (United States)

    Sakalli, I.

    2016-10-01

    Charged massive scalar field perturbations are studied in the gravitational, electromagnetic, dilaton, and axion fields of rotating linear dilaton black holes. In this geometry, we separate the covariant Klein-Gordon equation into radial and angular parts and obtain the exact solutions of both the equations in terms of the confluent Heun functions. Using the radial solution, we study the problems of resonant frequencies, entropy/area quantization, and greybody factor. We also analyze the behavior of the wave solutions near the event horizon of the rotating linear dilaton black hole and derive its Hawking temperature via the Damour-Ruffini-Sannan method.

  16. Hawking radiation for non-asymptotically flat dilatonic black holes using gravitational anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Fabris, J.C. [Universidade Federal do Espirito Santo, Departamento de Fisica, Vitoria, Espirito Santo (Brazil); Marques, G.T. [Universidade Federal Rural da Amazonia-Brazil, ICIBE-LASIC, Belem, Para (Brazil)

    2012-12-15

    The d-dimensional scalar field action may be reduced, in the background geometry of a black hole, to a two-dimensional effective action. In the near-horizon region, it appears a gravitational anomaly: the energy-momentum tensor of the scalar field is not conserved anymore. This anomaly is removed by introducing a term related to the Hawking temperature of the black hole. Even if the temperature term introduced is not covariant, a gauge transformation may restore the covariance. We apply this method to compute the temperature of the dilatonic non-asymptotically flat black holes. We compare the results with those obtained through other methods. (orig.)

  17. Nearly degenerate neutrinos, Supersymmetry and radiative corrections

    CERN Document Server

    Casas, J A; Ibarra, Alejandro; Navarro, I

    2000-01-01

    If neutrinos are to play a relevant cosmological role, they must be essentially degenerate with a mass matrix of the bimaximal mixing type. We study this scenario in the MSSM framework, finding that if neutrino masses are produced by a see-saw mechanism, the radiative corrections give rise to mass splittings and mixing angles that can accommodate the atmospheric and the (large angle MSW) solar neutrino oscillations. This provides a natural origin for the $\\Delta m^2_{sol} << \\Delta m^2_{atm}$ hierarchy. On the other hand, the vacuum oscillation solution to the solar neutrino problem is always excluded. We discuss also in the SUSY scenario other possible effects of radiative corrections involving the new neutrino Yukawa couplings, including implications for triviality limits on the Majorana mass, the infrared fixed point value of the top Yukawa coupling, and gauge coupling and bottom-tau unification.

  18. On the variably-charged black holes in general relativity: Hawking's radiation and naked singularities

    Energy Technology Data Exchange (ETDEWEB)

    Ibohal, Ng [Department of Mathematics, Manipur University, Imphal 795003, Manipur (India)

    2002-08-21

    In this paper variably-charged non-rotating Reissner-Nordstrom and rotating Kerr-Newman black holes are discussed. Such a variable charge e with respect to the polar coordinate r in the field equations is referred to as an electrical radiation of the black hole. It is shown that every electrical radiation e(r) of the non-rotating black hole leads to a reduction in its mass M by some quantity. If one considers such electrical radiation taking place continuously for a long time, then a continuous reduction of the mass may take place in the black-hole body and the original mass of the black hole may be evaporated completely. At that stage, the gravity of the object may depend only on the electromagnetic field, not on the mass. Immediately after the complete evaporation of the mass, if the next radiation continues, there may be creation of a new mass leading to the formation of a negative mass naked singularity. It appears that this new mass of the naked singularity would never decrease, but might increase gradually as the radiation continues forever. A similar investigation is also discussed in the case of a variably-charged rotating Kerr-Newman black hole. Thus, it has been shown by incorporating Hawking's evaporation of radiating black holes in the form of spacetime metrics, every electrical radiation of variably-charged rotating and non-rotating black holes may produce a change in the mass of the body without affecting the Maxwell scalar.

  19. Radiative corrections in K --> 3 pi decays

    CERN Document Server

    Bissegger, M; Gasser, J; Kubis, B; Rusetsky, A

    2008-01-01

    We investigate radiative corrections to K --> 3 pi decays. In particular, we extend the non-relativistic framework developed recently to include real and virtual photons and show that, in a well-defined power counting scheme, the results reproduce corrections obtained in the relativistic calculation. Real photons are included exactly, beyond the soft-photon approximation, and we compare the result with the latter. The singularities generated by pionium near threshold are investigated, and a region is identified where standard perturbation theory in the fine structure constant alpha may be applied. We expect that the formulae provided allow one to extract S-wave pi pi scattering lengths from the cusp effect in these decays with high precision.

  20. Hawking radiation of Dirac monopoles from the global monopole black hole with quantum gravity effects

    Science.gov (United States)

    Jusufi, Kimet; Apostolovska, Gordana

    2016-12-01

    In this paper we study the quantum tunneling of Dirac magnetic monopoles from the global monopole black hole under quantum gravity effects. We start from the modified Maxwell's equations and the Generalized Uncertainty Relation (GUP), to recover the GUP corrected temperature for the global monopole black hole by solving the modified Dirac equation via Hamilton-Jacobi method. Furthermore, we also include the quantum corrections beyond the semiclassical approximation, in particular, first we find the logarithmic corrections of GUP corrected entropy and finally we calculate the GUP corrected specific heat capacity. It is argued that the GUP effects may prevent a black hole from complete evaporation and leave remnants.

  1. Electroweak radiative corrections and neutral current phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, W.J.

    1987-03-01

    Precision measurements of sin/sup 2/ theta/sub W/ including the effects of radiative corrections are surveyed. A world average sin/sup 2/ theta/sub W/ = 0.231 +- 0.004 is obtained. Comparison of deep-inelastic nu/sub ..mu../N scattering and m/sub W/ or m/sub Z/ is shown to test the standard model at the quantum loop level and constrain new physics. Implications for extra Z' bosons and grand unified theories are briefly discussed. 25 refs., 2 figs.

  2. Black holes as self-sustained quantum states and Hawking radiation

    Science.gov (United States)

    Casadio, Roberto; Giugno, Andrea; Micu, Octavian; Orlandi, Alessio

    2014-10-01

    We employ the recently proposed formalism of the "horizon wave function" to investigate the emergence of a horizon in models of black holes as Bose-Einstein condensates of gravitons. We start from the Klein-Gordon equation for a massless scalar (toy graviton) field coupled to a static matter current. The (spherically symmetric) classical field reproduces the Newtonian potential generated by the matter source, and the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. Assuming an attractive self-interaction that allows for bound states, one finds that (approximately) only one mode is allowed, and the system can be confined in a region the size of the Schwarzschild radius. This radius is then shown to correspond to a proper horizon, by means of the horizon wave function of the quantum system, with an uncertainty in size naturally related to the expected typical energy of Hawking modes. In particular, this uncertainty decreases for larger black hole mass (with a larger number of light scalar quanta), in agreement with semiclassical expectations, a result which does not hold for a single very massive particle. We finally speculate that a phase transition should occur during the gravitational collapse of a star (ideally represented by a static matter current and Newtonian potential) that leads to a black hole (again ideally represented by the condensate of toy gravitons), and suggest an effective order parameter that could be used to investigate this transition.

  3. Black holes as self-sustained quantum states, and Hawking radiation

    CERN Document Server

    Casadio, Roberto; Micu, Octavian; Orlandi, Alessio

    2014-01-01

    We investigate the proposal that black holes are Bose-Einstein condensates of gravitons starting form the Klein-Gordon equation for a massless scalar (graviton) field coupled to a static matter current. The classical field reproduces the Newtonian potential generated by the matter source, and the corresponding quantum state is given by a coherent superposition of graviton modes with continuous occupation number. However, if the source is given by the scalar field state itself, one finds that (approximately) only one mode is allowed, and the gravitons approach a Bose-Einstein condensate confined in a region of the size of the Schwarzschild radius of the system. The latter is then shown to represent a proper horizon, by means of the horizon wave-function of this quantum system, with an uncertainty in the horizon radius naturally related with the typical energy of Hawking modes. We finally speculate about the phase transition that might occur during the gravitational collapse of a star, ideally represented by th...

  4. Hawking Radiation of a Plane Symmetry Black Hole via Tunneling%一个平面对称黑洞的霍金隧穿辐射

    Institute of Scientific and Technical Information of China (English)

    杨树政

    2006-01-01

    在Anti-de Sitter时空中,采用Parikh的半经典量子隧穿模型,研究了一个平面对称黑洞的霍金隧穿辐射,考虑到自引力作用和能量守恒,得出的隧穿率与Bekensten-Hawking熵有关,且隧穿辐射谱不是纯热谱,并满足么正性理论.%In Anti-de Sitter space-time, we have extended the Parikh's semi-classical quantum tunneling method to investigate the Hawking tunneling radiation of a plane symmetry black hole via tunneling. Taking self-gravitation action and energy conservation into account, the tunneling rate is relevant to Bekenstein-Hawking entropy and the radiation spectrum is not strictly pure thermal, but is consistent with the underlying unitary theory.

  5. Hawking Radiation Spectra for Scalar Fields by a Higher-Dimensional Schwarzschild-de-Sitter Black Hole

    CERN Document Server

    Pappas, T; Pappas, N

    2016-01-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de-Sitter black hole as well as on the projected-on-the-brane 4-dimensional background. The scalar fields have also a non-minimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then proceed to derive the Hawking radiation spectra for a higher-dimensional Schwarzschild-de-Sitter black hole, and we study both bulk and brane channels. We demonstrate that the non-minimal field coupling, that creates an effective mass term for the fields, suppresses the energy emission rates while the cosmological constant assumes a dual role. By computing the relative energy rates and the total emissivity ratio for bulk and brane emission, we demonstrate that the combined effect of a large number of extra dimensions and val...

  6. Hawking Tunneling Radiation of Black Holes in Deformed H(o)rava-Lifshitz Gravity*

    Institute of Scientific and Technical Information of China (English)

    ZENG Xiao-Xiong; LI Ling

    2011-01-01

    Tunneling of scalar particles and Dirac particles from a black hole in the deformed H(o)rava-Lifshitz gravity is discussed in this paper. We consider the case that the dynamical coupling constant λ = 1, when it reduces to Einstein's General Relativity at large scales and the black hole behaves like the Reissner-Nordstr(o)m black hole. The result shows that though the black hole entropy bears logarithmic correction, the tunneling probability is still related to its differences for the scalar particles and Dirac particles.

  7. Hawking radiation via tunneling from a d-dimensional black hole in Gauss-Bonnet gravity

    Science.gov (United States)

    Li, Gu-Qiang; Mo, Jie-Xiong

    2017-04-01

    We extend the Parikh-Wilczek method from Einstein gravity spacetime to Gauss-Bonnet modified gravity and study the tunneling radiation of particles across the event horizon of a d-dimensional Gauss-Bonnet Anti de-Sitter black hole. The emission rate of a particle is calculated. It is shown that the emission rate of massive particles takes the same functional form as that of massless particles although that their motion equations tunneling across the horizon are different. It is also shown that the emission spectrum deviates from the pure thermal spectrum but is consistent with an underlying unitary theory. In addition, significant but interesting phenomenon is demonstrated when Gauss-Bonnet term is present. The expression of the emission rate for a black hole in Gauss-Bonnet gravity differs from that for a black hole in Einstein gravity. After adopting the conventional tunneling rate, we obtain the expression of the entropy of the Gauss-Bonnet black hole, which is in accordance with the early results but does not obey the area law. So the research of tunneling radiation in this paper may serve as a new perspective of understanding the thermodynamics of black holes in Gauss-Bonnet gravity.

  8. One-loop radiative corrections to the QED Casimir energy

    Energy Technology Data Exchange (ETDEWEB)

    Moazzemi, Reza; Mojavezi, Amirhosein [University of Qom, Department of Physics, Qom (Iran, Islamic Republic of)

    2016-05-15

    In this paper, we investigate one-loop radiative corrections to the Casimir energy in the presence of two perfectly conducting parallel plates for QED theory within the renormalized perturbation theory. In fact, there are three contributions for radiative corrections to the Casimir energy, up to order α, has been computed by Bordag et. al (Ann. Phys. 165:192, 1985), approximately. Here, up to this order, we consider corrections due to two one-loop terms, i.e., photonic and fermionic loop corrections resulting from renormalized QED Lagrangian, more precisely. Our results show that only the fermionic loop has a very minor correction and the correction of photonic loop vanishes. (orig.)

  9. Radiative Corrections to $W$ Pair Production at High Energies

    CERN Document Server

    Anlauf, H; Himmler, A; Manakos, P; Mannel, T

    1993-01-01

    Radiative Corrections to $W$ Pair Production and effects of finite width of the $W$ bosons are studied using the Monte Carlo {\\tt WOPPER}. As an example the influence of QED radiative corrections on the reconstruction of the $W$ helicities at LEP 200 and a future 500 GeV $e^+ e^-$ collider is discussed.

  10. Hawking Temperature of Acoustic Black Hole

    Indian Academy of Sciences (India)

    Zhi Kun Xie

    2014-09-01

    Using a new tortoise coordinate transformation, the Hawking radiation of the acoustic black hole was discussed by studying the Klein–Gordon equation of scalar particles in the curve space-time. It was found that the Hawking temperature is connected with time and position on the event horizon.

  11. Hawking Tunneling Radiation of a Particle with Electric and Magnetic Charge from Kerr-Newman-Kasuya Black Hole

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei-Qin; LEI Jie-Hong; LIU Zhi-Xiang; YANG Shu-Zheng

    2008-01-01

    Extending the Parikh's quantum tunneling method of an uncharged particle, we investigate the quantum radiation characteristics of a particle with electric and magnetic charge via tunneling from the event horizon of theKerr-Newman-Kasuya black hole. The derived result supports the Parikh's opinion and the correction to the thermal spectrum is of precisely the form that satisfies the underlying unitary quantum theory, and finally provides a might explanation to the black hole information puzzle.

  12. Radiative Corrections to Neutrino Deep Inelastic Scattering Revisited

    CERN Document Server

    Arbuzov, A B; Kalinovskaya, L V

    2005-01-01

    Radiative corrections to neutrino deep inelastic scattering are revisited. One-loop electroweak corrections are re-calculated within the automatic SANC system. Terms with mass singularities are treated including higher order leading logarithmic corrections. Scheme dependence of corrections due to weak interactions is investigated. The results are implemented into the data analysis of the NOMAD experiment. The present theoretical accuracy in description of the process is discussed.

  13. Stephen Hawking

    OpenAIRE

    Duque Escobar, Gonzalo

    2009-01-01

    Obra y vida de este connotado físico, cosmólogo y científico nacido en Oxford y sucesor de la Cátedra Lucasiana en Cambridge, reconocido como el más famoso de los físicos teóricos vivos hoy por su "Breve historia del tiempo", y como una figura legendaria por sus aportes logrados al integrar en una teoría la Relatividad General y la Mecánica Cuántica. Este documento se basa en un resumen del libro “Stephen Hawking para principiantes”, de McEvoy y Zárate, con algunos complementos de la bibliogr...

  14. QED radiative corrections to parity nonconservation in heavy atoms.

    Science.gov (United States)

    Kuchiev, M Yu; Flambaum, V V

    2002-12-31

    The self-energy and vertex QED radiative corrections [approximately Zalpha2f(Zalpha)] are shown to give a large negative contribution to the parity nonconserving (PNC) amplitude in heavy atoms. The correction -0.73(20)% found for the 6s-7s PNC amplitude in 133Cs brings the experimental result for this transition into agreement with the standard model. The calculations are based on a new relation that expresses the radiative corrections to the PNC matrix element via corrections to the energy shifts induced by the finite nuclear size.

  15. Blocking the Hawking radiation

    DEFF Research Database (Denmark)

    Autzen, M.; Kouvaris, C.

    2014-01-01

    Some severe constraints on asymmetric dark matter are based on the scenario that certain types of weakly interacting massive particles can form mini-black holes inside neutron stars that can lead to their destruction. A crucial element for the realization of this scenario is that the black hole g...

  16. Radiative corrections to the polarizability of helium.

    Science.gov (United States)

    Łach, Grzegorz; Jeziorski, Bogumił; Szalewicz, Krzysztof

    2004-06-11

    The complete alpha(3) QED correction to the helium atom polarizability is computed assuming an infinite nuclear mass and found to be equal to 0.000030666(3) a.u., with the contribution from the electric-field dependence of the Bethe logarithm amounting to 0.000000193(2) a.u. After including the alpha(2) and alpha(3) corrections for the nuclear recoil and the leading part of the alpha(4) QED correction, we find that the molar polarizability of 4He is 0.51725419(9)(4) cm(3)/mol. The first of the two error bounds is dominated by the uncertainty of alpha(4) and higher-order QED corrections and the second reflects the uncertainty of the Avogadro constant.

  17. Radiative Corrections to Chargino Production in Electron-Positron Collisions

    CERN Document Server

    Díaz, M A; Ross, D A; Diaz, Marco A.; King, Steve F.; Ross, Douglas A.

    1998-01-01

    We discuss the one-loop radiative corrections to the reaction e^+ e^- -> X^+_a X^-_b, for a,b=1,2 where X^+_{1,2} are the charginos of the minimal supersymmetric standard model. We calculate the leading one loop radiative corrections involving loops of top, stop bottom and sbottom quarks, working in the MS-bar scheme. At LEP2 we find positive radiative corrections typically of 10% to 15% and with a maximum value of approximately 30% if the squark mass parameters are of the order of 1 TeV. If \\sqrt{s}=500 GeV we find smaller corrections but they can be also negative, with extreme values of 13% and -4%. For a center of mass given by \\sqrt{s}=2 TeV we find larger corrections, with typical values between 20% and -20%.

  18. Radiative corrections to neutralino annihilation. Recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Bjoern

    2010-11-15

    Evaluating the relic density of dark matter is an interesting possibility to constrain the parameter space of new physics models. However, this calculation is affected by several sources of uncertainty. On the particle physics side, considerable progress has been made in the recent years concerning the calculation of the annihilation cross-section of dark matter, which is needed in this context. In particular, within the Minimal Supersymmetric Standard Model, the theoretical uncertainty has been reduced through the calculation of loop corrections. The present contribution gives an overview over the achievements that have been made in QCD corrections to neutralino pair annihilation. The numerical impact is illustrated for a few examples. (orig.)

  19. Radiative corrections in nucleon time-like form factors measurements

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wiele, Jacques [Universite de Paris-Sud, Institut de Physique Nucleaire, Orsay Cedex (France); Ong, Saro [Universite de Paris-Sud, Institut de Physique Nucleaire, Orsay Cedex (France); Universite de Picardie Jules Verne, Amiens (France)

    2013-02-15

    The completely general radiative corrections to lowest order, including the final- and initial-state radiations, are studied in proton-antiproton annihilation into an electron-positron pair. Numerical estimates have been made in a realistic configuration of the PANDA detector at FAIR for the proton time-like form factors measurements. (orig.)

  20. Radiative Corrections to High Energy Lepton Bremsstrahlung on Heavy Nuclei

    CERN Document Server

    Arbuzov, A B

    2008-01-01

    One-loop radiative corrections to the leptonic tensor in high energy bremsstrahlung on heavy nuclei are calculated. Virtual and real photon radiation is taken into account. Double bremsstrahlung is simulated by means of Monte Carlo. Numerical results are presented for the case of muon bremsstrahlung in conditions of the COMPASS experiment at CERN.

  1. Radiative corrections in symmetrized classical electrodynamics

    Science.gov (United States)

    Van Meter JR; Kerman; Chen; Hartemann

    2000-12-01

    The physics of radiation reaction for a point charge is discussed within the context of classical electrodynamics. The fundamental equations of classical electrodynamics are first symmetrized to include magnetic charges: a double four-potential formalism is introduced, in terms of which the field tensor and its dual are employed to symmetrize Maxwell's equations and the Lorentz force equation in covariant form. Within this framework, the symmetrized Dirac-Lorentz equation is derived, including radiation reaction (self-force) for a particle possessing both electric and magnetic charge. The connection with electromagnetic duality is outlined, and an in-depth discussion of nonlocal four-momentum conservation for the wave-particle system is given.

  2. News and Views: Very short GRBs may be Hawking radiation source; CubeSat for the UK: UKube1 seeks payloads; Galactic centre? It's just up there… There could be a lot of Earths out there

    Science.gov (United States)

    2010-12-01

    A particular group of gamma-ray bursts, those of very short duration, have characteristics that suggest they may be the signature of an evaporating primordial black hole - the Hawking radiation proposed by Stephen Hawking in 1974. The UK Space Agency is seeking small innovative payloads for the pilot UK CubeSat, UKube1. Planet-hunters have examined the distribution of exoplanets around stars like the Sun in our galaxy, and concluded that they can expect to find planets the size of Earth around a quarter of them - 46 billion or thereabouts.

  3. Exact solutions to a massive charged scalar field equation in the magnetically charged stringy black hole geometry and Hawking radiation

    CERN Document Server

    Sakalli, I

    2015-01-01

    Exact solutions of a massive complex scalar field equation in the geometry of a Garfinkle-Horowitz-Strominger (stringy) black hole with magnetic charge is explored. The separated radial and angular parts of the wave equation are solved exactly in the non-extreme case. The angular part is shown to be an ordinary spin-weighted spheroidal harmonics with a spin-weight depending on the magnetic charge. The radial part is achieved to reduce a confluent Heun equation with a multiplier. Finally, based on the solutions, it is shown that Hawking temperature of the magnetically charged stringy black hole has the same value as that of the Schwarzschild black hole.

  4. Hawking's acting roles

    Science.gov (United States)

    Castell, Stephen

    2012-06-01

    In the wake of Stephen Hawking's appearance on the TV show The Big Bang Theory, last month's "Quanta" page (May p3), included a request: "If you think Hawking should appear in any other TV shows, then let us know".

  5. Radiative corrections and the Palatini action

    Science.gov (United States)

    Brandt, F. T.; McKeon, D. G. C.

    2016-05-01

    By using the Faddeev-Popov quantization procedure, we demonstrate that the radiative effects computed using the first-order and second-order Einstein-Hilbert action for general relativity are the same, provided one can discard tadpoles. In addition, we show that the first-order form of this action can be used to obtain a set of Feynman rules that involves just two propagating fields and three three-point vertices; using these rules is considerably simpler than employing the infinite number of vertices that occur in the second-order form. We demonstrate this by computing the one-loop, two-point function.

  6. Radiation pressure in SFA theory: retardation and recoil corrections

    CERN Document Server

    Krajewska, K

    2015-01-01

    Radiation pressure effects in ionization by short linearly-polarized laser pulses are investigated in the framework of strong-field approximation, in both nonrelativistic and relativistic formulations. Differences between both approaches are discussed, and retardation and recoil corrections are defined. It is demonstrated how these corrections can be incorporated into the nonrelativistic approach, leading to the so-called quasi-relativistic formulation. These three approaches are further applied to the analysis of signatures of radiation pressure in energy-angular distributions of photoelectrons. It is demonstrated that, for Ti:Sapphire laser pulses of intensities up to $10^{16}\\mathrm{W/cm}^2$, predictions of the quasi-relativistic formulation agree well with those of the full relativistic one, and that the recoil corrections contribute predominantly to the radiation pressure effects.

  7. Hawk Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Produces a high-current (750 kA) pulse with a microsecond rise time into a vacuum inductor. The energy stored in the inductor is transferred to a radiation...

  8. Radiative corrections and parity violating electron-nucleon scattering

    Energy Technology Data Exchange (ETDEWEB)

    S. Barkanova; A. Aleksejevs; P.G. Blunden

    2002-11-01

    Radiative corrections to the parity-violating asymmetry measured in elastic electron-proton scattering are analyzed in the framework of the Standard Model. We include the complete set of one-loop contributions to one quark current amplitudes. The contribution of soft photon emission to the asymmetry is also calculated, giving final results free of infrared divergences. The one quark radiative corrections, when combines with previous work on many quark effects and recent SAMPLE experimental data, are used to place some new constraints on electroweak form factors of the nucleon.

  9. Radiative corrections and parity-violating electron-nucleon scattering

    CERN Document Server

    Barkanova, S; Blunden, P G

    2002-01-01

    Radiative corrections to the parity-violating asymmetry measured in elastic electron-proton scattering are analyzed in the framework of the Standard Model. We include the complete set of one-loop contributions to one quark current amplitudes. The contribution of soft photon emission to the asymmetry is also calculated, giving final results free of infrared divergences. The one quark radiative corrections, when combined with previous work on many quark effects and recent SAMPLE experimental data, are used to place some new constraints on electroweak form factors of the nucleon.

  10. Radiatively Corrected Chargino Pair Production at LEP2

    CERN Document Server

    Díaz, M A; Ross, D A; Diaz, Marco A.; King, Steve F.; Ross, Douglas A.

    1998-01-01

    One-loop radiative corrections to the production cross section of a pair of light charginos in e+e- colliders are calculated within the MSSM. Top and bottom quarks and squarks are considered in the loops, and they are renormalized using the MS-bar scheme. If the center of mass energy is equal to 192 GeV, positive corrections typically of 10% to 15% are found when the squark mass parameters are equal to 1 TeV.

  11. Radiative corrections for the LHC and linear collider era

    NARCIS (Netherlands)

    E. Laenen; D. Wackeroth

    2009-01-01

    We emphasize the importance of including radiative corrections when extracting physics from colliders such as the Tevatron Run II at Fermilab, the Large Hadron Collider (LHC) at CERN, and a future linear collider (LC). We review both well-tested methods and recent advances for calculating these corr

  12. HAWK Velocimeter.

    Science.gov (United States)

    1983-09-01

    4 3.1 HARDWARE ENVIRONMENT ..... . . . . . . ........... 4 3.1.1 TRANSMITTER . . . . . . . . ............... 4 3.1.2 RECEIVER...tracking range. 3 d. To repair and refurbish antennas, pedestal, trailer, and leveling jacks. 3. IETAILS 3.1 Hardware Environment The velocimeter... MDIO -VrtDQU3CY RADIATrOM HAZARD Radio-frequency (rf) radiation from radar antennas and associated equip- ment is a potential hazard to personnel. Rf

  13. Back reaction, the Hawking emission spectrum from the charged black hole

    Energy Technology Data Exchange (ETDEWEB)

    Xu Pingchuan; Wang Zhihong [Institute of Theoretical Physics, China West Normal University, Nanchong, Sichuan 637002 (China); Han Yan, E-mail: pcxu@163.com [College of Mathematic and Information, China West Normal University, Nanchong, Sichuan 637002 (China)

    2011-06-21

    The Hawking emission spectrum of the Schwarzschild-like black hole has been successfully described in the tunneling picture. In this paper, we develop the idea for the case of the charged black hole with back reaction. First, the most general, static spherically symmetric charged black hole, in the presence of back reaction, has been provided by solving the Einstein equations with a non-zero vacuum expectation value of the energy-momentum tensor (T{sub {mu}{nu}}({phi}, g{sub {mu}{nu}})). At the one-loop corrections, we also produce the modified expressions for the Hawking temperature and Bekenstein-Hawking entropy. It is found that the leading correction to the semiclassical entropy is logarithmic and next to the leading order is inverse of the horizon area, just as the expected well-known results. In particular, as our main focus in this paper, we show that the modified black hole still radiates with a perfect blackbody spectrum, only the temperature undergoing quantum corrections. Also, the Hawking fluxes of the electric current and energy-momentum tensor to include the effect of back reaction are obtained. The results are interestingly found sharing the same form as that from the point of anomaly.

  14. Conservation of ζ with radiative corrections from heavy field

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Takahiro [Department of Physics, Kyoto University,Kyoto, 606-8502 (Japan); Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto, 606-8502 (Japan); Urakawa, Yuko [Department of Physics and Astrophysics, Nagoya University,Nagoya 464-8602 (Japan); School of Natural Sciences, Institute for Advanced Study,Olden Lane, Princeton, NJ 08540 (United States)

    2016-06-08

    In this paper, we address a possible impact of radiative corrections from a heavy scalar field χ on the curvature perturbation ζ. Integrating out χ, we derive the effective action for ζ, which includes the loop corrections of the heavy field χ. When the mass of χ is much larger than the Hubble scale H, the loop corrections of χ only yield a local contribution to the effective action and hence the effective action simply gives an action for ζ in a single field model, where, as is widely known, ζ is conserved in time after the Hubble crossing time. Meanwhile, when the mass of χ is comparable to H, the loop corrections of χ can give a non-local contribution to the effective action. Because of the non-local contribution from χ, in general, ζ may not be conserved, even if the classical background trajectory is determined only by the evolution of the inflaton. In this paper, we derive the condition that ζ is conserved in time in the presence of the radiative corrections from χ. Namely, we show that when the dilatation invariance, which is a part of the diffeomorphism invariance, is preserved at the quantum level, the loop corrections of the massive field χ do not disturb the constant evolution of ζ at super Hubble scales. In this discussion, we show the Ward-Takahashi identity for the dilatation invariance, which yields a consistency relation for the correlation functions of the massive field χ.

  15. Modeling Polarized Solar Radiation for Correction of Satellite Data

    Science.gov (United States)

    Sun, W.

    2014-12-01

    Reflected solar radiation from the Earth-atmosphere system is polarized. If a non-polarimetric sensor has some polarization dependence, it can result in errors in the measured radiance. To correct the polarization-caused errors in satellite data, the polarization state of the reflected solar light must be known. In this presentation, recent studies of the polarized solar radiation from the ocean-atmosphere system with the adding-doubling radiative-transfer model (ADRTM) are reported. The modeled polarized solar radiation quantities are compared with PARASOL satellite measurements and DISORT model results. Sensitivities of reflected solar radiation's polarization to various ocean-surface and atmospheric conditions are addressed. A novel super-thin cloud detection method based on polarization measurements is also discussed. This study demonstrates that the modeling can provide a reliable approach for making the spectral Polarization Distribution Models (PDMs) for satellite inter-calibration applications of NASA's future Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Key words: Reflected solar radiation, polarization, correction of satellite data.

  16. Hawking Radiation of Charged and Magnetized Particles from the Global Monopole Black Hole with Quantum Gravity Effects

    CERN Document Server

    Jusufi, Kimet

    2016-01-01

    In this paper we study the quantum tunneling of charged and magnetized particles (magnetic monopoles) from the global monopole black hole by incorporating the quantum gravity effects. Starting from the modified Maxwell's equations and Generalized Uncertainty Relation (GUP), we recover the GUP corrected temperate for the global monopole black hole by solving the modified Dirac equation via Hamilton-Jacobi method. Furthermore, we also include the quantum corrections beyond the semiclassical approximation, in particular, first we find the logarithmic corrections of GUP corrected entropy and finally we calculate the GUP corrected specific heat capacity.

  17. Quantum corrections to the Larmor radiation formula in scalar electrodynamics

    CERN Document Server

    Higuchi, A

    2009-01-01

    We use the semi-classical approximation in perturbative scalar quantum electrodynamics to calculate the quantum correction to the Larmor radiation formula to first order in Planck's constant in the non-relativistic approximation, choosing the initial state of the charged particle to be a momentum eigenstate. We calculate this correction in two cases: in the first case the charged particle is accelerated by a time-dependent but space-independent vector potential whereas in the second case it is accelerated by a time-independent vector potential which is a function of one spatial coordinate. We find that the corrections in these two cases are different even for a charged particle with the same classical motion. The correction in each case turns out to be non-local in time in contrast to the classical approximation.

  18. Radiative corrections to the muonium hyperfine structure; 1, the $\\alpha^{2}$ (Z$\\alpha$) correction

    CERN Document Server

    Kinoshita, T

    1995-01-01

    This is the first of a series of papers on a systematic application of the NRQED bound state theory of Caswell and Lepage to higher-order radiative corrections to the hyperfine structure of the muonium ground state. This paper describes the calculation of the \\alpha^2 (Z\\alpha) radiative correction. Our result for the complete \\alpha^2 (Z\\alpha) correction is 0.424(4) kHz, which reduces the theoretical uncertainty significantly. The remaining uncertainty is dominated by that of the numerical evaluation of the nonlogarithmic part of the \\alpha (Z\\alpha )^2 term and logarithmic terms of order \\alpha^4. These terms will be treated in the subsequent papers.

  19. Proton Radius, Darwin-Foldy Term and Radiative Corrections

    CERN Document Server

    Jentschura, U D

    2010-01-01

    We discuss the role of the so-called Darwin-Foldy term in the evaluation of the proton and deuteron charge radii from atomic hydrogen spectroscopy and nuclear scattering data. The question of whether this term should be included or excluded from the nuclear radius has been controversially discussed in the literature. We attempt to clarify which literature values correspond to which conventions. A detailed discussion of the conventions appears useful because a recent experiment [R. Pohl et al., Nature vol. 466, p. 213 (2010)] has indicated that there is a discrepancy between the proton charge radii inferred from ordinary ("electronic") atomic hydrogen and muonic hydrogen. We also investigate the role of quantum electrodynamic radiative corrections in the determination of nuclear radii from scattering data, and propose a definition of the nuclear self energy which is compatible with the subtraction of the radiative corrections in scattering experiments.

  20. Radiative corrections in K --> pi l+ l- decays

    CERN Document Server

    Kubis, Bastian

    2010-01-01

    We calculate radiative corrections to the flavor-changing neutral current process K --> pi l+ l-, both for charged and neutral kaon decays. While the soft-photon approximation is shown to work well for the muon channels, we discuss the necessity of further phase space cuts with electrons in the final state. It is also shown how to transfer our results to other decays such as eta --> gamma l+ l- or omega --> pi0 l+ l-.

  1. Higgs sector radiative corrections and s-channel production.

    Science.gov (United States)

    Berger, M S

    2001-09-24

    Higgs boson mass sum rules of supersymmetric models offer attractive targets for precision tests at future muon colliders. These sum rules involve the gauge boson masses as well as the masses of the Higgs boson states which can be precisely measured in the s-channel production process at a muon collider. These measurements can sensitively probe radiative corrections to the Higgs boson masses as well as test for CP violation and nonminimality of the Higgs sector.

  2. TeV scale Dark Matter and electroweak radiative corrections

    CERN Document Server

    Ciafaloni, Paolo

    2010-01-01

    Recent anomalies in cosmic rays data, namely from the PAMELA collaboration, can be interpreted in terms of TeV scale decaying/annihilating Dark Matter. We analyze the impact of radiative corrections coming from the electroweak sector of the Standard Model on the spectrum of the final products at the interaction point. As an example, we consider virtual one loop corrections and real gauge bosons emission in the case of a very heavy vector boson annihilating into fermions. We show that the effect of electroweak corrections is relevant, but not as big as sometimes claimed in the literature. At such high scales, one loop electroweak effects are so big that eventually higher orders/resummations have to be considered: we advocate for the inclusion of these effects in parton shower Montecarlos aiming at the description of TeV scale physics.

  3. Electroweak radiative corrections to triple photon production at the ILC

    CERN Document Server

    Zhang, Yu; Duan, Peng-Fei; Song, Mao; Li, Gang

    2016-01-01

    In this paper, we present the precision predictions for three photon production in the standard model (SM) at the ILC including the full next-to-leading (NLO) electroweak (EW) corrections, high order initial state radiation (h.o.ISR) contributions and beamstrahlung effects. We present the LO and the NLO EW+h.o.ISR+beamstrahlung corrected total cross sections for various colliding energy when $\\sqrt s \\ge 200 {\\rm GeV}$ and the kinematic distributions of final photons with $\\sqrt s = 500 {\\rm GeV}$ at ILC, and find that the NLO EW corrections, the h.o.ISR contributions and the beamstrahlung effects are important in exploring the process $e^+e^- \\to \\gamma\\gamma\\gamma$.

  4. Electroweak radiative corrections to triple photon production at the ILC

    Science.gov (United States)

    Zhang, Yu; Li, Wei-Hua; Duan, Peng-Fei; Song, Mao; Li, Gang

    2016-07-01

    In this paper, we present the precision predictions for three photon production in the standard model (SM) at the ILC including the full next-to-leading (NLO) electroweak (EW) corrections, high order initial state radiation (h.o.ISR) contributions and beamstrahlung effects. We present the LO and the NLO EW + h.o.ISR + beamstrahlung corrected total cross sections for various colliding energy when √{ s} ≥ 200 GeV and the kinematic distributions of final photons with √{ s} = 500 GeV at ILC, and find that the NLO EW corrections, the h.o.ISR contributions and the beamstrahlung effects are important in exploring the process e+e- → γγγ.

  5. Radiative Corrections in the (Varying Power)-Law Modified Gravity

    CERN Document Server

    Hammad, Fayçal

    2015-01-01

    Although the (varying power)-law modified gravity toy model has the attractive feature of unifying the early and late-time expansions of the Universe, thanks to the peculiar dependence of the scalar field's potential on the scalar curvature, the model still suffers from the fine-tuning problem when used to explain the actually observed Hubble parameter. Indeed, a more correct estimate of the mass of the scalar field needed to comply with actual observations gives an unnaturally small value. On the other hand, for a massless scalar field the potential would have no minimum and hence the field would always remain massless. What solves these issues are the radiative corrections that modify the field's effective potential. These corrections raise the field's effective mass rendering the model free from fine-tuning, immune against positive fifth-force tests, and better suited to tackle the dark matter sector.

  6. Hawking, Stephen W (1942-)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Cosmologist and theoretical astrophysicist, born in Oxford, England, where he studied physics at University College. Moved to Cambridge to take up research in general relativity and cosmology, became Lucasian professor (an appointment earlier held by ISAAC NEWTON, with whom Hawking has been compared). Hawking worked to develop a valid mathematical treatment of the `singularities' in the theor...

  7. Electroweak Radiative Corrections to Single-top Production

    CERN Document Server

    Bardin, D; Kalinovskaya, L; Kolesnikov, V; von Schlippe, W

    2010-01-01

    Radiative corrections to the single top s and t channel production processes are revisited. Complete one-loop electroweak corrections are calculated within the SANC system. New is a study of the regularisation of the top-legs associated infrared divergences with aid of the complex mass of the top quark. A comparison of these electroweak corrections with those computed by the conventional method is presented both for top production and decays. Standard FORM and FORTRAN SANC modules are created. These modules are compiled into a package sanc_cc_v1.40, which may be downloaded from SANC project homepages. Numerous numerical results are presented at the partonic level with the aim to demonstrate the correct working of modules. These modules are intended to be used in Monte Carlo generators for single top production at the LHC. Where possible, we compare our results with those existing in the literature; in particular, a comprehensive comparison with results of the CompHEP system is given.

  8. Conservation of $\\zeta$ with radiative corrections from heavy field

    CERN Document Server

    Tanaka, Takahiro

    2015-01-01

    In this paper, we address a possible impact of radiative corrections from a heavy scalar field $\\chi$ on the curvature perturbation $\\zeta$. Integrating out $\\chi$, we derive the effective action for $\\zeta$, which includes the loop corrections of the heavy field $\\chi$. When the mass of $\\chi$ is much larger than the Hubble scale $H$, the loop corrections of $\\chi$ only yield a local contribution in the effective action and hence the effective action simply gives an action for $\\zeta$ in a single field model, where, as is widely known, $\\zeta$ is conserved in time after the Hubble crossing time. Meanwhile, when the mass of $\\chi$ is comparable to $H$, the loop corrections of $\\chi$ can give a non-local contribution to the effective action. Because of the non-local contribution from $\\chi$, in general, $\\zeta$ may not be conserved, even if the classical background trajectory is determined only by the evolution of the inflaton. In this paper, we derive the condition that $\\zeta$ is conserved in time in the pre...

  9. Radiative Corrections to Polarized Inelastic Scattering in Coincidence

    Energy Technology Data Exchange (ETDEWEB)

    Igor Akushevich; Andrei Afanasev; G.I. Gakh; Mykola Merenkov

    2001-09-01

    The complete analysis of the model-independent leading radiative corrections to cross-section and polarization observables in semi-inclusive deep-inelastic electron-nucleus scattering with detection of a proton and scattered electron in coincidence has been performed. The basis of the calculations consists of the Drell-Yan like representation in electrodynamics for both spin-independent and spin-dependent parts of the cross-section in terms of the electron structure functions. The applications to the polarization transfer effect from longitudinally polarized electron beam to detected proton as well as to scattering by the polarized target are considered.

  10. Hawking Temperature of an Arbitrarily Accelerating Black Hole

    Indian Academy of Sciences (India)

    Wei-Zhen Pan; Wei Liu

    2014-09-01

    Hawking temperature of an arbitrarily accelerating black hole with electric and magnetic charges are obtained based on the Klein–Gordon equation with a correct-dimension new tortoise coordinate transformation.

  11. Radiative Corrections to the Muonium Hyperfine Structure; 2, The $\\alpha (Z\\alpha)^2$ Correction

    CERN Document Server

    Nio, M

    1997-01-01

    This is the second of a series of papers on the radiative corrections of order $\\alpha^2 (Z\\alpha)$, $\\alpha (Z\\alpha )^2$, and various logarithmic terms of order $\\alpha^4$, to the hyperfine structure of the muonium ground state. This paper deals with the $\\alpha (Z\\alpha)^2$ correction. Based on the NRQED bound state theory, we isolated the term of order $\\alpha(Z\\alpha)^2$ exactly. Our result $+16.904~2~(11) \\alpha(Z\\alpha)^2 E_F / \\pi$ for the non-logarithmic part is consistent with the $\\alpha (Z\\alpha)^2$ part of Sapirstein's calculation and the recent result of Pachucki, and reduces the numerical uncertainty in the $\\alpha (Z\\alpha)^2$ term by two orders of magnitude.

  12. Electroweak vacuum stability and finite quadratic radiative corrections

    Energy Technology Data Exchange (ETDEWEB)

    Masina, Isabella [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN, Sezione di Ferrara (Italy); Southern Denmark Univ., Odense (Denmark). CP3-Origins; Southern Denmark Univ., Odense (Denmark). DIAS; Nardini, Germano [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quiros, Mariano [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); IFAE-IAB, Barcelona (Spain)

    2015-07-15

    If the Standard Model (SM) is an effective theory, as currently believed, it is valid up to some energy scale Λ to which the Higgs vacuum expectation value is sensitive throughout radiative quadratic terms. The latter ones destabilize the electroweak vacuum and generate the SM hierarchy problem. For a given perturbative Ultraviolet (UV) completion, the SM cutoff can be computed in terms of fundamental parameters. If the UV mass spectrum involves several scales the cutoff is not unique and each SM sector has its own UV cutoff Λ{sub i}. We have performed this calculation assuming the Minimal Supersymmetric Standard Model (MSSM) is the SM UV completion. As a result, from the SM point of view, the quadratic corrections to the Higgs mass are equivalent to finite threshold contributions. For the measured values of the top quark and Higgs masses, and depending on the values of the different cutoffs Λ{sub i}, these contributions can cancel even at renormalization scales as low as multi-TeV, unlike the case of a single cutoff where the cancellation only occurs at Planckian energies, a result originally obtained by Veltman. From the MSSM point of view, the requirement of stability of the electroweak minimum under radiative corrections is incorporated into the matching conditions and provides an extra constraint on the Focus Point solution to the little hierarchy problem in the MSSM. These matching conditions can be employed for precise calculations of the Higgs sector in scenarios with heavy supersymmetric fields.

  13. Radiative corrections to the Higgs couplings in the triplet model

    CERN Document Server

    Kikuchi, Mariko

    2013-01-01

    The feature of extended Higgs models can appear in the pattern of deviations from the Standard Model (SM) predictions in coupling constants of the SM-like Higgs boson ($h$). We can thus discriminate extended Higgs models by precisely measuring the pattern of deviations in the coupling constants of $h$, even when extra bosons are not found directly. In order to compare the theoretical predictions to the future precision data at the ILC, we must evaluate the theoretical predictions with radiative corrections in various extended Higgs models. In this talk, we give our comprehensive study for radiative corrections to various Higgs boson couplings of $h$ in the minimal Higgs triplet model (HTM). First, we define renormalization conditions in the model, and we calculate the Higgs coupling; $g\\gamma\\gamma, hWW, hZZ$ and $hhh$ at the one loop level. We then evaluate deviations in coupling constants of the SM-like Higgs boson from the predictions in the SM. We find that one-loop contributions to these couplings are su...

  14. Research on UV radiation measurements and correction methods

    Science.gov (United States)

    Huang, Bo; Dai, Cai-hong; Yu, Jai-lin; Wu, Zhi-feng; Ouyang, Hui-quan

    2011-06-01

    The widely use of UV radiation led to the demand for improved understanding of the properties of instrumentation used to measure this radiation. The UV radiometers are mainly influenced by the factors as operating conditions, environmental conditions and the UV sources to be calibrated and measured. In addition, large errors can occur due to out-of-band, non-linear, and non-ideal cosine or spatial response of the UV meters. Through a new designed measurement system for cosine response property, we do some measuring experiments to 21 kinds of UV radiometers and calculate the relative deviation of each UV meters. The cosine errors are existed universally. It is recommended that keeping the UV source closing to a point source and perpendicular to UV detector when it is measured is very important. We also design and fulfill an experimental system to reflect the measuring errors of UV radiometers when measuring sources and calibrated sources are mismatched. The results show that if the measurement is of a broadband source, it is wise to unify the measuring and calibrated source or the two sources have similar spectral distribution. If that is not possible, we can calculate the spectral mismatch correction factor and spectral matching characteristic factor to correct the measuring data. All the works above are to let the users in appropriate usage of UV Radiometers in a standardized and comparable way and make the measurement quantities more accurate.

  15. Electroweak vacuum stability and finite quadratic radiative corrections

    Science.gov (United States)

    Masina, Isabella; Nardini, Germano; Quiros, Mariano

    2015-08-01

    If the Standard Model (SM) is an effective theory, as currently believed, it is valid up to some energy scale Λ to which the Higgs vacuum expectation value is sensitive throughout radiative quadratic terms. The latter ones destabilize the electroweak vacuum and generate the SM hierarchy problem. For a given perturbative ultraviolet (UV) completion, the SM cutoff can be computed in terms of fundamental parameters. If the UV mass spectrum involves several scales, the cutoff is not unique and each SM sector has its own UV cutoff Λi. We have performed this calculation assuming the minimal supersymmetric standard model (MSSM) is the SM UV completion. As a result, from the SM point of view, the quadratic corrections to the Higgs mass are equivalent to finite threshold contributions. For the measured values of the top quark and Higgs masses, and depending on the values of the different cutoffs Λi, these contributions can cancel even at renormalization scales as low as multi-TeV, unlike the case of a single cutoff where the cancellation only occurs at Planckian energies, a result originally obtained by Veltman. From the MSSM point of view, the requirement of stability of the electroweak minimum under radiative corrections is incorporated into the matching conditions and provides an extra constraint on the focus point solution to the little hierarchy problem in the MSSM. These matching conditions can be employed for precise calculations of the Higgs sector in scenarios with heavy supersymmetric fields.

  16. A Novel Parametric Bound for Information Retrieval from Black Hole Radiation

    CERN Document Server

    Roy, Avik; Alvi, Mishkat Al; Majumdar, Mahbub; Matin, Md Abdul

    2013-01-01

    Hawking's argument about non-unitary evolution of black holes is often questioned on the ground that it doesn't acknowledge the quantum correlations in radiation process. However, recently it has been shown that adding `small' correction to leading order Hawking analysis, accounting for the correlations, doesn't help to restore unitarity. This paper generalizes the bound on entanglement entropy by relaxing the `smallness' condition and configures the parameters for possible recovery of information from an evaporating black hole. The new bound effectively puts an upper limit on increase in entanglement entropy. It also facilitates to relate the change in entanglement entropy to the amount of correction to Hawking state.

  17. End Point of Hawking Evaporation -- Case of Integrable Model

    CERN Document Server

    Hotta, M

    1994-01-01

    Quantum back reaction due to $N$ massless fields may be worked out to a considerable detail in a variant of integrable dilaton gravity model in two dimensions. It is shown that there exists a critical mass of collapsing object of order $\\hbar N \\times$ (cosmological constant)$^{1/2}$, above which the end point of Hawking evaporation is two disconnected remnants of infinite extent, each separated by a mouth from the outside region. Deep inside the mouth there is a universal flux of radiation in all directions, in a form different from Hawking radiation. Below the critical mass no remnant is left behind, implying complete Hawking evaporation or even showing no sign of Hawking radiation. Existence of infinitely many static states of quantum nature is also demonstrated in this model.

  18. Radiative Corrections from Heavy Fast-Roll Fields during Inflation

    CERN Document Server

    Jain, Rajeev Kumar; Sloth, Martin S

    2015-01-01

    We investigate radiative corrections to the inflaton potential from heavy fields undergoing a fast-roll phase transition. We find that a logarithmic one-loop correction to the inflaton potential involving this field can induce a temporary running of the spectral index. The induced running can be a short burst of strong running, which may be related to the observed anomalies on large scales in the cosmic microwave spectrum, or extend over many e-folds, sustaining an effectively constant running to be searched for in the future. We implement this in a general class of models, where effects are mediated through a heavy messenger field sitting in its minimum. Interestingly, within the present framework it is a generic outcome that a large running implies a small field model with a vanishing tensor-to-scalar ratio, circumventing the normal expectation that small field models typically lead to an unobservable small running of the spectral index. An observable level of tensor modes can also be accommodated, but, sur...

  19. Radiative corrections from heavy fast-roll fields during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Rajeev Kumar; Sandora, McCullen; Sloth, Martin S. [CP" 3-Origins, Center for Cosmology and Particle Physics Phenomenology,University of Southern Denmark,Campusvej 55, 5230 Odense M (Denmark)

    2015-06-09

    We investigate radiative corrections to the inflaton potential from heavy fields undergoing a fast-roll phase transition. We find that a logarithmic one-loop correction to the inflaton potential involving this field can induce a temporary running of the spectral index. The induced running can be a short burst of strong running, which may be related to the observed anomalies on large scales in the cosmic microwave spectrum, or extend over many e-folds, sustaining an effectively constant running to be searched for in the future. We implement this in a general class of models, where effects are mediated through a heavy messenger field sitting in its minimum. Interestingly, within the present framework it is a generic outcome that a large running implies a small field model with a vanishing tensor-to-scalar ratio, circumventing the normal expectation that small field models typically lead to an unobservably small running of the spectral index. An observable level of tensor modes can also be accommodated, but, surprisingly, this requires running to be induced by a curvaton. If upcoming observations are consistent with a small tensor-to-scalar ratio as predicted by small field models of inflation, then the present study serves as an explicit example contrary to the general expectation that the running will be unobservable.

  20. Maxwell’s Equal Area Law and the Hawking-Page Phase Transition

    Directory of Open Access Journals (Sweden)

    Euro Spallucci

    2013-01-01

    Full Text Available We study the phases of a Schwarzschild black hole in the Anti-deSitter background geometry. Exploiting fluid/gravity duality, we construct the Maxwell equal area isotherm   in the temperature-entropy plane, in order to eliminate negative heat capacity BHs. The construction we present here is reminiscent of the isobar cut in the pressure-volume plane which eliminates unphysical part of the Van der Walls curves below the critical temperature. Our construction also modifies the Hawking-Page phase transition. Stable BHs are formed at the temperature , while pure radiation persists for . turns out to be below the standard Hawking-Page temperature and there are no unstable BHs as in the usual scenario. Also, we show that, in order to reproduce the correct BH entropy , one has to write a black hole equation of state, that is, , in terms of the geometrical volume .

  1. Perfect simulation of Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    This article concerns a perfect simulation algorithm for unmarked and marked Hawkes processes. The usual stratihtforward simulation algorithm suffers from edge effects, whereas our perfect simulation algorithm does not. By viewing Hawkes processes as Poisson cluster processes and using...

  2. Steven Hawking with Robert Aymar

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Steven Hawking is seen meeting with CERN's Director-General, Robert Aymar. Hawking visited CERN between 24 September and 1 October 2006. During his stay he gave two lectures and toured the LHC, which may provide insights into Hawking's most famous area of study, black holes.

  3. 任意维Schwarzschild-de Sitter黑洞的Hawking隧穿辐射%Hawking Radiation of Arbitrarily Dimensional Schwarzschild-de Sitter Black Hole as Tunneling

    Institute of Scientific and Technical Information of China (English)

    李固强

    2006-01-01

    运用Parikh模型,研究任意维Schwarzschild-de Sitter(SdS)黑洞的Hawking隧穿辐射.结果表明,黑洞视界处的隧穿率依赖于Bekenstein-Hawking(BH)熵的变化,如果考虑到熵的变化按出射粒子能量展开式中的高次项,辐射谱不再是纯热的谱.

  4. Radiative corrections to the solar lepton mixing sum rule

    Science.gov (United States)

    Zhang, Jue; Zhou, Shun

    2016-08-01

    The simple correlation among three lepton flavor mixing angles ( θ 12, θ 13, θ 23) and the leptonic Dirac CP-violating phase δ is conventionally called a sum rule of lepton flavor mixing, which may be derived from a class of neutrino mass models with flavor symmetries. In this paper, we consider the solar lepton mixing sum rule θ 12 ≈ θ 12 ν + θ 13 cos δ, where θ 12 ν stems from a constant mixing pattern in the neutrino sector and takes the value of θ 12 ν = 45 ° for the bi-maximal mixing (BM), {θ}_{12}^{ν } = { tan}^{-1}(1/√{2}) ≈ 35.3° for the tri-bimaximal mixing (TBM) or {θ}_{12}^{ν } = { tan}^{-1}(1/√{5+1}) ≈ 31.7° for the golden-ratio mixing (GR), and investigate the renormalization-group (RG) running effects on lepton flavor mixing parameters when this sum rule is assumed at a superhigh-energy scale. For illustration, we work within the framework of the minimal supersymmetric standard model (MSSM), and implement the Bayesian approach to explore the posterior distribution of δ at the low-energy scale, which becomes quite broad when the RG running effects are significant. Moreover, we also discuss the compatibility of the above three mixing scenarios with current neutrino oscillation data, and observe that radiative corrections can increase such a compatibility for the BM scenario, resulting in a weaker preference for the TBM and GR ones.

  5. Sources and detection of dark matter in the universe. Proceedings. Workshop on Primordial Black Holes and Hawking Radiation and 3rd International Symposium on Sources and Detection of Dark Matter in the Universe, Marina del Rey, CA (USA), 17 - 20 Feb 1998.

    Science.gov (United States)

    1998-12-01

    The following topics were dealt with: early universe and cosmological constants of the universe, large scale nature of the universe, gravitational lensing and microlensing, formation of primordial black holes, Hawking radiation, current search for primordial black holes, theoretical studies of particle dark matter, and experimental progress on the search for dark matter elementary particles.

  6. Canadian institute honours Hawking

    Science.gov (United States)

    Durrani, Matin

    2009-11-01

    The Perimeter Institute for Theoretical Physics in Waterloo, Canada, has announced that a major new extension to its campus will be known as the Stephen Hawking Centre. The extension, which is currently being built, is due to open in 2011 and will double the size of the institute. It will also provide a home for the institute's Masters students, the first of whom joined the Perimeter Institute this autumn as part of its Perimeter Scholars international programme.

  7. Radiative generation of neutrino mixing: degenerate masses and threshold corrections

    CERN Document Server

    Hollik, Wolfgang Gregor

    2014-01-01

    Degenerate neutrino masses are excluded by experiment. The experimentally measured mass squared differences together with the yet undetermined absolute neutrino mass scale allow for a quasi-degenerate mass spectrum. For the lightest neutrino mass larger than roughly 0.1 eV, we analyse the influence of threshold corrections at the electroweak scale. We show that typical one-loop corrections can generate the observed neutrino mixing as well as the mass differences starting from exactly degenerate masses at the tree-level. Those threshold corrections have to be explicitly flavour violating. Flavour diagonal, non-universal corrections are not sufficient to simultaneously generate the correct mixing and the mass differences. We apply the new insights to an extension of the Minimal Supersymmetric Standard Model with non-minimal flavour violation in the soft breaking terms and discuss the low-energy threshold corrections to the light neutrino mass matrix in that model.

  8. The Hawking evaporation process of rapidly-rotating black holes: an almost continuous cascade of gravitons

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emek Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2015-07-15

    It is shown that rapidly-rotating Kerr black holes are characterized by the dimensionless ratio τ{sub gap}/τ{sub emission} = O(1), where τ{sub gap} is the average time gap between the emissions of successive Hawking quanta and τ{sub emission} is the characteristic timescale required for an individual Hawking quantum to be emitted from the black hole. This relation implies that the Hawking cascade from rapidly-rotating black holes has an almost continuous character. Our results correct some inaccurate claims that recently appeared in the literature regarding the nature of the Hawking black-hole evaporation process. (orig.)

  9. Radiative corrections to the EPRL-FK spinfoam graviton

    CERN Document Server

    Riello, Aldo

    2013-01-01

    I study the corrections engendered by the insertion of a "melon" graph in the bulk of the first-order spinfoam used for the graviton propagator. I find that these corrections are highly non-trivial and, in particular, that they concern those terms which disappear in the Bojowald-Bianchi-Magliaro-Perini limit of vanishing Barbero-Immirzi parameter at fixed area. This fact is the first realization of the often cited idea that the spinfoam amplitude receives higher order corrections under the refinement of the underlying two-complex.

  10. Approximate simulation of Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    2006-01-01

    Hawkes processes are important in point process theory and its applications, and simulation of such processes are often needed for various statistical purposes. This article concerns a simulation algorithm for unmarked and marked Hawkes processes, exploiting that the process can be constructed...

  11. Perfect simulation of Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    2005-01-01

    Our objective is to construct a perfect simulation algorithm for unmarked and marked Hawkes processes. The usual straightforward simulation algorithm suffers from edge effects, whereas our perfect simulation algorithm does not. By viewing Hawkes processes as Poisson cluster processes and using...

  12. Chinese President Meets Stephen Hawking

    Institute of Scientific and Technical Information of China (English)

    Fu Shuqin

    2002-01-01

    @@ Chinese President Jiang Zemin met on August 19 with Stephen Hawking and other world-renown scientists, including Shing-tung Yau, Edward Witten, D.Gross, A. Strominger, et al., who were attending an international conference on string theory and Prof.Hawking had just given a public speech titled "Brane New World" in Beijing.

  13. Radiative corrections to chargino production in electron-positron collisions with polarized beams

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Marco A.; King, Stephen F.; Ross, Douglas A.

    2001-07-01

    We study radiative corrections to chargino production at linear colliders with polarized electron beams. We calculate the one-loop corrected cross sections for polarized electon beams due to three families of quarks and squarks, working in the {ovr MS} scheme, extending our previous calculation of the unpolarized cross section with one-loop corrections due to the third family of quarks and squarks. In some cases we find rather large corrections to the tree-level cross sections. For example, for the case of right-handed polarized electrons and large tan{beta} the corrections can be of order 30%, allowing sensitivity to the squark mass parameters.

  14. Numerical consistency check between two approaches to radiative corrections for neutrino masses and mixings

    Indian Academy of Sciences (India)

    Mrinal Kumar Das; Mahadev Patgiri; N Nimai Singh

    2005-12-01

    We briefly outline the two popular approaches on radiative corrections to neutrino masses and mixing angles, and then carry out a detailed numerical analysis for a consistency check between them in MSSM. We find that the two approaches are nearly consistent with a discrepancy factor of 4.2% with running vacuum expectation value (VEV) (13% for scale-independent VEV) in mass eigenvalues at low-energy scale but the predictions on mixing angles are almost consistent. We check the stability of the three types of neutrino models, i.e., hierarchical, inverted hierarchical and degenerate models, under radiative corrections, using both approaches, and find consistent conclusions. The neutrino mass models which are found to be stable under radiative corrections in MSSM are the normal hierarchical model and the inverted hierarchical model with opposite CP parity. We also carry out numerical analysis on some important conjectures related to radiative corrections in the MSSM, viz., radiative magnification of solar and atmospheric mixings in the case of nearly degenerate model having same CP parity (MPR conjecture) and radiative generation of solar mass scale in exactly two-fold degenerate model with opposite CP parity and non-zero 3 (JM conjecture). We observe certain exceptions to these conjectures. We find a new result that both solar mass scale and 3 can be generated through radiative corrections at low energy scale. Finally the effect of scale-dependent vacuum expectation value in neutrino mass renormalisation is discussed.

  15. Hawking Temperature of a Static Black Hole in Harmonic Coordinates

    Science.gov (United States)

    He, Guan-Sheng; Lin, Wei-Bin

    2015-12-01

    Hawking radiation is usually studied in standard coordinates. In this paper, we calculate the Hawking temperature of a Schwarzschild black hole in harmonic coordinates, as well as that of a Reissner-Nordström black hole. The action of a scalar field near the event horizon can be formulated exactly without omitting some high-order terms. We show dimensional reduction for Hawking temperature is also valid for harmonic coordinates, and verify further that the results are independent on concrete coordinates. With the help of Lorentz transformation, our work might also serve as a basis to investigate the thermal radiation from a moving black hole. Supported in part by the Ph.D. Programs Foundation of Ministry of Education of China under Grant No. 20110184110016, the National Basic Research Program of China (973 Program) Grant No. 2013CB328904, and the Fundamental Research Funds for the Central Universities under Grant No. 2682014ZT32

  16. Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations

    CERN Document Server

    Bauman, Sky

    2011-01-01

    The most direct experimental signature of a compactified extra dimension is the appearance of towers of Kaluza-Klein particles obeying specific mass and coupling relations. However, such masses and couplings are subject to radiative corrections. In this paper, using techniques developed in previous work, we investigate the extent to which such radiative corrections deform the expected tree-level relations between Kaluza-Klein masses and couplings. As toy models for our analysis, we investigate a flat five-dimensional scalar \\lambda\\phi^4 model and a flat five-dimensional Yukawa model involving both scalars and fermions. In each case, we identify the conditions under which the tree-level relations are stable to one-loop order, and the situations in which radiative corrections modify the algebraic forms of these relations. Such corrections to Kaluza-Klein spectra therefore have the potential to distort the apparent geometry of a large extra dimension.

  17. Electroweak radiative corrections to parity-violating electroexcitation of the Delta

    Energy Technology Data Exchange (ETDEWEB)

    C.M. Maekawa; Michael Ramsey-Musolf; Barry Holstein; Shi-Lin Zhu; Gianfranco Sacco

    2001-12-01

    We analyze the degree to which parity-violating (PV) electroexcitation of the {Delta}(1232)$ resonance may be used to extract the weak neutral axial vector transition form factors. We find that the axial vector electroweak radiative corrections are large and theoretically uncertain, thereby modifying the nominal interpretation of the PV asymmetry in terms of the weak neutral form factors. We also show that, in contrast to the situation for elastic electron scattering, the axial N {yields} {Delta} PV asymmetry does not vanish at the photon point as a consequence of a new term entering the radiative corrections. We argue that an experimental determination of these radiative corrections would be of interest for hadron structure theory, possibly shedding light on the violation of Hara's theorem in weak, radiative hyperon decays.

  18. A temperature error correction method for a naturally ventilated radiation shield

    Science.gov (United States)

    Yang, Jie; Liu, Qingquan; Dai, Wei; Ding, Rrenhui

    2016-11-01

    Due to solar radiation exposure, air flowing inside a naturally ventilated radiation shield may produce a measurement error of 0.8 °C or higher. To improve the air temperature observation accuracy, a temperature error correction method is proposed. The correction method is based on a Computational Fluid Dynamics (CFD) method and a Genetic Algorithm (GA) method. The CFD method is implemented to analyze and calculate the temperature errors of a naturally ventilated radiation shield under various environmental conditions. Then, a temperature error correction equation is obtained by fitting the CFD results using the GA method. To verify the performance of the correction equation, the naturally ventilated radiation shield and an aspirated temperature measurement platform are characterized in the same environment to conduct the intercomparison. The aspirated temperature measurement platform serves as an air temperature reference. The mean temperature error given by measurements is 0.36 °C, and the mean temperature error given by correction equation is 0.34 °C. This correction equation allows the temperature error to be reduced by approximately 95%. The mean absolute error (MAE) and the root mean square error (RMSE) between the temperature errors given by the correction equation and the temperature errors given by the measurements are 0.07 °C and 0.08 °C, respectively.

  19. Universality in radiative corrections for non-supersymmetric heterotic vacua

    CERN Document Server

    Angelantonj, C; Tsulaia, Mirian

    2016-01-01

    Properties of moduli-dependent gauge threshold corrections in non-supersymmetric heterotic vacua are reviewed. In the absence of space-time supersymmetry these amplitudes are no longer protected and receive contributions from the whole tower of string states, BPS and not. Never-theless, the difference of gauge thresholds for non-Abelian gauge groups displays a remarkable universality property, even when supersymmetry is absent. We present a simple heterotic construction that shares this universal behaviour and expose the necessary conditions on the super-symmetry breaking mechanism for universality to occur.

  20. Hawking from Catalan

    CERN Document Server

    Fitzpatrick, A Liam; Walters, Matthew T; Wang, Junpu

    2015-01-01

    The Virasoro algebra determines all `graviton' matrix elements in AdS$_3$/CFT$_2$. We study the explicit exchange of any number of Virasoro gravitons between heavy and light CFT$_2$ operators at large central charge. These graviton exchanges can be written in terms of new on-shell tree diagrams, organized in a perturbative expansion in $h_H/c$, the heavy operator dimension divided by the central charge. The Virasoro vacuum conformal block, which is the sum of all the tree diagrams, obeys a differential recursion relation generalizing that of the Catalan numbers. We use this recursion relation to sum the on-shell diagrams to all orders, computing the Virasoro vacuum block. Extrapolating to large $h_H/c$ determines the Hawking temperature of a BTZ black hole in dual AdS$_3$ theories.

  1. Computer program for pulsed thermocouples with corrections for radiation effects

    Science.gov (United States)

    Will, H. A.

    1981-01-01

    A pulsed thermocouple was used for measuring gas temperatures above the melting point of common thermocouples. This was done by allowing the thermocouple to heat until it approaches its melting point and then turning on the protective cooling gas. This method required a computer to extrapolate the thermocouple data to the higher gas temperatures. A method that includes the effect of radiation in the extrapolation is described. Computations of gas temperature are provided, along with the estimate of the final thermocouple wire temperature. Results from tests on high temperature combustor research rigs are presented.

  2. A non-parametric method for correction of global radiation observations

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Perers, Bengt;

    2013-01-01

    This paper presents a method for correction and alignment of global radiation observations based on information obtained from calculated global radiation, in the present study one-hour forecast of global radiation from a numerical weather prediction (NWP) model is used. Systematical errors detected...... in the observations are corrected. These are errors such as: tilt in the leveling of the sensor, shadowing from surrounding objects, clipping and saturation in the signal processing, and errors from dirt and wear. The method is based on a statistical non-parametric clear-sky model which is applied to both...... University. The method can be useful for optimized use of solar radiation observations for forecasting, monitoring, and modeling of energy production and load which are affected by solar radiation....

  3. Hawk and Handsaw

    Science.gov (United States)

    Usher, Peter D.

    2008-05-01

    In Shakespeare's Hamlet, Prince Hamlet states, "I am but mad north-north-west. When the wind is southerly, I know a hawk from a handsaw." This celebrated yet perennially baffling passage is readily understood in the context of the cosmic allegorical interpretation of the play (BAAS 28, 1305, 1996; Hamlet's Universe, 2006). The first direction points from Tycho Brahe's observatory on Hven to the fictional home of the geocentric Pyolemaic worldview at Elsinore, and the second from Hven to the home of Copernican heliocentricism at Wittenberg. The directions correspond to the two influences on Tycho's geo-heliocentric World model. Anyone at Elsinore who advocates the new organon of the New Philosophy is "mad," whereas sanity prevails at Wittenberg. "Hawk" refers to a bird of prey, the leonard, and to Leonard Digges, inventor of the world's first two-element telescope. "Handsaw" refers to the artistic tool necessary to sever the hands depicted in de Gheyn's two quasi-mirror-imaged portraits of Tycho at age 40, which show hands affixed to the wrong arms. Elsewhere in Hamlet, Shakespeare substantiates the New Astronomy through descriptions of planets and stars that could only have been determined telescopically. Therefore, the passage in question contrasts two modes of observing in the early modern era, viz. visual and telescopic. Shakespeare completed writing Hamlet in about 1601 and the Second Quarto appeared in 1604, so the first substantial account of astronomical telescopy is now over 400 years old. In addition, 432 years ago Thomas Digges published the first account of the New Astronomy in a popular almanac. These two means of presentation may seem odd by present standards, but contemporary culture was intolerant of 'natural magic,' and furthermore, it was prudent to minmize the risk of domestic persecution and threats from Continental armies and the European and Spanish Inquisitions.

  4. Development of the Hawk/Nike Hawk sounding rocket vehicles

    Science.gov (United States)

    Flowers, B. J.

    1976-01-01

    A new sounding rocket family, the Hawk and Nike-Hawk Vehicles, have been developed, flight tested and added to the NASA Sounding Rocket Vehicle Stable. The Hawk is a single-stage vehicle that will carry 35.6 cm diameter payloads weighing 45.5 kg to 91 kg to altitudes of 78 km to 56 km, respectively. The two-stage Nike-Hawk will carry payloads weighing 68 kg to 136 kg to altitudes of 118 km to 113 km, respectively. Both vehicles utilize the XM22E8 Hawk rocket motor which is available in large numbers as a surplus item from the U.S. Army. The Hawk fin and tail can hardware were designed in-house. The Nike tail can and fin hardware are surplus Nike-Ajax booster hardware. Development objectives were to provide a vehicle family with a larger diameter, larger volume payload capability than the Nike-Apache and Nike-Tomahawk vehicles at comparable cost. Both vehicles performed nominally in flight tests.

  5. Development of the Hawk/Nike Hawk sounding rocket vehicles

    Science.gov (United States)

    Flowers, B. J.

    1976-01-01

    A new sounding rocket family, the Hawk and Nike-Hawk Vehicles, have been developed, flight tested and added to the NASA Sounding Rocket Vehicle Stable. The Hawk is a single-stage vehicle that will carry 35.6 cm diameter payloads weighing 45.5 kg to 91 kg to altitudes of 78 km to 56 km, respectively. The two-stage Nike-Hawk will carry payloads weighing 68 kg to 136 kg to altitudes of 118 km to 113 km, respectively. Both vehicles utilize the XM22E8 Hawk rocket motor which is available in large numbers as a surplus item from the U.S. Army. The Hawk fin and tail can hardware were designed in-house. The Nike tail can and fin hardware are surplus Nike-Ajax booster hardware. Development objectives were to provide a vehicle family with a larger diameter, larger volume payload capability than the Nike-Apache and Nike-Tomahawk vehicles at comparable cost. Both vehicles performed nominally in flight tests.

  6. Ambiguity of the equivalence principle and Hawking's temperature

    NARCIS (Netherlands)

    Hooft, G. 't

    1984-01-01

    There are two inequivalent ways in which the laws of physics in a gravitational field can be related to the laws in an inertial frame, when quantum mechanical effects are taken into account. This leads to an ambiguity in the derivation of Hawking's radiation temperature for a black hole: it could be

  7. Correction

    DEFF Research Database (Denmark)

    Pinkevych, Mykola; Cromer, Deborah; Tolstrup, Martin

    2016-01-01

    [This corrects the article DOI: 10.1371/journal.ppat.1005000.][This corrects the article DOI: 10.1371/journal.ppat.1005740.][This corrects the article DOI: 10.1371/journal.ppat.1005679.].......[This corrects the article DOI: 10.1371/journal.ppat.1005000.][This corrects the article DOI: 10.1371/journal.ppat.1005740.][This corrects the article DOI: 10.1371/journal.ppat.1005679.]....

  8. Swainson's Hawk - Monitoring [ds5

    Data.gov (United States)

    California Department of Resources — These data do not represent a complete census of Swainson's hawks in the Department of Fish and Game's Central Valley Central Sierra Region. Different sample blocks...

  9. UAVSAR Global Hawk POLSAR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate the UAVSAR L-band radar to the Global Hawk UAV Bay 25 Provide long range (~ 9000 nmi) to enable data collection of distant areas of interest without...

  10. Impact of QED radiative corrections on Parton Distribution Functions

    CERN Document Server

    Sadykov, Renat

    2014-01-01

    The level of precision achieved by the experimental measurements at the LHC requires the inclusion of higher order electroweak effects to the processes of $ pp $ scattering. In particular the photon-induced process $ \\gamma\\gamma \\to \\ell^+\\ell^- $ make a significant contribution ($ \\sim 10 \\%$) to the dilepton invariant mass distribution. To evaluate the cross-section of this process one need to know the parton distribution function (PDF) of the photon in the proton $ \\gamma (x,\\mu^2) $. The aim of the current study is to investigate the impact of QED corrections on PDFs and describe the implementation of QED-modified evolution equations into beta release of new version of {\\tt QCDNUM} program. The {\\tt APPLGRID} interface to {\\tt SANC} Monte Carlo generator for fast evaluation of photon-induced cross-section is also outlined. The results were cross-checked with {\\tt partonevolution} program, {\\tt MRST2004QED} PDF set and {\\tt APFEL} program. The described developments are planned to include into {\\tt HERAFi...

  11. Radiative corrections to the magnetic moments of the proton and the neutron

    CERN Document Server

    Kaiser, N

    2016-01-01

    We estimate the radiative corrections of order $\\alpha/\\pi$ to the magnetic moments of the proton and the neutron. The photon-loop diagram of the vertex-correction type is evaluated with phenomenological nucleon vector form factors. Infrared-finiteness and gauge-invariance require the inclusion of the wave-function renormalization factor from the self-energy diagram. Using recent empirical form factor parametrizations the corrections amount to $\\delta\\kappa_p= -3.42 \\cdot 10^{-3}$ and $\\delta\\kappa_n= 1.34 \\cdot 10^{-3}$. We study also the effects from photon-loops with internal $\\Delta(1232)$-isobars. For two customary versions of the $\\Delta N\\gamma $-vertex and spin-3/2 propagator, these radiative corrections have values of $\\delta\\kappa_p^{(\\Delta)}= (-0.9,\\, 0.0)\\!\\cdot\\! 10^{-3}$ and $\\delta\\kappa_n^{(\\Delta)} = (1.2,\\,-0.8)\\!\\cdot\\! 10^{-3}$, respectively.

  12. New physics effects in the Higgs trilinear self-coupling through one-loop radiative corrections

    CERN Document Server

    Moyotl, A; Castilla-Valdez, H; Pérez, M A

    2016-01-01

    We compute the one-loop corrections to the triple Higgs self-interaction $hhh$ in the framework of the Standard Model (SM), the Two Higgs Doublet Model type III (THDM-III) and the Littlest Higgs Model with T parity (LHBM+T). Our results are compared with previous results for the SM. In particular, we find that an imaginary part for the $\\lambda_{hhh}$ form factor is induced when one of the Higgs boson legs is off-mass shell with 4-momentum magnitude higher than the Higgs boson mass. This contribution is sensitive to virtual effects of the Higgs self-interaction, that induces a radiative correction to the $hhh$ coupling of order 11%. However, the radiative corrections associated to the new degrees of freedom of the THDM-III and the LHBM+T are rather smaller and comparable to the $W^\\pm$ and $Z^0$ gauge bosons one-loop corrections.

  13. QED radiative corrections to low-energy Møller and Bhabha scattering

    Science.gov (United States)

    Epstein, Charles S.; Milner, Richard G.

    2016-08-01

    We present a treatment of the next-to-leading-order radiative corrections to unpolarized Møller and Bhabha scattering without resorting to ultrarelativistic approximations. We extend existing soft-photon radiative corrections with new hard-photon bremsstrahlung calculations so that the effect of photon emission is taken into account for any photon energy. This formulation is intended for application in the OLYMPUS experiment and the upcoming DarkLight experiment but is applicable to a broad range of experiments at energies where QED is a sufficient description.

  14. QED Radiative Corrections to Low-Energy Moller and Bhabha Scattering

    CERN Document Server

    Epstein, Charles S

    2016-01-01

    We present a treatment of the next-to-leading-order radiative corrections to unpolarized Moller and Bhabha scattering without resorting to ultra-relativistic approximations. We extend existing soft-photon radiative corrections with new hard-photon bremsstrahlung calculations so that the effect of photon emission is taken into account for any photon energy. This formulation is intended for application in the OLYMPUS experiment and the upcoming DarkLight experiment, but is applicable to a broad range of experiments at energies where QED is a sufficient description.

  15. QED radiative corrections for elastic e (μ) p scattering in hadronic variables

    Science.gov (United States)

    Akhundov, A. A.; Alharbi, H. H.; Alhendi, H. A.

    2004-08-01

    A numerical analysis of QED radiative corrections for elastic e (μ) p scattering in hadronic variables at energies of the current experiment at JLab is performed. The explicit formulas from the review of Akhundov et al. [Fortschr. Phys.44, 373 (1996)] resulting from the integration over the phase space of leptonic variables plus photon are used to obtain the values of the cross sections and the radiative correction factor for unpolarized lepton-proton scattering. Our numerical results agree with the corresponding results arising from the formulas of Afanasev et al. [Phys. Lett. B514, 269 (2001); Phys. Rev. D64, 113009 (2001)].

  16. QED radiative corrections for elastic e(mu)p scattering in hadronic variables

    CERN Document Server

    Akhundov, A A; Alhendi, H A

    2004-01-01

    A numerical analysis of QED radiative corrections for elastic e(mu)p cattering in hadronic variables at energies of the current experiment at JLab is performed. The explicit formulas from the review of Akhundov et al. resulting from the integration over the phase space of leptonic variables plus photon are used to obtain the values of the cross sections and the radiative correction factor for unpolarized lepton-proton scattering. Our numerical results agree with the corresponding results arising from the formulas of Afanasev et al.

  17. QED radiative corrections for electroproduction: modernising the COMPASS code - Summer Student Programme 2015 - Final Report

    CERN Document Server

    Latacz, Barbara Maria

    2015-01-01

    Program TERAD is a well known tool to calculate radiative corrections for an inclusive lepton-nucleus deep inelastic scattering. It was originally written in FORTRAN 77. Several collaborations were using it for many yearsw adding corrections using the Patchy package. After years of using Patchy and TERAD together it needed to be reordered. The new version, called Terad15, is described in this report. It has the same functionality as the old TERAD but is written only in FORTRAN 77.

  18. On higher order radiative corrections to elastic electron–proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, A. B., E-mail: arbuzov@theor.jinr.ru [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980, Dubna (Russian Federation); Department of Higher Mathematics, Dubna State University, 141982, Dubna (Russian Federation); Kopylova, T. V. [Department of Higher Mathematics, Dubna State University, 141982, Dubna (Russian Federation)

    2015-12-18

    QED radiative corrections to elastic electron–proton scattering at low energies are discussed. Corrections to the electron line and effects due to vacuum polarization are computed. Higher order effects are estimated for the conditions of the experiment on the electric and magnetic proton form factors by the A1 Collaboration. Calculations are performed within the next-to-leading approximation. The inclusion of the higher order effects can affect the value of the proton charge radius extracted from the experimental data.

  19. On higher order radiative corrections to elastic electron-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, A.B. [Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Dubna State University, Department of Higher Mathematics, Dubna (Russian Federation); Kopylova, T.V. [Dubna State University, Department of Higher Mathematics, Dubna (Russian Federation)

    2015-12-15

    QED radiative corrections to elastic electron-proton scattering at low energies are discussed. Corrections to the electron line and effects due to vacuum polarization are computed. Higher order effects are estimated for the conditions of the experiment on the electric and magnetic proton form factors by the A1 Collaboration. Calculations are performed within the next-to-leading approximation. The inclusion of the higher order effects can affect the value of the proton charge radius extracted from the experimental data. (orig.)

  20. Missed radiative corrections in muon g-2 and proton charge radius measurements

    Directory of Open Access Journals (Sweden)

    Arbuzov Andrej

    2016-01-01

    Full Text Available QED radiative corrections to the muon anomalous magnetic moment and elastic electron-proton scattering are discussed. It is shown that a collective effect due to mutual interaction of muons within experimental conditions might provide a contribution to the observed muon magnetic moment. This effect is parameterized by an effective mean shift of muons off their mass shells. Higher order corrections to elastic electronproton at low energies are systematically treated within the leading and next-to-leading logarithmic approximation. The corrections are relevant for the modern experiments on proton form factor and charge radius definition.

  1. Numerical method for angle-of-incidence correction factors for diffuse radiation incident photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill

    2017-05-01

    A numerical method is provided for solving the integral equation for the angle-of-incidence (AOI) correction factor for diffuse radiation incident photovoltaic (PV) modules. The types of diffuse radiation considered include sky, circumsolar, horizon, and ground-reflected. The method permits PV module AOI characteristics to be addressed when calculating AOI losses associated with diffuse radiation. Pseudo code is provided to aid users in the implementation, and results are shown for PV modules with tilt angles from 0 degrees to 90 degrees. Diffuse AOI losses are greatest for small PV module tilt angles. Including AOI losses associated with the diffuse irradiance will improve predictions of PV system performance.

  2. Charge-trap correction and radiation damage in orthogonal-strip planar germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, E.L. [PHDS Corporation, 3011 Amherst Road, Knoxville, TN 37921 (United States); Jackson, E.G.; Lister, C.J. [Physics Department, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Pehl, R.H. [PHDS Corporation, 3011 Amherst Road, Knoxville, TN 37921 (United States)

    2014-10-21

    A charge-carrier trap correction technique was developed for orthogonal strip planar germanium gamma-ray detectors. The trap corrector significantly improves the gamma-ray energy resolution of detectors with charge-carrier trapping from crystal-growth defects and radiation damage. Two orthogonal-strip planar germanium detectors were radiation damaged with 2-MeV neutron fluences of ∼8×10{sup 9} n/cm{sup 2}. The radiation-damaged detectors were studied in the 60–80 K temperature range.

  3. Radiative corrections for the direct detection of neutralino dark matter and its relic density

    Energy Technology Data Exchange (ETDEWEB)

    Steppeler, Patrick Norbert

    2016-07-01

    In this thesis we calculate supersymmetric one-loop corrections of the strong interaction to elastic neutralino-nucleon scattering. The calculation is described in detail and performed in full generality within the Minimal Supersymmetric Standard Model (MSSM). In order to benefit from the well-established tensor reduction method, we have to stabilise the latter for vanishing Gram determinants. Afterwards the radiative corrections are matched onto an effective field theory based on the scalar operator anti χχ anti qq and the axial-vector operator anti χγ{sub 5}γ{sub μ}χ anti qγ{sub 5}γ{sup μ}q. This matching procedure is performed at the high scale μ{sub high}∝1000 GeV, whereas the associated nuclear matrix elements are defined at the low scale μ{sub low}∝5 GeV. To link both scales, the running of the effective operators and their corresponding Wilson coefficients is taken into account via renormalisation group equations. The lightest neutralino can be considered as a canonical example for a weakly interacting, massive particle which could constitute dark matter. To verify the existence of such particles, so-called direct detection experiments are conducted currently. These are based on the interaction between dark matter and nucleons. The leading contributions to the spin-independent and spin-dependent neutralino-nucleon cross sections are governed by the effective operators mentioned above, respectively. The calculation of the associated radiative corrections corresponds to a reduction of the theoretical uncertainty and permits to identify neutralino properties more reliably in case of positive findings and to set more robust exclusion bounds in case of negative findings. Furthermore, we calculate radiative corrections to annihilation and coannihilation processes of gauginos into quarks, where we focus again on supersymmetric one-loop corrections of the strong interaction. These processes contribute dominantly to the (co)annihilation cross section

  4. An improved method for correction of air temperature measured using different radiation shields

    Science.gov (United States)

    Cheng, Xinghong; Su, Debin; Li, Deping; Chen, Lu; Xu, Wenjing; Yang, Meilin; Li, Yongcheng; Yue, Zhizhong; Wang, Zijing

    2014-11-01

    The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala, Finland, and HYTFZ01, Huayun Tongda Satcom, China) was studied. Datasets were collected in the field at the Daxing weather station in Beijing from June 2011 to May 2012. Most air temperature values obtained with these two commonly used radiation shields were lower than the reference records obtained with the new Fiber Reinforced Polymers (FRP) Stevenson screen. In most cases, the air temperature errors when using the two devices were smaller on overcast and rainy days than on sunny days; and smaller when using the imported rather than the Chinese shield. The measured errors changed sharply at sunrise and sunset, and reached maxima at noon. Their diurnal variation characteristics were, naturally, related to changes in solar radiation. The relationships between the record errors, global radiation, and wind speed were nonlinear. An improved correction method was proposed based on the approach described by Nakamura and Mahrt (2005) (NM05), in which the impact of the solar zenith angle (SZA) on the temperature error is considered and extreme errors due to changes in SZA can be corrected effectively. Measurement errors were reduced significantly after correction by either method for both shields. The error reduction rate using the improved correction method for the Chinese and imported shields were 3.3% and 40.4% higher than those using the NM05 method, respectively.

  5. RADCOR 2009 - 9th International Symposium on Radiative Corrections (Applications of Quantum Field Theory to Phenomenology)

    Science.gov (United States)

    Present and future particle colliders are able to measure fundamental scattering reactions with unprecedent experimental precision. Interpretation of these high-quality data demands an equally high theoretical precison, which is acheived through radiative corrections in quantum field theory. The symposium will especially focus precision physics in the upcoming CERN LHC era.

  6. Nuclear radiative recoil corrections to the hyperfine structure of S-states in muonic hydrogen

    Science.gov (United States)

    Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.

    2017-09-01

    Nuclear radiative recoil corrections of order α( Zα)5 to the hyperfine splitting of S-states in muonic hydrogen are calculated on the basis of quasipotential method in quantum electrodynamics. The calculation is performed in the infrared safe Fried-Yennie gauge. Modern experimental data on the proton form factors are used.

  7. Measurement, analysis and correction of the closed orbit distortion in Indus-2 synchrotron radiation source

    Indian Academy of Sciences (India)

    Riyasat Husain; A D Ghodke; Surendra Yadav; A C Holikatti; R P Yadav; P Fatnani; T A Puntambekar; P R Hannurkar

    2013-02-01

    The paper presents the measurement, analysis and correction of closed orbit distortion (COD) in Indus-2 at 550 MeV injection energy and 2 GeV synchrotron radiation user run energy. The measured COD was analysed and fitted to understand major sources of errors in terms of the effective quadrupole misalignments. The rms COD was corrected down to less than 0.6 mm in both horizontal and vertical planes. A golden orbit was set for the operating synchrotron radiation beamlines. With COD correction, the injection efficiency at 550 MeV was improved by ∼ 50% and the beam lifetime at 2 GeV was increased by ∼8 h. In this paper, the method of global COD correction based on singular value decomposition (SVD) of the orbit response matrix is described. Results for the COD correction in both horizontal and vertical planes at 550 MeV injection energy and at 2 GeV synchrotron radiation user run energy are discussed.

  8. Hawk migration over White Marsh, Maryland

    Science.gov (United States)

    Hackman, C.D.; Henny, C.J.

    1971-01-01

    The average number of hawks observed per hour in autumn migration between 1951-1954 and 1958-1961 at White Marsh, Maryland, was compared. The counts indicated that the status of the ten species observed may be divided into three categories: (1) relatively stable species (red-tailed hawk), (2) declining species (sparrow hawk, red-shouldered hawk, osprey, marsh hawk, and broad-winged hawk), and (3) rapidly declining species (peregrine falcon, Cooper?s hawk, bald eagle, and sharp-shinned hawk). The findings from this study are in agreement with the available literature and the status of the populations appears to be related to the food habits of the species.

  9. Quantum-corrected finite entropy of noncommutative acoustic black holes

    CERN Document Server

    Anacleto, M A; Luna, G C; Passos, E; Spinelly, J

    2015-01-01

    In this paper we consider the generalized uncertainty principle in the tunneling formalism via Hamilton-Jacobi method to determine the quantum-corrected Hawking temperature and entropy for 2+1-dimensional noncommutative acoustic black holes. In our results we obtain an area entropy, a correction logarithmic in leading order, a correction term in subleading order proportional to the radiation temperature associated with the noncommutative acoustic black holes and an extra term that depends on a conserved charge. Thus, as in the gravitational case, there is no need to introduce the ultraviolet cut-off and divergences are eliminated.

  10. Stephen Hawking: An Unfettered Mind

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Kitty

    2012-02-23

    Kitty Ferguson, biographer of physicist Stephen Hawking, will give an informal, nontechnical talk about the experience of writing her two books about the celebrated cosmologist and also of helping Hawking edit his own “The Universe in a Nutshell”. Hawking thinks and works somewhat differently from others because he must work almost entirely in his head, and he has a practice of pulling the rug out from under his own discoveries and assertions. As he has approached his recent 70th birthday, he has devoted an increasing amount of his time in efforts to share his science and particularly the adventure of it with people without a science background and young people who may be scientists of the future. Ferguson will discuss Hawking’s place in the science community (he is not and has never claimed to be on par with Einstein), the unique contributions he is able to make, and what his legacy might be.

  11. [Practical method for six-dimensional online correction system with image guided radiation therapy].

    Science.gov (United States)

    Nakaguchi, Yuji; Araki, Fujio; Kouno, Tomohiro; Maruyama, Masato

    2012-01-01

    In this study, we developed a correction method for coordinate transformation errors that are produced in combination with the ExacTrac X-ray system (BrainLAB) and HexaPOD (Elekta) in image guided radiation therapy (IGRT). The positional accuracy of the correction method was compared between the ExacTrac Robotics (BrainLAB) and no correction. We tried to correct iBeam evo couch top (Elekta) by operating two steps drive like ExacTrac Robotics. No correction for HexaPOD showed a maximal error of 4.52 mm, and the couch did not move to the correct position. However, our correction method for HexaPOD showed the positional accuracy within 1 mm. Our method has no significant difference with ExacTrac Robotics (paired t-test, P>0.1). But, when the correction values for the rotatory directions were large, the positional accuracy tended to be poor. The smallest setup errors for the rotatory directions are important for IGRT.

  12. Second order analysis for spatial Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Torrisi, Giovanni Luca

    We derive summary statistics for stationary Hawkes processes which can be considered as spatial versions of classical Hawkes processes. Particularly, we derive the intensity, the pair correlation function and the Bartlett spectrum. Our results for Gaussian fertility rates and the extension...... to marked Hawkes processes are discussed....

  13. Radiation boundary condition and anisotropy correction for finite difference solutions of the Helmholtz equation

    Science.gov (United States)

    Tam, Christopher K. W.; Webb, Jay C.

    1994-01-01

    In this paper finite-difference solutions of the Helmholtz equation in an open domain are considered. By using a second-order central difference scheme and the Bayliss-Turkel radiation boundary condition, reasonably accurate solutions can be obtained when the number of grid points per acoustic wavelength used is large. However, when a smaller number of grid points per wavelength is used excessive reflections occur which tend to overwhelm the computed solutions. Excessive reflections are due to the incompability between the governing finite difference equation and the Bayliss-Turkel radiation boundary condition. The Bayliss-Turkel radiation boundary condition was developed from the asymptotic solution of the partial differential equation. To obtain compatibility, the radiation boundary condition should be constructed from the asymptotic solution of the finite difference equation instead. Examples are provided using the improved radiation boundary condition based on the asymptotic solution of the governing finite difference equation. The computed results are free of reflections even when only five grid points per wavelength are used. The improved radiation boundary condition has also been tested for problems with complex acoustic sources and sources embedded in a uniform mean flow. The present method of developing a radiation boundary condition is also applicable to higher order finite difference schemes. In all these cases no reflected waves could be detected. The use of finite difference approximation inevita bly introduces anisotropy into the governing field equation. The effect of anisotropy is to distort the directional distribution of the amplitude and phase of the computed solution. It can be quite large when the number of grid points per wavelength used in the computation is small. A way to correct this effect is proposed. The correction factor developed from the asymptotic solutions is source independent and, hence, can be determined once and for all. The

  14. Density matrix of black hole radiation

    CERN Document Server

    Alberte, Lasma; Khmelnitsky, Andrei; Medved, A J M

    2015-01-01

    Hawking's model of black hole evaporation is not unitary and leads to a mixed density matrix for the emitted radiation, while the Page model describes a unitary evaporation process in which the density matrix evolves from an almost thermal state to a pure state. We compare a recently proposed model of semiclassical black hole evaporation to the two established models. In particular, we study the density matrix of the outgoing radiation and determine how the magnitude of the off-diagonal corrections differs for the three frameworks. For Hawking's model, we find power-law corrections to the two-point functions that induce exponentially suppressed corrections to the off-diagonal elements of the full density matrix. This verifies that the Hawking result is correct to all orders in perturbation theory and also allows one to express the full density matrix in terms of the single-particle density matrix. We then consider the semiclassical theory for which the corrections, being non-perturbative from an effective fie...

  15. Orbit correction using an eigenvector method with constraints for synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Kentaro [Photon Factory, High Energy Accelerator Research Organization, 1-1, Oho, Tsukuba, Ibaraki 305-0801 (Japan)], E-mail: kentaro.harada@kek.jp; Obina, Takashi; Kobayashi, Yukinori [Photon Factory, High Energy Accelerator Research Organization, 1-1, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nakamura, Norio; Takaki, Hiroyuki; Sakai, Hiroshi [Institute for Solid State Physics, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2009-06-11

    An eigenvector method with constraints (EVC) is proposed as a new orbit correction scheme for synchrotron light sources. EVC efficiently corrects the global orbit in a storage ring, and can simultaneously perform exact correction of local orbits without deterioration of the global orbit. To demonstrate the advantages of EVC over the ordinary eigenvector method (EV), we carried out experimental studies at the Photon Factory storage ring (PF-ring) and the Photon Factory Advanced Ring (PF-AR) at the High Energy Accelerator Research Organization (KEK). The performance of EVC was systematically examined at PF-ring and PF-AR. The experimental results agreed well with the simulated ones. Consequently, we confirmed that EVC easily realized orbit correction for both global and local orbits, and that it was very effective for the beam stabilization of synchrotron radiation (SR) sources.

  16. Orbit correction using an eigenvector method with constraints for synchrotron radiation sources

    Science.gov (United States)

    Harada, Kentaro; Obina, Takashi; Kobayashi, Yukinori; Nakamura, Norio; Takaki, Hiroyuki; Sakai, Hiroshi

    2009-06-01

    An eigenvector method with constraints (EVC) is proposed as a new orbit correction scheme for synchrotron light sources. EVC efficiently corrects the global orbit in a storage ring, and can simultaneously perform exact correction of local orbits without deterioration of the global orbit. To demonstrate the advantages of EVC over the ordinary eigenvector method (EV), we carried out experimental studies at the Photon Factory storage ring (PF-ring) and the Photon Factory Advanced Ring (PF-AR) at the High Energy Accelerator Research Organization (KEK). The performance of EVC was systematically examined at PF-ring and PF-AR. The experimental results agreed well with the simulated ones. Consequently, we confirmed that EVC easily realized orbit correction for both global and local orbits, and that it was very effective for the beam stabilization of synchrotron radiation (SR) sources.

  17. Electroweak and QCD Radiative Corrections to Drell-Yan Process for Experiments at the Large Hadron Collider

    CERN Document Server

    Zykunov, Vladimir

    2013-01-01

    Next-to-leading order electroweak and QCD radiative corrections to the Drell-Yan process with high dimuon masses for experiments CMS LHC at CERN have been studied in fully differential form. The FORTRAN code READY for numerical analysis of Drell-Yan observables has been presented. The radiative corrections are found to become significant for CMS LHC experiment setup.

  18. HAWK-I Takes Off

    Science.gov (United States)

    2007-08-01

    New Wide Field Near-Infrared Imager for ESO's Very Large Telescope Europe's flagship ground-based astronomical facility, the ESO VLT, has been equipped with a new 'eye' to study the Universe. Working in the near-infrared, the new instrument - dubbed HAWK-I - covers about 1/10th the area of the Full Moon in a single exposure. It is uniquely suited to the discovery and study of faint objects, such as distant galaxies or small stars and planets. ESO PR Photo 36a/07 ESO PR Photo 36a/07 HAWK-I on the VLT After three years of hard work, HAWK-I (High Acuity, Wide field K-band Imaging) saw First Light on Yepun, Unit Telescope number 4 of ESO's VLT, on the night of 31 July to 1 August 2007. The first images obtained impressively demonstrate its potential. "HAWK-I is a credit to the instrument team at ESO who designed, built and commissioned it," said Catherine Cesarsky, ESO's Director General. "No doubt, HAWK-I will allow rapid progress in very diverse areas of modern astronomy by filling a niche of wide-field, well-sampled near-infrared imagers on 8-m class telescopes." "It's wonderful; the instrument's performance has been terrific," declared Jeff Pirard, the HAWK-I Project Manager. "We could not have hoped for a better start, and look forward to scientifically exciting and beautiful images in the years to come." During this first commissioning period all instrument functions were checked, confirming that the instrument performance is at the level expected. Different astronomical objects were observed to test different characteristics of the instrument. For example, during one period of good atmospheric stability, images were taken towards the central bulge of our Galaxy. Many thousands of stars were visible over the field and allowed the astronomers to obtain stellar images only 3.4 pixels (0.34 arcsecond) wide, uniformly over the whole field of view, confirming the excellent optical quality of HAWK-I. ESO PR Photo 36b/07 ESO PR Photo 36c/07 Nebula in Serpens (HAWK

  19. Maxwell's equal area law and the Hawking-Page phase transition

    CERN Document Server

    Spallucci, Euro

    2013-01-01

    In this paper we study the phases of a Schwarzschild black hole in the Anti deSitter background geometry. Exploiting fluid/gravity duality we construct the Maxwell equal area isotherm T=T* in the temperature-entropy plane, in order to eliminate negative heat capacity black hole configurations. The construction we present here is reminiscent of the isobar cut in the pressure-volume plane which eliminates un-physical part of the Van der Walls curves below the critical temperature. Our construction also modifies the Hawking-Page phase transition. Stable black holes are formed at the temperature T > T*, while pure radiation persists for T< T*. T* turns out to be below the standard Hawking-Page temperature and there are no unstable black holes as in the usual scenario. Also, we show that in order to reproduce the correct black hole entropy S=A/4, one has to write a black hole equation of state, i.e. P=P(V), in terms of the geometrical volume V=4\\pi r^3/3.

  20. Isospin breaking and radiative corrections in K{sub l4} decays; Brisure d'isospin et corrections radiatives au processus K{sub l4}

    Energy Technology Data Exchange (ETDEWEB)

    Cuplov, V

    2004-04-15

    This thesis is dedicated to the impact of electromagnetic corrections on the decays of K{sub l4}. 2 types of electromagnetic contributions have to be considered: first the exchange of virtual photons and secondly the non-perturbative part of meson-photon interactions. We have also considered the effects of isospin breaking. We have shown that the isospin breaking and the electromagnetic corrections affect K{sub l4} decays in the neutral and mixed channels (respectively by 8% and -2%), while the charged channel is unaffected. It also appears that the tree approximation for the computation of the decay rates, is not accurate enough to explain experimental data. In the second part of this work, we give the analytical expressions of the F and G form factors associated with the amplitude of the K{sub l4} process in the charged mode. Infra-red divergencies counterbalance each other in the decay rates calculation when we consider the process K{sub l4{gamma}} where 1 photon is emitted with an energy below the sensitivity of the detector. We have found that the calculation in one loop order represents 75% of the measured value. The impact of radiative corrections is about 0.9% while the isospin breaking effect is about 1.6 per cent.

  1. Effective radiation attenuation calibration for breast density: compression thickness influences and correction

    Directory of Open Access Journals (Sweden)

    Thomas Jerry A

    2010-11-01

    Full Text Available Abstract Background Calibrating mammograms to produce a standardized breast density measurement for breast cancer risk analysis requires an accurate spatial measure of the compressed breast thickness. Thickness inaccuracies due to the nominal system readout value and compression paddle orientation induce unacceptable errors in the calibration. Method A thickness correction was developed and evaluated using a fully specified two-component surrogate breast model. A previously developed calibration approach based on effective radiation attenuation coefficient measurements was used in the analysis. Water and oil were used to construct phantoms to replicate the deformable properties of the breast. Phantoms consisting of measured proportions of water and oil were used to estimate calibration errors without correction, evaluate the thickness correction, and investigate the reproducibility of the various calibration representations under compression thickness variations. Results The average thickness uncertainty due to compression paddle warp was characterized to within 0.5 mm. The relative calibration error was reduced to 7% from 48-68% with the correction. The normalized effective radiation attenuation coefficient (planar representation was reproducible under intra-sample compression thickness variations compared with calibrated volume measures. Conclusion Incorporating this thickness correction into the rigid breast tissue equivalent calibration method should improve the calibration accuracy of mammograms for risk assessments using the reproducible planar calibration measure.

  2. Correcting radiation survey data to account for increased leakage during intensity modulated radiotherapy treatments

    Energy Technology Data Exchange (ETDEWEB)

    Kairn, T. [Premion Cancer Care, Wesley Medical Centre, Suite 1, 40 Chasely St, Auchenflower Qld 4066, Australia and Science and Engineering Faculty, Queensland University of Technology, G.P.O. Box 2434, Brisbane Qld 4000 (Australia); Crowe, S. B.; Trapp, J. V. [Science and Engineering Faculty, Queensland University of Technology, G.P.O. Box 2434, Brisbane Qld 4000 (Australia)

    2013-11-15

    Purpose: Intensity modulated radiotherapy (IMRT) treatments require more beam-on time and produce more linac head leakage to deliver similar doses to conventional, unmodulated, radiotherapy treatments. It is necessary to take this increased leakage into account when evaluating the results of radiation surveys around bunkers that are, or will be, used for IMRT. The recommended procedure of applying a monitor-unit based workload correction factor to secondary barrier survey measurements, to account for this increased leakage when evaluating radiation survey measurements around IMRT bunkers, can lead to potentially costly overestimation of the required barrier thickness. This study aims to provide initial guidance on the validity of reducing the value of the correction factor when applied to different radiation barriers (primary barriers, doors, maze walls, and other walls) by evaluating three different bunker designs.Methods: Radiation survey measurements of primary, scattered, and leakage radiation were obtained at each of five survey points around each of three different radiotherapy bunkers and the contribution of leakage to the total measured radiation dose at each point was evaluated. Measurements at each survey point were made with the linac gantry set to 12 equidistant positions from 0° to 330°, to assess the effects of radiation beam direction on the results.Results: For all three bunker designs, less than 0.5% of dose measured at and alongside the primary barriers, less than 25% of the dose measured outside the bunker doors and up to 100% of the dose measured outside other secondary barriers was found to be caused by linac head leakage.Conclusions: Results of this study suggest that IMRT workload corrections are unnecessary, for survey measurements made at and alongside primary barriers. Use of reduced IMRT workload correction factors is recommended when evaluating survey measurements around a bunker door, provided that a subset of the measurements used in

  3. Electroweak Radiative Corrections to the Parity-violating Asymmetry for SLAC Experiment E158

    Energy Technology Data Exchange (ETDEWEB)

    Zykunov, Vladimir A.; /Gomel State Tech. U.

    2012-04-04

    Electroweak radiative corrections to observable quantities of Moeller scattering of polarized particles are calculated. We emphasize the contribution induced by infrared divergent parts of cross section. The covariant method is used to remove infrared divergences, so that our results do not involve any unphysical parameters. When applied to the kinematics of SLAC E158 experiment, these corrections reduce the parity violating asymmetry by about -6.5% at E = 48 GeV and y = 0.5, and kinematically weighted 'hard' bremsstrahlung effect for SLAC E158 is {approx} 1%.

  4. The research on the quantum tunneling characteristics and the radiation spectrum of the stationary axisymmetric black hole

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    At the event horizon and the cosmological horizon of the stationary axisymmetric Kerr-Newman black hole in the de Sitter space-time background, the tunneling rate of the charged particles is relevant with Bekenstein-Hawking entropy and the real radiation spectrum is not strictly pure thermal, but consistent with the underlying unitary theory in quantum mechanics. This is a feasible interpretation for the paradox of the black hole information loss. Taking the self-gravitation action, energy conservation, angular momentum conservation and charge conservation into account, the derived radiation spectrum is a correct amendment to the Hawking pure thermal spectrum.

  5. High accuracy correction of blackbody radiation shift in an optical lattice clock

    CERN Document Server

    Middelmann, Thomas; Lisdat, Christian; Sterr, Uwe

    2012-01-01

    We have determined the frequency shift that blackbody radiation is inducing on the $5s^2$ $^1$S$_0$ -- $5s5p$ $^3$P$_0$ clock transition in strontium. Previously its uncertainty limited the uncertainty of strontium lattice clocks to $1\\times10^{-16}$. Now the uncertainty associated to the black body radiation shift correction translates to $5\\times 10^{-18}$ relative frequency uncertainty at room temperature. Our evaluation is based on a measurement of the differential dc-polarizability of the two clock states and on a modeling of the dynamic contribution using this value and experimental data for other atomic properties.

  6. Hawking effect of Dirac particles in non-stationary Kerr space-time

    Institute of Scientific and Technical Information of China (English)

    黎忠恒; 赵峥

    1995-01-01

    In the process of dealing with the Hawking effect of Dirac particles in the non-stationary Kerr space-time, a new universal method to define the generalized Tortoise coordinate transformation is given. By means of this coordinate transformation, one can discuss the properties of the dynamical equation of particles near event horizons, and get automatically the temperature of Hawking radiation using the method suggested by Damour and others, and thereby dodge the difficulties in calculating the renormalised energy-momentum tensor.

  7. Bayesian inference for Hawkes processes

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl

    The Hawkes process is a practically and theoretically important class of point processes, but parameter-estimation for such a process can pose various problems. In this paper we explore and compare two approaches to Bayesian inference. The first approach is based on the so-called conditional...

  8. Bayesian inference for Hawkes processes

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl

    2013-01-01

    The Hawkes process is a practically and theoretically important class of point processes, but parameter-estimation for such a process can pose various problems. In this paper we explore and compare two approaches to Bayesian inference. The first approach is based on the so-called conditional...

  9. Bayesian inference for Hawkes processes

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl

    The Hawkes process is a practically and theoretically important class of point processes, but parameter-estimation for such a process can pose various problems. In this paper we explore and compare two approaches to Bayesian inference. The first approach is based on the so-called conditional...

  10. Stephen Hawking's Universe. Teacher's Guide.

    Science.gov (United States)

    Thompson, Malcolm H.; Rameau, Jonathan D.

    This program guide is meant to help teachers assist their students in viewing the six-part public television series, "Stephen Hawking's Universe." The guide features program summaries that give background information and brief synopses of the programs; previewing activities that familiarize students with the subject; vocabulary that…

  11. Approximate simulation of Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    This article concerns a simulation algorithm for unmarked and marked Hawkes processes. The algorithm suffers from edge effects but is much faster than the perfect simulation algorithm introduced in our previous work. We derive various useful measures for the error committed when using the algorithm...

  12. Hawking Colloquium Packed CERN Auditoriums

    CERN Multimedia

    2006-01-01

    Stephen Hawking's week long visit to CERN included an 'exceptional CERN colloquium' which filled six auditoriums. Stephen Hawking during his visit to the ATLAS experiment. Stephen Hawking, Lucasian Professor of Cambridge University, visited the Theory Unit of the Physics Department from 24 September to 1 October 2006. As part of his visit, he gave two lectures in the main auditorium - a theoretical seminar on 'The Semi-Classical Birth of The Universe', attended by about 120 specialists; and a colloquium titled 'The Origin of The Universe'. As a key public figure in theoretical physics, his presence was eagerly awaited on both occasions. Those who wanted to attend the colloquium had to arrive early and be equipped with plenty of patience. An hour before it was due to begin, the 400 capacity of the main auditorium was already full. The lecture, simultaneously broadcast to five other fully packed CERN auditoriums, was attended by an estimated total of 850. Stephen Hawking attracted a large CERN crowd, filling ...

  13. The Radiation Tail in (e,e'p) Reactions and Corrections to Experimental Data

    CERN Document Server

    Templon, J A; Florizone, R E J; Sarty, A J

    2000-01-01

    We present a direct calculation of the cross section for the reaction 3He(e,e'p) including the radiation tail originating from bremsstrahlung processes. This calculation is compared to measured cross sections. The calculation is carried out from within a Monte Carlo simulation program so that acceptance-averaging effects, along with a subset of possible energy losses, are taken into account. Excellent agreement is obtained between our calculation and measured data, after a correction factor for higher-order bremsstrahlung is devised and applied to the tail. Industry-standard radiative corrections fail miserably for these data, and we use the results of our calculation to dissect the failure. Implications for design and analysis of experiments in the Jefferson-Lab energy domain are discussed.

  14. Calculation of Radiative Corrections to E1 matrix elements in the Neutral Alkalis

    Energy Technology Data Exchange (ETDEWEB)

    Sapirstein, J; Cheng, K T

    2004-09-28

    Radiative corrections to E1 matrix elements for ns-np transitions in the alkali metal atoms lithium through francium are evaluated. They are found to be small for the lighter alkalis but significantly larger for the heavier alkalis, and in the case of cesium much larger than the experimental accuracy. The relation of the matrix element calculation to a recent decay rate calculation for hydrogenic ions is discussed, and application of the method to parity nonconservation in cesium is described.

  15. QED radiative corrections and their impact on H → ττ searches at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Krasny, Mieczyslaw Witold [Universite Pierre et Marie Curie-Paris 6, Universite Paris Diderot-Paris 7, CNRS-IN2P3, Laboratoire de Physique Nucleaire et des Hautes Energies, Paris (France); Jadach, Stanislaw [Polish Academy of Sciences, Institute of Nuclear Physics, Krakow (Poland); Placzek, Wieslaw [Jagiellonian University, Marian Smoluchowski Institute of Physics, Krakow (Poland)

    2016-04-15

    In this paper we show that the excess of the ττ events with respect to the Standard Model background predictions, observed by the ATLAS and CMS collaborations and interpreted as the evidence of the Higgs-boson decay into a pair of τ-leptons, may be accounted for by properly taking into account QED radiative corrections in the modelling of the Z/γ* → ττ background. (orig.)

  16. Radiative corrections to all charge assignments of heavy quark baryon semileptonic decays

    CERN Document Server

    Martínez, A; García, A; Flores-Mendieta, R; Flores-Mendieta, Ruben

    2002-01-01

    In semileptonic decays of spin-1/2 baryons containing heavy quarks up to six charge assignments for the baryons and lepton are possible. We show that the radiative corrections to four of these possibilities can be directly obtained from the final results of the two possibilities previously studied. There is no need to recalculate integrals over virtual or real photon momentum or any traces.

  17. One-loop radiative correction to the triple Higgs coupling in the Higgs singlet model

    Science.gov (United States)

    He, Shi-Ping; Zhu, Shou-hua

    2017-01-01

    Though the 125 GeV Higgs boson is consistent with the standard model (SM) prediction until now, the triple Higgs coupling can deviate from the SM value in the physics beyond the SM (BSM). In this paper, the radiative correction to the triple Higgs coupling is calculated in the minimal extension of the SM by adding a real gauge singlet scalar. In this model there are two scalars h and H and both of them are mixing states of the doublet and singlet. Provided that the mixing angle is set to be zero, namely the SM limit, h is the pure left-over of the doublet and its behavior is the same as that of the SM at the tree level. However the loop corrections can alter h-related couplings. In this SM limit case, the effect of the singlet H may show up in the h-related couplings, especially the triple h coupling. Our numerical results show that the deviation is sizable. For λΦS = 1 (see text for the parameter definition), the deviation δhhh(1) can be 40%. For λΦS = 1.5, the δhhh(1) can reach 140%. The sizable radiative correction is mainly caused by three reasons: the magnitude of the coupling λΦS, light mass of the additional scalar and the threshold enhancement. The radiative corrections for the hVV, hff couplings are from the counter-terms, which are the universal correction in this model and always at O(1%). The hZZ coupling, which can be precisely measured, may be a complementarity to the triple h coupling to search for the BSM. In the optimal case, the triple h coupling is very sensitive to the BSM physics, and this model can be tested at future high luminosity hadron colliders and electron-positron colliders.

  18. Nesting ecology and behavior of Broad-winged Hawks in moist karst forests of Puerto Rico

    Science.gov (United States)

    Hengstenberg, D.W.; Vilella, F.J.

    2005-01-01

    The Puerto Rican Broad-winged Hawk (Buteo platypterus brunnescens) is an endemic and endangered subspecies inhabiting upland montane forests of Puerto Rico. The reproductive ecology, behavior, and nesting habitat of the Broad-winged Hawk were studied in Ri??o Abajo Forest, Puerto Rico, from 2001-02. We observed 158 courtship displays by Broad-winged Hawks. Also, we recorded 25 territorial interactions between resident Broad-winged Hawks and intruding Red-tailed Hawks (Buteo jamaicensis jamaicensis). Broad-winged Hawks displaced intruding Red-tailed Hawks from occupied territories (P = 0.009). Mayfield nest survival was 0.67 across breeding seasons (0.81 in 2001, N = 6; 0.51 in 2002, N = 4), and pairs averaged 1.1 young per nest (years combined). The birds nested in mixed species timber plantations and mature secondary forest. Nests were placed in the upper reaches of large trees emerging from the canopy. Nest tree DBH, understory stem density, and distance to karst cliff wall correctly classified (77.8%) nest sites. ?? 2005 The Raptor Research Foundation, Inc.

  19. Gauge dependence and self-force from Galilean to Einsteinian free fall, compact stars falling into black holes, Hawking radiation and the Pisa tower at the general relativity centennial

    Science.gov (United States)

    Spallicci, Alessandro D. A. M.; van Putten, Maurice H. P. M.

    2016-08-01

    Obviously, in Galilean physics, the universality of free fall implies an inertial frame, which in turns implies that the mass m of the falling body is omitted (because it is a test mass; put otherwise, the center of mass of the system coincides with the center of the main, and fixed, mass M; or else, we consider only a homogeneous gravitational field). Conversely, an additional (in the opposite or same direction) acceleration proportional to m/M would rise either for an observer at the center of mass of the system, or for an observer at a fixed distance from the center of mass of M. These elementary, but overlooked, considerations fully respect the equivalence principle (EP) and the (local) identity of an inertial or a gravitational pull for an observer in the Einstein cabin. They value as fore-runners of the self-force and gauge dependency in general relativity. Because of its importance in teaching and in the history of physics, coupled to the introductory role to Einstein’s EP, the approximate nature of Galilei’s law of free fall is explored herein. When stepping into general relativity, we report how the geodesic free fall into a black hole was the subject of an intense debate again centered on coordinate choice. Later, we describe how the infalling mass and the emitted gravitational radiation affect the free fall motion of a body. The general relativistic self-force might be dealt with to perfectly fit into a geodesic conception of motion. Then, embracing quantum mechanics, real black holes are not classical static objects any longer. Free fall has to handle the Hawking radiation, and leads us to new perspectives on the varying mass of the evaporating black hole and on the varying energy of the falling mass. Along the paper, we also estimate our findings for ordinary masses being dropped from a Galilean or Einsteinian Pisa-like tower with respect to the current state of the art drawn from precise measurements in ground and space laboratories, and to the

  20. Cuckoo-hawk mimicry? An experimental test.

    Science.gov (United States)

    Davies, N B; Welbergen, J A

    2008-08-07

    The similarity between many Old World parasitic cuckoos (Cuculinae) and Accipiter hawks, in size, shape and plumage, has been noted since ancient times. In particular, hawk-like underpart barring is more prevalent in parasitic than in non-parasitic cuckoos. Cuckoo-hawk resemblance may reflect convergent evolution of cryptic plumage that reduces detection by hosts and prey, or evolved mimicry of hawks by parasitic cuckoos, either for protection against hawk attacks or to facilitate brood parasitism by influencing host behaviour. Here, we provide the first evidence that some small birds respond to common cuckoos Cuculus canorus as if they were sparrowhawks Accipiter nisus. Great tits and blue tits were equally alarmed and reduced attendance at feeders during and after the presentation of mounted specimens of common cuckoos and sparrowhawks, but not in response to control presentations of collared doves or teal. Plumage manipulations revealed that the strong alarm response to cuckoos depended on their resemblance to hawks; cuckoos with barred underparts were treated like hawks, while those with unbarred underparts were treated like doves. However, barring was not the only feature inducing alarm because tits showed similarly strong alarm to barred and unbarred hawks, and little alarm to barred doves. These responses of tits, unsuitable as hosts and hence with no history of cuckoo parasitism, suggest that naive small birds can mistake cuckoos for hawks. Thus, any cuckoo-hawk discrimination by host species is likely to be an evolved response to brood parasitism.

  1. Electroweak radiative corrections to $W^+W^-\\gamma$ production at the ILC

    CERN Document Server

    Chong, Chen; Ren-You, Zhang; Yu, Zhang; Liang-Wen, Chen; Lei, Guo

    2014-01-01

    We provide and discuss the precision predictions for the $W^+W^-\\gamma$ production at the ILC including the full electroweak (EW) one-loop corrections and high order initial state radiation (ISR) contributions in the Standard Model. The dependence of the leading order (LO) and EW corrected cross sections on the colliding energy is investigated. We find that the EW correction suppresses the LO cross section significantly, and the ISR effect beyond ${\\cal O}(\\alpha)$ is important near the threshold, but is negligible in the high energy region. We provide the LO and EW corrected distributions of the transverse momenta and rapidities of final $W^-$-boson and photon as well as the $W$-pair invariant mass. From the various kinematic distributions, we find that EW correction strongly depends on the final state phase space. We investigate the leptonic decays of the final W-boson pair by adopting the narrow width approximation (NWA), and find that the final produced photon and leptons can be well separated from each o...

  2. Improving the quality of radiographic images acquired with conical radiation beams through divergence correction and filtering

    Science.gov (United States)

    Silvani, M. I.; Almeida, G. L.; Latini, R. M.; Bellido, A. V. B.; Souza, E. S.; Lopes, R. T.

    2015-07-01

    Earlier works have shown the feasibility to correct the deformation of the attenuation map in radiographs acquired with conical radiation beams provided that the inspected object could be expressed into analytical geometry terms. This correction reduces the contribution of the main object in the radiograph, allowing thus the visualization of its otherwise concealed heterogeneities. However, the non-punctual character of the source demanded a cumbersome trial-and-error approach in order to determine the proper correction parameters for the algorithm. Within this frame, this work addresses the improvement of radiographs of specially tailored test-objects acquired with a conical beam through correction of its divergence by using the information contained in the image itself. The corrected images have afterwards undergone a filtration in the frequency domain aiming at the reduction of statistical fluctuation and noise by using a 2D Fourier transform. All radiographs have been acquired using 165Dy and 198Au gamma-ray sources produced at the Argonauta research reactor in Institutode Engenharia Nuclear - CNEN, and an X-ray sensitive imaging plate as detector. The processed images exhibit features otherwise invisible in the original ones. Their processing by conventional histogram equalization carried out for comparison purposes did not succeed to detect those features.

  3. Stephen Hawking returns to CERN

    CERN Multimedia

    2009-01-01

    Stephen Hawking visiting the CERN Control Centre.If you happened to pass through Building 4 during the first weeks of September, you might have noticed the name of Stephen Hawking on one of the doors on the second floor, which hosts most of CERN theorists’ offices. Three years after his last visit to CERN, Stephen Hawking gladly accepted the invitation from the University of Geneva to hold a public lecture on the occasion of its 450th anniversary and requested an office at CERN for the length of his stay. The "master of the Universe", as the Geneva University journal dubbed him, attracted over 4000 people to his lecture on "The Creation of the Universe" held on 15 September in the Main Auditorium of Uni Dufour. His more technical colloquium on the same subject at CERN a week earlier, was no less popular and quite "provocative" according to some of the physicists in the audience. With his repeated reference to the "non-need" for a "creating agent" for the Universe, mo...

  4. Nonuniformity correction of infrared cameras by reading radiance temperatures with a spatially nonhomogeneous radiation source

    Science.gov (United States)

    Gutschwager, Berndt; Hollandt, Jörg

    2017-01-01

    We present a novel method of nonuniformity correction (NUC) of infrared cameras and focal plane arrays (FPA) in a wide optical spectral range by reading radiance temperatures and by applying a radiation source with an unknown and spatially nonhomogeneous radiance temperature distribution. The benefit of this novel method is that it works with the display and the calculation of radiance temperatures, it can be applied to radiation sources of arbitrary spatial radiance temperature distribution, and it only requires sufficient temporal stability of this distribution during the measurement process. In contrast to this method, an initially presented method described the calculation of NUC correction with the reading of monitored radiance values. Both methods are based on the recording of several (at least three) images of a radiation source and a purposeful row- and line-shift of these sequent images in relation to the first primary image. The mathematical procedure is explained in detail. Its numerical verification with a source of a predefined nonhomogeneous radiance temperature distribution and a thermal imager of a predefined nonuniform FPA responsivity is presented.

  5. Correction

    CERN Document Server

    2002-01-01

    Tile Calorimeter modules stored at CERN. The larger modules belong to the Barrel, whereas the smaller ones are for the two Extended Barrels. (The article was about the completion of the 64 modules for one of the latter.) The photo on the first page of the Bulletin n°26/2002, from 24 July 2002, illustrating the article «The ATLAS Tile Calorimeter gets into shape» was published with a wrong caption. We would like to apologise for this mistake and so publish it again with the correct caption.

  6. Central Limit Theorem for Nonlinear Hawkes Processes

    CERN Document Server

    Zhu, Lingjiong

    2012-01-01

    Hawkes process is a self-exciting point process with clustering effect whose jump rate depends on its entire past history. It has wide applications in neuroscience, finance and many other fields. Linear Hawkes process has an immigration-birth representation and can be computed more or less explicitly. It has been extensively studied in the past and the limit theorems are well understood. On the contrary, nonlinear Hawkes process lacks the immigration-birth representation and is much harder to analyze. In this paper, we obtain a functional central limit theorem for nonlinear Hawkes process.

  7. Radiative corrections to the m(oving)NRQCD action and heavy-light operators

    CERN Document Server

    Müller, Eike H; Hart, Alistair; von Hippel, Georg M; Horgan, Ron R; Kendall, Iain; Lee, Andrew; Meinel, Stefan; Monahan, Chris; Wingate, Matthew

    2009-01-01

    Rare decays of B mesons, such as B \\to K^*\\gamma and B\\to K^{(*)}\\ell^+\\ell^- are loop suppressed in the Standard Model and sensitive to new physics. The final state meson in heavy-light decays at large recoil has sizeable momentum in the rest frame of the decaying meson. To reduce the resulting discretization errors we formulate the nonrelativistic heavy quark action in a moving frame. We discuss the perturbative renormalization of the leading order heavy-light operators in the resulting theory which is known as m(oving)NRQCD. We also present radiative corrections to the NRQCD action computed using automated lattice perturbation theory. By combining this technique with high-beta simulations in the weak coupling regime of the theory higher order loop corrections can be calculated very efficiently.

  8. Superluminal Propagation Caused by Radiative Corrections in a Uniform Electromagnetic Field

    CERN Document Server

    Shiba, Noburo

    2012-01-01

    We consider the effect of radiative corrections on the maximum velocity of propagation of neutral scalar fields in a uniform electromagnetic field. The propagator of neutral scalar fields interacting with charged fields depends on the electromagnetic field through charged particle loops. The kinetic terms of the scalar fields are corrected and the maximum velocity of the scalar particle becomes greater or less than unity. We show that the maximum velocity becomes greater than unity in a simple example, a neutral scalar field coupled with two charged Dirac fields by Yukawa interaction. The maximum velocity depends on the frame of reference and causality is not violated. We discuss the possibility of this superluminal propagation in the Standard Model.

  9. Embedded Detection and Correction of SEU Bursts in SRAM Memories Used as Radiation Detectors

    CERN Document Server

    Secondo, R.; Danzeca, S.; Losito, R.; Peronnard, P.; Masi, A.; Brugger, M.; Dusseau, L.

    2016-01-01

    SRAM memories are widely used as particle fluence detectors in high radiation environments, such as in the Radiation Monitoring System (RadMon) currently in operation in the CERN accelerator complex. Multiple Cell Upsets (MCUs), arising from micro-latchup events, are characterized by a large number of SEUs, ultimately affecting the measurement of particle fluxes and resulting in corrupted data and accuracy losses. A study of the generation of this type of SEU bursts was performed on an 8 Mbit 90-nm SRAM memory. Experimental tests were carried out with a focused beam of protons on target as well as in a mixed field environment dominated by high energy hadrons. A solution approach using an on-line detection and correction algorithm embedded on an FPGA was investigated and evaluated for use on a RadMon device.

  10. Sin/sup 2/theta/sub W/ and radiative corrections

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, W.J.

    1986-01-01

    Precision measurements of sin/sup 2/theta/sub W/ and the effects of radiative corrections are surveyed. A world average sin/sup 2/theta/sub W/ = 0.229 +- 0.004 is obtained. Comparison of deep-inelastic ..nu../sub ..mu../N scattering and m/sub W/ or m/sub Z/ is shown to test the standard model at the quantum loop level and constrain new physics. Implications for grand unified theories are briefly discussed.

  11. Electromagnetic transition form factor and radiative corrections in decays of neutral pions

    Directory of Open Access Journals (Sweden)

    Husek Tomáš

    2016-01-01

    Full Text Available We briefly summarize experimental and theoretical results on the rare decay π0 → e+e−. The notorious 3.3σ discrepancy between the SM prediction and the experimental value provided by KTeV collaboration is discussed in the view of a complete set of NLO QED radiative corrections. We also present the Two-Hadron Saturation (THS scenario for the PVV correlator and apply it to the decay under discussion. The discrepancy then reduces down to 1.8σ.

  12. Anomalous Photoluminescence of Weakly Confined Excitons including Radiative Correction in Nano-to-Bulk Crossover Regime

    Science.gov (United States)

    Matsuda, Takuya; Yokoshi, Nobuhiko; Ishihara, Hajime

    2015-06-01

    We develop a theoretical formalism to calculate photoluminescence (PL) spectrum of weakly confined excitons incorporating the microscopic nonlocal optical response. The nonlocality is caused by the center-of-mass (c. m.) motion of exciton and becomes remarkable in nano-to-bulk crossover regime. The theory successfully explains the characteristics of recently observed peculiar PL spectra in high quality CuCl films [5], wherein the signals appear at the exciton states with the very large radiative corrections not only for the lowest level but also for the higher ones including non-dipole types of excitons.

  13. A diffraction correction for storage and loss moduli imaging using radiation force based elastography

    Science.gov (United States)

    Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc

    2017-01-01

    Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G‧) and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G‧ and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green’s function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G‧ and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study

  14. Hawking fluxes and Anomalies in the Rotating Regular Black Holes with the Time-Delay

    CERN Document Server

    Takeuchi, Shingo

    2016-01-01

    We are going to calculate the flow of the angular momentum and flux of the Hawking radiation in the rotating regular black hole with the time-delay proposed in arXiv:1510.08828, based on the anomaly cancellation. We first try to reduce the field theories to the infinite two-dimensional massless free models in which the anomaly cancellation method is possible, in the three metrics in arXiv:1510.08828. We demonstrate that the two of them can be reduced. We perform the calculation in these two metrics, and obtain the flow of the angular momentum and flux of the Hawking radiation in these two metrics. Our result involves the three effects:~the quantum gravity effect regularizing the gravity sources of the black holes, the black hole rotation, and the time-delay. Hence our result could be considered to correspond to a more realistic Hawking radiations.

  15. Correction

    CERN Multimedia

    2002-01-01

    The photo on the second page of the Bulletin n°48/2002, from 25 November 2002, illustrating the article «Spanish Visit to CERN» was published with a wrong caption. We would like to apologise for this mistake and so publish it again with the correct caption.   The Spanish delegation, accompanied by Spanish scientists at CERN, also visited the LHC superconducting magnet test hall (photo). From left to right: Felix Rodriguez Mateos of CERN LHC Division, Josep Piqué i Camps, Spanish Minister of Science and Technology, César Dopazo, Director-General of CIEMAT (Spanish Research Centre for Energy, Environment and Technology), Juan Antonio Rubio, ETT Division Leader at CERN, Manuel Aguilar-Benitez, Spanish Delegate to Council, Manuel Delfino, IT Division Leader at CERN, and Gonzalo León, Secretary-General of Scientific Policy to the Minister.

  16. Correction

    Directory of Open Access Journals (Sweden)

    2012-01-01

    Full Text Available Regarding Gorelik, G., & Shackelford, T.K. (2011. Human sexual conflict from molecules to culture. Evolutionary Psychology, 9, 564–587: The authors wish to correct an omission in citation to the existing literature. In the final paragraph on p. 570, we neglected to cite Burch and Gallup (2006 [Burch, R. L., & Gallup, G. G., Jr. (2006. The psychobiology of human semen. In S. M. Platek & T. K. Shackelford (Eds., Female infidelity and paternal uncertainty (pp. 141–172. New York: Cambridge University Press.]. Burch and Gallup (2006 reviewed the relevant literature on FSH and LH discussed in this paragraph, and should have been cited accordingly. In addition, Burch and Gallup (2006 should have been cited as the originators of the hypothesis regarding the role of FSH and LH in the semen of rapists. The authors apologize for this oversight.

  17. Impact of double-logarithmic electroweak radiative corrections on the non-singlet structure functions at small x

    CERN Document Server

    Ermolaev, B I

    2008-01-01

    In the QCD context, the non-singlet structure functions of u and d -quarks are identical, save the initial quark densities. Electroweak radiative corrections, being flavor-dependent, bring further difference between the non-singlets. This difference is calculated in the double-logarithmic approximation and the impact of the electroweak corrections on the non-singlet intercepts is estimated numerically.

  18. Correction

    Directory of Open Access Journals (Sweden)

    2014-01-01

    Full Text Available Regarding Tagler, M. J., and Jeffers, H. M. (2013. Sex differences in attitudes toward partner infidelity. Evolutionary Psychology, 11, 821–832: The authors wish to correct values in the originally published manuscript. Specifically, incorrect 95% confidence intervals around the Cohen's d values were reported on page 826 of the manuscript where we reported the within-sex simple effects for the significant Participant Sex × Infidelity Type interaction (first paragraph, and for attitudes toward partner infidelity (second paragraph. Corrected values are presented in bold below. The authors would like to thank Dr. Bernard Beins at Ithaca College for bringing these errors to our attention. Men rated sexual infidelity significantly more distressing (M = 4.69, SD = 0.74 than they rated emotional infidelity (M = 4.32, SD = 0.92, F(1, 322 = 23.96, p < .001, d = 0.44, 95% CI [0.23, 0.65], but there was little difference between women's ratings of sexual (M = 4.80, SD = 0.48 and emotional infidelity (M = 4.76, SD = 0.57, F(1, 322 = 0.48, p = .29, d = 0.08, 95% CI [−0.10, 0.26]. As expected, men rated sexual infidelity (M = 1.44, SD = 0.70 more negatively than they rated emotional infidelity (M = 2.66, SD = 1.37, F(1, 322 = 120.00, p < .001, d = 1.12, 95% CI [0.85, 1.39]. Although women also rated sexual infidelity (M = 1.40, SD = 0.62 more negatively than they rated emotional infidelity (M = 2.09, SD = 1.10, this difference was not as large and thus in the evolutionary theory supportive direction, F(1, 322 = 72.03, p < .001, d = 0.77, 95% CI [0.60, 0.94].

  19. Noncommutative FRW Apparent Horizon and Hawking Radiation

    Science.gov (United States)

    Bouhallouf, H.; Mebarki, N.; Aissaoui, H.

    2017-09-01

    In the context of noncommutative (NCG) gauge gravity, and using a cosmic time power law formula for the scale factor, a Friedman-Robertson-Walker (FRW) like metric is obtained. Within the fermions tunneling effect approach and depending on the various intervals of the power parameter, expressions of the apparent horizon are also derived. It is shown that in some regions of the parameter space, a pure NCG trapped horizon does exist leading to new interpretation of the role played by the noncommutativity of the space-time.

  20. Radiative Correction, Mixing, And Cp Violation In The B Meson System

    CERN Document Server

    Nam, S

    2005-01-01

    We study three major aspects in the B meson system in the standard model and its extensions: QED radiative corrections, BB¯ mixing, and CP asymmetry. We estimate the isospin-violating QED radiative corrections to the charged-to- neutral ratios of two different types of decay rates Γ(B + → J/ψK+)/Γ( B0 → J/ψK 0) and Γ(B+ → D+SD&d1;0 )/Γ(B0 → D+SD- ) taking into account the form factors of the mesons based on the vector meson dominance model, and compare them with the results obtained for the point- like mesons. We also evaluate BB¯ mixing and CP asymmetries in B → J/ψK s and B → &phis;Ks decays as well as B± → &phis; K(∗)± decays in general left-right models using the effective Hamiltonian approach without imposing manifest or pseudomanifest left-right symmetry. Based on recent measurements revealing large CP violat...

  1. Radiative correction to the Casimir energy for massive scalar field on a spherical surface

    Science.gov (United States)

    Valuyan, M. A.

    2017-08-01

    In this paper, the first-order radiative correction to the Casimir energy for a massive scalar field in the ϕ4 theory on a spherical surface with S2 topology was calculated. In common methods for calculating the radiative correction to the Casimir energy, the counter-terms related to free theory are used. However, in this study, by using a systematic perturbation expansion, the obtained counter-terms in renormalization program were automatically position-dependent. We maintained that this dependency was permitted, reflecting the effects of the boundary conditions imposed or background space in the problem. Additionally, along with the renormalization program, a supplementary regularization technique that we named Box Subtraction Scheme (BSS) was performed. This scheme presents a useful method for the regularization of divergences, providing a situation that the infinities would be removed spontaneously without any ambiguity. Analysis of the necessary limits of the obtained results for the Casimir energy of the massive and massless scalar field confirmed the appropriate and reasonable consistency of the answers.

  2. Radiative corrections to the Yukawa couplings in two Higgs doublet models

    CERN Document Server

    Kikuchi, Mariko

    2014-01-01

    A pattern of deviations in coupling constants of Standard Model (SM)-like Higgs boson from their SM predictions indicates characteristics of an extended Higgs sector. In particular, Yukawa coupling constants can deviate in different patterns in four types of Two Higgs Doublet Models (THDMs) with a softly-broken Z_2 symmetry. We can discriminate types of THDMs by measuring the pattern of these deviations. We calculate Yukawa coupling constants of the SM-like Higgs boson with radiative corrections in all types of Yukawa interactions in order to compare to future precision data at the International Linear Collider (ILC). We perform numerical computations of scale factors, and evaluate differences between the Yukawa couplings in THDMs and those of the SM at the one-loop level. We find that scale factors in different types of THDMs do not overlap each other even in the case with maximum radiative corrections if gauge couplings are different from the SM predictions large enough to be measured at the ILC. Therefore,...

  3. Correction.

    Science.gov (United States)

    2015-10-01

    In the article by Quintavalle et al (Quintavalle C, Anselmi CV, De Micco F, Roscigno G, Visconti G, Golia B, Focaccio A, Ricciardelli B, Perna E, Papa L, Donnarumma E, Condorelli G, Briguori C. Neutrophil gelatinase–associated lipocalin and contrast-induced acute kidney injury. Circ Cardiovasc Interv. 2015;8:e002673. DOI: 10.1161/CIRCINTERVENTIONS.115.002673.), which published online September 2, 2015, and appears in the September 2015 issue of the journal, a correction was needed. On page 1, the institutional affiliation for Elvira Donnarumma, PhD, “SDN Foundation,” has been changed to read, “IRCCS SDN, Naples, Italy.” The institutional affiliation for Laura Papa, PhD, “Institute for Endocrinology and Experimental Oncology, National Research Council, Naples, Italy,” has been changed to read, “Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy” and “Humanitas Research Hospital, Rozzano, Italy.” The authors regret this error.

  4. Introducing Stephen Hawking a graphic guide

    CERN Document Server

    McEvoy, JP

    2014-01-01

    Stephen Hawking is the world-famous physicist. To the public he is a tragic figure - a brilliant scientist and author of the 9 million-copy-selling ""A Brief History of Time"", and yet confined to a wheelchair and almost completely paralysed. This guide explores Hawking's life, and the evolution of his work from his days as a student.

  5. Evaluation of Error-Correcting Codes for Radiation-Tolerant Memory

    Science.gov (United States)

    Jeon, S.; Vijaya Kumar, B. V. K.; Hwang, E.; Cheng, M. K.

    2010-05-01

    In space, radiation particles can introduce temporary or permanent errors in memory systems. To protect against potential memory faults, either thick shielding or error-correcting codes (ECC) are used by memory modules. Thick shielding translates into increased mass, and conventional ECCs designed for memories are typically capable of correcting only a single error and detecting a double error. Decoding is usually performed through hard decisions where bits are treated as either correct or flipped in polarity. We demonstrate that low-density parity-check (LDPC) codes that are already prevalent in many communication applications can also be used to protect memories in space. Because the achievable code rate monotonically decreases with time due to the accumulation of permanent errors, the achievable rate serves as a useful metric in designing an appropriate ECC. We describe how to compute soft symbol reliabilities on our channel and compare the performance of soft-decision decoding LDPC codes against conventional hard-decision decoding of Reed-Solomon (RS) codes and Bose-Chaudhuri-Hocquenghem (BCH) codes for a specific memory structure.

  6. Radiative and seesaw threshold corrections to the S3 symmetric neutrino mass matrix

    Directory of Open Access Journals (Sweden)

    Shivani Gupta

    2015-01-01

    Full Text Available We systematically analyze the radiative corrections to the S3 symmetric neutrino mass matrix at high energy scale, say the GUT scale, in the charged lepton basis. There are significant corrections to the neutrino parameters both in the Standard Model (SM and Minimal Supersymmetric Standard Model (MSSM with large tan⁡β, when the renormalization group evolution (RGE and seesaw threshold effects are taken into consideration. We find that in the SM all three mixing angles and atmospheric mass squared difference are simultaneously obtained in their current 3σ ranges at the electroweak scale. However, the solar mass squared difference is found to be larger than its allowed 3σ range at the low scale in this case. There are significant contributions to neutrino masses and mixing angles in the MSSM with large tan⁡β from the RGEs even in the absence of seesaw threshold corrections. However, we find that the mass squared differences and the mixing angles are simultaneously obtained in their current 3σ ranges at low energy when the seesaw threshold effects are also taken into account in the MSSM with large tan⁡β.

  7. Black hole radiation with modified dispersion relation in tunneling paradigm: Static frame

    Science.gov (United States)

    Tao, Jun; Wang, Peng; Yang, Haitang

    2017-09-01

    To study possible deviations from the Hawking's prediction, we assume that the dispersion relations of matter fields are modified at high energies and use the Hamilton-Jacobi method to investigate the corresponding effects on the Hawking radiation in this paper. The preferred frame is the static frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energies but is modified near the Planck mass mp. We calculate the corrections to the Hawking temperature for massive and charged particles to O (mp-2) and massless and neutral particles to all orders. Our results suggest that the thermal spectrum of radiations near horizon is robust, e.g. corrections to the Hawking temperature are suppressed by mp. After the spectrum of radiations near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole. We find that the subleading logarithmic term of the entropy does not depend on how the dispersion relations of matter fields are modified. Finally, the luminosities of black holes are computed by using the geometric optics approximation.

  8. Black hole radiation with modified dispersion relation in tunneling paradigm: Static frame

    Directory of Open Access Journals (Sweden)

    Jun Tao

    2017-09-01

    Full Text Available To study possible deviations from the Hawking's prediction, we assume that the dispersion relations of matter fields are modified at high energies and use the Hamilton–Jacobi method to investigate the corresponding effects on the Hawking radiation in this paper. The preferred frame is the static frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energies but is modified near the Planck mass mp. We calculate the corrections to the Hawking temperature for massive and charged particles to O(mp−2 and massless and neutral particles to all orders. Our results suggest that the thermal spectrum of radiations near horizon is robust, e.g. corrections to the Hawking temperature are suppressed by mp. After the spectrum of radiations near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole. We find that the subleading logarithmic term of the entropy does not depend on how the dispersion relations of matter fields are modified. Finally, the luminosities of black holes are computed by using the geometric optics approximation.

  9. Anomalies and Hawking fluxes from the black holes of topologically massive gravity

    CERN Document Server

    Porfyriadis, Achilleas P

    2009-01-01

    The anomaly cancelation method proposed by Wilczek et al. is applied to the black holes of topologically massive gravity (TMG) and topologically massive gravito-electrodynamics (TMGE). Thus the Hawking temperature and fluxes of the ACL and ACGL black holes are found. The Hawking temperatures obtained agree with the surface gravity formula. Both black holes are rotating and this gives rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. It is found that the terms in this U(1) gauge field correspond exactly to the correct angular velocities on the horizon of both black holes as well as the correct electrostatic potential of the ACGL black hole. So the results for the Hawking fluxes derived here from the anomaly cancelation method, are in complete agreement with the ones obtained from integrating the Planck distribution.

  10. Molecular cloud formation via thermal instability of finite resistive viscous radiating plasma with finite Larmor radius corrections

    Science.gov (United States)

    Kaothekar, Sachin

    2017-06-01

    The effect of radiative heat-loss function and finite ion Larmor radius (FLR) corrections on the thermal instability of infinite homogeneous viscous plasma has been investigated incorporating the effects of thermal conductivity and finite electrical resistivity for the formation of a molecular cloud. The general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. Furthermore the wave propagation along and perpendicular to the direction of external magnetic field has been discussed. Stability of the medium is discussed by applying Routh Hurwitz's criterion and it is found that thermal instability criterion determines the stability of the medium. We find that the presence of radiative heat-loss function and thermal conductivity modify the fundamental criterion of thermal instability into radiatively driven thermal instability criterion. In longitudinal direction FLR corrections, viscosity, magnetic field and finite resistivity have no effect on thermal instability criterion. The presence of radiative heat-loss function and thermal conductivity modify the fundamental thermal instability criterion into radiatively driven thermal instability criterion. Also the FLR corrections modify the growth rate of the Alfven mode. For transverse wave propagation FLR corrections, radiative heat-loss function, magnetic field and thermal conductivity modify the thermal instability criterion. From the curves it is clear that heat-loss function, FLR corrections and viscosity have stabilizing effect, while finite resistivity has destabilizing effect on the thermal modes. Our results show that the FLR corrections and radiative heat-loss functions affect the evolution of interstellar molecular clouds and star formation.

  11. The pair correlation function of spatial Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Torrisi, Giovanni Luca

    2007-01-01

    Spatial Hawkes processes can be considered as spatial versions of classical Hawkes processes. We derive the pair correlation function of stationary spatial Hawkes processes and discuss the connection to the Bartlett spectrum and other summary statistics. Particularly, results for Gaussian fertility...... rates and the extension to spatial Hawkes processes with random fertility rates are discussed....

  12. Adiabatic regularization of functional determinants in cosmology and radiative corrections during inflation

    Science.gov (United States)

    Kaya, Ali; Kutluk, Emine Seyma

    2015-12-01

    We express the in-in functional determinant giving the one-loop effective potential for a scalar field propagating in a cosmological spacetime in terms of the mode functions specifying the vacuum of the theory and then apply adiabatic regularization to make this bare potential finite. In this setup, the adiabatic regularization offers a particular renormalization prescription that isolates the effects of the cosmic expansion. We apply our findings to determine the radiative corrections to the classical inflaton potentials in scalar field inflationary models and also we derive an effective potential for the superhorizon curvature perturbation ζ encoding its scatterings with the subhorizon modes. Although the resulting modifications to the cosmological observables like non-Gaussianity turn out to be small, they distinctively appear after horizon crossing.

  13. Adiabatic regularization of functional determinants in cosmology and radiative corrections during inflation

    CERN Document Server

    Kaya, Ali

    2015-01-01

    We express the in-in functional determinant giving the one-loop effective potential for a scalar field propagating in a cosmological spacetime in terms of the mode functions specifying the vacuum of the theory and then apply adiabatic regularization to make this bare potential finite. In this setup, the adiabatic regularization offers a particular renormalization prescription that isolates the effects of the cosmic expansion and, unlike the dimensional regularization, it has no infrared issues. We apply our findings to determine the radiative corrections to the classical inflaton potentials in scalar field inflationary models and also we derive an effective potential for the superhorizon curvature perturbation \\zeta\\ encoding its scatterings with the subhorizon modes. Although the resulting modifications to the cosmological observables like nongaussianity turn out to be small, they distinctively appear after horizon crossing.

  14. [Remote sensing estimation of vegetation coverage in guangzhou based on the correction of atmospheric radiation].

    Science.gov (United States)

    Gong, Jian-Zhou; Xia, Bei-Cheng

    2007-03-01

    Vegetation coverage is a basic parameter in describing landscape ecosystem, and an important index in assessing ecosystem health and security. Based on the four TM images in 1990, 1995, 2000 and 2005, and by using the correction model to deduct atmospheric radiation effect and the spatial operating model for TM image under unsupervised classification, the relationship model between vegetation coverage and normalized vegetation index was established, and the vegetation coverage in different phases in Guangzhou was calculated. The results showed that the vegetation coverage in Guangzhou decreased continuously from 1990 to 2000 but began to increase thereafter, which accorded with the economic development and environmental construction of the city. The model established in this paper could simulate well the dynamics of regional vegetation cover, and have the advantage in describing the dynamics of vegetation coverage more accurately, being available to the assessment of urban eco-environmental quality and its dynamic characters.

  15. Black Hole Radiation with Modified Dispersion Relation in Tunneling Paradigm: Free-fall Frame

    CERN Document Server

    Wang, Peng; Ying, Shuxuan

    2015-01-01

    Due to the exponential high gravitational red shift near the event horizon of a black hole, it might appear that the Hawking radiation would be highly sensitive to some unknown high energy physics. To study effects of any unknown physics at the Planck scale on the Hawking radiation, the dispersive field theory models have been proposed, which are variations of Unruh's sonic black hole analogy. In this paper, we use the Hamilton-Jacobi method to investigate the dispersive field theory models. The preferred frame is the free-fall frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energy but is modified near the Planck mass $m_{p}$. The corrections to the Hawking temperature are calculated for massive and charged particles to $\\mathcal{O}\\left( m_{p}^{-2}\\right) $ and neutral and massless particles with $\\lambda=0$ to all orders. The Hawking temperature of radiation agrees with the standard one at the leading order. After the spectrum of radiation near the horizon is...

  16. Black hole radiation with modified dispersion relation in tunneling paradigm: free-fall frame

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Yang, Haitang; Ying, Shuxuan [Sichuan University, Center for Theoretical Physics, College of Physical Science and Technology, Chengdu (China)

    2016-01-15

    Due to the exponential high gravitational red shift near the event horizon of a black hole, it might appear that the Hawking radiation would be highly sensitive to some unknown high energy physics. To study the effects of any unknown physics at the Planck scale on the Hawking radiation, the dispersive field theory models have been proposed, which are variations of Unruh's sonic black hole analogy. In this paper, we use the Hamilton-Jacobi method to investigate the dispersive field theory models. The preferred frame is the free-fall frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energy but is modified near the Planck mass m{sub p}. The corrections to the Hawking temperature are calculated for massive and charged particles to O(m{sub p}{sup -2}) and neutral and massless particles with λ = 0 to all orders. The Hawking temperature of radiation agrees with the standard one at the leading order. After the spectrum of radiation near the horizon is obtained, we use the brick wall model to compute the thermal entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole and a 2D one. Finally, the luminosity of a Schwarzschild black hole is calculated by using the geometric optics approximation. (orig.)

  17. The evaluation of four different diffuse radiation correction models applied to shadow ring measurements for Beer Sheva, Israel

    Science.gov (United States)

    Kudish, Avraham I.; Evseev, Efim G.

    2007-09-01

    The measurement of the horizontal diffuse radiation, a priori a straightforward task, is fraught with difficulties. It is possible to measure the diffuse radiation by both direct and indirect methods. The most accurate method is probably the indirect one, which utilizes concurrent measurements of the horizontal global and the normal incidence beam radiation. The disadvantage of this method is the relatively expensive tracking system required for measuring the latter. The diffuse radiation can be measured directly with a pyranometer outfitted with either an occulting disk or shadow ring, which prevent the beam radiation from impinging on the pyranometer sensor. The former method can provide accurate measurements of the diffuse radiation but requires a relatively expensive sun tracking system in the east-west axis. The shadow ring is a stationary device with regard to the east-west axis and blocks the beam radiation component by creating a permanent shadow on the pyranometer sensor. The disadvantage of the shadow ring is that it also blocks a portion of the sky, which necessitates a geometrical correction factor. There is also a need to correct for anisotropic sky conditions. Four correction models have been applied to the data and the results evaluated and ranked.

  18. Radiative corrections to the Triple Higgs Coupling in the Inert Higgs Doublet Model

    CERN Document Server

    Arhrib, Abdesslam; Falaki, Jaouad El; Jueid, Adil

    2015-01-01

    We investigate the implication of the recent discovery of a Higgs-like particle in the first phase of the LHC Run 1 on the Inert Higgs Doublet Model (IHDM). The determination of the Higgs couplings to SM particles and its intrinsic properties will get improved during the new LHC Run 2 starting this year. The new LHC Run 2 would also shade some light on the triple Higgs coupling. Such measurement is very important in order to establish the details of the electroweak symmetry breaking mechanism. Given the importance of the Higgs couplings both at the LHC and $e^+e^-$ Linear Collider machines, accurate theoretical predictions are required. We study the radiative corrections to the triple Higgs coupling $hhh$ and to $hZZ$, $hWW$ couplings in the context of the IHDM. By combining several theoretical and experimental constraints on parameter space, we show that extra particles might modify the triple Higgs coupling near threshold regions. Finally, we discuss the effect of these corrections on the double Higgs produ...

  19. Radiative corrections to the triple Higgs coupling in the inert Higgs doublet model

    Science.gov (United States)

    Arhrib, Abdesslam; Benbrik, Rachid; El Falaki, Jaouad; Jueid, Adil

    2015-12-01

    We investigate the implication of the recent discovery of a Higgs-like particle in the first phase of the LHC Run 1 on the Inert Higgs Doublet Model (IHDM). The determination of the Higgs couplings to SM particles and its intrinsic properties will get improved during the new LHC Run 2 starting this year. The new LHC Run 2 would also shade some light on the triple Higgs coupling. Such measurement is very important in order to establish the details of the electroweak symmetry breaking mechanism. Given the importance of the Higgs couplings both at the LHC and e + e - Linear Collider machines, accurate theoretical predictions are required. We study the radiative corrections to the triple Higgs coupling hhh and to hZZ, hW W couplings in the context of the IHDM. By combining several theoretical and experimental constraints on parameter space, we show that extra particles might modify the triple Higgs coupling near threshold regions. Finally, we discuss the effect of these corrections on the double Higgs production signal at the e + e - LC and show that they can be rather important.

  20. The assessment of four different correction models applied to the diffuse radiation measured with a shadow ring using global and normal beam radiation measurements for Beer Sheva, Israel

    Energy Technology Data Exchange (ETDEWEB)

    Kudish, Avraham I.; Evseev, Efim G. [Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, E D Bergmann Campus, Beer Sheva 84105 (Israel)

    2008-02-15

    The measurement of the diffuse radiation incident on a horizontal surface, a priori a straightforward task, is fraught with difficulties. It is possible to measure the diffuse radiation by three different techniques: two of which measure it directly and the third indirectly. The most accurate is the indirect one, which is based upon the concurrent measurements of the horizontal global and the normal incidence beam radiation. The disadvantage of this being the relatively expensive tracking system required for measuring the latter. The diffuse radiation can be measured directly with a pyranometer outfitted with either an occulting disk or shadow ring, which prevent the beam radiation from impinging on the pyranometer sensor. The occulting disk can provide accurate measurements of the diffuse radiation but it requires a relatively expensive sun tracking system in the east-west axis. The shadow ring is a stationary device with regard to the east-west axis and blocks the beam radiation component by creating a permanent shadow on the pyranometer sensor. The major disadvantage of the shadow ring is that it also blocks that portion of the diffuse radiation obscured by the shadow ring. This introduces a measurement error that must be corrected to account for that portion of the sky obscured by the shadow band. In addition to this geometric correction factor there is a need to correct for anisotropic sky conditions. Four correction models have been applied to the data for Beer Sheva, Israel and the results have been evaluated both graphically and statistically. An attempt has been made to score the relative performance of the models under different sky conditions. (author)

  1. $\\gamma$-Ray Burst Afterglows Effects of Radiative Corrections and Nonuniformity of the Surrounding Medium

    CERN Document Server

    Dai, Z G

    1998-01-01

    The afterglow of a gamma-ray burst (GRB) is commonly thought to be due to continuous deceleration of a relativistically expanding fireball in the surrounding medium. Assuming that the expansion of the fireball is adiabatic and that the density of the medium is a power-law function of shock radius, viz., $n_{ext}\\propto R^{-k}$, we analytically study the effects of the first-order radiative correction and the nonuniformity of the medium on a GRB afterglow. We first derive a new relation among the observed time, the shock radius and the fireball's Lorentz factor: $t_\\oplus=R/4(4-k)\\gamma^2c$, and also derive a new relation among the comoving time, the shock radius and the fireball's Lorentz factor: $t_{co}=2R/(5-k)\\gamma c$. We next study the evolution of the fireball by using the analytic solution of Blandford and McKee (1976). The radiation losses may not significantly influence this evolution. We further derive new scaling laws both between the X-ray flux and observed time and between the optical flux and ob...

  2. L'univers clos de Stephen Hawking.

    Science.gov (United States)

    Andrillat, H.

    Einstein had curved space, Hawking will curve time. Hawking's universe is a closed model, a 4-sphere, which encloses its own space and its own time. Nothing exists outside and without any time overlapping this 4-sphere, it cannot have a beginning, an evolution or an end. It only is. But such an absolute existence of this type of universe implies that its 3-dimensional sclices - which are our physical space - cannot have the same absolute state of being. Thus, they are necessarily transitory, with a beginning and an end, in time which is the 4th remaining dimension of the 4-sphere. Hawking absolute universe is the cause of time.

  3. Revised standards for protection against radiation; minor amendments--NRC. Final rule: minor corrective and conforming amendments.

    Science.gov (United States)

    1992-12-01

    This final rule makes a number of minor corrective and conforming amendments to the NRC's revised standards for protection against radiation. The final rule is necessary to correct recently discovered errors in the text of the revised standards, to conform portions of regulatory text to the Commission's decision to defer mandatory implementation of the revised standards until 1994, and to reflect the recent OMB approval of the use of NRC Forms 4 and 5.

  4. Swainson's hawk observations Kern NWR 1991 - 1994

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document describes observations of Swainson's Hawks at Kern NWR and Wildwood Road. It also includes a brief discussion of management strategies to promote...

  5. Black Holes in Hawking's New Theory

    Institute of Scientific and Technical Information of China (English)

    Carolyn Johnson; 张凯华

    2004-01-01

    @@ Stephan Hawking, the physicist, says he was wrong about his long-held idea about black holes, backing off① a theory that had raised the possibility that the collapsed stars were swallowing information and sending it to alternate② universes.

  6. Hawking's Israel boycott sparks heated response

    Science.gov (United States)

    Dacey, James

    2013-06-01

    The controversial decision by Stephen Hawking to boycott a prominent conference in Jerusalem in protest against the policies of the Israeli government has provoked strong responses from academics and commentators.

  7. LVIS Integration onto Global Hawk Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate LVIS lidar capability onto the Global Hawk (GH) to enable high altitude mapping of land, vegetation, and ice Provide operational capability and data...

  8. Amplifying the Hawking Signal in BECs

    Directory of Open Access Journals (Sweden)

    Roberto Balbinot

    2014-01-01

    Full Text Available We consider simple models of Bose-Einstein condensates to study analog pair-creation effects, namely, the Hawking effect from acoustic black holes and the dynamical Casimir effect in rapidly time-dependent backgrounds. We also focus on a proposal by Cornell to amplify the Hawking signal in density-density correlators by reducing the atoms’ interactions shortly before measurements are made.

  9. Global Hawk Systems Engineering. Case Study

    Science.gov (United States)

    2010-01-01

    as Aurora and Grob. Fourteen teams responded. The bids submitted covered a wide-range of size and performance for a $10 million UFP, causing the...Delos Reyes , 95th Air Base Wing Public Affairs, 1 December 2006 Roll Out of Firs Production Block 10 Global Hawk Systems Engineering Case Study...Delos Reyes , 95th DoD News Briefing, June 28, 1995 Air Base Wing Public Affairs, December 1, 2006 Edwards Test Production Global Hawk for Possible

  10. Ferruginous hawks on the Yakima Training Center

    Energy Technology Data Exchange (ETDEWEB)

    Mazaika, R.; Cadwell, L.L.

    1994-07-01

    Habitat quality for ferruginous hawks (Buteo regalis) is largely determined by availability of nest sites and adequate prey base. A limitation of one of these will limit the number of hawks in an area. In general, ferruginous hawks are adaptable to various nesting substrates and will nest in proximity to other closely related sympatric species (e.g., red-tailed hawk, Swainson`s hawk). This analysis focused on an assessment of prey base availability and habitat disturbance in the vicinity of historic nest sites and small mammal trap sites on the Yakima Training Center (YTC) in Washington State. The primary ground-disturbing activities on the YTC are associated with military training, fire, and grazing. In addition to the direct effect these activities can have on ferruginous hawks, indirect effects may result from changes in composition, density, and structure of vegetation that subsequently alter faunal population numbers and species diversity. A summary of results of small mammal trapping, population estimation, vegetative analysis and disturbance rating at seven trap sites during the time period of June through August of 1993 are presented.

  11. Nonthermal correction to black hole spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wen-Yu [Chung Yuan Christian University, Department of Physics and Center for High Energy Physics, Chung Li (China); National Taiwan University, Leung Center for Cosmology and Particle Astrophysics, Taipei (China)

    2015-02-01

    Area spectrum of black holes has been obtained via various methods such as quasinormal modes, adiabatic invariance and angular momentum. Among those methods, calculations were done by assuming black holes in thermal equilibrium. Nevertheless, black holes in the asymptotically flat space usually have a negative specific heat and therefore tend to stay away from thermal equilibrium. Even for black holes with a positive specific heat, the temperature may still not be well defined in the process of radiation, due to the back reaction of a decreasing mass. With respect to these facts, it is very likely that Hawking radiation is nonthermal and the area spectrum is no longer equidistant. In this note, we would like to illustrate how the area spectrum of black holes is corrected by this nonthermal effect. (orig.)

  12. Computed tomography imaging parameters for inhomogeneity correction in radiation treatment planning

    Directory of Open Access Journals (Sweden)

    Indra J Das

    2016-01-01

    Full Text Available Modern treatment planning systems provide accurate dosimetry in heterogeneous media (such as a patient' body with the help of tissue characterization based on computed tomography (CT number. However, CT number depends on the type of scanner, tube voltage, field of view (FOV, reconstruction algorithm including artifact reduction and processing filters. The impact of these parameters on CT to electron density (ED conversion had been subject of investigation for treatment planning in various clinical situations. This is usually performed with a tissue characterization phantom with various density plugs acquired with different tube voltages (kilovoltage peak, FOV reconstruction and different scanners to generate CT number to ED tables. This article provides an overview of inhomogeneity correction in the context of CT scanning and a new evaluation tool, difference volume dose-volume histogram (DVH, dV-DVH. It has been concluded that scanner and CT parameters are important for tissue characterizations, but changes in ED are minimal and only pronounced for higher density materials. For lungs, changes in CT number are minimal among scanners and CT parameters. Dosimetric differences for lung and prostate cases are usually insignificant (<2% in three-dimensional conformal radiation therapy and < 5% for intensity-modulated radiation therapy (IMRT with CT parameters. It could be concluded that CT number variability is dependent on acquisition parameters, but its dosimetric impact is pronounced only in high-density media and possibly in IMRT. In view of such small dosimetric changes in low-density medium, the acquisition of additional CT data for financially difficult clinics and countries may not be warranted.

  13. Theoretical study of stimulated and spontaneous Hawking effects from an acoustic black hole in a hydrodynamically flowing fluid of light

    Science.gov (United States)

    Grišins, Pjotrs; Nguyen, Hai Son; Bloch, Jacqueline; Amo, Alberto; Carusotto, Iacopo

    2016-10-01

    We propose an experiment to detect and characterize the analog Hawking radiation in an analog model of gravity consisting of a flowing exciton-polariton condensate. Under a suitably designed coherent pump configuration, the condensate features an acoustic event horizon for sound waves that at the semiclassical level is equivalent to an astrophysical black-hole horizon. We show that a continuous-wave pump-and-probe spectroscopy experiment allows to measure the analog Hawking temperature from the dependence of the stimulated Hawking effect on the pump-probe detuning. We anticipate the appearance of an emergent resonant cavity for sound waves between the pump beam and the horizon, which results in marked oscillations on top of an overall exponential frequency dependence. We finally analyze the spatial correlation function of density fluctuations and identify the hallmark features of the correlated pairs of Bogoliubov excitations created by the spontaneous Hawking process, as well as novel signatures characterizing the emergent cavity.

  14. Hawking versus Unruh effects, or the difficulty of slowly crossing a black hole horizon

    Energy Technology Data Exchange (ETDEWEB)

    Barbado, Luis C. [Quantenoptik, Quantennanophysik und Quanteninformation, Fakultät für Physik,Universität Wien, Boltzmanngasse 5, 1090 Wien (Austria); Departamento de Astronomía Extragaláctica, Instituto de Astrofísica de Andalucía (CSIC),Glorieta de la Astronomía s/n, 18008 Granada (Spain); Barceló, Carlos [Departamento de Astronomía Extragaláctica, Instituto de Astrofísica de Andalucía (CSIC),Glorieta de la Astronomía s/n, 18008 Granada (Spain); Garay, Luis J. [Departamento de Física Teórica II, Facultad de Ciencias Fśicas,Universidad Complutense de Madrid, Ciudad Universitaria,Plaza Ciencias 1, 28040 Madrid (Spain); Departamento de Química y Física Teóricas, Instituto de Estructura de la Materia (CSIC),Serrano 121, 28006 Madrid (Spain); Jannes, Gil [Departamento de Ciencias y Tecnología, Universidad Europea de Madrid,Calle Tajo s/n, 28670 Villaviciosa de Odón, Madrid (Spain)

    2016-10-28

    When analyzing the perception of Hawking radiation by different observers, the Hawking effect becomes mixed with the Unruh effect. The separation of both effects is not always clear in the literature. Here we propose an inconsistency-free interpretation of what constitutes a Hawking effect and what an Unruh effect. An appropriate interpretation is important in order to elucidate what sort of effects a detector might experience depending on its trajectory and the state of the quantum field. Under simplifying assumptions we introduce an analytic formula that separates these two effects. Armed with the previous interpretation we argue that for a free-falling detector to cross the horizon without experiencing high-energy effects, it is necessary that the horizon crossing is not attempted at low velocities.

  15. Hawking versus Unruh effects, or the difficulty of slowly crossing a black hole horizon

    CERN Document Server

    Barbado, Luis C; Garay, Luis J; Jannes, Gil

    2016-01-01

    When analyzing the perception of Hawking radiation by different observers, the Hawking effect becomes mixed with the Unruh effect. The separation of both effects is not always clear in the literature. Here we propose an inconsistency-free interpretation of what constitutes a Hawking effect and what an Unruh effect. An appropriate interpretation is important in order to elucidate what sort of effects a detector might experience depending on its trajectory and the state of the quantum field. Under simplifying assumptions we introduce an analytic formula that separates these two effects. Armed with the previous interpretation we argue that for a free-falling detector to cross the horizon without experiencing high-energy effects, it is necessary that the horizon crossing is not attempted at low velocities.

  16. Hawking versus Unruh effects, or the difficulty of slowly crossing a black hole horizon

    Science.gov (United States)

    Barbado, Luis C.; Barceló, Carlos; Garay, Luis J.; Jannes, Gil

    2016-10-01

    When analyzing the perception of Hawking radiation by different observers, the Hawking effect becomes mixed with the Unruh effect. The separation of both effects is not always clear in the literature. Here we propose an inconsistency-free interpretation of what constitutes a Hawking effect and what an Unruh effect. An appropriate interpretation is important in order to elucidate what sort of effects a detector might experience depending on its trajectory and the state of the quantum field. Under simplifying assumptions we introduce an analytic formula that separates these two effects. Armed with the previous interpretation we argue that for a free-falling detector to cross the horizon without experiencing high-energy effects, it is necessary that the horizon crossing is not attempted at low velocities.

  17. 10th International Symposium on Radiative Corrections (Applications of Quantum Field Theory to Phenomenology)

    Science.gov (United States)

    The era of the Large Hadron Collider (LHC) at CERN, Geneva has begun. While the LHC detectors measure fundamental scattering reactions with unprecedented experimental precision, it is clear that the interpretation of these high-quality data demands an equally high precision in the theoretical predictions. In order to connect the observed phenomena with the underlying theoretical models, one needs a precise understanding of the involved processes at the quantum level. Confronting the theoretical predictions for various processes in the Standard Model and beyond with the large amount of data which the LHC will have collected by September 2011, will allow to test the theories and help to refine the theoretical tools. Therefore RADCOR 2011 will be crucial for future developments concerning LHC physics. Topics covered at RADCOR 2011 include: * Phenomenology at high-energy colliders * QCD physics of hard scattering * Electroweak radiative corrections, and applications to Standard Model and beyond the Standard Model processes * New theoretical methods and tools * Event generators and simulation of signal and background processes * g-2 of muon, heavy quarks (including B physics), and physics at B-factories and in e+e- collisions at lower energies

  18. One-Loop Radiative Correction to the Triple Higgs Coupling in the Higgs Singlet Model

    CERN Document Server

    He, Shi-Ping

    2016-01-01

    Though the 125 GeV Higgs boson is consistent with the standard model (SM) prediction until now, the triple coupling can deviate from the SM value in the physics beyond the SM (BSM). In this paper, the radiative correction to the triple Higgs coupling is calculated in the minimal extension of the SM by adding a real gauge singlet scalar. In this model there are two scalars $h$ and $H$ and both of them are mixed states of the doublet and singlet. Provided that the mixing angle is set to be zero, $h$ is the pure left-over of the doublet and its behavior is the same as that of the SM except the triple $h$ couping. In this SM limit case, the effect of the singlet $H$ will decouple from the fermions and gauge bosons, and firstly shown up in the triple $h$ coupling. Our numerical results show that the deviation is sizable. For $\\lambda_{\\Phi{S}}=1$ (see text for the parameter definition), the deviation $\\delta_{hhh}^{(1)}$ can be $40\\%$. For $\\lambda_{\\Phi{S}}=1.5$, the $\\delta_{hhh}^{(1)}$ can reach $140\\%$. The si...

  19. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Xingming Sun

    2015-07-01

    Full Text Available Air temperature (AT is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS. Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR. Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months.

  20. Six-dimensional correction of intra-fractional prostate motion with CyberKnife stereotactic body radiation therapy

    Directory of Open Access Journals (Sweden)

    Sean eCollins

    2011-12-01

    Full Text Available AbstractLarge fraction radiation therapy offers a shorter course of treatment and radiobiological advantages for prostate cancer treatment. The CyberKnife is an attractive technology for delivering large fraction doses based on the ability to deliver highly conformal radiation therapy to moving targets. In addition to intra-fractional translational motion (left-right, superior-inferior and anterior-posterior, prostate rotation (pitch, roll and yaw can increase geographical miss risk. We describe our experience with six-dimensional (6D intrafraction prostate motion correction using CyberKnife stereotactic body radiation therapy (SBRT. Eighty-eight patients were treated by SBRT alone or with supplemental external radiation therapy. Trans-perineal placement of four gold fiducials within the prostate accommodated X-ray guided prostate localization and beam adjustment. Fiducial separation and non-overlapping positioning permitted the orthogonal imaging required for 6D tracking. Fiducial placement accuracy was assessed using the CyberKnife fiducial extraction algorithm. Acute toxicities were assessed using Common Toxicity Criteria (CTC v3. There were no Grade 3, or higher, complications and acute morbidity was minimal. Ninety-eight percent of patients completed treatment employing 6D prostate motion tracking with intrafractional beam correction. Suboptimal fiducial placement limited treatment to 3D tracking in 2 patients. Our experience may guide others in performing 6D correction of prostate motion with CyberKnife SBRT.

  1. Star formation through thermal instability of radiative plasma with finite electron inertia and finite Larmor radius corrections

    Directory of Open Access Journals (Sweden)

    Sachin Kaothekar

    2016-08-01

    Full Text Available I have studied the effects of finite electron inertia, finite ion Larmor radius (FLR corrections, and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effect of thermal conductivity for star formation in interstellar medium (ISM. A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion is get modified into radiative instability criterion by inclusion of radiative heat-loss functions with thermal conductivity. The viscosity of medium removes the effect of FLR corrections from the condition of radiative instability. Numerical calculation shows stabilizing effect of heat-loss function, viscosity and FLR corrections, and destabilizing effect of finite electron inertia on the thermal instability. Results carried out in this paper shows that stars are formed in interstellar medium mainly due to thermal instability.

  2. Six-Dimensional Correction of Intra-Fractional Prostate Motion with CyberKnife Stereotactic Body Radiation Therapy

    Science.gov (United States)

    Lei, Siyuan; Piel, Nathaniel; Oermann, Eric K.; Chen, Viola; Ju, Andrew W.; Dahal, Kedar N.; Hanscom, Heather N.; Kim, Joy S.; Yu, Xia; Zhang, Guowei; Collins, Brian T.; Jha, Reena; Dritschilo, Anatoly; Suy, Simeng; Collins, Sean P.

    2011-01-01

    Large fraction radiation therapy offers a shorter course of treatment and radiobiological advantages for prostate cancer treatment. The CyberKnife is an attractive technology for delivering large fraction doses based on the ability to deliver highly conformal radiation therapy to moving targets. In addition to intra-fractional translational motion (left–right, superior–inferior, and anterior–posterior), prostate rotation (pitch, roll, and yaw) can increase geographical miss risk. We describe our experience with six-dimensional (6D) intra-fraction prostate motion correction using CyberKnife stereotactic body radiation therapy (SBRT). Eighty-eight patients were treated by SBRT alone or with supplemental external radiation therapy. Trans-perineal placement of four gold fiducials within the prostate accommodated X-ray guided prostate localization and beam adjustment. Fiducial separation and non-overlapping positioning permitted the orthogonal imaging required for 6D tracking. Fiducial placement accuracy was assessed using the CyberKnife fiducial extraction algorithm. Acute toxicities were assessed using Common Toxicity Criteria v3. There were no Grade 3, or higher, complications and acute morbidity was minimal. Ninety-eight percent of patients completed treatment employing 6D prostate motion tracking with intra-fractional beam correction. Suboptimal fiducial placement limited treatment to 3D tracking in two patients. Our experience may guide others in performing 6D correction of prostate motion with CyberKnife SBRT. PMID:22655248

  3. Corrections to the thermodynamics of Schwarzschild-Tangherlini black hole and the generalized uncertainty principle

    CERN Document Server

    Feng, Z W; Zu, X T

    2016-01-01

    We investigate the thermodynamics of Schwarzschild-Tangherlini black hole in the context of the generalized uncertainty principle. The corrections to the Hawking temperature, entropy and the heat capacity are obtained via the modified Hamilton-Jacobi equation. These modifications show that the GUP changes the evolution of Schwarzschild-Tangherlini black hole. Specially, the GUP effect becomes susceptible when the black hole evaporates down to the order of Planck scale, it makes the Hawking radiating stop and leads to remnant. It finds the endpoint of evaporation is a Planck-scale remnant with zero heat capacity. Those phenomenons imply that the GUP may give a way to solve the information. Besides, we also analysis the possibilities to find the black hole at LHC, and show that the black hole can not be produced in the recent LHC.

  4. Bekenstein-Hawking Entropy as Entanglement Entropy

    CERN Document Server

    Feng, Yu-Lei

    2015-01-01

    We show that the Bekenstein-Hawking entropy $S_{BH}$ should be treated as an entanglement entropy, provided that the formation and evaporation of a black hole can be described by quantum unitary evolutions. To confirm this statement, we derive statistical mechanics from quantum mechanics effectively by means of open quantum systems. Then a new definition of Boltzmann entropy for a quantum closed system is given to count microstates in a way consistent with the superposition principle. In particular, this new Boltzmann entropy is a constant that depends only on the dimension of the system's relevant Hilbert subspace. Based on this new definition, some kind of "detailed balance" condition is obtained to stabilize the thermal equilibrium between two macroscopic subsystems within a larger closed system. However, the required "detailed balance" condition between black hole and matter would be broken, if the Bekenstein-Hawking entropy was treated as Boltzmann entropy together with the Hawking temperature as thermal...

  5. Mini-Proceedings, 18th meeting of the Working Group on Radiative Corrections and MC Generators for Low Energies

    CERN Document Server

    Czyż, H; Ignatov, F; Keshavarzi, A; Kupsc, A; Lyubovitskij, V E; Masjuan, P; Nyffeler, A; Pancheri, G; Tomasi-Gustafsson, E; Venanzoni, G

    2016-01-01

    The mini-proceedings of the 18$^{\\mathrm{th}}$ Meeting of the "Working Group on Radiative Corrections and MonteCarlo Generators for Low Energies" held in Frascati, 19$^{\\mathrm{th}}$ - 20$^{\\mathrm{st}}$ May, are presented. These meetings, started in 2006, have as aim to bring together experimentalists and theoreticians working in the fields of meson transition form factors, hadronic contributions to the anomalous magnetic moment of the leptons, and the effective fine structure constant. The development of MonteCarlo generators and Radiative Corrections for precision $e^+e^-$ and $\\tau$-lepton physics are also covered, with emphasis on meson production. At this workshop, a documentary entitled {\\it Bruno Touschek with AdA in Orsay} commemorating the first observation of electron-positron collisions in a laboratory was also presented. With this edition, the working group reaches 10 years of continuous activities.

  6. Radiative corrections to the semileptonic Dalitz plot with angular correlation between polarized decaying hyperons and emitted charged leptons

    CERN Document Server

    Martínez, A; Flores-Mendieta, R; García, A

    2001-01-01

    We obtain a model-independent expression for the Dalitz plot of semileptonic decays of polarized hyperons including radiative corrections to order alpha and neglecting terms of order (alpha q)/(pi M_1), where q is the four-momentum transfer and M_1 is the mass of the decaying hyperon. We specialize our results to exhibit the correlation between the charged-lepton momentum and the spin of the decaying hyperon. We present results for the three-body region of the Dalitz plot and for the complete Dalitz plot (which includes the four-body region). From these results we also obtain the corresponding radiative corrections to the integrated lepton spin-asymmetry coefficient. Our formulas are valid for charged as well as for neutral decaying hyperons and are appropriate for model-independent experimental analysis whether the real photon is discriminated or not.

  7. Radiative corrections to the semileptonic Dalitz plot with angular correlation between polarized decaying hyperons and emitted charged leptons (17 pages)

    CERN Document Server

    Flores-Mendieta, R; Martínez, A; Torres, J J; Flores-Mendieta, Ruben

    2001-01-01

    We obtain a model-independent expression for the complete Dalitz plot of semileptonic decays of polarized hyperons, which includes both the three-body and the four-body regions. We calculate radiative corrections to order alpha, neglecting terms of order alpha q/(pi M_1), where q is the four-momentum transfer and M_1 is the mass of the decaying hyperon. Our results exhibit explicitly the correlation between the emitted hyperon three-momentum and the spin of the decaying hyperon. This allows us to obtain the corresponding radiative corrections to the integrated emitted hyperon spin-asymmetry coefficient. Our formulas are valid for charged as well as for neutral decaying hyperons and are appropriate for model-independent experimental analysis whether the real photon is discriminated or not.

  8. Breeding ecology of ferruginous hawks, Swainson’s hawks, and northern harriers in south-central North Dakota : Proposal

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Project proposal for research survey to document the breeding ecology of ferruginous hawks, Swainson’s hawk, and northern harrier in Kulm Wetland Management District...

  9. Breeding ecology of ferruginous hawks, Swainson's hawks, and northern harriers in south-central North Dakota : Final report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Final report of research survey to document the breeding ecology of ferruginous hawks, Swainson’s hawk, and northern harrier in Kulm Wetland Management District...

  10. Breeding ecology of ferruginous hawks, Swainson's hawks, and northern harriers in south-central North Dakota : Final report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Final report of research survey to document the breeding ecology of ferruginous hawks, Swainsons hawk, and northern harrier in Kulm Wetland Management District WMD...

  11. Evidence of hawking (falconry) from bird and mammal bones

    NARCIS (Netherlands)

    Prummel, W.

    1997-01-01

    This paper deals with the archaeozoological and archaeological evidence for hawking, or falconry. The methods and history of hawking in Europe are described, after which five types of evidence for hawking are discussed. These are illustrated with material from the Slavonic stronghold of Oldenburg in

  12. Evidence of hawking (falconry) from bird and mammal bones

    NARCIS (Netherlands)

    Prummel, W.

    1997-01-01

    This paper deals with the archaeozoological and archaeological evidence for hawking, or falconry. The methods and history of hawking in Europe are described, after which five types of evidence for hawking are discussed. These are illustrated with material from the Slavonic stronghold of Oldenburg in

  13. Radiation protection: Radiation dose units and fundamentals. Correct use of radiation dose units, measurements, risk assessment; Dosisbegriffe und Grundlagen im Strahlenschutz. Dosisbegriffe richtig anwenden, Messgroessen bestimmen, Risiken bewerten

    Energy Technology Data Exchange (ETDEWEB)

    Folkerts, K.H.; Wolf, H.

    2005-07-01

    Radiation protection intends to prevent radiation damage by appropriate staff-related and technical measures in accordance with the specifications of the German X-Ray Ordinance (RoV) and Radiation Protection Ordinance (StrlSchV) and in agreement with the ICRLP (International Commission on Radiological Protection). They require that radiation use must be justified, exposure conditions must be optimised, and exposure times must be limited to the shortest time necessary. In practical use, this requires considerable practical and theoretical knowledge from the user concerning the physical properties of radiation sources, interactions with tissue and matter of different types of radiation, and biological effects of radiation. National and international organizations and committees have specified the knowledge which a user must have as follows: Physical fundamentals of radiation protection; Measuring quantities and specified standard units; Organisational and constructional radiation protection; Legal knowledge. (orig.)

  14. Stephen Hawking and the universe a biography

    CERN Document Server

    Sztajnkrycer, Ben

    2012-01-01

    ABOUT THE BOOK Stephen William Hawking is arguably the most famous scientist since Albert Einstein. He is a theoretical physicist, applied mathematician, and cosmologist, but he is best known to non-scientists as the author of "A Brief History of Time," his best-selling book that unraveled the origins of the universe. His fame is so far-reaching that he has appeared on such popular entertainment as "Star Trek: The Next Generation" and "Late Night with Conan O'Brien." He has even been animated as a character on "The Simpsons." Hawking is also well known for being the longest-living survivor

  15. Self-absorption correction factor for a sample excited by the bremsstrahlung radiation

    CERN Document Server

    Mandal, A C; Mitra, D; Sarkar, M; Bhattacharya, D P

    2002-01-01

    A method of calculating the self-absorption correction factor for fluorescent X-rays from a sample excited by the bremsstrahlung has been described. As a typical example, the correction factors for K subalpha of Si and Cu for different tube voltages have been calculated. Polynomial fit of the correction factor against the tube voltage in the range 10-100 kV has been given for both the elements.

  16. Stephen Hawking a life in science

    CERN Document Server

    White, Michael

    1992-01-01

    This biography of the author of "A Brief History of Time", pays particular attention to Hawking's considerable scientific achievement, as well as to the tragic progress of his illnesss and his extraordinary will to survive and to continue working despite major progressive handicap.

  17. Stephen Hawking, Black Holes and Quantum Theory

    Institute of Scientific and Technical Information of China (English)

    CatyWeaver; 朱汉昌

    2004-01-01

    Recently, the physicist Stephen Hawking(斯蒂芬·霍金)had an announcement that made news around the world. Mr. Hawking is the Lucasian.Professor of Mathematics at the University of Cambridge in England. He was in Ireland at the Seventeenth International Conference on General Relativity. This was his announcement: he has changed his mind about black holes.

  18. On the stringy Hartle-Hawking state

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Israel, Roy [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel); Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Itzhaki, Nissan; Liram, Lior [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel)

    2016-03-03

    We argue that non-perturbative α{sup ′} stringy effects render the Hartle-Hawking state associated with the SL(2)/U(1) eternal black hole singular at the horizon. We discuss implications of this observation on firewalls in string theory.

  19. Mapping Hawking into Unruh thermal properties

    OpenAIRE

    S. Deser; Levin, Orit

    1999-01-01

    By globally embedding curved spaces into higher dimensional flat ones, we show that Hawking thermal properties map into their Unruh equivalents: The relevant curved space detectors become Rindler ones, whose temperature and entropy reproduce the originals. Specific illustrations include Schwarzschild, Schwarzschild–(anti-)de Sitter, Reissner-Nordström, and Bañados-Teitelboim-Zanelli spaces.

  20. Atmospheric radiative transfer simulation for atmospheric correction of remote sensing data

    Institute of Scientific and Technical Information of China (English)

    Yunfei Bao; Shengbo Chen

    2006-01-01

    The radiance leaving the earth-atmosphere system which can be sensed by a satellite borne radiometer is the sum of radiation emission from the earth surface and each atmospheric level that are transmitted to the top of the atmosphere. The radiation emission from the earth surface and the radiance of each atmospheric level can be separated from the radiance at the top the atmospheric level measured by a satellite borne radiometer. However, it is very difficult to measure the atmospheric radiance, especially the synchronous measurement with the satellite. Thus some atmospheric radiative transfer models have been developed to provide many options for modeling atmospheric radiation transport, such as LOWTRAN, MODTRAN, 6S, FASCODE, LBLRTM, SHARC, and SAMM. Meanwhile, these models can support the detailed detector system design, the optimization and evaluation of satellite mission parameters, and the data processing procedures. As an example, the newly atmospheric radiative transfer models, MODTRAN will be compared with other models after the atmospheric radiative transfer is described. And the atmospheric radiative transfer simulation procedures and their applications to atmospheric transmittance, retrieval of atmospheric elements, and surface parameters, will also be presented.

  1. Analysis of the Failures and Corrective Actions for the LHC Cryogenics Radiation Tolerant Electronics and its Field Instruments

    CERN Document Server

    Balle, Ch; Vauthier, N

    2014-01-01

    The LHC cryogenic system radiation tolerant electronics and their associated field instruments have been in nominal conditions since before the commissioning of the first LHC beams in September 2008. This system is made of about 15’000 field instruments (thermometers, pressure sensors, liquid helium level gauges, electrical heaters and position switches), 7’500 electronic cards and 853 electronic crates. Since mid-2008 a software tool has been deployed, this allows an operator to report a problem and then lists the corrective actions. The tool is a great help in detecting recurrent problems that may be tackled by a hardware or software consolidation. The corrective actions range from simple resets, exchange of defective equipment, repair of electrical connectors, etc. However a recurrent problem that heals by itself is present on some channels. This type of fault is extremely difficult to diagnose and it appears as a temporary opening of an electrical circuit; its duration can range from a few minutes to ...

  2. Recovery and radiation corrections and time constants of several sizes of shielded and unshielded thermocouple probes for measuring gas temperature

    Science.gov (United States)

    Glawe, G. E.; Holanda, R.; Krause, L. N.

    1978-01-01

    Performance characteristics were experimentally determined for several sizes of a shielded and unshielded thermocouple probe design. The probes are of swaged construction and were made of type K wire with a stainless steel sheath and shield and MgO insulation. The wire sizes ranged from 0.03- to 1.02-mm diameter for the unshielded design and from 0.16- to 0.81-mm diameter for the shielded design. The probes were tested through a Mach number range of 0.2 to 0.9, through a temperature range of room ambient to 1420 K, and through a total-pressure range of 0.03 to 0.2.2 MPa (0.3 to 22 atm). Tables and graphs are presented to aid in selecting a particular type and size. Recovery corrections, radiation corrections, and time constants were determined.

  3. Eikonal field theory description of interacting pomerons. [Total cross sections, Feynman graphs, self-energy radiative correction, unitarity

    Energy Technology Data Exchange (ETDEWEB)

    Fried, H. M.

    1976-01-01

    Starting from an underlying field theory in Eikonal approximation, interacting Pomerons are produced by retaining those Feynman graphs that correspond to self-energy and related radiative corrections. Multiple Reggeon t-channel thresholds may be viewed in a simple s-channel field theory framework, while the degree of s-channel unitarity required depends upon the spin content of the underlying field theory and the classes of permitted processes. An approximate Eikonal calculation suggests how restricted triple-Pomeron interactions can serve to remove the bare Pomeron, and substitute an alternate asymptotic expression for o/sub TOT/.

  4. [Crex and Orion analysis in radiation oncology: towards a mutualisation of corrective actions].

    Science.gov (United States)

    Lartigau, E; Vitoux, A; Debouck, F

    2009-10-01

    After working on treatment organization in radiotherapy (bonnes pratiques organisationnelles en radiothérapie--action pilote MeaH 2003), the development of a security policy has become crucial. With the help of Air France consulting and the MeaH, three cancer centers in Angers, Lille et Villejuif worked together on the implantation of experience feed back committees (Crex) dedicated to the registration, analysis and correction of precursor events. This action has now been implemented in all the FNCLCC centers. It seems now important to have a program of mutualisation of corrective actions for all participants. This will allow to review the Orion method of events analysis.

  5. Finite size corrections to the radiation reaction force in classical electrodynamics.

    Science.gov (United States)

    Galley, Chad R; Leibovich, Adam K; Rothstein, Ira Z

    2010-08-27

    We introduce an effective field theory approach that describes the motion of finite size objects under the influence of electromagnetic fields. We prove that leading order effects due to the finite radius R of a spherically symmetric charge is order R2 rather than order R in any physical model, as widely claimed in the literature. This scaling arises as a consequence of Poincaré and gauge symmetries, which can be shown to exclude linear corrections. We use the formalism to calculate the leading order finite size correction to the Abraham-Lorentz-Dirac force.

  6. ADM mass of the quantum-corrected Schwarzchild black hole

    CERN Document Server

    Buric, M; Buric, Maja; Radovanovic, Voja

    2000-01-01

    We study the hamiltonian and constraints of spherically symmetric dilaton gravity model. We find the ADM mass of the solution representing the Schwarzchild black hole in thermal equilibrium with the Hawking radiation.

  7. Radiative-nonrecoil corrections of order alpha^2 (Z alpha)^5 to the Lamb shift

    CERN Document Server

    Dowling, Matthew; Piclum, Jan H; Czarnecki, Andrzej

    2009-01-01

    We present results for the corrections of order alpha^2 (Z alpha)^5 to the Lamb shift. We compute all the contributing Feynman diagrams in dimensional regularization and a general covariant gauge using a mixture of analytical and numerical methods. We confirm results obtained by other groups and improve their precision. Values of the 32 master integrals for this and similar problems are provided.

  8. A non-parametric method for correction of global radiation observations

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Perers, Bengt;

    2013-01-01

    in the observations are corrected. These are errors such as: tilt in the leveling of the sensor, shadowing from surrounding objects, clipping and saturation in the signal processing, and errors from dirt and wear. The method is based on a statistical non-parametric clear-sky model which is applied to both...

  9. Bekenstein-Hawking entropy from Criticality

    CERN Document Server

    Bhattacharya, Swastik

    2014-01-01

    Vacuum Einstein equations when projected on to a black hole horizon is analogous to the dynamics of fluids. In this work we address the question, whether certain properties of semi-classical black holes could be holographically mapped into properties of (2 + 1)-dimensional fluid living on the horizon. In particular, we focus on the statistical mechanical description of the horizon-fluid that leads to Bekenstein-Hawking entropy. Within the paradigm of Landau mean field theory and existence of a condensate at a critical temperature, we explicitly show that Bekenstein-Hawking entropy and other features of black hole thermodynamics can be recovered from the statistical modelling of the fluid. We also show that a negative cosmological constant acts like an external magnetic field that induces order in the system leading to the appearance of a tri-critical point in the phase diagram.

  10. Live trapping of hawks and owls

    Science.gov (United States)

    Stewart, R.E.; Cope, J.B.; Robbins, C.S.

    1945-01-01

    1. Hawks of six species (80 individuals) and owls of five species (37 individuals) were trapped for banding from November 1, 1943, to. May 26,1944. 2. In general, pole traps proved better than hand-operated traps or automatic traps using live bait. 3. Verbail pole traps proved very efficient, and were much more humane than padded steel traps because they rarely injured a captured bird. 4: Unbaited Verbail traps took a variety of raptors, in rough proportion to their local abundance, although slightly more of beneficial species were caught than of harmful types. 5. Hawks and owls were retrapped more readily in Verbail traps than in other types tried. 6. The number of song birds caught in Verbail traps was negligible. 7. Crows and vultures were not taken in Verbail traps, but possibly could be caught with bait.

  11. A hawk is ready for flight

    Science.gov (United States)

    2000-01-01

    This Broad-Winged Hawk is ready for flight from its perch on a utility pole at Kennedy Space Center. This hawk's habitat is chiefly deciduous woodland, ranging from southern Canada south throughout the eastern United States, including a small area of Central Florida. It winters in tropical South America. The Center shares a boundary with the Merritt Island National Wildlife Refuge, a haven and habitat for more than 331 species of birds. The Refuge encompasses 92,000 acres that are also a habitat for 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  12. Radiative corrections and Monte Carlo generators for physics at flavor factories

    Directory of Open Access Journals (Sweden)

    Montagna Guido

    2016-01-01

    Full Text Available I review the state of the art of precision calculations and related Monte Carlo generators used in physics at flavor factories. The review describes the tools relevant for the measurement of the hadron production cross section (via radiative return, energy scan and in γγ scattering, luminosity monitoring, searches for new physics and physics of the τ lepton.

  13. Effect of the refractive index on the hawking temperature: an application of the Hamilton-Jacobi method

    Energy Technology Data Exchange (ETDEWEB)

    Sakalli, I., E-mail: izzet.sakalli@emu.edu.tr; Mirekhtiary, S. F., E-mail: fatemeh.mirekhtiary@emu.edu.tr [Eastern Mediterranean University G. Magosa, Department of Physics (Turkey)

    2013-10-15

    Hawking radiation of a non-asymptotically flat 4-dimensional spherically symmetric and static dilatonic black hole (BH) via the Hamilton-Jacobi (HJ) method is studied. In addition to the naive coordinates, we use four more different coordinate systems that are well-behaved at the horizon. Except for the isotropic coordinates, direct computation by the HJ method leads to the standard Hawking temperature for all coordinate systems. The isotropic coordinates allow extracting the index of refraction from the Fermat metric. It is explicitly shown that the index of refraction determines the value of the tunneling rate and its natural consequence, the Hawking temperature. The isotropic coordinates in the conventional HJ method produce a wrong result for the temperature of the linear dilaton. Here, we explain how this discrepancy can be resolved by regularizing the integral possessing a pole at the horizon.

  14. Effect of the refractive index on the hawking temperature: an application of the Hamilton-Jacobi method

    Science.gov (United States)

    Sakalli, I.; Mirekhtiary, S. F.

    2013-10-01

    Hawking radiation of a non-asymptotically flat 4-dimensional spherically symmetric and static dilatonic black hole (BH) via the Hamilton-Jacobi (HJ) method is studied. In addition to the naive coordinates, we use four more different coordinate systems that are well-behaved at the horizon. Except for the isotropic coordinates, direct computation by the HJ method leads to the standard Hawking temperature for all coordinate systems. The isotropic coordinates allow extracting the index of refraction from the Fermat metric. It is explicitly shown that the index of refraction determines the value of the tunneling rate and its natural consequence, the Hawking temperature. The isotropic coordinates in the conventional HJ method produce a wrong result for the temperature of the linear dilaton. Here, we explain how this discrepancy can be resolved by regularizing the integral possessing a pole at the horizon.

  15. Effect of the Refractive Index on the Hawking Temperature: An Application of the Hamilton-Jacobi Method

    CERN Document Server

    Sakalli, I

    2013-01-01

    Hawking radiation of a non-asymptotically flat (NAF) 4-dimensional spherically symmetric and static dilatonic black hole (BH) via the Hamilton-Jacobi (HJ) method has been studied. In addition to the naive coordinates, we have used four more different coordinate systems which are well-behaved at the horizon. Except the isotropic coordinates, direct computation of the HJ method leads us the standard Hawking temperature for all coordinate systems. The isotropic coordinates render possible to get the index of refraction extracting from the Fermat metric. It is explicitly shown that the index of refraction determines the value of the tunneling rate and its natural consequence, Hawking temperature. The isotropic coordinates within the conventional HJ method produce wrong result for the temperature of the LDBH. Here, we explain how this discrepancy can be resolved by regularizing the integral possessing a pole at the horizon.

  16. Correlation, entropy, and information transfer in black hole radiation

    CERN Document Server

    Zhang, Baocheng; Zhan, Mingsheng; You, Li

    2014-01-01

    Since the discovery of Hawking radiation, its consistency with quantum theory has been widely questioned. In the widely described picture, irrespective of what initial state a black hole starts with before collapsing, it eventually evolves into a thermal state of Hawking radiations after the black hole is exhausted. This scenario violates the principle of unitarity as required for quantum mechanics and leads to the acclaimed "information loss paradox". This paradox has become an obstacle or a reversed touchstone for any possible theory to unify the gravity and quantum mechanics. Based on the results from Hawking radiation as tunneling, we recently show that Hawking radiations can carry off all information about the collapsed matter in a black hole. After discovering the existence of information-carrying correlation, we show in great detail that entropy is conserved for Hawking radiation based on standard probability theory and statistics. We claim that information previously considered lost remains hidden ins...

  17. Fatal pox infection in a rough-legged hawk

    Science.gov (United States)

    Pearson, G.L.; Pass, D.A.; Beggs, E.C.

    1975-01-01

    Natural pox infection occurred in a free-living rough-legged hawk (Buteo lagopus) in northeastern North Dakota. Gross, histological and electron microscopic findings were typical of pox infection, and characteristic lesions developed in red-tailed hawks (Buteo jamaicensis) but not in great horned owls (Bubo virginianus) following inoculation with case material. Death of the rough-legged hawk was attributed to starvation resulting from inability to capture prey and to blood loss from foot lesions.

  18. Electric Shock Injuries in a Harris's Hawk Population

    OpenAIRE

    Dwyer, James F.

    2006-01-01

    Electrocution may be an important agent of mortality in many raptor populations, and has been implicated as a contributing factor in the endangerment of some species. In Tucson, Arizona U.S.A. the electrocution of Harris's Hawks (Parabuteo unicinctus) was reported in both the 1980s and 1990s. The latter report also described Harris's Hawks that survived electric shock injuries. From February 2003-May 2004, I captured and examined wild Harris's Hawks in Tucson to investigate whether electric s...

  19. Radiative corrections to W+jet production at hadron colliders with a leptonic decay of the W boson

    Energy Technology Data Exchange (ETDEWEB)

    Kasprzik, Tobias

    2009-08-31

    The production of W bosons and additional jets at hadron colliders is a topic of great phenomenological interest, because such processes have large cross sections and, owing to the clear decay signature of the W boson, can for instance be used to monitor and calibrate the collider's luminosity, as well as for a precise determination of the W-boson mass and width. Thus, a profound theoretical understanding of this process class is mandatory. In order to improve the accuracy of the theoretical predictions, this thesis is devoted to the calculation of the electroweak radiative corrections to the production of one W boson with one associated jet at the LHC and the Tevatron within the Standard Model. Since these corrections are at first evaluated on the parton level in a perturbative approach, we work in the parton model, where the hadronic cross section is obtained by folding the partonic contributions with the parton distribution functions that contain the non-perturbative information of the proton structure and have to be determined by experiment. We provide results for a stable W boson that is produced on its mass shell as well as for an intermediate (off-shell) W boson decaying into a charged lepton and a neutrino. For a consistent calculation of the next-to-leading order corrections, we have to take into account the virtual one-loop contributions, as well as the real bremsstrahlung corrections caused by radiation of one additional photon. Within both contributions, mass singularities appear that have to be treated with care within the numerical evaluation. In the calculation with a stable W boson in the final state, we use the method of phase-space slicing in order to exclude such singularities from the numerical phase-space integration and calculate them analytically in the problematic phase-space regions. For the off-shell calculation, however, we use the more sophisticated dipole subtraction technique to subtract the infrared-singular structures on the

  20. Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study.

    Science.gov (United States)

    Kotchenova, Svetlana Y; Vermote, Eric F; Levy, Robert; Lyapustin, Alexei

    2008-05-01

    Results are summarized for a scientific project devoted to the comparison of four atmospheric radiative transfer codes incorporated into different satellite data processing algorithms, namely, 6SV1.1 (second simulation of a satellite signal in the solar spectrum, vector, version 1.1), RT3 (radiative transfer), MODTRAN (moderate resolution atmospheric transmittance and radiance code), and SHARM (spherical harmonics). The performance of the codes is tested against well-known benchmarks, such as Coulson's tabulated values and a Monte Carlo code. The influence of revealed differences on aerosol optical thickness and surface reflectance retrieval is estimated theoretically by using a simple mathematical approach. All information about the project can be found at http://rtcodes.ltdri.org.

  1. Classical Radiation Reaction Off-Shell Corrections to the Covariant Lorentz Force

    OpenAIRE

    Oron, O.; Horwitz, L. P.

    2000-01-01

    It has been shown by Gupta and Padmanabhan that the radiation reaction force of the Abraham-Lorentz-Dirac equation can be obtained by a coordinate transformation from the inertial frame of an accelerating charged particle to that of the laboratory. We show that the problem may be formulated in a flat space of five dimensions, with five corresponding gauge fields in the framework of the classical version of a fully gauge covariant form of the Stueckelberg- Feynman-Schwinger covariant mechanics...

  2. The self-absorption correction factors for (210)Pb concentration in mining waste and influence on environmental radiation risk assessment.

    Science.gov (United States)

    Bonczyk, Michal; Michalik, Boguslaw; Chmielewska, Izabela

    2017-03-01

    The radioactive lead isotope (210)Pb occurs in waste originating from metal smelting and refining industry, gas and oil extraction and sometimes from underground coal mines, which are deposited in natural environment very often. Radiation risk assessment requires accurate knowledge about the concentration of (210)Pb in such materials. Laboratory measurements seem to be the only reliable method applicable in environmental (210)Pb monitoring. One of the methods is gamma-ray spectrometry, which is a very fast and cost-effective method to determine (210)Pb concentration. On the other hand, the self-attenuation of gamma ray from (210)Pb (46.5 keV) in a sample is significant as it does not depend only on sample density but also on sample chemical composition (sample matrix). This phenomenon is responsible for the under-estimation of the (210)Pb activity concentration level often when gamma spectrometry is applied with no regard to relevant corrections. Finally, the corresponding radiation risk can be also improperly evaluated. Sixty samples of coal mining solid tailings (sediments created from underground mining water) were analysed. Slightly modified and adapted to the existing laboratory condition, a transmission method has been applied for the accurate measurement of (210)Pb concentration . The observed concentrations of (210)Pb range between 42.2 ÷ 11,700 Bq·kg(-1) of dry mass. Experimentally obtained correction factors related to a sample density and elemental composition range between 1.11 and 6.97. Neglecting this factor can cause a significant error or underestimations in radiological risk assessment. The obtained results have been used for environmental radiation risk assessment performed by use of the ERICA tool assuming exposure conditions typical for the final destination of such kind of waste.

  3. NASA Global Hawk: A New Tool for Earth Science Research

    Science.gov (United States)

    Hall, Phill

    2009-01-01

    This slide presentation reviews the Global Hawk, a unmanned aerial vehicle (UAV) that NASA plans to use for Earth Sciences research. The Global Hawk is the world's first fully autonomous high-altitude, long-endurance aircraft, and is capable of conducting long duration missions. Plans are being made for the use of the aircraft on missions in the Arctic, Pacific and Western Atlantic Oceans. There are slides showing the Global Hawk Operations Center (GHOC), Flight Control and Air Traffic Control Communications Architecture, and Payload Integration and Accommodations on the Global Hawk. The first science campaign, planned for a study of the Pacific Ocean, is reviewed.

  4. Notes on breeding sharp-shinned hawks and Cooper’s hawks in Barnwell County, South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Vukovich, Mark; Kilgo, John, C.

    2009-07-01

    Abstract - Breeding records of Accipiter striatus (Sharp-shinned Hawks) in the southeastern US are scattered and isolated. We documented a Sharp-shinned Hawk and Accipiter cooperii (Cooper’s Hawk) nest while conducting a telemetry study on Melanerpes erythrocephalus (Red-headed Woodpeckers) in Barnwell County, SC in 2006 and 2007. We report the first known nest of a Sharp-shinned Hawk in Barnwell County, SC and the first report of Sharp-shinned Hawks preying upon Red-headed Woodpeckers. Thirteen of 93 (13.9 %) woodpeckers were killed by accipiters in the summers of 2006 and 2007. Large, contiguous forests managed for Picoides borealis (Red-cockaded Woodpeckers) may be used by breeding Sharp-shinned Hawks. The bright plumage, loud calls, and behavior of Red-headed Woodpeckers, particularly during the nestling stage, may make them conspicuous prey for accipiters.

  5. Universal Property of Quantum Gravity implied by Bekenstein-Hawking Entropy and Boltzmann formula

    CERN Document Server

    Saida, Hiromi

    2013-01-01

    We search for a universal property of quantum gravity. By "universal", we mean the independence from any existing model of quantum gravity (such as the super string theory, loop quantum gravity, causal dynamical triangulation, and so on). To do so, we try to put the basis of our discussion on theories established by some experiments. Thus, we focus our attention on thermodynamical and statistical-mechanical basis of the black hole thermodynamics: Let us assume that the Bekenstein-Hawking entropy is given by the Boltzmann formula applied to the underlying theory of quantum gravity. Under this assumption, the conditions justifying Boltzmann formula together with uniqueness of Bekenstein-Hawking entropy imply a reasonable universal property of quantum gravity. The universal property indicates a repulsive gravity at Planck length scale, otherwise stationary black holes can not be regarded as thermal equilibrium states of gravity. Further, in semi-classical level, we discuss a possible correction of Einstein equat...

  6. Radiative corrections to the non commutative photon propagator at one-loop order

    Energy Technology Data Exchange (ETDEWEB)

    Boutalbi, E.; Kouadik, S. [Laboratory of Particle Physics and Statistical Physics, Ecole Normale Superieure BP 92 Vieux kouba (Algeria); Faculty of Technologies Sciences,University of Medea (Algeria)

    2012-06-27

    We study the non-commutative gauge theory on the Moyal space. We add the harmonic potential introduced by Grosse and Wulkenhaar to the Maxwell Lagrange as well as the Gauge fixation. We determine the non-commutative U{sub *}(1) Gauge action which is invariant under the BRST transformations in the matrix basis. We determine in this basis the quadratic parts and the vertex of the Gauge field A{sub {mu}} and of the Faddeev-Popov ghost fields c(bar sign)andc. Finally, we study the perturbative correction to one loop order of the one point function in the matrix basis.

  7. Combined effect of QCD resummation and QED radiative correction to W boson observables at the Tevatron.

    Science.gov (United States)

    Cao, Qing-Hong; Yuan, C P

    2004-07-23

    A precise determination of the W boson mass at the Fermilab Tevatron requires a theoretical calculation in which the effects of the initial-state multiple soft-gluon emission and the final-state photonic correction are simultaneously included. Here, we present such a calculation and discuss its prediction on the transverse mass distribution of the W boson and the transverse momentum distribution of its decay charged lepton, which are the most relevant observables for measuring the W boson mass at hadron colliders.

  8. One loop radiative corrections to the translation-invariant noncommutative Yukawa Theory

    CERN Document Server

    Bouchachia, Karim; Hachemane, Mahmoud; Schweda, Manfred

    2015-01-01

    We elaborate in this paper a translation-invariant model for fermions in 4-dimensional noncommutative Euclidean space. The construction is done on the basis of the renormalizable noncommutative translation-invariant Phi4 theory introduced by R. Gurau et al. We combine our model with the scalar model, in order to study the noncommutative pseudo-scalar Yukawa theory. After we derive the Feynman rules of the theory, we perform an explicit calculation of the quantum corrections at one loop level to the propagators and vertices.

  9. Lorentz force correction to the Boltzmann radiation transport equation and its implications for Monte Carlo algorithms.

    Science.gov (United States)

    Bouchard, Hugo; Bielajew, Alex

    2015-07-07

    To establish a theoretical framework for generalizing Monte Carlo transport algorithms by adding external electromagnetic fields to the Boltzmann radiation transport equation in a rigorous and consistent fashion. Using first principles, the Boltzmann radiation transport equation is modified by adding a term describing the variation of the particle distribution due to the Lorentz force. The implications of this new equation are evaluated by investigating the validity of Fano's theorem. Additionally, Lewis' approach to multiple scattering theory in infinite homogeneous media is redefined to account for the presence of external electromagnetic fields. The equation is modified and yields a description consistent with the deterministic laws of motion as well as probabilistic methods of solution. The time-independent Boltzmann radiation transport equation is generalized to account for the electromagnetic forces in an additional operator similar to the interaction term. Fano's and Lewis' approaches are stated in this new equation. Fano's theorem is found not to apply in the presence of electromagnetic fields. Lewis' theory for electron multiple scattering and moments, accounting for the coupling between the Lorentz force and multiple elastic scattering, is found. However, further investigation is required to develop useful algorithms for Monte Carlo and deterministic transport methods. To test the accuracy of Monte Carlo transport algorithms in the presence of electromagnetic fields, the Fano cavity test, as currently defined, cannot be applied. Therefore, new tests must be designed for this specific application. A multiple scattering theory that accurately couples the Lorentz force with elastic scattering could improve Monte Carlo efficiency. The present study proposes a new theoretical framework to develop such algorithms.

  10. Hawking temperature: an elementary approach based on Newtonian mechanics and quantum theory

    Science.gov (United States)

    Pinochet, Jorge

    2016-01-01

    In 1974, the British physicist Stephen Hawking discovered that black holes have a characteristic temperature and are therefore capable of emitting radiation. Given the scientific importance of this discovery, there is a profuse literature on the subject. Nevertheless, the available literature ends up being either too simple, which does not convey the true physical significance of the issue, or too technical, which excludes an ample segment of the audience interested in science, such as physics teachers and their students. The present article seeks to remedy this shortcoming. It develops a simple and plausible argument that provides insight into the fundamental aspects of Hawking’s discovery, which leads to an approximate equation for the so-called Hawking temperature. The exposition is mainly intended for physics teachers and their students, and it only requires elementary algebra, as well as basic notions of Newtonian mechanics and quantum theory.

  11. Radiative corrections to the Higgs boson couplings in the triplet model

    CERN Document Server

    Aoki, Mayumi; Kikuchi, Mariko; Yagyu, Kei

    2012-01-01

    We calculate a full set of one-loop corrections to the Higgs boson coupling constants as well as the electroweak parameters. We compute the decay rate of the standard model (SM)-like Higgs boson ($h$) into diphoton. Renormalized Higgs couplings with the weak gauge bosons $hVV$ ($V=W$ and $Z$) and the trilinear coupling $hhh$ are also calculated at the one-loop level in the on-shell scheme. Magnitudes of the deviations in these quantities are evaluated in the parameter regions where the unitarity and vacuum stability bounds are satisfied and the predicted W boson mass at the one-loop level is consistent with the data. We find that there are strong correlations among deviations in the Higgs boson couplings $h\\gamma\\gamma$, $hVV$ and $hhh$. For example, if the event number of the $pp\\to h\\to\\gamma\\gamma$ channel deviates by +30% (-40%) from the SM prediction, deviations in the one-loop corrected $hVV$ and $hhh$ vertices are predicted about -0.1% (-2%) and -10% $(+150%)$, respectively. The model can be discrimina...

  12. Radiative corrections to the Higgs boson couplings in the Higgs triplet model

    CERN Document Server

    Kikuchi, Mariko

    2013-01-01

    We calculate Higgs coupling constants at one-loop level in the Higgs triplet model (HTM) to compare to future collider experiments. We evaluate the decay rate of the standard model (SM)-like Higgs boson ($h$) into diphoton. Renormalized Higgs couplings with the weak gauge bosons $hVV$ ($V=W$\\ and\\ $Z$) and the trilinear coupling $hhh$ are also calculated at the one-loop level in the on-shell scheme. The event rate of the $pp\\rightarrow h \\rightarrow \\gamma\\gamma$ channel in the HTM to the one in the SM can cover the value from the recent LHC data. We find that in the allowed parameter region by the current data, deviations in the one-loop corrected $hVV$ and $hhh$ vertices can be about -1% and +50%, respectively. Magnitudes of these deviations can be enough significant to compare with the precision future data at the International Linear Collider.

  13. UH-60M Black Hawk Helicopter (UH-60M Black Hawk)

    Science.gov (United States)

    2016-12-01

    Strategy, and the National Defense Strategy. The UH-60M Black Hawk is a digital networked platform with greater range and lift to support maneuver...Critical All All Survivability IR Signature N/A Existing Existing Existing Existing Aircraft Survivability Equipment N/A Existing Existing Existing

  14. Radiative corrections of O(α) to B{sup -} → V{sup 0}l{sup -} anti ν{sub l} decays

    Energy Technology Data Exchange (ETDEWEB)

    Tostado, S.L. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Departamento de Fisica, Mexico, D.F. (Mexico); Castro, G.L. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Departamento de Fisica, Mexico, D.F. (Mexico); CSIC- Universitat de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain)

    2016-09-15

    The O(α) electromagnetic radiative corrections to the B{sup -} → V{sup 0}l{sup -} anti ν{sub l} (V is a vector meson and l a charged lepton) decay rates are evaluated using the cutoff method to regularize virtual corrections and incorporating intermediate resonance states in the real-photon amplitude to extend the region of validity of the soft-photon approximation. The electromagnetic and weak form factors of hadrons are assumed to vary smoothly over the energies of virtual and real photons under consideration. The cutoff dependence of radiative corrections upon the scale Λ that separates the long- and short-distance regimes is found to be mild and is considered as an uncertainty of the calculation. Owing to partial cancellations of electromagnetic corrections evaluated over the three- and four-body regions of phase space, the photon-inclusive corrected rates are found to be dominated by the short-distance contribution. These corrections will be relevant for a precise determination of the b quark mixing angles by testing isospin symmetry when measurements of semileptonic rates of charged and neutral B mesons at the few percent level become available. For completeness, we also provide numerical values of radiative corrections in the three-body region of the Dalitz plot distributions of these decays. (orig.)

  15. A quasiperiodic Gibbons-Hawking metric and spacetime foam

    CERN Document Server

    Nergiz, S; Nergiz, Serdar; Saclioglu, Cihan

    1995-01-01

    We present a quasiperiodic self-dual metric of the Gibbons--Hawking type with one gravitational instanton per spacetime cell. The solution, based on an adaptation of Weierstrassian \\zeta and \\sigma functions to three dimensions, conforms to a definition of spacetime foam given by Hawking.

  16. Stephen Hawking%史蒂芬·霍金

    Institute of Scientific and Technical Information of China (English)

    李同良

    2006-01-01

    @@ Professor Stephen William Hawking was born on 8 January 1942 in Oxford, England, which is exactly 300 years after the death of Galileo1. From a very early age Hawking showed the qualities2 of a scientist. He was always inquisitive3 and liked to build models to see how things worked.

  17. Delayed response in the Hawk Dove game

    Science.gov (United States)

    Burridge, James; Gao, Yu; Mao, Yong

    2017-01-01

    We consider a group of agents playing the Hawk-Dove game. These agents have a finite memory of past interactions which they use to optimize their play. By both analytical and numerical approaches, we show that an instability occurs at a critical memory length, and we provide its characterization. We show also that when the game is stable, having a long memory is beneficial but that instability, which may be produced by excessively long memory, hands the advantage to those with shorter memories.

  18. Casadio-Fabbri-Mazzacurati Black Strings and Braneworld-induced Quasars Luminosity Corrections

    CERN Document Server

    da Rocha, Roldao; Kuerten, A M; Coimbra-Araujo, C H

    2013-01-01

    This paper aims to evince the corrections on the black string warped horizon in the braneworld paradigm, and their drastic physical consequences, as well as to provide subsequent applications in astrophysics. Our analysis concerning black holes on the brane departs from the Schwarzschild case, where the black string is unstable to large-scale perturbation. The cognizable measurability of the black string horizon corrections due to braneworld effects is investigated, as well as their applications in the variation of quasars luminosity. We delve into the case wherein two solutions of Einstein's equations proposed by Casadio, Fabbri, and Mazzacurati, regarding black hole metrics presenting a post-Newtonian parameter measured on the brane. In this scenario, it is possible to analyze purely the braneworld corrected variation in quasars luminosity, by an appropriate choice of the post-Newtonian parameter that precludes Hawking radiation on the brane: the variation in quasars luminosity is uniquely provided by pure ...

  19. GASS: The Parkes Galactic All-Sky Survey. II. Stray-Radiation Correction and Second Data Release

    CERN Document Server

    Kalberla, P M W; Pisano, D J; Calabretta, M R; Ford, H Alyson; Lockman, Felix J; Staveley-Smith, L; Kerp, J; Winkel, B; Murphy, T; Newton-McGee, K

    2010-01-01

    The Parkes Galactic All-Sky Survey (GASS) is a survey of Galactic atomic hydrogen (HI) emission in the southern sky observed with the Parkes 64-m Radio Telescope. The first data release was published by McClure-Griffiths et al. (2009). We remove instrumental effects that affect the GASS and present the second data release. We calculate the stray-radiation by convolving the all-sky response of the Parkes antenna with the brightness temperature distribution from the Leiden/Argentine/Bonn (LAB) all sky 21-cm line survey, with major contributions from the 30-m dish of the Instituto Argentino de Radioastronomia (IAR) in the southern sky. Remaining instrumental baselines are corrected using the LAB data for a first guess of emission-free baseline regions. Radio frequency interference is removed by median filtering. After applying these corrections to the GASS we find an excellent agreement with the Leiden/Argentine/Bonn (LAB) survey. The GASS is the highest spatial resolution, most sensitive, and is currently the m...

  20. QED radiative corrections and many-body effects in atoms: the Uehling potential and shifts in alkali metals

    CERN Document Server

    Ginges, J S M

    2015-01-01

    We consider the largest (Uehling) contribution to the one-loop vacuum polarization correction to the binding energies in neutral alkali atoms, from Na through to the superheavy element E119. We use the relativistic Hartree-Fock method to demonstrate the importance of core relaxation effects. These effects are sizeable everywhere, though particularly important for orbitals with angular momentum quantum number l > 0. For d waves, the Uehling shift is enhanced by many orders of magnitude: for Cs the enhancement is more than four orders of magnitude and for the lighter alkali atoms it is even larger. We also study the effects of second- and higher-order many-body perturbation theory on the valence level shifts through inclusion of the correlation potential. The many-body enhancement mechanisms that operate in the case of the Uehling potential apply also to the case of the larger QED self-energy radiative corrections. The huge enhancement for d level shifts makes high-precision studies of transition frequencies in...

  1. Toward improved corrections for radiation-induced biases in radiosonde temperature observations

    Science.gov (United States)

    Sun, Bomin; Reale, Anthony; Schroeder, Steven; Seidel, Dian J.; Ballish, Bradley

    2013-05-01

    biases in global operational radiosonde temperature data from May 2008 to August 2011 are examined by using spatially and temporally collocated Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) data as estimates of the truth. The data on average from most radiosonde types show a nighttime cold bias and a daytime warm bias relative to COSMIC. Most daytime biases increase with altitude and solar elevation angle (SEA). The global average biases in the 15-70 hPa layer are -0.05 ± 1.89 K standard deviation (~52,000 profiles) at night and 0.39 ± 1.80 K standard deviation (~64,500 profiles) in daytime (SEA > 7.5°). Daytime warm biases associated with clouds are smaller than those under clear conditions. Newer sondes (post-2000) have smaller biases and appear to be less sensitive to effects of clouds. Biases at night show greater seasonal and zonal variations than those for daytime. In general, warm night biases are associated with warm climate regimes and less warm or cold night biases with cold climate regimes. Bias characteristics for 13 major radiosonde types are provided, as a basis for updating radiosonde corrections used in numerical weather predictions, for validating satellite retrievals, and for adjusting archived radiosonde data to create consistent climate records.

  2. Motion correction for passive radiation imaging of small vessels in ship-to-ship inspections

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, K.P., E-mail: ziockk@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Boehnen, C.B.; Ernst, J.M.; Fabris, L. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hayward, J.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Karnowski, T.P.; Paquit, V.C.; Patlolla, D.R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Trombino, D.G. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2016-01-01

    Passive radiation detection remains one of the most acceptable means of ascertaining the presence of illicit nuclear materials. In maritime applications it is most effective against small to moderately sized vessels, where attenuation in the target vessel is of less concern. Unfortunately, imaging methods that can remove source confusion, localize a source, and avoid other systematic detection issues cannot be easily applied in ship-to-ship inspections because relative motion of the vessels blurs the results over many pixels, significantly reducing system sensitivity. This is particularly true for the smaller watercraft, where passive inspections are most valuable. We have developed a combined gamma-ray, stereo visible-light imaging system that addresses this problem. Data from the stereo imager are used to track the relative location and orientation of the target vessel in the field of view of a coded-aperture gamma-ray imager. Using this information, short-exposure gamma-ray images are projected onto the target vessel using simple tomographic back-projection techniques, revealing the location of any sources within the target. The complex autonomous tracking and image reconstruction system runs in real time on a 48-core workstation that deploys with the system.

  3. An Evaluation of the Nonlinearity Correction Applied to Atmospheric Emitted Radiance Interferometer (AERI) Data Collected by the Atmospheric Radiation Measurement Program

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D. D. [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.; Knuteson, R. O. [Univ. of Wisconsin, Madison, WI (United States); Revercomb, H. E. [Univ. of Wisconsin, Madison, WI (United States); Dedecker, R. G. [Univ. of Wisconsin, Madison, WI (United States); Feltz, W. F. [Univ. of Wisconsin, Madison, WI (United States)

    2004-09-01

    Mercury Cadmium Telluride (MCT) detectors provide excellent sensitivity to infrared radiation and are used in passive infrared remote sensors such as the Atmospheric Emitted Radiance Interferometer (AERI). However, MCT detectors have a nonlinear response and thus this nonlinearity must be characterized and corrected to provide accurate infrared radiance observations. This paper discusses the significance of the nonlinearity correction applied to AERI data and its impacts on the parameters retrieved from the AERI spectra. It also evaluates the accuracy of the scheme used to determine the nonlinearity of the MCT detectors used in the Atmospheric Radiation Measurement (ARM) Program’s AERIs.

  4. [Corrective effects of electromagnetic radiation in a millimeter wavelength range on the parameters of oxidative stress after standard anti-helicobacterial therapy in patients with ulcer disease].

    Science.gov (United States)

    Ivanishkina, E V; Podoprigorova, V G

    2012-01-01

    We assessed the possibilities of correction of oxidative stress parameters in the serum and gastroduodenal mucosa using electromagnetic radiation in a millimeter wavelength range in 127 patients with gastric and duodenal ulcer after eradication therapy. Control group included 230 healthy subjects. Parameter of lipid oxidation by free radicals were measured by direct methods (hemiluminescence and EPR-spectroscopy). The results show that standard eradication therapy does not influence parameters of oxidative stress. More pronounced effect of electromagnetic radiation in a millimeter wavelength range may be due to the correction of prooxidant-antioxidant and antioxidant disbalance. This observation provides pathogenetic substantiation for the inclusion of this physical method in modern therapeutic modalities.

  5. Full $\\mathcal{O}(\\alpha)$ electroweak radiative corrections to $t \\bar{t} \\gamma$ and $e^-e^+\\gamma$ productions at ILC with GRACE-Loop

    CERN Document Server

    Khiem, P H; Fujimoto, J; Igarashi, M; Ishikawa, T; Kaneko, T; Kato, K; Nakazawa, N; Shimizu, Y; Tobimatsu, K; Ueda, T; Vermaseren, J A M; Yasui, Y

    2013-01-01

    The full $\\mathcal{O}(\\alpha)$ electroweak radiative corrections to $t \\bar{t} \\gamma$ and $e^-e^+\\gamma$ productions at the International Linear Collider (ILC) are presented in this paper. The computation is performed with the help of GRACE-Loop system. In the physical results, we discuss on the cross section, electroweak corrections, and the top quark forward-backward asymmetry ($A_{FB}$) which are the function of the center-of-mass energy.

  6. Plumage polymorphism and fitness in Swainson's hawks.

    Science.gov (United States)

    Briggs, C W; Collopy, M W; Woodbridge, B

    2011-10-01

    We examine the maintenance of a plumage polymorphism, variation in plumages among the same age and sex class within a population, in a population of Swainson's Hawks. We take advantage of 32 years of data to examine two prevalent hypotheses used to explain the persistence of morphs: apostatic selection and heterozygous advantage. We investigate differences in fitness among three morph classes of a melanistic trait in Swainson's Hawks: light (7% of the local breeding population), intermediate (57%) and dark (36%). Specifically, we examined morph differences in adult apparent survival, breeding success, annual number of fledglings produced, probability of offspring recruitment into the breeding population and lifetime reproductive success (LRS). If apostatic selection were a factor in maintaining morphs, we would expect that individuals with the least frequent morph would perform best in one or more of these fitness categories. Alternatively, if heterozygous advantage played a role in the maintenance of this polymorphism, we would expect heterozygotes (i.e. intermediate morphs) to have one or more increased rates in these categories. We found no difference in adult apparent survival between morph classes. Similarly, there were no differences in breeding success, nest productivity, LRS or probability of recruitment of offspring between parental morph. We conclude that neither apostatic selection nor heterozygous advantage appear to play a role in maintaining morphs in this population.

  7. A red-tailed hawk at KSC

    Science.gov (United States)

    2000-01-01

    At KSC, a red-tailed hawk waits on top of a utility pole for the slightest movement in the grass below. It feeds mostly on small rodents. Ranging in height from 18 inches to 25 inches, the species has a stocky build with a whitish breast and rust-colored tail. It has a high-pitched descending scream with a hoarse quality. The hawk inhabits mainly deciduous forest and adjacent open country from Alaska and Nova Scotia south to Panama. KSC shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  8. Gauge dependence and self-force from Galilean to Einsteinian free fall, compact stars falling into black holes, Hawking radiation and the Pisa tower at the general relativity centennial

    CERN Document Server

    Spallicci, Alessandro D A M

    2016-01-01

    (Short abstract). In Galilean physics, the universality of free fall implies an inertial frame, which in turns implies that the mass m of the falling body is omitted. Otherwise, an additional acceleration proportional to m/M would rise either for an observer at the centre of mass of the system, or for an observer at a fixed distance from the centre of mass of M. These elementary, but overlooked, considerations fully respect the equivalence principle and the identity of an inertial or a gravitational pull for an observer in the Einstein cabin. They value as fore-runners of the self-force and gauge dependency in general relativity. The approximate nature of Galilei's law of free fall is explored herein. When stepping into general relativity, we report how the geodesic free fall into a black hole was the subject of an intense debate again centred on coordinate choice. Later, we describe how the infalling mass and the emitted gravitational radiation affect the free fall motion of a body. The general relativistic ...

  9. Relic Radiation from an Evaporating Black Hole

    CERN Document Server

    Farley, A N St J

    2007-01-01

    We present a non-string-theoretic calculation of the microcanonical entropy of relic integer-spin Hawking radiation -- at fixed total energy $E$. The only conserved macroscopic quantity is the total energy $E$ (the total energy of the relic radiation). Data for a boundary-value approach, with massless, integer-spin perturbations, are set on initial and final space-like hypersurfaces. In the resulting 1-dimensional statistical-mechanics problem, the real part of the (complex) time separation at spatial infinity, $T = {\\mid}T{\\mid}\\exp(-i\\delta), \\delta >0$, is the variable conjugate to the total energy. We count the number of weak-field configurations on the final space-like hypersurface with energy $E$. One recovers the Cardy formula and the Bekenstein-Hawking entropy, if Re(T) is of the order of the black-hole life- time, leading to a statistical interpretation of black-hole entropy. The microcanonical entropy includes a logarithmic correction to the black-hole area law, which is {\\it universal} (independent...

  10. Sensitivity of the decay $h\\to ZZ^*\\to Zl+l-$ to the Higgs self coupling through radiative corrections

    CERN Document Server

    Castilla-Valdez, H; Moyotl, A; Perez, M A

    2015-01-01

    We study the radiative corrections induced by the triple Higgs boson coupling $hhh$ in the three body decay $h\\to ZZ^*\\to Zl\\bar l$. We show that these corrections are potentially sensitive to the specific value of this coupling in the Standard Model and the Two Higgs Doublet Model. These effects may induce corrections to the integrated decay width of the three-body decay of order few percent and thus open a new window to test the Higgs boson self interaction.

  11. Black Hole Radiation with Modified Dispersion Relation in Tunneling Paradigm: Static Frame

    CERN Document Server

    Wang, Peng

    2015-01-01

    Due to the exponential high gravitational red shift near the event horizon of a black hole, it might appears that the Hawking radiation would be highly sensitive to some unknown high energy physics. To study possible deviations from the Hawking's prediction, the dispersive field theory models have been proposed, following the Unruh's hydrodynamic analogue of a black hole radiation. In the dispersive field theory models, the dispersion relations of matter fields are modified at high energies, which leads to modifications of equations of motion. In this paper, we use the Hamilton-Jacobi method to investigate the dispersive field theory models. The preferred frame is the static frame of the black hole. The dispersion relation adopted agrees with the relativistic one at low energies but is modified near the Planck mass $m_{p}$. We calculate the corrections to the Hawking temperature for massive and charged particles to $\\mathcal{O}\\left(m_{p}^{-2}\\right) $ and massless and neutral particles to all orders. Our res...

  12. Experimental vacuolar myelinopathy in red-tailed hawks.

    Science.gov (United States)

    Fischer, John R; Lewis-Weis, Lynn A; Tate, Cynthia M

    2003-04-01

    Avian vacuolar myelinopathy (AVM) was recognized in 1994 as a cause of wild bird mortality when 29 bald eagles (Haliaeetus leucocephalus) succumbed to the disease at DeGray Lake, Arkansas (USA). The cause of AVM and its source remain undetermined despite extensive diagnostic and research investigations. Two years later, when AVM killed 26 eagles in the same area in Arkansas, it became apparent that American coots (Fulica americana) had identical neurologic signs and lesions, and it was hypothesized that eagles acquired AVM via ingestion of affected coots. In order to test this hypothesis, we fed coot tissues (brain, liver, kidney, muscle, fat, and intestinal tract) to rehabilitated, non-releasable red-tailed hawks (Buteo jamaicensis). Five hawks received tissues from coots with AVM lesions, and one hawk received tissues from coots without brain lesions that had been collected at a site where AVM never has been documented. All hawks received 12-70 g/day (mean = 38 g) of coot tissues for 28 days. All six hawks remained clinically normal during the study. The birds were euthanatized on day 29 and microscopic lesions of AVM were found in all hawks that received tissues from affected coots, but not in the hawk that received tissues from unaffected coots. This marks the first time that AVM has been produced in birds under laboratory conditions and proves that birds of prey can acquire AVM via ingestion of tissues from affected coots.

  13. Maximally Localized States and Quantum Corrections of Black Hole Thermodynamics in the Framework of a New Generalized Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    Yan-Gang Miao

    2015-01-01

    Full Text Available As a generalized uncertainty principle (GUP leads to the effects of the minimal length of the order of the Planck scale and UV/IR mixing, some significant physical concepts and quantities are modified or corrected correspondingly. On the one hand, we derive the maximally localized states—the physical states displaying the minimal length uncertainty associated with a new GUP proposed in our previous work. On the other hand, in the framework of this new GUP we calculate quantum corrections to the thermodynamic quantities of the Schwardzschild black hole, such as the Hawking temperature, the entropy, and the heat capacity, and give a remnant mass of the black hole at the end of the evaporation process. Moreover, we compare our results with that obtained in the frameworks of several other GUPs. In particular, we observe a significant difference between the situations with and without the consideration of the UV/IR mixing effect in the quantum corrections to the evaporation rate and the decay time. That is, the decay time can greatly be prolonged in the former case, which implies that the quantum correction from the UV/IR mixing effect may give rise to a radical rather than a tiny influence to the Hawking radiation.

  14. Greenhouse Observations of the Stratosphere and Troposphere (GHOST): a novel shortwave infrared spectrometer developed for the Global Hawk unmanned aerial vehicle

    Science.gov (United States)

    Humpage, Neil; Boesch, Hartmut; Palmer, Paul; Parr-Burman, Phil; Vick, Andy; Bezawada, Naidu; Black, Martin; Born, Andy; Pearson, David; Strachan, Jonathan; Wells, Martyn

    2014-05-01

    The tropospheric distribution of greenhouse gases (GHGs) is dependent on surface flux variations, atmospheric chemistry and transport processes over a wide range of spatial and temporal scales. Errors in assumed atmospheric transport can adversely affect surface flux estimates inferred from surface, aircraft or satellite observations of greenhouse gas concentrations using inverse models. We present a novel, compact shortwave infrared spectrometer (GHOST) for installation on the NASA Global Hawk unmanned aerial vehicle to provide tropospheric column observations of CO2, CO, CH4, H2O and HDO over the ocean to address the need for large-scale, simultaneous, finely resolved measurements of key GHGs. These species cover a range of lifetimes and source processes, and measurements of their tropospheric columns will reflect the vertically integrated signal of their vertical and horizontal transport within the troposphere. The primary science objectives of GHOST are to: 1) provide observations which can be used to test atmospheric transport models; 2) validate satellite observations of GHG column observations over oceans, thus filling a critical gap in current validation capabilities; and 3) complement in-situ tropopause transition layer tracer observations from other instrumentation on board the Global Hawk to provide a link between upper and lower troposphere concentration measurements. The GHOST spectrometer system comprises a target acquisition module (TAM), a fibre slicer and feed system, and a multiple order spectrograph. The TAM design utilises a gimbal behind an optical dome, which is programmed to direct solar radiation reflected by the ocean surface into a fibre optic bundle. The fibre slicer and feed system then splits the light into the four spectral bands using order sorting filters. The fibres corresponding to each band are arranged with a small sideways offset to correctly centre each spectrum on the detector array. The spectrograph design is unique in that a

  15. Radiative corrections to the charged pion-pair production process {\\boldmath$\\pi^-\\gamma\\to \\pi^+\\pi^-\\pi^-$} at low energies

    CERN Document Server

    Kaiser, N

    2013-01-01

    We calculate the one-photon loop radiative corrections to the charged pion-pair production process $\\pi^-\\gamma\\to\\pi^+\\pi^-\\pi^-$. In the low-energy region this reaction is governed by the chiral pion-pion interaction. The pertinent set of 42 irreducible photon-loop diagrams is calculated by using the package FeynCalc. Electromagnetic counterterms with two independent low-energy constants $\\widehat k_1$ and $\\widehat k_2$ are included in order to remove the ultraviolet divergences generated by the photon-loops. Infrared finiteness of the virtual radiative corrections is achieved by including soft photon radiation below an energy cut-off $\\lambda$. The purely electromagnetic interaction of the charged pions mediated by one-photon exchange is also taken into account. The radiative corrections to the total cross section (in the isospin limit) vary between $+10\\%$ close to threshold and about $-1\\%$ at a center-of-mass energy of $7m_\\pi$. The largest contribution comes from the simple one-photon exchange. Radiat...

  16. Observation of noise correlated by the Hawking effect in a water tank

    CERN Document Server

    Euvé, L -P; Parentani, R; Philbin, T G; Rousseaux, G

    2015-01-01

    We measure the power spectrum and two-point correlation function for the fluctuating free surface on the downstream side of a stationary flow above an obstacle with high Froude number $F \\approx 0.85$. On such a flow the scattering of incident long wavelength modes is analogous to that responsible for black hole radiation (the Hawking effect). Our measurements of the correlations clearly indicate a steady conversion of incident modes into pairs of modes of opposite energies. We then use a wave maker to measure the scattering coefficients responsible for this effect.

  17. Observation of Noise Correlated by the Hawking Effect in a Water Tank

    Science.gov (United States)

    Euvé, L.-P.; Michel, F.; Parentani, R.; Philbin, T. G.; Rousseaux, G.

    2016-09-01

    We measured the power spectrum and two-point correlation function for the randomly fluctuating free surface on the downstream side of a stationary flow with a maximum Froude number Fmax≈0.85 reached above a localized obstacle. On such a flow the scattering of incident long wavelength modes is analogous to that responsible for black hole radiation (the Hawking effect). Our measurements of the noise show a clear correlation between pairs of modes of opposite energies. We also measure the scattering coefficients by applying the same analysis of correlations to waves produced by a wave maker.

  18. 英诗Hawk Roosting的主位结构及特点%The thematic structure features of Hawk Roosting

    Institute of Scientific and Technical Information of China (English)

    许耘

    2008-01-01

    一个句子或小句表达信息的起点是主位,围绕主位加以叙述发展的部分是叙位.主位传递的是已知信息,叙位传递的是新信息.在hawk roosting中,出现频率最高的主位是I,全诗虽没有出现一个点题的Hawk(鹰)字眼,但这个第一人称代词实际上指的就是Hawk.

  19. Nesting habitat relationships of sympatric Crested Caracaras, Red-tailed Hawks, and White-tailed Hawks in South Texas

    Science.gov (United States)

    Actkinson, M.A.; Kuvlesky, W.P.; Boal, C.W.; Brennan, L.A.; Hernandez, F.

    2007-01-01

    We quantified nesting-site habitats for sympatric White-tailed Hawks (Buteo albicaudatus) (n = 40), Red-tailed Hawks (B. jamaicensis) (n = 39), and Crested Caracaras (Caracara cheriway) (n = 24) in the Coastal Sand Plain of south Texas. White-tailed Hawks and Crested Caracara nest sites occurred in savannas, whereas Red-tailed Hawk nest sites occurred in woodlands on the edge of savannas. White-tailed Hawk nest sites were in shrubs and trees that were shorter (3.5 ?? 1.0 m) and had smaller canopy diameters (5.5 ?? 2.1 m) than those of Red-tailed Hawks (10.1 ?? 2.0 m, 13.7 ?? 5.8 m) and Crested Caracaras (5.6 ?? 1.7 m, 8.5 ?? 3.5 m). Red-tailed Hawk nest sites had higher woody densities (15.7 ?? 9.6 plants) and more woody cover (84 ?? 19%) than those of White-tailed Hawks (5.6 ?? 5.8 plants, 20 ?? 21%) and Crested Caracaras (9.9 ?? 6.7 plants, 55 ?? 34%). Crested Caracara nest sites were in dense, multi-branched shrubs composed of more living material (97 ?? 3%) than those of White-tailed (88 ?? 18%) and Red-tailed hawks (88 ?? 18%). Nest sites of White-tailed Hawks, Red-tailed Hawks, and Crested Caracaras were similar to random samples from the surrounding habitat indicating that preferred nesting habitat was available for each of these species at least within 60 m of active nest sites. Nest tree height, along with woody plant and native grass cover best discriminated nest sites among the three raptor species. There was no overlap at Red-tailed and White-tailed hawk nest sites in vegetation structure, while Crested Caracara nests were in habitat intermediate between the two other species. Partitioning of nesting habitat may be how these raptor species co-exist at the broader landscape scale of our study area in the Coastal Sand Plain of Texas.

  20. Influence of poisoned prey on foraging behavior of ferruginous hawks

    Science.gov (United States)

    Vyas, Nimish B.; Kuncir, Frank; Clinton, Criss C.

    2017-01-01

    We recorded 19 visits by ferruginous hawks (Buteo regalis) over 6 d at two black–tailed prairie dog (Cynomys ludovicianus) subcolonies poisoned with the rodenticide Rozol® Prairie Dog Bait (0.005% chlorophacinone active ingredient) and at an adjacent untreated subcolony. Before Rozol® application ferruginous hawks foraged in the untreated and treated subcolonies but after Rozol® application predation by ferruginous hawks was only observed in the treated subcolonies. We suggest that ferruginous hawks' preference for hunting in the treated subcolonies after Rozol® application was influenced by the availability of easy-to-capture prey, presumably due to Rozol® poisoning. The energetically beneficial behavior of favoring substandard prey may increase raptor encounters with rodenticide exposed animals if prey vulnerability has resulted from poisoning.