WorldWideScience

Sample records for coronavirus cell type

  1. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus

    NARCIS (Netherlands)

    Horzinek, M.C.; Herrewegh, A.A.; Rottier, P.J.M.; Groot, R.J. de

    1998-01-01

    Recent evidence suggests that the type II feline coronavirus (FCoV) strains 79-1146 and 79-1683 have arisen from a homologous RNA recombination event between FCoV type I and canine coronavirus (CCV). In both cases, the template switch apparently took place between the S and M genes, giving rise to

  2. Isolation and molecular characterization of type I and type II feline coronavirus in Malaysia

    OpenAIRE

    Amer, Alazawy; Siti Suri, Arshad; Abdul Rahman, Omar; Mohd, Hair Bejo; Faruku, Bande; Saeed, Sharif; Tengku Azmi, Tengku Ibrahim

    2012-01-01

    Abstract Background Feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV) are two important coronaviruses of domestic cat worldwide. Although FCoV is prevalent among cats; the fastidious nature of type I FCoV to grow on cell culture has limited further studies on tissue tropism and pathogenesis of FCoV. While several studies reported serological evidence for FCoV in Malaysia, neither the circulating FCoV isolated nor its biotypes determined. This study for the first...

  3. Isolation and molecular characterization of type I and type II feline coronavirus in Malaysia.

    Science.gov (United States)

    Amer, Alazawy; Siti Suri, Arshad; Abdul Rahman, Omar; Mohd, Hair Bejo; Faruku, Bande; Saeed, Sharif; Tengku Azmi, Tengku Ibrahim

    2012-11-21

    Feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV) are two important coronaviruses of domestic cat worldwide. Although FCoV is prevalent among cats; the fastidious nature of type I FCoV to grow on cell culture has limited further studies on tissue tropism and pathogenesis of FCoV. While several studies reported serological evidence for FCoV in Malaysia, neither the circulating FCoV isolated nor its biotypes determined. This study for the first time, describes the isolation and biotypes determination of type I and type II FCoV from naturally infected cats in Malaysia. Of the total number of cats sampled, 95% (40/42) were RT-PCR positive for FCoV. Inoculation of clinical samples into Crandell feline kidney cells (CrFK), and Feline catus whole fetus-4 cells (Fcwf-4), show cytopathic effect (CPE) characterized by syncytial cells formation and later cell detachment. Differentiation of FCoV biotypes using RT-PCR assay revealed that, 97.5% and 2.5% of local isolates were type I and type II FCoV, respectively. These isolates had high sequence homology and phylogenetic similarity with several FCoV isolates from Europe, South East Asia and USA. This study reported the successful isolation of local type I and type II FCoV evident with formation of cytopathic effects in two types of cell cultures namely the CrFK and Fcwf-4 , where the later cells being more permissive. However, the RT-PCR assay is more sensitive in detecting the antigen in suspected samples as compared to virus isolation in cell culture. The present study indicated that type I FCoV is more prevalent among cats in Malaysia.

  4. Isolation and molecular characterization of type I and type II feline coronavirus in Malaysia

    Directory of Open Access Journals (Sweden)

    Amer Alazawy

    2012-11-01

    Full Text Available Abstract Background Feline infectious peritonitis virus (FIPV and feline enteric coronavirus (FECV are two important coronaviruses of domestic cat worldwide. Although FCoV is prevalent among cats; the fastidious nature of type I FCoV to grow on cell culture has limited further studies on tissue tropism and pathogenesis of FCoV. While several studies reported serological evidence for FCoV in Malaysia, neither the circulating FCoV isolated nor its biotypes determined. This study for the first time, describes the isolation and biotypes determination of type I and type II FCoV from naturally infected cats in Malaysia. Findings Of the total number of cats sampled, 95% (40/42 were RT-PCR positive for FCoV. Inoculation of clinical samples into Crandell feline kidney cells (CrFK, and Feline catus whole fetus-4 cells (Fcwf-4, show cytopathic effect (CPE characterized by syncytial cells formation and later cell detachment. Differentiation of FCoV biotypes using RT-PCR assay revealed that, 97.5% and 2.5% of local isolates were type I and type II FCoV, respectively. These isolates had high sequence homology and phylogenetic similarity with several FCoV isolates from Europe, South East Asia and USA. Conclusions This study reported the successful isolation of local type I and type II FCoV evident with formation of cytopathic effects in two types of cell cultures namely the CrFK and Fcwf-4 , where the later cells being more permissive. However, the RT-PCR assay is more sensitive in detecting the antigen in suspected samples as compared to virus isolation in cell culture. The present study indicated that type I FCoV is more prevalent among cats in Malaysia.

  5. Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein

    Directory of Open Access Journals (Sweden)

    Gary R. Whittaker

    2012-06-01

    Full Text Available Coronaviruses are enveloped positive-stranded RNA viruses that replicate in the cytoplasm. To deliver their nucleocapsid into the host cell, they rely on the fusion of their envelope with the host cell membrane. The spike glycoprotein (S mediates virus entry and is a primary determinant of cell tropism and pathogenesis. It is classified as a class I fusion protein, and is responsible for binding to the receptor on the host cell as well as mediating the fusion of host and viral membranes—A process driven by major conformational changes of the S protein. This review discusses coronavirus entry mechanisms focusing on the different triggers used by coronaviruses to initiate the conformational change of the S protein: receptor binding, low pH exposure and proteolytic activation. We also highlight commonalities between coronavirus S proteins and other class I viral fusion proteins, as well as distinctive features that confer distinct tropism, pathogenicity and host interspecies transmission characteristics to coronaviruses.

  6. About Coronavirus

    Science.gov (United States)

    ... Coronaviruses Symptoms and Diagnosis Transmission Prevention and Treatment Human Coronavirus Types SARS-CoV MERS-CoV Resources and References About Coronaviruses Recommend on Facebook Tweet Share Compartir Symptoms and Diagnosis Lists illnesses ...

  7. Coronavirus infection of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Horzinek, M C; Rottier, P J

    1995-01-01

    Epithelial cells are the first host cells to be infected by incoming c oronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for

  8. Coronavirus spike-receptor interactions

    NARCIS (Netherlands)

    Mou, H.

    2015-01-01

    Coronaviruses cause important diseases in humans and animals. Coronavirus infection starts with the virus binding with its spike proteins to molecules present on the surface of host cells that act as receptors. This spike-receptor interaction is highly specific and determines the virus’ cell, tissue

  9. Involvement of Autophagy in Coronavirus Replication

    Directory of Open Access Journals (Sweden)

    Paul Britton

    2012-11-01

    Full Text Available Coronaviruses are single stranded, positive sense RNA viruses, which induce the rearrangement of cellular membranes upon infection of a host cell. This provides the virus with a platform for the assembly of viral replication complexes, improving efficiency of RNA synthesis. The membranes observed in coronavirus infected cells include double membrane vesicles. By nature of their double membrane, these vesicles resemble cellular autophagosomes, generated during the cellular autophagy pathway. In addition, coronavirus infection has been demonstrated to induce autophagy. Here we review current knowledge of coronavirus induced membrane rearrangements and the involvement of autophagy or autophagy protein microtubule associated protein 1B light chain 3 (LC3 in coronavirus replication.

  10. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication.

    Directory of Open Access Journals (Sweden)

    Eveline Kindler

    2017-02-01

    Full Text Available Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I. This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU activity is key to prevent early induction of double-stranded RNA (dsRNA host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis-within the replicase complex-suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses.

  11. Potent Inhibition of Feline Coronaviruses with Peptidyl Compounds Targeting Coronavirus 3C-like Protease

    Science.gov (United States)

    Kim, Yunjeong; Mandadapu, Sivakoteswara Rao; Groutas, William C.; Chang, Kyeong-Ok

    2012-01-01

    Feline coronavirus infection is common among domestic and exotic felid species and usually associated with mild or asymptomatic enteritis; however, feline infectious peritonitis (FIP) is a fatal disease of cats that is caused by systemic infection with a feline infectious peritonitis virus (FIPV), a variant of feline enteric coronavirus (FECV). Currently, there is no specific treatment approved for FIP despite the importance of FIP as the leading infectious cause of death in young cats. During the replication process, coronavirus produces viral polyproteins that are processed into mature proteins by viral proteases, the main protease (3C-like [3CL] protease) and the papain-like protease. Since the cleavages of viral polyproteins are an essential step for virus replication, blockage of viral protease is an attractive target for therapeutic intervention. Previously, we reported the generation of broad-spectrum peptidyl inhibitors against viruses that possess a 3C or 3CL protease. In this study, we further evaluated the antiviral effects of the peptidyl inhibitors against feline coronaviruses, and investigated the interaction between our protease inhibitor and a cathepsin B inhibitor, an entry blocker, against feline coronaviruses in cell culture. Herein we report that our compounds behave as reversible, competitive inhibitors of 3CL protease, potently inhibited the replication of feline coronaviruses (EC50 in a nanomolar range) and, furthermore, the combination of cathepsin B and 3CL protease inhibitors led to a strong synergistic interaction against feline coronaviruses in cell culture systems. PMID:23219425

  12. Coronavirus infection, ER stress and Apoptosis

    Directory of Open Access Journals (Sweden)

    TO SING eFUNG

    2014-06-01

    Full Text Available The replication of coronavirus, a family of important animal and human pathogens, is closely associated with the cellular membrane compartments, especially the endoplasmic reticulum (ER. Coronavirus infection of cultured cells was previously shown to cause ER stress and induce the unfolded protein response (UPR, a process that aims to restore the ER homeostasis by global translation shutdown and increasing the ER folding capacity. However under prolonged ER stress, UPR can also induce apoptotic cell death. Accumulating evidence from recent studies has shown that induction of ER stress and UPR may constitute a major aspect of coronavirus-host interaction. Activation of the three branches of UPR modulates a wide variety of signaling pathways, such as mitogen-activated protein (MAP kinases activation, autophagy, apoptosis and innate immune response. ER stress and UPR activation may therefore contribute significantly to the viral replication and pathogenesis during coronavirus infection. In this review, we summarize current knowledge on coronavirus-induced ER stress and UPR activation, with emphasis on their cross-talking to apoptotic signaling.

  13. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor.

    Directory of Open Access Journals (Sweden)

    Yunjeong Kim

    2016-03-01

    Full Text Available Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP, can arise through mutation of FECV to FIP virus (FIPV. The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for

  14. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses.

    Directory of Open Access Journals (Sweden)

    Markus Hoffmann

    Full Text Available Bats (Chiroptera host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat or Yangochiroptera (genera Carollia and Tadarida for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV, a porcine coronavirus, or to infection mediated by the Spike (S protein of SARS-coronavirus (SARS-CoV incorporated into pseudotypes based on vesicular stomatitis virus (VSV. The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3 were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed.

  15. Feline and canine coronaviruses: common genetic and pathobiological features.

    Science.gov (United States)

    Le Poder, Sophie

    2011-01-01

    A new human coronavirus responsible for severe acute respiratory syndrome (SARS) was identified in 2003, which raised concern about coronaviruses as agents of serious infectious disease. Nevertheless, coronaviruses have been known for about 50 years to be major agents of respiratory, enteric, or systemic infections of domestic and companion animals. Feline and canine coronaviruses are widespread among dog and cat populations, sometimes leading to the fatal diseases known as feline infectious peritonitis (FIP) and pantropic canine coronavirus infection in cats and dogs, respectively. In this paper, different aspects of the genetics, host cell tropism, and pathogenesis of the feline and canine coronaviruses (FCoV and CCoV) will be discussed, with a view to illustrating how study of FCoVs and CCoVs can improve our general understanding of the pathobiology of coronaviruses.

  16. Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses.

    Directory of Open Access Journals (Sweden)

    Yutaka Terada

    Full Text Available Type II feline coronavirus (FCoV emerged via double recombination between type I FCoV and type II canine coronavirus (CCoV. In this study, two type I FCoVs, three type II FCoVs and ten type II CCoVs were genetically compared. The results showed that three Japanese type II FCoVs, M91-267, KUK-H/L and Tokyo/cat/130627, also emerged by homologous recombination between type I FCoV and type II CCoV and their parent viruses were genetically different from one another. In addition, the 3'-terminal recombination sites of M91-267, KUK-H/L and Tokyo/cat/130627 were different from one another within the genes encoding membrane and spike proteins, and the 5'-terminal recombination sites were also located at different regions of ORF1. These results indicate that at least three Japanese type II FCoVs emerged independently. Sera from a cat experimentally infected with type I FCoV was unable to neutralize type II CCoV infection, indicating that cats persistently infected with type I FCoV may be superinfected with type II CCoV. Our previous study reported that few Japanese cats have antibody against type II FCoV. All of these observations suggest that type II FCoV emerged inside the cat body and is unable to readily spread among cats, indicating that these recombination events for emergence of pathogenic coronaviruses occur frequently.

  17. Feline and Canine Coronaviruses: Common Genetic and Pathobiological Features

    Directory of Open Access Journals (Sweden)

    Sophie Le Poder

    2011-01-01

    Full Text Available A new human coronavirus responsible for severe acute respiratory syndrome (SARS was identified in 2003, which raised concern about coronaviruses as agents of serious infectious disease. Nevertheless, coronaviruses have been known for about 50 years to be major agents of respiratory, enteric, or systemic infections of domestic and companion animals. Feline and canine coronaviruses are widespread among dog and cat populations, sometimes leading to the fatal diseases known as feline infectious peritonitis (FIP and pantropic canine coronavirus infection in cats and dogs, respectively. In this paper, different aspects of the genetics, host cell tropism, and pathogenesis of the feline and canine coronaviruses (FCoV and CCoV will be discussed, with a view to illustrating how study of FCoVs and CCoVs can improve our general understanding of the pathobiology of coronaviruses.

  18. Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition

    International Nuclear Information System (INIS)

    Versteeg, Gijs A.; Bredenbeek, Peter J.; Worm, Sjoerd H.E. van den; Spaan, Willy J.M.

    2007-01-01

    Many viruses encode antagonists to prevent interferon (IFN) induction. Infection of fibroblasts with the murine hepatitis coronavirus (MHV) and SARS-coronavirus (SARS-CoV) did not result in nuclear translocation of interferon-regulatory factor 3 (IRF3), a key transcription factor involved in IFN induction, and induction of IFN mRNA transcription. Furthermore, MHV and SARS-CoV infection could not prevent IFN induction by poly (I:C) or Sendai virus, suggesting that these CoVs do not inactivate IRF3-mediated transcription regulation, but apparently prevent detection of replicative RNA by cellular sensory molecules. Our data indicate that shielding of viral RNA to host cell sensors might be the main general mechanism for coronaviruses to prevent IFN induction

  19. Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling.

    Science.gov (United States)

    Zhang, Qingzhan; Yoo, Dongwan

    2016-12-02

    Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are emerged and reemerging viruses in pigs, and together with transmissible gastroenteritis virus (TGEV), pose significant economic concerns to the swine industry. These viruses infect epithelial cells of the small intestine and cause watery diarrhea, dehydration, and a high mortality in neonatal piglets. Type I interferons (IFN-α/β) are major antiviral cytokines forming host innate immunity, and in turn, these enteric coronaviruses have evolved to modulate the host innate immune signaling during infection. Accumulating evidence however suggests that IFN induction and signaling in the intestinal epithelial cells differ from other epithelial cells, largely due to distinct features of the gut epithelial mucosal surface and commensal microflora, and it appears that type III interferon (IFN-λ) plays a key role to maintain the antiviral state in the gut. This review describes the recent understanding on the immune evasion strategies of porcine enteric coronaviruses and the role of different types of IFNs for intestinal antiviral innate immunity. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Chimeric Feline Coronaviruses That Encode Type II Spike Protein on Type I Genetic Background Display Accelerated Viral Growth and Altered Receptor Usage▿

    Science.gov (United States)

    Tekes, Gergely; Hofmann-Lehmann, Regina; Bank-Wolf, Barbara; Maier, Reinhard; Thiel, Heinz-Jürgen; Thiel, Volker

    2010-01-01

    Persistent infection of domestic cats with feline coronaviruses (FCoVs) can lead to a highly lethal, immunopathological disease termed feline infectious peritonitis (FIP). Interestingly, there are two serotypes, type I and type II FCoVs, that can cause both persistent infection and FIP, even though their main determinant of host cell tropism, the spike (S) protein, is of different phylogeny and displays limited sequence identity. In cell culture, however, there are apparent differences. Type II FCoVs can be propagated to high titers by employing feline aminopeptidase N (fAPN) as a cellular receptor, whereas the propagation of type I FCoVs is usually difficult, and the involvement of fAPN as a receptor is controversial. In this study we have analyzed the phenotypes of recombinant FCoVs that are based on the genetic background of type I FCoV strain Black but encode the type II FCoV strain 79-1146 S protein. Our data demonstrate that recombinant FCoVs expressing a type II FCoV S protein acquire the ability to efficiently use fAPN for host cell entry and corroborate the notion that type I FCoVs use another main host cell receptor. We also observed that recombinant FCoVs display a large-plaque phenotype and, unexpectedly, accelerated growth kinetics indistinguishable from that of type II FCoV strain 79-1146. Thus, the main phenotypic differences for type I and type II FCoVs in cell culture, namely, the growth kinetics and the efficient usage of fAPN as a cellular receptor, can be attributed solely to the FCoV S protein. PMID:19906918

  1. Plaque assay for human coronavirus NL63 using human colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    Drosten Christian

    2008-11-01

    Full Text Available Abstract Background Coronaviruses cause a broad range of diseases in animals and humans. Human coronavirus (hCoV NL63 is associated with up to 10% of common colds. Viral plaque assays enable the characterization of virus infectivity and allow for purifying virus stock solutions. They are essential for drug screening. Hitherto used cell cultures for hCoV-NL63 show low levels of virus replication and weak and diffuse cytopathogenic effects. It has not yet been possible to establish practicable plaque assays for this important human pathogen. Results 12 different cell cultures were tested for susceptibility to hCoV-NL63 infection. Human colon carcinoma cells (CaCo-2 replicated virus more than 100 fold more efficiently than commonly used African green monkey kidney cells (LLC-MK2. CaCo-2 cells showed cytopathogenic effects 4 days post infection. Avicel, agarose and carboxymethyl-cellulose overlays proved suitable for plaque assays. Best results were achieved with Avicel, which produced large and clear plaques from the 4th day of infection. The utility of plaque assays with agrose overlay was demonstrated for purifying virus, thereby increasing viral infectivity by 1 log 10 PFU/mL. Conclusion CaCo-2 cells support hCoV-NL63 better than LLC-MK2 cells and enable cytopathogenic plaque assays. Avicel overlay is favourable for plaque quantification, and agarose overlay is preferred for plaque purification. HCoV-NL63 virus stock of increased infectivity will be beneficial in antiviral screening, animal modelling of disease, and other experimental tasks.

  2. Molecular and pathological identification of feline coronavirus type I

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-06-05

    Jun 5, 2012 ... In this study, we described the isolation and molecular characterization of .... fecv2b) designed in the regions of S-protein gene were used to differentiate ..... The molecular dynamics of feline coronaviruses. Vet. Microbiol.

  3. The coronavirus spike protein : mechanisms of membrane fusion and virion incorporation

    NARCIS (Netherlands)

    Bosch, B.J.

    2004-01-01

    The coronavirus spike protein is a membrane-anchored glycoprotein responsible for virus-cell attachment and membrane fusion, prerequisites for a successful virus infection. In this thesis, two aspects are described regarding the molecular biology of the coronavirus spike protein: its membrane fusion

  4. Spike Protein Fusion Peptide and Feline Coronavirus Virulence

    Science.gov (United States)

    Chang, Hui-Wen; Egberink, Herman F.; Halpin, Rebecca; Spiro, David J.

    2012-01-01

    Coronaviruses are well known for their potential to change their host or tissue tropism, resulting in unpredictable new diseases and changes in pathogenicity; severe acute respiratory syndrome and feline coronaviruses, respectively, are the most recognized examples. Feline coronaviruses occur as 2 pathotypes: nonvirulent feline enteric coronaviruses (FECVs), which replicate in intestinal epithelium cells, and lethal feline infectious peritonitis viruses (FIPVs), which replicate in macrophages. Evidence indicates that FIPV originates from FECV by mutation, but consistent distinguishing differences have not been established. We sequenced the full genome of 11 viruses of each pathotype and then focused on the single most distinctive site by additionally sequencing hundreds of viruses in that region. As a result, we identified 2 alternative amino acid differences in the putative fusion peptide of the spike protein that together distinguish FIPV from FECV in >95% of cases. By these and perhaps other mutations, the virus apparently acquires its macrophage tropism and spreads systemically. PMID:22709821

  5. Prevalence of Korean cats with natural feline coronavirus infections

    Directory of Open Access Journals (Sweden)

    Lee Myoung-Heon

    2011-09-01

    Full Text Available Abstract Background Feline coronavirus is comprised of two pathogenic biotypes consisting of feline infectious peritonitis virus (FIPV and feline enteric coronavirus (FECV, which are both divided into two serotypes. To examine the prevalence of Korean cats infected with feline coronavirus (FCoV type I and II, fecal samples were obtained from 212 cats (107 pet and 105 feral in 2009. Results Fourteen cats were FCoV-positive, including infections with type I FCoV (n = 8, type II FCoV (n = 4, and types I and II co-infection (n = 2. Low seroprevalences (13.7%, 29/212 of FCoV were identified in chronically ill cats (19.3%, 16/83 and healthy cats (10.1%, 13/129. Conclusions Although the prevalence of FCoV infection was not high in comparison to other countries, there was a higher prevalence of type I FCoV in Korean felines. The prevalence of FCoV antigen and antibody in Korean cats are expected to gradually increase due to the rising numbers of stray and companion cats.

  6. Identification of a new human coronavirus

    NARCIS (Netherlands)

    van der Hoek, Lia; Pyrc, Krzysztof; Jebbink, Maarten F.; Vermeulen-Oost, Wilma; Berkhout, Ron J. M.; Wolthers, Katja C.; Wertheim-van Dillen, Pauline M. E.; Kaandorp, Jos; Spaargaren, Joke; Berkhout, Ben

    2004-01-01

    Three human coronaviruses are known to exist: human coronavirus 229E (HCoV-229E), HCoV-OC43 and severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV). Here we report the identification of a fourth human coronavirus, HCoV-NL63, using a new method of virus discovery. The virus was

  7. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    Directory of Open Access Journals (Sweden)

    Mark W. Jackwood

    2011-09-01

    Full Text Available Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus.

  8. Suppression of Coronavirus Replication by Cyclophilin Inhibitors

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2013-05-01

    Full Text Available Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS, feline infectious peritonitis (FIP, mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA, could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication.

  9. Isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits.

    Science.gov (United States)

    Lau, Susanna K P; Woo, Patrick C Y; Yip, Cyril C Y; Fan, Rachel Y Y; Huang, Yi; Wang, Ming; Guo, Rongtong; Lam, Carol S F; Tsang, Alan K L; Lai, Kenneth K Y; Chan, Kwok-Hung; Che, Xiao-Yan; Zheng, Bo-Jian; Yuen, Kwok-Yung

    2012-05-01

    We describe the isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14 (RbCoV HKU14), from domestic rabbits. The virus was detected in 11 (8.1%) of 136 rabbit fecal samples by reverse transcriptase PCR (RT-PCR), with a viral load of up to 10(8) copies/ml. RbCoV HKU14 was able to replicate in HRT-18G and RK13 cells with cytopathic effects. Northern blotting confirmed the production of subgenomic mRNAs coding for the HE, S, NS5a, E, M, and N proteins. Subgenomic mRNA analysis revealed a transcription regulatory sequence, 5'-UCUAAAC-3'. Phylogenetic analysis showed that RbCoV HKU14 formed a distinct branch among Betacoronavirus subgroup A coronaviruses, being most closely related to but separate from the species Betacoronavirus 1. A comparison of the conserved replicase domains showed that RbCoV HKU14 possessed N-protein-based Western blot assay, whereas neutralizing antibody was detected in 1 of these 20 rabbits.

  10. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Guiqing; Sun, Dawei; Rajashankar, Kanagalaghatta R.; Qian, Zhaohui; Holmes, Kathryn V.; Li, Fang (Cornell); (UMM-MED); (Colorado)

    2011-09-28

    Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same {beta}-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the {beta}-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.

  11. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus.

    Science.gov (United States)

    Woo, Patrick C Y; Lau, Susanna K P; Lam, Carol S F; Lau, Candy C Y; Tsang, Alan K L; Lau, John H N; Bai, Ru; Teng, Jade L L; Tsang, Chris C C; Wang, Ming; Zheng, Bo-Jian; Chan, Kwok-Hung; Yuen, Kwok-Yung

    2012-04-01

    Recently, we reported the discovery of three novel coronaviruses, bulbul coronavirus HKU11, thrush coronavirus HKU12, and munia coronavirus HKU13, which were identified as representatives of a novel genus, Deltacoronavirus, in the subfamily Coronavirinae. In this territory-wide molecular epidemiology study involving 3,137 mammals and 3,298 birds, we discovered seven additional novel deltacoronaviruses in pigs and birds, which we named porcine coronavirus HKU15, white-eye coronavirus HKU16, sparrow coronavirus HKU17, magpie robin coronavirus HKU18, night heron coronavirus HKU19, wigeon coronavirus HKU20, and common moorhen coronavirus HKU21. Complete genome sequencing and comparative genome analysis showed that the avian and mammalian deltacoronaviruses have similar genome characteristics and structures. They all have relatively small genomes (25.421 to 26.674 kb), the smallest among all coronaviruses. They all have a single papain-like protease domain in the nsp3 gene; an accessory gene, NS6 open reading frame (ORF), located between the M and N genes; and a variable number of accessory genes (up to four) downstream of the N gene. Moreover, they all have the same putative transcription regulatory sequence of ACACCA. Molecular clock analysis showed that the most recent common ancestor of all coronaviruses was estimated at approximately 8100 BC, and those of Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus were at approximately 2400 BC, 3300 BC, 2800 BC, and 3000 BC, respectively. From our studies, it appears that bats and birds, the warm blooded flying vertebrates, are ideal hosts for the coronavirus gene source, bats for Alphacoronavirus and Betacoronavirus and birds for Gammacoronavirus and Deltacoronavirus, to fuel coronavirus evolution and dissemination.

  12. Establishment of feline intestinal epithelial cell cultures for the propagation and study of feline enteric coronaviruses

    Science.gov (United States)

    2013-01-01

    Feline infectious peritonitis (FIP) is the most feared infectious cause of death in cats, induced by feline infectious peritonitis virus (FIPV). This coronavirus is a virulent mutant of the harmless, ubiquitous feline enteric coronavirus (FECV). To date, feline coronavirus (FCoV) research has been hampered by the lack of susceptible cell lines for the propagation of serotype I FCoVs. In this study, long-term feline intestinal epithelial cell cultures were established from primary ileocytes and colonocytes by simian virus 40 (SV40) T-antigen- and human Telomerase Reverse Transcriptase (hTERT)-induced immortalization. Subsequently, these cultures were evaluated for their usability in FCoV research. Firstly, the replication capacity of the serotype II strains WSU 79–1683 and WSU 79–1146 was studied in the continuous cultures as was done for the primary cultures. In accordance with the results obtained in primary cultures, FCoV WSU 79–1683 still replicated significantly more efficient compared to FCoV WSU 79–1146 in both continuous cultures. In addition, the cultures were inoculated with faecal suspensions from healthy cats and with faecal or tissue suspensions from FIP cats. The cultures were susceptible to infection with different serotype I enteric strains and two of these strains were further propagated. No infection was seen in cultures inoculated with FIPV tissue homogenates. In conclusion, a new reliable model for FCoV investigation and growth of enteric field strains was established. In contrast to FIPV strains, FECVs showed a clear tropism for intestinal epithelial cells, giving an explanation for the observation that FECV is the main pathotype circulating among cats. PMID:23964891

  13. Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavirus

    OpenAIRE

    Woo, Patrick C. Y.; Lau, Susanna K. P.; Lam, Carol S. F.; Lau, Candy C. Y.; Tsang, Alan K. L.; Lau, John H. N.; Bai, Ru; Teng, Jade L. L.; Tsang, Chris C. C.; Wang, Ming; Zheng, Bo-Jian; Chan, Kwok-Hung; Yuen, Kwok-Yung

    2012-01-01

    Recently, we reported the discovery of three novel coronaviruses, bulbul coronavirus HKU11, thrush coronavirus HKU12, and munia coronavirus HKU13, which were identified as representatives of a novel genus, Deltacoronavirus, in the subfamily Coronavirinae. In this territory-wide molecular epidemiology study involving 3,137 mammals and 3,298 birds, we discovered seven additional novel deltacoronaviruses in pigs and birds, which we named porcine coronavirus HKU15, white-eye coronavirus HKU16, sp...

  14. The role of viral population diversity in adaptation of bovine coronavirus to new host environments.

    Directory of Open Access Journals (Sweden)

    Monica K Borucki

    Full Text Available The high mutation rate of RNA viruses enables a diverse genetic population of viral genotypes to exist within a single infected host. In-host genetic diversity could better position the virus population to respond and adapt to a diverse array of selective pressures such as host-switching events. Multiple new coronaviruses, including SARS, have been identified in human samples just within the last ten years, demonstrating the potential of coronaviruses as emergent human pathogens. Deep sequencing was used to characterize genomic changes in coronavirus quasispecies during simulated host-switching. Three bovine nasal samples infected with bovine coronavirus were used to infect human and bovine macrophage and lung cell lines. The virus reproduced relatively well in macrophages, but the lung cell lines were not infected efficiently enough to allow passage of non lab-adapted samples. Approximately 12 kb of the genome was amplified before and after passage and sequenced at average coverages of nearly 950×(454 sequencing and 38,000×(Illumina. The consensus sequence of many of the passaged samples had a 12 nucleotide insert in the consensus sequence of the spike gene, and multiple point mutations were associated with the presence of the insert. Deep sequencing revealed that the insert was present but very rare in the unpassaged samples and could quickly shift to dominate the population when placed in a different environment. The insert coded for three arginine residues, occurred in a region associated with fusion entry into host cells, and may allow infection of new cell types via heparin sulfate binding. Analysis of the deep sequencing data indicated that two distinct genotypes circulated at different frequency levels in each sample, and support the hypothesis that the mutations present in passaged strains were "selected" from a pre-existing pool rather than through de novo mutation and subsequent population fixation.

  15. Coronavirus Attachment and Replication

    Science.gov (United States)

    1988-03-28

    has been shown by serologic and virological methods to infect coyotes. Dual infection with canine coronavirus and canine parvovirus causes fatal... attenuation and characteristics of a coronavirus-like agent. Am. J. Vet. Res. 34:145-150. Mebus, C.A., Stair, E.L., Rhodes, M.B., and Twiehaus, M.J. 1973b

  16. Competitive fitness in coronaviruses is not correlated with size or number of double-membrane vesicles under reduced-temperature growth conditions.

    Science.gov (United States)

    Al-Mulla, Hawaa M N; Turrell, Lauren; Smith, Nicola M; Payne, Luke; Baliji, Surendranath; Züst, Roland; Thiel, Volker; Baker, Susan C; Siddell, Stuart G; Neuman, Benjamin W

    2014-04-01

    Positive-stranded viruses synthesize their RNA in membrane-bound organelles, but it is not clear how this benefits the virus or the host. For coronaviruses, these organelles take the form of double-membrane vesicles (DMVs) interconnected by a convoluted membrane network. We used electron microscopy to identify murine coronaviruses with mutations in nsp3 and nsp14 that replicated normally while producing only half the normal amount of DMVs under low-temperature growth conditions. Viruses with mutations in nsp5 and nsp16 produced small DMVs but also replicated normally. Quantitative reverse transcriptase PCR (RT-PCR) confirmed that the most strongly affected of these, the nsp3 mutant, produced more viral RNA than wild-type virus. Competitive growth assays were carried out in both continuous and primary cells to better understand the contribution of DMVs to viral fitness. Surprisingly, several viruses that produced fewer or smaller DMVs showed a higher fitness than wild-type virus at the reduced temperature, suggesting that larger and more numerous DMVs do not necessarily confer a competitive advantage in primary or continuous cell culture. For the first time, this directly demonstrates that replication and organelle formation may be, at least in part, studied separately during infection with positive-stranded RNA virus. IMPORTANCE The viruses that cause severe acute respiratory syndrome (SARS), poliomyelitis, and hepatitis C all replicate in double-membrane vesicles (DMVs). The big question about DMVs is why they exist in the first place. In this study, we looked at thousands of infected cells and identified two coronavirus mutants that made half as many organelles as normal and two others that made typical numbers but smaller organelles. Despite differences in DMV size and number, all four mutants replicated as efficiently as wild-type virus. To better understand the relative importance of replicative organelles, we carried out competitive fitness experiments. None

  17. A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes.

    Science.gov (United States)

    Mesel-Lemoine, Mariana; Millet, Jean; Vidalain, Pierre-Olivier; Law, Helen; Vabret, Astrid; Lorin, Valérie; Escriou, Nicolas; Albert, Matthew L; Nal, Béatrice; Tangy, Frédéric

    2012-07-01

    Human coronaviruses are associated with upper respiratory tract infections that occasionally spread to the lungs and other organs. Although airway epithelial cells represent an important target for infection, the respiratory epithelium is also composed of an elaborate network of dendritic cells (DCs) that are essential sentinels of the immune system, sensing pathogens and presenting foreign antigens to T lymphocytes. In this report, we show that in vitro infection by human coronavirus 229E (HCoV-229E) induces massive cytopathic effects in DCs, including the formation of large syncytia and cell death within only few hours. In contrast, monocytes are much more resistant to infection and cytopathic effects despite similar expression levels of CD13, the membrane receptor for HCoV-229E. While the differentiation of monocytes into DCs in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 requires 5 days, only 24 h are sufficient for these cytokines to sensitize monocytes to cell death and cytopathic effects when infected by HCoV-229E. Cell death induced by HCoV-229E is independent of TRAIL, FasL, tumor necrosis factor alpha, and caspase activity, indicating that viral replication is directly responsible for the observed cytopathic effects. The consequence of DC death at the early stage of HCoV-229E infection may have an impact on the early control of viral dissemination and on the establishment of long-lasting immune memory, since people can be reinfected multiple times by HCoV-229E.

  18. Feline coronavirus replication is affected by both cyclophilin A and cyclophilin B.

    Science.gov (United States)

    Tanaka, Yoshikazu; Sato, Yuka; Sasaki, Takashi

    2017-02-01

    Feline coronavirus (FCoV) causes the fatal disease feline infectious peritonitis, which is currently incurable by drug treatment, and no effective vaccines are available. Cyclosporin A (CsA), a cyclophilin (Cyp) inhibitor, inhibits the replication of FCoV in vitro and in vivo as well as the replication of human and animal coronaviruses. However, the mechanism underlying the regulation of coronavirus replication by CsA is unknown. In this study, we analysed the role of Cyps in FCoV replication using knockdown and knockout cells specific to Cyps. Inhibition of CypA and CypB reduced FCoV replication, with replication in knockout cells being much less than that in knockdown cells. Furthermore, the proteins expressed by CypA and CypB harbouring mutations in their respective predicted peptidyl-prolyl cis-transisomerase active sites, which also alter the affinities between Cyps and CsA, inhibited FCoV replication. These findings indicate that the peptidyl-prolyl cis-transisomerase active sites of Cyps might be required for FCoV replication.

  19. Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion

    International Nuclear Information System (INIS)

    Petit, Chad M.; Chouljenko, Vladimir N.; Iyer, Arun; Colgrove, Robin; Farzan, Michael; Knipe, David M.; Kousoulas, K.G.

    2007-01-01

    The SARS-coronavirus (SARS-CoV) is the etiological agent of the severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. The cytoplasmic portion of the S glycoprotein contains four cysteine-rich amino acid clusters. Individual cysteine clusters were altered via cysteine-to-alanine amino acid replacement and the modified S glycoproteins were tested for their transport to cell-surfaces and ability to cause cell fusion in transient transfection assays. Mutagenesis of the cysteine cluster I, located immediately proximal to the predicted transmembrane, domain did not appreciably reduce cell-surface expression, although S-mediated cell fusion was reduced by more than 50% in comparison to the wild-type S. Similarly, mutagenesis of the cysteine cluster II located adjacent to cluster I reduced S-mediated cell fusion by more than 60% compared to the wild-type S, while cell-surface expression was reduced by less than 20%. Mutagenesis of cysteine clusters III and IV did not appreciably affect S cell-surface expression or S-mediated cell fusion. The wild-type S was palmitoylated as evidenced by the efficient incorporation of 3 H-palmitic acid in wild-type S molecules. S glycoprotein palmitoylation was significantly reduced for mutant glycoproteins having cluster I and II cysteine changes, but was largely unaffected for cysteine cluster III and IV mutants. These results show that the S cytoplasmic domain is palmitoylated and that palmitoylation of the membrane proximal cysteine clusters I and II may be important for S-mediated cell fusion

  20. HTCC: Broad Range Inhibitor of Coronavirus Entry.

    Directory of Open Access Journals (Sweden)

    Aleksandra Milewska

    Full Text Available To date, six human coronaviruses have been known, all of which are associated with respiratory infections in humans. With the exception of the highly pathogenic SARS and MERS coronaviruses, human coronaviruses (HCoV-NL63, HCoV-OC43, HCoV-229E, and HCoV-HKU1 circulate worldwide and typically cause the common cold. In most cases, infection with these viruses does not lead to severe disease, although acute infections in infants, the elderly, and immunocompromised patients may progress to severe disease requiring hospitalization. Importantly, no drugs against human coronaviruses exist, and only supportive therapy is available. Previously, we proposed the cationically modified chitosan, N-(2-hydroxypropyl-3-trimethylammonium chitosan chloride (HTCC, and its hydrophobically-modified derivative (HM-HTCC as potent inhibitors of the coronavirus HCoV-NL63. Here, we show that HTCC inhibits interaction of a virus with its receptor and thus blocks the entry. Further, we demonstrate that HTCC polymers with different degrees of substitution act as effective inhibitors of all low-pathogenic human coronaviruses.

  1. Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion

    International Nuclear Information System (INIS)

    Petit, Chad M.; Melancon, Jeffrey M.; Chouljenko, Vladimir N.; Colgrove, Robin; Farzan, Michael; Knipe, David M.; Kousoulas, K.G.

    2005-01-01

    The SARS-coronavirus (SARS-CoV) is the etiological agent of severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. To delineate functional domains of the SARS-CoV S glycoprotein, single point mutations, cluster-to-lysine and cluster-to-alanine mutations, as well as carboxyl-terminal truncations were investigated in transient expression experiments. Mutagenesis of either the coiled-coil domain of the S glycoprotein amino terminal heptad repeat, the predicted fusion peptide, or an adjacent but distinct region, severely compromised S-mediated cell-to-cell fusion, while intracellular transport and cell-surface expression were not adversely affected. Surprisingly, a carboxyl-terminal truncation of 17 amino acids substantially increased S glycoprotein-mediated cell-to-cell fusion suggesting that the terminal 17 amino acids regulated the S fusogenic properties. In contrast, truncation of 26 or 39 amino acids eliminating either one or both of the two endodomain cysteine-rich motifs, respectively, inhibited cell fusion in comparison to the wild-type S. The 17 and 26 amino-acid deletions did not adversely affect S cell-surface expression, while the 39 amino-acid truncation inhibited S cell-surface expression suggesting that the membrane proximal cysteine-rich motif plays an essential role in S cell-surface expression. Mutagenesis of the acidic amino-acid cluster in the carboxyl terminus of the S glycoprotein as well as modification of a predicted phosphorylation site within the acidic cluster revealed that this amino-acid motif may play a functional role in the retention of S at cell surfaces. This genetic analysis reveals that the SARS-CoV S glycoprotein contains extracellular domains that regulate cell fusion as well as distinct endodomains that function in intracellular transport, cell-surface expression, and cell fusion

  2. Synthesis and processing of structural and intracellular proteins of two enteric coronaviruses

    International Nuclear Information System (INIS)

    Sardinia, L.M.

    1985-01-01

    The synthesis and processing of virus-specific proteins of two economically important enteric coronaviruses, bovine enteric coronavirus (BCV) and transmissible gastroenteritis virus (TGEV), were studied at the molecular level. To determine the time of appearance of virus-specific proteins, virus-infected cells were labeled with 35 S-methionine at various times during infection, immunoprecipitated with specific hyperimmune ascitic fluid, and analyzed by SDS-polyacrylamide gel electrophoresis. The peak of BCV protein synthesis was found to be at 12 hours postinfection (hpi). The appearance of all virus-specific protein was coordinated. In contrast, the peak of TGEV protein synthesis was at 8 hpi, but the nucleocapsid proteins was present as early as 4 hpi. Virus-infected cells were treated with tunicamycin to ascertain the types of glycosidic linkages of the glycoproteins. The peplomer proteins of both viruses were sensitive to inhibition by tunicamycin indicating that they possessed N-linked carbohydrates. The matrix protein of TGEV was similarly affected. The matrix protein of BCV, however, was resistant to tunicamycin treatment and, therefore, has O-linked carbohydrates. Only the nucleocapsid protein of both viruses is phosphorylated as detected by radiolabeling with 32 P-orthophosphate. Pulse-chase studies and comparison of intracellular and virion proteins were done to detect precursor-product relationships

  3. Coronavirus infections in horses in Saudi Arabia and Oman.

    Science.gov (United States)

    Hemida, M G; Chu, D K W; Perera, R A P M; Ko, R L W; So, R T Y; Ng, B C Y; Chan, S M S; Chu, S; Alnaeem, A A; Alhammadi, M A; Webby, R J; Poon, L L M; Balasuriya, U B R; Peiris, M

    2017-12-01

    Equine coronaviruses (ECoV) are the only coronavirus known to infect horses. So far, data on ECoV infection in horses remain limited to the USA, France and Japan and its geographic distribution is not well understood. We carried out RT-PCR on 306 nasal and 315 rectal swabs and tested 243 sera for antibodies to detect coronavirus infections in apparently healthy horses in Saudi Arabia and Oman. We document evidence of infection with ECoV and HKU23 coronavirus by RT-PCR. There was no conclusive evidence of Middle East respiratory syndrome coronavirus infection in horses. Serological data suggest that lineage A betacoronavirus infections are commonly infecting horses in Saudi Arabia and Oman but antibody cross-reactivities between these viruses do not permit us to use serological data alone to identify which coronaviruses are causing these infections. © 2017 Blackwell Verlag GmbH.

  4. Genetic Characteristics of Coronaviruses from Korean Bats in 2016.

    Science.gov (United States)

    Lee, Saemi; Jo, Seong-Deok; Son, Kidong; An, Injung; Jeong, Jipseol; Wang, Seung-Jun; Kim, Yongkwan; Jheong, Weonhwa; Oem, Jae-Ku

    2018-01-01

    Bats have increasingly been recognized as the natural reservoir of severe acute respiratory syndrome (SARS), coronavirus, and other coronaviruses found in mammals. However, little research has been conducted on bat coronaviruses in South Korea. In this study, bat samples (332 oral swabs, 245 fecal samples, 38 urine samples, and 57 bat carcasses) were collected at 33 natural bat habitat sites in South Korea. RT-PCR and sequencing were performed for specific coronavirus genes to identify the bat coronaviruses in different bat samples. Coronaviruses were detected in 2.7% (18/672) of the samples: 13 oral swabs from one species of the family Rhinolophidae, and four fecal samples and one carcass (intestine) from three species of the family Vespertiliodae. To determine the genetic relationships of the 18 sequences obtained in this study and previously known coronaviruses, the nucleotide sequences of a 392-nt region of the RNA-dependent RNA polymerase (RdRp) gene were analyzed phylogenetically. Thirteen sequences belonging to SARS-like betacoronaviruses showed the highest nucleotide identity (97.1-99.7%) with Bat-CoV-JTMC15 reported in China. The other five sequences were most similar to MERS-like betacoronaviruses. Four nucleotide sequences displayed the highest identity (94.1-95.1%) with Bat-CoV-HKU5 from Hong Kong. The one sequence from a carcass showed the highest nucleotide identity (99%) with Bat-CoV-SC2013 from China. These results suggest that careful surveillance of coronaviruses from bats should be continued, because animal and human infections may result from the genetic variants present in bat coronavirus reservoirs.

  5. Human Coronaviruses 229E and NL63: Close Yet Still So Far

    Directory of Open Access Journals (Sweden)

    Ronald Dijkman

    2009-04-01

    Full Text Available HCoV-NL63 and HCoV-229E are two of the four human coronaviruses that circulate worldwide. These two viruses are unique in their relationship towards each other. Phylogenetically, the viruses are more closely related to each other than to any other human coronavirus, yet they only share 65% sequence identity. Moreover, the viruses use different receptors to enter their target cell. HCoV-NL63 is associated with croup in children, whereas all signs suggest that the virus probably causes the common cold in healthy adults. HCoV-229E is a proven common cold virus in healthy adults, so it is probable that both viruses induce comparable symptoms in adults, even though their mode of infection differs. Here, we present an overview of the current knowledge on both human coronaviruses, focusing on similarities and differences.

  6. The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors.

    Directory of Open Access Journals (Sweden)

    Susanne Pfefferle

    2011-10-01

    Full Text Available Coronaviruses (CoVs are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS in 2002/2003 has demonstrated human vulnerability to (Coronavirus CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B as interaction partners of the CoV non-structural protein 1 (Nsp1. These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock.

  7. Coronavirus 229E-related pneumonia in immunocompromised patients.

    Science.gov (United States)

    Pene, Frédéric; Merlat, Annabelle; Vabret, Astrid; Rozenberg, Flore; Buzyn, Agnès; Dreyfus, François; Cariou, Alain; Freymuth, François; Lebon, Pierre

    2003-10-01

    Coronaviruses strains 229E and OC43 have been associated with various respiratory illnesses ranging from the self-resolving common cold to severe pneumonia. Although chronic underlying conditions are major determinants of severe respiratory virus infections, few data about coronavirus-related pneumonia in immunocompromised patients are available. Here we report 2 well-documented cases of pneumonia related to coronavirus 229E, each with a different clinical presentation. Diagnosis was made on the basis of viral culture and electron microscopy findings that exhibited typical crown-like particles and through amplification of the viral genome by reverse transcriptase-polymerase chain reaction. On the basis of this report, coronaviruses should be considered as potential causative microorganisms of pneumonia in immunocompromised patients.

  8. Transmission of Middle East respiratory syndrome coronavirus ...

    African Journals Online (AJOL)

    ... hand hygiene, and cough etiquette, would minimize the infection rate among HCPs. The required consumables for maintaining hand hygiene should be readily available to all HCPs. Keywords: Middle East respiratory syndrome coronavirus (MERS-CoV), Systematic review, healthcareassociated infections, Coronaviruses ...

  9. An eight-year epidemiologic study based on baculovirus-expressed type-specific spike proteins for the differentiation of type I and II feline coronavirus infections

    Science.gov (United States)

    2014-01-01

    Background Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV). FCoVs are divided into two serotypes with markedly different infection rates among cat populations around the world. A baculovirus-expressed type-specific domain of the spike proteins of FCoV was used to survey the infection of the two viruses over the past eight years in Taiwan. Results An immunofluorescence assay based on cells infected with the recombinant viruses that was capable of distinguishing between the two types of viral infection was established. A total of 833 cases from a teaching hospital was surveyed for prevalence of different FCoV infections. Infection of the type I FCoV was dominant, with a seropositive rate of 70.4%, whereas 3.5% of cats were infected with the type II FCoV. In most cases, results derived from serotyping and genotyping were highly agreeable. However, 16.7% (4/24) FIP cats and 9.8% (6/61) clinically healthy cats were found to possess antibodies against both viruses. Moreover, most of the cats (84.6%, 22/26) infected with a genotypic untypable virus bearing a type I FCoV antibody. Conclusion A relatively simple serotyping method to distinguish between two types of FCoV infection was developed. Based on this method, two types of FCoV infection in Taiwan was first carried out. Type I FCoV was found to be predominant compared with type II virus. Results derived from serotyping and genotyping support our current understanding of evolution of disease-related FCoV and transmission of FIP. PMID:25123112

  10. BIOLOGICAL CLONING OF A BOVINE CORONAVIRUS ISOLATE

    OpenAIRE

    Betancourt, A; Rodríguez, Edisleidy; Relova, Damarys; Barrera, Maritza

    2008-01-01

    Con el objetivo de obtener un aislado de Coronavirus bovino clonado biológicamente se adaptó el aislado VB73/04 a la multiplicación en la línea celular MDBK. Este aislado indujo la formación de placas, las cuales resultaron homogéneas después del clonaje biológico. La población viral obtenida fue identificada como Coronavirus bovino por RT-PCR y Seroneutralización. In order to obtain a biologically cloned bovine coronavirus isolate, the isolate VB73/04 was adapted to multiplication in MDBK...

  11. Coronavirus Infection and Diversity in Bats in the Australasian Region.

    Science.gov (United States)

    Smith, C S; de Jong, C E; Meers, J; Henning, J; Wang, L- F; Field, H E

    2016-03-01

    Following the SARS outbreak, extensive surveillance was undertaken globally to detect and identify coronavirus diversity in bats. This study sought to identify the diversity and prevalence of coronaviruses in bats in the Australasian region. We identified four different genotypes of coronavirus, three of which (an alphacoronavirus and two betacoronaviruses) are potentially new species, having less than 90% nucleotide sequence identity with the most closely related described viruses. We did not detect any SARS-like betacoronaviruses, despite targeting rhinolophid bats, the putative natural host taxa. Our findings support the virus-host co-evolution hypothesis, with the detection of Miniopterus bat coronavirus HKU8 (previously reported in Miniopterus species in China, Hong Kong and Bulgaria) in Australian Miniopterus species. Similarly, we detected a novel betacoronavirus genotype from Pteropus alecto which is most closely related to Bat coronavirus HKU9 identified in other pteropodid bats in China, Kenya and the Philippines. We also detected possible cross-species transmission of bat coronaviruses, and the apparent enteric tropism of these viruses. Thus, our findings are consistent with a scenario wherein the current diversity and host specificity of coronaviruses reflects co-evolution with the occasional host shift.

  12. Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function.

    Science.gov (United States)

    Jaimes, Javier A; Whittaker, Gary R

    2018-04-01

    Feline coronavirus (FCoV) is an etiological agent that causes a benign enteric illness and the fatal systemic disease feline infectious peritonitis (FIP). The FCoV spike (S) protein is considered the viral regulator for binding and entry to the cell. This protein is also involved in FCoV tropism and virulence, as well as in the switch from enteric disease to FIP. This regulation is carried out by spike's major functions: receptor binding and virus-cell membrane fusion. In this review, we address important aspects in FCoV genetics, replication and pathogenesis, focusing on the role of S. To better understand this, FCoV S protein models were constructed, based on the human coronavirus NL63 (HCoV-NL63) S structure. We describe the specific structural characteristics of the FCoV S, in comparison with other coronavirus spikes. We also revise the biochemical events needed for FCoV S activation and its relation to the structural features of the protein. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Vacuolating encephalitis in mice infected by human coronavirus OC43

    International Nuclear Information System (INIS)

    Jacomy, Helene; Talbot, Pierre J.

    2003-01-01

    Involvement of viruses in human neurodegenerative diseases and the underlying pathologic mechanisms remain generally unclear. Human respiratory coronaviruses (HCoV) can infect neural cells, persist in human brain, and activate myelin-reactive T cells. As a means of understanding the human infection, we characterized in vivo the neurotropic and neuroinvasive properties of HCoV-OC43 through the development of an experimental animal model. Virus inoculation of 21-day postnatal C57BL/6 and BALB/c mice led to a generalized infection of the whole CNS, demonstrating HCoV-OC43 neuroinvasiveness and neurovirulence. This acute infection targeted neurons, which underwent vacuolation and degeneration while infected regions presented strong microglial reactivity and inflammatory reactions. Damage to the CNS was not immunologically mediated and microglial reactivity was instead a consequence of direct virus-mediated neuronal injury. Although this acute encephalitis appears generally similar to that induced by murine coronaviruses, an important difference rests in the prominent spongiform-like degeneration that could trigger neuropathology in surviving animals

  14. A molecular arms race between host innate antiviral response and emerging human coronaviruses.

    Science.gov (United States)

    Wong, Lok-Yin Roy; Lui, Pak-Yin; Jin, Dong-Yan

    2016-02-01

    Coronaviruses have been closely related with mankind for thousands of years. Community-acquired human coronaviruses have long been recognized to cause common cold. However, zoonotic coronaviruses are now becoming more a global concern with the discovery of highly pathogenic severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses causing severe respiratory diseases. Infections by these emerging human coronaviruses are characterized by less robust interferon production. Treatment of patients with recombinant interferon regimen promises beneficial outcomes, suggesting that compromised interferon expression might contribute at least partially to the severity of disease. The mechanisms by which coronaviruses evade host innate antiviral response are under intense investigations. This review focuses on the fierce arms race between host innate antiviral immunity and emerging human coronaviruses. Particularly, the host pathogen recognition receptors and the signal transduction pathways to mount an effective antiviral response against SARS and MERS coronavirus infection are discussed. On the other hand, the counter-measures evolved by SARS and MERS coronaviruses to circumvent host defense are also dissected. With a better understanding of the dynamic interaction between host and coronaviruses, it is hoped that insights on the pathogenesis of newly-identified highly pathogenic human coronaviruses and new strategies in antiviral development can be derived.

  15. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    Science.gov (United States)

    Irigoyen, Nerea; Firth, Andrew E; Jones, Joshua D; Chung, Betty Y-W; Siddell, Stuart G; Brierley, Ian

    2016-02-01

    Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal

  16. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    Directory of Open Access Journals (Sweden)

    Nerea Irigoyen

    2016-02-01

    Full Text Available Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV, are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59, a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the

  17. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets

    NARCIS (Netherlands)

    ter Meulen, Jan; Bakker, Alexander B. H.; van den Brink, Edward N.; Weverling, Gerrit J.; Martina, Byron E. E.; Haagmans, Bart L.; Kuiken, Thijs; de Kruif, John; Preiser, Wolfgang; Spaan, Willy; Gelderblom, Hans R.; Goudsmit, Jaap; Osterhaus, Albert D. M. E.

    2004-01-01

    SARS coronavirus continues to cause sporadic cases of severe acute respiratory syndrome (SARS) in China. No active or passive immunoprophylaxis for disease induced by SARS coronavirus is available. We investigated prophylaxis of SARS coronavirus infection with a neutralising human monoclonal

  18. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor.

    Science.gov (United States)

    Ge, Xing-Yi; Li, Jia-Lu; Yang, Xing-Lou; Chmura, Aleksei A; Zhu, Guangjian; Epstein, Jonathan H; Mazet, Jonna K; Hu, Ben; Zhang, Wei; Peng, Cheng; Zhang, Yu-Ji; Luo, Chu-Ming; Tan, Bing; Wang, Ning; Zhu, Yan; Crameri, Gary; Zhang, Shu-Yi; Wang, Lin-Fa; Daszak, Peter; Shi, Zheng-Li

    2013-11-28

    The 2002-3 pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV) was one of the most significant public health events in recent history. An ongoing outbreak of Middle East respiratory syndrome coronavirus suggests that this group of viruses remains a key threat and that their distribution is wider than previously recognized. Although bats have been suggested to be the natural reservoirs of both viruses, attempts to isolate the progenitor virus of SARS-CoV from bats have been unsuccessful. Diverse SARS-like coronaviruses (SL-CoVs) have now been reported from bats in China, Europe and Africa, but none is considered a direct progenitor of SARS-CoV because of their phylogenetic disparity from this virus and the inability of their spike proteins to use the SARS-CoV cellular receptor molecule, the human angiotensin converting enzyme II (ACE2). Here we report whole-genome sequences of two novel bat coronaviruses from Chinese horseshoe bats (family: Rhinolophidae) in Yunnan, China: RsSHC014 and Rs3367. These viruses are far more closely related to SARS-CoV than any previously identified bat coronaviruses, particularly in the receptor binding domain of the spike protein. Most importantly, we report the first recorded isolation of a live SL-CoV (bat SL-CoV-WIV1) from bat faecal samples in Vero E6 cells, which has typical coronavirus morphology, 99.9% sequence identity to Rs3367 and uses ACE2 from humans, civets and Chinese horseshoe bats for cell entry. Preliminary in vitro testing indicates that WIV1 also has a broad species tropism. Our results provide the strongest evidence to date that Chinese horseshoe bats are natural reservoirs of SARS-CoV, and that intermediate hosts may not be necessary for direct human infection by some bat SL-CoVs. They also highlight the importance of pathogen-discovery programs targeting high-risk wildlife groups in emerging disease hotspots as a strategy for pandemic preparedness.

  19. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner.

    Directory of Open Access Journals (Sweden)

    Christine Burkard

    2014-11-01

    Full Text Available Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs. Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV. Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion.

  20. Pathogenic characteristics of persistent feline enteric coronavirus infection in cats

    Science.gov (United States)

    Vogel, Liesbeth; Van der Lubben, Mariken; Te Lintelo, Eddie G.; Bekker, Cornelis P.J.; Geerts, Tamara; Schuijff, Leontine S.; Grinwis, Guy C.M.; Egberink, Herman F.; Rottier, Peter J.M.

    2010-01-01

    Feline coronaviruses (FCoV) comprise two biotypes: feline enteric coronaviruses (FECV) and feline infectious peritonitis viruses (FIPV). FECV is associated with asymptomatic persistent enteric infections, while FIPV causes feline infectious peritonitis (FIP), a usually fatal systemic disease in domestic cats and some wild Felidae. FIPV arises from FECV by mutation. FCoV also occur in two serotypes, I and II, of which the serotype I viruses are by far the most prevalent in the field. Yet, most of our knowledge about FCoV infections relates to serotype II viruses, particularly about the FIPV, mainly because type I viruses grow poorly in cell culture. Hence, the aim of the present work was the detailed study of the epidemiologically most relevant viruses, the avirulent serotype I viruses. Kittens were inoculated oronasally with different doses of two independent FECV field strains, UCD and RM. Persistent infection could be reproducibly established. The patterns of clinical symptoms, faecal virus shedding and seroconversion were monitored for up to 10 weeks revealing subtle but reproducible differences between the two viruses. Faecal virus, i.e. genomic RNA, was detected during persistent FECV infection only in the large intestine, downstream of the appendix, and could occasionally be observed also in the blood. The implications of our results, particularly our insights into the persistently infected state, are discussed. PMID:20663472

  1. Comparative in vivo analysis of recombinant type II feline coronaviruses with truncated and completed ORF3 region.

    Directory of Open Access Journals (Sweden)

    Ádám Bálint

    Full Text Available Our previous in vitro comparative study on a feline coronavirus (FCoV pair, differing only in the intactness of their ORF3abc regions, showed that the truncated ORF3abc plays an important role in the efficient macrophage/monocyte tropism of type II feline infectious peritonitis virus (FIPV. In the present study, we describe a challenge experiment with the same recombinant FCoVs in order to gain data on the in vivo characteristics on these viruses. While parent virus FIPV DF-2 developed feline infectious peritonitis in all the infected cats, its recombinant virus PBFIPV-DF-2, differing only in seven nucleotides, proved to be surprisingly low virulent, although caused an acute febrile episode similarly to the original FIPV DF-2. PBFIPV-DF-2 infection induced significantly lower virus neutralization titers than its parent virus, and lacked the second phase of viremia and development of fatal course of the disease. The recombinant PBFIPV-DF-2-R3i with completed ORF3abc gained biological properties that differentiate between the feline enteric coronavirus (FECV and FIPV biotypes such as intensive replication in the gut, absence of viremia and weak or no serological response. Using reverse genetic approaches our study is the first experimental proof that ORF3abc is indeed responsible for the restriction of FECV replication to the intestine in vivo.

  2. Comparative In Vivo Analysis of Recombinant Type II Feline Coronaviruses with Truncated and Completed ORF3 Region

    Science.gov (United States)

    Bálint, Ádám; Farsang, Attila; Zádori, Zoltán; Belák, Sándor

    2014-01-01

    Our previous in vitro comparative study on a feline coronavirus (FCoV) pair, differing only in the intactness of their ORF3abc regions, showed that the truncated ORF3abc plays an important role in the efficient macrophage/monocyte tropism of type II feline infectious peritonitis virus (FIPV). In the present study, we describe a challenge experiment with the same recombinant FCoVs in order to gain data on the in vivo characteristics on these viruses. While parent virus FIPV DF-2 developed feline infectious peritonitis in all the infected cats, its recombinant virus PBFIPV-DF-2, differing only in seven nucleotides, proved to be surprisingly low virulent, although caused an acute febrile episode similarly to the original FIPV DF-2. PBFIPV-DF-2 infection induced significantly lower virus neutralization titers than its parent virus, and lacked the second phase of viremia and development of fatal course of the disease. The recombinant PBFIPV-DF-2-R3i with completed ORF3abc gained biological properties that differentiate between the feline enteric coronavirus (FECV) and FIPV biotypes such as intensive replication in the gut, absence of viremia and weak or no serological response. Using reverse genetic approaches our study is the first experimental proof that ORF3abc is indeed responsible for the restriction of FECV replication to the intestine in vivo. PMID:24586385

  3. The Severe Acute Respiratory Syndrome (SARS-coronavirus 3a protein may function as a modulator of the trafficking properties of the spike protein

    Directory of Open Access Journals (Sweden)

    Tan Yee-Joo

    2005-02-01

    Full Text Available Abstract Background A recent publication reported that a tyrosine-dependent sorting signal, present in cytoplasmic tail of the spike protein of most coronaviruses, mediates the intracellular retention of the spike protein. This motif is missing from the spike protein of the severe acute respiratory syndrome-coronavirus (SARS-CoV, resulting in high level of surface expression of the spike protein when it is expressed on its own in vitro. Presentation of the hypothesis It has been shown that the severe acute respiratory syndrome-coronavirus genome contains open reading frames that encode for proteins with no homologue in other coronaviruses. One of them is the 3a protein, which is expressed during infection in vitro and in vivo. The 3a protein, which contains a tyrosine-dependent sorting signal in its cytoplasmic domain, is expressed on the cell surface and can undergo internalization. In addition, 3a can bind to the spike protein and through this interaction, it may be able to cause the spike protein to become internalized, resulting in a decrease in its surface expression. Testing the hypothesis The effects of 3a on the internalization of cell surface spike protein can be examined biochemically and the significance of the interplay between these two viral proteins during viral infection can be studied using reverse genetics methodology. Implication of the hypothesis If this hypothesis is proven, it will indicate that the severe acute respiratory syndrome-coronavirus modulates the surface expression of the spike protein via a different mechanism from other coronaviruses. The interaction between 3a and S, which are expressed from separate subgenomic RNA, would be important for controlling the trafficking properties of S. The cell surface expression of S in infected cells significantly impacts viral assembly, viral spread and viral pathogenesis. Modulation by this unique pathway could confer certain advantages during the replication of the severe

  4. Unraveling the Mysteries of Middle East Respiratory Syndrome Coronavirus

    Centers for Disease Control (CDC) Podcasts

    2014-03-11

    Dr. Aron Hall, a CDC coronavirus epidemiologist, discusses Middle East Respiratory Syndrome Coronavirus.  Created: 3/11/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 3/11/2014.

  5. Common RNA replication signals exist among group 2 coronaviruses: evidence for in vivo recombination between animal and human coronavius molecules

    International Nuclear Information System (INIS)

    Wu, H.-Y.; Guy, James S.; Yoo, Dongwan; Vlasak, Reinhard; Urbach, Ena; Brian, David A.

    2003-01-01

    5' and 3' UTR sequences on the coronavirus genome are known to carry cis-acting elements for DI RNA replication and presumably also virus genome replication. 5' UTR-adjacent coding sequences are also thought to harbor cis-acting elements. Here we have determined the 5' UTR and adjacent 289-nt sequences, and 3' UTR sequences, for six group 2 coronaviruses and have compared them to each other and to three previously reported group 2 members. Extensive regions of highly similar UTR sequences were found but small regions of divergence were also found indicating group 2 coronaviruses could be subdivided into those that are bovine coronavirus (BCoV)-like (BCoV, human respiratory coronavirus-OC43, human enteric coronavirus, porcine hemagglutinating encephalomyelitis virus, and equine coronavirus) and those that are murine hepatitis virus (MHV)-like (A59, 2, and JHM strains of MHV, puffinosis virus, and rat sialodacryoadenitis virus). The 3' UTRs of BCoV and MHV have been previously shown to be interchangeable. Here, a reporter-containing BCoV DI RNA was shown to be replicated by all five BCoV-like helper viruses and by MHV-H2 (a human cell-adapted MHV strain), a representative of the MHV-like subgroup, demonstrating group 2 common 5' and 3' replication signaling elements. BCoV DI RNA, furthermore, acquired the leader of HCoV-OC43 by leader switching, demonstrating for the first time in vivo recombination between animal and human coronavirus molecules. These results indicate that common replication signaling elements exist among group 2 coronaviruses despite a two-cluster pattern within the group and imply there could exist a high potential for recombination among group members

  6. Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus

    NARCIS (Netherlands)

    Ulasli, M.; Verheije, M.H.; de Haan, C.A.M.; Reggiori, F.M.

    2011-01-01

    Coronaviruses (CoV) are enveloped positive-strand RNA viruses that induce different membrane rearrangements in infected cells in order to efficiently replicate and assemble. The origin, the protein composition and the function of these structures are not well established. To shed further light on

  7. Coronavirus infection in mink (Mustela vison). Serological evidence of infection with a coronavirus related to transmissible gastroenteritis virus and porcine epidemic diarrhea virus

    DEFF Research Database (Denmark)

    Have, P; Moving, V; Svansson, V

    1992-01-01

    Antibodies to a transmissible gastroenteritis virus (TGEV)-related coronavirus have been demonstrated in mink sera by indirect immunofluorescence, peroxidase-linked antibody assays and immunoblotting. This is the first serological evidence of a specific coronavirus infection in mink. The putative...

  8. Comparative properties of feline coronaviruses in vitro.

    OpenAIRE

    McKeirnan, A J; Evermann, J F; Davis, E V; Ott, R L

    1987-01-01

    Two feline coronaviruses were characterized to determine their biological properties in vitro and their antigenic relatedness to a previously recognized feline infectious peritonitis virus and canine coronavirus. The viruses, designated WSU 79-1146 and WSU 79-1683, were shown to have comparable growth curves with the prototype feline infectious peritonitis virus. Treatment of the feline infectious peritonitis virus strains with 0.25% trypsin indicated that they were relatively resistant to pr...

  9. Inhibition of cytokine gene expression and induction of chemokine genes in non-lymphatic cells infected with SARS coronavirus

    Directory of Open Access Journals (Sweden)

    Weber Friedemann

    2006-03-01

    Full Text Available Abstract Background SARS coronavirus (SARS-CoV is the etiologic agent of the severe acute respiratory syndrome. SARS-CoV mainly infects tissues of non-lymphatic origin, and the cytokine profile of those cells can determine the course of disease. Here, we investigated the cytokine response of two human non-lymphatic cell lines, Caco-2 and HEK 293, which are fully permissive for SARS-CoV. Results A comparison with established cytokine-inducing viruses revealed that SARS-CoV only weakly triggered a cytokine response. In particular, SARS-CoV did not activate significant transcription of the interferons IFN-α, IFN-β, IFN-λ1, IFN-λ2/3, as well as of the interferon-induced antiviral genes ISG56 and MxA, the chemokine RANTES and the interleukine IL-6. Interestingly, however, SARS-CoV strongly induced the chemokines IP-10 and IL-8 in the colon carcinoma cell line Caco-2, but not in the embryonic kidney cell line 293. Conclusion Our data indicate that SARS-CoV suppresses the antiviral cytokine system of non-immune cells to a large extent, thus buying time for dissemination in the host. However, synthesis of IP-10 and IL-8, which are established markers for acute-stage SARS, escapes the virus-induced silencing at least in some cell types. Therefore, the progressive infiltration of immune cells into the infected lungs observed in SARS patients could be due to the production of these chemokines by the infected tissue cells.

  10. Coronavirus envelope (E) protein remains at the site of assembly

    International Nuclear Information System (INIS)

    Venkatagopalan, Pavithra; Daskalova, Sasha M.; Lopez, Lisa A.; Dolezal, Kelly A.; Hogue, Brenda G.

    2015-01-01

    Coronaviruses (CoVs) assemble at endoplasmic reticulum Golgi intermediate compartment (ERGIC) membranes and egress from cells in cargo vesicles. Only a few molecules of the envelope (E) protein are assembled into virions. The role of E in morphogenesis is not fully understood. The cellular localization and dynamics of mouse hepatitis CoV A59 (MHV) E protein were investigated to further understanding of its role during infection. E protein localized in the ERGIC and Golgi with the amino and carboxy termini in the lumen and cytoplasm, respectively. E protein does not traffic to the cell surface. MHV was genetically engineered with a tetracysteine tag at the carboxy end of E. Fluorescence recovery after photobleaching (FRAP) showed that E is mobile in ERGIC/Golgi membranes. Correlative light electron microscopy (CLEM) confirmed the presence of E in Golgi cisternae. The results provide strong support that E proteins carry out their function(s) at the site of budding/assembly. - Highlights: • Mouse hepatitis coronavirus (MHV-CoV) E protein localizes in the ERGIC and Golgi. • MHV-CoV E does not transport to the cell surface. • MHV-CoV can be genetically engineered with a tetracysteine tag appended to E. • First FRAP and correlative light electron microscopy of a CoV E protein. • Live-cell imaging shows that E is mobile in ERGIC/Golgi membranes

  11. Coronavirus envelope (E) protein remains at the site of assembly

    Energy Technology Data Exchange (ETDEWEB)

    Venkatagopalan, Pavithra [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States); Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287-5401 (United States); Daskalova, Sasha M. [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); Department of Biochemistry and Chemistry, Arizona State University, Tempe, AZ 85287-5401 (United States); Lopez, Lisa A. [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States); Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85287-5401 (United States); Dolezal, Kelly A. [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States); Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287-5401 (United States); Hogue, Brenda G., E-mail: Brenda.Hogue@asu.edu [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States)

    2015-04-15

    Coronaviruses (CoVs) assemble at endoplasmic reticulum Golgi intermediate compartment (ERGIC) membranes and egress from cells in cargo vesicles. Only a few molecules of the envelope (E) protein are assembled into virions. The role of E in morphogenesis is not fully understood. The cellular localization and dynamics of mouse hepatitis CoV A59 (MHV) E protein were investigated to further understanding of its role during infection. E protein localized in the ERGIC and Golgi with the amino and carboxy termini in the lumen and cytoplasm, respectively. E protein does not traffic to the cell surface. MHV was genetically engineered with a tetracysteine tag at the carboxy end of E. Fluorescence recovery after photobleaching (FRAP) showed that E is mobile in ERGIC/Golgi membranes. Correlative light electron microscopy (CLEM) confirmed the presence of E in Golgi cisternae. The results provide strong support that E proteins carry out their function(s) at the site of budding/assembly. - Highlights: • Mouse hepatitis coronavirus (MHV-CoV) E protein localizes in the ERGIC and Golgi. • MHV-CoV E does not transport to the cell surface. • MHV-CoV can be genetically engineered with a tetracysteine tag appended to E. • First FRAP and correlative light electron microscopy of a CoV E protein. • Live-cell imaging shows that E is mobile in ERGIC/Golgi membranes.

  12. Antibody response to equine coronavirus in horses inoculated with a bovine coronavirus vaccine.

    Science.gov (United States)

    Nemoto, Manabu; Kanno, Toru; Bannai, Hiroshi; Tsujimura, Koji; Yamanaka, Takashi; Kokado, Hiroshi

    2017-11-17

    A vaccine for equine coronavirus (ECoV) is so far unavailable. Bovine coronavirus (BCoV) is antigenically related to ECoV; it is therefore possible that BCoV vaccine will induce antibodies against ECoV in horses. This study investigated antibody response to ECoV in horses inoculated with BCoV vaccine. Virus neutralization tests showed that antibody titers against ECoV increased in all six horses tested at 14 days post inoculation, although the antibody titers were lower against ECoV than against BCoV. This study showed that BCoV vaccine provides horses with antibodies against ECoV to some extent. It is unclear whether antibodies provided by BCoV vaccine are effective against ECoV, and therefore ECoV challenge studies are needed to evaluate efficacy of the vaccine in the future.

  13. Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia.

    Science.gov (United States)

    Lacroix, Audrey; Duong, Veasna; Hul, Vibol; San, Sorn; Davun, Hull; Omaliss, Keo; Chea, Sokha; Hassanin, Alexandre; Theppangna, Watthana; Silithammavong, Soubanh; Khammavong, Kongsy; Singhalath, Sinpakone; Greatorex, Zoe; Fine, Amanda E; Goldstein, Tracey; Olson, Sarah; Joly, Damien O; Keatts, Lucy; Dussart, Philippe; Afelt, Aneta; Frutos, Roger; Buchy, Philippe

    2017-03-01

    South-East Asia is a hot spot for emerging zoonotic diseases, and bats have been recognized as hosts for a large number of zoonotic viruses such as Severe Acute Respiratory Syndrome (SARS), responsible for acute respiratory syndrome outbreaks. Thus, it is important to expand our knowledge of the presence of viruses in bats which could represent a risk to humans. Coronaviruses (CoVs) have been reported in bat species from Thailand, China, Indonesia, Taiwan and the Philippines. However no such work was conducted in Cambodia or Lao PDR. Between 2010 and 2013, 1965 bats were therefore sampled at interfaces with human populations in these two countries. They were tested for the presence of coronavirus by consensus reverse transcription-PCR assay. A total of 93 samples (4.7%) from 17 genera of bats tested positive. Sequence analysis revealed the presence of potentially 37 and 56 coronavirus belonging to alpha-coronavirus (αCoV) and beta-CoV (βCoV), respectively. The βCoVs group is known to include some coronaviruses highly pathogenic to human, such as SARS-CoV and MERS-CoV. All coronavirus sequences generated from frugivorous bats (family Pteropodidae) (n=55) clustered with other bat βCoVs of lineage D, whereas one coronavirus from Pipistrellus coromandra fell in the lineage C of βCoVs which also includes the MERS-CoV. αCoVs were all detected in various genera of insectivorous bats and clustered with diverse bat αCoV sequences previously published. A closely related strain of PEDV, responsible for severe diarrhea in pigs (PEDV-CoV), was detected in 2 Myotis bats. We highlighted the presence and the high diversity of coronaviruses circulating in bats from Cambodia and Lao PDR. Three new bat genera and species were newly identified as host of coronaviruses, namely Macroglossus sp., Megaerops niphanae and Myotis horsfieldii. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum.

    Directory of Open Access Journals (Sweden)

    Kèvin Knoops

    2008-09-01

    Full Text Available Positive-strand RNA viruses, a large group including human pathogens such as SARS-coronavirus (SARS-CoV, replicate in the cytoplasm of infected host cells. Their replication complexes are commonly associated with modified host cell membranes. Membrane structures supporting viral RNA synthesis range from distinct spherular membrane invaginations to more elaborate webs of packed membranes and vesicles. Generally, their ultrastructure, morphogenesis, and exact role in viral replication remain to be defined. Poorly characterized double-membrane vesicles (DMVs were previously implicated in SARS-CoV RNA synthesis. We have now applied electron tomography of cryofixed infected cells for the three-dimensional imaging of coronavirus-induced membrane alterations at high resolution. Our analysis defines a unique reticulovesicular network of modified endoplasmic reticulum that integrates convoluted membranes, numerous interconnected DMVs (diameter 200-300 nm, and "vesicle packets" apparently arising from DMV merger. The convoluted membranes were most abundantly immunolabeled for viral replicase subunits. However, double-stranded RNA, presumably revealing the site of viral RNA synthesis, mainly localized to the DMV interior. Since we could not discern a connection between DMV interior and cytosol, our analysis raises several questions about the mechanism of DMV formation and the actual site of SARS-CoV RNA synthesis. Our data document the extensive virus-induced reorganization of host cell membranes into a network that is used to organize viral replication and possibly hide replicating RNA from antiviral defense mechanisms. Together with biochemical studies of the viral enzyme complex, our ultrastructural description of this "replication network" will aid to further dissect the early stages of the coronavirus life cycle and its virus-host interactions.

  15. Structure and inhibition of the SARS coronavirus envelope protein ion channel.

    Directory of Open Access Journals (Sweden)

    Konstantin Pervushin

    2009-07-01

    Full Text Available The envelope (E protein from coronaviruses is a small polypeptide that contains at least one alpha-helical transmembrane domain. Absence, or inactivation, of E protein results in attenuated viruses, due to alterations in either virion morphology or tropism. Apart from its morphogenetic properties, protein E has been reported to have membrane permeabilizing activity. Further, the drug hexamethylene amiloride (HMA, but not amiloride, inhibited in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication. We have previously shown for the coronavirus species responsible for severe acute respiratory syndrome (SARS-CoV that the transmembrane domain of E protein (ETM forms pentameric alpha-helical bundles that are likely responsible for the observed channel activity. Herein, using solution NMR in dodecylphosphatidylcholine micelles and energy minimization, we have obtained a model of this channel which features regular alpha-helices that form a pentameric left-handed parallel bundle. The drug HMA was found to bind inside the lumen of the channel, at both the C-terminal and the N-terminal openings, and, in contrast to amiloride, induced additional chemical shifts in ETM. Full length SARS-CoV E displayed channel activity when transiently expressed in human embryonic kidney 293 (HEK-293 cells in a whole-cell patch clamp set-up. This activity was significantly reduced by hexamethylene amiloride (HMA, but not by amiloride. The channel structure presented herein provides a possible rationale for inhibition, and a platform for future structure-based drug design of this potential pharmacological target.

  16. Cleavage of group 1 coronavirus spike proteins: how furin cleavage is traded off against heparan sulfate binding upon cell culture adaptation

    NARCIS (Netherlands)

    Haan, de C.A.M.; Haijema, B.J.; Schellen, P.; Wichgers Schreur, P.J.; Lintelo, te E.; Vennema, H.; Rottier, P.J.M.

    2008-01-01

    A longstanding enigmatic feature of the group 1 coronaviruses is the uncleaved phenotype of their spike protein, an exceptional property among class I fusion proteins. Here, however, we show that some group 1 coronavirus spike proteins carry a furin enzyme recognition motif and can actually be

  17. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research.

    Science.gov (United States)

    Simmons, Graham; Zmora, Pawel; Gierer, Stefanie; Heurich, Adeline; Pöhlmann, Stefan

    2013-12-01

    The severe acute respiratory syndrome (SARS) pandemic revealed that zoonotic transmission of animal coronaviruses (CoV) to humans poses a significant threat to public health and warrants surveillance and the development of countermeasures. The activity of host cell proteases, which cleave and activate the SARS-CoV spike (S) protein, is essential for viral infectivity and constitutes a target for intervention. However, the identities of the proteases involved have been unclear. Pioneer studies identified cathepsins and type II transmembrane serine proteases as cellular activators of SARS-CoV and demonstrated that several emerging viruses might exploit these enzymes to promote their spread. Here, we will review the proteolytic systems hijacked by SARS-CoV for S protein activation, we will discuss their contribution to viral spread in the host and we will outline antiviral strategies targeting these enzymes. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses.'' Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Lithium chloride inhibits the coronavirus infectious bronchitis virus in cell culture.

    OpenAIRE

    Harrison , Sally; Tarpey , Ian; Rothwell , Lisa; Kasier , Pete; Hiscox , Julian

    2007-01-01

    Abstract The avian coronavirus infectious bronchitis virus (IBV) is a major economic pathogen of domestic poultry which, despite vaccination, causes mortality and significant losses in production. During replication of the RNA genome there is a high frequency of mutation and recombination which has given rise to many strains of IBV and results in the potential for new and emerging strains. Currently the live-attenuated vaccine gives poor cross strain immunity. Effective antivira...

  19. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture

    NARCIS (Netherlands)

    A.H. de Wilde (Adriaan); D. Jochmans (Dirk); C.C. Posthuma (Clara); J.C. Zevenhoven-Dobbe (Jessika); S. van Nieuwkoop (Stefan); T.M. Bestebroer (Theo); B.G. van den Hoogen (Bernadette); J. Neyts; E.J. Snijder (Eric)

    2014-01-01

    textabstractCoronaviruses can cause respiratory and enteric disease in a wide variety of human and animal hosts. The 2003 outbreak of severe acute respiratory syndrome (SARS) first demonstrated the potentially lethal consequences of zoonotic coronavirus infections in humans. In 2012, a similar

  20. Proteome profile of swine testicular cells infected with porcine transmissible gastroenteritis coronavirus.

    Directory of Open Access Journals (Sweden)

    Ruili Ma

    Full Text Available The interactions occurring between a virus and a host cell during a viral infection are complex. The purpose of this paper was to analyze altered cellular protein levels in porcine transmissible gastroenteritis coronavirus (TGEV-infected swine testicular (ST cells in order to determine potential virus-host interactions. A proteomic approach using isobaric tags for relative and absolute quantitation (iTRAQ-coupled two-dimensional liquid chromatography-tandem mass spectrometry identification was conducted on the TGEV-infected ST cells. The results showed that the 4-plex iTRAQ-based quantitative approach identified 4,112 proteins, 146 of which showed significant changes in expression 48 h after infection. At 64 h post infection, 219 of these proteins showed significant change, further indicating that a larger number of proteomic changes appear to occur during the later stages of infection. Gene ontology analysis of the altered proteins showed enrichment in multiple biological processes, including cell adhesion, response to stress, generation of precursor metabolites and energy, cell motility, protein complex assembly, growth, developmental maturation, immune system process, extracellular matrix organization, locomotion, cell-cell signaling, neurological system process, and cell junction organization. Changes in the expression levels of transforming growth factor beta 1 (TGF-β1, caspase-8, and heat shock protein 90 alpha (HSP90α were also verified by western blot analysis. To our knowledge, this study is the first time the response profile of ST host cells following TGEV infection has been analyzed using iTRAQ technology, and our description of the late proteomic changes that are occurring after the time of vigorous viral production are novel. Therefore, this study provides a solid foundation for further investigation, and will likely help us to better understand the mechanisms of TGEV infection and pathogenesis.

  1. An Outbreak of Human Coronavirus OC43 Infection and Serological Cross-Reactivity with SARS Coronavirus

    Directory of Open Access Journals (Sweden)

    David M Patrick

    2006-01-01

    Full Text Available BACKGROUND: In summer 2003, a respiratory outbreak was investigated in British Columbia, during which nucleic acid tests and serology unexpectedly indicated reactivity for severe acute respiratory syndrome coronavirus (SARS-CoV.

  2. [Nosocomial infections due to human coronaviruses in the newborn].

    Science.gov (United States)

    Gagneur, A; Legrand, M C; Picard, B; Baron, R; Talbot, P J; de Parscau, L; Sizun, J

    2002-01-01

    Human coronaviruses, with two known serogroups named 229-E and OC-43, are enveloped positive-stranded RNA viruses. The large RNA is surrounded by a nucleoprotein (protein N). The envelop contains 2 or 3 glycoproteins: spike protein (or protein S), matrix protein (or protein M) and a hemagglutinin (or protein HE). Their pathogen role remains unclear because their isolation is difficult. Reliable and rapid methods as immunofluorescence with monoclonal antibodies and reverse transcription-polymerase chain reaction allow new researches on epidemiology. Human coronaviruses can survive for as long as 6 days in suspension and 3 hours after drying on surfaces, suggesting that they could be a source of hospital-acquired infections. Two prospective studies conducted in a neonatal and paediatric intensive care unit demonstrated a significant association of coronavirus-positive nasopharyngal samples with respiratory illness in hospitalised preterm neonates. Positive samples from staff suggested either a patient-to-staff or a staff-to-patient transmission. No cross-infection were observed from community-acquired respiratory-syncitial virus or influenza-infected children to neonates. Universal precautions with hand washing and surface desinfection could be proposed to prevent coronavirus transmission.

  3. Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease

    International Nuclear Information System (INIS)

    Erles, Kerstin; Toomey, Crista; Brooks, Harriet W.; Brownlie, Joe

    2003-01-01

    An investigation into the causes of canine infectious respiratory disease was carried out in a large rehoming kennel. Tissue samples taken from the respiratory tract of diseased dogs were tested for the presence of coronaviruses using RT-PCR with conserved primers for the polymerase gene. Sequence analysis of four positive samples showed the presence of a coronavirus with high similarity to both bovine and human coronavirus (strain OC43) in their polymerase and spike genes, whereas there was a low similarity to comparable genes in the enteric canine coronavirus. This canine respiratory coronavirus (CRCV) was detected by RT-PCR in 32/119 tracheal and 20/119 lung samples, with the highest prevalence being detected in dogs with mild clinical symptoms. Serological analysis showed that the presence of antibodies against CRCV on the day of entry into the kennel decreased the risk of developing respiratory disease

  4. Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology

    Directory of Open Access Journals (Sweden)

    Blom Nikolaj

    2004-06-01

    Full Text Available Abstract Background Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS, efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins such as the cystic fibrosis transmembrane conductance regulator (CFTR, transcription factors CREB-RP and OCT-1, and components of the ubiquitin pathway. Conclusions Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified which might be important to elucidate coronavirus pathology. Furthermore, the method might assist in design of proteinase inhibitors for treatment of SARS and possible future diseases caused by coronaviruses. It is made available for public use at our website: http://www.cbs.dtu.dk/services/NetCorona/.

  5. Deficient incorporation of spike protein into virions contributes to the lack of infectivity following establishment of a persistent, non-productive infection in oligodendroglial cell culture by murine coronavirus

    International Nuclear Information System (INIS)

    Liu Yin; Herbst, Werner; Cao Jianzhong; Zhang Xuming

    2011-01-01

    Infection of mouse oligodendrocytes with a recombinant mouse hepatitis virus (MHV) expressing a green fluorescence protein facilitated specific selection of virus-infected cells and subsequent establishment of persistence. Interestingly, while viral genomic RNAs persisted in infected cells over 14 subsequent passages with concomitant synthesis of viral subgenomic mRNAs and structural proteins, no infectious virus was isolated beyond passage 2. Further biochemical and electron microscopic analyses revealed that virions, while assembled, contained little spike in the envelope, indicating that lack of infectivity during persistence was likely due to deficiency in spike incorporation. This type of non-lytic, non-productive persistence in oligodendrocytes is unique among animal viruses and resembles MHV persistence previously observed in the mouse central nervous system. Thus, establishment of such a culture system that can recapitulate the in vivo phenomenon will provide a powerful approach for elucidating the mechanisms of coronavirus persistence in glial cells at the cellular and molecular levels.

  6. Middle East Respiratory Coronavirus Accessory Protein 4a Inhibits PKR-Mediated Antiviral Stress Responses

    NARCIS (Netherlands)

    Rabouw, Huib H; Langereis, Martijn A; Knaap, Robert C M; Dalebout, Tim J; Canton, Javier; Sola, Isabel; Enjuanes, Luis; Bredenbeek, Peter J; Kikkert, Marjolein; de Groot, Raoul J; van Kuppeveld, Frank J M

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory infections that can be life-threatening. To establish an infection and spread, MERS-CoV, like most other viruses, must navigate through an intricate network of antiviral host responses. Besides the well-known type I

  7. On the biased nucleotide composition of the human coronavirus RNA genome

    NARCIS (Netherlands)

    Berkhout, Ben; van Hemert, Formijn

    2015-01-01

    We investigated the nucleotide composition of the RNA genome of the six human coronaviruses. Some general coronavirus characteristics were apparent (e.g. high U, low C count), but we also detected species-specific signatures. Most strikingly, the high U and low C proportions are quite variable and

  8. Coronaviruses in brain tissue from patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Dessau, R B; Lisby, G; Frederiksen, J L

    2001-01-01

    Brain tissue from 25 patients with clinically definite multiple sclerosis (MS) and as controls brain tissue from 36 patients without neurological disease was tested for the presence of human coronaviral RNA. Four PCR assays with primers specific for N-protein of human coronavirus strain 229E...... and three PCR assays with primers specific for the nucleocapsid protein of human coronavirus strain OC43 were performed. Sporadic positive PCR assays were observed in both patients and controls in some of the PCR assays. However, these results were not reproducible and there was no difference...... in the proportion of positive signals from the MS patients compared to controls. Evidence for a chronic infection with the human coronaviruses strain 229E or OC43 in brain tissue from patients with MS or controls has not been found in this study....

  9. Identification of Alpha and Beta Coronavirus in Wildlife Species in France: Bats, Rodents, Rabbits, and Hedgehogs

    Directory of Open Access Journals (Sweden)

    Elodie Monchatre-Leroy

    2017-11-01

    Full Text Available Coronaviruses are closely monitored in the context of emerging diseases and, as illustrated with Severe Acute Respiratory Syndrome coronavirus (SARS-CoV and Middle East Respiratory Syndrome-coronavirus (MERS-CoV, are known to cross the species barrier and eventually to move from wildlife to humans. Knowledge of the diversity of coronaviruses in wildlife is therefore essential to better understand and prevent emergence events. This study explored the presence of coronaviruses in four wild mammal orders in France: Bats, rodents, lagomorphs, and hedgehogs. Betacoronavirus and Alphacoronavirus genera were identified. The results obtained suggest the circulation of potentially evolving virus strains, with the potential to cross the species barrier.

  10. The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor.

    Directory of Open Access Journals (Sweden)

    Rinki Minakshi

    2009-12-01

    Full Text Available The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV is reported to cause apoptosis of infected cells and several of its proteins including the 3a accessory protein, are pro-apoptotic. Since the 3a protein localizes to the endoplasmic reticulum (ER-Golgi compartment, its role in causing ER stress was investigated in transiently transfected cells. Cells expressing the 3a proteins showed ER stress based on activation of genes for the ER chaperones GRP78 and GRP94. Since ER stress can cause differential modulation of the unfolded protein response (UPR, which includes the inositol-requiring enzyme 1 (IRE-1, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK pathways, these were individually tested in 3a-expressing cells. Only the PERK pathway was found to be activated in 3a-expressing cells based on (1 increased phosphorylation of eukaryotic initiation factor 2 alpha (eIF2alpha and inhibitory effects of a dominant-negative form of eIF2alpha on GRP78 promoter activity, (2 increased translation of activating transcription factor 4 (ATF4 mRNA, and (3 ATF4-dependent activation of the C/EBP homologous protein (CHOP gene promoter. Activation of PERK affects innate immunity by suppression of type 1 interferon (IFN signaling. The 3a protein was found to induce serine phosphorylation within the IFN alpha-receptor subunit 1 (IFNAR1 degradation motif and to increase IFNAR1 ubiquitination. Confocal microscopic analysis showed increased translocation of IFNAR1 into the lysosomal compartment and flow cytometry showed reduced levels of IFNAR1 in 3a-expressing cells. These results provide further mechanistic details of the pro-apoptotic effects of the SARS-CoV 3a protein, and suggest a potential role for it in attenuating interferon responses and innate immunity.

  11. Human coronavirus NL63, France

    NARCIS (Netherlands)

    Vabret, Astrid; Mourez, Thomas; Dina, Julia; van der Hoek, Lia; Gouarin, Stéphanie; Petitjean, Joëlle; Brouard, Jacques; Freymuth, François

    2005-01-01

    The human coronavirus NL63 (HCoV-NL63) was first identified in The Netherlands, and its circulation in France has not been investigated. We studied HCoV-NL63 infection in hospitalized children diagnosed with respiratory tract infections. From November 2002 to April 2003, we evaluated 300 respiratory

  12. Evidence for an ancestral association of human coronavirus 229E with bats

    Czech Academy of Sciences Publication Activity Database

    Corman, V. M.; Baldwin, H. J.; Tateno, A. F.; Zerbinati, R. M.; Annan, A.; Owusu, M.; Nkrumah, E. E.; Maganga, G. D.; Oppong, S.; Adu-Sarkodie, Y.; Vallo, Peter; da Silva Filho, L. V. R. F.; Leroy, E. M.; Thiel, V.; van der Hoek, L.; Poon, L. L. M.; Tschapka, M.; Drosten, C.; Drexler, J. F.

    2015-01-01

    Roč. 89, č. 23 (2015), s. 11858-11870 ISSN 0022-538X Institutional support: RVO:68081766 Keywords : respiratory syndrome coronavirus * SARS-coronavirus * genomic characterization * dromedary camels * clinical impact * virus * children * protein * spike * classification Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology Impact factor: 4.606, year: 2015

  13. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kailang; Li, Weikai; Peng, Guiqing; Li, Fang; (Harvard-Med); (UMM-MED)

    2010-03-04

    NL63 coronavirus (NL63-CoV), a prevalent human respiratory virus, is the only group I coronavirus known to use angiotensin-converting enzyme 2 (ACE2) as its receptor. Incidentally, ACE2 is also used by group II SARS coronavirus (SARS-CoV). We investigated how different groups of coronaviruses recognize the same receptor, whereas homologous group I coronaviruses recognize different receptors. We determined the crystal structure of NL63-CoV spike protein receptor-binding domain (RBD) complexed with human ACE2. NL63-CoV RBD has a novel {beta}-sandwich core structure consisting of 2 layers of {beta}-sheets, presenting 3 discontinuous receptor-binding motifs (RBMs) to bind ACE2. NL63-CoV and SARS-CoV have no structural homology in RBD cores or RBMs; yet the 2 viruses recognize common ACE2 regions, largely because of a 'virus-binding hotspot' on ACE2. Among group I coronaviruses, RBD cores are conserved but RBMs are variable, explaining how these viruses recognize different receptors. These results provide a structural basis for understanding viral evolution and virus-receptor interactions.

  14. Genomic Analysis and Surveillance of the Coronavirus Dominant in Ducks in China.

    Directory of Open Access Journals (Sweden)

    Qing-Ye Zhuang

    Full Text Available The genetic diversity, evolution, distribution, and taxonomy of some coronaviruses dominant in birds other than chickens remain enigmatic. In this study we sequenced the genome of a newly identified coronavirus dominant in ducks (DdCoV, and performed a large-scale surveillance of coronaviruses in chickens and ducks using a conserved RT-PCR assay. The viral genome harbors a tandem repeat which is rare in vertebrate RNA viruses. The repeat is homologous to some proteins of various cellular organisms, but its origin remains unknown. Many substitutions, insertions, deletions, and some frameshifts and recombination events have occurred in the genome of the DdCoV, as compared with the coronavirus dominant in chickens (CdCoV. The distances between DdCoV and CdCoV are large enough to separate them into different species within the genus Gammacoronavirus. Our surveillance demonstrated that DdCoVs and CdCoVs belong to different lineages and occupy different ecological niches, further supporting that they should be classified into different species. Our surveillance also demonstrated that DdCoVs and CdCoVs are prevalent in live poultry markets in some regions of China. In conclusion, this study shed novel insight into the genetic diversity, evolution, distribution, and taxonomy of the coronaviruses circulating in chickens and ducks.

  15. Coronavirus-like particles in laboratory rabbits with different syndromes in The Netherlands (Coronavirus-like particles in rabbits).

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); J.S. Teppema; G. van Steenis (Bert)

    1982-01-01

    textabstractVirus-like particles were identified from the plasma of rabbits which developed pleural effusion disease after inoculation with different strains of Treponema pallidum. These particles were considered coronavirus-like on the basis of their size, morphology, and buoyant density. Clinical

  16. Human Coronaviruses 229E and NL63: Close Yet Still So Far

    NARCIS (Netherlands)

    Dijkman, Ronald; van der Hoek, Lia

    2009-01-01

    HCoV-NL63 and HCoV-229E are two of the four human coronaviruses that circulate worldwide. These two viruses are unique in their relationship towards each other. Phylogenetically, the viruses are more closely related to each other than to any other human coronavirus, yet they only share 65% sequence

  17. MERS-coronavirus: From discovery to intervention

    NARCIS (Netherlands)

    W. Widagdo; N.M.A. Okba (Nisreen); V. Stalin Raj; B.L. Haagmans (Bart)

    2017-01-01

    textabstractMiddle East respiratory syndrome coronavirus (MERS-CoV) still causes outbreaks despite public awareness and implementation of health care measures, such as rapid viral diagnosis and patient quarantine. Here we describe the current epidemiological picture of MERS-CoV, focusing on humans

  18. Canine coronaviruses: Epidemiology, evolution and pathobiology

    NARCIS (Netherlands)

    Decaro, N.

    2009-01-01

    Coronaviruses (CoVs; order Nidovirales, family Coronaviridae) are viruses exceptionally prone to genetic evolution through the continual accumulation of mutations and by homologous recombination between related members. CoVs are organised into three antigenic groups of which group 1 is subdivided in

  19. Assembly of spikes into coronavirus particles is mediated by the carboxy-terminal domain of the spike protein

    NARCIS (Netherlands)

    Godeke, G J; de Haan, Cornelis A M; Rossen, J W; Vennema, H; Rottier, P J

    The type I glycoprotein S of coronavirus, trimers of which constitute the typical viral spikes, is assembled into virions through noncovalent interactions with the M protein. Here we demonstrate that incorporation is mediated by the short carboxy-terminal segment comprising the transmembrane and

  20. Isolation and Characterization of Dromedary Camel Coronavirus UAE-HKU23 from Dromedaries of the Middle East: Minimal Serological Cross-Reactivity between MERS Coronavirus and Dromedary Camel Coronavirus UAE-HKU23

    Directory of Open Access Journals (Sweden)

    Patrick C. Y. Woo

    2016-05-01

    Full Text Available Recently, we reported the discovery of a dromedary camel coronavirus UAE-HKU23 (DcCoV UAE-HKU23 from dromedaries in the Middle East. In this study, DcCoV UAE-HKU23 was successfully isolated in two of the 14 dromedary fecal samples using HRT-18G cells, with cytopathic effects observed five days after inoculation. Northern blot analysis revealed at least seven distinct RNA species, corresponding to predicted subgenomic mRNAs and confirming the core sequence of transcription regulatory sequence motifs as 5′-UCUAAAC-3′ as we predicted previously. Antibodies against DcCoV UAE-HKU23 were detected in 58 (98.3% and 59 (100% of the 59 dromedary sera by immunofluorescence and neutralization antibody tests, respectively. There was significant correlation between the antibody titers determined by immunofluorescence and neutralization assays (Pearson coefficient = 0.525, p < 0.0001. Immunization of mice using recombinant N proteins of DcCoV UAE-HKU23 and Middle East respiratory syndrome coronavirus (MERS-CoV, respectively, and heat-inactivated DcCoV UAE-HKU23 showed minimal cross-antigenicity between DcCoV UAE-HKU23 and MERS-CoV by Western blot and neutralization antibody assays. Codon usage and genetic distance analysis of RdRp, S and N genes showed that the 14 strains of DcCoV UAE-HKU23 formed a distinct cluster, separated from those of other closely related members of Betacoronavirus 1, including alpaca CoV, confirming that DcCoV UAE-HKU23 is a novel member of Betacoronavirus 1.

  1. Genetic diversity and correlation with feline infectious peritonitis of feline coronavirus type I and II: a 5-year study in Taiwan.

    Science.gov (United States)

    Lin, Chao-Nan; Su, Bi-Ling; Wang, Ching-Ho; Hsieh, Ming-Wei; Chueh, Ti-Jen; Chueh, Ling-Ling

    2009-05-12

    The outcomes of feline coronavirus (FCoV) infection vary greatly from asymptomatic or mild enteric infection to fatal feline infectious peritonitis (FIP). On the basis of in vitro neutralization tests, FCoVs can be divided into two serotypes. To explore the correlation between different types of FCoV and FIP, clinical specimens collected from 363 naturally infected cats during 2003-2007 were analyzed. Amplification of a portion of the S gene from the FCoV was performed and a total of 222 cases were differentiated. Among them, 197 (88.7%) cats were type I-positive, 13 (5.9%) were type II-positive, and 12 (5.4%) were positive for both types. Irrespective of the predominance of type I FCoV infection in Taiwan, type II FCoV demonstrated a significantly higher correlation with FIP (p<0.01). Analysis of partial S gene sequences of the local type I and II FCoVs strains revealed that type I viruses were more genetically divergent (6.2-11.7%) than type II viruses (0.6-3.2%) within the 5-year study period. The higher genetic diversity of type I FCoVs might be due to the larger infected cat population and to the long period of viral persistence in asymptomatic cats in comparison to type II viruses.

  2. Isolation and Characterization of Current Human Coronavirus Strains in Primary Human Epithelial Cell Cultures Reveal Differences in Target Cell Tropism

    Science.gov (United States)

    Dijkman, Ronald; Jebbink, Maarten F.; Koekkoek, Sylvie M.; Deijs, Martin; Jónsdóttir, Hulda R.; Molenkamp, Richard; Ieven, Margareta; Goossens, Herman; Thiel, Volker

    2013-01-01

    The human airway epithelium (HAE) represents the entry port of many human respiratory viruses, including human coronaviruses (HCoVs). Nowadays, four HCoVs, HCoV-229E, HCoV-OC43, HCoV-HKU1, and HCoV-NL63, are known to be circulating worldwide, causing upper and lower respiratory tract infections in nonhospitalized and hospitalized children. Studies of the fundamental aspects of these HCoV infections at the primary entry port, such as cell tropism, are seriously hampered by the lack of a universal culture system or suitable animal models. To expand the knowledge on fundamental virus-host interactions for all four HCoVs at the site of primary infection, we used pseudostratified HAE cell cultures to isolate and characterize representative clinical HCoV strains directly from nasopharyngeal material. Ten contemporary isolates were obtained, representing HCoV-229E (n = 1), HCoV-NL63 (n = 1), HCoV-HKU1 (n = 4), and HCoV-OC43 (n = 4). For each strain, we analyzed the replication kinetics and progeny virus release on HAE cell cultures derived from different donors. Surprisingly, by visualizing HCoV infection by confocal microscopy, we observed that HCoV-229E employs a target cell tropism for nonciliated cells, whereas HCoV-OC43, HCoV-HKU1, and HCoV-NL63 all infect ciliated cells. Collectively, the data demonstrate that HAE cell cultures, which morphologically and functionally resemble human airways in vivo, represent a robust universal culture system for isolating and comparing all contemporary HCoV strains. PMID:23427150

  3. Isolation and characterization of current human coronavirus strains in primary human epithelial cell cultures reveal differences in target cell tropism

    NARCIS (Netherlands)

    Dijkman, Ronald; Jebbink, Maarten F.; Koekkoek, Sylvie M.; Deijs, Martin; Jónsdóttir, Hulda R.; Molenkamp, Richard; Ieven, Margareta; Goossens, Herman; Thiel, Volker; van der Hoek, Lia

    2013-01-01

    The human airway epithelium (HAE) represents the entry port of many human respiratory viruses, including human coronaviruses (HCoVs). Nowadays, four HCoVs, HCoV-229E, HCoV-OC43, HCoV-HKU1, and HCoV-NL63, are known to be circulating worldwide, causing upper and lower respiratory tract infections in

  4. Dynamics of the coronavirus replicative structures

    NARCIS (Netherlands)

    Hagemeijer, M.C.

    2011-01-01

    Coronaviruses (CoV) are positive-strand RNA (+RNA) viruses that are important infectious agents in both animals and man. Upon infection, CoVs generate large multicomponent protein complexes, consisting of 16 nonstructural proteins (nsp’s) and yet to be identified cellular proteins, dedicated to the

  5. Structure of the C-terminal domain of nsp4 from feline coronavirus

    International Nuclear Information System (INIS)

    Manolaridis, Ioannis; Wojdyla, Justyna A.; Panjikar, Santosh; Snijder, Eric J.; Gorbalenya, Alexander E.; Berglind, Hanna; Nordlund, Pär; Coutard, Bruno; Tucker, Paul A.

    2009-01-01

    The structure of the cytosolic C-terminal domain of nonstructural protein 4 from feline coronavirus has been determined and analyzed. Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26–31 kb) encodes 15–16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication–transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain (∼100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8 Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P4 3 . The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly α-helical content displaying a unique fold that could be engaged in protein–protein interactions

  6. Structure of the C-terminal domain of nsp4 from feline coronavirus

    Energy Technology Data Exchange (ETDEWEB)

    Manolaridis, Ioannis; Wojdyla, Justyna A.; Panjikar, Santosh [EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Snijder, Eric J.; Gorbalenya, Alexander E. [Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden (Netherlands); Berglind, Hanna; Nordlund, Pär [Division of Biophysics, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, Karolinska Institute, SE-171 77 Stockholm (Sweden); Coutard, Bruno [Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 6098, AFMB-CNRS-ESIL, Case 925, 163 Avenue de Luminy, 13288 Marseille (France); Tucker, Paul A., E-mail: tucker@embl-hamburg.de [EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg (Germany)

    2009-08-01

    The structure of the cytosolic C-terminal domain of nonstructural protein 4 from feline coronavirus has been determined and analyzed. Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26–31 kb) encodes 15–16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication–transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain (∼100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8 Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P4{sub 3}. The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly α-helical content displaying a unique fold that could be engaged in protein–protein interactions.

  7. Infection of cats with atypical feline coronaviruses harbouring a truncated form of the canine type I non-structural ORF3 gene.

    Science.gov (United States)

    Le Poder, Sophie; Pham-Hung d'Alexandry d'Orangiani, Anne-Laure; Duarte, Lidia; Fournier, Annie; Horhogea, Cristina; Pinhas, Carine; Vabret, Astrid; Eloit, Marc

    2013-12-01

    Feline and canine coronaviruses (FCoV and CCoV, respectively) are common pathogens of cats and dogs sometimes leading to lethal infections named feline infectious peritonitis (FIP) and canine pantropic coronavirus infection. FCoV and CCoV are each subdivided into two serotypes, FCoV-I/II and CCoV-I/II. A phylogenetic relationship is evident between, on one hand, CCoV-I/FCoV-I, and on the other hand, CCoV-II/FCoV-II, suggesting that interspecies transmission can occur. The aim of the present study was to evaluate the prevalence of coronavirus (CoV)-infected cats according to their contact with dogs and to genetically analyse the CoV strains infecting cats. From 2003 to 2009, we collected 88 faecal samples from healthy cats and 11 ascitic fluids from FIP cats. We investigated the possible contact with dog in the household and collected dogs samples if appropriate. Out of 99 cat samples, 26 were coronavirus positive, with six cats living with at least one dog, thus showing that contact with dogs does not appear as a predisposing factor for cats CoV infections. Molecular and phylogenetic analyses of FCoV strains were conducted using partial N and S sequences. Six divergent strains were identified with the N gene clustering with CCoV-I whereas the 3' end of S was related to FCoV-I. Further analysis on those six samples was attempted by researching the presence of the ORF3 gene, the latter being peculiar to CCoV-I to date. We succeeded to amplify the ORF3 gene in five samples out of six. Thus, our data strongly suggest the circulation of atypical FCoV strains harbouring the CCoV-I ORF3 gene among cats. Moreover, the ORF3 genes recovered from the feline strains exhibited shared deletions, never described before, suggesting that these deletions could be critical in the adaptation of these strains to the feline host. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  8. SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion

    International Nuclear Information System (INIS)

    Madu, Ikenna G.; Belouzard, Sandrine; Whittaker, Gary R.

    2009-01-01

    The S2 domain of the coronavirus spike (S) protein is known to be responsible for mediating membrane fusion. In addition to a well-recognized cleavage site at the S1-S2 boundary, a second proteolytic cleavage site has been identified in the severe acute respiratory syndrome coronavirus (SARS-CoV) S2 domain (R797). C-terminal to this S2 cleavage site is a conserved region flanked by cysteine residues C822 and C833. Here, we investigated the importance of this well conserved region for SARS-CoV S-mediated fusion activation. We show that the residues between C822-C833 are well conserved across all coronaviruses. Mutagenic analysis of SARS-CoV S, combined with cell-cell fusion and pseudotyped virion infectivity assays, showed a critical role for the core-conserved residues C822, D830, L831, and C833. Based on available predictive models, we propose that the conserved domain flanked by cysteines 822 and 833 forms a loop structure that interacts with components of the SARS-CoV S trimer to control the activation of membrane fusion.

  9. Prolonged Shedding of Human Coronavirus in Hematopoietic Cell Transplant Recipients: Risk Factors and Viral Genome Evolution.

    Science.gov (United States)

    Ogimi, Chikara; Greninger, Alexander L; Waghmare, Alpana A; Kuypers, Jane M; Shean, Ryan C; Xie, Hu; Leisenring, Wendy M; Stevens-Ayers, Terry L; Jerome, Keith R; Englund, Janet A; Boeckh, Michael

    2017-07-15

    Recent data suggest that human coronavirus (HCoV) pneumonia is associated with significant mortality in hematopoietic cell transplant (HCT) recipients. Investigation of risk factors for prolonged shedding and intrahost genome evolution may provide critical information for development of novel therapeutics. We retrospectively reviewed HCT recipients with HCoV detected in nasal samples by polymerase chain reaction (PCR). HCoV strains were identified using strain-specific PCR. Shedding duration was defined as time between first positive and first negative sample. Logistic regression analyses were performed to evaluate factors for prolonged shedding (≥21 days). Metagenomic next-generation sequencing (mNGS) was conducted when ≥4 samples with cycle threshold values of Genome changes were consistent with the expected molecular clock of HCoV. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  10. Sialic Acid Binding Properties of Soluble Coronavirus Spike (S1 Proteins: Differences between Infectious Bronchitis Virus and Transmissible Gastroenteritis Virus

    Directory of Open Access Journals (Sweden)

    Christine Winter

    2013-07-01

    Full Text Available The spike proteins of a number of coronaviruses are able to bind to sialic acids present on the cell surface. The importance of this sialic acid binding ability during infection is, however, quite different. We compared the spike protein of transmissible gastroenteritis virus (TGEV and the spike protein of infectious bronchitis virus (IBV. Whereas sialic acid is the only receptor determinant known so far for IBV, TGEV requires interaction with its receptor aminopeptidase N to initiate infection of cells. Binding tests with soluble spike proteins carrying an IgG Fc-tag revealed pronounced differences between these two viral proteins. Binding of the IBV spike protein to host cells was in all experiments sialic acid dependent, whereas the soluble TGEV spike showed binding to APN but had no detectable sialic acid binding activity. Our results underline the different ways in which binding to sialoglycoconjugates is mediated by coronavirus spike proteins.

  11. Coronaviruses in guano from Pteropus medius bats in Peradeniya, Sri Lanka.

    Science.gov (United States)

    Kudagammana, H D W S; Thevanesam, V; Chu, D K W; Eriyagama, N B; Peiris, J S M; Noordeen, F

    2018-03-02

    Bats are a unique group of mammals well suited to be hosts for emerging viruses. With current rates of deforestation and urbanization, redistribution of bat habitats to urban and suburban areas may bring bats into closer contact with livestock and humans. Common flying fox, Pteropus medius (previously known as Pteropus giganteus), forms large communal roosts on treetops, often in close proximity to human habitation in Sri Lanka. This report describes the detection of coronavirus RNA in P. medius bat guano collected in Peradeniya, Sri Lanka. These viruses had >97% nucleotide identity with coronaviruses detected in Cynopterus sphinx, Scotophilus heathii and S. kuhlii bats in Thailand. Pteropus medius is widespread in Asia and appears to excrete group D coronaviruses, which are hitherto confined to bats; however, these findings may have public health implications in the future. © 2018 Blackwell Verlag GmbH.

  12. Altered pathogenesis of porcine respiratory coronavirus in pigs due to immunosuppressive effects of dexamethasone: implications for corticosteroid use in treatment of severe acute respiratory syndrome coronavirus.

    Science.gov (United States)

    Jung, Kwonil; Alekseev, Konstantin P; Zhang, Xinsheng; Cheon, Doo-Sung; Vlasova, Anastasia N; Saif, Linda J

    2007-12-01

    The pathogenesis and optimal treatments for severe acute respiratory syndrome (SARS) are unclear, although corticosteroids were used to reduce lung and systemic inflammation. Because the pulmonary pathology of porcine respiratory coronavirus (PRCV) in pigs resembles SARS, we used PRCV as a model to clarify the effects of the corticosteroid dexamethasone (DEX) on coronavirus (CoV)-induced pneumonia. Conventional weaned pigs (n = 130) in one of four groups (PRCV/phosphate-buffered saline [PBS] [n = 41], PRCV/DEX [n = 41], mock/PBS [n = 23], and mock/DEX [n = 25]) were inoculated intranasally and intratracheally with the ISU-1 strain of PRCV (1 x 10(7) PFU) or cell culture medium. DEX was administered (once daily, 2 mg/kg of body weight/day, intramuscularly) from postinoculation day (PID) 1 to 6. In PRCV/DEX pigs, significantly milder pneumonia, fewer PRCV-positive cells, and lower viral RNA titers were present in lungs early at PID 2; however, at PID 4, 10, and 21, severe bronchointerstitial pneumonia, significantly higher numbers of PRCV-positive cells, and higher viral RNA titers were observed compared to results for PRCV/PBS pigs. Significantly lower numbers of CD2(+), CD3(+), CD4(+), and CD8(+) T cells were also observed in lungs of PRCV/DEX pigs than in those of PRCV/PBS pigs at PID 8 and 10, coincident with fewer gamma interferon (IFN-gamma)-secreting cells in the tracheobronchial lymph nodes as determined by enzyme-linked immunospot assay. Our results confirm that DEX treatment alleviates PRCV pneumonia early (PID 2) in the infection but continued use through PID 6 exacerbates later stages of infection (PID 4, 10, and 21), possibly by decreasing cellular immune responses in the lungs (IFN-gamma-secreting T cells), thereby creating an environment for more-extensive viral replication. These data have potential implications for corticosteroid use with SARS-CoV patients and suggest a precaution against prolonged use based on their unproven efficacy in humans

  13. Characterization of HCoV-229E fusion core: Implications for structure basis of coronavirus membrane fusion

    International Nuclear Information System (INIS)

    Liu Cheng; Feng Youjun; Gao Feng; Zhang Qiangmin; Wang Ming

    2006-01-01

    Human coronavirus 229E (HCoV-229E), a member of group I coronaviruses, has been identified as one of the major viral agents causing respiratory tract diseases in humans for nearly 40 years. However, the detailed molecular mechanism of the membrane fusion mediated by the spike (S) protein of HCoV-229E remains elusive. Here, we report, for the first time, a rationally designed fusion core of HCoV-229E (HR1-SGGRGG-HR2), which was in vitro produced in GST prokaryotic expression system. Multiple lines of experimental data including gel-filtration, chemical cross-linking, and circular diagram (CD) demonstrated that the HCoV-229E fusion core possesses the typical properties of the trimer of coiled-coil heterodimer (six α-helix bundle). 3D structure modeling presents its most-likely structure, similar to those of coronaviruses that have been well-documented. Collectively, HCoV-229E S protein belongs to the type I fusion protein, which is characterized by the existence of two heptad-repeat regions (HR1 and HR2), furthermore, the available knowledge concerning HCoV-229E fusion core may make it possible to design small molecule or polypeptide drugs targeting the membrane fusion, a crucial step of HCoV-229E infection

  14. Renin-angiotensin system in human coronavirus pathogenesis

    NARCIS (Netherlands)

    Wevers, Brigitte A.; van der Hoek, Lia

    2010-01-01

    Although initially considered relatively harmless pathogens, human coronaviruses (HCoVs) are nowadays known to be associated with more severe clinical complications. Still, their precise pathogenic potential is largely unknown, particularly regarding the most recently identified species HCoV-NL63

  15. The coronavirus transmissible gastroenteritis virus causes infection after receptor-mediated endocytosis and acid-dependent fusion with an intracellular compartment

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Delmas, B; Besnardeau, L

    1998-01-01

    Aminopeptidase N is a species-specific receptor for transmissible gastroenteritis virus (TGEV), which infects piglets, and for the 229E virus, which infects humans. It is not known whether these coronaviruses are endocytosed before fusion with a membrane of the target cell, causing a productive...

  16. Detection of Coronaviruses in Bats of Various Species in Italy

    Directory of Open Access Journals (Sweden)

    Maria B. Boniotti

    2013-10-01

    Full Text Available Bats are natural reservoirs for many mammalian coronaviruses, which have received renewed interest after the discovery of the severe acute respiratory syndrome (SARS and the Middle East respiratory syndrome (MERS CoV in humans. This study describes the identification and molecular characterization of alphacoronaviruses and betacoronaviruses in bats in Italy, from 2010 to 2012. Sixty-nine faecal samples and 126 carcasses were tested using pan-coronavirus RT-PCR. Coronavirus RNAs were detected in seven faecal samples and nine carcasses. A phylogenetic analysis of RNA-dependent RNA polymerase sequence fragments aided in identifying two alphacoronaviruses from Kuhl’s pipistrelle (Pipistrellus kuhlii, three clade 2b betacoronaviruses from lesser horseshoe bats (Rhinolophus hipposideros, and 10 clade 2c betacoronaviruses from Kuhl’s pipistrelle, common noctule (Nyctalus noctula, and Savi’s pipistrelle (Hypsugo savii. This study fills a substantive gap in the knowledge on bat-CoV ecology in Italy, and extends the current knowledge on clade 2c betacoronaviruses with new sequences obtained from bats that have not been previously described as hosts of these viruses.

  17. Transmission of MERS-coronavirus in household contacts

    NARCIS (Netherlands)

    Drosten, Christian; Meyer, Benjamin; Müller, Marcel A; Corman, Victor M; Al-Masri, Malak; Hossain, Raheela; Madani, Hosam; Sieberg, Andrea; Bosch, Berend Jan|info:eu-repo/dai/nl/273306049; Lattwein, Erik; Alhakeem, Raafat F; Assiri, Abdullah M; Hajomar, Waleed; Albarrak, Ali M; Al-Tawfiq, Jaffar A; Zumla, Alimuddin I; Memish, Ziad A

    2014-01-01

    BACKGROUND: Strategies to contain the Middle East respiratory syndrome coronavirus (MERS-CoV) depend on knowledge of the rate of human-to-human transmission, including subclinical infections. A lack of serologic tools has hindered targeted studies of transmission. METHODS: We studied 26 index

  18. Mutation in Spike Protein Cleavage Site and Pathogenesis of Feline Coronavirus

    Science.gov (United States)

    Licitra, Beth N.; Millet, Jean K.; Regan, Andrew D.; Hamilton, Brian S.; Rinaldi, Vera D.; Duhamel, Gerald E.

    2013-01-01

    Feline coronaviruses (FCoV) exist as 2 biotypes: feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV). FECV causes subclinical infections; FIPV causes feline infectious peritonitis (FIP), a systemic and fatal disease. It is thought that mutations in FECV enable infection of macrophages, causing FIP. However, the molecular basis for this biotype switch is unknown. We examined a furin cleavage site in the region between receptor-binding (S1) and fusion (S2) domains of the spike of serotype 1 FCoV. FECV sequences were compared with FIPV sequences. All FECVs had a conserved furin cleavage motif. For FIPV, there was a correlation with the disease and >1 substitution in the S1/S2 motif. Fluorogenic peptide assays confirmed that the substitutions modulate furin cleavage. We document a functionally relevant S1/S2 mutation that arises when FIP develops in a cat. These insights into FIP pathogenesis may be useful in development of diagnostic, prevention, and treatment measures against coronaviruses. PMID:23763835

  19. Coronavirus and influenza virus proteolytic priming takes place in tetraspanin-enriched membrane microdomains.

    Science.gov (United States)

    Earnest, James T; Hantak, Michael P; Park, Jung-Eun; Gallagher, Tom

    2015-06-01

    Coronaviruses (CoVs) and low-pathogenicity influenza A viruses (LP IAVs) depend on target cell proteases to cleave their viral glycoproteins and prime them for virus-cell membrane fusion. Several proteases cluster into tetraspanin-enriched microdomains (TEMs), suggesting that TEMs are preferred virus entry portals. Here we found that several CoV receptors and virus-priming proteases were indeed present in TEMs. Isolated TEMs, when mixed with CoV and LP IAV pseudoparticles, cleaved viral fusion proteins to fusion-primed fragments and potentiated viral transductions. That entering viruses utilize TEMs as a protease source was further confirmed using tetraspanin antibodies and tetraspanin short hairpin RNAs (shRNAs). Tetraspanin antibodies inhibited CoV and LP IAV infections, but their virus-blocking activities were overcome by expressing excess TEM-associated proteases. Similarly, cells with reduced levels of the tetraspanin CD9 resisted CoV pseudoparticle transductions but were made susceptible by overproducing TEM-associated proteases. These findings indicated that antibodies and CD9 depletions interfere with viral proteolytic priming in ways that are overcome by surplus proteases. TEMs appear to be exploited by some CoVs and LP IAVs for appropriate coengagement with cell receptors and proteases. Enveloped viruses use their surface glycoproteins to catalyze membrane fusion, an essential cell entry step. Host cell components prime these viral surface glycoproteins to catalyze membrane fusion at specific times and places during virus cell entry. Among these priming components are proteases, which cleave viral surface glycoproteins, unleashing them to refold in ways that catalyze virus-cell membrane fusions. For some enveloped viruses, these proteases are known to reside on target cell surfaces. This research focuses on coronavirus and influenza A virus cell entry and identifies TEMs as sites of viral proteolysis, thereby defining subcellular locations of virus

  20. [Prevalence and clinical characteristics of coronavirus NL63 infection in children hospitalized for acute lower respiratory tract infections in Changsha].

    Science.gov (United States)

    Zhang, Fei; Zhang, Bing; Xie, Zhi-Ping; Gao, Han-Chun; Zhao, Xin; Zhong, Li-Li; Zhou, Qiong-Hua; Hou, Yun-De; Duan, Zhao-Jun

    2012-04-01

    The main objective of this study was to explore the prevalence and clinical characteristics of human coronavirus NL63 infection in hospitalized children with acute lower respiratory tract infection (ALRTI) in Changsha. Nasopharyngeal aspirates (NPA) samples were collected from 1185 hospitalized children with ALRTI at the People's Hospital of Hunan province, between September 2008 and October 2010. Reverse transcriptase polymerase chain reaction (RT-PCR) was employed to screen for coronavirus NL63, which is a 255 bp fragment of a part of N gene. All positive amplification products were confirmed by sequencing and compared with those in GenBank. The overall frequency of coronavirus NL63 infection was 0.8%, 6 (60%) out of the coronavirus NL63 positive patients were detected in summer, 2 in autumn, 1 in spring and winter, respectively. The patients were from 2 months to two and a half years old. The clinical diagnosis was bronchopneumonia (60%), bronchiolitis (30%), and acute laryngotracheal bronchitis (10%). Four of the 10 cases had critical illness, 4 cases had underlying diseases, and 7 cases had mixed infection with other viruses. The homogeneity of coronavirus NL63 with those published in the GenBank at nucleotide levels was 97%-100%. Coronavirus NL63 infection exists in hospitalized children with acute lower respiratory tract infection in Changsha. Coronavirus NL63 infections are common in children under 3 years of age. There is significant difference in the infection rate between the boys and the girls: the boys had higher rate than the girls. The peak of prevalence of the coronavirus NL63 was in summer. A single genetic lineage of coronavirus NL63 was revealed in human subjects in Changsha. Coronavirus NL63 may also be one of the lower respiratory pathogen in China.

  1. Inactivation of surrogate coronaviruses on hard surfaces by health care germicides.

    Science.gov (United States)

    Hulkower, Rachel L; Casanova, Lisa M; Rutala, William A; Weber, David J; Sobsey, Mark D

    2011-06-01

    In the 2003 severe acute respiratory syndrome outbreak, finding viral nucleic acids on hospital surfaces suggested surfaces could play a role in spread in health care environments. Surface disinfection may interrupt transmission, but few data exist on the effectiveness of health care germicides against coronaviruses on surfaces. The efficacy of health care germicides against 2 surrogate coronaviruses, mouse hepatitis virus (MHV) and transmissible gastroenteritis virus (TGEV), was tested using the quantitative carrier method on stainless steel surfaces. Germicides were o-phenylphenol/p-tertiary amylphenol) (a phenolic), 70% ethanol, 1:100 sodium hypochlorite, ortho-phthalaldehyde (OPA), instant hand sanitizer (62% ethanol), and hand sanitizing spray (71% ethanol). After 1-minute contact time, for TGEV, there was a log(10) reduction factor of 3.2 for 70% ethanol, 2.0 for phenolic, 2.3 for OPA, 0.35 for 1:100 hypochlorite, 4.0 for 62% ethanol, and 3.5 for 71% ethanol. For MHV, log(10) reduction factors were 3.9 for 70% ethanol, 1.3 for phenolic, 1.7 for OPA, 0.62 for 1:100 hypochlorite, 2.7 for 62% ethanol, and 2.0 for 71% ethanol. Only ethanol reduced infectivity of the 2 coronaviruses by >3-log(10) after 1 minute. Germicides must be chosen carefully to ensure they are effective against viruses such as severe acute respiratory syndrome coronavirus. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  2. Identification of Aminopeptidase N as a Cellular Receptor for Human Coronavirus-229E

    Science.gov (United States)

    1992-05-12

    hemagglutinating encephalomyelitis virus (HEV), canine coronavirus (CCV), cat FIPV and feline enteric corona virus (FECV), human CVLPs, mouse...While the cat , dog and pig serve as natural hosts for the other coronavirus group 1 viruses , feline infectious peritonitis virus (FIPV), canine...3 2 . Virus Receptors ••••••••.••••••.....•................ 20 3. Viruses Which Cause Common Colds

  3. Molecular epidemiology of bovine coronavirus on the basis of comparative analyses of the S gene

    DEFF Research Database (Denmark)

    Liu, Lihong; Hägglund, Sara; Hakhverdyan, Mikhayil

    2006-01-01

    Bovine coronavirus (BCoV), a group 2 member of the genus Coronavirus in the family Coronaviridae, is an important pathogen in cattle worldwide. It causes diarrhea in adult animals (winter dysentery), as well as enteric and respiratory diseases in calves. The annual occurrence of BCoV epidemics...

  4. Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell-cell fusion but not interaction with M protein

    International Nuclear Information System (INIS)

    McBride, Corrin E.; Machamer, Carolyn E.

    2010-01-01

    Coronaviruses are enveloped RNA viruses that generally cause mild disease in humans. However, the recently emerged coronavirus that caused severe acute respiratory syndrome (SARS-CoV) is the most pathogenic human coronavirus discovered to date. The SARS-CoV spike (S) protein mediates virus entry by binding cellular receptors and inducing fusion between the viral envelope and the host cell membrane. Coronavirus S proteins are palmitoylated, which may affect function. Here, we created a non-palmitoylated SARS-CoV S protein by mutating all nine cytoplasmic cysteine residues. Palmitoylation of SARS-CoV S was required for partitioning into detergent-resistant membranes and for cell-cell fusion. Surprisingly, however, palmitoylation of S was not required for interaction with SARS-CoV M protein. This contrasts with the requirement for palmitoylation of mouse hepatitis virus S protein for interaction with M protein and may point to important differences in assembly and infectivity of these two coronaviruses.

  5. Detection of Avian coronavirus infectious bronchitis virus type QX infection in Switzerland.

    Science.gov (United States)

    Sigrist, Brigitte; Tobler, Kurt; Schybli, Martina; Konrad, Leonie; Stöckli, René; Cattoli, Giovanni; Lüschow, Dörte; Hafez, Hafez M; Britton, Paul; Hoop, Richard K; Vögtlin, Andrea

    2012-11-01

    Infectious bronchitis, a disease of chickens caused by Avian coronavirus infectious bronchitis virus (IBV), leads to severe economic losses for the poultry industry worldwide. Various attempts to control the virus based on vaccination strategies are performed. However, due to the emergence of novel genotypes, an effective control of the virus is hindered. In 1996, a novel viral genotype named IBV-QX was reported for the first time in Qingdao, Shandong province, China. The first appearance of an IBV-QX isolate in Europe was reported between 2003 and 2004 in The Netherlands. Subsequently, infections with this genotype were found in several other European countries such as France, Italy, Germany, United Kingdom, Slovenia, and Sweden. The present report describes the use of a new set of degenerate primers that amplify a 636-bp fragment within the S1 gene by reverse transcription polymerase chain reaction to detect the occurrence of IBV-QX infection in Switzerland.

  6. Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection.

    Directory of Open Access Journals (Sweden)

    Tomoki Yoshikawa

    2010-01-01

    Full Text Available Human lung epithelial cells are likely among the first targets to encounter invading severe acute respiratory syndrome-associated coronavirus (SARS-CoV. Not only can these cells support the growth of SARS-CoV infection, but they are also capable of secreting inflammatory cytokines to initiate and, eventually, aggravate host innate inflammatory responses, causing detrimental immune-mediated pathology within the lungs. Thus, a comprehensive evaluation of the complex epithelial signaling to SARS-CoV is crucial for paving the way to better understand SARS pathogenesis. Based on microarray-based functional genomics, we report here the global gene response of 2B4 cells, a cloned bronchial epithelial cell line derived from Calu-3 cells. Specifically, we found a temporal and spatial activation of nuclear factor (NFkappaB, activator protein (AP-1, and interferon regulatory factor (IRF-3/7 in infected 2B4 cells at 12-, 24-, and 48-hrs post infection (p.i., resulting in the activation of many antiviral genes, including interferon (IFN-beta, -lambdas, inflammatory mediators, and many IFN-stimulated genes (ISGs. We also showed, for the first time, that IFN-beta and IFN-lambdas were capable of exerting previously unrecognized, non-redundant, and complementary abilities to limit SARS-CoV replication, even though their expression could not be detected in infected 2B4 bronchial epithelial cells until 48 hrs p.i. Collectively, our results highlight the mechanics of the sequential events of antiviral signaling pathway/s triggered by SARS-CoV in bronchial epithelial cells and identify novel cellular targets for future studies, aiming at advancing strategies against SARS.

  7. Human coronavirus 229E encodes a single ORF4 protein between the spike and the envelope genes

    Directory of Open Access Journals (Sweden)

    Berkhout Ben

    2006-12-01

    Full Text Available Abstract Background The genome of coronaviruses contains structural and non-structural genes, including several so-called accessory genes. All group 1b coronaviruses encode a single accessory protein between the spike and envelope genes, except for human coronavirus (HCoV 229E. The prototype virus has a split gene, encoding the putative ORF4a and ORF4b proteins. To determine whether primary HCoV-229E isolates exhibit this unusual genome organization, we analyzed the ORF4a/b region of five current clinical isolates from The Netherlands and three early isolates collected at the Common Cold Unit (CCU in Salisbury, UK. Results All Dutch isolates were identical in the ORF4a/b region at amino acid level. All CCU isolates are only 98% identical to the Dutch isolates at the nucleotide level, but more closely related to the prototype HCoV-229E (>98%. Remarkably, our analyses revealed that the laboratory adapted, prototype HCoV-229E has a 2-nucleotide deletion in the ORF4a/b region, whereas all clinical isolates carry a single ORF, 660 nt in size, encoding a single protein of 219 amino acids, which is a homologue of the ORF3 proteins encoded by HCoV-NL63 and PEDV. Conclusion Thus, the genome organization of the group 1b coronaviruses HCoV-NL63, PEDV and HCoV-229E is identical. It is possible that extensive culturing of the HCoV-229E laboratory strain resulted in truncation of ORF4. This may indicate that the protein is not essential in cell culture, but the highly conserved amino acid sequence of the ORF4 protein among clinical isolates suggests that the protein plays an important role in vivo.

  8. Coronavirus minus-strand RNA synthesis and effect of cycloheximide on coronavirus RNA synthesis

    International Nuclear Information System (INIS)

    Sawicki, S.G.; Sawicki, D.L.

    1986-01-01

    The temporal sequence of coronavirus plus-strand and minus-strand RNA synthesis was determined in 17CL1 cells infected with the A59 strain of mouse hepatitis virus (MHV). MHV-induced fusion was prevented by keeping the pH of the medium below pH 6.8. This had no effect on the MHV replication cycle, but gave 5- to 10-fold-greater titers of infectious virus and delayed the detachment of cells from the monolayer which permitted viral RNA synthesis to be studied conveniently until at least 10 h postinfection. Seven species of poly(A)-containing viral RNAs were synthesized at early and late times infection, in nonequal but constant ratios. MHV minus-strand RNA synthesis was first detected at about 3 h after infection and was found exclusively in the viral replicative intermediates and was not detected in 60S single-stranded form in infected cells. Early in the replication cycle, from 45 to 65% of the [ 3 H]uridine pulse-labeled RF core of purified MHV replicative intermediates was in minus-strand RNA. The rate of minus-strand synthesis peaked at 5 to 6 h postinfection and then declined to about 20% of the maximum rate. The addition of cycloheximide before 3 h postinfection prevented viral RNA synthesis, whereas the addition of cycloheximide after viral RNA synthesis had begun resulted in the inhibition of viral RNA synthesis. The synthesis of both genome and subgenomic mRNAs and of viral minus strands required continued protein synthesis, and minis-strand RNA synthesis was three- to fourfold more sensitive to inhibition of cycloheximide than was plus-strand synthesis

  9. Feline Coronavirus 3c Protein: A Candidate for a Virulence Marker?

    Directory of Open Access Journals (Sweden)

    A. S. Hora

    2016-01-01

    Full Text Available Feline infectious peritonitis virus (FIPV is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP, whereas feline enteric coronavirus (FECV is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a–c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account.

  10. Suppression of feline coronavirus replication in vitro by cyclosporin A

    Directory of Open Access Journals (Sweden)

    Tanaka Yoshikazu

    2012-04-01

    Full Text Available Abstract The feline infectious peritonitis virus (FIPV is a member of the feline coronavirus family that causes FIP, which is incurable and fatal in cats. Cyclosporin A (CsA, an immunosuppressive agent that targets the nuclear factor pathway of activated T-cells (NF-AT to bind cellular cyclophilins (CyP, dose-dependently inhibited FIPV replication in vitro. FK506 (an immunosuppressor of the pathway that binds cellular FK506-binding protein (FKBP but not CyP did not affect FIPV replication. Neither cell growth nor viability changed in the presence of either CsA or FK506, and these factors did not affect the NF-AT pathway in fcwf-4 cells. Therefore, CsA does not seem to exert inhibitory effects via the NF-AT pathway. In conclusion, CsA inhibited FIPV replication in vitro and further studies are needed to verify the practical value of CsA as an anti-FIPV treatment in vivo.

  11. BST2/CD317 counteracts human coronavirus 229E productive infection by tethering virions at the cell surface

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shiu-Mei [Department of Medical Research and Education, Taipei Veterans General Hospital and Institute of Clinical Medicine, Taipei 11217, Taiwan (China); Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Huang, Kuo-Jung [Department of Medical Research and Education, Taipei Veterans General Hospital and Institute of Clinical Medicine, Taipei 11217, Taiwan (China); Wang, Chin-Tien, E-mail: chintien@ym.edu.tw [Department of Medical Research and Education, Taipei Veterans General Hospital and Institute of Clinical Medicine, Taipei 11217, Taiwan (China); Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan (China)

    2014-01-20

    Bone marrow stromal antigen 2 (BST2), an interferon-inducible antiviral factor, has been shown to block the release of various enveloped viruses from cells. It has also been identified as an innate immune system component. Most enveloped viruses subject to BST2 restriction bud at the plasma membrane. Here we report our findings that (a) the production of human coronavirus 229E (HCoV-229E) progeny viruses, whose budding occurs at the ER-Golgi intermediate compartment (ERGIC), markedly decreases in the presence of BST2; and (b) BST2 knockdown expression results in enhanced HCoV-229E virion production. Electron microscopy analyses indicate that HCoV-229E virions are tethered to cell surfaces or intracellular membranes by BST2. Our results suggest that BST2 exerts a broad blocking effect against enveloped virus release, regardless of whether budding occurs at the plasma membrane or intracellular compartments. - Highlights: • BST2 knockdown expression results in enhanced HCoV-229E egress. • HCoV-229E virions are tethered to cell surfaces or intracellular membranes by BST2. • HCoV-229E infection at high MOI can significantly downregulate HeLa BST2 and rescue HIV-1 egress.

  12. Mosaic Evolution of the Severe Acute Respiratory Syndrome Coronavirus

    Science.gov (United States)

    Stavrinides, John; Guttman, David S.

    2004-01-01

    Severe acute respiratory syndrome (SARS) is a deadly form of pneumonia caused by a novel coronavirus, a viral family responsible for mild respiratory tract infections in a wide variety of animals including humans, pigs, cows, mice, cats, and birds. Analyses to date have been unable to identify the precise origin of the SARS coronavirus. We used Bayesian, neighbor-joining, and split decomposition phylogenetic techniques on the SARS virus replicase, surface spike, matrix, and nucleocapsid proteins to reveal the evolutionary origin of this recently emerging infectious agent. The analyses support a mammalian-like origin for the replicase protein, an avian-like origin for the matrix and nucleocapsid proteins, and a mammalian-avian mosaic origin for the host-determining spike protein. A bootscan recombination analysis of the spike gene revealed high nucleotide identity between the SARS virus and a feline infectious peritonitis virus throughout the gene, except for a 200- base-pair region of high identity to an avian sequence. These data support the phylogenetic analyses and suggest a possible past recombination event between mammalian-like and avian-like parent viruses. This event occurred near a region that has been implicated to be the human receptor binding site and may have been directly responsible for the switch of host of the SARS coronavirus from animals to humans. PMID:14671089

  13. Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in Gammacoronavirus.

    Science.gov (United States)

    Woo, Patrick C Y; Lau, Susanna K P; Lam, Carol S F; Tsang, Alan K L; Hui, Suk-Wai; Fan, Rachel Y Y; Martelli, Paolo; Yuen, Kwok-Yung

    2014-01-01

    While gammacoronaviruses mainly comprise infectious bronchitis virus (IBV) and its closely related bird coronaviruses (CoVs), the only mammalian gammacoronavirus was discovered from a white beluga whale (beluga whale CoV [BWCoV] SW1) in 2008. In this study, we discovered a novel gammacoronavirus from fecal samples from three Indo-Pacific bottlenose dolphins (Tursiops aduncus), which we named bottlenose dolphin CoV (BdCoV) HKU22. All the three BdCoV HKU22-positive samples were collected on the same date, suggesting a cluster of infection, with viral loads of 1 × 10(3) to 1 × 10(5) copies per ml. Clearance of virus was associated with a specific antibody response against the nucleocapsid of BdCoV HKU22. Complete genome sequencing and comparative genome analysis showed that BdCoV HKU22 and BWCoV SW1 have similar genome characteristics and structures. Their genome size is about 32,000 nucleotides, the largest among all CoVs, as a result of multiple unique open reading frames (NS5a, NS5b, NS5c, NS6, NS7, NS8, NS9, and NS10) between their membrane (M) and nucleocapsid (N) protein genes. Although comparative genome analysis showed that BdCoV HKU22 and BWCoV SW1 should belong to the same species, a major difference was observed in the proteins encoded by their spike (S) genes, which showed only 74.3 to 74.7% amino acid identities. The high ratios of the number of synonymous substitutions per synonymous site (Ks) to the number of nonsynonymous substitutions per nonsynonymous site (Ka) in multiple regions of the genome, especially the S gene (Ka/Ks ratio, 2.5), indicated that BdCoV HKU22 may be evolving rapidly, supporting a recent transmission event to the bottlenose dolphins. We propose a distinct species, Cetacean coronavirus, in Gammacoronavirus, to include BdCoV HKU22 and BWCoV SW1, whereas IBV and its closely related bird CoVs represent another species, Avian coronavirus, in Gammacoronavirus.

  14. Characterization of the expression and immunogenicity of the ns4b protein of human coronavirus 229E

    DEFF Research Database (Denmark)

    Chagnon, F; Lamarre, A; Lachance, C

    1998-01-01

    to demonstrate the expression of ns4b in HCV-229E-infected cells using flow cytometry. Given a previously reported contiguous five amino acid shared region between ns4b and myelin basic protein, a purified recombinant histidine-tagged ns4b protein and (or) human myelin basic protein were injected into mice......Sequencing of complementary DNAs prepared from various coronaviruses has revealed open reading frames encoding putative proteins that are yet to be characterized and are so far only described as nonstructural (ns). As a first step in the elucidation of its function, we characterized the expression...... and immunogenicity of the ns4b gene product from strain 229E of human coronavirus (HCV-229E), a respiratory virus with a neurotropic potential. The gene was cloned and expressed in bacteria. A fusion protein of ns4b with maltose-binding protein was injected into rabbits to generate specific antibodies that were used...

  15. Cytoplasmic tail of coronavirus spike protein has intracellular

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/jbsc/042/02/0231-0244. Keywords. Coronavirus spike protein trafficking; cytoplasmic tail signal; endoplasmic reticulum–Golgi intermediate complex; lysosome. Abstract. Intracellular trafficking and localization studies of spike protein from SARS and OC43 showed that SARS spikeprotein is ...

  16. The SARS-unique domain (SUD of SARS coronavirus contains two macrodomains that bind G-quadruplexes.

    Directory of Open Access Journals (Sweden)

    Jinzhi Tan

    2009-05-01

    Full Text Available Since the outbreak of severe acute respiratory syndrome (SARS in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV, the non-structural proteins (Nsps, have been determined. However, within the large Nsp3 (1922 amino-acid residues, the structure and function of the so-called SARS-unique domain (SUD have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389-652 ("SUD(core" of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 A resolution, respectively revealed that SUD(core forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUD(core as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5-6 nucleotides, but more extended G-stretches are found in the 3'-nontranslated regions of mRNAs coding for certain host-cell proteins

  17. The emerging novel Middle East respiratory syndrome coronavirus: The “knowns” and “unknowns”

    Directory of Open Access Journals (Sweden)

    Jasper Fuk-Woo Chan

    2013-07-01

    Full Text Available A novel lineage C betacoronavirus, originally named human coronavirus EMC/2012 (HCoV-EMC and recently renamed Middle East respiratory syndrome coronavirus (MERS-CoV, that is phylogenetically closely related to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5, which we discovered in 2007 from bats in Hong Kong, has recently emerged in the Middle East to cause a severe acute respiratory syndrome (SARS-like infection in humans. The first laboratory-confirmed case, which involved a 60-year-old man from Bisha, the Kingdom of Saudi Arabia (KSA, who died of rapidly progressive community-acquired pneumonia and acute renal failure, was announced by the World Health Organization (WHO on September 23, 2012. Since then, a total of 70 cases, including 39 fatalities, have been reported in the Middle East and Europe. Recent clusters involving epidemiologically-linked household contacts and hospital contacts in the Middle East, Europe, and Africa strongly suggested possible human-to-human transmission. Clinical and laboratory research data generated in the past few months have provided new insights into the possible animal reservoirs, transmissibility, and virulence of MERS-CoV, and the optimal laboratory diagnostic options and potential antiviral targets for MERS-CoV-associated infection.

  18. Development of Broad-Spectrum Halomethyl Ketone Inhibitors Against Coronavirus Main Protease 3CL(pro)

    Energy Technology Data Exchange (ETDEWEB)

    Bacha,U.; Barilla, J.; Gabelli, S.; Kiso, Y.; Amzel, L.; Freire, E.

    2008-01-01

    Coronaviruses comprise a large group of RNA viruses with diverse host specificity. The emergence of highly pathogenic strains like the SARS coronavirus (SARS-CoV), and the discovery of two new coronaviruses, NL-63 and HKU1, corroborates the high rate of mutation and recombination that have enabled them to cross species barriers and infect novel hosts. For that reason, the development of broad-spectrum antivirals that are effective against several members of this family is highly desirable. This goal can be accomplished by designing inhibitors against a target, such as the main protease 3CLpro (Mpro), which is highly conserved among all coronaviruses. Here 3CLpro derived from the SARS-CoV was used as the primary target to identify a new class of inhibitors containing a halomethyl ketone warhead. The compounds are highly potent against SARS 3CLpro with Ki's as low as 300 nm. The crystal structure of the complex of one of the compounds with 3CLpro indicates that this inhibitor forms a thioether linkage between the halomethyl carbon of the warhead and the catalytic Cys 145. Furthermore, Structure Activity Relationship (SAR) studies of these compounds have led to the identification of a pharmacophore that accurately defines the essential molecular features required for the high affinity.

  19. The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain

    International Nuclear Information System (INIS)

    Haan, Cornelis A.M. de; Wit, Marel de; Kuo, Lili; Montalto-Morrison, Cynthia; Haagmans, Bart L.; Weiss, Susan R.; Masters, Paul S.; Rottier, Peter J.M.

    2003-01-01

    The coronavirus M protein, the most abundant coronaviral envelope component, is invariably glycosylated, which provides the virion with a diffuse, hydrophilic cover on its outer surface. Remarkably, while the group 1 and group 3 coronaviruses all have M proteins with N-linked sugars, the M proteins of the group 2 coronaviruses [e.g., mouse hepatitis virus (MHV)] are O-glycosylated. The conservation of the N- and O-glycosylation motifs suggests that each of these types of carbohydrate modifications is beneficial to their respective virus. Since glycosylation of the M protein is not required for virus assembly, the oligosaccharides are likely to be involved in the virus-host interaction. In order to investigate the role of the M protein glycosylation in the host, two genetically modified MHVs were generated by using targeted RNA recombination. The recombinant viruses carried M proteins that were either N-glycosylated or not glycosylated at all, and these were compared with the parental, O-glycosylated, virus. The M protein glycosylation state did not influence the tissue culture growth characteristics of the recombinant viruses. However, it affected their interferogenic capacity as measured using fixed, virus-infected cells. Viruses containing M proteins with N-linked sugars induced type I interferons to higher levels than viruses carrying M proteins with O-linked sugars. MHV with unglycosylated M proteins appeared to be a poor interferon inducer. In mice, the recombinant viruses differed in their ability to replicate in the liver, but not in the brain, whereas their in vivo interferogenic capacity did not appear to be affected by their glycosylation status. Strikingly, their abilities to replicate in the liver correlated with their in vitro interferogenic capacity. This apparent correlation might be explained by the functioning of lectins, such as the mannose receptor, which are abundantly expressed in the liver but also play a role in the induction of interferon

  20. Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity.

    Science.gov (United States)

    Stobart, Christopher C; Sexton, Nicole R; Munjal, Havisha; Lu, Xiaotao; Molland, Katrina L; Tomar, Sakshi; Mesecar, Andrew D; Denison, Mark R

    2013-12-01

    Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp's 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp's at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types.

  1. Discovery of a novel canine respiratory coronavirus support genetic recombination among betacoronavirus1.

    Science.gov (United States)

    Lu, Shuai; Wang, Yanqun; Chen, Yingzhu; Wu, Bingjie; Qin, Kun; Zhao, Jincun; Lou, Yongliang; Tan, Wenjie

    2017-06-02

    Although canine respiratory coronavirus (CRCoV) is an important respiratory pathogen that is prevalent in many countries, only one complete genome sequence of CRCoV (South Korea strain K37) has been obtained to date. Genome-wide analyses and recombination have rarely been conducted, as small numbers of samples and limited genomic characterization have previously prevented further analyses. Herein, we report a unique CRCoV strain, denoted strain BJ232, derived from a CRCoV-positive dog with a mild respiratory infection. Phylogenetic analysis based on complete genome of all available coronaviruses consistently show that CRCoV BJ232 is most closely related to human coronavirus OC43 (HCoV-OC43) and BCoV, forming a separate clade that split off early from other Betacoronavirus 1. Based on the phylogenetic and SimPlot analysis we propose that CRCoV-K37 was derived from genetic recombination between CRCoV-BJ232 and BCoV. In detail, spike (S) gene of CRCoV-K37 clustered with CRCoV-BJ232. However orf1ab, membrane (M) and nucleocapsid (N) genes were more related to Bovine coronavirus (BCoV) than CRCoV-B232. Molecular epidemic analysis confirmed the prevalence of CRCoV-BJ232 lineage around the world for a long time. Recombinant events among Betacoronavirus 1 may have implications for CRCoV transmissibility. All these findings provide further information regarding the origin of CRCoV. Copyright © 2017. Published by Elsevier B.V.

  2. Broad-Spectrum Inhibitors against 3C-Like Proteases of Feline Coronaviruses and Feline Caliciviruses

    Science.gov (United States)

    Shivanna, Vinay; Narayanan, Sanjeev; Prior, Allan M.; Weerasekara, Sahani; Hua, Duy H.; Kankanamalage, Anushka C. Galasiti; Groutas, William C.; Chang, Kyeong-Ok

    2015-01-01

    ABSTRACT Feline infectious peritonitis and virulent, systemic calicivirus infection are caused by certain types of feline coronaviruses (FCoVs) and feline caliciviruses (FCVs), respectively, and are important infectious diseases with high fatality rates in members of the Felidae family. While FCoV and FCV belong to two distinct virus families, the Coronaviridae and the Caliciviridae, respectively, they share a dependence on viral 3C-like protease (3CLpro) for their replication. Since 3CLpro is functionally and structurally conserved among these viruses and essential for viral replication, 3CLpro is considered a potential target for the design of antiviral drugs with broad-spectrum activities against these distinct and highly important viral infections. However, small-molecule inhibitors against the 3CLpro enzymes of FCoV and FCV have not been previously identified. In this study, derivatives of peptidyl compounds targeting 3CLpro were synthesized and evaluated for their activities against FCoV and FCV. The structures of compounds that showed potent dual antiviral activities with a wide margin of safety were identified and are discussed. Furthermore, the in vivo efficacy of 3CLpro inhibitors was evaluated using a mouse model of coronavirus infection. Intraperitoneal administration of two 3CLpro inhibitors in mice infected with murine hepatitis virus A59, a hepatotropic coronavirus, resulted in significant reductions in virus titers and pathological lesions in the liver compared to the findings for the controls. These results suggest that the series of 3CLpro inhibitors described here may have the potential to be further developed as therapeutic agents against these important viruses in domestic and wild cats. This study provides important insights into the structure and function relationships of 3CLpro for the design of antiviral drugs with broader antiviral activities. IMPORTANCE Feline infectious peritonitis virus (FIPV) is the leading cause of death in young cats

  3. Fatal respiratory distress syndrome due to coronavirus infection in a child with severe combined immunodeficiency

    OpenAIRE

    Szczawinska‐Poplonyk, Aleksandra; Jonczyk‐Potoczna, Katarzyna; Breborowicz, Anna; Bartkowska‐Sniatkowska, Alicja; Figlerowicz, Magdalena

    2012-01-01

    Please cite this paper as: Szczawinska‐Poplonyk et al. (2012) Fatal respiratory distress syndrome due to coronavirus infection in a child with severe combined immunodeficiency. Influenza and Other Respiratory Viruses DOI: 10.1111/irv.12059. Coronaviruses have been demonstrated to contribute substantially to respiratory tract infections among the child population. Though infected children commonly present mild upper airway symptoms, in high‐risk patients with underlying conditions, particularl...

  4. Cross host transmission in the emergence of MERS coronavirus

    NARCIS (Netherlands)

    C.B.E.M. Reusken (Chantal); V.S. Raj (Stalin); M.P.G. Koopmans D.V.M. (Marion); B.L. Haagmans (Bart)

    2016-01-01

    textabstractCoronaviruses (CoVs) able to infect humans emerge through cross-host transmission from animals. There is substantial evidence that the recent Middle East respiratory syndrome (MERS)-CoV outbreak is fueled by zoonotic transmission from dromedary camels. This is largely based on the fact

  5. Conserved antigenic sites between MERS-CoV and Bat-coronavirus are revealed through sequence analysis.

    Science.gov (United States)

    Sharmin, Refat; Islam, Abul B M M K

    2016-01-01

    MERS-CoV is a newly emerged human coronavirus reported closely related with HKU4 and HKU5 Bat coronaviruses. Bat and MERS corona-viruses are structurally related. Therefore, it is of interest to estimate the degree of conserved antigenic sites among them. It is of importance to elucidate the shared antigenic-sites and extent of conservation between them to understand the evolutionary dynamics of MERS-CoV. Multiple sequence alignment of the spike (S), membrane (M), enveloped (E) and nucleocapsid (N) proteins was employed to identify the sequence conservation among MERS and Bat (HKU4, HKU5) coronaviruses. We used various in silico tools to predict the conserved antigenic sites. We found that MERS-CoV shared 30 % of its S protein antigenic sites with HKU4 and 70 % with HKU5 bat-CoV. Whereas 100 % of its E, M and N protein's antigenic sites are found to be conserved with those in HKU4 and HKU5. This sharing suggests that in case of pathogenicity MERS-CoV is more closely related to HKU5 bat-CoV than HKU4 bat-CoV. The conserved epitopes indicates their evolutionary relationship and ancestry of pathogenicity.

  6. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine

    International Nuclear Information System (INIS)

    Zhao Ping; Cao Jie; Zhao Lanjuan; Qin Zhaolin; Ke Jinshan; Pan Wei; Ren Hao; Yu Jianguo; Qi Zhongtian

    2005-01-01

    The nucleocapsid (N) protein of SARS-coronavirus (SARS-CoV) is the key protein for the formation of the helical nucleocapsid during virion assembly. This protein is believed to be more conserved than other proteins of the virus, such as spike and membrane glycoprotein. In this study, the N protein of SARS-CoV was expressed in Escherichia coli DH5α and identified with pooled sera from patients in the convalescence phase of SARS. A plasmid pCI-N, encoding the full-length N gene of SARS-CoV, was constructed. Expression of the N protein was observed in COS1 cells following transfection with pCI-N. The immune responses induced by intramuscular immunization with pCI-N were evaluated in a murine model. Serum anti-N immunoglobulins and splenocytes proliferative responses against N protein were observed in immunized BALB/c mice. The major immunoglobulin G subclass recognizing N protein was immunoglobulin G2a, and stimulated splenocytes secreted high levels of gamma interferon and IL-2 in response to N protein. More importantly, the immunized mice produced strong delayed-type hypersensitivity (DTH) and CD8 + CTL responses to N protein. The study shows that N protein of SARS-CoV not only is an important B cell immunogen, but also can elicit broad-based cellular immune responses. The results indicate that the N protein may be of potential value in vaccine development for specific prophylaxis and treatment against SARS

  7. Detection by radioimmunoassay and enzyme-linked immunosorbent assay of coronavirus antibodies in bovine serum and lacteal secretions.

    Science.gov (United States)

    Rodak, L; Babiuk, L A; Acres, S D

    1982-07-01

    The sensitivity of a radioimmunoassay (RIA), an enzyme-linked immunosorbent assay (ELISA), and a serum neutralization assay (SN) for detecting antibodies to bovine coronavirus in serum and colostrum were compared. Although there proved to be a good correlation among all three assays (r = 0.915 and 0.964 for RIA with SN and ELISA, respectively), RIA and ELISA proved to be at least 10 times more sensitive than neutralization tests. By using these techniques, it was possible to detect a time-dependent decrease in antibody levels in bovine colostrum after parturition. Using ELISA, we demonstrated that 12 of 12 herds in Saskatchewan, and 109 of 110 animals tested, and antibody to bovine coronavirus. There was no elevated antibody response in serum or lacteal secretions of cows vaccinated once or twice with a commercially available modified live rota-coronavirus vaccine. In addition to being more sensitive than SN, ELISA and RIA proved to have other advantages for measuring antibody levels to bovine coronavirus and therefore warrant wider use as tools in diagnostic virology.

  8. Crystallization and diffraction analysis of the SARS coronavirus nsp10–nsp16 complex

    International Nuclear Information System (INIS)

    Debarnot, Claire; Imbert, Isabelle; Ferron, François; Gluais, Laure; Varlet, Isabelle; Papageorgiou, Nicolas; Bouvet, Mickaël; Lescar, Julien; Decroly, Etienne; Canard, Bruno

    2011-01-01

    The expression, purification and crystallization of the SARS coronavirus nsp16 RNA-cap AdoMet-dependent (nucleoside-2′O)-methyltransferase in complex with its activating factor nsp10 are reported. To date, the SARS coronavirus is the only known highly pathogenic human coronavirus. In 2003, it was responsible for a large outbreak associated with a 10% fatality rate. This positive RNA virus encodes a large replicase polyprotein made up of 16 gene products (nsp1–16), amongst which two methyltransferases, nsp14 and nsp16, are involved in viral mRNA cap formation. The crystal structure of nsp16 is unknown. Nsp16 is an RNA-cap AdoMet-dependent (nucleoside-2′-O-)-methyltransferase that is only active in the presence of nsp10. In this paper, the expression, purification and crystallization of nsp10 in complex with nsp16 are reported. The crystals diffracted to a resolution of 1.9 Å resolution and crystal structure determination is in progress

  9. Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers

    NARCIS (Netherlands)

    Cong, Yingying; Kriegenburg, Franziska; de Haan, Cornelis A. M.; Reggiori, Fulvio

    2017-01-01

    Coronaviruses (CoV) are enveloped viruses and rely on their nucleocapsid N protein to incorporate the positive-stranded genomic RNA into the virions. CoV N proteins form oligomers but the mechanism and relevance underlying their multimerization remain to be fully understood. Using in vitro pull-down

  10. Crystal structure of Middle East respiratory syndrome coronavirus helicase.

    Directory of Open Access Journals (Sweden)

    Wei Hao

    2017-06-01

    Full Text Available Middle East respiratory syndrome coronavirus (MERS-CoV remains a threat to public health worldwide; however, effective vaccine or drug against CoVs remains unavailable. CoV helicase is one of the three evolutionary most conserved proteins in nidoviruses, thus making it an important target for drug development. We report here the first structure of full-length coronavirus helicase, MERS-CoV nsp13. MERS-CoV helicase has multiple domains, including an N-terminal Cys/His rich domain (CH with three zinc atoms, a beta-barrel domain and a C-terminal SF1 helicase core with two RecA-like subdomains. Our structural analyses show that while the domain organization of nsp13 is conserved throughout nidoviruses, the individual domains of nsp13 are closely related to the equivalent eukaryotic domains of Upf1 helicases. The most distinctive feature differentiating CoV helicases from eukaryotic Upf1 helicases is the interaction between CH domain and helicase core.

  11. Human Coronaviruses: Insights into Environmental Resistance and Its Influence on the Development of New Antiseptic Strategies

    Science.gov (United States)

    Geller, Chloé; Varbanov, Mihayl; Duval, Raphaël E.

    2012-01-01

    The Coronaviridae family, an enveloped RNA virus family, and, more particularly, human coronaviruses (HCoV), were historically known to be responsible for a large portion of common colds and other upper respiratory tract infections. HCoV are now known to be involved in more serious respiratory diseases, i.e. bronchitis, bronchiolitis or pneumonia, especially in young children and neonates, elderly people and immunosuppressed patients. They have also been involved in nosocomial viral infections. In 2002–2003, the outbreak of severe acute respiratory syndrome (SARS), due to a newly discovered coronavirus, the SARS-associated coronavirus (SARS-CoV); led to a new awareness of the medical importance of the Coronaviridae family. This pathogen, responsible for an emerging disease in humans, with high risk of fatal outcome; underline the pressing need for new approaches to the management of the infection, and primarily to its prevention. Another interesting feature of coronaviruses is their potential environmental resistance, despite the accepted fragility of enveloped viruses. Indeed, several studies have described the ability of HCoVs (i.e. HCoV 229E, HCoV OC43 (also known as betacoronavirus 1), NL63, HKU1 or SARS-CoV) to survive in different environmental conditions (e.g. temperature and humidity), on different supports found in hospital settings such as aluminum, sterile sponges or latex surgical gloves or in biological fluids. Finally, taking into account the persisting lack of specific antiviral treatments (there is, in fact, no specific treatment available to fight coronaviruses infections), the Coronaviridae specificities (i.e. pathogenicity, potential environmental resistance) make them a challenging model for the development of efficient means of prevention, as an adapted antisepsis-disinfection, to prevent the environmental spread of such infective agents. This review will summarize current knowledge on the capacity of human coronaviruses to survive in the

  12. Discovery of novel bat coronaviruses in south China that use the same receptor as MERS coronavirus.

    Science.gov (United States)

    Luo, Chu-Ming; Wang, Ning; Yang, Xing-Lou; Liu, Hai-Zhou; Zhang, Wei; Li, Bei; Hu, Ben; Peng, Cheng; Geng, Qi-Bin; Zhu, Guang-Jian; Li, Fang; Shi, Zheng-Li

    2018-04-18

    Middle East respiratory syndrome coronavirus (MERS-CoV) has represented a human health threat since 2012. Although several MERS-related CoVs, which belong to the same species as MERS-CoV, have been identified from bats, they do not use the MERS-CoV receptor, dipeptidyl peptidase 4 (DPP4). Here, we screened 1059 bat samples from at least 30 bat species collected in different regions in south China and identified 89 strains of lineage C betacoronaviruses, including Tylonycteris pachypus HKU4 , Pipistrellus pipistrellus HKU5, and MERS-related CoVs. We sequenced the full-length genomes of two positive samples collected from the great evening bat, Ia io , from Guangdong Province. The two genomes were highly similar and exhibited genomic structures identical to those of other lineage C betacoronaviruses. While they exhibited genome-wide nucleotide identities of only 75.3 to 81.2% with other MERS-related CoVs, their gene-coding regions were highly similar to their counterparts, except in the case of the spike proteins. Further protein--protein interaction assays demonstrated that the spike proteins of these MERS-related CoVs bind to the receptor DPP4. Recombination analysis suggested that the newly discovered MERS-related CoVs might have acquired their spike genes from a DPP4-recognizing bat HKU4. Our study provides further evidence that bats represent the evolutionary origins of MERS-CoV. IMPORTANCE Previous studies suggested that the Middle East respiratory syndrome coronavirus (MERS-CoV) may have originated in bats. However, its evolutionary path from bats to humans remains unclear. In this study, we discovered 89 novel lineage C betacoronaviruses (BetaCoVs) in eight bat species. We provide the evidence of a MERS-related CoV derived from the great evening bat that uses the same host receptor as human MERS-CoV. This virus also provides evidence for a natural recombination event between the bat MERS-related CoV and another bat coronavirus HKU4. Our study expands the host

  13. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus.

    Directory of Open Access Journals (Sweden)

    Anna Lundin

    2014-05-01

    Full Text Available Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs, a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6, a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV, and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections.

  14. Tissue Distribution of the MERS-Coronavirus Receptor in Bats

    NARCIS (Netherlands)

    W. Widagdo; L. Begeman (Lineke); D. Schipper (Debby); P.R.W.A. van Run (Peter); Cunningham, A.A. (Andrew A); Kley, N. (Nils); C.B.E.M. Reusken (Chantal); B.L. Haagmans (Bart); J.M.A. van den Brand (Judith)

    2017-01-01

    textabstractMiddle East respiratory syndrome coronavirus (MERS-CoV) has been shown to infect both humans and dromedary camels using dipeptidyl peptidase-4 (DPP4) as its receptor.The distribution of DPP4 in the respiratory tract tissues of humans and camels reflects MERS-CoV tropism.Apart from

  15. Tissue Distribution of the MERS-Coronavirus Receptor in Bats

    NARCIS (Netherlands)

    Widagdo, W; Begeman, Lineke; Schipper, Debby; van Run, Peter R; Cunningham, Andrew A; Kley, Nils; Reusken, Chantal B E M; Haagmans, Bart L; van den Brand, Judith M A

    2017-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has been shown to infect both humans and dromedary camels using dipeptidyl peptidase-4 (DPP4) as its receptor. The distribution of DPP4 in the respiratory tract tissues of humans and camels reflects MERS-CoV tropism. Apart from dromedary

  16. Cooperation of an RNA Packaging Signal and a Viral Envelope Protein in Coronavirus RNA Packaging

    OpenAIRE

    Narayanan, Krishna; Makino, Shinji

    2001-01-01

    Murine coronavirus mouse hepatitis virus (MHV) produces a genome-length mRNA, mRNA 1, and six or seven species of subgenomic mRNAs in infected cells. Among these mRNAs, only mRNA 1 is efficiently packaged into MHV particles. MHV N protein binds to all MHV mRNAs, whereas envelope M protein interacts only with mRNA 1. This M protein-mRNA 1 interaction most probably determines the selective packaging of mRNA 1 into MHV particles. A short cis-acting MHV RNA packaging signal is necessary and suffi...

  17. Diagnostic Methods for Feline Coronavirus: A Review

    Directory of Open Access Journals (Sweden)

    Saeed Sharif

    2010-01-01

    Full Text Available Feline coronaviruses (FCoVs are found throughout the world. Infection with FCoV can result in a diverse range of signs from clinically inapparent infections to a highly fatal disease called feline infectious peritonitis (FIP. FIP is one of the most serious viral diseases of cats. While there is neither an effective vaccine, nor a curative treatment for FIP, a diagnostic protocol for FCoV would greatly assist in the management and control of the virus. Clinical findings in FIP are non-specific and not helpful in making a differential diagnosis. Haematological and biochemical abnormalities in FIP cases are also non-specific. The currently available serological tests have low specificity and sensitivity for detection of active infection and cross-react with FCoV strains of low pathogenicity, the feline enteric coronaviruses (FECV. Reverse transcriptase polymerase chain reaction (RT-PCR has been used to detect FCoV and is rapid and sensitive, but results must be interpreted in the context of clinical findings. At present, a definitive diagnosis of FIP can be established only by histopathological examination of biopsies. This paper describes and compares diagnostic methods for FCoVs and includes a brief account of the virus biology, epidemiology, and pathogenesis.

  18. Livestock Susceptibility to Infection with Middle East Respiratory Syndrome Coronavirus

    NARCIS (Netherlands)

    Vergara-Alert, Júlia; van den Brand, Judith M A; Widagdo, W; Muñoz, Marta; Raj, V Stalin; Schipper, Debby; Solanes, David; Cordón, Ivan; Bensaid, Albert; Haagmans, Bart L; Segalés, Joaquim

    Middle East respiratory syndrome (MERS) cases continue to be reported, predominantly in Saudi Arabia and occasionally other countries. Although dromedaries are the main reservoir, other animal species might be susceptible to MERS coronavirus (MERS-CoV) infection and potentially serve as reservoirs.

  19. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences

    Czech Academy of Sciences Publication Activity Database

    Drexler, J. F.; Gloza-Rausch, F.; Glende, J.; Corman, V. M.; Muth, D.; Goettsche, M.; Seebens, A.; Niedrig, M.; Pfefferle, S.; Yordanov, S.; Zhelyazkov, L.; Hermanns, U.; Vallo, Peter; Lukashev, A.; Müller, M. A.; Deng, H.; Herrler, G.; Drosten, C.

    2010-01-01

    Roč. 84, č. 21 (2010), s. 11336-11349 ISSN 0022-538X Institutional research plan: CEZ:AV0Z60930519 Keywords : cross-species transmission * SARS-like coronavirus es * reservoir hosts * horseshoe bats Subject RIV: EE - Microbiology, Virology Impact factor: 5.189, year: 2010

  20. MERS Coronavirus Neutralizing Antibodies in Camels, Eastern Africa, 1983-1997

    NARCIS (Netherlands)

    Müller, Marcel A; Corman, Victor Max; Jores, Joerg; Meyer, Benjamin; Younan, Mario; Liljander, Anne; Bosch, Berend-Jan; Lattwein, Erik; Hilali, Mosaad; Musa, Bakri E; Bornstein, Set; Drosten, Christian

    2014-01-01

    To analyze the distribution of Middle East respiratory syndrome coronavirus (MERS-CoV)-seropositive dromedary camels in eastern Africa, we tested 189 archived serum samples accumulated during the past 30 years. We identified MERS-CoV neutralizing antibodies in 81.0% of samples from the main

  1. First full length sequences of the S gene of European isolates reveal further diversity among turkey coronaviruses.

    OpenAIRE

    2011-01-01

    Abstract An increasing incidence of enteric disorders clinically evocative of the poult enteritis complex has been observed in turkeys in France since 2003. Using a newly designed real-time RT-PCR assay specific for the nucleocapsid (N) gene of infectious bronchitis virus (IBV) and turkey coronaviruses (TCoV), coronaviruses were identified in 37 % of the intestinal samples collected from diseased turkey flocks. The full length Spike (S) gene of these viruses was amplified, cloned a...

  2. Lack of association between infection with a novel human coronavirus (HCoV), HCoV-NH, and Kawasaki disease in Taiwan

    NARCIS (Netherlands)

    Chang, Luan-Yin; Chiang, Bor-Luen; Kao, Chuan-Liang; Wu, Mei-Hwan; Chen, Pei-Jer; Berkhout, Ben; Yang, Hui-Ching; Huang, Li-Min

    2006-01-01

    We investigated whether infection with a novel human coronavirus (HCoV), called "New Haven coronavirus" (HCoV-NH)--which is similar to and likely represents the same species as another novel HCoV, HCoV-NL63--is associated with Kawasaki disease (KD) in Taiwan. Fifty-three patients with KD were

  3. Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway

    International Nuclear Information System (INIS)

    Ortego, Javier; Ceriani, Juan E.; Patino, Cristina; Plana, Juan; Enjuanes, Luis

    2007-01-01

    A recombinant transmissible gastroenteritis coronavirus (rTGEV) in which E gene was deleted (rTGEV-ΔE) has been engineered. This deletion mutant only grows in cells expressing E protein (E + cells) indicating that E was an essential gene for TGEV replication. Electron microscopy studies of rTGEV-ΔE infected BHK-pAPN-E - cells showed that only immature intracellular virions were assembled. These virions were non-infectious and not secreted to the extracellular medium in BHK-pAPN-E - cells. RNA and protein composition analysis by RNase-gold and immunoelectron microscopy showed that rTGEV-ΔE virions contained RNA and also all the structural TGEV proteins, except the deleted E protein. Nevertheless, full virion maturation was blocked. Studies of the rTGEV-ΔE subcellular localization by confocal and immunoelectron microscopy in infected E - cells showed that in the absence of E protein virus trafficking was arrested in the intermediate compartment. Therefore, the absence of E protein in TGEV resulted in two actions, a blockade of virus trafficking in the membranes of the secretory pathway, and prevention of full virus maturation

  4. Clinico-epidemiological characteristics of acute respiratory infections caused by coronavirus OC43, NL63 and 229E.

    Science.gov (United States)

    Reina, J; López-Causapé, C; Rojo-Molinero, E; Rubio, R

    2014-12-01

    Acute respiratory infection is a very common condition in the general population. The majority of these infections are due to viruses. This study attempted to determine the clinical and epidemiological characteristics of adult patients with respiratory infection by the coronavirus OC43, NL63 and 229E. Between January 2013 and February 2014, we prospectively studied all patients with suspected clinical respiratory infection by taking throat swabs and performing a reverse transcription polymerase chain reaction in search of coronavirus. In 48 cases (7.0% of the 686 enrolled patients; 12.6% of the 381 in whom a virus was detected) the presence of a coronavirus demonstrated. In 24 cases, the virus was OC43 (50%); in 14 cases, the virus was NL63 (29%); and in 10 cases, the virus was 229E (21%). The mean age was 54.5 years, with a slight predominance of men. The most common clinical presentations were nonspecific influenza symptoms (43.7%), pneumonia (29.2%) and chronic obstructive pulmonary disease exacerbation (8.3%). Fifty-two percent of the patients required hospitalization, and 2 patients required intensive care. There were no deaths. Acute respiratory infections caused by coronavirus mainly affect middle-aged male smokers, who are often affected by previous diseases. The most common clinical picture has been nonspecific influenza symptoms. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  5. Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation

    NARCIS (Netherlands)

    B.L. Haagmans (Bart); S.H.S. Al Dhahiry (Said); C.B.E.M. Reusken (Chantal); V.S. Raj (Stalin); M. Galiano (Monica); R.H. Myers (Richard); G-J. Godeke (Gert-Jan); M. Jonges (Marcel); E. Farag (Elmoubasher); A. Diab (Ayman); H. Ghobashy (Hazem); F. Alhajri (Farhoud); M. Al-Thani (Mohamed); S.A. Al-Marri (Salih); H.E. Al Romaihi (Hamad); A. Al Khal (Abdullatif); A. Bermingham (Alison); A.D.M.E. Osterhaus (Albert); M.M. AlHajri (Mohd); M.P.G. Koopmans D.V.M. (Marion)

    2014-01-01

    textabstractBackground: Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe lower respiratory tract infection in people. Previous studies suggested dromedary camels were a reservoir for this virus. We tested for the presence of MERS-CoV in dromedary camels from a farm in Qatar

  6. Coronavirus in Pigs: Significance and Presentation of Swine Epidemic Diarrhea Virus (PEDV in Colombia

    Directory of Open Access Journals (Sweden)

    Ricardo Piñeros

    2015-05-01

    Full Text Available The article seeks to study general aspects of the main coronaviruses affecting pigs, their presentation in Colombia, and particular aspects of porcine epidemic diarrhea virus (PEDV, emerging in different countries and generating a great impact on the health and economy of the swine industry. The main coronaviruses affecting swine are porcine transmissible gastroenteritis virus (TGEV, porcine respiratory coronavirus (PRCV, porcine hemagglutinating encephalomyelitis virus (PHEV, PEDV, and porcine deltacoronavirus (PDCoV. Long ago in Colombia there had been reports of TGEV and PRCV associated with the importation of animals from the United States, which was controlled in the infected farms and in quarantine units. PEDV was first detected in Colombia in mid-March 2014; the Colombian Agricultural Institute issued a health alert in Neiva (Huila, Fusagasugá and Silvania (Cundinamarca, and Puerto López (Meta due to the unusual presentation of epidemic vomiting and diarrhea in young and adult animals, abortion in pregnant sows, with high mortality rates (up to 100% in animals during the first week of age. At present the disease has been reported in other municipalities of the country as well as in different countries with similar clinical conditions and mortality rates in pigs with high economic losses for the swine sector.

  7. Characterization of a novel coronavirus associated with severe acute respiratory syndrome

    NARCIS (Netherlands)

    P.A. Rota (Paul); M.S. Oberste (Steven); S.S. Monroe (Stephan); W.A. Nix (Allan); R. Campagnoli (Ray); J.P. Icenogle (Joseph); S. Penaranda; B. Bankamp (Bettina); K. Maher (Kaija); M.H. Chen (Min-hsin); S. Tong (Suxiong); A. Tamin (Azaibi); L. Lowe (Luis); M. Frace (Michael); J.L. DeRisi (Joseph); Q. Chen (Qi); D. Wang (David); D.D. Erdman (Dean); T.C. Peret (Teresa); C. Burns (Cara); T.G. Ksiazek (Thomas); P.E. Rollin (Pierre); A. Sanchez (Berenguer); S. Liffick (Stephanie); B. Holloway (Brian); J. Limor (Josef); K. McCaustland (Karen); M. Olsen-Rasmussen (Mellissa); S. Gunther; A.D.M.E. Osterhaus (Albert); C. Drosten (Christian); M.A. Pallansch (Mark); L.J. Anderson (Larry); W.J. Belline; R.A.M. Fouchier (Ron)

    2003-01-01

    textabstractIn March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The

  8. Detection of ascitic feline coronavirus RNA from cats with clinically suspected feline infectious peritonitis.

    Science.gov (United States)

    Soma, Takehisa; Wada, Makoto; Taharaguchi, Satoshi; Tajima, Tomoko

    2013-10-01

    Ascitic feline coronavirus (FCoV) RNA was examined in 854 cats with suspected feline infectious peritonitis (FIP) by RT-PCR. The positivity was significantly higher in purebreds (62.2%) than in crossbreds (34.8%) (P<0.0001). Among purebreds, the positivities in the Norwegian forest cat (92.3%) and Scottish fold (77.6%) were significantly higher than the average of purebreds (P=0.0274 and 0.0251, respectively). The positivity was significantly higher in males (51.5%) than in females (35.7%) (P<0.0001), whereas no gender difference has generally been noted in FCoV antibody prevalence, indicating that FIP more frequently develops in males among FCoV-infected cats. Genotyping was performed for 377 gene-positive specimens. Type I (83.3%) was far more predominantly detected than type II (10.6%) (P<0.0001), similar to previous serological and genetic surveys.

  9. Selection of SARS-Coronavirus-specific B cell epitopes by phage peptide library screening and evaluation of the immunological effect of epitope-based peptides on mice

    International Nuclear Information System (INIS)

    Yu Hua; Jiang Lifang; Fang Danyun; Yan Huijun; Zhou Jingjiao; Zhou Junmei; Liang Yu; Gao Yang; Zhao, Wei; Long Beiguo

    2007-01-01

    Antibodies to SARS-Coronavirus (SARS-CoV)-specific B cell epitopes might recognize the pathogen and interrupt its adherence to and penetration of host cells. Hence, these epitopes could be useful for diagnosis and as vaccine constituents. Using the phage-displayed peptide library screening method and purified Fab fragments of immunoglobulin G (IgG Fab) from normal human sera and convalescent sera from SARS-CoV-infected patients as targets, 11 B cell epitopes of SARS-CoV spike glycoprotein (S protein) and membrane protein (M protein) were screened. After a bioinformatics tool was used to analyze these epitopes, four epitope-based S protein dodecapeptides corresponding to the predominant epitopes were chosen for synthesis. Their antigenic specificities and immunogenicities were studied in vitro and in vivo. Flow cytometry and ELISPOT analysis of lymphocytes as well as a serologic analysis of antibody showed that these peptides could trigger a rapid, highly effective, and relatively safe immune response in BALB/c mice. These findings might aid development of SARS diagnostics and vaccines. Moreover, the role of S and M proteins as important surface antigens is confirmed

  10. A rare cause of acute flaccid paralysis: Human coronaviruses

    OpenAIRE

    Turgay, Cokyaman; Emine, Tekin; Ozlem, Koken; Muhammet, S. Paksu; Haydar, A. Tasdemir

    2015-01-01

    Acute flaccid paralysis (AFP) is a life-threatening clinical entity characterized by weakness in the whole body muscles often accompanied by respiratory and bulbar paralysis. The most common cause is Gullian-Barre syndrome, but infections, spinal cord diseases, neuromuscular diseases such as myasthenia gravis, drugs and toxins, periodic hypokalemic paralysis, electrolyte disturbances, and botulism should be considered as in the differential diagnosis. Human coronaviruses (HCoVs) cause common ...

  11. Severe acute respiratory syndrome--a new coronavirus from the Chinese dragon's lair

    DEFF Research Database (Denmark)

    Knudsen, T B; Kledal, T N; Andersen, O

    2003-01-01

    current worldwide distribution. The concerted efforts of a globally united scientific community have led to the independent isolation and identification of a novel coronavirus from SARS patients by several groups. The extraordinarily rapid isolation of a causative agent of this newly emerged infectious...

  12. Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013.

    Science.gov (United States)

    Hemida, M G; Perera, R A; Wang, P; Alhammadi, M A; Siu, L Y; Li, M; Poon, L L; Saif, L; Alnaeem, A; Peiris, M

    2013-12-12

    In Saudi Arabia, including regions of Riyadh and Al Ahsa, pseudoparticle neutralisation (ppNT) and microneutralisation (MNT) tests detected no antibodies to Middle East Respiratory Syndrome coronavirus (MERS-CoV) in sheep (n= 100), goats (n= 45), cattle (n= 50) and chickens (n= 240). Dromedary camels however, had a high prevalence of MERS-CoV antibodies. Bovine coronavirus (BCoV) infected sera from cattle had no cross-reactivity in MERS-CoV ppNT or MNT, while many dromedary camels’ sera reacted to both BCoV and MERS-CoV. Some nevertheless displayed specific serologic reaction profiles to MERS-CoV.

  13. Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination.

    Directory of Open Access Journals (Sweden)

    Sjoerd H E van den Worm

    Full Text Available Severe acute respiratory syndrome (SARS is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV. Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs. In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E. Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs.

  14. Long-term persistence of robust antibody and cytotoxic T cell responses in recovered patients infected with SARS coronavirus.

    Directory of Open Access Journals (Sweden)

    Taisheng Li

    2006-12-01

    Full Text Available Most of the individuals infected with SARS coronavirus (SARS-CoV spontaneously recovered without clinical intervention. However, the immunological correlates associated with patients' recovery are currently unknown. In this report, we have sequentially monitored 30 recovered patients over a two-year period to characterize temporal changes in SARS-CoV-specific antibody responses as well as cytotoxic T cell (CTL responses. We have found persistence of robust antibody and CTL responses in all of the study subjects throughout the study period, with a moderate decline one year after the onset of symptoms. We have also identified two potential major CTL epitopes in N proteins based on ELISPOT analysis of pooled peptides. However, despite the potent immune responses and clinical recovery, peripheral lymphocyte counts in the recovered patients have not yet been restored to normal levels. In summary, our study has, for the first time, characterized the temporal and dynamic changes of humoral and CTL responses in the natural history of SARS-recovered individuals, and strongly supports the notion that high and sustainable levels of immune responses correlate strongly with the disease outcome. Our findings have direct implications for future design and development of effective therapeutic agents and vaccines against SARS-CoV infection.

  15. Feline Coronaviruses: Pathogenesis of Feline Infectious Peritonitis.

    Science.gov (United States)

    Tekes, G; Thiel, H-J

    2016-01-01

    Feline infectious peritonitis (FIP) belongs to the few animal virus diseases in which, in the course of a generally harmless persistent infection, a virus acquires a small number of mutations that fundamentally change its pathogenicity, invariably resulting in a fatal outcome. The causative agent of this deadly disease, feline infectious peritonitis virus (FIPV), arises from feline enteric coronavirus (FECV). The review summarizes our current knowledge of the genome and proteome of feline coronaviruses (FCoVs), focusing on the viral surface (spike) protein S and the five accessory proteins. We also review the current classification of FCoVs into distinct serotypes and biotypes, cellular receptors of FCoVs and their presumed role in viral virulence, and discuss other aspects of FIPV-induced pathogenesis. Our current knowledge of genetic differences between FECVs and FIPVs has been mainly based on comparative sequence analyses that revealed "discriminatory" mutations that are present in FIPVs but not in FECVs. Most of these mutations result in amino acid substitutions in the S protein and these may have a critical role in the switch from FECV to FIPV. In most cases, the precise roles of these mutations in the molecular pathogenesis of FIP have not been tested experimentally in the natural host, mainly due to the lack of suitable experimental tools including genetically engineered virus mutants. We discuss the recent progress in the development of FCoV reverse genetics systems suitable to generate recombinant field viruses containing appropriate mutations for in vivo studies. © 2016 Elsevier Inc. All rights reserved.

  16. HLA-A*0201 T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus nucleocapsid and spike proteins

    International Nuclear Information System (INIS)

    Tsao, Y.-P.; Lin, J.-Y.; Jan, J.-T.; Leng, C.-H.; Chu, C.-C.; Yang, Y.-C.; Chen, S.-L.

    2006-01-01

    The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla_bind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated by T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be First identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-γ stimulation of blood CD8 + T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS

  17. Antibodies against MERS coronavirus in dromedaries, United Arab Emirates, 2003 and 2013

    NARCIS (Netherlands)

    Meyer, Benjamin; Müller, Marcel A.; Corman, Victor M.; Reusken, Chantal B E M; Ritz, Daniel; Godeke, Gert Jan; Lattwein, Erik; Kallies, Stephan; Siemens, Artem; van Beek, Janko; Drexler, Jan F.; Muth, Doreen; Bosch, Berend Jan; Wernery, Ulrich; Koopmans, Marion P G; Wernery, Renate; Drosten, Christian

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has caused an ongoing outbreak of severe acute respiratory tract infection in humans in the Arabian Peninsula since 2012. Dromedary camels have been implicated as possible viral reservoirs. We used serologic assays to analyze 651 dromedary

  18. A Structural analysis of M protein in coronavirus assembly and morphology

    DEFF Research Database (Denmark)

    W. Neuman, Benjamin; Kiss, Gabriella; H. Kunding, Andreas

    2011-01-01

    The M protein of coronavirus plays a central role in virus assembly, turning cellular membranes into workshops where virus and host factors come together to make new virus particles. We investigated how M structure and organization is related to virus shape and size using cryo-electron microscopy...... protein functions to promote virus assembly....

  19. Severe acute respiratory syndrome--a new coronavirus from the Chinese dragon's lair

    DEFF Research Database (Denmark)

    Knudsen, T B; Kledal, T N; Andersen, O

    2003-01-01

    Health Organization (WHO). As SARS has the potential of becoming the first pandemic of the new millennium, a global warning by the WHO was issued on 12 March 2003. The disease, which is believed to have its origin in the Chinese Guangdong province, spread from Hong Kong via international airports to its...... disease constitutes an unprecedented scientific achievement. The main scope of the article is to provide the clinician with an overview of the natural history, epidemiology and clinical characteristics of SARS. On the basis of the recently published viral genome and structural features common...... to the members of the coronavirus family, a model for host cell-virus interaction and possible targets for antiviral drugs are presented. The epidemiological consequences of introducing a novel pathogen in a previously unexposed population and the origin and evolution of a new and more pathogenic strain...

  20. Middle East Respiratory Syndrome Coronavirus Antibodies in Dromedary Camels, Bangladesh, 2015

    Science.gov (United States)

    Islam, Ariful; Rostal, Melinda K.; Islam, Shariful; Rahman, Mohammed Ziaur; Hossain, Mohammed Enayet; Uzzaman, Mohammed Salim; Munster, Vincent J.; Peiris, Malik; Flora, Meerjady Sabrina; Rahman, Mahmudur; Daszak, Peter

    2018-01-01

    Dromedary camels are bred domestically and imported into Bangladesh. In 2015, of 55 camels tested for Middle East respiratory syndrome coronavirus in Dhaka, 17 (31%) were seropositive, including 1 bred locally. None were PCR positive. The potential for infected camels in urban markets could have public health implications and warrants further investigation. PMID:29664373

  1. MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity.

    Science.gov (United States)

    Chu, Daniel K W; Hui, Kenrie P Y; Perera, Ranawaka A P M; Miguel, Eve; Niemeyer, Daniela; Zhao, Jincun; Channappanavar, Rudragouda; Dudas, Gytis; Oladipo, Jamiu O; Traoré, Amadou; Fassi-Fihri, Ouafaa; Ali, Abraham; Demissié, Getnet F; Muth, Doreen; Chan, Michael C W; Nicholls, John M; Meyerholz, David K; Kuranga, Sulyman A; Mamo, Gezahegne; Zhou, Ziqi; So, Ray T Y; Hemida, Maged G; Webby, Richard J; Roger, Francois; Rambaut, Andrew; Poon, Leo L M; Perlman, Stanley; Drosten, Christian; Chevalier, Veronique; Peiris, Malik

    2018-03-20

    Middle East respiratory syndrome coronavirus (MERS-CoV) causes a zoonotic respiratory disease of global public health concern, and dromedary camels are the only proven source of zoonotic infection. Although MERS-CoV infection is ubiquitous in dromedaries across Africa as well as in the Arabian Peninsula, zoonotic disease appears confined to the Arabian Peninsula. MERS-CoVs from Africa have hitherto been poorly studied. We genetically and phenotypically characterized MERS-CoV from dromedaries sampled in Morocco, Burkina Faso, Nigeria, and Ethiopia. Viruses from Africa (clade C) are phylogenetically distinct from contemporary viruses from the Arabian Peninsula (clades A and B) but remain antigenically similar in microneutralization tests. Viruses from West (Nigeria, Burkina Faso) and North (Morocco) Africa form a subclade, C1, that shares clade-defining genetic signatures including deletions in the accessory gene ORF4b Compared with human and camel MERS-CoV from Saudi Arabia, virus isolates from Burkina Faso (BF785) and Nigeria (Nig1657) had lower virus replication competence in Calu-3 cells and in ex vivo cultures of human bronchus and lung. BF785 replicated to lower titer in lungs of human DPP4-transduced mice. A reverse genetics-derived recombinant MERS-CoV (EMC) lacking ORF4b elicited higher type I and III IFN responses than the isogenic EMC virus in Calu-3 cells. However, ORF4b deletions may not be the major determinant of the reduced replication competence of BF785 and Nig1657. Genetic and phenotypic differences in West African viruses may be relevant to zoonotic potential. There is an urgent need for studies of MERS-CoV at the animal-human interface. Copyright © 2018 the Author(s). Published by PNAS.

  2. SARS-Coronavirus ancestor's foot-prints in South-East Asian bat colonies and the refuge theory.

    Science.gov (United States)

    Gouilh, Meriadeg Ar; Puechmaille, Sébastien J; Gonzalez, Jean-Paul; Teeling, Emma; Kittayapong, Pattamaporn; Manuguerra, Jean-Claude

    2011-10-01

    One of the great challenges in the ecology of infectious diseases is to understand what drives the emergence of new pathogens including the relationship between viruses and their hosts. In the case of the emergence of SevereAcute Respiratory Syndrome Coronavirus (SARS-CoV), several studies have shown coronavirus diversity in bats as well as the existence of SARS-CoV infection in apparently healthy bats, suggesting that bats may be a crucial host in the genesis of this disease. To elucidate the biogeographic origin of SARS-CoV and investigate the role that bats played in its emergence, we amplified coronavirus sequences from bat species captured throughout Thailand and assessed the phylogenetic relationships to each other and to other published coronavirus sequences. To this end, RdRp sequence of Coronavirinae was targeted by RT-PCR in non-invasive samples from bats collected in Thailand. Two new coronaviruses were detected in two bat species: one Betacoronavirus in Hipposideros larvatus and one Alphacoronavirus in Hipposiderosarmiger. Interestingly, these viruses from South-East Asia are related to those previously detected in Africa (Betacoronavirus-b) or in Europe (Alphacoronavirus & Betacoronavirus-b). These findings illuminate the origin and the evolutionary history of the SARS-CoV group found in bats by pushing forward the hypothesis of a Betacoronavirus spill-over from Hipposideridae to Rhinolophidae and then from Rhinolophidae to civets and Human. All reported Betacoronaviruses-b (SARS-CoV group) of Hipposideridae and Rhinolophidae respectively cluster in two groups despite their broad geographic distribution and the sympatry of their hosts, which is in favor of an ancient and genetically independent evolution of Betacoronavirus-b clusters in these families. Moreover, despite its probable pathogenicity, we found that a Betacoronavirus-b can persistently infect a medium-sized hipposiderid bat colony. These findings illustrate the importance of the host

  3. Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS coronavirus

    Directory of Open Access Journals (Sweden)

    Júlia Vergara-Alert

    2017-06-01

    Full Text Available Emerging and re-emerging pathogens represent a substantial threat to public health, as demonstrated with numerous outbreaks over the past years, including the 2013–2016 outbreak of Ebola virus in western Africa. Coronaviruses are also a threat for humans, as evidenced in 2002/2003 with infection by the severe acute respiratory syndrome coronavirus (SARS-CoV, which caused more than 8000 human infections with 10% fatality rate in 37 countries. Ten years later, a novel human coronavirus (Middle East respiratory syndrome coronavirus, MERS-CoV, associated with severe pneumonia, arose in the Kingdom of Saudi Arabia. Until December 2016, MERS has accounted for more than 1800 cases and 35% fatality rate. Finding an animal model of disease is key to develop vaccines or antivirals against such emerging pathogens and to understand its pathogenesis. Knowledge of the potential role of domestic livestock and other animal species in the transmission of pathogens is of importance to understand the epidemiology of the disease. Little is known about MERS-CoV animal host range. In this paper, experimental data on potential hosts for MERS-CoV is reviewed. Advantages and limitations of different animal models are evaluated in relation to viral pathogenesis and transmission studies. Finally, the relevance of potential new target species is discussed.

  4. Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV.

    Directory of Open Access Journals (Sweden)

    Sanchita Bhadra

    Full Text Available The Middle East respiratory syndrome coronavirus (MERS-CoV, an emerging human coronavirus, causes severe acute respiratory illness with a 35% mortality rate. In light of the recent surge in reported infections we have developed asymmetric five-primer reverse transcription loop-mediated isothermal amplification (RT-LAMP assays for detection of MERS-CoV. Isothermal amplification assays will facilitate the development of portable point-of-care diagnostics that are crucial for management of emerging infections. The RT-LAMP assays are designed to amplify MERS-CoV genomic loci located within the open reading frame (ORF1a and ORF1b genes and upstream of the E gene. Additionally we applied one-step strand displacement probes (OSD for real-time sequence-specific verification of LAMP amplicons. Asymmetric amplification effected by incorporating a single loop primer in each assay accelerated the time-to-result of the OSD-RT-LAMP assays. The resulting assays could detect 0.02 to 0.2 plaque forming units (PFU (5 to 50 PFU/ml of MERS-CoV in infected cell culture supernatants within 30 to 50 min and did not cross-react with common human respiratory pathogens.

  5. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity

    International Nuclear Information System (INIS)

    Du, Lanying; Kao, Richard Y.; Zhou, Yusen; He, Yuxian; Zhao, Guangyu; Wong, Charlotte; Jiang, Shibo; Yuen, Kwok-Yung; Jin, Dong-Yan; Zheng, Bo-Jian

    2007-01-01

    The spike (S) protein of SARS coronavirus (SARS-CoV) has been known to recognize and bind to host receptors, whose conformational changes then facilitate fusion between the viral envelope and host cell membrane, leading to viral entry into target cells. However, other functions of SARS-CoV S protein such as proteolytic cleavage and its implications to viral infection are incompletely understood. In this study, we demonstrated that the infection of SARS-CoV and a pseudovirus bearing the S protein of SARS-CoV was inhibited by a protease inhibitor Ben-HCl. Also, the protease Factor Xa, a target of Ben-HCl abundantly expressed in infected cells, was able to cleave the recombinant and pseudoviral S protein into S1 and S2 subunits, and the cleavage was inhibited by Ben-HCl. Furthermore, this cleavage correlated with the infectivity of the pseudovirus. Taken together, our study suggests a plausible mechanism by which SARS-CoV cleaves its S protein to facilitate viral infection

  6. An outbreak of feline infectious peritonitis in a Taiwanese shelter: epidemiologic and molecular evidence for horizontal transmission of a novel type II feline coronavirus.

    Science.gov (United States)

    Wang, Ying-Ting; Su, Bi-Ling; Hsieh, Li-En; Chueh, Ling-Ling

    2013-07-17

    Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV) infection. FCoV can be divided into serotypes I and II. The virus that causes FIP (FIPV) is believed to occur sporadically and spread infrequently from cat to cat. Recently, an FIP outbreak from an animal shelter was confirmed in Taiwan. FCoV from all the cats in this shelter were analyzed to determine the epidemiology of this outbreak. Thirteen of 46 (28.2%) cats with typical signs of FIP were identified. Among them, seven cats were confirmed by necropsy and/or histopathological examinations. Despite the fact that more than one FCoV was identified in this multi-cat environment, the eight FIP cats were invariably found to be infected with a type II FCoV. Sequence analysis revealed that the type II FIPV detected from fecal samples, body effusions and granulomatous tissue homogenates from the cats that succumbed to FIP all harbored an identical recombination site in their S gene. Two of the cats that succumbed to FIP were found to harbor an identical nonsense mutation in the 3c gene. Fecal shedding of this type II virus in the effusive form of FIP can be detected up to six days before death. Taken together, our data demonstrate that horizontal transmission of FIPV is possible and that FIP cats can pose a potential risk to other cats living in the same environment.

  7. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein

    Science.gov (United States)

    Millet, Jean Kaoru; Whittaker, Gary R.

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly identified betacoronavirus causing high morbidity and mortality in humans. The coronavirus spike (S) protein is the main determinant of viral entry, and although it was previously shown that MERS-CoV S can be activated by various proteases, the details of the mechanisms of proteolytic activation of fusion are still incompletely characterized. Here, we have uncovered distinctive characteristics of MERS-CoV S. We identify, by bioinformatics and peptide cleavage assays, two cleavage sites for furin, a ubiquitously expressed protease, which are located at the S1/S2 interface and at the S2′ position of the S protein. We show that although the S1/S2 site is proteolytically processed by furin during protein biosynthesis, the S2′ site is cleaved upon viral entry. MERS-CoV pseudovirion infection was shown to be enhanced by elevated levels of furin expression, and entry could be decreased by furin siRNA silencing. Enhanced furin activity appeared to partially override the low pH-dependent nature of MERS-CoV entry. Inhibition of furin activity was shown to decrease MERS-CoV S-mediated entry, as well as infection by the virus. Overall, we show that MERS-CoV has evolved an unusual two-step furin activation for fusion, suggestive of a role during the process of emergence into the human population. The ability of MERS-CoV to use furin in this manner, along with other proteases, may explain the polytropic nature of the virus. PMID:25288733

  8. A novel pancoronavirus RT-PCR assay: frequent detection of human coronavirus NL63 in children hospitalized with respiratory tract infections in Belgium

    Directory of Open Access Journals (Sweden)

    Berkhout Ben

    2005-02-01

    Full Text Available Abstract Background Four human coronaviruses are currently known to infect the respiratory tract: human coronaviruses OC43 (HCoV-OC43 and 229E (HCoV-229E, SARS associated coronavirus (SARS-CoV and the recently identified human coronavirus NL63 (HCoV-NL63. In this study we explored the incidence of HCoV-NL63 infection in children diagnosed with respiratory tract infections in Belgium. Methods Samples from children hospitalized with respiratory diseases during the winter seasons of 2003 and 2004 were evaluated for the presence of HCoV-NL63 using a optimized pancoronavirus RT-PCR assay. Results Seven HCoV-NL63 positive samples were identified, six were collected during January/February 2003 and one at the end of February 2004. Conclusions Our results support the notation that HCoV-NL63 can cause serious respiratory symptoms in children. Sequence analysis of the S gene showed that our isolates could be classified into two subtypes corresponding to the two prototype HCoV-NL63 sequences isolated in The Netherlands in 1988 and 2003, indicating that these two subtypes may currently be cocirculating.

  9. Human Infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013

    NARCIS (Netherlands)

    Memish, Ziad A.; Cotten, Matthew; Meyer, Benjamin; Watson, Simon J.; Alsahafi, Abdullah J.; Al Rabeeah, Abdullah A.; Corman, Victor Max; Sieberg, Andrea; Makhdoom, Hatem Q.; Assiri, Abdullah; Al Masri, Malaki; Aldabbagh, Souhaib; Bosch, Berend Jan|info:eu-repo/dai/nl/273306049; Beer, Martin; Müller, Marcel A.; Kellam, Paul; Drosten, Christian

    2014-01-01

    We investigated a case of human infection with Middle East respiratory syndrome coronavirus (MERS-CoV) after exposure to infected camels. Analysis of the whole human-derived virus and 15% of the camel-derived virus sequence yielded nucleotide polymorphism signatures suggestive of cross-species

  10. Establishment, immortalisation and characterisation of pteropid bat cell lines.

    Directory of Open Access Journals (Sweden)

    Gary Crameri

    Full Text Available BACKGROUND: Bats are the suspected natural reservoir hosts for a number of new and emerging zoonotic viruses including Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus and Ebola virus. Since the discovery of SARS-like coronaviruses in Chinese horseshoe bats, attempts to isolate a SL-CoV from bats have failed and attempts to isolate other bat-borne viruses in various mammalian cell lines have been similarly unsuccessful. New stable bat cell lines are needed to help with these investigations and as tools to assist in the study of bat immunology and virus-host interactions. METHODOLOGY/FINDINGS: Black flying foxes (Pteropus alecto were captured from the wild and transported live to the laboratory for primary cell culture preparation using a variety of different methods and culture media. Primary cells were successfully cultured from 20 different organs. Cell immortalisation can occur spontaneously, however we used a retroviral system to immortalise cells via the transfer and stable production of the Simian virus 40 Large T antigen and the human telomerase reverse transcriptase protein. Initial infection experiments with both cloned and uncloned cell lines using Hendra and Nipah viruses demonstrated varying degrees of infection efficiency between the different cell lines, although it was possible to infect cells in all tissue types. CONCLUSIONS/SIGNIFICANCE: The approaches developed and optimised in this study should be applicable to bats of other species. We are in the process of generating further cell lines from a number of different bat species using the methodology established in this study.

  11. Evidence for an Ancestral Association of Human Coronavirus 229E with Bats

    NARCIS (Netherlands)

    Corman, Victor Max; Baldwin, Heather J.; Tateno, Adriana Fumie; Zerbinati, Rodrigo Melim; Annan, Augustina; Owusu, Michael; Nkrumah, Evans Ewald; Maganga, Gael Darren; Oppong, Samuel; Adu-Sarkodie, Yaw; Vallo, Peter; da Silva Filho, Luiz Vicente Ribeiro Ferreira; Leroy, Eric M.; Thiel, Volker; van der Hoek, Lia; Poon, Leo L. M.; Tschapka, Marco; Drosten, Christian; Drexler, Jan Felix

    2015-01-01

    We previously showed that close relatives of human coronavirus 229E (HCoV-229E) exist in African bats. The small sample and limited genomic characterizations have prevented further analyses so far. Here, we tested 2,087 fecal specimens from 11 bat species sampled in Ghana for HCoV-229E-related

  12. Detection of potentially novel paramyxovirus and coronavirus viral RNA in bats and rats in the Mekong Delta region of southern Viet Nam.

    Science.gov (United States)

    Berto, A; Anh, P H; Carrique-Mas, J J; Simmonds, P; Van Cuong, N; Tue, N T; Van Dung, N; Woolhouse, M E; Smith, I; Marsh, G A; Bryant, J E; Thwaites, G E; Baker, S; Rabaa, M A

    2018-02-01

    Bats and rodents are being increasingly recognized as reservoirs of emerging zoonotic viruses. Various studies have investigated bat viruses in tropical regions, but to date there are no data regarding viruses with zoonotic potential that circulate in bat and rat populations in Viet Nam. To address this paucity of data, we sampled three bat farms and three wet markets trading in rat meat in the Mekong Delta region of southern Viet Nam. Faecal and urine samples were screened for the presence of RNA from paramyxoviruses, coronaviruses and filoviruses. Paramyxovirus RNA was detected in 4 of 248 (1%) and 11 of 222 (4.9%) bat faecal and urine samples, respectively. Coronavirus RNA was detected in 55 of 248 (22%) of bat faecal samples; filovirus RNA was not detected in any of the bat samples. Further, coronavirus RNA was detected in 12 of 270 (4.4%) of rat faecal samples; all samples tested negative for paramyxovirus. Phylogenetic analysis revealed that the bat paramyxoviruses and bat and rat coronaviruses were related to viruses circulating in bat and rodent populations globally, but showed no cross-species mixing of viruses between bat and rat populations within Viet Nam. Our study shows that potentially novel variants of paramyxoviruses and coronaviruses commonly circulate in bat and rat populations in Viet Nam. Further characterization of the viruses and additional human and animal surveillance is required to evaluate the likelihood of viral spillover and to assess whether these viruses pose a risk to human health. © 2017 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  13. Achieving a golden mean: mechanisms by which coronaviruses ensure synthesis of the correct stoichiometric ratios of viral proteins.

    Science.gov (United States)

    Plant, Ewan P; Rakauskaite, Rasa; Taylor, Deborah R; Dinman, Jonathan D

    2010-05-01

    In retroviruses and the double-stranded RNA totiviruses, the efficiency of programmed -1 ribosomal frameshifting is critical for ensuring the proper ratios of upstream-encoded capsid proteins to downstream-encoded replicase enzymes. The genomic organizations of many other frameshifting viruses, including the coronaviruses, are very different, in that their upstream open reading frames encode nonstructural proteins, the frameshift-dependent downstream open reading frames encode enzymes involved in transcription and replication, and their structural proteins are encoded by subgenomic mRNAs. The biological significance of frameshifting efficiency and how the relative ratios of proteins encoded by the upstream and downstream open reading frames affect virus propagation has not been explored before. Here, three different strategies were employed to test the hypothesis that the -1 PRF signals of coronaviruses have evolved to produce the correct ratios of upstream- to downstream-encoded proteins. Specifically, infectious clones of the severe acute respiratory syndrome (SARS)-associated coronavirus harboring mutations that lower frameshift efficiency decreased infectivity by >4 orders of magnitude. Second, a series of frameshift-promoting mRNA pseudoknot mutants was employed to demonstrate that the frameshift signals of the SARS-associated coronavirus and mouse hepatitis virus have evolved to promote optimal frameshift efficiencies. Finally, we show that a previously described frameshift attenuator element does not actually affect frameshifting per se but rather serves to limit the fraction of ribosomes available for frameshifting. The findings of these analyses all support a "golden mean" model in which viruses use both programmed ribosomal frameshifting and translational attenuation to control the relative ratios of their encoded proteins.

  14. Peptide Mimicrying Between SARS Coronavirus Spike Protein and Human Proteins Reacts with SARS Patient Serum

    Directory of Open Access Journals (Sweden)

    K.-Y. Hwa

    2008-01-01

    Full Text Available Molecular mimicry, defined as similar structures shared by molecules from dissimilar genes or proteins, is a general strategy used by pathogens to infect host cells. Severe acute respiratory syndrome (SARS is a new human respiratory infectious disease caused by SARS coronavirus (SARS-CoV. The spike (S protein of SARS-CoV plays an important role in the virus entry into a cell. In this study, eleven synthetic peptides from the S protein were selected based on its sequence homology with human proteins. Two of the peptides D07 (residues 927–937 and D08 (residues 942–951 were recognized by the sera of SARS patients. Murine hyperimmune sera against these peptides bound to proteins of human lung epithelial cells A549. Another peptide D10 (residues 490–502 stimulated A549 to proliferate and secrete IL-8. The present results suggest that the selected S protein regions, which share sequence homology with human proteins, may play important roles in SARS-CoV infection.

  15. Evidence supporting a zoonotic origin of human coronavirus strain NL63.

    Science.gov (United States)

    Huynh, Jeremy; Li, Shimena; Yount, Boyd; Smith, Alexander; Sturges, Leslie; Olsen, John C; Nagel, Juliet; Johnson, Joshua B; Agnihothram, Sudhakar; Gates, J Edward; Frieman, Matthew B; Baric, Ralph S; Donaldson, Eric F

    2012-12-01

    The relationship between bats and coronaviruses (CoVs) has received considerable attention since the severe acute respiratory syndrome (SARS)-like CoV was identified in the Chinese horseshoe bat (Rhinolophidae) in 2005. Since then, several bats throughout the world have been shown to shed CoV sequences, and presumably CoVs, in the feces; however, no bat CoVs have been isolated from nature. Moreover, there are very few bat cell lines or reagents available for investigating CoV replication in bat cells or for isolating bat CoVs adapted to specific bat species. Here, we show by molecular clock analysis that alphacoronavirus (α-CoV) sequences derived from the North American tricolored bat (Perimyotis subflavus) are predicted to share common ancestry with human CoV (HCoV)-NL63, with the most recent common ancestor between these viruses occurring approximately 563 to 822 years ago. Further, we developed immortalized bat cell lines from the lungs of this bat species to determine if these cells were capable of supporting infection with HCoVs. While SARS-CoV, mouse-adapted SARS-CoV (MA15), and chimeric SARS-CoVs bearing the spike genes of early human strains replicated inefficiently, HCoV-NL63 replicated for multiple passages in the immortalized lung cells from this bat species. These observations support the hypothesis that human CoVs are capable of establishing zoonotic-reverse zoonotic transmission cycles that may allow some CoVs to readily circulate and exchange genetic material between strains found in bats and other mammals, including humans.

  16. Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus

    NARCIS (Netherlands)

    Kusters, J G; Jager, E J; Niesters, H G; van der Zeijst, B A

    1990-01-01

    Under laboratory conditions coronaviruses were shown to have a high frequency of recombination. In The Netherlands, vaccination against infectious bronchitis virus (IBV) is performed with vaccines that contain several life-attenuated virus strains. These highly effective vaccines may create ideal

  17. The Middle East respiratory syndrome coronavirus (MERS-CoV does not replicate in Syrian hamsters.

    Directory of Open Access Journals (Sweden)

    Emmie de Wit

    Full Text Available In 2012 a novel coronavirus, MERS-CoV, associated with severe respiratory disease emerged in the Arabian Peninsula. To date, 55 human cases have been reported, including 31 fatal cases. Several of the cases were likely a result of human-to-human transmission. The emergence of this novel coronavirus prompts the need for a small animal model to study the pathogenesis of this virus and to test the efficacy of potential intervention strategies. In this study we explored the use of Syrian hamsters as a small animal disease model, using intratracheal inoculation and inoculation via aerosol. Clinical signs of disease, virus replication, histological lesions, cytokine upregulation nor seroconversion were observed in any of the inoculated animals, indicating that MERS-CoV does not replicate in Syrian hamsters.

  18. The Paradox of Feline Coronavirus Pathogenesis: A Review

    Directory of Open Access Journals (Sweden)

    Luciana Wanderley Myrrha

    2011-01-01

    Full Text Available Feline coronavirus (FCoV is an enveloped single-stranded RNA virus, of the family Coronaviridae and the order Nidovirales. FCoV is an important pathogen of wild and domestic cats and can cause a mild or apparently symptomless enteric infection, especially in kittens. FCoV is also associated with a lethal, systemic disease known as feline infectious peritonitis (FIP. Although the precise cause of FIP pathogenesis remains unclear, some hypotheses have been suggested. In this review we present results from different FCoV studies and attempt to elucidate existing theories on the pathogenesis of FCoV infection.

  19. Molecular characterization of human coronaviruses and their circulation dynamics in Kenya, 2009-2012.

    Science.gov (United States)

    Sipulwa, Lenata A; Ongus, Juliette R; Coldren, Rodney L; Bulimo, Wallace D

    2016-02-01

    Human Coronaviruses (HCoV) are a common cause of respiratory illnesses and are responsible for considerable morbidity and hospitalization across all age groups especially in individuals with compromised immunity. There are six known species of HCoV: HCoV-229E, HCoV-NL63, HCoV-HKU1, HCoV-OC43, MERS-CoV and SARS-HCoV. Although studies have shown evidence of global distribution of HCoVs, there is limited information on their presence and distribution in Kenya. HCoV strains that circulated in Kenya were retrospectively diagnosed and molecularly characterized. A total of 417 nasopharyngeal specimens obtained between January 2009 and December 2012 from around Kenya were analyzed by a real time RT-PCR using HCoV-specific primers. HCoV-positive specimens were subsequently inoculated onto monolayers of LL-CMK2 cells. The isolated viruses were characterized by RT-PCR amplification and sequencing of the partial polymerase (pol) gene. The prevalence of HCoV infection was as follows: out of the 417 specimens, 35 (8.4 %) were positive for HCoV, comprising 10 (2.4 %) HCoV-NL63, 12 (2.9 %) HCoV-OC43, 9 (2.1 %) HCoV-HKU1, and 4 (1 %) HCoV-229E. The Kenyan HCoV strains displayed high sequence homology to the prototypes and contemporaneous strains. Evolution analysis showed that the Kenyan HCoV-OC43 and HCoV-NL63 isolates were under purifying selection. Phylogenetic evolutionary analyses confirmed the identities of three HCoV-HKU1, five HCoV-NL63, eight HCoV-OC43 and three HCoV-229E. There were yearly variations in the prevalence and circulation patterns of individual HCoVs in Kenya. This paper reports on the first molecular characterization of human Coronaviruses in Kenya, which play an important role in causing acute respiratory infections among children.

  20. Clinical, hematological, and biochemical findings in puppies with coronavirus and parvovirus enteritis

    Science.gov (United States)

    Castro, Tatiana X.; Cubel Garcia, Rita de Cássia N.; Gonçalves, Luciana P. S.; Costa, Erika M.; Marcello, Gracy C.G.; Labarthe, Norma V.; Mendes-de-Almeida, Flavya

    2013-01-01

    The clinical and laboratory findings in puppies naturally infected with canine coronavirus (CCoV) and/or canine parvovirus (CPV) were compared with findings in uninfected puppies. Lymphopenia was the only parameter related to CCoV infection that was statistically significant; vomiting, anorexia, lethargy, hemorrhagic fluid diarrhea, leukopenia, lymphopenia, thrombocytopenia, hypoglycemia, and hypoproteinemia were correlated with CPV infection. PMID:24155496

  1. E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity

    International Nuclear Information System (INIS)

    Vlasak, R.; Luytjes, W.; Leider, J.; Spaan, W.; Palese, P.

    1988-01-01

    In addition to members of the Orthomyxoviridae and Paramyxoviridae, several coronaviruses have been shown to possess receptor-destroying activities. Purified bovine coronavirus (BCV) preparations have an esterase activity which inactivates O-acetylsialic acid-containing receptors on erythrocytes. Diisopropyl fluorophosphate (DFP) completely inhibits this receptor-destroying activity of BCV, suggesting that the viral enzyme is a serine esterase. Treatment of purified BCV with [ 3 H]DFP and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the proteins revealed that the esterase/receptor-destroying activity of BCV is associated with the E3 protein was specifically phosphorylated. This finding suggests that the esterase/receptor-destroying activity of BCV is associated with the E3 protein. Furthermore, treatment of BCV with DFP dramatically reduced its infectivity in a plaque assay. It is assumed that the esterase activity of BCV is required in an early step of virus replication, possible during virus entry or uncoating

  2. Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas).

    Science.gov (United States)

    Liu, Shengwang; Chen, Jianfei; Chen, Jinding; Kong, Xiangang; Shao, Yuhao; Han, Zongxi; Feng, Li; Cai, Xuehui; Gu, Shoulin; Liu, Ming

    2005-03-01

    Coronavirus-like viruses, designated peafowl/China/LKQ3/2003 (pf/CH/LKQ3/03) and teal/China/LDT3/2003 (tl/CH/LDT3/03), were isolated from a peafowl and a teal during virological surveillance in Guangdong province, China. Partial genomic sequence analysis showed that these isolates had the S-3-M-5-N gene order that is typical of avian coronaviruses. The spike, membrane and nucleocapsid protein genes of pf/CH/LKQ3/03 had >99 % identity to those of the avian infectious bronchitis coronavirus H120 vaccine strain (Massachusetts serotype) and other Massachusetts serotype isolates. Furthermore, when pf/CH/LKQ3/03 was inoculated experimentally into chickens (specific-pathogen-free), no disease signs were apparent. tl/CH/LDT3/03 had a spike protein gene with 95 % identity to that of a Chinese infectious bronchitis virus (IBV) isolate, although more extensive sequencing revealed the possibility that this strain may have undergone recombination. When inoculated into chickens, tl/CH/LDT3/03 resulted in the death of birds from nephritis. Taken together, this information suggests that pf/CH/LKQ3/03 might be a revertant, attenuated vaccine IBV strain, whereas tl/CH/LDT3/03 is a nephropathogenic field IBV strain, generated through recombination. The replication and non-pathogenic nature of IBV in domestic peafowl and teal under field conditions raises questions as to the role of these hosts as carriers of IBV and the potential that they may have to transmit virus to susceptible chicken populations.

  3. Genome-wide analysis of codon usage bias in Bovine Coronavirus

    OpenAIRE

    Castells, Mat?as; Victoria, Mat?as; Colina, Rodney; Musto, H?ctor; Cristina, Juan

    2017-01-01

    Background Bovine coronavirus (BCoV) belong to the genus Betacoronavirus of the family Coronaviridae. BCoV are widespread around the world and cause enteric or respiratory infections among cattle, leading to important economic losses to the beef and dairy industry worldwide. To study the relation of codon usage among viruses and their hosts is essential to understand host-pathogen interaction, evasion from host?s immune system and evolution. Methods We performed a comprehensive analysis of co...

  4. Structural Insights into Immune Recognition of the Severe Acute Respiratory Syndrome Coronavirus S Protein Receptor Binding Domain

    Energy Technology Data Exchange (ETDEWEB)

    Pak, J.; Sharon, C; Satkunarajah, M; Thierry, C; Cameron, C; Kelvin, D; Seetharaman, J; Cochrane, A; Plummer, F; et. al.

    2009-01-01

    The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for host cell attachment and fusion of the viral and host cell membranes. Within S the receptor binding domain (RBD) mediates the interaction with angiotensin-converting enzyme 2 (ACE2), the SARS-CoV host cell receptor. Both S and the RBD are highly immunogenic and both have been found to elicit neutralizing antibodies. Reported here is the X-ray crystal structure of the RBD in complex with the Fab of a neutralizing mouse monoclonal antibody, F26G19, elicited by immunization with chemically inactivated SARS-CoV. The RBD-F26G19 Fab complex represents the first example of the structural characterization of an antibody elicited by an immune response to SARS-CoV or any fragment of it. The structure reveals that the RBD surface recognized by F26G19 overlaps significantly with the surface recognized by ACE2 and, as such, suggests that F26G19 likely neutralizes SARS-CoV by blocking the virus-host cell interaction.

  5. Association of seropositivity for influenza and coronaviruses with history of mood disorders and suicide attempts.

    Science.gov (United States)

    Okusaga, Olaoluwa; Yolken, Robert H; Langenberg, Patricia; Lapidus, Manana; Arling, Timothy A; Dickerson, Faith B; Scrandis, Debra A; Severance, Emily; Cabassa, Johanna A; Balis, Theodora; Postolache, Teodor T

    2011-04-01

    Anecdotal reports of mood disorder following infection with common respiratory viruses with neurotropic potential have been in existence since the last century. Nevertheless, systematic studies on the association between these viruses and mood disorders are lacking. Influenza A, B and coronavirus antibody titers were measured in 257 subjects with recurrent unipolar and bipolar disorder and healthy controls, by SCID. Pearson's χ² tests and logistic regression models were used to analyze associations between seropositivity for coronaviruses, influenza A and B viruses and the following: a) history of recurrent mood disorders b) having attempted suicide in the past c) uni- vs. bi-polarity and d) presence of psychotic symptoms during mood episodes. Seropositivity for influenza A (p=0.004), B (pmood disorders but not with the specific diagnosis of unipolar or bipolar depression. Seropositivity for influenza B was significantly associated with a history of suicide attempt (p=0.001) and history of psychotic symptoms (p=0.005). The design was cross-sectional. Socioeconomic factors, inflammatory markers, and axis II psychopathology were not assessed. The association of seropositivity for influenza and coronaviruses with a history of mood disorders, and influenza B with suicidal behavior require replication in larger longitudinal samples. The need for these studies is additionally supported by the high incidence of these viral infections, the high prevalence of mood disorders, and resilience of suicide epidemics. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Myeloablation-associated deletion of ORF4 in a human coronavirus 229E infection.

    Science.gov (United States)

    Greninger, Alexander L; Pepper, Gregory; Shean, Ryan C; Cent, Anne; Palileo, Isabel; Kuypers, Jane M; Schiffer, Joshua T; Jerome, Keith R

    2017-01-01

    We describe metagenomic next-generation sequencing (mNGS) of a human coronavirus 229E from a patient with AML and persistent upper respiratory symptoms, who underwent hematopoietic cell transplantation (HCT). mNGS revealed a 548-nucleotide deletion, which comprised the near entirety of the ORF4 gene, and no minor allele variants were detected to suggest a mixed infection. As part of her pre-HCT conditioning regimen, the patient received myeloablative treatment with cyclophosphamide and 12 Gy total body irradiation. Iterative sequencing and RT-PCR confirmation of four respiratory samples over the 4-week peritransplant period revealed that the pre-conditioning strain contained an intact ORF4 gene, while the deletion strain appeared just after conditioning and persisted over a 2.5-week period. This sequence represents one of the largest genomic deletions detected in a human RNA virus and describes large-scale viral mutation associated with myeloablation for HCT.

  7. Molecular dynamics of Middle East Respiratory Syndrome Coronavirus (MERS CoV) fusion heptad repeat trimers

    KAUST Repository

    Kandeel, Mahmoud; Al-Taher, Abdulla; Li, Huifang; Schwingenschlö gl, Udo; Alnazawi, Mohamed

    2018-01-01

    Structural studies related to Middle East Respiratory Syndrome Coronavirus (MERS CoV) infection process are so limited. In this study, molecular dynamics (MD) simulation was carried out to unravel changes in the MERS CoV heptad repeat domains (HRs

  8. Middle East Respiratory Syndrome Coronavirus Nonstructural Protein 16 Is Necessary for Interferon Resistance and Viral Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Menachery, Vineet D.; Gralinski, Lisa E.; Mitchell, Hugh D.; Dinnon, Kenneth H.; Leist, Sarah R.; Yount, Boyd L.; Graham, Rachel L.; McAnarney, Eileen T.; Stratton, Kelly G.; Cockrell, Adam S.; Debbink, Kari; Sims, Amy C.; Waters, Katrina M.; Baric, Ralph S.; Fernandez-Sesma, Ana

    2017-11-15

    ABSTRACT

    Coronaviruses (CoVs) encode a mixture of highly conserved and novel genes, as well as genetic elements necessary for infection and pathogenesis, raising the possibility of common targets for attenuation and therapeutic design. In this study, we focused on highly conserved nonstructural protein 16 (NSP16), a viral 2'O-methyltransferase (2'O-MTase) that encodes critical functions in immune modulation and infection. Using reverse genetics, we disrupted a key motif in the conserved KDKE motif of Middle East respiratory syndrome CoV (MERS-CoV) NSP16 (D130A) and evaluated the effect on viral infection and pathogenesis. While the absence of 2'O-MTase activity had only a marginal impact on propagation and replication in Vero cells, dNSP16 mutant MERS-CoV demonstrated significant attenuation relative to the control both in primary human airway cell cultures andin vivo. Further examination indicated that dNSP16 mutant MERS-CoV had a type I interferon (IFN)-based attenuation and was partially restored in the absence of molecules of IFN-induced proteins with tetratricopeptide repeats. Importantly, the robust attenuation permitted the use of dNSP16 mutant MERS-CoV as a live attenuated vaccine platform protecting from a challenge with a mouse-adapted MERS-CoV strain. These studies demonstrate the importance of the conserved 2'O-MTase activity for CoV pathogenesis and highlight NSP16 as a conserved universal target for rapid live attenuated vaccine design in an expanding CoV outbreak setting.

    IMPORTANCECoronavirus (CoV) emergence in both humans and livestock represents a significant threat to global public health, as evidenced by the sudden emergence of severe acute respiratory syndrome CoV (SARS-CoV), MERS-CoV, porcine epidemic diarrhea virus, and swine delta CoV in the 21st century. These studies describe an approach that

  9. E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity

    Energy Technology Data Exchange (ETDEWEB)

    Vlasak, R.; Luytjes, W.; Leider, J.; Spaan, W.; Palese, P.

    1988-12-01

    In addition to members of the Orthomyxoviridae and Paramyxoviridae, several coronaviruses have been shown to possess receptor-destroying activities. Purified bovine coronavirus (BCV) preparations have an esterase activity which inactivates O-acetylsialic acid-containing receptors on erythrocytes. Diisopropyl fluorophosphate (DFP) completely inhibits this receptor-destroying activity of BCV, suggesting that the viral enzyme is a serine esterase. Treatment of purified BCV with (/sup 3/H)DFP and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the proteins revealed that the esterase/receptor-destroying activity of BCV is associated with the E3 protein was specifically phosphorylated. This finding suggests that the esterase/receptor-destroying activity of BCV is associated with the E3 protein. Furthermore, treatment of BCV with DFP dramatically reduced its infectivity in a plaque assay. It is assumed that the esterase activity of BCV is required in an early step of virus replication, possible during virus entry or uncoating.

  10. Biochemical and biophysical characterization of the transmissible gastroenteritis coronavirus fusion core

    International Nuclear Information System (INIS)

    Ma Guangpeng; Feng Youjun; Gao Feng; Wang Jinzi; Liu Cheng; Li Yijing

    2005-01-01

    Transmissible gastroenteritis coronavirus (TGEV) is one of the most destructive agents, responsible for the enteric infections that are lethal for suckling piglets, causing enormous economic loss to the porcine fostering industry every year. Although it has been known that TGEV spiker protein is essential for the viral entry for many years, the detail knowledge of the TGEV fusion protein core is still very limited. Here, we report that TGEV fusion core (HR1-SGGRGG-HR2), in vitro expressed in GST prokaryotic expression system, shares the typical properties of the trimer of coiled-coil heterodimer (six α-helix bundle), which has been confirmed by a combined series of biochemical and biophysical evidences including size exclusion chromatography (gel-filtration), chemical crossing, and circular diagram. The 3D homologous structure model presents its most likely structure, extremely similar to those of the coronaviruses documented. Taken together, TGEV spiker protein belongs to the class I fusion protein, characterized by the existence of two heptad-repeat (HR) regions, HR1 and HR2, and the present knowledge about the truncated TGEV fusion protein core may facilitate in the design of the small molecule or polypeptide drugs targeting the membrane fusion between TGEV and its host

  11. Human Coronavirus HKU1 Spike Protein Uses O-Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin-Esterase Protein as a Receptor-Destroying Enzyme.

    Science.gov (United States)

    Huang, Xingchuan; Dong, Wenjuan; Milewska, Aleksandra; Golda, Anna; Qi, Yonghe; Zhu, Quan K; Marasco, Wayne A; Baric, Ralph S; Sims, Amy C; Pyrc, Krzysztof; Li, Wenhui; Sui, Jianhua

    2015-07-01

    Human coronavirus (hCoV) HKU1 is one of six hCoVs identified to date and the only one with an unidentified cellular receptor. hCoV-HKU1 encodes a hemagglutinin-esterase (HE) protein that is unique to the group a betacoronaviruses (group 2a). The function of HKU1-HE remains largely undetermined. In this study, we examined binding of the S1 domain of hCoV-HKU1 spike to a panel of cells and found that the S1 could specifically bind on the cell surface of a human rhabdomyosarcoma cell line, RD. Pretreatment of RD cells with neuraminidase (NA) and trypsin greatly reduced the binding, suggesting that the binding was mediated by sialic acids on glycoproteins. However, unlike other group 2a CoVs, e.g., hCoV-OC43, for which 9-O-acetylated sialic acid (9-O-Ac-Sia) serves as a receptor determinant, HKU1-S1 bound with neither 9-O-Ac-Sia-containing glycoprotein(s) nor rat and mouse erythrocytes. Nonetheless, the HKU1-HE was similar to OC43-HE, also possessed sialate-O-acetylesterase activity, and acted as a receptor-destroying enzyme (RDE) capable of eliminating the binding of HKU1-S1 to RD cells, whereas the O-acetylesterase-inactive HKU1-HE mutant lost this capacity. Using primary human ciliated airway epithelial (HAE) cell cultures, the only in vitro replication model for hCoV-HKU1 infection, we confirmed that pretreatment of HAE cells with HE but not the enzymatically inactive mutant blocked hCoV-HKU1 infection. These results demonstrate that hCoV-HKU1 exploits O-Ac-Sia as a cellular attachment receptor determinant to initiate the infection of host cells and that its HE protein possesses the corresponding sialate-O-acetylesterase RDE activity. Human coronaviruses (hCoV) are important human respiratory pathogens. Among the six hCoVs identified to date, only hCoV-HKU1 has no defined cellular receptor. It is also unclear whether hemagglutinin-esterase (HE) protein plays a role in viral entry. In this study, we found that, similarly to other members of the group 2a CoVs, sialic

  12. The first complete genome sequences of clinical isolates of human coronavirus 229E

    NARCIS (Netherlands)

    Farsani, Seyed Mohammad Jazaeri; Dijkman, Ronald; Jebbink, Maarten F.; Goossens, Herman; Ieven, Margareta; Deijs, Martin; Molenkamp, Richard; van der Hoek, Lia

    2012-01-01

    Human coronavirus 229E has been identified in the mid-1960s, yet still only one full-genome sequence is available. This full-length sequence has been determined from the cDNA-clone Inf-1 that is based on the lab-adapted strain VR-740. Lab-adaptation might have resulted in genomic changes, due to

  13. Mutation of the S and 3c genes in genomes of feline coronaviruses.

    Science.gov (United States)

    Oguma, Keisuke; Ohno, Megumi; Yoshida, Mayuko; Sentsui, Hiroshi

    2018-05-17

    Feline coronavirus (FCoV) is classified into two biotypes based on its pathogenicity in cats: a feline enteric coronavirus of low pathogenicity and a highly virulent feline infectious peritonitis virus. It has been suspected that FCoV alters its biotype via mutations in the viral genome. The S and 3c genes of FCoV have been considered the candidates for viral pathogenicity conversion. In the present study, FCoVs were analyzed for the frequency and location of mutations in the S and 3c genes from faecal samples of cats in an animal shelter and the faeces, effusions, and tissues of cats that were referred to veterinary hospitals. Our results indicated that approximately 95% FCoVs in faeces did not carry mutations in the two genes. However, 80% FCoVs in effusion samples exhibited mutations in the S and 3c genes with remainder displaying a mutation in the S or 3c gene. It was also suggested that mutational analysis of the 3c gene could be useful for studying the horizontal transmission of FCoVs in multi-cat environments.

  14. Design, synthesis and crystallographic analysis of nitrile-based broad-spectrum peptidomimetic inhibitors for coronavirus 3C-like proteases.

    Science.gov (United States)

    Chuck, Chi-Pang; Chen, Chao; Ke, Zhihai; Wan, David Chi-Cheong; Chow, Hak-Fun; Wong, Kam-Bo

    2013-01-01

    Coronaviral infection is associated with up to 5% of respiratory tract diseases. The 3C-like protease (3CL(pro)) of coronaviruses is required for proteolytic processing of polyproteins and viral replication, and is a promising target for the development of drugs against coronaviral infection. We designed and synthesized four nitrile-based peptidomimetic inhibitors with different N-terminal protective groups and different peptide length, and examined their inhibitory effect on the in-vitro enzymatic activity of 3CL(pro) of severe-acute-respiratory-syndrome-coronavirus. The IC(50) values of the inhibitors were in the range of 4.6-49 μM, demonstrating that the nitrile warhead can effectively inactivate the 3CL(pro) autocleavage process. The best inhibitor, Cbz-AVLQ-CN with an N-terminal carbobenzyloxy group, was ~10x more potent than the other inhibitors tested. Crystal structures of the enzyme-inhibitor complexes showed that the nitrile warhead inhibits 3CL(pro) by forming a covalent bond with the catalytic Cys145 residue, while the AVLQ peptide forms a number of favourable interactions with the S1-S4 substrate-binding pockets. We have further showed that the peptidomimetic inhibitor, Cbz-AVLQ-CN, has broad-spectrum inhibition against 3CL(pro) from human coronavirus strains 229E, NL63, OC43, HKU1, and infectious bronchitis virus, with IC(50) values ranging from 1.3 to 3.7 μM, but no detectable inhibition against caspase-3. In summary, we have shown that the nitrile-based peptidomimetic inhibitors are effective against 3CL(pro), and they inhibit 3CL(pro) from a broad range of coronaviruses. Our results provide further insights into the future design of drugs that could serve as a first line defence against coronaviral infection. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. Molecular characterization of feline infectious peritonitis virus strain DF-2 and studies of the role of ORF3abc in viral cell tropism.

    Science.gov (United States)

    Bálint, Ádám; Farsang, Attila; Zádori, Zoltán; Hornyák, Ákos; Dencso, László; Almazán, Fernando; Enjuanes, Luis; Belák, Sándor

    2012-06-01

    The full-length genome of the highly lethal feline infectious peritonitis virus (FIPV) strain DF-2 was sequenced and cloned into a bacterial artificial chromosome (BAC) to study the role of ORF3abc in the FIPV-feline enteric coronavirus (FECV) transition. The reverse genetic system allowed the replacement of the truncated ORF3abc of the original FIPV DF-2 genome with the intact ORF3abc of the canine coronavirus (CCoV) reference strain Elmo/02. The in vitro replication kinetics of these two viruses was studied in CrFK and FCWF-4 cell lines, as well as in feline peripheral blood monocytes. Both viruses showed similar replication kinetics in established cell lines. However, the strain with a full-length ORF3 showed markedly lower replication of more than 2 log(10) titers in feline peripheral blood monocytes. Our results suggest that the truncated ORF3abc plays an important role in the efficient macrophage/monocyte tropism of type II FIPV.

  16. Structural Analysis of Major Species Barriers between Humans and Palm Civets for Severe Acute Respiratory Syndrome Coronavirus Infections

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fang (UMM)

    2008-09-23

    It is believed that a novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV), was passed from palm civets to humans and caused the epidemic of SARS in 2002 to 2003. The major species barriers between humans and civets for SARS-CoV infections are the specific interactions between a defined receptor-binding domain (RBD) on a viral spike protein and its host receptor, angiotensin-converting enzyme 2 (ACE2). In this study a chimeric ACE2 bearing the critical N-terminal helix from civet and the remaining peptidase domain from human was constructed, and it was shown that this construct has the same receptor activity as civet ACE2. In addition, crystal structures of the chimeric ACE2 complexed with RBDs from various human and civet SARS-CoV strains were determined. These structures, combined with a previously determined structure of human ACE2 complexed with the RBD from a human SARS-CoV strain, have revealed a structural basis for understanding the major species barriers between humans and civets for SARS-CoV infections. They show that the major species barriers are determined by interactions between four ACE2 residues (residues 31, 35, 38, and 353) and two RBD residues (residues 479 and 487), that early civet SARS-CoV isolates were prevented from infecting human cells due to imbalanced salt bridges at the hydrophobic virus/receptor interface, and that SARS-CoV has evolved to gain sustained infectivity for human cells by eliminating unfavorable free charges at the interface through stepwise mutations at positions 479 and 487. These results enhance our understanding of host adaptations and cross-species infections of SARS-CoV and other emerging animal viruses.

  17. Automated extraction protocol for quantification of SARS-Coronavirus RNA in serum: an evaluation study

    Directory of Open Access Journals (Sweden)

    Lui Wing-bong

    2006-02-01

    Full Text Available Abstract Background We have previously developed a test for the diagnosis and prognostic assessment of the severe acute respiratory syndrome (SARS based on the detection of the SARS-coronavirus RNA in serum by real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR. In this study, we evaluated the feasibility of automating the serum RNA extraction procedure in order to increase the throughput of the assay. Methods An automated nucleic acid extraction platform using the MagNA Pure LC instrument (Roche Diagnostics was evaluated. We developed a modified protocol in compliance with the recommended biosafety guidelines from the World Health Organization based on the use of the MagNA Pure total nucleic acid large volume isolation kit for the extraction of SARS-coronavirus RNA. The modified protocol was compared with a column-based extraction kit (QIAamp viral RNA mini kit, Qiagen for quantitative performance, analytical sensitivity and precision. Results The newly developed automated protocol was shown to be free from carry-over contamination and have comparable performance with other standard protocols and kits designed for the MagNA Pure LC instrument. However, the automated method was found to be less sensitive, less precise and led to consistently lower serum SARS-coronavirus concentrations when compared with the column-based extraction method. Conclusion As the diagnostic efficiency and prognostic value of the serum SARS-CoV RNA RT-PCR test is critically associated with the analytical sensitivity and quantitative performance contributed both by the RNA extraction and RT-PCR components of the test, we recommend the use of the column-based manual RNA extraction method.

  18. Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection

    Science.gov (United States)

    Millet, Jean Kaoru; Whittaker, Gary R.

    2016-01-01

    Viral pseudotyped particles (pp) are enveloped virus particles, typically derived from retroviruses or rhabdoviruses, that harbor heterologous envelope glycoproteins on their surface and a genome lacking essential genes. These synthetic viral particles are safer surrogates of native viruses and acquire the tropism and host entry pathway characteristics governed by the heterologous envelope glycoprotein used. They have proven to be very useful tools used in research with many applications, such as enabling the study of entry pathways of enveloped viruses and to generate effective gene-delivery vectors. The basis for their generation lies in the capacity of some viruses, such as murine leukemia virus (MLV), to incorporate envelope glycoproteins of other viruses into a pseudotyped virus particle. These can be engineered to contain reporter genes such as luciferase, enabling quantification of virus entry events upon pseudotyped particle infection with susceptible cells. Here, we detail a protocol enabling generation of MLV-based pseudotyped particles, using the Middle East respiratory syndrome coronavirus (MERS-CoV) spike (S) as an example of a heterologous envelope glycoprotein to be incorporated. We also describe how these particles are used to infect susceptible cells and to perform a quantitative infectivity readout by a luciferase assay. PMID:28018942

  19. Seroprevalence and risk factors for infection with equine coronavirus in healthy horses in the USA

    NARCIS (Netherlands)

    Kooijman, L.J.; James, K.; Mapes, S.M.; Theelen, M.J.P.; Pusterla, N.

    2017-01-01

    Equine coronavirus (ECoV) is considered an enteric pathogen of foals and has only recently been associated with infections in adult horses. Seroprevalence data is needed to better understand the epidemiology of ECoV in adult horses, evaluate diagnostic modalities and develop preventive measures. The

  20. A reverse genetics system for avian coronavirus infectious bronchitis virus based on targeted RNA recombination

    NARCIS (Netherlands)

    van Beurden, Steven J; Berends, Alinda J; Krämer-Kühl, Annika; Spekreijse, Dieuwertje; Chénard, Gilles; Philipp, Hans-Christian; Mundt, Egbert; Rottier, Peter J M; Verheije, M Hélène

    2017-01-01

    BACKGROUND: Avian coronavirus infectious bronchitis virus (IBV) is a respiratory pathogen of chickens that causes severe economic losses in the poultry industry worldwide. Major advances in the study of the molecular biology of IBV have resulted from the development of reverse genetics systems for

  1. Types of Stem Cells

    Science.gov (United States)

    ... Stem Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... Learn About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  2. The roles of transportation and transportation hubs in the propagation of influenza and coronaviruses: a systematic review.

    Science.gov (United States)

    Browne, Annie; Ahmad, Sacha St-Onge; Beck, Charles R; Nguyen-Van-Tam, Jonathan S

    2016-01-01

    Respiratory viruses spread in humans across wide geographical areas in short periods of time, resulting in high levels of morbidity and mortality. We undertook a systematic review to assess the evidence that air, ground and sea mass transportation systems or hubs are associated with propagating influenza and coronaviruses. Healthcare databases and sources of grey literature were searched using pre-defined criteria between April and June 2014. Two reviewers screened all identified records against the protocol, undertook risk of bias assessments and extracted data using a piloted form. Results were analysed using a narrative synthesis. Forty-one studies met the eligibility criteria. Risk of bias was high in the observational studies, moderate to high in the reviews and moderate to low in the modelling studies. In-flight influenza transmission was identified substantively on five flights with up to four confirmed and six suspected secondary cases per affected flight. Five studies highlighted the role of air travel in accelerating influenza spread to new areas. Influenza outbreaks aboard cruise ships affect 2-7% of passengers. Influenza transmission events have been observed aboard ground transport vehicles. High heterogeneity between studies and the inability to exclude other sources of infection means that the risk of influenza transmission from an index case to other passengers cannot be accurately quantified. A paucity of evidence was identified describing severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus transmission events associated with transportation systems or hubs. Air transportation appears important in accelerating and amplifying influenza propagation. Transmission occurs aboard aeroplanes, at the destination and possibly at airports. Control measures to prevent influenza transmission on cruise ships are needed to reduce morbidity and mortality. There is no recent evidence of sea transport accelerating influenza

  3. The persistent prevalence and evolution of cross-family recombinant coronavirus GCCDC1 among a bat population: a two-year follow-up.

    Science.gov (United States)

    Obameso, Joseph O; Li, Hong; Jia, Hao; Han, Min; Zhu, Shiyan; Huang, Canping; Zhao, Yuhui; Zhao, Min; Bai, Yu; Yuan, Fei; Zhao, Honglan; Peng, Xia; Xu, Wen; Tan, Wenjie; Zhao, Yingze; Yuen, Kwok-Yung; Liu, William J; Lu, Lin; Gao, George F

    2017-12-01

    Bats are connected with the increasing numbers of emerging and re-emerging viruses that may break the species barrier and spread into the human population. Coronaviruses are one of the most common viruses discovered in bats, which were considered as the natural source of recent human-susceptible coronaviruses, i.e. SARS-COV and MERS-CoV. Our previous study reported the discovery of a bat-derived putative cross-family recombinant coronavirus with a reovirus gene p10, named as Ro-BatCoV GCCDC1. In this report, through a two-year follow-up of a special bat population in one specific cave of south China, we illustrate that Ro-BatCoV GCCDC1 persistently circulates among bats. Notably, through the longitudinal observation, we identified the dynamic evolution of Ro-BatCoV GCCDC1 in bats represented by continuously recombination events. Our study provides the first glimpse of the virus evolution in one longitudinally observed bat population cohort and underlines the surveillance and pre-warning of potential interspecies transmittable viruses in bats.

  4. Novel coronavirus and astrovirus in Delaware Bay shorebirds.

    Directory of Open Access Journals (Sweden)

    Kirsi S Honkavuori

    Full Text Available Wild birds are an important but to some extent under-studied reservoir for emerging pathogens. We used unbiased sequencing methods for virus discovery in shorebird samples from the Delaware Bay, USA; an important feeding ground for thousands of migratory birds.Analysis of shorebird fecal samples indicated the presence of a novel astrovirus and coronavirus. A sanderling sample yielded sequences with distant homology to avian nephritis virus 1, an astrovirus associated with acute nephritis in poultry. A ruddy turnstone sample yielded sequences with homology to deltacoronaviruses.Our findings highlight shorebirds as a virus reservoir and the need to closely monitor wild bird populations for the emergence of novel virus variants.

  5. Detection and genetic characterization of Canine parvovirus and Canine coronavirus strains circulating in district of Tirana in Albania.

    Science.gov (United States)

    Cavalli, Alessandra; Desario, Costantina; Kusi, Ilir; Mari, Viviana; Lorusso, Eleonora; Cirone, Francesco; Kumbe, Ilirjan; Colaianni, Maria Loredana; Buonavoglia, Domenico; Decaro, Nicola

    2014-07-01

    An epidemiological survey for Canine parvovirus 2 (CPV-2) and Canine coronavirus (CCoV) was conducted in Albania. A total of 57 fecal samples were collected from diarrheic dogs in the District of Tirana during 2011-2013. The molecular assays detected 53 and 31 CPV- and CCoV-positive specimens, respectively, with mixed CPV-CCoV infections diagnosed in 28 dogs. The most frequently detected CPV type was 2a, whereas IIa was the predominant CCoV subtype. A better comprehension of the CPV-CCoV epidemiology in eastern European countries will help to assess the most appropriate vaccination strategies to prevent disease due to infections with these widespread agents of acute gastroenteritis in the dog.

  6. Novel coronaviruses, astroviruses, adenoviruses and circoviruses in insectivorous bats from northern China.

    Science.gov (United States)

    Han, H-J; Wen, H-L; Zhao, L; Liu, J-W; Luo, L-M; Zhou, C-M; Qin, X-R; Zhu, Y-L; Liu, M-M; Qi, R; Li, W-Q; Yu, H; Yu, X-J

    2017-12-01

    Bats are considered as the reservoirs of several emerging infectious disease, and novel viruses are continually found in bats all around the world. Studies conducted in southern China found that bats carried a variety of viruses. However, few studies have been conducted on bats in northern China, which harbours a diversity of endemic insectivorous bats. It is important to understand the prevalence and diversity of viruses circulating in bats in northern China. In this study, a total of 145 insectivorous bats representing six species were collected from northern China and screened with degenerate primers for viruses belonging to six families, including coronaviruses, astroviruses, hantaviruses, paramyxoviruses, adenoviruses and circoviruses. Our study found that four of the viruses screened for were positive and the overall detection rates for astroviruses, coronaviruses, adenoviruses and circoviruses in bats were 21.4%, 15.9%, 20% and 37.2%, respectively. In addition, we found that bats in northern China harboured a diversity of novel viruses. Common Serotine (Eptesicus serotinu), Fringed long-footed Myotis (Myotis fimriatus) and Peking Myotis (Myotis pequinius) were investigated in China for the first time. Our study provided new information on the ecology and phylogeny of bat-borne viruses. © 2017 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  7. European Surveillance for Pantropic Canine Coronavirus

    Science.gov (United States)

    Cordonnier, Nathalie; Demeter, Zoltan; Egberink, Herman; Elia, Gabriella; Grellet, Aurélien; Le Poder, Sophie; Mari, Viviana; Martella, Vito; Ntafis, Vasileios; von Reitzenstein, Marcela; Rottier, Peter J.; Rusvai, Miklos; Shields, Shelly; Xylouri, Eftychia; Xu, Zach; Buonavoglia, Canio

    2013-01-01

    Highly virulent pantropic canine coronavirus (CCoV) strains belonging to subtype IIa were recently identified in dogs. To assess the distribution of such strains in Europe, tissue samples were collected from 354 dogs that had died after displaying systemic disease in France (n = 92), Hungary (n = 75), Italy (n = 69), Greece (n = 87), The Netherlands (n = 27), Belgium (n = 4), and Bulgaria (n = 1). A total of 124 animals tested positive for CCoV, with 33 of them displaying the virus in extraintestinal tissues. Twenty-four CCoV strains (19.35% of the CCoV-positive dogs) detected in internal organs were characterized as subtype IIa and consequently assumed to be pantropic CCoVs. Sequence and phylogenetic analyses of the 5′ end of the spike protein gene showed that pantropic CCoV strains are closely related to each other, with the exception of two divergent French viruses that clustered with enteric strains. PMID:23100349

  8. A Rare Case of Human Coronavirus 229E Associated with Acute Respiratory Distress Syndrome in a Healthy Adult

    Directory of Open Access Journals (Sweden)

    Foula Vassilara

    2018-01-01

    Full Text Available Human coronavirus 229E (HCoV-229E is one of the first coronavirus strains being described. It is linked to common cold symptoms in healthy adults. Younger children and the elderly are considered vulnerable to developing lower respiratory tract infections (LRTIs. In particular, immunocompromised patients have been reported with severe and life-threatening LRTIs attributed to HCoV-229E. We report for the first time a case of LRTI and acute respiratory distress syndrome developed in a healthy adult with no comorbidities and HCoV-229E strain identified as the only causative agent. A 45-year-old female with a clear medical history presented with fever, cough, and headache. Respiratory tract infection was diagnosed, and empirical antibiotics were started. Within two days, she developed bilateral pleural effusions, diffuse consolidations, and ground glass opacities involving all lung fields. She needed immediate oxygen supply, while ABGs deteriorated and chest imaging and PaO2/FiO2 indicated ARDS. Early administration of systemic corticosteroids led to gradual clinical improvement. Multiplex PCR from nasal secretions was positive only for HCoV-229E and negative for multiple other pathogens. It remains to be elucidated how an immunocompetent adult developed a life-threatening LRTI caused by a “benign considered” coronavirus strain, the HCoV-229E.

  9. Computational modeling of the bat HKU4 coronavirus 3CLpro inhibitors as a tool for the development of antivirals against the emerging Middle East respiratory syndrome (MERS) coronavirus.

    Science.gov (United States)

    Abuhammad, Areej; Al-Aqtash, Rua'a A; Anson, Brandon J; Mesecar, Andrew D; Taha, Mutasem O

    2017-11-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging virus that poses a major challenge to clinical management. The 3C-like protease (3CL pro ) is essential for viral replication and thus represents a potential target for antiviral drug development. Presently, very few data are available on MERS-CoV 3CL pro inhibition by small molecules. We conducted extensive exploration of the pharmacophoric space of a recently identified set of peptidomimetic inhibitors of the bat HKU4-CoV 3CL pro . HKU4-CoV 3CL pro shares high sequence identity (81%) with the MERS-CoV enzyme and thus represents a potential surrogate model for anti-MERS drug discovery. We used 2 well-established methods: Quantitative structure-activity relationship (QSAR)-guided modeling and docking-based comparative intermolecular contacts analysis. The established pharmacophore models highlight structural features needed for ligand recognition and revealed important binding-pocket regions involved in 3CL pro -ligand interactions. The best models were used as 3D queries to screen the National Cancer Institute database for novel nonpeptidomimetic 3CL pro inhibitors. The identified hits were tested for HKU4-CoV and MERS-CoV 3CL pro inhibition. Two hits, which share the phenylsulfonamide fragment, showed moderate inhibitory activity against the MERS-CoV 3CL pro and represent a potential starting point for the development of novel anti-MERS agents. To the best of our knowledge, this is the first pharmacophore modeling study supported by in vitro validation on the MERS-CoV 3CL pro . MERS-CoV is an emerging virus that is closely related to the bat HKU4-CoV. 3CL pro is a potential drug target for coronavirus infection. HKU4-CoV 3CL pro is a useful surrogate model for the identification of MERS-CoV 3CL pro enzyme inhibitors. dbCICA is a very robust modeling method for hit identification. The phenylsulfonamide scaffold represents a potential starting point for MERS coronavirus 3CL pro inhibitors

  10. Survey of feline leukemia virus and feline coronaviruses in captive neotropical wild felids from Southern Brazil.

    Science.gov (United States)

    Guimaraes, Ana M S; Brandão, Paulo E; de Moraes, Wanderlei; Cubas, Zalmir S; Santos, Leonilda C; Villarreal, Laura Y B; Robes, Rogério R; Coelho, Fabiana M; Resende, Mauricio; Santos, Renata C F; Oliveira, Rosangela C; Yamaguti, Mauricio; Marques, Lucas M; Neto, Renata L; Buzinhani, Melissa; Marques, Regina; Messick, Joanne B; Biondo, Alexander W; Timenetsky, Jorge

    2009-06-01

    A total of 57 captive neotropical felids (one Leopardus geoffroyi, 14 Leopardus pardalis, 17 Leopardus wiedii, 22 Leopardus tigrinus, and three Puma yagouaroundi) from the Itaipu Binacional Wildlife Research Center (Refúgio Bela Vista, Southern Brazil) were anesthetized for blood collection. Feces samples were available for 44 animals, including one L. geoffroyi, eight L. pardalis, 14 L. wiedii, 20 L. tigrinus, and one P. yagouaroundi. Total DNA and RNA were extracted from blood and feces, respectively, using commercial kits. Blood DNA samples were evaluated by polymerase chain reaction (PCR) for feline leukemia virus (FeLV) proviral DNA, whereas reverse transcriptase-PCR was run on fecal samples for detection of coronavirus RNA. None of the samples were positive for coronaviruses. A male L. pardalis and a female L. tigrinus were positive for FeLV proviral DNA, and identities of PCR products were confirmed by sequencing. This is the first evidence of FeLV proviral DNA in these species in Southern Brazil.

  11. Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome, Brazil.

    Science.gov (United States)

    Góes, Luiz Gustavo Bentim; Campos, Angélica Cristine de Almeida; Carvalho, Cristiano de; Ambar, Guilherme; Queiroz, Luzia Helena; Cruz-Neto, Ariovaldo Pereira; Munir, Muhammad; Durigon, Edison Luiz

    2016-10-01

    Bats are notorious reservoirs of genetically-diverse and high-profile pathogens, and are playing crucial roles in the emergence and re-emergence of viruses, both in human and in animals. In this report, we identified and characterized previously unknown and diverse genetic clusters of bat coronaviruses in the Atlantic Forest Biome, Brazil. These results highlight the virus richness of bats and their possible roles in the public health. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Altered Pathogenesis of Porcine Respiratory Coronavirus in Pigs due to Immunosuppressive Effects of Dexamethasone: Implications for Corticosteroid Use in Treatment of Severe Acute Respiratory Syndrome Coronavirus▿

    OpenAIRE

    Jung, Kwonil; Alekseev, Konstantin P.; Zhang, Xinsheng; Cheon, Doo-Sung; Vlasova, Anastasia N.; Saif, Linda J.

    2007-01-01

    The pathogenesis and optimal treatments for severe acute respiratory syndrome (SARS) are unclear, although corticosteroids were used to reduce lung and systemic inflammation. Because the pulmonary pathology of porcine respiratory coronavirus (PRCV) in pigs resembles SARS, we used PRCV as a model to clarify the effects of the corticosteroid dexamethasone (DEX) on coronavirus (CoV)-induced pneumonia. Conventional weaned pigs (n = 130) in one of four groups (PRCV/phosphate-buffered saline [PBS] ...

  13. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome.

    Science.gov (United States)

    Cockrell, Adam S; Yount, Boyd L; Scobey, Trevor; Jensen, Kara; Douglas, Madeline; Beall, Anne; Tang, Xian-Chun; Marasco, Wayne A; Heise, Mark T; Baric, Ralph S

    2016-11-28

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel virus that emerged in 2012, causing acute respiratory distress syndrome (ARDS), severe pneumonia-like symptoms and multi-organ failure, with a case fatality rate of ∼36%. Limited clinical studies indicate that humans infected with MERS-CoV exhibit pathology consistent with the late stages of ARDS, which is reminiscent of the disease observed in patients infected with severe acute respiratory syndrome coronavirus. Models of MERS-CoV-induced severe respiratory disease have been difficult to achieve, and small-animal models traditionally used to investigate viral pathogenesis (mouse, hamster, guinea-pig and ferret) are naturally resistant to MERS-CoV. Therefore, we used CRISPR-Cas9 gene editing to modify the mouse genome to encode two amino acids (positions 288 and 330) that match the human sequence in the dipeptidyl peptidase 4 receptor, making mice susceptible to MERS-CoV infection and replication. Serial MERS-CoV passage in these engineered mice was then used to generate a mouse-adapted virus that replicated efficiently within the lungs and evoked symptoms indicative of severe ARDS, including decreased survival, extreme weight loss, decreased pulmonary function, pulmonary haemorrhage and pathological signs indicative of end-stage lung disease. Importantly, therapeutic countermeasures comprising MERS-CoV neutralizing antibody treatment or a MERS-CoV spike protein vaccine protected the engineered mice against MERS-CoV-induced ARDS.

  14. Excretion and detection of SARS coronavirus and its nucleic acid from digestive system

    Science.gov (United States)

    Wang, Xin-Wei; Li, Jin-Song; Guo, Ting-Kai; Zhen, Bei; Kong, Qing-Xin; Yi, Bin; Li, Zhong; Song, Nong; Jin, Min; Wu, Xiao-Ming; Xiao, Wen-Jun; Zhu, Xiu-Mei; Gu, Chang-Qing; Yin, Jing; Wei, Wei; Yao, Wei; Liu, Chao; Li, Jian-Feng; Ou, Guo-Rong; Wang, Min-Nian; Fang, Tong-Yu; Wang, Gui-Jie; Qiu, Yao-Hui; Wu, Huai-Huan; Chao, Fu-Huan; Li, Jun-Wen

    2005-01-01

    AIM: To study whether severe acute respiratory syndrome coronavirus (SARS-CoV) could be excreted from digestive system. METHODS: Cell culture and semi-nested RT-PCR were used to detect SARS-CoV and its RNA from 21 stool and urine samples, and a kind of electropositive filter media particles was used to concentrate the virus in 10 sewage samples from two hospitals receiving SARS patients in Beijing in China. RESULTS: It was demonstrated that there was no live SARS-CoV in all samples collected, but the RNA of SARS-CoV could be detected in seven stool samples from SARS patients with any one of the symptoms of fever, malaise, cough, or dyspnea, in 10 sewage samples before disinfection and 3 samples after disinfection from the two hospitals. The RNA could not be detected in urine and stool samples from patients recovered from SARS. CONCLUSION: Nucleic acid of SARS-CoV can be excreted through the stool of patients into sewage system, and the possibility of SARS-CoV transmitting through digestive system cannot be excluded. PMID:16038039

  15. Crystallization and preliminary X-ray diffraction analysis of Nsp15 from SARS coronavirus

    International Nuclear Information System (INIS)

    Ricagno, Stéfano; Coutard, Bruno; Grisel, Sacha; Brémond, Nicolas; Dalle, Karen; Tocque, Fabienne; Campanacci, Valérie; Lichière, Julie; Lantez, Violaine; Debarnot, Claire; Cambillau, Christian; Canard, Bruno; Egloff, Marie-Pierre

    2006-01-01

    Crystals of Nsp15 from the aetiological agent of SARS have been grown at room temperature. Crystals have cubic symmetry and diffract to a maximum resolution of 2.7 Å. The non-structural protein Nsp15 from the aetiological agent of SARS (severe acute respiratory syndrome) has recently been characterized as a uridine-specific endoribonuclease. This enzyme plays an essential role in viral replication and transcription since a mutation in the related H229E human coronavirus nsp15 gene can abolish viral RNA synthesis. SARS full-length Nsp15 (346 amino acids) has been cloned and expressed in Escherichia coli with an N-terminal hexahistidine tag and has been purified to homogeneity. The protein was subsequently crystallized using PEG 8000 or 10 000 as precipitants. Small cubic crystals of the apoenzyme were obtained from 100 nl nanodrops. They belong to space group P4 1 32 or P4 3 32, with unit-cell parameters a = b = c = 166.8 Å. Diffraction data were collected to a maximum resolution of 2.7 Å

  16. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals?

    Directory of Open Access Journals (Sweden)

    Jaume Torres

    2015-06-01

    Full Text Available Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i the envelope protein in coronaviruses and (ii the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity.

  17. Crystallization and preliminary X-ray diffraction analysis of Nsp15 from SARS coronavirus

    Energy Technology Data Exchange (ETDEWEB)

    Ricagno, Stéfano; Coutard, Bruno; Grisel, Sacha; Brémond, Nicolas; Dalle, Karen; Tocque, Fabienne; Campanacci, Valérie; Lichière, Julie; Lantez, Violaine; Debarnot, Claire; Cambillau, Christian; Canard, Bruno; Egloff, Marie-Pierre, E-mail: marie-pierre.egloff@afmb.univ-mrs.fr [Centre National de la Recherche Scientifique and Universités d’Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Ecole Supérieure d’Ingénieurs de Luminy-Case 925, 163 Avenue de Luminy, 13288 Marseille CEDEX 9 (France)

    2006-04-01

    Crystals of Nsp15 from the aetiological agent of SARS have been grown at room temperature. Crystals have cubic symmetry and diffract to a maximum resolution of 2.7 Å. The non-structural protein Nsp15 from the aetiological agent of SARS (severe acute respiratory syndrome) has recently been characterized as a uridine-specific endoribonuclease. This enzyme plays an essential role in viral replication and transcription since a mutation in the related H229E human coronavirus nsp15 gene can abolish viral RNA synthesis. SARS full-length Nsp15 (346 amino acids) has been cloned and expressed in Escherichia coli with an N-terminal hexahistidine tag and has been purified to homogeneity. The protein was subsequently crystallized using PEG 8000 or 10 000 as precipitants. Small cubic crystals of the apoenzyme were obtained from 100 nl nanodrops. They belong to space group P4{sub 1}32 or P4{sub 3}32, with unit-cell parameters a = b = c = 166.8 Å. Diffraction data were collected to a maximum resolution of 2.7 Å.

  18. Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia : a nationwide, cross-sectional, serological study

    NARCIS (Netherlands)

    Müller, Marcel A; Meyer, Benjamin; Corman, Victor M; Al-Masri, Malak; Turkestani, Abdulhafeez; Ritz, Daniel; Sieberg, Andrea; Aldabbagh, Souhaib; Bosch, Berend-J; Lattwein, Erik; Alhakeem, Raafat F; Assiri, Abdullah M; Albarrak, Ali M; Al-Shangiti, Ali M; Al-Tawfiq, Jaffar A; Wikramaratna, Paul; Alrabeeah, Abdullah A; Drosten, Christian; Memish, Ziad A

    2015-01-01

    BACKGROUND: Scientific evidence suggests that dromedary camels are the intermediary host for the Middle East respiratory syndrome coronavirus (MERS-CoV). However, the actual number of infections in people who have had contact with camels is unknown and most index patients cannot recall any such

  19. A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses.

    Science.gov (United States)

    Wu, Kailang; Chen, Lang; Peng, Guiqing; Zhou, Wenbo; Pennell, Christopher A; Mansky, Louis M; Geraghty, Robert J; Li, Fang

    2011-06-01

    How viruses evolve to select their receptor proteins for host cell entry is puzzling. We recently determined the crystal structures of NL63 coronavirus (NL63-CoV) and SARS coronavirus (SARS-CoV) receptor-binding domains (RBDs), each complexed with their common receptor, human angiotensin-converting enzyme 2 (hACE2), and proposed the existence of a virus-binding hot spot on hACE2. Here we investigated the function of this hypothetical hot spot using structure-guided biochemical and functional assays. The hot spot consists of a salt bridge surrounded by hydrophobic tunnel walls. Mutations that disturb the hot spot structure have significant effects on virus/receptor interactions, revealing critical energy contributions from the hot spot structure. The tunnel structure at the NL63-CoV/hACE2 interface is more compact than that at the SARS-CoV/hACE2 interface, and hence RBD/hACE2 binding affinities are decreased either by NL63-CoV mutations decreasing the tunnel space or by SARS-CoV mutations increasing the tunnel space. Furthermore, NL63-CoV RBD inhibits hACE2-dependent transduction by SARS-CoV spike protein, a successful application of the hot spot theory that has the potential to become a new antiviral strategy against SARS-CoV infections. These results suggest that the structural features of the hot spot on hACE2 were among the driving forces for the convergent evolution of NL63-CoV and SARS-CoV.

  20. Transmissible Gastroenteritis Coronavirus Genome Packaging Signal Is Located at the 5′ End of the Genome and Promotes Viral RNA Incorporation into Virions in a Replication-Independent Process

    OpenAIRE

    Morales, Lucia; Mateos-Gomez, Pedro A.; Capiscol, Carmen; del Palacio, Lorena; Enjuanes, Luis; Sola, Isabel

    2013-01-01

    Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5′ end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. Th...

  1. Induction of Apoptosis by the Severe Acute Respiratory Syndrome Coronavirus 7a Protein Is Dependent on Its Interaction with the Bcl-XL Protein▿

    Science.gov (United States)

    Tan, Ying-Xim; Tan, Timothy H. P.; Lee, Marvin J.-R.; Tham, Puay-Yoke; Gunalan, Vithiagaran; Druce, Julian; Birch, Chris; Catton, Mike; Fu, Nai Yang; Yu, Victor C.; Tan, Yee-Joo

    2007-01-01

    The severe acute respiratory syndrome coronavirus (SARS-CoV) 7a protein, which is not expressed by other known coronaviruses, can induce apoptosis in various cell lines. In this study, we show that the overexpression of Bcl-XL, a prosurvival member of the Bcl-2 family, blocks 7a-induced apoptosis, suggesting that the mechanism for apoptosis induction by 7a is at the level of or upstream from the Bcl-2 family. Coimmunoprecipitation experiments showed that 7a interacts with Bcl-XL and other prosurvival proteins (Bcl-2, Bcl-w, Mcl-1, and A1) but not with the proapoptotic proteins (Bax, Bak, Bad, and Bid). A good correlation between the abilities of 7a deletion mutants to induce apoptosis and to interact with Bcl-XL was observed, suggesting that 7a triggers apoptosis by interfering directly with the prosurvival function of Bcl-XL. Interestingly, amino acids 224 and 225 within the C-terminal transmembrane domain of Bcl-XL are essential for the interaction with the 7a protein, although the BH3 domain of Bcl-XL also contributes to this interaction. In addition, fractionation experiments showed that 7a colocalized with Bcl-XL at the endoplasmic reticulum as well as the mitochondria, suggesting that they may form complexes in different membranous compartments. PMID:17428862

  2. Differential expression of the MERS-coronavirus receptor in the upper respiratory tract of humans and dromedary camels

    NARCIS (Netherlands)

    Widagdo, W; Raj, V Stalin; Schipper, Debby; Kolijn, Kimberley; van Leenders, Geert J L H; Bosch, Berend J; Bensaid, Albert; Segalés, Joaquim; Baumgärtner, Wolfgang; Osterhaus, Albert D M E; Koopmans, Marion P; van den Brand, Judith M A; Haagmans, Bart L

    Middle East respiratory syndrome coronavirus (MERS-CoV) is not efficiently transmitted between humans, but it is highly prevalent in dromedary camels. Here we report that the MERS-CoV receptor - dipeptidyl peptidase 4 (DPP4) - is expressed in the upper respiratory tract epithelium of camels but not

  3. Genomic Analysis of 15 Human Coronaviruses OC43 (HCoV-OC43s Circulating in France from 2001 to 2013 Reveals a High Intra-Specific Diversity with New Recombinant Genotypes

    Directory of Open Access Journals (Sweden)

    Nathalie Kin

    2015-05-01

    Full Text Available Human coronavirus OC43 (HCoV-OC43 is one of five currently circulating human coronaviruses responsible for respiratory infections. Like all coronaviruses, it is characterized by its genome’s high plasticity. The objectives of the current study were to detect genetically distinct genotypes and eventually recombinant genotypes in samples collected in Lower Normandy between 2001 and 2013. To this end, we sequenced complete nsp12, S, and N genes of 15 molecular isolates of HCoV-OC43 from clinical samples and compared them to available data from the USA, Belgium, and Hong-Kong. A new cluster E was invariably detected from nsp12, S, and N data while the analysis of nsp12 and N genes revealed the existence of new F and G clusters respectively. The association of these different clusters of genes in our specimens led to the description of thirteen genetically distinct genotypes, among which eight recombinant viruses were discovered. Identification of these recombinant viruses, together with temporal analysis and tMRCA estimation, provides important information for understanding the dynamics of the evolution of these epidemic coronaviruses.

  4. Saracatinib Inhibits Middle East Respiratory Syndrome-Coronavirus Replication In Vitro

    Directory of Open Access Journals (Sweden)

    Jin Soo Shin

    2018-05-01

    Full Text Available The Middle East respiratory syndrome-coronavirus (MERS-CoV, first identified in Saudi Arabia, is an emerging zoonotic pathogen that causes severe acute respiratory illness in humans with a high fatality rate. Since its emergence, MERS-CoV continues to spread to countries outside of the Arabian Peninsula and gives rise to sporadic human infections following the entry of infected individuals to other countries, which can precipitate outbreaks similar to the one that occurred in South Korea in 2015. Current therapeutics against MERS-CoV infection have primarily been adapted from previous drugs used for the treatment of severe acute respiratory syndrome. In search of new potential drug candidates, we screened a library composed of 2334 clinically approved drugs and pharmacologically active compounds. The drug saracatinib, a potent inhibitor of Src-family of tyrosine kinases (SFK, was identified as an inhibitor of MERS-CoV replication in vitro. Our results suggest that saracatinib potently inhibits MERS-CoV at the early stages of the viral life cycle in Huh-7 cells, possibly through the suppression of SFK signaling pathways. Furthermore, saracatinib exhibited a synergistic effect with gemcitabine, an anticancer drug with antiviral activity against several RNA viruses. These data indicate that saracatinib alone or in combination with gemcitabine can provide a new therapeutic option for the treatment of MERS-CoV infection.

  5. Saracatinib Inhibits Middle East Respiratory Syndrome-Coronavirus Replication In Vitro.

    Science.gov (United States)

    Shin, Jin Soo; Jung, Eunhye; Kim, Meehyein; Baric, Ralph S; Go, Yun Young

    2018-05-24

    The Middle East respiratory syndrome-coronavirus (MERS-CoV), first identified in Saudi Arabia, is an emerging zoonotic pathogen that causes severe acute respiratory illness in humans with a high fatality rate. Since its emergence, MERS-CoV continues to spread to countries outside of the Arabian Peninsula and gives rise to sporadic human infections following the entry of infected individuals to other countries, which can precipitate outbreaks similar to the one that occurred in South Korea in 2015. Current therapeutics against MERS-CoV infection have primarily been adapted from previous drugs used for the treatment of severe acute respiratory syndrome. In search of new potential drug candidates, we screened a library composed of 2334 clinically approved drugs and pharmacologically active compounds. The drug saracatinib, a potent inhibitor of Src-family of tyrosine kinases (SFK), was identified as an inhibitor of MERS-CoV replication in vitro. Our results suggest that saracatinib potently inhibits MERS-CoV at the early stages of the viral life cycle in Huh-7 cells, possibly through the suppression of SFK signaling pathways. Furthermore, saracatinib exhibited a synergistic effect with gemcitabine, an anticancer drug with antiviral activity against several RNA viruses. These data indicate that saracatinib alone or in combination with gemcitabine can provide a new therapeutic option for the treatment of MERS-CoV infection.

  6. Central ions and lateral asparagine/glutamine zippers stabilize the post-fusion hairpin conformation of the SARS coronavirus spike glycoprotein

    International Nuclear Information System (INIS)

    Duquerroy, Stephane; Vigouroux, Armelle; Rottier, Peter J.M.; Rey, Felix A.; Jan Bosch, Berend

    2005-01-01

    The coronavirus spike glycoprotein is a class I membrane fusion protein with two characteristic heptad repeat regions (HR1 and HR2) in its ectodomain. Here, we report the X-ray structure of a previously characterized HR1/HR2 complex of the severe acute respiratory syndrome coronavirus spike protein. As expected, the HR1 and HR2 segments are organized in antiparallel orientations within a rod-like molecule. The HR1 helices form an exceptionally long (120 A) internal coiled coil stabilized by hydrophobic and polar interactions. A striking arrangement of conserved asparagine and glutamine residues of HR1 propagates from two central chloride ions, providing hydrogen-bonding 'zippers' that strongly constrain the path of the HR2 main chain, forcing it to adopt an extended conformation at either end of a short HR2 α-helix

  7. Human coronavirus OC43 causes influenza-like illness in residents and staff of aged-care facilities in Melbourne, Australia.

    Science.gov (United States)

    Birch, C. J.; Clothier, H. J.; Seccull, A.; Tran, T.; Catton, M. C.; Lambert, S. B.; Druce, J. D.

    2005-01-01

    Three outbreaks of respiratory illness associated with human coronavirus HCoV-OC43 infection occurred in geographically unrelated aged-care facilities in Melbourne, Australia during August and September 2002. On clinical and epidemiological grounds the outbreaks were first thought to be caused by influenza virus. HCoV-OC43 was detected by RT-PCR in 16 out of 27 (59%) specimens and was the only virus detected at the time of sampling. Common clinical manifestations were cough (74%), rhinorrhoea (59%) and sore throat (53%). Attack rates and symptoms were similar in residents and staff across the facilities. HCoV-OC43 was also detected in surveillance and diagnostic respiratory samples in the same months. These outbreaks establish this virus as a cause of morbidity in aged-care facilities and add to increasing evidence of the significance of coronavirus infections. PMID:15816152

  8. Coronavirus gene 7 counteracts host defenses and modulates virus virulence.

    Directory of Open Access Journals (Sweden)

    Jazmina L G Cruz

    2011-06-01

    Full Text Available Transmissible gastroenteritis virus (TGEV genome contains three accessory genes: 3a, 3b and 7. Gene 7 is only present in members of coronavirus genus a1, and encodes a hydrophobic protein of 78 aa. To study gene 7 function, a recombinant TGEV virus lacking gene 7 was engineered (rTGEV-Δ7. Both the mutant and the parental (rTGEV-wt viruses showed the same growth and viral RNA accumulation kinetics in tissue cultures. Nevertheless, cells infected with rTGEV-Δ7 virus showed an increased cytopathic effect caused by an enhanced apoptosis mediated by caspase activation. Macromolecular synthesis analysis showed that rTGEV-Δ7 virus infection led to host translational shut-off and increased cellular RNA degradation compared with rTGEV-wt infection. An increase of eukaryotic translation initiation factor 2 (eIF2α phosphorylation and an enhanced nuclease, most likely RNase L, activity were observed in rTGEV-Δ7 virus infected cells. These results suggested that the removal of gene 7 promoted an intensified dsRNA-activated host antiviral response. In protein 7 a conserved sequence motif that potentially mediates binding to protein phosphatase 1 catalytic subunit (PP1c, a key regulator of the cell antiviral defenses, was identified. We postulated that TGEV protein 7 may counteract host antiviral response by its association with PP1c. In fact, pull-down assays demonstrated the interaction between TGEV protein 7, but not a protein 7 mutant lacking PP1c binding motif, with PP1. Moreover, the interaction between protein 7 and PP1 was required, during the infection, for eIF2α dephosphorylation and inhibition of cell RNA degradation. Inoculation of newborn piglets with rTGEV-Δ7 and rTGEV-wt viruses showed that rTGEV-Δ7 virus presented accelerated growth kinetics and pathology compared with the parental virus. Overall, the results indicated that gene 7 counteracted host cell defenses, and modified TGEV persistence increasing TGEV survival. Therefore, the

  9. Middle east respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus ankara efficiently induces virus-neutralizing antibodies

    NARCIS (Netherlands)

    F. Song (Fei); R. Fux (Robert); L.B.V. Provacia (Lisette); A. Volz (Asisa); M. Eickmann; S. Becker (Stephan); A.D.M.E. Osterhaus (Albert); B.L. Haagmans (Bart); G. Suttera (Gerd)

    2013-01-01

    textabstractMiddle East respiratory syndrome coronavirus (MERS-CoV) has recently emerged as a causative agent of severe respiratory disease in humans. Here, we constructed recombinant modified vaccinia virus Ankara (MVA) expressing full-length MERS-CoV spike (S) protein (MVA-MERS-S). The genetic

  10. Biodiversity impact of host interferon-stimulated-gene-product 15 on the coronavirus Papain-like protease deISGylase functions

    Science.gov (United States)

    Coronaviruses are single-stranded, positive sense RNA viruses whose members have severe impact on human health and cause significant economic hardships. Some pertinent examples include severe acute and Middle East respiratory syndromes (SARS-CoV; MERS-CoV), porcine epidemic diarrhea virus (PEDV), an...

  11. Bovine coronavirus in naturally andexperimentally exposed calves; viralshedding and the potential for transmission

    OpenAIRE

    Oma, Veslemøy Sunniva; Tråven, Madeleine; Alenius, S.; Myrmel, Mette; Stokstad, Maria

    2016-01-01

    Background Bovine coronavirus (BCoV) is a widely distributed pathogen, causing disease and economic losses in the cattle industry worldwide. Prevention of virus spread is impeded by a lack of basic knowledge concerning viral shedding and transmission potential in individual animals. The aims of the study were to investigate the duration and quantity of BCoV shedding in feces and nasal secretions related to clinical signs, the presence of virus in blood and tissues and to test the hypothesis t...

  12. Evaluation of bovine coronavirus antibody levels, virus shedding, and respiratory disease incidence throughout the beef cattle production cycle

    Science.gov (United States)

    Objective- Determine how levels of serum antibody to bovine coronavirus (BCV) are related to virus shedding patterns and respiratory disease incidence in beef calves at various production stages. Animals- 890 crossbred beef calves from four separately managed herds at the U.S. Meat Animal Research C...

  13. Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy.

    Science.gov (United States)

    Qu, Xiu-Xia; Hao, Pei; Song, Xi-Jun; Jiang, Si-Ming; Liu, Yan-Xia; Wang, Pei-Gang; Rao, Xi; Song, Huai-Dong; Wang, Sheng-Yue; Zuo, Yu; Zheng, Ai-Hua; Luo, Min; Wang, Hua-Lin; Deng, Fei; Wang, Han-Zhong; Hu, Zhi-Hong; Ding, Ming-Xiao; Zhao, Guo-Ping; Deng, Hong-Kui

    2005-08-19

    Severe acute respiratory syndrome coronavirus (SARS-CoV) is a recently identified human coronavirus. The extremely high homology of the viral genomic sequences between the viruses isolated from human (huSARS-CoV) and those of palm civet origin (pcSARS-CoV) suggested possible palm civet-to-human transmission. Genetic analysis revealed that the spike (S) protein of pcSARS-CoV and huSARS-CoV was subjected to the strongest positive selection pressure during transmission, and there were six amino acid residues within the receptor-binding domain of the S protein being potentially important for SARS progression and tropism. Using the single-round infection assay, we found that a two-amino acid substitution (N479K/T487S) of a huSARS-CoV for those of pcSARS-CoV almost abolished its infection of human cells expressing the SARS-CoV receptor ACE2 but no effect upon the infection of mouse ACE2 cells. Although single substitution of these two residues had no effects on the infectivity of huSARS-CoV, these recombinant S proteins bound to human ACE2 with different levels of reduced affinity, and the two-amino acid-substituted S protein showed extremely low affinity. On the contrary, substitution of these two amino acid residues of pcSARS-CoV for those of huSRAS-CoV made pcSARS-CoV capable of infecting human ACE2-expressing cells. These results suggest that amino acid residues at position 479 and 487 of the S protein are important determinants for SARS-CoV tropism and animal-to-human transmission.

  14. Experimental feline enteric coronavirus infection reveals an aberrant infection pattern and shedding of mutants with impaired infectivity in enterocyte cultures

    Science.gov (United States)

    Desmarets, Lowiese M. B.; Vermeulen, Ben L.; Theuns, Sebastiaan; Conceição-Neto, Nádia; Zeller, Mark; Roukaerts, Inge D. M.; Acar, Delphine D.; Olyslaegers, Dominique A. J.; Van Ranst, Marc; Matthijnssens, Jelle; Nauwynck, Hans J.

    2016-01-01

    Feline infectious peritonitis (FIP) results from mutations in the viral genome during a common feline enteric coronavirus (FECV) infection. Since many virological and immunological data on FECV infections are lacking, the present study investigated these missing links during experimental infection of three SPF cats with FECV strain UCD. Two cats showed mild clinical signs, faecal shedding of infectious virus from 4 dpi, a cell-associated viraemia at inconsistent time points from 5 dpi, a highly neutralising antibody response from 9 dpi, and no major abnormalities in leukocyte numbers. Faecal shedding lasted for 28–56 days, but virus shed during this stage was less infectious in enterocyte cultures and affected by mutations. Remarkably, in the other cat neither clinical signs nor acute shedding were seen, but virus was detected in blood cells from 3 dpi, and shedding of non-enterotropic, mutated viruses suddenly occurred from 14 dpi onwards. Neutralising antibodies arose from 21 dpi. Leukocyte numbers were not different compared to the other cats, except for the CD8+ regulatory T cells. These data indicate that FECV can infect immune cells even in the absence of intestinal replication and raise the hypothesis that the gradual adaptation to these cells can allow non-enterotropic mutants to arise. PMID:26822958

  15. Ezrin interacts with the SARS coronavirus Spike protein and restrains infection at the entry stage.

    Directory of Open Access Journals (Sweden)

    Jean Kaoru Millet

    Full Text Available BACKGROUND: Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S. There are still many unknowns on the implication of cellular factors that regulate the entry process. METHODOLOGY/PRINCIPAL FINDINGS: We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S-pseudotyped particles and potentiated S-dependent membrane fusion. CONCLUSIONS/SIGNIFICANCE: Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection.

  16. Experimental inoculation of equine coronavirus into Japanese draft horses.

    Science.gov (United States)

    Nemoto, Manabu; Oue, Yasuhiro; Morita, Yoshinori; Kanno, Toru; Kinoshita, Yuta; Niwa, Hidekazu; Ueno, Takanori; Katayama, Yoshinari; Bannai, Hiroshi; Tsujimura, Koji; Yamanaka, Takashi; Kondo, Takashi

    2014-12-01

    Recently, outbreaks associated with equine coronavirus (ECoV) have occurred in Japan and the United States. While ECoV is likely to be pathogenic to horses, it has not been shown that experimental inoculation of horses with ECoV produces clinical signs of disease. In this study, we inoculated three Japanese draft horses with an ECoV-positive diarrheic fecal sample to confirm infection after inoculation and to investigate the clinical course and virus shedding patterns of ECoV. Virus neutralization tests showed that all three horses became infected with ECoV. Two of the three horses developed clinical signs similar to those observed during ECoV outbreaks, including fever, anorexia, and gastrointestinal dysfunction. All horses excreted a large amount of virus into their feces for more than 9 days after inoculation regardless of the presence or absence of clinical signs, which suggests that feces are an important source of ECoV infection. ECoV was also detected in nasal swabs from all horses, suggesting that respiratory transmission of ECoV may occur. Both symptomatic horses developed viremia, while the asymptomatic horse did not. White blood cell counts and serum amyloid A concentrations changed relative to the clinical condition of the inoculated horses; these may be useful markers for monitoring the clinical status of horses infected with ECoV. This is the first report of induction of clinical signs of ECoV infection in horses by experimental inoculation. These clinical and virological findings should aid further investigation of the pathogenesis of ECoV.

  17. Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Juan Reguera

    Full Text Available The coronaviruses (CoVs are enveloped viruses of animals and humans associated mostly with enteric and respiratory diseases, such as the severe acute respiratory syndrome and 10-20% of all common colds. A subset of CoVs uses the cell surface aminopeptidase N (APN, a membrane-bound metalloprotease, as a cell entry receptor. In these viruses, the envelope spike glycoprotein (S mediates the attachment of the virus particles to APN and subsequent cell entry, which can be blocked by neutralizing antibodies. Here we describe the crystal structures of the receptor-binding domains (RBDs of two closely related CoV strains, transmissible gastroenteritis virus (TGEV and porcine respiratory CoV (PRCV, in complex with their receptor, porcine APN (pAPN, or with a neutralizing antibody. The data provide detailed information on the architecture of the dimeric pAPN ectodomain and its interaction with the CoV S. We show that a protruding receptor-binding edge in the S determines virus-binding specificity for recessed glycan-containing surfaces in the membrane-distal region of the pAPN ectodomain. Comparison of the RBDs of TGEV and PRCV to those of other related CoVs, suggests that the conformation of the S receptor-binding region determines cell entry receptor specificity. Moreover, the receptor-binding edge is a major antigenic determinant in the TGEV envelope S that is targeted by neutralizing antibodies. Our results provide a compelling view on CoV cell entry and immune neutralization, and may aid the design of antivirals or CoV vaccines. APN is also considered a target for cancer therapy and its structure, reported here, could facilitate the development of anti-cancer drugs.

  18. The 3'-terminal 55 nucleotides of bovine coronavirus defective interfering RNA harbor cis-acting elements required for both negative- and positive-strand RNA synthesis.

    Directory of Open Access Journals (Sweden)

    Wei-Yu Liao

    Full Text Available The synthesis of the negative-strand [(--strand] complement of the ∼30 kilobase, positive-strand [(+-strand] coronaviral genome is a necessary early step for genome replication. The identification of cis-acting elements required for (--strand RNA synthesis in coronaviruses, however, has been hampered due to insufficiencies in the techniques used to detect the (--strand RNA species. Here, we employed a method of head-to-tail ligation and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR to detect and quantitate the synthesis of bovine coronavirus (BCoV defective interfering (DI RNA (- strands. Furthermore, using the aforementioned techniques along with Northern blot assay, we specifically defined the cis-acting RNA elements within the 3'-terminal 55 nucleotides (nts which function in the synthesis of (-- or (+-strand BCoV DI RNA. The major findings are as follows: (i nts from -5 to -39 within the 3'-terminal 55 nts are the cis-acting elements responsible for (--strand BCoV DI RNA synthesis, (ii nts from -3 to -34 within the 3'-terminal 55 nts are cis-acting elements required for (+-strand BCoV DI RNA synthesis, and (iii the nucleotide species at the 3'-most position (-1 is important, but not critical, for both (-- and (+-strand BCoV DI RNA synthesis. These results demonstrate that the 3'-terminal 55 nts in BCoV DI RNA harbor cis-acting RNA elements required for both (-- and (+-strand DI RNA synthesis and extend our knowledge on the mechanisms of coronavirus replication. The method of head-to-tail ligation and qRT-PCR employed in the study may also be applied to identify other cis-acting elements required for (--strand RNA synthesis in coronaviruses.

  19. Apoptosis and T cell depletion during feline infectious peritonitis

    OpenAIRE

    Horzinek, M.C.; Haagmans, B.L.; Egberink, H.F.

    1996-01-01

    Cats that have succumbed to feline infectious peritonitis, an immune- mediated disease caused by variants of feline coronaviruses, show apoptosis and T-cell depletion in their lymphoid organs. The ascitic fluid that develops in the course of the condition causes apoptosis in vitro but only in activated T cells. Since feline infectious peritonitis virus does not infect T cells, and viral proteins did not inhibit T-cell proliferation, we postulate that soluble mediators released during the infe...

  20. Apoptosis and T cell depletion during feline infectious peritonitis

    NARCIS (Netherlands)

    Horzinek, M.C.; Haagmans, B.L.; Egberink, H.F.

    1996-01-01

    Cats that have succumbed to feline infectious peritonitis, an immune- mediated disease caused by variants of feline coronaviruses, show apoptosis and T-cell depletion in their lymphoid organs. The ascitic fluid that develops in the course of the condition causes apoptosis in vitro but only in

  1. Transmissible gastroenteritis coronavirus genome packaging signal is located at the 5' end of the genome and promotes viral RNA incorporation into virions in a replication-independent process.

    Science.gov (United States)

    Morales, Lucia; Mateos-Gomez, Pedro A; Capiscol, Carmen; del Palacio, Lorena; Enjuanes, Luis; Sola, Isabel

    2013-11-01

    Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5' end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. The integrity of the entire sequence domain was necessary because deletion of any of the five structural motifs defined within this region abrogated specific packaging of this viral RNA. One of these RNA motifs was the stem-loop SL5, a highly conserved motif in coronaviruses located at nucleotide positions 106 to 136. Partial deletion or point mutations within this motif also abrogated packaging. Using TGEV-derived defective minigenomes replicated in trans by a helper virus, we have shown that TGEV RNA packaging is a replication-independent process. Furthermore, the last 494 nt of the genomic 3' end were not essential for packaging, although this region increased packaging efficiency. TGEV RNA sequences identified as necessary for viral genome packaging were not sufficient to direct packaging of a heterologous sequence derived from the green fluorescent protein gene. These results indicated that TGEV genome packaging is a complex process involving many factors in addition to the identified RNA packaging signal. The identification of well-defined RNA motifs within the TGEV RNA genome that are essential for packaging will be useful for designing packaging-deficient biosafe coronavirus-derived vectors and providing new targets for antiviral therapies.

  2. Down-regulation of transcription of the proapoptotic gene BNip3 in cultured astrocytes by murine coronavirus infection

    International Nuclear Information System (INIS)

    Cai Yingyun; Liu Yin; Yu Dongdong; Zhang Xuming

    2003-01-01

    Murine coronavirus mouse hepatitis virus (MHV) causes encephalitis and demyelination in the central nervous system of susceptible rodents. Astrocytes are the major target for MHV persistence. However, the mechanisms by which astrocytes survive MHV infection and permit viral persistence are not known. Here we performed DNA microarray analysis on differential gene expression in astrocyte DBT cells by MHV infection and found that the mRNA of the proapoptotic gene BNip3 was significantly decreased following MHV infection. This finding was further confirmed by quantitative reverse transcription-polymerase chain reaction, Western blot analysis, and BNip3-promoter-luciferase reporter system. Interestingly, infection with live and ultraviolet light-inactivated viruses equally repressed BNip3 expression, indicating that the down-regulation of BNip3 expression does not require virus replication and is mediated during cell entry. Furthermore, treatment of cells with chloroquine, which blocks the acidification of endosomes, significantly inhibited the repression of the BNip3 promoter activity induced by the acidic pH-dependent MHV mutant OBLV60, which enters cells via endocytosis, indicating that the down-regulation of BNip3 expression is mediated by fusion between viral envelope and cell membranes during entry. Deletion analysis showed that the sequence between nucleotides 262 and 550 of the 588-base-pair BNip3 promoter is necessary and sufficient for driving the BNip3 expression and that it contains signals that are responsible for MHV-induced down-regulation of BNip3 expression in DBT cells. These results may provide insights into the mechanisms by which MHV evades host antiviral defense and promotes cell survival, thereby allowing its persistence in the host astrocytes

  3. Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome

    Science.gov (United States)

    Jiang, Shibo; Bottazzi, Maria Elena; Du, Lanying; Lustigman, Sara; Tseng, Chien-Te Kent; Curti, Elena; Jones, Kathryn; Zhan, Bin; Hotez, Peter J

    2013-01-01

    A subunit vaccine, RBD-S, is under development to prevent severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV), which is classified by the US NIH as a category C pathogen. This vaccine is comprised of a recombinant receptor-binding domain (RBD) of the SARS-CoV spike (S) protein and formulated on alum, together with a synthetic glucopyranosyl lipid A. The vaccine would induce neutralizing antibodies without causing Th2-type immunopathology. Vaccine development is being led by the nonprofit product development partnership; Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development in collaboration with two academic partners (the New York Blood Center and University of Texas Medical Branch); an industrial partner (Immune Design Corporation); and Walter Reed Army Institute of Research. A roadmap for the product development of the RBD-S SARS vaccine is outlined with a goal to manufacture the vaccine for clinical testing within the next 5 years. PMID:23252385

  4. Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene.

    Science.gov (United States)

    Chang, Hui-Wen; de Groot, Raoul J; Egberink, Herman F; Rottier, Peter J M

    2010-02-01

    Feline infectious peritonitis (FIP) is a lethal systemic disease caused by FIP virus (FIPV), a virulent mutant of apathogenic feline enteric coronavirus (FECV). We analysed the 3c gene--a proposed virulence marker--in 27 FECV- and 28 FIPV-infected cats. Our findings suggest that functional 3c protein expression is crucial for FECV replication in the gut, but dispensable for systemic FIPV replication. Whilst intact in all FECVs, the 3c gene was mutated in the majority (71.4 %) of FIPVs, but not in all, implying that mutation in 3c is not the (single) cause of FIP. Most cats with FIP had no detectable intestinal feline coronaviruses (FCoVs) and had seemingly cleared the primary FECV infection. In those with detectable intestinal FCoV, the virus always had an intact 3c and seemed to have been acquired by FECV superinfection. Apparently, 3c-inactivated viruses replicate not at all--or only poorly--in the gut, explaining the rare incidence of FIP outbreaks.

  5. Cell type discovery using single-cell transcriptomics: implications for ontological representation.

    Science.gov (United States)

    Aevermann, Brian D; Novotny, Mark; Bakken, Trygve; Miller, Jeremy A; Diehl, Alexander D; Osumi-Sutherland, David; Lasken, Roger S; Lein, Ed S; Scheuermann, Richard H

    2018-05-01

    Cells are fundamental function units of multicellular organisms, with different cell types playing distinct physiological roles in the body. The recent advent of single-cell transcriptional profiling using RNA sequencing is producing 'big data', enabling the identification of novel human cell types at an unprecedented rate. In this review, we summarize recent work characterizing cell types in the human central nervous and immune systems using single-cell and single-nuclei RNA sequencing, and discuss the implications that these discoveries are having on the representation of cell types in the reference Cell Ontology (CL). We propose a method, based on random forest machine learning, for identifying sets of necessary and sufficient marker genes, which can be used to assemble consistent and reproducible cell type definitions for incorporation into the CL. The representation of defined cell type classes and their relationships in the CL using this strategy will make the cell type classes being identified by high-throughput/high-content technologies findable, accessible, interoperable and reusable (FAIR), allowing the CL to serve as a reference knowledgebase of information about the role that distinct cellular phenotypes play in human health and disease.

  6. Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome.

    Directory of Open Access Journals (Sweden)

    Albrecht von Brunn

    2007-05-01

    Full Text Available The severe acute respiratory syndrome coronavirus (SARS-CoV genome is predicted to encode 14 functional open reading frames, leading to the expression of up to 30 structural and non-structural protein products. The functions of a large number of viral ORFs are poorly understood or unknown. In order to gain more insight into functions and modes of action and interaction of the different proteins, we cloned the viral ORFeome and performed a genome-wide analysis for intraviral protein interactions and for intracellular localization. 900 pairwise interactions were tested by yeast-two-hybrid matrix analysis, and more than 65 positive non-redundant interactions, including six self interactions, were identified. About 38% of interactions were subsequently confirmed by CoIP in mammalian cells. Nsp2, nsp8 and ORF9b showed a wide range of interactions with other viral proteins. Nsp8 interacts with replicase proteins nsp2, nsp5, nsp6, nsp7, nsp8, nsp9, nsp12, nsp13 and nsp14, indicating a crucial role as a major player within the replication complex machinery. It was shown by others that nsp8 is essential for viral replication in vitro, whereas nsp2 is not. We show that also accessory protein ORF9b does not play a pivotal role for viral replication, as it can be deleted from the virus displaying normal plaque sizes and growth characteristics in Vero cells. However, it can be expected to be important for the virus-host interplay and for pathogenicity, due to its large number of interactions, by enhancing the global stability of the SARS proteome network, or play some unrealized role in regulating protein-protein interactions. The interactions identified provide valuable material for future studies.

  7. Structures of Two Coronavirus Main Proteases: Implications for Substrate Binding and Antiviral Drug Design

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xiaoyu; Yu, Hongwei; Yang, Haitao; Xue, Fei; Wu, Zhixin; Shen, Wei; Li, Jun; Zhou, Zhe; Ding, Yi; Zhao, Qi; Zhang, Xuejun C.; Liao, Ming; Bartlam, Mark; Rao, Zihe (SCAU); (Tsinghua); (Chinese Aca. Sci.)

    2008-07-21

    Coronaviruses (CoVs) can infect humans and multiple species of animals, causing a wide spectrum of diseases. The coronavirus main protease (M{sup pro}), which plays a pivotal role in viral gene expression and replication through the proteolytic processing of replicase polyproteins, is an attractive target for anti-CoV drug design. In this study, the crystal structures of infectious bronchitis virus (IBV) MP{sup pro} and a severe acute respiratory syndrome CoV (SARS-CoV) M{sup pro} mutant (H41A), in complex with an N-terminal autocleavage substrate, were individually determined to elucidate the structural flexibility and substrate binding of M{sup pro}. A monomeric form of IBV M{sup pro} was identified for the first time in CoV M{sup pro} structures. A comparison of these two structures to other available M{sup pro} structures provides new insights for the design of substrate-based inhibitors targeting CoV M{sup pro}s. Furthermore, a Michael acceptor inhibitor (named N3) was cocrystallized with IBV M{sup pro} and was found to demonstrate in vitro inactivation of IBV M{sup pro} and potent antiviral activity against IBV in chicken embryos. This provides a feasible animal model for designing wide-spectrum inhibitors against CoV-associated diseases. The structure-based optimization of N3 has yielded two more efficacious lead compounds, N27 and H16, with potent inhibition against SARS-CoV M{sup pro}.

  8. The sample of choice for detecting Middle East respiratory syndrome coronavirus in asymptomatic dromedary camels using real-time reversetranscription polymerase chain reaction.

    NARCIS (Netherlands)

    Mohran, K A; Farag, E A B; Reusken, C B E; Raj, V S; Lamers, M M; Pas, S D; Voermans, J; Smits, S L; Alhajri, M M; Alhajri, F; Al-Romaihi, H E; Ghobashy, H; El-Maghraby, M M; Al Dhahiry, S H S; Al-Mawlawi, N; El-Sayed, A M; Al-Thani, M; Al-Marri, S A; Haagmans, B L; Koopmans, M P G

    2016-01-01

    The newly identified Middle East respiratory syndrome coronavirus (MERS-CoV), which causes severe respiratory disease, particularly in people with comorbidities, requires further investigation. Studies in Qatar and elsewhere have provided evidence that dromedary camels are a reservoir for the virus,

  9. Swine enteric coronavirus disease: A review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada.

    Science.gov (United States)

    Niederwerder, M C; Hesse, R A

    2018-06-01

    Swine enteric coronaviruses, including porcine epidemic diarrhoea virus (PEDV) and porcine deltacoronavirus (PDCoV), have emerged and spread throughout the North American swine industry over the last four years. These diseases cause significant losses within the pork industry and within the first year after PEDV introduction, approximately 10% of the US herd died due to the disease. Similar to other enteric coronaviruses, such as transmissible gastroenteritis virus (TGEV), these emerging swine enteric coronavirus diseases (SECD) are age-dependent, with high morbidity and mortality in neonatal pigs. Since the introduction of SECD, research has focused on investigating viral pathogenesis through experimental inoculation, increasing maternal antibody for neonatal protection, understanding transmission risks through feed and transportation, and outlining the importance of biosecurity in preventing SECD introduction and spread. A survey of swine professionals conducted for this review revealed that the majority of respondents (75%) believe SECD can be eradicated and that most herds have been successful at long-term elimination of SECD after exposure (80%). However, unique properties of SECD, such as ineffective immunity through parenteral vaccination and a low oral infectious dose, play a major role in management of SECD. This review serves to describe the current knowledge of SECD and the characteristics of these viruses which provide both opportunities and challenges for long-term disease control and potential eradication from the US swine population. © 2018 Blackwell Verlag GmbH.

  10. Construction of recombinant Newcastle disease virus expressing the S1 protein of Turkey enteric coronavirus for use as a bivalent vaccine

    Science.gov (United States)

    Turkey enteric coronavirus (TCoV) causes a contagious form of enteritis in turkeys, generally recognized in the field by outward signs including diarrhea and decreased weight gain, resulting in severe economic losses for the poultry industry in the US. To date there is no commercial vaccine availab...

  11. Cell type specific DNA methylation in cord blood: A 450K-reference data set and cell count-based validation of estimated cell type composition.

    Science.gov (United States)

    Gervin, Kristina; Page, Christian Magnus; Aass, Hans Christian D; Jansen, Michelle A; Fjeldstad, Heidi Elisabeth; Andreassen, Bettina Kulle; Duijts, Liesbeth; van Meurs, Joyce B; van Zelm, Menno C; Jaddoe, Vincent W; Nordeng, Hedvig; Knudsen, Gunn Peggy; Magnus, Per; Nystad, Wenche; Staff, Anne Cathrine; Felix, Janine F; Lyle, Robert

    2016-09-01

    Epigenome-wide association studies of prenatal exposure to different environmental factors are becoming increasingly common. These studies are usually performed in umbilical cord blood. Since blood comprises multiple cell types with specific DNA methylation patterns, confounding caused by cellular heterogeneity is a major concern. This can be adjusted for using reference data consisting of DNA methylation signatures in cell types isolated from blood. However, the most commonly used reference data set is based on blood samples from adult males and is not representative of the cell type composition in neonatal cord blood. The aim of this study was to generate a reference data set from cord blood to enable correct adjustment of the cell type composition in samples collected at birth. The purity of the isolated cell types was very high for all samples (>97.1%), and clustering analyses showed distinct grouping of the cell types according to hematopoietic lineage. We explored whether this cord blood and the adult peripheral blood reference data sets impact the estimation of cell type composition in cord blood samples from an independent birth cohort (MoBa, n = 1092). This revealed significant differences for all cell types. Importantly, comparison of the cell type estimates against matched cell counts both in the cord blood reference samples (n = 11) and in another independent birth cohort (Generation R, n = 195), demonstrated moderate to high correlation of the data. This is the first cord blood reference data set with a comprehensive examination of the downstream application of the data through validation of estimated cell types against matched cell counts.

  12. Transmissible Gastroenteritis Coronavirus Genome Packaging Signal Is Located at the 5′ End of the Genome and Promotes Viral RNA Incorporation into Virions in a Replication-Independent Process

    Science.gov (United States)

    Morales, Lucia; Mateos-Gomez, Pedro A.; Capiscol, Carmen; del Palacio, Lorena; Sola, Isabel

    2013-01-01

    Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5′ end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. The integrity of the entire sequence domain was necessary because deletion of any of the five structural motifs defined within this region abrogated specific packaging of this viral RNA. One of these RNA motifs was the stem-loop SL5, a highly conserved motif in coronaviruses located at nucleotide positions 106 to 136. Partial deletion or point mutations within this motif also abrogated packaging. Using TGEV-derived defective minigenomes replicated in trans by a helper virus, we have shown that TGEV RNA packaging is a replication-independent process. Furthermore, the last 494 nt of the genomic 3′ end were not essential for packaging, although this region increased packaging efficiency. TGEV RNA sequences identified as necessary for viral genome packaging were not sufficient to direct packaging of a heterologous sequence derived from the green fluorescent protein gene. These results indicated that TGEV genome packaging is a complex process involving many factors in addition to the identified RNA packaging signal. The identification of well-defined RNA motifs within the TGEV RNA genome that are essential for packaging will be useful for designing packaging-deficient biosafe coronavirus-derived vectors and providing new targets for antiviral therapies. PMID:23966403

  13. Structure of a SARS coronavirus-derived peptide bound to the human major histocompatibility complex class I molecule HLA-B*1501

    DEFF Research Database (Denmark)

    Røder, Gustav; Kristensen, Ole; Kastrup, Jette S

    2008-01-01

    , the crystal structure of HLA-B*1501 in complex with a SARS coronavirus-derived nonapeptide (VQQESSFVM) has been determined at high resolution (1.87 A). The peptide is deeply anchored in the B and F pockets, but with the Glu4 residue pointing away from the floor in the peptide-binding groove, making...

  14. Factors Influencing Emergency Nurses' Burnout During an Outbreak of Middle East Respiratory Syndrome Coronavirus in Korea

    OpenAIRE

    Kim, Ji Soo; Choi, Jeong Sil

    2016-01-01

    Purpose: Emergency department (ED) nurses suffer from persistent stress after experiencing the traumatic event of exposure to Middle East respiratory syndrome coronavirus (MERS-CoV), which can subsequently lead to burnout. This study aimed to assess ED nurses' burnout level during an outbreak of MERS-CoV and to identify influencing factors in order to provide basic information for lowering and preventing the level of burnout. Methods: Study participants were ED nurses working in eight hosp...

  15. Vaccines for emerging infectious diseases: Lessons from MERS coronavirus and Zika virus.

    Science.gov (United States)

    Maslow, Joel N

    2017-12-02

    The past decade and a half has been characterized by numerous emerging infectious diseases. With each new threat, there has been a call for rapid vaccine development. Pathogens such as the Middle East Respiratory Syndrome coronavirus (MERS-CoV) and the Zika virus represent either new viral entities or viruses emergent in new geographic locales and characterized by novel complications. Both serve as paradigms for the global spread that can accompany new pathogens. In this paper, we review the epidemiology and pathogenesis of MERS-CoV and Zika virus with respect to vaccine development. The challenges in vaccine development and the approach to clinical trial design to test vaccine candidates for disease entities with a changing epidemiology are discussed.

  16. Evaluation of serologic and antigenic relationships between middle eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses.

    Science.gov (United States)

    Agnihothram, Sudhakar; Gopal, Robin; Yount, Boyd L; Donaldson, Eric F; Menachery, Vineet D; Graham, Rachel L; Scobey, Trevor D; Gralinski, Lisa E; Denison, Mark R; Zambon, Maria; Baric, Ralph S

    2014-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012, causing severe acute respiratory disease and pneumonia, with 44% mortality among 136 cases to date. Design of vaccines to limit the virus spread or diagnostic tests to track newly emerging strains requires knowledge of antigenic and serologic relationships between MERS-CoV and other CoVs.  Using synthetic genomics and Venezuelan equine encephalitis virus replicons (VRPs) expressing spike and nucleocapsid proteins from MERS-CoV and other human and bat CoVs, we characterize the antigenic responses (using Western blot and enzyme-linked immunosorbent assay) and serologic responses (using neutralization assays) against 2 MERS-CoV isolates in comparison with those of other human and bat CoVs.  Serologic and neutralization responses against the spike glycoprotein were primarily strain specific, with a very low level of cross-reactivity within or across subgroups. CoV N proteins within but not across subgroups share cross-reactive epitopes with MERS-CoV isolates. Our findings were validated using a convalescent-phase serum specimen from a patient infected with MERS-CoV (NA 01) and human antiserum against SARS-CoV, human CoV NL63, and human CoV OC43.  Vaccine design for emerging CoVs should involve chimeric spike protein containing neutralizing epitopes from multiple virus strains across subgroups to reduce immune pathology, and a diagnostic platform should include a panel of nucleocapsid and spike proteins from phylogenetically distinct CoVs.

  17. A Web-Server of Cell Type Discrimination System

    Directory of Open Access Journals (Sweden)

    Anyou Wang

    2014-01-01

    Full Text Available Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and somatic cells (SCs. Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells.

  18. Knowledge, Attitudes and Behaviours of Healthcare Workers in the Kingdom of Saudi Arabia to MERS Coronavirus and Other Emerging Infectious Diseases

    Directory of Open Access Journals (Sweden)

    Abdullah J. Alsahafi

    2016-12-01

    Full Text Available Background: The Kingdom of Saudi Arabia has experienced a prolonged outbreak of Middle East Respiratory Syndrome (MERS coronavirus since 2012. Healthcare workers (HCWs form a significant risk group for infection. Objectives: The aim of this survey was to assess the knowledge, attitudes, infection control practices and educational needs of HCWs in the Kingdom of Saudi Arabia to MERS coronavirus and other emerging infectious diseases. Methods: 1500 of HCWs from Saudi Ministry of Health were invited to fill a questionnaire developed to cover the survey objectives from 9 September 2015 to 8 November 2015. The response rate was about 81%. Descriptive statistics was used to summarise the responses. Results: 1216 HCWs were included in this survey. A total of 56.5% were nurses and 22% were physicians. The most common sources of MERS-coronavirus (MERS-CoV information were the Ministry of Health (MOH memo (74.3%. Only (47.6% of the physicians, (30.4% of the nurses and (29.9% of the other HCWs were aware that asymptomatic MERS-CoV was described. Around half of respondents who having been investigated for MERS-CoV reported that their work performance decreased while they have suspicion of having MERS-CoV and almost two thirds reported having psychological problems during this period. Almost two thirds of the HCWs (61.2% reported anxiety about contracting MERS-CoV from patients. Conclusions: The knowledge about emerging infectious diseases was poor and there is need for further education and training programs particularly in the use of personal protective equipment, isolation and infection control measures. The self-reported infection control practices were sub-optimal and seem to be overestimated.

  19. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Jason E.; Mitchell, Hugh D.; Gralinski, Lisa E.; Eisfeld, Amie J.; Josset, Laurence; Bankhead, Armand; Neumann, Gabriele; Tilton, Susan C.; Schäfer, Alexandra; Li, Chengjun; Fan, Shufang; McWeeney, Shannon; Baric, Ralph S.; Katze, Michael G.; Waters, Katrina M.

    2016-09-23

    The complex interplay between viral replication and host immune response during infection remains poorly understood. While many viruses are known to employ antiimmune strategies to facilitate their replication, highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV), we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize candidate regulatory targets for further investigation. We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology provides significant predictive power to identify genes that are important for viral infection. We identified a novel player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1) complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory cytokine, tumor necrosis factor alpha (TNFα), promote pathogenesis through a parallel feed-forward circuit that promotes inflammation. These results are consistent with previous studies showing the role of over-stimulation of the inflammatory response to SARS-CoV in pathogenesis. We conclude that the critical balance between immune response and inflammation can be manipulated to improve the outcome of the infection. Further, our study provides two potential therapeutic strategies for mitigating the effects of SARS-CoV infection, and may provide insight into treatment strategies for Middle East Respiratory Syndrome Coronavirus (MERS-CoV).

  20. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  1. Genotyping coronaviruses associated with feline infectious peritonitis.

    Science.gov (United States)

    Lewis, Catherine S; Porter, Emily; Matthews, David; Kipar, Anja; Tasker, Séverine; Helps, Christopher R; Siddell, Stuart G

    2015-06-01

    Feline coronavirus (FCoV) infections are endemic among cats worldwide. The majority of infections are asymptomatic or result in only mild enteric disease. However, approximately 5 % of cases develop feline infectious peritonitis (FIP), a systemic disease that is a frequent cause of death in young cats. In this study, we report the complete coding genome sequences of six FCoVs: three from faecal samples from healthy cats and three from tissue lesion samples from cats with confirmed FIP. The six samples were obtained over a period of 8 weeks at a single-site cat rescue and rehoming centre in the UK. We found amino acid differences located at 44 positions across an alignment of the six virus translatomes and, at 21 of these positions, the differences fully or partially discriminated between the genomes derived from the faecal samples and the genomes derived from the tissue lesion samples. In this study, two amino acid differences fully discriminated the two classes of genomes: these were both located in the S2 domain of the virus surface glycoprotein gene. We also identified deletions in the 3c protein ORF of genomes from two of the FIP samples. Our results support previous studies that implicate S protein mutations in the pathogenesis of FIP. © 2015 The Authors.

  2. Evidence for an Ancestral Association of Human Coronavirus 229E with Bats.

    Science.gov (United States)

    Corman, Victor Max; Baldwin, Heather J; Tateno, Adriana Fumie; Zerbinati, Rodrigo Melim; Annan, Augustina; Owusu, Michael; Nkrumah, Evans Ewald; Maganga, Gael Darren; Oppong, Samuel; Adu-Sarkodie, Yaw; Vallo, Peter; da Silva Filho, Luiz Vicente Ribeiro Ferreira; Leroy, Eric M; Thiel, Volker; van der Hoek, Lia; Poon, Leo L M; Tschapka, Marco; Drosten, Christian; Drexler, Jan Felix

    2015-12-01

    We previously showed that close relatives of human coronavirus 229E (HCoV-229E) exist in African bats. The small sample and limited genomic characterizations have prevented further analyses so far. Here, we tested 2,087 fecal specimens from 11 bat species sampled in Ghana for HCoV-229E-related viruses by reverse transcription-PCR (RT-PCR). Only hipposiderid bats tested positive. To compare the genetic diversity of bat viruses and HCoV-229E, we tested historical isolates and diagnostic specimens sampled globally over 10 years. Bat viruses were 5- and 6-fold more diversified than HCoV-229E in the RNA-dependent RNA polymerase (RdRp) and spike genes. In phylogenetic analyses, HCoV-229E strains were monophyletic and not intermixed with animal viruses. Bat viruses formed three large clades in close and more distant sister relationships. A recently described 229E-related alpaca virus occupied an intermediate phylogenetic position between bat and human viruses. According to taxonomic criteria, human, alpaca, and bat viruses form a single CoV species showing evidence for multiple recombination events. HCoV-229E and the alpaca virus showed a major deletion in the spike S1 region compared to all bat viruses. Analyses of four full genomes from 229E-related bat CoVs revealed an eighth open reading frame (ORF8) located at the genomic 3' end. ORF8 also existed in the 229E-related alpaca virus. Reanalysis of HCoV-229E sequences showed a conserved transcription regulatory sequence preceding remnants of this ORF, suggesting its loss after acquisition of a 229E-related CoV by humans. These data suggested an evolutionary origin of 229E-related CoVs in hipposiderid bats, hypothetically with camelids as intermediate hosts preceding the establishment of HCoV-229E. The ancestral origins of major human coronaviruses (HCoVs) likely involve bat hosts. Here, we provide conclusive genetic evidence for an evolutionary origin of the common cold virus HCoV-229E in hipposiderid bats by analyzing a

  3. The sialic acid binding activity of the S protein facilitates infection by porcine transmissible gastroenteritis coronavirus

    Directory of Open Access Journals (Sweden)

    Enjuanes Luis

    2011-09-01

    Full Text Available Abstract Background Transmissible gastroenteritis virus (TGEV has a sialic acid binding activity that is believed to be important for enteropathogenicity, but that has so far appeared to be dispensable for infection of cultured cells. The aims of this study were to determine the effect of sialic acid binding for the infection of cultured cells under unfavorable conditions, and comparison of TGEV strains and mutants, as well as the avian coronavirus IBV concerning their dependence on the sialic acid binding activity. Methods The infectivity of different viruses was analyzed by a plaque assay after adsorption times of 5, 20, and 60 min. Prior to infection, cultured cells were either treated with neuraminidase to deplete sialic acids from the cell surface, or mock-treated. In a second approach, pre-treatment of the virus with porcine intestinal mucin was performed, followed by the plaque assay after a 5 min adsorption time. A student's t-test was used to verify the significance of the results. Results Desialylation of cells only had a minor effect on the infection by TGEV strain Purdue 46 when an adsorption period of 60 min was allowed for initiation of infection. However, when the adsorption time was reduced to 5 min the infectivity on desialylated cells decreased by more than 60%. A TGEV PUR46 mutant (HAD3 deficient in sialic acid binding showed a 77% lower titer than the parental virus after a 5 min adsorption time. After an adsorption time of 60 min the titer of HAD3 was 58% lower than that of TGEV PUR46. Another TGEV strain, TGEV Miller, and IBV Beaudette showed a reduction in infectivity after neuraminidase treatment of the cultured cells irrespective of the virion adsorption time. Conclusions Our results suggest that the sialic acid binding activity facilitates the infection by TGEV under unfavorable environmental conditions. The dependence on the sialic acid binding activity for an efficient infection differs in the analyzed TGEV strains.

  4. Alveolar epithelial type II cells induce T cell tolerance to specific antigen

    DEFF Research Database (Denmark)

    Lo, Bernice; Hansen, Søren; Evans, Kathy

    2008-01-01

    The lungs face the immunologic challenge of rapidly eliminating inhaled pathogens while maintaining tolerance to innocuous Ags. A break in this immune homeostasis may result in pulmonary inflammatory diseases, such as allergies or asthma. The observation that alveolar epithelial type II cells (Type...... II) constitutively express the class II MHC led us to hypothesize that Type II cells play a role in the adaptive immune response. Because Type II cells do not express detectable levels of the costimulatory molecules CD80 and CD86, we propose that Type II cells suppress activation of naive T cells...

  5. Vaccines for emerging infectious diseases: Lessons from MERS coronavirus and Zika virus

    Science.gov (United States)

    Maslow, Joel N.

    2017-01-01

    ABSTRACT The past decade and a half has been characterized by numerous emerging infectious diseases. With each new threat, there has been a call for rapid vaccine development. Pathogens such as the Middle East Respiratory Syndrome coronavirus (MERS-CoV) and the Zika virus represent either new viral entities or viruses emergent in new geographic locales and characterized by novel complications. Both serve as paradigms for the global spread that can accompany new pathogens. In this paper, we review the epidemiology and pathogenesis of MERS-CoV and Zika virus with respect to vaccine development. The challenges in vaccine development and the approach to clinical trial design to test vaccine candidates for disease entities with a changing epidemiology are discussed. PMID:28846484

  6. Cytokine-induced killer cells are type II natural killer T cells

    Directory of Open Access Journals (Sweden)

    Schmidt-Wolf, Ingo G.H.

    2007-09-01

    Full Text Available Background: Until now, cytokine-induced killer (CIK cells were assumed to be part of the type I natural killer T (NKT cell population, but it was not yet investigated if this is correct. Methods: For analysis, CIK cells were generated by various culture conditions. Human type I NKT cells express a T cell receptor (TCR composed of an invariant Vα24-JαQ chain combined with one of several Vβ chains. The Vα24 is a reliable marker for the presence of these TCRs. Results: While comparing cultures stimulated with different substances, we observed the lack of any Vα24 on the surface of CIK culture cells. Conclusion: We conclude that CIK cells do not belong to the type I NKT cells.

  7. Inhibition of type I NKT cells by retinoids or following sulfatide-mediated activation of type II NKT cells attenuates alcoholic liver disease

    Science.gov (United States)

    Maricic, Igor; Sheng, Huiming; Marrero, Idania; Seki, Ehikiro; Kisseleva, Tatiana; Chaturvedi, Som; Molle, Natasha; Mathews, K. Stephanie; Gao, Bin; Kumar, Vipin

    2015-01-01

    Innate immune mechanisms leading to liver injury following chronic alcohol ingestion are poorly understood. Natural killer T (NKT) cells, enriched in the liver and comprised of at least two distinct subsets, type I and type II, recognize different lipid antigens presented by CD1d molecules. We have investigated whether differential activation of NKT cell subsets orchestrates inflammatory events leading to alcoholic liver disease (ALD). We found that following chronic plus binge feeding of Lieber-DeCarli liquid diet in male C57BL/6 mice, type I but not type II NKT cells are activated leading to recruitment of inflammatory Gr-1highCD11b+ cells into liver. A central finding is that liver injury following alcohol feeding is dependent upon type I NKT cells. Thus liver injury is significantly inhibited in Jα18−/− mice deficient in type I NKT cells as well as following their inactivation by sulfatide-mediated activation of type II NKT cells. Furthermore we have identified a novel pathway involving all-trans retinoic acid (ATRA) and its receptor RARγ signaling that inhibits type I NKT cells and consequently ALD. A semi-quantitative PCR analysis of hepatic gene expression of some of the key proinflammatory molecules shared in human disease indicated that their upregulation in ALD is dependent upon type I NKT cells. Conclusion Type I but not type II NKT cells become activated following alcohol feeding. Type I NKT cells-induced inflammation and neutrophil recruitment results in liver tissue damage while type II NKT cells protect from injury in ALD. Inhibition of type I NKT cells by retinoids or by sulfatide prevents ALD. Since the CD1d pathway is highly conserved between mice and humans, NKT cell subsets might be targeted for potential therapeutic intervention in ALD. PMID:25477000

  8. Peptides corresponding to the predicted heptad repeat 2 domain of the feline coronavirus spike protein are potent inhibitors of viral infection.

    Directory of Open Access Journals (Sweden)

    I-Jung Liu

    Full Text Available BACKGROUND: Feline infectious peritonitis (FIP is a lethal immune-mediated disease caused by feline coronavirus (FCoV. Currently, no therapy with proven efficacy is available. In searching for agents that may prove clinically effective against FCoV infection, five analogous overlapping peptides were designed and synthesized based on the putative heptad repeat 2 (HR2 sequence of the spike protein of FCoV, and the antiviral efficacy was evaluated. METHODS: Plaque reduction assay and MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide cytotoxicity assay were performed in this study. Peptides were selected using a plaque reduction assay to inhibit Feline coronavirus infection. RESULTS: The results demonstrated that peptide (FP5 at concentrations below 20 μM inhibited viral replication by up to 97%. The peptide (FP5 exhibiting the most effective antiviral effect was further combined with a known anti-viral agent, human interferon-α (IFN-α, and a significant synergistic antiviral effect was observed. CONCLUSION: Our data suggest that the synthetic peptide FP5 could serve as a valuable addition to the current FIP prevention methods.

  9. Sulfatide-activated type II NKT cells prevent allergic airway inflammation by inhibiting type I NKT cell function in a mouse model of asthma.

    Science.gov (United States)

    Zhang, Guqin; Nie, Hanxiang; Yang, Jiong; Ding, Xuhong; Huang, Yi; Yu, Hongying; Li, Ruyou; Yuan, Zhuqing; Hu, Suping

    2011-12-01

    Asthma is a common chronic inflammatory disease involving many different cell types. Recently, type I natural killer T (NKT) cells have been demonstrated to play a crucial role in the development of asthma. However, the roles of type II NKT cells in asthma have not been investigated before. Interestingly, type I and type II NKT cells have been shown to have opposing roles in antitumor immunity, antiparasite immunity, and autoimmunity. We hypothesized that sulfatide-activated type II NKT cells could prevent allergic airway inflammation by inhibiting type I NKT cell function in asthma. Strikingly, in our mouse model, activation of type II NKT cells by sulfatide administration and adoptive transfer of sulfatide-activated type II NKT cells result in reduced-inflammation cell infiltration in the lung and bronchoalveolar lavage fluid, decreased levels of IL-4 and IL-5 in the BALF; and decreased serum levels of ovalbumin-specific IgE and IgG1. Furthermore, it is found that the activation of sulfatide-reactive type II NKT cells leads to the functional inactivation of type I NKT cells, including the proliferation and cytokine secretion. Our data reveal that type II NKT cells activated by glycolipids, such as sulfatide, may serve as a novel approach to treat allergic diseases and other disorders characterized by inappropriate type I NKT cell activation.

  10. Industrial n-type solar cells with >20% cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Romijn, I.G.; Anker, J.; Burgers, A.R.; Gutjahr, A.; Koppes, M.; Kossen, E.J.; Lamers, M.W.P.E.; Heurtault, Benoit; Saynova-Oosterling, D.S.; Tool, C.J.J. [ECN Solar Energy, Petten (Netherlands)

    2013-03-15

    To realize high efficiencies at low costs, ECN has developed the n-Pasha solar cell concept. The n-Pasha cell concept is a bifacial solar cell concept on n-Cz base material, with which average efficiencies of above 20% have been demonstrated. In this paper recent developments at ECN to improve the cost of ownership (lower Euro/Wp) of the n-Pasha cell concept are discussed. Two main drivers for the manufacturing costs of n-type solar cells are addressed: the n-type Cz silicon material and the silver consumption. We show that a large resistivity range between 2 and 8 cm can be tolerated for high cell efficiency, and that the costs due to the silver metallization can be significantly reduced while increasing the solar cell efficiency. Combining the improved efficiency and cost reduction makes the n-Pasha cell concept a very cost effective solution to manufacture high efficient solar cells and modules.

  11. The preventive role of type 2 NKT cells in the development of type 1 diabetes.

    Science.gov (United States)

    Sørensen, Jakob Ørskov; Buschard, Karsten; Brogren, Carl-Henrik

    2014-03-01

    In the last two decades, natural killer T (NKT) cells have emerged as an important factor in preventing type 1 diabetes (T1D) when investigated in the experimental non-obese diabetic (NOD) mouse model. So far, investigations have largely focused on type 1 NKT cells with invariant T-cell receptors, whereas the role of type 2 NKT cells with diverse T-cell receptors is less well understood. However, there have been several findings which indicate that in fact type 2 NKT cells may regulate the progression of type 1 diabetes in NOD mice, including a fraction of these cells which recognize β-cell-enriched sulfatide. Therefore, the focus for this review is to present the current evidence of the effect of type 2 NKT cells on the development of T1D. In general, there is still uncertainty surrounding the mechanism of activation and function of NKT cells. Here, we present two models of the effector mechanisms, respectively, Th1/Th2 polarization and the induction of tolerogenic dendritic cells (DC). In conclusion, this review points to the importance of immunoregulation by type 2 NKT cells in preventing the development of T1D and highlights the induction of tolerogenic DC as a likely mechanism. The possible therapeutic role of type 1 and type 2 NKT cells are evaluated and future experiments concerning type 2 NKT cells and T1D are proposed. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  12. Radioactive and enzymatic cloned cDNA probes for bovine enteric coronavirus detection by molecular hybridization

    International Nuclear Information System (INIS)

    Collomb, J.; Finance, C.; Alabouch, S.; Laporte, J.

    1992-01-01

    Genomic RNA of F15 strain bovine enteric coronavirus (BECV) was cloned in E. coli. Three clones (174, 160, PG 78), selected in the cDNA library, including a large portion of the nucleocapsid (N), matrix (M) and peplomeric (S) protein genes , were used as probes for a slot blot hybridization assay. Two probe labelling techniques were compared, radiolabelling with 32 P and enzymatic labelling through covalent linkage to peroxidase and chemiluminescence detection. The radioactive probe 174 detected as little as 1 to 3 pg of viral RNA, while the less sensitive enzymatic probe could not reveal more than 100 pg of RNA. No significant detection amplification was achieved when a mixture of the three probes was used. Probe 174 allowed specific identification for BECV. No hybridization was noticed either with rotaviruses or even with other antigenically unrelated members of the family Coronaviridae such as transmissible gastroenteritis virus. The test proved valid for detection of BECV in the supernatant of infected HRT-18 cells: genomic RNA could be detected after direct spotting of samples, but prior nucleic acid extraction after proteinase K treatment improved virus detection. BECV diagnosis in faecal samples using enzymatic probe was compared with conventional diagnostic methods. (authors)

  13. Radioactive and enzymatic cloned cDNA probes for bovine enteric coronavirus detection by molecular hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Collomb, J; Finance, C; Alabouch, S [Lab. de Microbiologie Moleculaire, Faculte des Sciences Pharmaceutiques et Biologiques, Univ. de Nancy I, Nancy (France); Laporte, J [Station de Virologie et d' Immunologie Moleculaires, INRA, Jouy-en-Josas (France)

    1992-01-01

    Genomic RNA of F15 strain bovine enteric coronavirus (BECV) was cloned in E. coli. Three clones (174, 160, PG 78), selected in the cDNA library, including a large portion of the nucleocapsid (N), matrix (M) and peplomeric (S) protein genes , were used as probes for a slot blot hybridization assay. Two probe labelling techniques were compared, radiolabeled with [sup 32]P and enzymatic labeled through covalent linkage to peroxidase for chemiluminescence detection. The radioactive probe 174 detected as little as 1-3 pg of viral RNA, while the less sensitive enzymatic probe could not reveal more than 100 pg of RNA. No significant detection amplification was achieved when a mixture of the three probes was used. Probe 174 allowed specific identification for BECV. No hybridization was noticed either with rotaviruses or even with other antigenically unrelated members of the family Coronaviridae such as transmissible gastroenteritis virus. The test proved valid for detection of BECV in the supernatant of infected HRT-18 cells: genomic RNA could be detected after direct spotting of samples, but prior nucleic acid extraction after proteinase K treatment improved virus detection. BECV diagnosis in fecal samples using enzymatic probe was compared with conventional diagnostic methods. (authors).

  14. A case of imported Middle East Respiratory Syndrome coronavirus infection and public health response, Greece, April 2014.

    Science.gov (United States)

    Tsiodras, S; Baka, A; Mentis, A; Iliopoulos, D; Dedoukou, X; Papamavrou, G; Karadima, S; Emmanouil, M; Kossyvakis, A; Spanakis, N; Pavli, A; Maltezou, H; Karageorgou, A; Spala, G; Pitiriga, V; Kosmas, E; Tsiagklis, S; Gkatzias, S; Koulouris, Ng; Koutsoukou, A; Bakakos, P; Markozanhs, E; Dionellis, G; Pontikis, K; Rovina, N; Kyriakopoulou, M; Efstathiou, P; Papadimitriou, T; Kremastinou, J; Tsakris, A; Saroglou, G

    2014-04-24

    On 18 April 2014, a case of Middle East Respiratory Syndrome coronavirus (MERS-CoV) infection was laboratory confirmed in Athens, Greece in a patient returning from Jeddah, Saudi Arabia. Main symptoms upon initial presentation were protracted fever and diarrhoea, during hospitalisation he developed bilateral pneumonia and his condition worsened. During 14 days prior to onset of illness, he had extensive contact with the healthcare environment in Jeddah. Contact tracing revealed 73 contacts, no secondary cases had occurred by 22 April.

  15. Enteroendocrine cell types revisited

    DEFF Research Database (Denmark)

    Engelstoft, Maja S; Egerod, Kristoffer Lihme; Lund, Mari L

    2013-01-01

    The GI-tract is profoundly involved in the control of metabolism through peptide hormones secreted from enteroendocrine cells scattered throughout the gut mucosa. A large number of recently generated transgenic reporter mice have allowed for direct characterization of biochemical and cell...... biological properties of these previously highly elusive enteroendocrine cells. In particular the surprisingly broad co-expression of six functionally related hormones in the intestinal enteroendocrine cells indicates that it should be possible to control not only the hormone secretion but also the type...... and number of enteroendocrine cells. However, this will require a more deep understanding of the factors controlling differentiation, gene expression and specification of the enteroendocrine cells during their weekly renewal from progenitor cells in the crypts of the mucosa....

  16. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency.

    Science.gov (United States)

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels.

  17. Feline aminopeptidase N is not a functional receptor for avian infectious bronchitis virus

    Directory of Open Access Journals (Sweden)

    Harbison Carole E

    2007-02-01

    Full Text Available Abstract Background Coronaviruses are an important cause of infectious diseases in humans, including severe acute respiratory syndrome (SARS, and have the continued potential for emergence from animal species. A major factor in the host range of a coronavirus is its receptor utilization on host cells. In many cases, coronavirus-receptor interactions are well understood. However, a notable exception is the receptor utilization by group 3 coronaviruses, including avian infectious bronchitis virus (IBV. Feline aminopeptidase N (fAPN serves as a functional receptor for most group 1 coronaviruses including feline infectious peritonitis virus (FIPV, canine coronavirus, transmissible gastroenteritis virus (TGEV, and human coronavirus 229E (HCoV-229E. A recent report has also suggested a role for fAPN during IBV entry (Miguel B, Pharr GT, Wang C: The role of feline aminopeptidase N as a receptor for infectious bronchitis virus. Brief review. Arch Virol 2002, 147:2047–2056. Results Here we show that, whereas both transient transfection and constitutive expression of fAPN on BHK-21 cells can rescue FIPV and TGEV infection in non-permissive BHK cells, fAPN expression does not rescue infection by the prototype IBV strain Mass41. To account for the previous suggestion that fAPN could serve as an IBV receptor, we show that feline cells can be infected with the prototype strain of IBV (Mass 41, but with low susceptibility compared to primary chick kidney cells. We also show that BHK-21 cells are slightly susceptible to certain IBV strains, including Ark99, Ark_DPI, CA99, and Iowa97 ( Conclusion We conclude that fAPN is not a functional receptor for IBV, the identity of which is currently under investigation.

  18. The use of enzyme-linked immunosorbent assay systems for the serology and antigen detection in parvovirus, coronavirus and rotavirus infections in dogs in The Netherlands.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); J. Groen (Jan); H.F. Egberink (Herman); G.H.A. Borst (Gerrit); F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert)

    1991-01-01

    textabstractComplex trapping blocking (CTB) enzyme-linked immunosorbent assays (ELISAs) and indirect ELISAs for the detection of antibodies to canine parvovirus (CPV), canine coronavirus (CCV) and rotavirus in sera of dogs were established. Double antibody sandwich ELISAs for the detection of CPV-,

  19. Cell elasticity with altered cytoskeletal architectures across multiple cell types.

    Science.gov (United States)

    Grady, Martha E; Composto, Russell J; Eckmann, David M

    2016-08-01

    The cytoskeleton is primarily responsible for providing structural support, localization and transport of organelles, and intracellular trafficking. The structural support is supplied by actin filaments, microtubules, and intermediate filaments, which contribute to overall cell elasticity to varying degrees. We evaluate cell elasticity in five different cell types with drug-induced cytoskeletal derangements to probe how actin filaments and microtubules contribute to cell elasticity and whether it is conserved across cell type. Specifically, we measure elastic stiffness in primary chondrocytes, fibroblasts, endothelial cells (HUVEC), hepatocellular carcinoma cells (HUH-7), and fibrosarcoma cells (HT 1080) subjected to two cytoskeletal destabilizers: cytochalasin D and nocodazole, which disrupt actin and microtubule polymerization, respectively. Elastic stiffness is measured by atomic force microscopy (AFM) and the disruption of the cytoskeleton is confirmed using fluorescence microscopy. The two cancer cell lines showed significantly reduced elastic moduli values (~0.5kPa) when compared to the three healthy cell lines (~2kPa). Non-cancer cells whose actin filaments were disrupted using cytochalasin D showed a decrease of 60-80% in moduli values compared to untreated cells of the same origin, whereas the nocodazole-treated cells showed no change in elasticity. Overall, we demonstrate actin filaments contribute more to elastic stiffness than microtubules but this result is cell type dependent. Cancer cells behaved differently, exhibiting increased stiffness as well as stiffness variability when subjected to nocodazole. We show that disruption of microtubule dynamics affects cancer cell elasticity, suggesting therapeutic drugs targeting microtubules be monitored for significant elastic changes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Dynamics of SARS-coronavirus HR2 domain in the prefusion and transition states

    Science.gov (United States)

    McReynolds, Susanna; Jiang, Shaokai; Rong, Lijun; Caffrey, Michael

    2009-12-01

    The envelope glycoproteins S1 and S2 of severe acute respiratory syndrome coronavirus (SARS-CoV) mediate viral entry by conformational change from a prefusion state to a postfusion state that enables fusion of the viral and target membranes. In this work we present the characterization of the dynamic properties of the SARS-CoV S2-HR2 domain (residues 1141-1193 of S) in the prefusion and newly discovered transition states by NMR 15N relaxation studies. The dynamic properties of the different states, which are stabilized under different experimental conditions, extend the current model of viral membrane fusion and give insight into the design of structure-based antagonists of SARS-CoV in particular, as well as other enveloped viruses such as HIV.

  1. In Situ Tagged nsp15 Reveals Interactions with Coronavirus Replication/Transcription Complex-Associated Proteins

    Directory of Open Access Journals (Sweden)

    Jeremiah Athmer

    2017-01-01

    Full Text Available Coronavirus (CoV replication and transcription are carried out in close proximity to restructured endoplasmic reticulum (ER membranes in replication/transcription complexes (RTC. Many of the CoV nonstructural proteins (nsps are required for RTC function; however, not all of their functions are known. nsp15 contains an endoribonuclease domain that is conserved in the CoV family. While the enzymatic activity and crystal structure of nsp15 are well defined, its role in replication remains elusive. nsp15 localizes to sites of RNA replication, but whether it acts independently or requires additional interactions for its function remains unknown. To begin to address these questions, we created an in situ tagged form of nsp15 using the prototypic CoV, mouse hepatitis virus (MHV. In MHV, nsp15 contains the genomic RNA packaging signal (P/S, a 95-bp RNA stem-loop structure that is not required for viral replication or nsp15 function. Utilizing this knowledge, we constructed an internal hemagglutinin (HA tag that replaced the P/S. We found that nsp15-HA was localized to discrete perinuclear puncta and strongly colocalized with nsp8 and nsp12, both well-defined members of the RTC, but not the membrane (M protein, involved in virus assembly. Finally, we found that nsp15 interacted with RTC-associated proteins nsp8 and nsp12 during infection, and this interaction was RNA independent. From this, we conclude that nsp15 localizes and interacts with CoV proteins in the RTC, suggesting it plays a direct or indirect role in virus replication. Furthermore, the use of in situ epitope tags could be used to determine novel nsp-nsp interactions in coronaviruses.

  2. Transduction of hematopoietic stem cells to stimulate RNA interference against feline infectious peritonitis.

    Science.gov (United States)

    Anis, Eman A; Dhar, Madhu; Legendre, Alfred M; Wilkes, Rebecca P

    2017-06-01

    Objectives The goals of the study were: (1) to develop and evaluate non-replicating lentivirus vectors coding for feline coronavirus (FCoV)-specific micro (mi)RNA as a potential antiviral therapy for feline infectious peritonitis (FIP); (2) to assess the feasibility of transducing hematopoietic stem cells (HSCs) with ex vivo introduction of the miRNA-expressing lentivirus vector; and (3) to assess the ability of the expressed miRNA to inhibit FCoV replication in HSCs in vitro. Methods HSCs were obtained from feline bone marrow and replicated in vitro. Three lentiviruses were constructed, each expressing a different anti-FCoV miRNA. HSCs were stably transduced with the miRNA-expressing lentivirus vector that produced the most effective viral inhibition in a feline cell line. The effectiveness of the transduction and the expression of anti-FCoV miRNA were tested by infecting the HSCs with two different strains of FCoV. The inhibition of coronavirus replication was determined by relative quantification of the inhibition of intracellular viral genomic RNA synthesis using real-time, reverse-transcription PCR. The assessment of virus replication inhibition was determined via titration of extracellular virus using the TCID 50 assay. Results Inhibition of FCoV was most significant in feline cells expressing miRNA-L2 that targeted the viral leader sequence, 48 h postinfection. miRNA-L2 expression in stably transduced HSCs resulted in 90% and 92% reductions in FIPV WSU 79-1146 genomic RNA synthesis and extracellular virus production, respectively, as well as 74% and 80% reduction in FECV WSU 79-1683 genomic RNA synthesis and extracellular virus production, respectively, as compared with an infected negative control sample producing non-targeting miRNA. Conclusions and relevance These preliminary results show that genetic modification of HSCs for constitutive production of anti-coronavirus miRNA will reduce FCoV replication.

  3. Type II NKT cells: a distinct CD1d-restricted immune regulatory NKT cell subset.

    Science.gov (United States)

    Dasgupta, Suryasarathi; Kumar, Vipin

    2016-08-01

    Type II natural killer T cells (NKT) are a subset of the innate-like CD1d-restricted lymphocytes that are reactive to lipid antigens. Unlike the type I NKT cells, which express a semi-invariant TCR, type II NKT cells express a broader TCR repertoire. Additionally, other features, such as their predominance over type I cells in humans versus mice, the nature of their ligands, CD1d/lipid/TCR binding, and modulation of immune responses, distinguish type II NKT cells from type I NKT cells. Interestingly, it is the self-lipid-reactivity of type II NKT cells that has helped define their physiological role in health and in disease. The discovery of sulfatide as one of the major antigens for CD1d-restricted type II NKT cells in mice has been instrumental in the characterization of these cells, including the TCR repertoire, the crystal structure of the CD1d/lipid/TCR complex, and their function. Subsequently, several other glycolipids and phospholipids from both endogenous and microbial sources have been shown to activate type II NKT cells. The activation of a specific subset of type II NKT cells following administration with sulfatide or lysophosphatidylcholine (LPC) leads to engagement of a dominant immunoregulatory pathway associated with the inactivation of type I NKT cells, conventional dendritic cells, and inhibition of the proinflammatory Th1/Th17 cells. Thus, type II NKT cells have been shown to be immunosuppressive in autoimmune diseases, inflammatory liver diseases, and in cancer. Knowing their relatively higher prevalence in human than type I NKT cells, understanding their biology is imperative for health and disease.

  4. Middle East respiratory syndrome coronavirus disease is rare in children: An update from Saudi Arabia.

    Science.gov (United States)

    Al-Tawfiq, Jaffar A; Kattan, Rana F; Memish, Ziad A

    2016-11-08

    To summarize the reported Middle East respiratory syndrome-coronavirus (MERS-CoV) cases, the associated clinical presentations and the outcomes. We searched the Saudi Ministry of Health website, the World Health Organization website, and the Flutracker website. We also searched MEDLINE and PubMed for the keywords: Middle East respiratory syndrome-coronavirus, MERS-CoV in combination with pediatric, children, childhood, infancy and pregnancy from the initial discovery of the virus in 2012 to 2016. The retrieved articles were also read to further find other articles. Relevant data were placed into an excel sheet and analyzed accordingly. Descriptive analytic statistics were used in the final analysis as deemed necessary. From June 2012 to April 19, 2016, there were a total of 31 pediatric MERS-CoV cases. Of these cases 13 (42%) were asymptomatic and the male to female ratio was 1.7:1. The mean age of patients was 9.8 ± 5.4 years. Twenty-five (80.6%) of the cases were reported from the Kingdom of Saudi Arabia. The most common source of infection was household contact (10 of 15 with reported source) and 5 patients acquired infection within a health care facility. Using real time reverse transcriptase polymerase chain reaction of pediatric patients revealed that 9 out of 552 (1.6%) was positive in the Kingdom of Saudi Arabia. Utilizing serology for MERS-CoV infection in Jordan and Saudi Arabia did not reveal any positive patients. Thus, the number of the pediatric MERS-CoV is low; the exact reason for the low prevalence of the disease in children is not known.

  5. Candidates in Astroviruses, Seadornaviruses, Cytorhabdoviruses and Coronaviruses for +1 frame overlapping genes accessed by leaky scanning

    Directory of Open Access Journals (Sweden)

    Atkins John F

    2010-01-01

    Full Text Available Abstract Background Overlapping genes are common in RNA viruses where they serve as a mechanism to optimize the coding potential of compact genomes. However, annotation of overlapping genes can be difficult using conventional gene-finding software. Recently we have been using a number of complementary approaches to systematically identify previously undetected overlapping genes in RNA virus genomes. In this article we gather together a number of promising candidate new overlapping genes that may be of interest to the community. Results Overlapping gene predictions are presented for the astroviruses, seadornaviruses, cytorhabdoviruses and coronaviruses (families Astroviridae, Reoviridae, Rhabdoviridae and Coronaviridae, respectively.

  6. Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014

    NARCIS (Netherlands)

    Reusken, C B; Farag, E A; Jonges, M; Godeke, G J; El-Sayed, A M; Pas, S D; Raj, V S; Mohran, K A; Moussa, H A; Ghobashy, H; Alhajri, F; Ibrahim, A K; Bosch, B J; Pasha, S K; Al-Romaihi, H E; Al-Thani, M; Al-Marri, S A; AlHajri, M M; Haagmans, B L; Koopmans, M P

    2014-01-01

    Antibodies to Middle East respiratory syndrome coronavirus (MERS-CoV) were detected in serum and milk collected according to local customs from 33 camels in Qatar, April 2014. At one location, evidence for active virus shedding in nasal secretions and/or faeces was observed for 7/12 camels; viral

  7. Functional cell types in taste buds have distinct longevities.

    Directory of Open Access Journals (Sweden)

    Isabel Perea-Martinez

    Full Text Available Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8-12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2'-deoxyuridine (EdU to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells.

  8. Functional cell types in taste buds have distinct longevities.

    Science.gov (United States)

    Perea-Martinez, Isabel; Nagai, Takatoshi; Chaudhari, Nirupa

    2013-01-01

    Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8-12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2'-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells.

  9. Feline infectious peritonitis: role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats.

    Science.gov (United States)

    Pedersen, Niels C; Liu, Hongwei; Scarlett, Jennifer; Leutenegger, Christian M; Golovko, Lyudmila; Kennedy, Heather; Kamal, Farina Mustaffa

    2012-04-01

    Feline infectious peritonitis virus (FIPV) was presumed to arise from mutations in the 3c of a ubiquitous and largely nonpathogenic feline enteric coronavirus (FECV). However, a recent study found that one-third of FIPV isolates have an intact 3c and suggested that it is not solely involved in FIP but is essential for intestinal replication. In order to confirm these assumptions, 27 fecal and 32 FIP coronavirus isolates were obtained from resident or adopted cats from a large metropolitan shelter during 2008-2009 and their 3a-c, E, and M genes sequenced. Forty percent of coronavirus isolates from FIP tissues had an intact 3c gene, while 60% had mutations that truncated the gene product. The 3c genes of fecal isolates from healthy cats were always intact. Coronavirus from FIP diseased tissues consistently induced FIP when given either oronasally or intraperitoneally (i.p.), regardless of the functional status of their 3c genes, thus confirming them to be FIPVs. In contrast, fecal isolates from healthy cats were infectious following oronasal infection and shed at high levels in feces without causing disease, as expected for FECVs. Only one in three cats shed FECV in the feces following i.p. infection, indicating that FECVs can replicate systemically, but with difficulty. FIPVs having a mutated 3c were not shed in the feces following either oronasal or i.p. inoculation, while FIPVs with intact 3c genes were shed in the feces following oronasal but not i.p. inoculation. Therefore, an intact 3c appears to be essential for intestinal replication. Although FIPVs with an intact 3c were shed in the feces following oronasal inoculation, fecal virus from these cats was not infectious for other cats. Attempts to identify potential FIP mutations in the 3a, 3b, E, and M were negative. However, the 3c gene of FIPVs, even though appearing intact, contained many more non-synonymous amino acid changes in the 3' one-third of the 3c protein than FECVs. An attempt to trace FIPV

  10. False-Positive Results in a Recombinant Severe Acute Respiratory Syndrome-Associated Coronavirus (SARS-CoV) Nucleocapsid Enzyme-Linked Immunosorbent Assay Due to HCoV-OC43 and HCoV-229E Rectified by Western Blotting with Recombinant SARS-CoV Spike Polypeptide

    OpenAIRE

    Woo, Patrick C. Y.; Lau, Susanna K. P.; Wong, Beatrice H. L.; Chan, Kwok-Hung; Hui, Wai-Ting; Kwan, Grace S. W.; Peiris, J. S. Malik; Couch, Robert B.; Yuen, Kwok-Yung

    2004-01-01

    Using paired serum samples obtained from patients with illness associated with increases in anti-human coronavirus OC43 (HCoV-OC43) or anti-HCoV-229E antibodies, we examined the possibility of false-positive results detected in a recombinant severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein immunoglobulin G enzyme-linked immunosorbent assay (ELISA). Three of the 21 and 1 of the 7 convalescent-phase serum samples from persons with increases in anti...

  11. The nonstructural protein 8 (nsp8) of the SARS coronavirus interacts with its ORF6 accessory protein

    International Nuclear Information System (INIS)

    Kumar, Purnima; Gunalan, Vithiagaran; Liu Boping; Chow, Vincent T.K.; Druce, Julian; Birch, Chris; Catton, Mike; Fielding, Burtram C.; Tan, Yee-Joo; Lal, Sunil K.

    2007-01-01

    Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a severe outbreak in several regions of the world in 2003. The SARS-CoV genome is predicted to contain 14 functional open reading frames (ORFs). The first ORF (1a and 1b) encodes a large polyprotein that is cleaved into nonstructural proteins (nsp). The other ORFs encode for four structural proteins (spike, membrane, nucleocapsid and envelope) as well as eight SARS-CoV-specific accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b and 9b). In this report we have cloned the predicted nsp8 gene and the ORF6 gene of the SARS-CoV and studied their abilities to interact with each other. We expressed the two proteins as fusion proteins in the yeast two-hybrid system to demonstrate protein-protein interactions and tested the same using a yeast genetic cross. Further the strength of the interaction was measured by challenging growth of the positive interaction clones on increasing gradients of 2-amino trizole. The interaction was then verified by expressing both proteins separately in-vitro in a coupled-transcription translation system and by coimmunoprecipitation in mammalian cells. Finally, colocalization experiments were performed in SARS-CoV infected Vero E6 mammalian cells to confirm the nsp8-ORF6 interaction. To the best of our knowledge, this is the first report of the interaction between a SARS-CoV accessory protein and nsp8 and our findings suggest that ORF6 protein may play a role in virus replication

  12. Lineage relationship of prostate cancer cell types based on gene expression

    Directory of Open Access Journals (Sweden)

    Ware Carol B

    2011-05-01

    Full Text Available Abstract Background Prostate tumor heterogeneity is a major factor in disease management. Heterogeneity could be due to multiple cancer cell types with distinct gene expression. Of clinical importance is the so-called cancer stem cell type. Cell type-specific transcriptomes are used to examine lineage relationship among cancer cell types and their expression similarity to normal cell types including stem/progenitor cells. Methods Transcriptomes were determined by Affymetrix DNA array analysis for the following cell types. Putative prostate progenitor cell populations were characterized and isolated by expression of the membrane transporter ABCG2. Stem cells were represented by embryonic stem and embryonal carcinoma cells. The cancer cell types were Gleason pattern 3 (glandular histomorphology and pattern 4 (aglandular sorted from primary tumors, cultured prostate cancer cell lines originally established from metastatic lesions, xenografts LuCaP 35 (adenocarcinoma phenotype and LuCaP 49 (neuroendocrine/small cell carcinoma grown in mice. No detectable gene expression differences were detected among serial passages of the LuCaP xenografts. Results Based on transcriptomes, the different cancer cell types could be clustered into a luminal-like grouping and a non-luminal-like (also not basal-like grouping. The non-luminal-like types showed expression more similar to that of stem/progenitor cells than the luminal-like types. However, none showed expression of stem cell genes known to maintain stemness. Conclusions Non-luminal-like types are all representatives of aggressive disease, and this could be attributed to the similarity in overall gene expression to stem and progenitor cell types.

  13. Amiloride-sensitive channels in type I fungiform taste cells in mouse

    Directory of Open Access Journals (Sweden)

    Clapp Tod R

    2008-01-01

    Full Text Available Abstract Background Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na+ and K+ current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na+, K+, and Ca2+ currents, and make prominent synapses with afferent nerve fibers. Na+ salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs. In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice. Results Taste cell types were identified by their response to depolarizing voltage steps and their presence or absence of GFP fluorescence. TRPM5-GFP taste cells expressed large voltage-gated Na+ and K+ currents, but lacked voltage-gated Ca2+ currents, as expected from previous studies. Approximately half of the unlabeled cells had similar membrane properties, suggesting they comprise a separate population of Type II cells. The other half expressed voltage-gated outward currents only, typical of Type I cells. A single taste cell had voltage-gated Ca2+ current characteristic of Type III cells. Responses to amiloride occurred only in cells that lacked voltage-gated inward currents. Immunocytochemistry showed that fungiform taste buds have significantly fewer Type II cells expressing PLC signalling

  14. Crosstalk between type II NKT cells and T cells leads to spontaneous chronic inflammatory liver disease.

    Science.gov (United States)

    Weng, Xiufang; He, Ying; Visvabharathy, Lavanya; Liao, Chia-Min; Tan, Xiaosheng; Balakumar, Arjun; Wang, Chyung-Ru

    2017-10-01

    Natural killer T (NKT) cells are CD1d-restricted innate-like T cells that modulate innate and adaptive immune responses. Unlike the well-characterized invariant/type I NKT cells, type II NKT cells with a diverse T cell receptor repertoire are poorly understood. This study defines the pathogenic role of type II NKT cells in the etiology of chronic liver inflammation. Transgenic mice with the Lck promoter directing CD1d overexpression on T cells in Jα18 wild-type (Lck-CD1dTgJα18 + ; type I NKT cell sufficient) and Jα18-deficient (Lck-CD1dTgJα18 o , type I NKT cell deficient) mice were analyzed for liver pathology and crosstalk between type II NKT cells and conventional T cells. CD1d expression on T cells in peripheral blood samples and liver sections from autoimmune hepatitis patients and healthy individuals were also examined. Lck-CD1dTgJα18 o and Lck-CD1dTgJα18 + mice developed similar degrees of liver pathology resembling chronic autoimmune hepatitis in humans. Increased CD1d expression on T cells promoted the activation of type II NKT cells and other T cells. This resulted in T h 1-skewing and impaired T h 2 cytokine production in type II NKT cells. Dysfunction of type II NKT cells was accompanied by conventional T cell activation and pro-inflammatory cytokine production, leading to a hepatic T/B lymphocyte infiltration, elevated autoantibodies and hepatic injury in Lck-CD1dTg mice. A similar mechanism could be extended to humans as CD1d expression is upregulated on activated human T cells and increased presence of CD1d-expressing T cells was observed in autoimmune hepatitis patients. Our data reveals enhanced crosstalk between type II NKT cells and conventional T cells, leading to a T h 1-skewed inflammatory milieu, and consequently, to the development of chronic autoimmune liver disease. Lay summary: CD1d overexpression on T cells enhances crosstalk between type II NKT cells and T cells, resulting in their aberrant activation and leading to the

  15. A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Anjeanette Roberts

    2007-01-01

    Full Text Available No single animal model for severe acute respiratory syndrome (SARS reproduces all aspects of the human disease. Young inbred mice support SARS-coronavirus (SARS-CoV replication in the respiratory tract and are available in sufficient numbers for statistical evaluation. They are relatively inexpensive and easily accessible, but their use in SARS research is limited because they do not develop illness following infection. Older (12- to 14-mo-old BALB/c mice develop clinical illness and pneumonitis, but they can be hard to procure, and immune senescence complicates pathogenesis studies. We adapted the SARS-CoV (Urbani strain by serial passage in the respiratory tract of young BALB/c mice. Fifteen passages resulted in a virus (MA15 that is lethal for mice following intranasal inoculation. Lethality is preceded by rapid and high titer viral replication in lungs, viremia, and dissemination of virus to extrapulmonary sites accompanied by lymphopenia, neutrophilia, and pathological changes in the lungs. Abundant viral antigen is extensively distributed in bronchial epithelial cells and alveolar pneumocytes, and necrotic cellular debris is present in airways and alveoli, with only mild and focal pneumonitis. These observations suggest that mice infected with MA15 die from an overwhelming viral infection with extensive, virally mediated destruction of pneumocytes and ciliated epithelial cells. The MA15 virus has six coding mutations associated with adaptation and increased virulence; when introduced into a recombinant SARS-CoV, these mutations result in a highly virulent and lethal virus (rMA15, duplicating the phenotype of the biologically derived MA15 virus. Intranasal inoculation with MA15 reproduces many aspects of disease seen in severe human cases of SARS. The availability of the MA15 virus will enhance the use of the mouse model for SARS because infection with MA15 causes morbidity, mortality, and pulmonary pathology. This virus will be of value as

  16. Proteomic analysis of purified coronavirus infectious bronchitis virus particles

    Directory of Open Access Journals (Sweden)

    Shu Dingming

    2010-06-01

    Full Text Available Abstract Background Infectious bronchitis virus (IBV is the coronavirus of domestic chickens causing major economic losses to the poultry industry. Because of the complexity of the IBV life cycle and the small number of viral structural proteins, important virus-host relationships likely remain to be discovered. Toward this goal, we performed two-dimensional gel electrophoresis fractionation coupled to mass spectrometry identification approaches to perform a comprehensive proteomic analysis of purified IBV particles. Results Apart from the virus-encoded structural proteins, we detected 60 host proteins in the purified virions which can be grouped into several functional categories including intracellular trafficking proteins (20%, molecular chaperone (18%, macromolcular biosynthesis proteins (17%, cytoskeletal proteins (15%, signal transport proteins (15%, protein degradation (8%, chromosome associated proteins (2%, ribosomal proteins (2%, and other function proteins (3%. Interestingly, 21 of the total host proteins have not been reported to be present in virions of other virus families, such as major vault protein, TENP protein, ovalbumin, and scavenger receptor protein. Following identification of the host proteins by proteomic methods, the presence of 4 proteins in the purified IBV preparation was verified by western blotting and immunogold labeling detection. Conclusions The results present the first standard proteomic profile of IBV and may facilitate the understanding of the pathogenic mechanisms.

  17. Complete Genome Sequence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) from the First Imported MERS-CoV Case in China.

    Science.gov (United States)

    Lu, Roujian; Wang, Yanqun; Wang, Wenling; Nie, Kai; Zhao, Yanjie; Su, Juan; Deng, Yao; Zhou, Weimin; Li, Yang; Wang, Huijuan; Wang, Wen; Ke, Changwen; Ma, Xuejun; Wu, Guizhen; Tan, Wenjie

    2015-08-13

    On 26 May 2015, an imported Middle East respiratory syndrome coronavirus (MERS-CoV) was identified in Guangdong Province, China, and found to be closely related to the MERS-CoV strain prevalent in South Korea. The full genome of the ChinaGD01 strain was sequenced and analyzed to investigate the epidemiology and evolution of MERS-CoV circulating in South Korea and China. Copyright © 2015 Lu et al.

  18. Types and distribution of mucous cells of the abalone Haliotis ...

    African Journals Online (AJOL)

    user

    2012-05-08

    May 8, 2012 ... Key words: Haliotis diversicolor; mucous cells, types, distribution. .... Figure 2. The shape of the mucous cells. O (oval or circle-like); c (cup- like); s ... (J) mucous cells at base of gill filaments, small cells, type II and type III; (K) a ...

  19. Sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction detecting feline coronavirus mutations in effusion and serum/plasma of cats to diagnose feline infectious peritonitis

    NARCIS (Netherlands)

    Felten, Sandra; Leutenegger, Christian M.; Balzer, Hans Joerg; Pantchev, Nikola; Matiasek, Kaspar; Wess, Gerhard; Egberink, Herman|info:eu-repo/dai/nl/089740890; Hartmann, Katrin

    2017-01-01

    Background: Feline coronavirus (FCoV) exists as two pathotypes, and FCoV spike gene mutations are considered responsible for the pathotypic switch in feline infectious peritonitis (FIP) pathogenesis. The aim of this study was to evaluate sensitivity and specificity of a real-time reverse

  20. Type two innate lymphoid cells; the Janus cells in health and disease

    Science.gov (United States)

    Maazi, Hadi; Akbari, Omid

    2017-01-01

    Summary Innate lymphoid cells are functionally diverse subsets of immune cells including the conventional natural killer cells, lymphoid tissue inducers, type 1, 2 and 3 with significant roles in immunity and pathogenesis of inflammatory diseases. Type 2 innate lymphoid cells (ILC2s) resemble type 2 helper (Th2) cells in cytokine production and contribute to anti-helminth immunity, maintaining mucosal tissue integrity and adipose tissue browning. ILC2s play important roles in the pathogenesis of allergic diseases and asthma. Studying the pathways of activation and regulation of ILC2s are currently a priority for giving a better understanding of pathogenesis of diseases with immunological roots. Recently, our laboratory and others have shown several pathways of regulation of ILC2s by costimulatory molecules such as ICOS, regulatory T cells and by compounds such as nicotine. In this review, we summarize the current understanding of the mechanisms of activation and regulation of ILC2s and the role of these cells in health and disease. PMID:28658553

  1. Type two innate lymphoid cells: the Janus cells in health and disease.

    Science.gov (United States)

    Maazi, Hadi; Akbari, Omid

    2017-07-01

    Innate lymphoid cells are functionally diverse subsets of immune cells including the conventional natural killer cells, lymphoid tissue inducers, type 1, 2, and 3 with significant roles in immunity and pathogenesis of inflammatory diseases. Type 2 innate lymphoid cells (ILC2s) resemble type 2 helper (Th2) cells in cytokine production and contribute to anti-helminth immunity, maintaining mucosal tissue integrity, and adipose tissue browning. ILC2s play important roles in the pathogenesis of allergic diseases and asthma. Studying the pathways of activation and regulation of ILC2s are currently a priority for giving a better understanding of pathogenesis of diseases with immunological roots. Recently, our laboratory and others have shown several pathways of regulation of ILC2s by co-stimulatory molecules such as ICOS, regulatory T cells and by compounds such as nicotine. In this review, we summarize the current understanding of the mechanisms of activation and regulation of ILC2s and the role of these cells in health and disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Radiation effects on polyethylene foam of open cell type

    International Nuclear Information System (INIS)

    Tang Beilin; Kanako Kaji; Iwao Yoshizawa; Choji Kohara; Motoyoshi Hatada

    1991-01-01

    The effects of electron beam irradiation on polyethylene foam of open cell type have been studied. Experiments for determining of gel fraction and physical-mechanical properties of irradiated polyethylene foam of open cell type as a function of dose, respectively, were carried out. The dimensional stability of irradiated specimens at elevated temperatures was measured. It was found that tensile strength did not change and gel fraction increased when the specimen was irradiated in nitrogen atmosphere with increasing dose up to 300 kGy. The result shows that dimensional stability of polyethylene foam of open cell type after being kept in an oven at 70 deg C and 110 deg C for 22 h is improved by irradiation in nitrogen atmosphere. The similar results of irradiated EVA foam of open cell type irradiated foam of open cell type were obtained

  3. Feline coronavirus quantitative reverse transcriptase polymerase chain reaction on effusion samples in cats with and without feline infectious peritonitis.

    Science.gov (United States)

    Longstaff, Louise; Porter, Emily; Crossley, Victoria J; Hayhow, Sophie E; Helps, Christopher R; Tasker, Séverine

    2017-02-01

    Objectives The aim of the study was to determine whether feline coronavirus (FCoV) RNA in effusion samples can be used as a diagnostic marker of feline infectious peritonitis (FIP); and in FCoV RNA-positive samples to examine amino acid codons in the FCoV spike protein at positions 1058 and 1060 where leucine and alanine, respectively, have been associated with systemic or virulent (FIP) FCoV infection. Methods Total RNA was extracted from effusion samples from 20 cats with confirmed FIP and 23 cats with other diseases. Feline coronavirus RNA was detected using a reverse transcriptase quantitative polymerase chain reaction assay (qRT-PCR), and positive samples underwent pyrosequencing of position 1058 with or without Sanger sequencing of position 1060 in the FCoV spike protein. Results Seventeen (85%) of the effusion samples from 20 cats with FIP were positive for FCoV RNA, whereas none of the 23 cats with other diseases were positive. Pyrosequencing of the 17 FCoV-positive samples showed that 11 (65%) of the cats had leucine and two (12%) had methionine at position 1058. Of the latter two samples with methionine, one had alanine at position 1060. Conclusions and relevance A positive FCoV qRT-PCR result on effusions appears specific for FIP and may be a useful diagnostic marker for FIP in cats with effusions. The majority of FCoVs contained amino acid changes previously associated with systemic spread or virulence (FIP) of the virus.

  4. The Functions of Type I and Type II Natural Killer T (NKT) Cells in Inflammatory Bowel Diseases

    Science.gov (United States)

    Liao, Chia-Min; Zimmer, Michael I.; Wang, Chyung-Ru

    2013-01-01

    CD1d-restricted natural killer T (NKT) cells are a distinct subset of T cells that rapidly produce an array of cytokines upon activation and play a critical role in regulating various immune responses. NKT cells are classified into two groups based on differences in T cell receptor (TCR) usage. Type I NKT cells have an invariant TCRα-chain and are readily detectable by α-galactosylceramide (α-GalCer)-loaded CD1d tetramers. Type II NKT cells have a more diverse TCR repertoire and cannot be directly identified. Both types of NKT cells as well as multiple CD1d-expressing cell types are present in the intestine and their interactions are likely to be modulated by pathogenic and commensal microbes, which in turn contribute to the intestinal immune responses in health and disease. Indeed, in several animal models of inflammatory bowel disease (IBD), Type I NKT cells have been shown to make both protective and pathogenic contributions to disease. In contrast, in human patients suffering from ulcerative colitis (UC), and a mouse model in which both CD1d expression and the frequency of Type II NKT cells are increased, Type II NKT cells appear to promote intestinal inflammation. In this review, we summarize present knowledge on the antigen recognition, activation and function of NKT cells with a particular focus on their role in IBD, and discuss factors that may influence the functional outcome of NKT cell responses in intestinal inflammation. PMID:23518808

  5. Type II NKT-TFH cells against Gaucher lipids regulate B-cell immunity and inflammation.

    Science.gov (United States)

    Nair, Shiny; Boddupalli, Chandra Sekhar; Verma, Rakesh; Liu, Jun; Yang, Ruhua; Pastores, Gregory M; Mistry, Pramod K; Dhodapkar, Madhav V

    2015-02-19

    Chronic inflammation including B-cell activation is commonly observed in both inherited (Gaucher disease [GD]) and acquired disorders of lipid metabolism. However, the cellular mechanisms underlying B-cell activation in these settings remain to be elucidated. Here, we report that β-glucosylceramide 22:0 (βGL1-22) and glucosylsphingosine (LGL1), 2 major sphingolipids accumulated in GD, can be recognized by a distinct subset of CD1d-restricted human and murine type II natural killer T (NKT) cells. Human βGL1-22- and LGL1-reactive CD1d tetramer-positive T cells have a distinct T-cell receptor usage and genomic and cytokine profiles compared with the classical type I NKT cells. In contrast to type I NKT cells, βGL1-22- and LGL1-specific NKT cells constitutively express T-follicular helper (TFH) phenotype. Injection of these lipids leads to an increase in respective lipid-specific type II NKT cells in vivo and downstream induction of germinal center B cells, hypergammaglobulinemia, and production of antilipid antibodies. Human βGL1-22- and LGL1-specific NKT cells can provide efficient cognate help to B cells in vitro. Frequency of LGL1-specific T cells in GD mouse models and patients correlates with disease activity and therapeutic response. Our studies identify a novel type II NKT-mediated pathway for glucosphingolipid-mediated dysregulation of humoral immunity and increased risk of B-cell malignancy observed in metabolic lipid disorders. © 2015 by The American Society of Hematology.

  6. Cell-type-specific gene delivery into neuronal cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Parveen, Zahida; Mukhtar, Muhammad; Rafi, Mohammed; Wenger, David A.; Siddiqui, Khwaja M.; Siler, Catherine A.; Dietzschold, Bernhard; Pomerantz, Roger J.; Schnell, Matthias J.; Dornburg, Ralph

    2003-01-01

    The avian retroviruses reticuloendotheliosis virus strain A (REV-A) and spleen necrosis virus (SNV) are not naturally infectious in human cells. However, REV-A-derived viral vectors efficiently infect human cells when they are pseudotyped with envelope proteins displaying targeting ligands specific for human cell-surface receptors. Here we report that vectors containing the gag region of REV-A and pol of SNV can be pseudotyped with the envelope protein of vesicular stomatitis virus (VSV) and the glycoproteins of different rabies virus (RV) strains. Vectors pseudotyped with the envelope protein of the highly neurotropic RV strain CVS-N2c facilitated cell type-specific gene delivery into mouse and human neurons, but did not infect other human cell types. Moreover, when such vector particles were injected into the brain of newborn mice, only neuronal cells were infected in vivo. Cell-type-specific gene delivery into neurons may present quite specific gene therapy approaches for many degenerative diseases of the brain

  7. Freedom of expression: cell-type-specific gene profiling.

    Science.gov (United States)

    Otsuki, Leo; Cheetham, Seth W; Brand, Andrea H

    2014-01-01

    Cell fate and behavior are results of differential gene regulation, making techniques to profile gene expression in specific cell types highly desirable. Many methods now enable investigation at the DNA, RNA and protein level. This review introduces the most recent and popular techniques, and discusses key issues influencing the choice between these such as ease, cost and applicability of information gained. Interdisciplinary collaborations will no doubt contribute further advances, including not just in single cell type but single-cell expression profiling. © 2014 Wiley Periodicals, Inc.

  8. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1

    Science.gov (United States)

    Ma-Lauer, Yue; Carbajo-Lozoya, Javier; Müller, Marcel A.; Deng, Wen; Lei, Jian; Meyer, Benjamin; Kusov, Yuri; von Brunn, Brigitte; Bairad, Dev Raj; Hünten, Sabine; Drosten, Christian; Hermeking, Heiko; Leonhardt, Heinrich; Mann, Matthias; Hilgenfeld, Rolf; von Brunn, Albrecht

    2016-01-01

    Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PLpro), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95–144 of RCHY1 and 389–652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PLpros from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD–PLpro fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PLpro alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes. PMID:27519799

  9. Single-channel L-type Ca2+ currents in chicken embryo semicircular canal type I and type II hair cells.

    Science.gov (United States)

    Zampini, Valeria; Valli, Paolo; Zucca, Giampiero; Masetto, Sergio

    2006-08-01

    Few data are available concerning single Ca channel properties in inner ear hair cells and particularly none in vestibular type I hair cells. By using the cell-attached configuration of the patch-clamp technique in combination with the semicircular canal crista slice preparation, we determined the elementary properties of voltage-dependent Ca channels in chicken embryo type I and type II hair cells. The pipette solutions included Bay K 8644. With 70 mM Ba(2+) in the patch pipette, Ca channel activity appeared as very brief openings at -60 mV. Ca channel properties were found to be similar in type I and type II hair cells; therefore data were pooled. The mean inward current amplitude was -1.3 +/- 0.1 (SD) pA at - 30 mV (n = 16). The average slope conductance was 21 pS (n = 20). With 5 mM Ba(2+) in the patch pipette, very brief openings were already detectable at -80 mV. The mean inward current amplitude was -0.7 +/- 0.2 pA at -40 mV (n = 9). The average slope conductance was 11 pS (n = 9). The mean open time and the open probability increased significantly with depolarization. Ca channel activity was still present and unaffected when omega-agatoxin IVA (2 microM) and omega-conotoxin GVIA (3.2 microM) were added to the pipette solution. Our results show that types I and II hair cells express L-type Ca channels with similar properties. Moreover, they suggest that in vivo Ca(2+) influx might occur at membrane voltages more negative than -60 mV.

  10. Canine adenovirus type 1 in a fennec fox (Vulpes zerda).

    Science.gov (United States)

    Choi, Jeong-Won; Lee, Hyun-Kyoung; Kim, Seong-Hee; Kim, Yeon-Hee; Lee, Kyoung-Ki; Lee, Myoung-Heon; Oem, Jae-Ku

    2014-12-01

    A 10-mo-old female fennec fox (Vulpes zerda) with drooling suddenly died and was examined postmortem. Histologic examination of different tissue samples was performed. Vacuolar degeneration and diffuse fatty change were observed in the liver. Several diagnostic methods were used to screen for canine parvovirus, canine distemper virus, canine influenza virus, canine coronavirus, canine parainfluenza virus, and canine adenovirus (CAdV). Only CAdV type 1 (CAdV-1) was detected in several organs (liver, lung, brain, kidney, spleen, and heart), and other viruses were not found. CAdV-1 was confirmed by virus isolation and nucleotide sequencing.

  11. Repopulation of denuded tracheal grafts with alveolar type II cells

    International Nuclear Information System (INIS)

    Johnson, N.F.

    1988-01-01

    Repopulation of denuded heterotopic tracheal grafts with populations of specific epithelial cell types is one approach to study the differentiation potential of various cell types. This technique has been adopted to delineate the differentiation pathways of alveolar type II cells isolated from rat lungs. Under the conditions of this experiment, the reestablished epithelial lining was alveolar-like, however, ultrastructural analysis of the cells showed them to be like Clara cells. These preliminary results suggest that the secretary cells of the lung parenchyma and terminal airways may share a common ancestry. (author)

  12. Heterogeneity and Developmental Connections between Cell Types Inhabiting Teeth

    Directory of Open Access Journals (Sweden)

    Jan Krivanek

    2017-06-01

    Full Text Available Every tissue is composed of multiple cell types that are developmentally, evolutionary and functionally integrated into the unit we call an organ. Teeth, our organs for biting and mastication, are complex and made of many different cell types connected or disconnected in terms of their ontogeny. In general, epithelial and mesenchymal compartments represent the major framework of tooth formation. Thus, they give rise to the two most important matrix–producing populations: ameloblasts generating enamel and odontoblasts producing dentin. However, the real picture is far from this quite simplified view. Diverse pulp cells, the immune system, the vascular system, the innervation and cells organizing the dental follicle all interact, and jointly participate in transforming lifeless matrix into a functional organ that can sense and protect itself. Here we outline the heterogeneity of cell types that inhabit the tooth, and also provide a life history of the major populations. The mouse model system has been indispensable not only for the studies of cell lineages and heterogeneity, but also for the investigation of dental stem cells and tooth patterning during development. Finally, we briefly discuss the evolutionary aspects of cell type diversity and dental tissue integration.

  13. Conservation of nucleotide sequences for molecular diagnosis of Middle East respiratory syndrome coronavirus, 2015

    Directory of Open Access Journals (Sweden)

    Yuki Furuse

    2015-11-01

    Full Text Available Infection due to the Middle East respiratory syndrome coronavirus (MERS-CoV is widespread. The present study was performed to assess the protocols used for the molecular diagnosis of MERS-CoV by analyzing the nucleotide sequences of viruses detected between 2012 and 2015, including sequences from the large outbreak in eastern Asia in 2015. Although the diagnostic protocols were established only 2 years ago, mismatches between the sequences of primers/probes and viruses were found for several of the assays. Such mismatches could lead to a lower sensitivity of the assay, thereby leading to false-negative diagnosis. A slight modification in the primer design is suggested. Protocols for the molecular diagnosis of viral infections should be reviewed regularly after they are established, particularly for viruses that pose a great threat to public health such as MERS-CoV.

  14. Dromedary camels and the transmission of Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

    Science.gov (United States)

    Hemida, Maged G; Elmoslemany, Ahmed; Al-Hizab, Fahad; Alnaeem, Abdulmohsen; Almathen, Faisal; Faye, Bernard; Chu, Daniel KW; Perera, Ranawaka A; Peiris, Malik

    2015-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is an existential threat to global public health. The virus has been repeatedly detected in dromedary camels (Camelus dromedarius). Adult animals in many countries in the Middle East as well as in North and East Africa showed high (>90%) sero-prevalence to the virus. MERS-CoV isolated from dromedaries is genetically and phenotypically similar to viruses from humans. We summarise current understanding of the ecology of MERS-CoV in animals and transmission at the animal-human interface. We review aspects of husbandry, animal movements and trade and the use and consumption of camel dairy and meat products in the Middle East that may be relevant to the epidemiology of MERS. We also highlight the gaps in understanding the transmission of this virus in animals and from animals to humans. PMID:26256102

  15. Cell Type-Specific Contributions to the TSC Neuropathology

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0415 TITLE: Cell Type-Specific Contributions to the TSC Neuropathology PRINCIPAL INVESTIGATOR: Gabriella D’Arcangelo...AND SUBTITLE Cell Type-Specific Contributions to the TSC Neuropathology 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0415 5c. PROGRAM...how heterozygous and homozygous Tsc2 mutations affect the development of mutant excitatory neurons as well as other surrounding brain cells , in vivo

  16. Sero-prevalence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) specific antibodies in Dromedary Camels in Tabuk, Saudi Arabia.

    Science.gov (United States)

    Harrath, Rafik; Duhier, Faisel M Abu

    2018-04-16

    The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a novel Coronavirus which was responsible of the first case of human acute respiratory syndrome in the Kingdom of Saudi Arabia (KSA), 2012. Dromedary camels are considered as potential reservoirs for the virus and seem to be the only animal host which may transmit the infection to human. Further studies are required to better understand the animal sources of zoonotic transmission route and the risks of this infection. A primary sero-prevalence study of MERS-CoV preexisting neutralizing antibodies in Dromedary camel serum was conducted in Tabuk, western north region of KSA, in order to assess the seopositivity of these animals and to explain their possible role in the transmission of the infection to Human. One hundred seventy one (171) serum samples were collected from healthy dromedary camels with different ages and genders in Tabuk city and tested for specific serum IgG by ELISA using the receptor-binding S1 subunits of spike proteins of MERS-CoV. 144 (84,21%) of the total camel sera shown the presence of protein-specific antibodies against MERS-CoV. These results may provide evidence that MERS-CoV has previously infected dromedary camels in Tabuk and may support the possible role of camels in the human infection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Induction of expression of two phenotypic markers of pulmonary type II cells in a cultured cell line

    International Nuclear Information System (INIS)

    Henderson, R.F.; Waide, J.J.; Scott, G.G.

    1994-01-01

    The functions of pulmonary type II cells, such as synthesis of pulmonary surfactant and metabolism of inhaled xenobiotics, can be studied in primary isolates of lung cells. However, isolated type II cells, when cultured, quickly lose the phenotypic expressions characteristics of type II cells, including surfactant lipid and protein synthesis and alkaline phosphatase (AP) activity. A cultured cell line that maintained expression of type II cell markers of differentiation would be advantageous for the study of such functions as surfactant synthesis and secretion. Such a cell line would allow generation of a large number of homogeneous cells for study. The purpose of the current study was to induce markers of differentiated type II cells in a cultured cell line to facilitate studies of factors that control surfactant synthesis and secretion

  18. Mash1-expressing cells could differentiate to type III cells in adult mouse taste buds.

    Science.gov (United States)

    Takagi, Hiroki; Seta, Yuji; Kataoka, Shinji; Nakatomi, Mitsushiro; Toyono, Takashi; Kawamoto, Tatsuo

    2018-03-10

    The gustatory cells in taste buds have been identified as paraneuronal; they possess characteristics of both neuronal and epithelial cells. Like neurons, they form synapses, store and release transmitters, and are capable of generating an action potential. Like epithelial cells, taste cells have a limited life span and are regularly replaced throughout life. However, little is known about the molecular mechanisms that regulate taste cell genesis and differentiation. In the present study, to begin to understand these mechanisms, we investigated the role of Mash1-positive cells in regulating adult taste bud cell differentiation through the loss of Mash1-positive cells using the Cre-loxP system. We found that the cells expressing type III cell markers-aromatic L-amino acid decarboxylase (AADC), carbonic anhydrase 4 (CA4), glutamate decarboxylase 67 (GAD67), neural cell adhesion molecule (NCAM), and synaptosomal-associated protein 25 (SNAP25)-were significantly reduced in the circumvallate taste buds after the administration of tamoxifen. However, gustducin and phospholipase C beta2 (PLC beta2)-markers of type II taste bud cells-were not significantly changed in the circumvallate taste buds after the administration of tamoxifen. These results suggest that Mash1-positive cells could be differentiated to type III cells, not type II cells in the taste buds.

  19. Combination siRNA therapy against feline coronavirus can delay the emergence of antiviral resistance in vitro.

    Science.gov (United States)

    McDonagh, Phillip; Sheehy, Paul A; Norris, Jacqueline M

    2015-03-23

    Virulent biotypes of feline coronavirus (FCoV), commonly referred to as feline infectious peritonitis virus (FIPV), can result in the development of feline infectious peritonitis (FIP), a typically fatal immune mediated disease for which there is currently no effective antiviral treatment. We previously reported the successful in vitro inhibition of FIPV replication by synthetic siRNA mediated RNA interference (RNAi) in an immortalised cell line (McDonagh et al., 2011). A major challenge facing the development of any antiviral strategy is that of resistance, a problem which is particularly acute for RNAi based therapeutics due to the exquisite sequence specificity of the targeting mechanism. The development of resistance during treatment can be minimised using combination therapy to raise the genetic barrier or using highly potent compounds which result in a more rapid and pronounced reduction in the viral replication rate, thereby reducing the formation of mutant, and potentially resistant viruses. This study investigated the efficacy of combination siRNA therapy and its ability to delay or prevent viral escape. Virus serially passaged through cells treated with a single or dual siRNAs rapidly acquired resistance, with mutations identified in the siRNA target sites. Combination therapy with three siRNA prevented viral escape over the course of five passages. To identify more potent silencing molecules we also compared the efficacy, in terms of potency and duration of action, of canonical versus Dicer-substrate siRNAs for two previously identified effective viral motifs. Dicer-substrate siRNAs showed equivalent or better potency than canonical siRNAs for the target sites investigated, and may be a more appropriate molecule for in vivo use. Combined, these data inform the potential therapeutic application of antiviral RNAi against FIPV. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. [Functional properties of taste bud cells. Mechanisms of afferent neurotransmission in Type II taste receptor cells].

    Science.gov (United States)

    Romanov, R A

    2013-01-01

    Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.

  1. Type I and type II interferons upregulate functional type I interleukin-1 receptor in a human fibroblast cell line TIG-1.

    Science.gov (United States)

    Takii, T; Niki, N; Yang, D; Kimura, H; Ito, A; Hayashi, H; Onozaki, K

    1995-12-01

    The regulation of type I interleukin-1 receptor (IL-1R) expression by type I, interferon (IFN)-alpha A/D, and type II IFN, IFN-gamma, in a human fibroblast cell line TIG-1 was investigated. After 2 h stimulation with human IFN-alpha A/D or IFN-gamma, the levels of type I IL-1R mRNA increased. We previously reported that IL-1 upregulates transcription and cell surface molecules of type I IL-1R in TIG-1 cells through induction of prostaglandin (PG) E2 and cAMP accumulation. However, indomethacin was unable to inhibit the effect of IFNs, indicating that IFNs augment IL-1R expression through a pathway distinct from that of IL-1. The augmentation was also observed in other fibroblast cell lines. Nuclear run-on assays and studies of the stability of mRNA suggested that the increase in IL-1R mRNA was a result of the enhanced transcription of IL-1R gene. Binding studies using 125I-IL-1 alpha revealed that the number of cell surface IL-1R increased with no change in binding affinity by treatment with these IFNs. Pretreatment of the cells with IFNs enhanced IL-1-induced IL-6 production, indicating that IFNs upregulate functional IL-1R. IL-1 and IFNs are produced by the same cell types, as well as by the adjacent different cell types, and are concomitantly present in lesions of immune and inflammatory reactions. These results therefore suggest that IFNs exhibit synergistic effects with IL-1 through upregulation of IL-1R. Augmented production of IL-6 may also contribute to the reactions.

  2. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.

    Science.gov (United States)

    Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C

    2017-11-10

    Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering

  3. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    International Nuclear Information System (INIS)

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.

    1985-01-01

    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated 3 H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of 3 H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture

  4. Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein

    International Nuclear Information System (INIS)

    Yang, Jinhua; Lv, Jun; Wang, Yuyan; Gao, Shuang; Yao, Qianqian; Qu, Di; Ye, Rong

    2012-01-01

    A conserved cysteine-rich motif located between the transmembrane domain and the endodomain is essential for membrane fusion and assembly of coronavirus spike (S) protein. Here, we proved that three cysteines within the motif, but not dependent on position, are minimally required for the survival of the recombinant mouse hepatitis virus. When the carboxy termini with these mutated motifs of S proteins were respectively introduced into a heterogeneous protein, both incorporation into lipid rafts and S-palmitoylation of these recombinant proteins showed a similar quantity requirement to cysteine residues. Meanwhile, the redistribution of these proteins on cellular surface indicated that the absence of the positively charged rather than cysteine residues in the motif might lead the dramatic reduction in syncytial formation of some mutants with the deleted motifs. These results suggest that multiple cysteine as well as charged residues concurrently improves the membrane-associated functions of S protein in viral replication and cytopathogenesis.

  5. Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013.

    Science.gov (United States)

    Meyer, Benjamin; Müller, Marcel A; Corman, Victor M; Reusken, Chantal B E M; Ritz, Daniel; Godeke, Gert-Jan; Lattwein, Erik; Kallies, Stephan; Siemens, Artem; van Beek, Janko; Drexler, Jan F; Muth, Doreen; Bosch, Berend-Jan; Wernery, Ulrich; Koopmans, Marion P G; Wernery, Renate; Drosten, Christian

    2014-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has caused an ongoing outbreak of severe acute respiratory tract infection in humans in the Arabian Peninsula since 2012. Dromedary camels have been implicated as possible viral reservoirs. We used serologic assays to analyze 651 dromedary camel serum samples from the United Arab Emirates; 151 of 651 samples were obtained in 2003, well before onset of the current epidemic, and 500 serum samples were obtained in 2013. Recombinant spike protein-specific immunofluorescence and virus neutralization tests enabled clear discrimination between MERS-CoV and bovine CoV infections. Most (632/651, 97.1%) camels had antibodies against MERS-CoV. This result included all 151 serum samples obtained in 2003. Most (389/651, 59.8%) serum samples had MERS-CoV-neutralizing antibody titers >1,280. Dromedary camels from the United Arab Emirates were infected at high rates with MERS-CoV or a closely related, probably conspecific, virus long before the first human MERS cases.

  6. Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinhua; Lv, Jun; Wang, Yuyan; Gao, Shuang; Yao, Qianqian; Qu, Di; Ye, Rong, E-mail: yerong24@fudan.edu.cn

    2012-06-05

    A conserved cysteine-rich motif located between the transmembrane domain and the endodomain is essential for membrane fusion and assembly of coronavirus spike (S) protein. Here, we proved that three cysteines within the motif, but not dependent on position, are minimally required for the survival of the recombinant mouse hepatitis virus. When the carboxy termini with these mutated motifs of S proteins were respectively introduced into a heterogeneous protein, both incorporation into lipid rafts and S-palmitoylation of these recombinant proteins showed a similar quantity requirement to cysteine residues. Meanwhile, the redistribution of these proteins on cellular surface indicated that the absence of the positively charged rather than cysteine residues in the motif might lead the dramatic reduction in syncytial formation of some mutants with the deleted motifs. These results suggest that multiple cysteine as well as charged residues concurrently improves the membrane-associated functions of S protein in viral replication and cytopathogenesis.

  7. Types and distribution of mucous cells of the abalone Haliotis ...

    African Journals Online (AJOL)

    The types and distribution of mucous cells of Haliotis diversicolorwere observed and analyzed using the alcian blue and periodic acid schiffs (AB-PAS) reaction and histological procedures. According to the color of the mucous cells, they were divided into four types: Type I, pure red; type II, pure blue; type III, purple reddish; ...

  8. Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer.

    Science.gov (United States)

    Marrero, Idania; Ware, Randle; Kumar, Vipin

    2015-01-01

    Natural killer T cells (NKT) recognize self and microbial lipid antigens presented by non-polymorphic CD1d molecules. Two major NKT cell subsets, type I and II, express different types of antigen receptors (TCR) with distinct mode of CD1d/lipid recognition. Though type II NKT cells are less frequent in mice and difficult to study, they are predominant in human. One of the major subsets of type II NKT cells reactive to the self-glycolipid sulfatide is the best characterized and has been shown to induce a dominant immune regulatory mechanism that controls inflammation in autoimmunity and in anti-cancer immunity. Recently, type II NKT cells reactive to other self-glycolipids and phospholipids have been identified suggesting both promiscuous and specific TCR recognition in microbial immunity as well. Since the CD1d pathway is highly conserved, a detailed understanding of the biology and function of type II NKT cells as well as their interplay with type I NKT cells or other innate and adaptive T cells will have major implications for potential novel interventions in inflammatory and autoimmune diseases, microbial immunity, and cancer.

  9. Significance of Coronavirus Mutants in Feces and Diseased Tissues of Cats Suffering from Feline Infectious Peritonitis

    Directory of Open Access Journals (Sweden)

    Niels C. Pedersen

    2009-08-01

    Full Text Available The internal FECV→FIPV mutation theory and three of its correlates were tested in four sibs/half-sib kittens, a healthy contact cat, and in four unrelated cats that died of FIP at geographically disparate regions. Coronavirus from feces and extraintestinal FIP lesions from the same cat were always >99% related in accessory and structural gene sequences. SNPs and deletions causing a truncation of the 3c gene product were found in almost all isolates from the diseased tissues of the eight cats suffering from FIP, whereas most, but not all fecal isolates from these same cats had intact 3c genes. Other accessory and structural genes appeared normal in both fecal and lesional viruses. Deliterious mutations in the 3c gene were unique to each cat, indicating that they did not originate in one cat and were subsequently passed horizontally to the others. Compartmentalization of the parental and mutant forms was not absolute; virus of lesional type was sometimes found in feces of affected cats and virus identical to fecal type was occasionally identified in diseased tissues. Although 3c gene mutants in this study were not horizontally transmitted, the parental fecal virus was readily transmitted by contact from a cat that died of FIP to its housemate. There was a high rate of mutability in all structural and accessory genes both within and between cats, leading to minor genetic variants. More than one variant could be identified in both diseased tissues and feces of the same cat. Laboratory cats inoculated with a mixture of two closely related variants from the same FIP cat developed disease from one or the other variant, but not both. Significant genetic drift existed between isolates from geographically distinct regions of the Western US.

  10. Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis.

    Science.gov (United States)

    Pedersen, Niels C; Liu, Hongwei; Dodd, Kimberly A; Pesavento, Patricia A

    2009-09-01

    The internal FECV→FIPV mutation theory and three of its correlates were tested in four sibs/half-sib kittens, a healthy contact cat, and in four unrelated cats that died of FIP at geographically disparate regions. Coronavirus from feces and extraintestinal FIP lesions from the same cat were always >99% related in accessory and structural gene sequences. SNPs and deletions causing a truncation of the 3c gene product were found in almost all isolates from the diseased tissues of the eight cats suffering from FIP, whereas most, but not all fecal isolates from these same cats had intact 3c genes. Other accessory and structural genes appeared normal in both fecal and lesional viruses. Deliterious mutations in the 3c gene were unique to each cat, indicating that they did not originate in one cat and were subsequently passed horizontally to the others. Compartmentalization of the parental and mutant forms was not absolute; virus of lesional type was sometimes found in feces of affected cats and virus identical to fecal type was occasionally identified in diseased tissues. Although 3c gene mutants in this study were not horizontally transmitted, the parental fecal virus was readily transmitted by contact from a cat that died of FIP to its housemate. There was a high rate of mutability in all structural and accessory genes both within and between cats, leading to minor genetic variants. More than one variant could be identified in both diseased tissues and feces of the same cat. Laboratory cats inoculated with a mixture of two closely related variants from the same FIP cat developed disease from one or the other variant, but not both. Significant genetic drift existed between isolates from geographically distinct regions of the Western US.

  11. Generation of male differentiated germ cells from various types of stem cells.

    Science.gov (United States)

    Hou, Jingmei; Yang, Shi; Yang, Hao; Liu, Yang; Liu, Yun; Hai, Yanan; Chen, Zheng; Guo, Ying; Gong, Yuehua; Gao, Wei-Qiang; Li, Zheng; He, Zuping

    2014-06-01

    Infertility is a major and largely incurable disease caused by disruption and loss of germ cells. It affects 10-15% of couples, and male factor accounts for half of the cases. To obtain human male germ cells 'especially functional spermatids' is essential for treating male infertility. Currently, much progress has been made on generating male germ cells, including spermatogonia, spermatocytes, and spermatids, from various types of stem cells. These germ cells can also be used in investigation of the pathology of male infertility. In this review, we focused on advances on obtaining male differentiated germ cells from different kinds of stem cells, with an emphasis on the embryonic stem (ES) cells, the induced pluripotent stem (iPS) cells, and spermatogonial stem cells (SSCs). We illustrated the generation of male differentiated germ cells from ES cells, iPS cells and SSCs, and we summarized the phenotype for these stem cells, spermatocytes and spermatids. Moreover, we address the differentiation potentials of ES cells, iPS cells and SSCs. We also highlight the advantages, disadvantages and concerns on derivation of the differentiated male germ cells from several types of stem cells. The ability of generating mature and functional male gametes from stem cells could enable us to understand the precise etiology of male infertility and offer an invaluable source of autologous male gametes for treating male infertility of azoospermia patients. © 2014 Society for Reproduction and Fertility.

  12. Ca(2+) currents and voltage responses in Type I and Type II hair cells of the chick embryo semicircular canal.

    Science.gov (United States)

    Masetto, Sergio; Zampini, Valeria; Zucca, Giampiero; Valli, Paolo

    2005-11-01

    Type I and Type II hair cells, and Type II hair cells located in different zones of the semicircular canal crista, express different patterns of voltage-dependent K channels, each one specifically shaping the hair cell receptor potential. We report here that, close to hatching, chicken embryo semicircular canal Type I and Type II hair cells express a similar voltage-dependent L-type calcium current (I(Ca)), whose main features are: activation above -60 mV, fast activation kinetics, and scarce inactivation. I(Ca) should be already active at rest in Zone 1 Type II hair cells, whose resting membrane potential was on average slightly less negative than -60 mV. Conversely, I(Ca) would not be active at rest in Type II hair cells from Zone 2 and 3, nor in Type I hair cells, since their resting membrane potential was significantly more negative than -60 mV. However, even small depolarising currents would activate I(Ca) steadily in Zone 2 and 3 Type II hair cells, but not in Type I hair cells because of the robust repolarising action of their specific array of K(+) currents. The implications of the present findings in the afferent discharge are discussed.

  13. Cell-type-specific responses of RT4 neural cell lines to dibutyryl-cAMP: branch determination versus maturation

    International Nuclear Information System (INIS)

    Droms, K.; Sueoka, N.

    1987-01-01

    This report describes the induction of cell-type-specific maturation, by dibutyryl-cAMP and testololactone, of neuronal and glial properties in a family of cell lines derived from a rat peripheral neurotumor, RT4. This maturation allows further understanding of the process of determination because of the close lineage relationship between the cell types of the RT4 family. The RT4 family is characterized by the spontaneous conversion of one of the cell types, RT4-AC (stem-cell type), to any of three derivative cell types, RT4-B, RT4-D, or RT4-E, with a frequency of about 10(-5). The RT4-AC cells express some properties characteristic of both neuronal and glial cells. Of these neural properties expressed by RT4-AC cells, only the neuronal properties are expressed by the RT4-B and RT4-E cells, and only the glial properties are expressed by the RT4-D cells. This in vitro cell-type conversion of RT4-AC to three derivative cell types is a branch point for the coordinate regulation of several properties and seems to resemble determination in vivo. In our standard culture conditions, several other neuronal and glial properties are not expressed by these cell types. However, addition of dibutyryl-cAMP induces expression of additional properties, in a cell-type-specific manner: formation of long cellular processes in the RT4-B8 and RT4-E5 cell lines and expression of high-affinity uptake of gamma-aminobutyric acid, by a glial-cell-specific mechanism, in the RT4-D6-2 cell line. These new properties are maximally expressed 2-3 days after addition of dibutyryl-cAMP

  14. Na+ currents in vestibular type I and type II hair cells of the embryo and adult chicken.

    Science.gov (United States)

    Masetto, S; Bosica, M; Correia, M J; Ottersen, O P; Zucca, G; Perin, P; Valli, P

    2003-08-01

    In birds, type I and type II hair cells differentiate before birth. Here we describe that chick hair cells, from the semicircular canals, begin expressing a voltage-dependent Na current (INa) from embryonic day 14 (E14) and continue to express the current up to hatching (E21). During this period, INa was present in most (31/43) type I hair cells irrespective of their position in the crista, in most type II hair cells located far from the planum semilunatum (48/63), but only occasionally in type II hair cells close to the planum semilunatum (2/35). INa activated close to -60 mV, showed fast time- and voltage-dependent activation and inactivation, and was completely, and reversibly, blocked by submicromolar concentrations of tetrodotoxin (Kd = 17 nM). One peculiar property of INa concerns its steady-state inactivation, which is complete at -60 mV (half-inactivating voltage = -96 mV). INa was found in type I and type II hair cells from the adult chicken as well, where it had similar, although possibly not identical, properties and regional distribution. Current-clamp experiments showed that INa could contribute to the voltage response provided that the cell membrane was depolarized from holding potentials more negative than -80 mV. When recruited, INa produced a significant acceleration of the cell membrane depolarization, which occasionally elicited a large rapid depolarization followed by a rapid repolarization (action-potential-like response). Possible physiological roles for INa in the embryo and adult chicken are discussed.

  15. Diffuse-type giant cell tumor of the subcutaneous thigh

    International Nuclear Information System (INIS)

    Sanghvi, D.A.; Purandare, N.C.; Jambhekar, N.A.; Agarwal, A.; Agarwal, M.G.

    2007-01-01

    Diffuse-type giant cell tumor is an extra-articular form of pigmented villonodular synovitis. The localized form of this lesion (tenosynovial giant cell tumor) is frequent, representing the most common subset arising from the synovium of a joint, bursa or tendon sheath, with 85% of cases occurring in the fingers. The less frequent diffuse-type giant cell tumors are commonly located in the periarticular soft tissues, but on rare occasions these lesions can be purely intramuscular or subcutaneous We report the case of a 26-year-old female with diffuse-type giant cell tumor of the subcutaneous thigh, remote from a joint, bursa or tendon sheath. A review of the literature did not reveal any similar description of a diffuse-type giant cell tumor completely within the subcutaneous thigh, remote from a joint, bursa or tendon sheath. These lesions were initially regarded as inflammatory or reactive processes, but since the identification of clonal abnormalities in these patients, and in view of their capacity for autonomous growth, they are now widely considered to represent benign neoplasms. (orig.)

  16. Cell-type-dependent action potentials and voltage-gated currents in mouse fungiform taste buds.

    Science.gov (United States)

    Kimura, Kenji; Ohtubo, Yoshitaka; Tateno, Katsumi; Takeuchi, Keita; Kumazawa, Takashi; Yoshii, Kiyonori

    2014-01-01

    Taste receptor cells fire action potentials in response to taste substances to trigger non-exocytotic neurotransmitter release in type II cells and exocytotic release in type III cells. We investigated possible differences between these action potentials fired by mouse taste receptor cells using in situ whole-cell recordings, and subsequently we identified their cell types immunologically with cell-type markers, an IP3 receptor (IP3 R3) for type II cells and a SNARE protein (SNAP-25) for type III cells. Cells not immunoreactive to these antibodies were examined as non-IRCs. Here, we show that type II cells and type III cells fire action potentials using different ionic mechanisms, and that non-IRCs also fire action potentials with either of the ionic mechanisms. The width of action potentials was significantly narrower and their afterhyperpolarization was deeper in type III cells than in type II cells. Na(+) current density was similar in type II cells and type III cells, but it was significantly smaller in non-IRCs than in the others. Although outwardly rectifying current density was similar between type II cells and type III cells, tetraethylammonium (TEA) preferentially suppressed the density in type III cells and the majority of non-IRCs. Our mathematical model revealed that the shape of action potentials depended on the ratio of TEA-sensitive current density and TEA-insensitive current one. The action potentials of type II cells and type III cells under physiological conditions are discussed. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Cell-type specific four-component hydrogel.

    Directory of Open Access Journals (Sweden)

    Timo Aberle

    Full Text Available In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin to generate a blend (technical term: quattroGel, an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appropriate for general cell adhesion, and restricted diffusion. Cell proliferation of endothelial cells, chondrocytes and fibroblasts was essentially unaffected. In contrast, on quattroGels neither endothelial cells formed vascular tubes nor did primary neurons extend neurites in significant amounts. Only chondrocytes differentiated properly as judged by collagen isoform expression. The biophysical quattroGel characteristics appeared to leave distinct cell processes such as mitosis unaffected and favored differentiation of sessile cells, but hampered differentiation of migratory cells. This cell-type selectivity is of interest e.g. during articular cartilage or invertebral disc repair, where pathological innervation and angiogenesis represent adverse events in tissue engineering.

  18. Delicate balance among three types of T cells in concurrent regulation of tumor immunity

    Science.gov (United States)

    Izhak, Liat; Ambrosino, Elena; Kato, Shingo; Parish, Stanley T.; O’Konek, Jessica J.; Weber, Hannah; Xia, Zheng; Venzon, David; Berzofsky, Jay A.; Terabe, Masaki

    2013-01-01

    The nature of the regulatory cell types that dominate in any given tumor is not understood at present. Here we addressed this question for Tregs and type II NKT cells in syngeneic models of colorectal and renal cancer. In mice with both type I and type II NKT cells, or in mice with neither type of NKT cell, Treg depletion was sufficient to protect against tumor outgrowth. Surprisingly, in mice lacking only type I NKT cells, Treg blockade was insufficient for protection. Thus, we hypothesized that type II NKT cells may be neutralized by type I NKT cells, leaving Treg cells as the primary suppressor, whereas in mice lacking type I NKT cells, unopposed type II NKT cells could suppress tumor immunity even when Tregs were blocked. We confirmed this hypothesis in three ways by reconstituting type I NKT cells as well as selectively blocking or activating type II NKT cells with antibody or the agonist sulfatide, respectively. In this manner, we demonstrated that blockade of both type II NKT cells and Tregs is necessary to abrogate suppression of tumor immunity, but a third cell, the type I NKT cell, determines the balance between these regulatory mechanisms. As cancer patients often have deficient type I NKT cell function, managing this delicate balance among three T cell subsets may be critical for the success of immunotherapy of human cancer. PMID:23319803

  19. [Methuosis: a novel type of cell death].

    Science.gov (United States)

    Cai, Hongbing; Liu, Jinkun; Fan, Qin; Li, Xin

    2013-12-01

    Cell death is a major physiological or pathological phenomenon in life activities. The classic forms of cell death include apoptosis, necrosis, and autophagy. Recently, a novel type of cell death has been observed and termed as methuosis, in which excessive stimuli can induce cytoplasmic uptake and accumulation of small bubbles that gradually merge into giant vacuoles, eventually leading to decreased cellular metabolic activity, cell membrane rupture and cell death. In this article, we describe the nomenclature, morphological characteristics and underlying mechanisms of methuosis, compare methuosis with autophagy, oncosis and paraptosis, and review the related researches.

  20. A Stromal Cell Niche for Human and Mouse Type 3 Innate Lymphoid Cells.

    Science.gov (United States)

    Hoorweg, Kerim; Narang, Priyanka; Li, Zhi; Thuery, Anne; Papazian, Natalie; Withers, David R; Coles, Mark C; Cupedo, Tom

    2015-11-01

    Adaptive immunity critically depends on the functional compartmentalization of secondary lymphoid organs. Mesenchymal stromal cells create and maintain specialized niches that support survival, activation, and expansion of T and B cells, and integrated analysis of lymphocytes and their niche has been instrumental in understanding adaptive immunity. Lymphoid organs are also home to type 3 innate lymphoid cells (ILC3), innate effector cells essential for barrier immunity. However, a specialized stromal niche for ILC3 has not been identified. A novel lineage-tracing approach now identifies a subset of murine fetal lymphoid tissue organizer cells that gives rise exclusively to adult marginal reticular cells. Moreover, both cell types are conserved from mice to humans and colocalize with ILC3 in secondary lymphoid tissues throughout life. In sum, we provide evidence that fetal stromal organizers give rise to adult marginal reticular cells and form a dedicated stromal niche for innate ILC3 in adaptive lymphoid organs. Copyright © 2015 by The American Association of Immunologists, Inc.

  1. Glutathione synthesis and homeostasis in isolated type II alveolar cells

    International Nuclear Information System (INIS)

    Saito, K.; Warshaw, J.B.; Prough, R.A.

    1986-01-01

    After isolation of Type II cells from neonatal rat lung, the glutathione (GSH) levels in these cells were greatly depressed. The total glutathione content could be increased 5-fold within 12-24 h by incubating the cells in media containing sulfur amino acids. Similarly, the activity of γ-glutamyltranspeptidase was low immediately after isolation, but was increased 2-fold during the first 24 h culture. Addition of either GSH or GSSG to the culture media increased the GSH content of Type II cells 2-2.5-fold. Buthionine sulfoximine and NaF prevented this replenishment of GSH during 24 h culture. When the rates of de novo synthesis of GSH and GSSG from 35 S-cysteine were measured, the amounts of newly formed GSH decreased to 80% in the presence of GSH or GSSG. This suggests that exogenous GSH/GSSG can be taken up by the Type II cells to replenish the intracellular pool of GSH. Methionine was not as effective as cysteine in the synthesis of GSH. These results suggest that GSH levels in the isolated Type II cell can be maintained by de novo synthesis or uptake of exogenous GSH. Most of the GSH synthesized from cysteine, however, was excreted into the media of the cultured cells indicative of a potential role for the type II cell in export of the non-protein thiol

  2. Human Neutralizing Monoclonal Antibody Inhibition of Middle East Respiratory Syndrome Coronavirus Replication in the Common Marmoset.

    Science.gov (United States)

    Chen, Zhe; Bao, Linlin; Chen, Cong; Zou, Tingting; Xue, Ying; Li, Fengdi; Lv, Qi; Gu, Songzhi; Gao, Xiaopan; Cui, Sheng; Wang, Jianmin; Qin, Chuan; Jin, Qi

    2017-06-15

    Middle East respiratory syndrome coronavirus (MERS-CoV) infection in humans is highly lethal, with a fatality rate of 35%. New prophylactic and therapeutic strategies to combat human infections are urgently needed. We isolated a fully human neutralizing antibody, MCA1, from a human survivor. The antibody recognizes the receptor-binding domain of MERS-CoV S glycoprotein and interferes with the interaction between viral S and the human cellular receptor human dipeptidyl peptidase 4 (DPP4). To our knowledge, this study is the first to report a human neutralizing monoclonal antibody that completely inhibits MERS-CoV replication in common marmosets. Monotherapy with MCA1 represents a potential alternative treatment for human infections with MERS-CoV worthy of evaluation in clinical settings. © Crown copyright 2017.

  3. Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells

    Science.gov (United States)

    Saung, Wint Thu; Foskett, J. Kevin

    2017-01-01

    Taste bud type II cells fire action potentials in response to tastants, triggering nonvesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. In this study, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1 knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1 KO mice, and their associated nonselective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1 KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na+ currents either estimated from action potentials or recorded from steady-state voltage pulses, or action potential threshold, overshoot peak, afterhyperpolarization, and firing frequency. However, Calhm1 deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials. NEW & NOTEWORTHY CALHM1 is an essential ion channel component of the ATP neurotransmitter release mechanism in type II taste bud cells. Its contribution to type II cell resting membrane properties and excitability is unknown. Nonselective voltage-gated currents, previously associated with ATP release, were absent in cells lacking CALHM1. Calhm1 deletion was without effects on resting membrane properties or voltage-gated Na+ and K+ channels but contributed modestly to the kinetics of action potentials. PMID:28202574

  4. Epigenome-wide association studies without the need for cell-type composition.

    Science.gov (United States)

    Zou, James; Lippert, Christoph; Heckerman, David; Aryee, Martin; Listgarten, Jennifer

    2014-03-01

    In epigenome-wide association studies, cell-type composition often differs between cases and controls, yielding associations that simply tag cell type rather than reveal fundamental biology. Current solutions require actual or estimated cell-type composition--information not easily obtainable for many samples of interest. We propose a method, FaST-LMM-EWASher, that automatically corrects for cell-type composition without the need for explicit knowledge of it, and then validate our method by comparison with the state-of-the-art approach. Corresponding software is available from http://www.microsoft.com/science/.

  5. eTumorType, An Algorithm of Discriminating Cancer Types for Circulating Tumor Cells or Cell-free DNAs in Blood

    Directory of Open Access Journals (Sweden)

    Jinfeng Zou

    2017-04-01

    Full Text Available With the technology development on detecting circulating tumor cells (CTCs and cell-free DNAs (cfDNAs in blood, serum, and plasma, non-invasive diagnosis of cancer becomes promising. A few studies reported good correlations between signals from tumor tissues and CTCs or cfDNAs, making it possible to detect cancers using CTCs and cfDNAs. However, the detection cannot tell which cancer types the person has. To meet these challenges, we developed an algorithm, eTumorType, to identify cancer types based on copy number variations (CNVs of the cancer founding clone. eTumorType integrates cancer hallmark concepts and a few computational techniques such as stochastic gradient boosting, voting, centroid, and leading patterns. eTumorType has been trained and validated on a large dataset including 18 common cancer types and 5327 tumor samples. eTumorType produced high accuracies (0.86–0.96 and high recall rates (0.79–0.92 for predicting colon, brain, prostate, and kidney cancers. In addition, relatively high accuracies (0.78–0.92 and recall rates (0.58–0.95 have also been achieved for predicting ovarian, breast luminal, lung, endometrial, stomach, head and neck, leukemia, and skin cancers. These results suggest that eTumorType could be used for non-invasive diagnosis to determine cancer types based on CNVs of CTCs and cfDNAs.

  6. Delicate balance among three types of T cells in concurrent regulation of tumor immunity.

    Science.gov (United States)

    Izhak, Liat; Ambrosino, Elena; Kato, Shingo; Parish, Stanley T; O'Konek, Jessica J; Weber, Hannah; Xia, Zheng; Venzon, David; Berzofsky, Jay A; Terabe, Masaki

    2013-03-01

    The nature of the regulatory cell types that dominate in any given tumor is not understood at present. Here, we addressed this question for regulatory T cells (Treg) and type II natural killer T (NKT) cells in syngeneic models of colorectal and renal cancer. In mice with both type I and II NKT cells, or in mice with neither type of NKT cell, Treg depletion was sufficient to protect against tumor outgrowth. Surprisingly, in mice lacking only type I NKT cells, Treg blockade was insufficient for protection. Thus, we hypothesized that type II NKT cells may be neutralized by type I NKT cells, leaving Tregs as the primary suppressor, whereas in mice lacking type I NKT cells, unopposed type II NKT cells could suppress tumor immunity even when Tregs were blocked. We confirmed this hypothesis in 3 ways by reconstituting type I NKT cells as well as selectively blocking or activating type II NKT cells with antibody or the agonist sulfatide, respectively. In this manner, we showed that blockade of both type II NKT cells and Tregs is necessary to abrogate suppression of tumor immunity, but a third cell, the type I NKT cell, determines the balance between these regulatory mechanisms. As patients with cancer often have deficient type I NKT cell function, managing this delicate balance among 3 T-cell subsets may be critical for the success of immunotherapy for human cancer. ©2012 AACR.

  7. CD1d-Restricted Type II NKT Cells Reactive With Endogenous Hydrophobic Peptides.

    Science.gov (United States)

    Nishioka, Yusuke; Masuda, Sakiko; Tomaru, Utano; Ishizu, Akihiro

    2018-01-01

    NKT cells belong to a distinct subset of T cells that recognize hydrophobic antigens presented by major histocompatibility complex class I-like molecules, such as CD1d. Because NKT cells stimulated by antigens can activate or suppress other immunocompetent cells through an immediate production of a large amount of cytokines, they are regarded as immunological modulators. CD1d-restricted NKT cells are classified into two subsets, namely, type I and type II. CD1d-restricted type I NKT cells express invariant T cell receptors (TCRs) and react with lipid antigens, including the marine sponge-derived glycolipid α-galactosylceramide. On the contrary, CD1d-restricted type II NKT cells recognize a wide variety of antigens, including glycolipids, phospholipids, and hydrophobic peptides, by their diverse TCRs. In this review, we focus particularly on CD1d-restricted type II NKT cells that recognize endogenous hydrophobic peptides presented by CD1d. Previous studies have demonstrated that CD1d-restricted type I NKT cells usually act as pro-inflammatory cells but sometimes behave as anti-inflammatory cells. It has been also demonstrated that CD1d-restricted type II NKT cells play opposite roles to CD1d-restricted type I NKT cells; thus, they function as anti-inflammatory or pro-inflammatory cells depending on the situation. In line with this, CD1d-restricted type II NKT cells that recognize type II collagen peptide have been demonstrated to act as anti-inflammatory cells in diverse inflammation-induction models in mice, whereas pro-inflammatory CD1d-restricted type II NKT cells reactive with sterol carrier protein 2 peptide have been demonstrated to be involved in the development of small vessel vasculitis in rats.

  8. p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells.

    Science.gov (United States)

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-04-23

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.

  9. The immunoregulatory role of type I and type II NKT cells in cancer and other diseases

    Science.gov (United States)

    Terabe, Masaki; Berzofsky, Jay A.

    2014-01-01

    NKT cells are CD1d-restricted T cells that recognize lipid antigens. They also have been shown to play critical roles in the regulation of immune responses. In the immune responses against tumors, two subsets of NKT cells, type I and type II, play opposing roles and cross-regulate each other. As members of both the innate and adaptive immune systems, which form a network of multiple components, they also interact with other immune components. Here we discuss the function of NKT cells in tumor immunity and their interaction with other regulatory cells, especially CD4+CD25+Foxp3+ regulatory T cells. PMID:24384834

  10. ERE environment- and cell type-specific transcriptional effects of estrogen in normal endometrial cells.

    Science.gov (United States)

    Lascombe, I; Sallot, M; Vuillermoz, C; Weisz, A; Adessi, G L; Jouvenot, M

    1998-04-30

    Our previous results have suggested a repression of E2 (17beta-estradiol) effect on the c-fos gene of cultured guinea-pig endometrial cells. To investigate this repression, the expression of three human c-fos gene recombinants, pFC1-BL (-2250/+41), pFC2-BL (-1400/+41) and pFC2E (-1300/-1050 and -230/+41), known to be E2-responsive in Hela cells, was studied in stromal (SC) and glandular epithelial cells (GEC). In both cellular types, pFC1-BL was not induced by E2, even in the presence of growth factors or co-transfected estrogen receptor. The pattern of pFC2-BL and pFC2E expression was strikingly different and depended on the cellular type: pFC2-BL and pFC2E induction was restricted to the glandular epithelial cells and did not occur in the SCs. We argue for a repression of E2 action which is dependent on the estrogen-responsive cis-acting element (ERE) environment and also cell type-specific involving DNA/protein and/or protein/protein interactions with cellular type-specific factors.

  11. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Science.gov (United States)

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. Genome-Derived Cytosolic DNA Mediates Type I Interferon-Dependent Rejection of B Cell Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Yu J. Shen

    2015-04-01

    Full Text Available The DNA damage response (DDR induces the expression of type I interferons (IFNs, but the underlying mechanisms are poorly understood. Here, we show the presence of cytosolic DNA in different mouse and human tumor cells. Treatment of cells with genotoxic agents increased the levels of cytosolic DNA in a DDR-dependent manner. Cloning of cytosolic DNA molecules from mouse lymphoma cells suggests that cytosolic DNA is derived from unique genomic loci and has the potential to form non-B DNA structures, including R-loops. Overexpression of Rnaseh1, which resolves R-loops, reduced the levels of cytosolic DNA, type I Ifn transcripts, and type I IFN-dependent rejection of lymphoma cells. Live-cell imaging showed a dynamic contact of cytosolic DNA with mitochondria, an important organelle for innate immune recognition of cytosolic nucleotides. In summary, we found that cytosolic DNA is present in many tumor cells and contributes to the immunogenicity of tumor cells.

  13. A retrospective clinical and epidemiological study on feline coronavirus (FCoV) in cats in Istanbul, Turkey.

    Science.gov (United States)

    Tekelioglu, B K; Berriatua, E; Turan, N; Helps, C R; Kocak, M; Yilmaz, H

    2015-04-01

    The presence of antibodies to feline coronavirus (FCoV) and feline immunodeficiency virus (FIV), together with feline leukemia virus (FeLV) antigen was investigated in 169 ill household and stray cats attending a veterinary surgery in Istanbul in 2009-14. The estimated FCoV and FIV seroprevalence (95% confidence intervals) were 37% (30-45%) and 11% (6-16%), respectively and FeLV prevalence was 1% (0-3%). FCoV seroprevalence increased until 2 years of age, was highest in 2014 and among household cats living with other cats and with outdoor access, and was lower in FIV seropositive compared to seronegative cats. Symptoms typically associated with wet feline infectious peritonitis (FIP) including ascites, abdominal distention or pleural effusion, coupled in many cases with non-antibiotic responsive fever, were observed in 19% (32/169) of cats, and 75% (24/32) of these cats were FCoV seropositive. FCoV seropositivity was also associated with a high white blood cell count, high plasma globulin, low plasma albumin and low blood urea nitrogen. The percentage of FCoV seropositive and seronegative cats that died in spite of supportive veterinary treatment was 33% (21/63) and 12% (13/106), respectively. These results indicate that FCoV is widespread and has a severe clinical impact in cats from Istanbul. Moreover, the incidence of FCoV infections could be rising, and in the absence of effective vaccination cat owners need to be made aware of ways to minimize the spread of this virus. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. CD4(+) type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes.

    Science.gov (United States)

    Kadri, Nadir; Korpos, Eva; Gupta, Shashank; Briet, Claire; Löfbom, Linda; Yagita, Hideo; Lehuen, Agnes; Boitard, Christian; Holmberg, Dan; Sorokin, Lydia; Cardell, Susanna L

    2012-04-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic β cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry diverse TCRs, prevented T1D in the NOD mouse model for the human disease. In this study, we show that CD4(+) 24αβ type II NKT cells, but not CD4/CD8 double-negative NKT cells, were sufficient to downregulate diabetogenic CD4(+) BDC2.5 NOD T cells in adoptive transfer experiments. CD4(+) 24αβ NKT cells exhibited a memory phenotype including high ICOS expression, increased cytokine production, and limited display of NK cell markers, compared with double-negative 24αβ NKT cells. Blocking of ICOS or the programmed death-1/programmed death ligand 1 pathway was shown to abolish the regulation that occurred in the pancreas draining lymph nodes. To our knowledge, these results provide for the first time cellular and molecular information on how type II CD1d-restricted NKT cells regulate T1D.

  15. Dendritic Cell Targeted Chitosan Nanoparticles for Nasal DNA Immunization against SARS CoV Nucleocapsid Protein

    OpenAIRE

    Raghuwanshi, Dharmendra; Mishra, Vivek; Das, Dipankar; Kaur, Kamaljit; Suresh, Mavanur R.

    2012-01-01

    This work investigates the formulation and in vivo efficacy of dendritic cell (DC) targeted plasmid DNA loaded biotinylated chitosan nanoparticles for nasal immunization against nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) as antigen. The induction of antigen-specific mucosal and systemic immune response at the site of virus entry is a major challenge for vaccine design. Here, we designed a strategy for non-invasive receptor mediated gene delivery to na...

  16. Severe respiratory illness associated with a novel coronavirus--Saudi Arabia and Qatar, 2012.

    Science.gov (United States)

    2012-10-12

    CDC is working closely with the World Health Organization (WHO) and other partners to better understand the public health risk presented by a recently detected, novel coronavirus. This virus has been identified in two patients, both previously healthy adults who suffered severe respiratory illness. The first patient, a man aged 60 years from Saudi Arabia, was hospitalized in June 2012 and died; the second patient, a man aged 49 years from Qatar with onset of symptoms in September 2012 was transported to the United Kingdom for intensive care. He remains hospitalized on life support with both pulmonary and renal failure. Person-to-person or health-care-associated transmission has not been identified to date. Interim case definitions based on acute respiratory illness and travel history were issued by WHO on September 29 and include criteria for "patient under investigation," "probable case," and "confirmed case". This information is current as of October 4. Updates on the investigation and the WHO case definition are available at http://www.who.int/csr/don/en/index.html.

  17. Characterization of an Immunodominant Epitope in the Endodomain of the Coronavirus Membrane Protein

    Directory of Open Access Journals (Sweden)

    Hui Dong

    2016-12-01

    Full Text Available The coronavirus membrane (M protein acts as a dominant immunogen and is a major player in virus assembly. In this study, we prepared two monoclonal antibodies (mAbs; 1C3 and 4C7 directed against the transmissible gastroenteritis virus (TGEV M protein. The 1C3 and 4C7 mAbs both reacted with the native TGEV M protein in western blotting and immunofluorescence (IFA assays. Two linear epitopes, 243YSTEART249 (1C3 and 243YSTEARTDNLSEQEKLLHMV262 (4C7, were identified in the endodomain of the TGEV M protein. The 1C3 mAb can be used for the detection of the TGEV M protein in different assays. An IFA method for the detection of TGEV M protein was optimized using mAb 1C3. Furthermore, the ability of the epitope identified in this study to stimulate antibody production was also evaluated. An immunodominant epitope in the TGEV membrane protein endodomain was identified. The results of this study have implications for further research on TGEV replication.

  18. Cell-mediated immune responses in the head-associated lymphoid tissues induced to a live attenuated avian coronavirus vaccine.

    Science.gov (United States)

    Gurjar, Rucha S; Gulley, Stephen L; van Ginkel, Frederik W

    2013-12-01

    Humoral immunity is important for controlling viral diseases of poultry, but recent studies have indicated that cytotoxic T cells also play an important role in the immune response to infectious bronchitis virus (IBV). To better understand the cell mediated immune responses to IBV in the mucosal and systemic immune compartments chickens were ocularly vaccinated with IBV. This induced a lymphocyte expansion in head-associated lymphoid tissues (HALT) and to a lesser extent in the spleen, followed by a rapid decline, probably due to homing of lymphocytes out of these organs and contraction of the lymphocyte population. This interpretation was supported by observations that changes in mononuclear cells were mirrored by that in CD3(+)CD44(+) T cell abundance, which presumably represent T effector cells. Increased interferon gamma (IFN-γ) expression was observed in the mucosal immune compartment, i.e., HALT, after primary vaccination, but shifted to the systemic immune compartment after boosting. In contrast, the expression of cytotoxicity-associated genes, i.e., granzyme A (GZMA) and perforin mRNA, remained associated with the HALT after boosting. Thus, an Ark-type IBV ocular vaccine induces a central memory IFN-γ response in the spleen while the cytotoxic effector memory response, as measured by GZMA and perforin mRNA expression, remains associated with CALT after boosting. Copyright © 2013. Published by Elsevier Ltd.

  19. Determination of the cell tropism of serotype 1 feline infectious peritonitis virus using the spike affinity histochemistry in paraffin-embedded tissues.

    Science.gov (United States)

    Cham, Tat-Chuan; Chang, Yen-Chen; Tsai, Pei-Shiue; Wu, Ching-Ho; Chen, Hui-Wen; Jeng, Chian-Ren; Pang, Victor Fei; Chang, Hui-Wen

    2017-08-01

    Unlike for serotype II feline coronaviruses (FCoV II), the cellular receptor for serotype I FCoV (FCoV I), the most prevalent FCoV serotype, is unknown. To provide a platform for assessing the pattern by which FCoV I attaches to its host receptor(s), HEK293 cell lines that stably express the ectodomains of the spike (S) proteins derived from a FCoV I feline enteric coronavirus strain UU7 (FECV UU7) and a feline infectious peritonitis virus strain UU4 (FIPV UU4) were established. Using the recombinant S proteins as probes to perform S protein affinity histochemistry in paraffin-embedded tissues, although no tissue or enteric binding of FECV UU7 S protein was detected, it was found that by immunohistochemistry that the tissue distribution of FIPV UU4 S protein-bound cells correlated with that of FIPV antigen-positive cells and lesions associated with FIP and that the affinity binding of FIPV UU4 S protein on macrophages was not affected by enzymatic removal of host cell-surface sialic acid with neuraminidase. These findings suggest that a factor(s) other than sialic acid contribute(s) to the macrophage tropism of FIPV strain UU4. This approach allowed obtaining more information about both virus-host cell interactions and the biological characteristics of the unidentified cellular receptor for FCoV I. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  20. [Regulatory role of NKT cells in the prevention of type 1 diabetes].

    Science.gov (United States)

    Ghazarian, Liana; Simoni, Yannick; Pingris, Karine; Beaudoin, Lucie; Lehuen, Agnès

    2013-01-01

    Type 1 diabetes is an autoimmune disease resulting from the destruction of pancreatic β cells by the immune system. NKT cells are innate-like T cells that can exert potent immuno-regulatory functions. The regulatory role of NKT cells was initially proposed after the observed decreased frequency of this subset in mouse models of type 1 diabetes, as well as in patients developing various autoimmune pathologies. Increasing NKT cell frequency and function prevent the development of type 1 diabetes in mouse models. Several mechanisms including IL-4 and IL-10 production by NKT cells and the accumulation of tolerogenic dendritic cells are critical for the dampening of pathogenic anti-islet T cell responses by NKT cells. Importantly, these cells can at the same time prevent diabetes and promote efficient immune responses against infectious agents. These results strengthen the potential role of NKT cells as a key target for the development of therapeutic strategies against type 1 diabetes. © 2013 médecine/sciences – Inserm.

  1. Membrane potential and ion transport in lung epithelial type II cells

    International Nuclear Information System (INIS)

    Gallo, R.L.

    1986-01-01

    The alveolar type II pneumocyte is critically important to the function and maintenance of pulmonary epithelium. To investigate the nature of the response of type II cells to membrane injury, and describe a possible mechanism by which these cells regulate surfactant secretion, the membrane potential of isolated rabbit type II cells was characterized. This evaluation was accomplished by measurements of the accumulation of the membrane potential probes: [ 3 H]triphenylmethylphosphonium ([ 3 H]TPMP + ), rubidium 86, and the fluorescent dye DiOC 5 . A compartmental analysis of probe uptake into mitochondrial, cytoplasmic, and non-membrane potential dependent stores was made through the use of selective membrane depolarizations with carbonycyanide M-chlorophenylhydrazone (CCCP), and lysophosphatidylcholine (LPC). These techniques and population analysis with flow cytometry, permitted the accurate evaluation of type II cell membrane potential under control conditions and under conditions which stimulated cell activity. Further analysis of ion transport by cells exposed to radiation or adrenergic stimulation revealed a common increase in Na + /K + ATPase activity, and an increase in sodium influx across the plasma membrane. This sodium influx was found to be a critical step in the initiation of surfactant secretion. It is concluded that radiation exposure as well as other pulmonary toxicants can directly affect the membrane potential and ionic regulation of type II cells. Ion transport, particularly of sodium, plays an important role in the regulation of type II cell function

  2. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Alaa Badawi

    2016-08-01

    Full Text Available The Middle East respiratory syndrome coronavirus (MERS-CoV is associated with life-threatening severe illnesses and a mortality rate of approximately 35%, particularly in patients with underlying comorbidities. A systematic analysis of 637 MERS-CoV cases suggests that diabetes and hypertension are equally prevalent in approximately 50% of the patients. Cardiac diseases are present in 30% and obesity in 16% of the cases. These conditions down-regulate the synthesis of proinflammatory cytokines and impair the host's innate and humoral immune systems. In conclusion, protection against MERS-CoV and other respiratory infections can be improved if public health vaccination strategies are tailored to target persons with chronic disorders.

  3. eTumorType, An Algorithm of Discriminating Cancer Types for Circulating Tumor Cells or Cell-free DNAs in Blood.

    Science.gov (United States)

    Zou, Jinfeng; Wang, Edwin

    2017-04-01

    With the technology development on detecting circulating tumor cells (CTCs) and cell-free DNAs (cfDNAs) in blood, serum, and plasma, non-invasive diagnosis of cancer becomes promising. A few studies reported good correlations between signals from tumor tissues and CTCs or cfDNAs, making it possible to detect cancers using CTCs and cfDNAs. However, the detection cannot tell which cancer types the person has. To meet these challenges, we developed an algorithm, eTumorType, to identify cancer types based on copy number variations (CNVs) of the cancer founding clone. eTumorType integrates cancer hallmark concepts and a few computational techniques such as stochastic gradient boosting, voting, centroid, and leading patterns. eTumorType has been trained and validated on a large dataset including 18 common cancer types and 5327 tumor samples. eTumorType produced high accuracies (0.86-0.96) and high recall rates (0.79-0.92) for predicting colon, brain, prostate, and kidney cancers. In addition, relatively high accuracies (0.78-0.92) and recall rates (0.58-0.95) have also been achieved for predicting ovarian, breast luminal, lung, endometrial, stomach, head and neck, leukemia, and skin cancers. These results suggest that eTumorType could be used for non-invasive diagnosis to determine cancer types based on CNVs of CTCs and cfDNAs. Copyright © 2017 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Production and hosting by Elsevier B.V. All rights reserved.

  4. Comparison of Species and Cell-Type Differences in Fraction Unbound of Liver Tissues, Hepatocytes, and Cell Lines.

    Science.gov (United States)

    Riccardi, Keith; Ryu, Sangwoo; Lin, Jian; Yates, Phillip; Tess, David; Li, Rui; Singh, Dhirender; Holder, Brian R; Kapinos, Brendon; Chang, George; Di, Li

    2018-04-01

    Fraction unbound ( f u ) of liver tissue, hepatocytes, and other cell types is an essential parameter used to estimate unbound liver drug concentration and intracellular free drug concentration. f u,liver and f u,cell are frequently measured in multiple species and cell types in drug discovery and development for various applications. A comparison study of 12 matrices for f u,liver and f u,cell of hepatocytes in five different species (mouse, rat, dog, monkey, and human), as well as f u,cell of Huh7 and human embryonic kidney 293 cell lines, was conducted for 22 structurally diverse compounds with the equilibrium dialysis method. Using an average bioequivalence approach, our results show that the average difference in binding to liver tissue, hepatocytes, or different cell types was within 2-fold of that of the rat f u,liver Therefore, we recommend using rat f u,liver as a surrogate for liver binding in other species and cell types in drug discovery. This strategy offers the potential to simplify binding studies and reduce cost, thereby enabling a more effective and practical determination of f u for liver tissues, hepatocytes, and other cell types. In addition, f u under hepatocyte stability incubation conditions should not be confused with f u,cell , as one is a diluted f u and the other is an undiluted f u Cell density also plays a critical role in the accurate measurement of f u,cell . Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Efficiency Improvement of HIT Solar Cells on p-Type Si Wafers.

    Science.gov (United States)

    Wei, Chun-You; Lin, Chu-Hsuan; Hsiao, Hao-Tse; Yang, Po-Chuan; Wang, Chih-Ming; Pan, Yen-Chih

    2013-11-22

    Single crystal silicon solar cells are still predominant in the market due to the abundance of silicon on earth and their acceptable efficiency. Different solar-cell structures of single crystalline Si have been investigated to boost efficiency; the heterojunction with intrinsic thin layer (HIT) structure is currently the leading technology. The record efficiency values of state-of-the art HIT solar cells have always been based on n-type single-crystalline Si wafers. Improving the efficiency of cells based on p-type single-crystalline Si wafers could provide broader options for the development of HIT solar cells. In this study, we varied the thickness of intrinsic hydrogenated amorphous Si layer to improve the efficiency of HIT solar cells on p-type Si wafers.

  6. Engineering of red cells of Arabidopsis thaliana and comparative genome-wide gene expression analysis of red cells versus wild-type cells.

    Science.gov (United States)

    Shi, Ming-Zhu; Xie, De-Yu

    2011-04-01

    We report metabolic engineering of Arabidopsis red cells and genome-wide gene expression analysis associated with anthocyanin biosynthesis and other metabolic pathways between red cells and wild-type (WT) cells. Red cells of A. thaliana were engineered for the first time from the leaves of production of anthocyanin pigment 1-Dominant (pap1-D). These red cells produced seven anthocyanin molecules including a new one that was characterized by LC-MS analysis. Wild-type cells established as a control did not produce anthocyanins. A genome-wide microarray analysis revealed that nearly 66 and 65% of genes in the genome were expressed in the red cells and wild-type cells, respectively. In comparison with the WT cells, 3.2% of expressed genes in the red cells were differentially expressed. The expression levels of 14 genes involved in the biosynthetic pathway of anthocyanin were significantly higher in the red cells than in the WT cells. Microarray and RT-PCR analyses demonstrated that the TTG1-GL3/TT8-PAP1 complex regulated the biosynthesis of anthocyanins. Furthermore, most of the genes with significant differential expression levels in the red cells versus the WT cells were characterized with diverse biochemical functions, many of which were mapped to different metabolic pathways (e.g., ribosomal protein biosynthesis, photosynthesis, glycolysis, glyoxylate metabolism, and plant secondary metabolisms) or organelles (e.g., chloroplast). We suggest that the difference in gene expression profiles between the two cell lines likely results from cell types, the overexpression of PAP1, and the high metabolic flux toward anthocyanins.

  7. Inactivation of the transforming growth factor beta type II receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Hougaard, S; Nørgaard, P; Abrahamsen, N

    1999-01-01

    Transforming growth factor beta (TGF-beta) exerts a growth inhibitory effect on many cell types through binding to two types of receptors, the type I and II receptors. Resistance to TGF-beta due to lack of type II receptor (RII) has been described in some cancer types including small cell lung...

  8. Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration.

    Directory of Open Access Journals (Sweden)

    Sylvie Lachmann

    Full Text Available The mammalian protein kinase N (PKN family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relatively highly expressed, to assess the potential redundancy of these isoforms in migratory responses. It is established that PKN2 has a critical role in the migration and invasion of these cells. Furthermore, using a PKN wild-type and chimera rescue strategy, it is shown that PKN isoforms are not simply redundant in supporting migration, but appear to be linked through isoform specific regulatory domain properties to selective upstream signals. It is concluded that intervention in PKNs may need to be directed at multiple isoforms to be effective in different cell types.

  9. Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration.

    Science.gov (United States)

    Lachmann, Sylvie; Jevons, Amy; De Rycker, Manu; Casamassima, Adele; Radtke, Simone; Collazos, Alejandra; Parker, Peter J

    2011-01-01

    The mammalian protein kinase N (PKN) family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s) of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relatively highly expressed, to assess the potential redundancy of these isoforms in migratory responses. It is established that PKN2 has a critical role in the migration and invasion of these cells. Furthermore, using a PKN wild-type and chimera rescue strategy, it is shown that PKN isoforms are not simply redundant in supporting migration, but appear to be linked through isoform specific regulatory domain properties to selective upstream signals. It is concluded that intervention in PKNs may need to be directed at multiple isoforms to be effective in different cell types.

  10. Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels

    Directory of Open Access Journals (Sweden)

    Dan David

    2018-06-01

    Full Text Available Thus far, no human MERS-CoV infections have been reported from Israel. Evidence for the circulation of MERS-CoV in dromedaries has been reported from almost all the countries of the Middle East, except Israel. Therefore, we aimed to analyze MERS-CoV infection in Israeli camelids, sampled between 2012 and 2017. A total of 411 camels, 102 alpacas and 19 llamas' sera were tested for the presence of antibodies to MERS-CoV. Our findings indicate a lower MERS-CoV seropositivity among Israeli dromedaries than in the surrounding countries, and for the first time naturally infected llamas were identified. In addition, nasal swabs of 661 camels, alpacas and lamas, obtained from January 2015 to December 2017, were tested for the presence of MERS-CoV RNA. All nasal swabs were negative, indicating no evidence for MERS-CoV active circulation in these camelids during that time period. Keywords: MERS coronavirus, Antibodies, Israel, Dromedary camels, Llamas, Alpacas

  11. A study on antigenicity and receptor-binding ability of fragment 450-650 of the spike protein of SARS coronavirus

    International Nuclear Information System (INIS)

    Zhao Jincun; Wang Wei; Yuan Zhihong; Jia Rujing; Zhao Zhendong; Xu Xiaojun; Lv Ping; Zhang Yan; Jiang Chengyu; Gao Xiaoming

    2007-01-01

    The spike (S) protein of SARS coronavirus (SARS-CoV) is responsible for viral binding with ACE2 molecules. Its receptor-binding motif (S-RBM) is located between residues 424 and 494, which folds into 2 anti-parallel β-sheets, β5 and β6. We have previously demonstrated that fragment 450-650 of the S protein (S450-650) is predominantly recognized by convalescent sera of SARS patients. The N-terminal 60 residues (450-510) of the S450-650 fragment covers the entire β6 strand of S-RBM. In the present study, we demonstrate that patient sera predominantly recognized 2 linear epitopes outside the β6 fragment, while the mouse antisera, induced by immunization of BALB/c mice with recombinant S450-650, mainly recognized the β6 strand-containing region. Unlike patient sera, however, the mouse antisera were unable to inhibit the infectivity of S protein-expressing (SARS-CoV-S) pseudovirus. Fusion protein between green fluorescence protein (GFP) and S450-650 (S450-650-GFP) was able to stain Vero E6 cells and deletion of the β6 fragment rendered the fusion product (S511-650-GFP) unable to do so. Similarly, recombinant S450-650, but not S511-650, was able to block the infection of Vero E6 cells by the SARS-CoV-S pseudovirus. Co-precipitation experiments confirmed that S450-650 was able to specifically bind with ACE2 molecules in lysate of Vero E6 cells. However, the ability of S450-510, either alone or in fusion with GFP, to bind with ACE2 was significantly poorer compared with S450-650. Our data suggest a possibility that, although the β6 strand alone is able to bind with ACE2 with relatively high affinity, residues outside the S-RBM could also assist the receptor binding of SARS-CoV-S protein

  12. [TNF-α, diabetes type 1 and regulatory T cells].

    Science.gov (United States)

    Ryba, Monika; Myśliwska, Jolanta

    2010-01-01

    Recent studies on animal models of diabetes as well as human regulatory T cells have shown that α impairs the ability of these cells to prevent the disease. NOD mice treated with α had decreased frequency of regulatory T cells, whereas anti-TNF administration induced the increase in the number of these cells and disease prevention. The action of α also influenced the suppressive potential of Tregs. Increased susceptibility of Tregs to the modulatory effects of α involves signaling through TNFR2 that is expressed on the surface of this cell population. It seems that α neutralization may rescue regulatory T cells and restore their function in several autoimmune and inflammatory diseases. This review describes recent data concerning regulatory T cells in the context of inflammation that is present during diabetes type 1. It describes how TNF contributes to the pathogenesis of type 1 diabetes, what is the impact of this cytokine on regulatory T cell population and therapeutic effects that result from its neutralization in several inflammatory and autoimmune diseases.

  13. Automated cell type discovery and classification through knowledge transfer

    Science.gov (United States)

    Lee, Hao-Chih; Kosoy, Roman; Becker, Christine E.

    2017-01-01

    Abstract Motivation: Recent advances in mass cytometry allow simultaneous measurements of up to 50 markers at single-cell resolution. However, the high dimensionality of mass cytometry data introduces computational challenges for automated data analysis and hinders translation of new biological understanding into clinical applications. Previous studies have applied machine learning to facilitate processing of mass cytometry data. However, manual inspection is still inevitable and becoming the barrier to reliable large-scale analysis. Results: We present a new algorithm called Automated Cell-type Discovery and Classification (ACDC) that fully automates the classification of canonical cell populations and highlights novel cell types in mass cytometry data. Evaluations on real-world data show ACDC provides accurate and reliable estimations compared to manual gating results. Additionally, ACDC automatically classifies previously ambiguous cell types to facilitate discovery. Our findings suggest that ACDC substantially improves both reliability and interpretability of results obtained from high-dimensional mass cytometry profiling data. Availability and Implementation: A Python package (Python 3) and analysis scripts for reproducing the results are availability on https://bitbucket.org/dudleylab/acdc. Contact: brian.kidd@mssm.edu or joel.dudley@mssm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28158442

  14. Pathogenesis and treatment of adult-type granulosa cell tumor of the ovary.

    Science.gov (United States)

    Färkkilä, Anniina; Haltia, Ulla-Maija; Tapper, Johanna; McConechy, Melissa K; Huntsman, David G; Heikinheimo, Markku

    2017-08-01

    Adult-type granulosa cell tumor is a clinically and molecularly unique subtype of ovarian cancer. These tumors originate from the sex cord stromal cells of the ovary and represent 3-5% of all ovarian cancers. The majority of adult-type granulosa cell tumors are diagnosed at an early stage with an indolent prognosis. Surgery is the cornerstone for the treatment of both primary and relapsed tumor, while chemotherapy is applied only for advanced or non-resectable cases. Tumor stage is the only factor consistently associated with prognosis. However, every third of the patients relapse, typically in 4-7 years from diagnosis, leading to death in 50% of these patients. Anti-Müllerian Hormone and inhibin B are currently the most accurate circulating biomarkers. Adult-type granulosa cell tumors are molecularly characterized by a pathognomonic somatic missense point mutation 402C->G (C134W) in the transcription factor FOXL2. The FOXL2 402C->G mutation leads to increased proliferation and survival of granulosa cells, and promotes hormonal changes. Histological diagnosis of adult-type granulosa cell tumor is challenging, therefore testing for the FOXL2 mutation is crucial for differential diagnosis. Large international collaborations utilizing molecularly defined cohorts are essential to improve and validate new treatment strategies for patients with high-risk or relapsed adult-type granulosa cell tumor. Key Messages: Adult-type granulosa cell tumor is a unique ovarian cancer with an indolent, albeit unpredictable disease course. Adult-type granulosa cell tumors harbor a pathognomonic somatic missense mutation in transcription factor FOXL2. The key challenges in the treatment of patients with adult-type granulosa cell tumor lie in the identification and management of patients with high-risk or relapsed disease.

  15. Regulated gene expression in cultured type II cells of adult human lung

    OpenAIRE

    Ballard, Philip L.; Lee, Jae W.; Fang, Xiaohui; Chapin, Cheryl; Allen, Lennell; Segal, Mark R.; Fischer, Horst; Illek, Beate; Gonzales, Linda W.; Kolla, Venkatadri; Matthay, Michael A.

    2010-01-01

    Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at ∼95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days...

  16. Do post-translational beta cell protein modifications trigger type 1 diabetes?

    DEFF Research Database (Denmark)

    Størling, Joachim; Overgaard, Anne Julie; Brorsson, Caroline Anna

    2013-01-01

    beta cell-specific neo-epitopes. We suggest that the current paradigm of type 1 diabetes as a classical autoimmune disease should be reconsidered since the immune response may not be directed against native beta cell proteins. A modified model for the pathogenetic events taking place in islets leading...... diabetes exists in the published literature. Furthermore, we report that cytokines change the expression levels of several genes encoding proteins involved in PTM processes in human islets, and that there are type 1 diabetes-associated polymorphisms in a number of these. In conclusion, data from...... the literature and presented experimental data support the notion that PTM of beta cell proteins may be involved in triggering beta cell destruction in type 1 diabetes. If the beta cell antigens recognised by the immune system foremost come from modified proteins rather than native ones, the concept of type 1...

  17. A phylogenetically distinct Middle East respiratory syndrome coronavirus detected in a dromedary calf from a closed dairy herd in Dubai with rising seroprevalence with age

    OpenAIRE

    Wernery, Ulrich; Rasoul, IHassab El; Wong, Emily YM; Joseph, Marina; Chen, Yixin; Jose, Shanty; Tsang, Alan KL; Patteril, Nissy Annie Georgy; Chen, Honglin; Elizabeth, Shyna K; Yuen, Kwok-Yung; Joseph, Sunitha; Xia, Ningshao; Wernery, Renate; Lau, Susanna KP

    2015-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) was detected by monoclonal antibody-based nucleocapsid protein-capture enzyme-linked immunosorbent assay (ELISA), RNA detection, and viral culture from the nasal sample of a 1-month-old dromedary calf in Dubai with sudden death. Whole genome phylogeny showed that this MERS-CoV strain did not cluster with the other MERS-CoV strains from Dubai that we reported recently. Instead, it formed a unique branch more closely related to other MERS-...

  18. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Ruth Merkle

    2016-08-01

    Full Text Available Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC, is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO. However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR. The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in

  19. Shortened β-cell lifespan leads to β-cell deficit in a rodent model of type 2 diabetes

    OpenAIRE

    Manesso, Erica; Toffolo, Gianna M.; Butler, Alexandra E.; Butler, Peter C.; Cobelli, Claudio

    2011-01-01

    Since the fundamental defect in both type 1 and type 2 diabetes is β-cell failure, there is increasing interest in the capacity, if any, for β-cell regeneration. Insights into typical β-cell age and lifespan during normal development and how these are influenced in diabetes is desirable to realistically establish the prospects for β-cell regeneration as means to reverse the deficit in β-cell mass in diabetes. We assessed the mean β-cell age and lifespan by the classical McKendrick-von Foester...

  20. Characterization of a continuous feline mammary epithelial cell line susceptible to feline epitheliotropic viruses.

    Science.gov (United States)

    Pesavento, Patricia; Liu, Hongwei; Ossiboff, Robert J; Stucker, Karla M; Heymer, Anna; Millon, Lee; Wood, Jason; van der List, Deborah; Parker, John S L

    2009-04-01

    Mucosal epithelial cells are the primary targets for many common viral pathogens of cats. Viral infection of epithelia can damage or disrupt the epithelial barrier that protects underlying tissues. In vitro cell culture systems are an effective means to study how viruses infect and disrupt epithelial barriers, however no true continuous or immortalized feline epithelial cell culture lines are available. A continuous cell culture of feline mammary epithelial cells (FMEC UCD-04-2) that forms tight junctions with high transepithelial electrical resistance (>2000Omegacm(-1)) 3-4 days after reaching confluence was characterized. In addition, it was shown that FMECs are susceptible to infection with feline calicivirus (FCV), feline herpesvirus (FHV-1), feline coronavirus (FeCoV), and feline panleukopenia virus (FPV). These cells will be useful for studies of feline viral disease and for in vitro studies of feline epithelia.

  1. Structural and Functional Analyses of the Severe Acute Respiratory Syndrome Coronavirus Endoribonuclease Nsp15

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Kanchan; Palaninathan, Satheesh; Alcantara, Joanna Maria Ortiz; Yi, Lillian Li; Guarino, Linda; Sacchettini, James C.; Kao, C. Cheng (TAM)

    2008-03-31

    The severe acute respiratory syndrome (SARS) coronavirus encodes several RNA-processing enzymes that are unusual for RNA viruses, including Nsp15 (nonstructural protein 15), a hexameric endoribonuclease that preferentially cleaves 3' of uridines. We solved the structure of a catalytically inactive mutant version of Nsp15, which was crystallized as a hexamer. The structure contains unreported flexibility in the active site of each subunit. Substitutions in the active site residues serine 293 and proline 343 allowed Nsp15 to cleave at cytidylate, whereas mutation of leucine 345 rendered Nsp15 able to cleave at purines as well as pyrimidines. Mutations that targeted the residues involved in subunit interactions generally resulted in the formation of catalytically inactive monomers. The RNA-binding residues were mapped by a method linking reversible cross-linking, RNA affinity purification, and peptide fingerprinting. Alanine substitution of several residues in the RNA-contacting portion of Nsp15 did not affect hexamer formation but decreased the affinity of RNA binding and reduced endonuclease activity. This suggests a model for Nsp15 hexamer interaction with RNA.

  2. Knowledge and attitude towards the Middle East respiratory syndrome coronavirus among healthcare personnel in the southern region of Saudi Arabia.

    Science.gov (United States)

    Abbag, Huda F; El-Mekki, Awad Ahmed; Al Bshabshe, Ali Aobaid Ali; Mahfouz, Ahmed A; Al-Dosry, Ahasen A; Mirdad, Rasha T; AlKhttabi, Nora F; Abbag, Lubna F

    2018-03-07

    Middle East respiratory syndrome coronavirus (MERS-CoV) belongs to the family Coronaviridae, and is named for the crown-like spikes on its surface. The clinical presentation of MERS-CoV infection ranges from asymptomatic to very severe disease, and the classical presentation includes fever, cough chills, sore throat, myalgia, and arthralgia. A cross-sectional study of 339 healthcare personnel was conducted over an 8-month period in the Aseer region of Saudi Arabia using a structured survey that included demographic information and questions testing participant's knowledge. Approximately two-thirds of the respondents properly identified the causative agent of MERS-CoV as an RNA virus (66.4%, n=225) that is enveloped (68.1%, n=231). On the other hand, few respondents identified the proper number of strains or the genus (16.5% and 17.4%, respectively). More than half of the study sample identified the disease as zoonotic (57.2%, n=194). Similarly, 89.1% (n=302) identified that camels and bats are prone to infection with coronaviruses. Only 23.9% (n=81) properly identified March through May as the season with the highest transmission rate. There was a massive lack of adequate knowledge regarding prevalence of antibodies. Only 18.3% (n=62) of respondents identified PCR as the proper diagnostic confirmatory test for MERS-CoV infection. Regarding MERS-CoV clinical features, 76.4% (n=259) recognized the presence of sub-clinical infection, 64.7% (n=218) indicated that cases should be immediately isolated, and 46.9% (n=159) identified the main cause of mortality as respiratory failure. There is limited microbiological and virological knowledge of MERS-CoV infection among healthcare personnel in the southern region of Saudi Arabia, although the clinical aspects are known. Copyright © 2018. Published by Elsevier Ltd.

  3. An Opportunistic Pathogen Afforded Ample Opportunities: Middle East Respiratory Syndrome Coronavirus

    Directory of Open Access Journals (Sweden)

    Ian M. Mackay

    2017-12-01

    Full Text Available The human coronaviruses (CoV include HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1, some of which have been known for decades. The severe acute respiratory syndrome (SARS CoV briefly emerged into the human population but was controlled. In 2012, another novel severely human pathogenic CoV—the Middle East Respiratory Syndrome (MERS-CoV—was identified in the Kingdom of Saudi Arabia; 80% of over 2000 human cases have been recorded over five years. Targeted research remains key to developing control strategies for MERS-CoV, a cause of mild illness in its camel reservoir. A new therapeutic toolbox being developed in response to MERS is also teaching us more about how CoVs cause disease. Travel-related cases continue to challenge the world’s surveillance and response capabilities, and more data are needed to understand unexplained primary transmission. Signs of genetic change have been recorded, but it remains unclear whether there is any impact on clinical disease. How camels came to carry the virus remains academic to the control of MERS. To date, human-to-human transmission has been inefficient, but virus surveillance, characterisation, and reporting are key to responding to any future change. MERS-CoV is not currently a pandemic threat; it is spread mainly with the aid of human habit and error.

  4. Cell type-specific characterization of nuclear DNA contents within complex tissues and organs

    Directory of Open Access Journals (Sweden)

    Lambert Georgina M

    2005-10-01

    Full Text Available Abstract Background Eukaryotic organisms are defined by the presence of a nucleus, which encloses the chromosomal DNA, and is characterized by its DNA content (C-value. Complex eukaryotic organisms contain organs and tissues that comprise interspersions of different cell types, within which polysomaty, endoreduplication, and cell cycle arrest is frequently observed. Little is known about the distribution of C-values across different cell types within these organs and tissues. Results We have developed, and describe here, a method to precisely define the C-value status within any specific cell type within complex organs and tissues of plants. We illustrate the application of this method to Arabidopsis thaliana, specifically focusing on the different cell types found within the root. Conclusion The method accurately and conveniently charts C-value within specific cell types, and provides novel insight into developmental processes. The method is, in principle, applicable to any transformable organism, including mammals, within which cell type specificity of regulation of endoreduplication, of polysomaty, and of cell cycle arrest is suspected.

  5. Expression of synaptogyrin-1 in T1R2-expressing type II taste cells and type III taste cells of rat circumvallate taste buds.

    Science.gov (United States)

    Kotani, Takeshi; Toyono, Takashi; Seta, Yuji; Kitou, Ayae; Kataoka, Shinji; Toyoshima, Kuniaki

    2013-09-01

    Synaptogyrins are conserved components of the exocytic apparatus and function as regulators of Ca(2+)-dependent exocytosis. The synaptogyrin family comprises three isoforms: two neuronal (synaptogyrin-1 and -3) and one ubiquitous (synaptogyrin-2) form. Although the expression patterns of the exocytic proteins synaptotagmin-1, SNAP-25, synaptobrevin-2 and synaptophysin have been elucidated in taste buds, the function and expression pattern of synaptogyrin-1 in rat gustatory tissues have not been determined. Therefore, we examined the expression patterns of synaptogyrin-1 and several cell-specific markers of type II and III cells in rat gustatory tissues. Reverse transcription/polymerase chain reaction assays and immunoblot analysis revealed the expression of synaptogyrin-1 mRNA and its protein in circumvallate papillae. In fungiform, foliate and circumvallate papillae, the antibody against synaptogyrin-1 immunolabeled a subset of taste bud cells and intra- and subgemmal nerve processes. Double-labeling experiments revealed the expression of synaptogyrin-1 in most taste cells immunoreactive for aromatic L-amino acid decarboxylase and the neural cell adhesion molecule. A subset of synaptogyrin-1-immunoreactive taste cells also expressed phospholipase Cβ2, gustducin, or sweet taste receptor (T1R2). In addition, most synaptogyrin-1-immunoreactive taste cells expressed synaptobrevin-2. These results suggest that synaptogyrin-1 plays a regulatory role in transmission at the synapses of type III cells and is involved in exocytic function with synaptobrevin-2 in a subset of type II cells in rat taste buds.

  6. A multiplex reverse transcription-nested polymerase chain reaction for detection and differentiation of wild-type and vaccine strains of canine distemper virus

    Directory of Open Access Journals (Sweden)

    Cui Shang-jin

    2010-05-01

    Full Text Available Abstract A multiplex reverse transcription-nested polymerase chain reaction (RT-nPCR method was developed for the detection and differentiation of wild-type and vaccine strains of canine distemper virus (CDV. A pair of primers (P1 and P4 specific for CDV corresponding to the highly conserved region of the CDV genome were used as a common primer pair in the first-round PCR of the nested PCR. Primers P2 specific for CDV wild-type strains, were used as the forward primer together with the common reverse primer P4 in the second round of nested PCR. Primers P3, P5 specific for CDV wild-type strain or vaccine strain, were used as the forward primer together with the common reverse primer P4+P6 in the second round of nested PCR. A fragment of 177 bp was amplified from vaccine strain genomic RNA, and a fragment of 247 bp from wild-type strain genomic RNA in the RT-nPCR, and two fragments of 247 bp and 177 bp were amplified from the mixed samples of vaccine and wild-type strains. No amplification was achieved for uninfected cells, or cells infected with Newcastle disease virus (NDV, canine parvovirus (CPV, canine coronavirus (CCV, rabies virus (RV, or canine adenovirus (CAV. The RT-nPCR method was used to detect 30 field samples suspected of canine distemper from Heilongjiang and Jilin Provinces, and 51 samples in Shandong province. As a result of 30 samples, were found to be wild-type-like, and 5 to be vaccine-strain-like. The RT-nPCR method can be used to effectively detect and differentiate wild-type CDV-infected dogs from dogs vaccinated with CDV vaccine, and thus can be used in clinical detection and epidemiological surveillance.

  7. A multiplex reverse transcription-nested polymerase chain reaction for detection and differentiation of wild-type and vaccine strains of canine distemper virus

    Science.gov (United States)

    2010-01-01

    A multiplex reverse transcription-nested polymerase chain reaction (RT-nPCR) method was developed for the detection and differentiation of wild-type and vaccine strains of canine distemper virus (CDV). A pair of primers (P1 and P4) specific for CDV corresponding to the highly conserved region of the CDV genome were used as a common primer pair in the first-round PCR of the nested PCR. Primers P2 specific for CDV wild-type strains, were used as the forward primer together with the common reverse primer P4 in the second round of nested PCR. Primers P3, P5 specific for CDV wild-type strain or vaccine strain, were used as the forward primer together with the common reverse primer P4+P6 in the second round of nested PCR. A fragment of 177 bp was amplified from vaccine strain genomic RNA, and a fragment of 247 bp from wild-type strain genomic RNA in the RT-nPCR, and two fragments of 247 bp and 177 bp were amplified from the mixed samples of vaccine and wild-type strains. No amplification was achieved for uninfected cells, or cells infected with Newcastle disease virus (NDV), canine parvovirus (CPV), canine coronavirus (CCV), rabies virus (RV), or canine adenovirus (CAV). The RT-nPCR method was used to detect 30 field samples suspected of canine distemper from Heilongjiang and Jilin Provinces, and 51 samples in Shandong province. As a result of 30 samples, were found to be wild-type-like, and 5 to be vaccine-strain-like. The RT-nPCR method can be used to effectively detect and differentiate wild-type CDV-infected dogs from dogs vaccinated with CDV vaccine, and thus can be used in clinical detection and epidemiological surveillance. PMID:20433759

  8. Transcriptional profiling of feline infectious peritonitis virus infection in CRFK cells and in PBMCs from FIP diagnosed cats.

    Science.gov (United States)

    Harun, Mohammad Syamsul Reza; Kuan, Choong Oi; Selvarajah, Gayathri Thevi; Wei, Tan Sheau; Arshad, Siti Suri; Hair Bejo, Mohd; Omar, Abdul Rahman

    2013-11-09

    Feline Infectious Peritonitis (FIP) is a lethal systemic disease, caused by the FIP Virus (FIPV); a virulent mutant of Feline Enteric Coronavirus (FECV). Currently, the viruses virulence determinants and host gene expressions during FIPV infection are not fully understood. RNA sequencing of Crandell Rees Feline Kidney (CRFK) cells, infected with FIPV strain 79-1146 at 3 hours post infection (h.p.i), were sequenced using the Illumina next generation sequencing approach. Bioinformatic's analysis, based on Felis catus 2X annotated shotgun reference genome, using CLC bio Genome Workbench mapped both control and infected cell reads to 18899 genes out of 19046 annotated genes. Kal's Z test statistical analysis was used to analyse the differentially expressed genes from the infected CRFK cells. Real time RT-qPCR was developed for further transcriptional profiling of three genes (PD-1, PD-L1 and A3H) in infected CRFK cells and Peripheral Blood Mononuclear Cells (PBMCs) from healthy and FIP-diseased cats. Based on Kal's Z-test, with False Discovery Rate (FDR) 1.99 fold change on gene expressions, a total of 61 genes were differentially expressed by both samples, where 44 genes were up-regulated and the remainder were down-regulated. Most genes were closely clustered together, suggesting a homogeneous expression. The majority of the genes that were significantly regulated, were those associated with monocytes-macrophage and Th1 cell functions, and the regulation of apoptosis. Real time RT-qPCR developed focusing on 2 up-regulated genes (PD-L1 and A3H) together with an apoptosis associated gene PD-1 expressions in FIPV infected CRFK cells and in PBMCs from healthy and FIP diagnosed cats produced concordant results with transcriptome data. The possible roles of these genes, and their importance in feline coronaviruses infection, are discussed.

  9. The Characteristics of Middle Eastern Respiratory Syndrome Coronavirus Transmission Dynamics in South Korea.

    Science.gov (United States)

    Kim, Yunhwan; Lee, Sunmi; Chu, Chaeshin; Choe, Seoyun; Hong, Saeme; Shin, Youngseo

    2016-02-01

    The outbreak of Middle Eastern respiratory syndrome coronavirus (MERS-CoV) was one of the major events in South Korea in 2015. In particular, this study pays attention to formulating a mathematical model for MERS transmission dynamics and estimating transmission rates. Incidence data of MERS-CoV from the government authority was analyzed for the first aim and a mathematical model was built and analyzed for the second aim of the study. A mathematical model for MERS-CoV transmission dynamics is used to estimate the transmission rates in two periods due to the implementation of intensive interventions. Using the estimates of the transmission rates, the basic reproduction number was estimated in two periods. Due to the superspreader, the basic reproduction number was very large in the first period; however, the basic reproduction number of the second period has reduced significantly after intensive interventions. It turned out to be the intensive isolation and quarantine interventions that were the most critical factors that prevented the spread of the MERS outbreak. The results are expected to be useful to devise more efficient intervention strategies in the future.

  10. Revisit the Candidacy of Brain Cell Types as the Cell(s of Origin for Human High-Grade Glioma

    Directory of Open Access Journals (Sweden)

    Fangjie Shao

    2018-02-01

    Full Text Available High-grade glioma, particularly, glioblastoma, is the most aggressive cancer of the central nervous system (CNS in adults. Due to its heterogeneous nature, glioblastoma almost inevitably relapses after surgical resection and radio-/chemotherapy, and is thus highly lethal and associated with a dismal prognosis. Identifying the cell of origin has been considered an important aspect in understanding tumor heterogeneity, thereby holding great promise in designing novel therapeutic strategies for glioblastoma. Taking advantage of genetic lineage-tracing techniques, performed mainly on genetically engineered mouse models (GEMMs, multiple cell types in the CNS have been suggested as potential cells of origin for glioblastoma, among which adult neural stem cells (NSCs and oligodendrocyte precursor cells (OPCs are the major candidates. However, it remains highly debated whether these cell types are equally capable of transforming in patients, given that in the human brain, some cell types divide so slowly, therefore may never have a chance to transform. With the recent advances in studying adult NSCs and OPCs, particularly from the perspective of comparative biology, we now realize that notable differences exist among mammalian species. These differences have critical impacts on shaping our understanding of the cell of origin of glioma in humans. In this perspective, we update the current progress in this field and clarify some misconceptions with inputs from important findings about the biology of adult NSCs and OPCs. We propose to re-evaluate the cellular origin candidacy of these cells, with an emphasis on comparative studies between animal models and humans.

  11. β-Cell Replacement in Mice Using Human Type 1 Diabetes Nuclear Transfer Embryonic Stem Cells.

    Science.gov (United States)

    Sui, Lina; Danzl, Nichole; Campbell, Sean R; Viola, Ryan; Williams, Damian; Xing, Yuan; Wang, Yong; Phillips, Neil; Poffenberger, Greg; Johannesson, Bjarki; Oberholzer, Jose; Powers, Alvin C; Leibel, Rudolph L; Chen, Xiaojuan; Sykes, Megan; Egli, Dieter

    2018-01-01

    β-Cells derived from stem cells hold great promise for cell replacement therapy for diabetes. Here we examine the ability of nuclear transfer embryonic stem cells (NT-ESs) derived from a patient with type 1 diabetes to differentiate into β-cells and provide a source of autologous islets for cell replacement. NT-ESs differentiate in vitro with an average efficiency of 55% into C-peptide-positive cells, expressing markers of mature β-cells, including MAFA and NKX6.1. Upon transplantation in immunodeficient mice, grafted cells form vascularized islet-like structures containing MAFA/C-peptide-positive cells. These β-cells adapt insulin secretion to ambient metabolite status and show normal insulin processing. Importantly, NT-ES-β-cells maintain normal blood glucose levels after ablation of the mouse endogenous β-cells. Cystic structures, but no teratomas, were observed in NT-ES-β-cell grafts. Isogenic induced pluripotent stem cell lines showed greater variability in β-cell differentiation. Even though different methods of somatic cell reprogramming result in stem cell lines that are molecularly indistinguishable, full differentiation competence is more common in ES cell lines than in induced pluripotent stem cell lines. These results demonstrate the suitability of NT-ES-β-cells for cell replacement for type 1 diabetes and provide proof of principle for therapeutic cloning combined with cell therapy. © 2017 by the American Diabetes Association.

  12. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer

    International Nuclear Information System (INIS)

    Karamitopoulou, Eva

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial–mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  13. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer.

    Science.gov (United States)

    Karamitopoulou, Eva

    2012-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  14. Tumor Budding Cells, Cancer Stem Cells and Epithelial-Mesenchymal Transition-type Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Eva eKaramitopoulou

    2013-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4 and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with WNT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT. Emerging evidence has demonstrated that cancer stem cells (CSCs, small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5 of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric and ampullary carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs and EMT-type cells in PDAC.

  15. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    International Nuclear Information System (INIS)

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2015-01-01

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells

  16. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko [China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China); Fujisaki, Hitomi; Hattori, Shunji [Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017 (Japan); Tashiro, Shin-ichi [Institute for Clinical and Biomedical Sciences, Kyoto 603-8072 (Japan); Onodera, Satoshi [Department of Clinical and Pharmaceutical Sciences, Showa Pharmaceutical University, Tokyo 194-8543 (Japan); Ikejima, Takashi, E-mail: ikejimat@vip.sina.com [China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China)

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  17. PPARgamma in immunity and inflammation: cell types and diseases.

    Science.gov (United States)

    Széles, Lajos; Töröcsik, Dániel; Nagy, László

    2007-08-01

    The lipid activated transcription factor, PPARgamma appears to have multiple functions in the immune system. There are several cell types expressing the receptor, most prominently antigen presenting cells, such as macrophages and dendritic cells. The receptor's activation leads to primary transcriptional activation of many, mostly lipid metabolism-related genes. However, gene regulation also occurs on immunity and inflammation-related genes. Key questions are: in what way lipid metabolism and immune regulation are connected and how activation and/or repression of gene expression may modulate inflammatory and anti-inflammatory responses and in what way can these be utilized in therapy. Here we provide a cell type and disease centric review on the role of this lipid activated transcription factor in the various cells of the immune system it is expressed in, and in some major inflammatory diseases such as atherosclerosis, inflammatory bowel disease and rheumatoid arthritis.

  18. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.

    Science.gov (United States)

    Huang, Yijen A; Maruyama, Yutaka; Stimac, Robert; Roper, Stephen D

    2008-06-15

    Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.

  19. Systematic and Cell Type-Specific Telomere Length Changes in Subsets of Lymphocytes

    Directory of Open Access Journals (Sweden)

    Jue Lin

    2016-01-01

    Full Text Available Telomeres, the protective DNA-protein complexes at the ends of linear chromosomes, are important for genome stability. Leukocyte or peripheral blood mononuclear cell (PBMC telomere length is a potential biomarker for human aging that integrates genetic, environmental, and lifestyle factors and is associated with mortality and risks for major diseases. However, only a limited number of studies have examined longitudinal changes of telomere length and few have reported data on sorted circulating immune cells. We examined the average telomere length (TL in CD4+, CD8+CD28+, and CD8+CD28− T cells, B cells, and PBMCs, cross-sectionally and longitudinally, in a cohort of premenopausal women. We report that TL changes over 18 months were correlated among these three T cell types within the same participant. Additionally, PBMC TL change was also correlated with those of all three T cell types, and B cells. The rate of shortening for B cells was significantly greater than for the three T cell types. CD8+CD28− cells, despite having the shortest TL, showed significantly more rapid attrition when compared to CD8+CD28+ T cells. These results suggest systematically coordinated, yet cell type-specific responses to factors and pathways contribute to telomere length regulation.

  20. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis.

    Science.gov (United States)

    Badawi, Alaa; Ryoo, Seung Gwan

    2016-08-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) is associated with life-threatening severe illnesses and a mortality rate of approximately 35%, particularly in patients with underlying comorbidities. A systematic analysis of 637 MERS-CoV cases suggests that diabetes and hypertension are equally prevalent in approximately 50% of the patients. Cardiac diseases are present in 30% and obesity in 16% of the cases. These conditions down-regulate the synthesis of proinflammatory cytokines and impair the host's innate and humoral immune systems. In conclusion, protection against MERS-CoV and other respiratory infections can be improved if public health vaccination strategies are tailored to target persons with chronic disorders. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. Stem Cell Treatment for Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Ming eLi

    2014-03-01

    Full Text Available Type 1 diabetes mellitus (T1DM is a common chronic disease in children, characterized by a loss of  cells, which results in defects in insulin secretion and hyperglycemia. Chronic hyperglycemia causes diabetic complications, including diabetic nephropathy, neuropathy and retinopathy. Curative therapies mainly include diet and insulin administration. Although hyperglycemia can be improved by insulin administration, exogenous insulin injection cannot successfully mimic the insulin secretion from normal  cells, which keeps blood glucose levels within the normal range all the time. Islet and pancreas transplantation achieves better glucose control, but there is a lack of organ donors. Cell based therapies have also been attempted to treat T1DM. Stem cells such as embryonic stem cells, induced pluripotent stem cells and tissue stem cells (TSCs such as bone marrow-, adipose tissue- and cord blood-derived stem cells, have been shown to generate insulin-producing cells. In this review, we summarize the most-recently available information about T1DM and the use of TSCs to treat T1DM.

  2. A model for cell type localization in the migrating slug of ...

    Indian Academy of Sciences (India)

    PRAKASH

    . Localization of the three major cell types within the migrating slug stage is a dynamic process (Sternfeld 1992;. A model for cell type localization in the migrating slug of Dictyostelium discoideum based on differential chemotactic sensitivity to ...

  3. A molecular census of arcuate hypothalamus and median eminence cell types

    DEFF Research Database (Denmark)

    Campbell, John N; Macosko, Evan Z; Fenselau, Henning

    2017-01-01

    The hypothalamic arcuate-median eminence complex (Arc-ME) controls energy balance, fertility and growth through molecularly distinct cell types, many of which remain unknown. To catalog cell types in an unbiased way, we profiled gene expression in 20,921 individual cells in and around the adult...... mouse Arc-ME using Drop-seq. We identify 50 transcriptionally distinct Arc-ME cell populations, including a rare tanycyte population at the Arc-ME diffusion barrier, a new leptin-sensing neuron population, multiple agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) subtypes, and an orexigenic...... somatostatin neuron population. We extended Drop-seq to detect dynamic expression changes across relevant physiological perturbations, revealing cell type-specific responses to energy status, including distinct responses in AgRP and POMC neuron subtypes. Finally, integrating our data with human genome...

  4. Origin and Possible Genetic Recombination of the Middle East Respiratory Syndrome Coronavirus from the First Imported Case in China: Phylogenetics and Coalescence Analysis.

    Science.gov (United States)

    Wang, Yanqun; Liu, Di; Shi, Weifeng; Lu, Roujian; Wang, Wenling; Zhao, Yanjie; Deng, Yao; Zhou, Weimin; Ren, Hongguang; Wu, Jun; Wang, Yu; Wu, Guizhen; Gao, George F; Tan, Wenjie

    2015-09-08

    The Middle East respiratory syndrome coronavirus (MERS-CoV) causes a severe acute respiratory tract infection with a high fatality rate in humans. Coronaviruses are capable of infecting multiple species and can evolve rapidly through recombination events. Here, we report the complete genomic sequence analysis of a MERS-CoV strain imported to China from South Korea. The imported virus, provisionally named ChinaGD01, belongs to group 3 in clade B in the whole-genome phylogenetic tree and also has a similar tree topology structure in the open reading frame 1a and -b (ORF1ab) gene segment but clusters with group 5 of clade B in the tree constructed using the S gene. Genetic recombination analysis and lineage-specific single-nucleotide polymorphism (SNP) comparison suggest that the imported virus is a recombinant comprising group 3 and group 5 elements. The time-resolved phylogenetic estimation indicates that the recombination event likely occurred in the second half of 2014. Genetic recombination events between group 3 and group 5 of clade B may have implications for the transmissibility of the virus. The recent outbreak of MERS-CoV in South Korea has attracted global media attention due to the speed of spread and onward transmission. Here, we present the complete genome of the first imported MERS-CoV case in China and demonstrate genetic recombination events between group 3 and group 5 of clade B that may have implications for the transmissibility of MERS-CoV. Copyright © 2015 Wang et al.

  5. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction.

    Science.gov (United States)

    Rigas, Diamanda; Lewis, Gavin; Aron, Jennifer L; Wang, Bowen; Banie, Homayon; Sankaranarayanan, Ishwarya; Galle-Treger, Lauriane; Maazi, Hadi; Lo, Richard; Freeman, Gordon J; Sharpe, Arlene H; Soroosh, Pejman; Akbari, Omid

    2017-05-01

    Atopic diseases, including asthma, exacerbate type 2 immune responses and involve a number of immune cell types, including regulatory T (Treg) cells and the emerging type 2 innate lymphoid cells (ILC2s). Although ILC2s are potent producers of type 2 cytokines, the regulation of ILC2 activation and function is not well understood. In the present study, for the first time, we evaluate how Treg cells interact with pulmonary ILC2s and control their function. ILC2s and Treg cells were evaluated by using in vitro suppression assays, cell-contact assays, and gene expression panels. Also, human ILC2s and Treg cells were adoptively transferred into NOD SCID γC-deficient mice, which were given isotype or anti-inducible T-cell costimulator ligand (ICOSL) antibodies and then challenged with IL-33 and assessed for airway hyperreactivity. We show that induced Treg cells, but not natural Treg cells, effectively suppress the production of the ILC2-driven proinflammatory cytokines IL-5 and IL-13 both in vitro and in vivo. Mechanistically, our data reveal the necessity of inducible T-cell costimulator (ICOS)-ICOS ligand cell contact for Treg cell-mediated ILC2 suppression alongside the suppressive cytokines TGF-β and IL-10. Using a translational approach, we then demonstrate that human induced Treg cells suppress syngeneic human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 mouse model. These findings suggest that peripheral expansion of induced Treg cells can serve as a promising therapeutic target against ILC2-dependent asthma. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. Role of type I interferon receptor signaling on NK cell development and functions.

    Directory of Open Access Journals (Sweden)

    Jean Guan

    Full Text Available Type I interferons (IFN are unique cytokines transcribed from intronless genes. They have been extensively studied because of their anti-viral functions. The anti-viral effects of type I IFN are mediated in part by natural killer (NK cells. However, the exact contribution of type I IFN on NK cell development, maturation and activation has been somewhat difficult to assess. In this study, we used a variety of approaches to define the consequences of the lack of type I interferon receptor (IFNAR signaling on NK cells. Using IFNAR deficient mice, we found that type I IFN affect NK cell development at the pre-pro NK stage. We also found that systemic absence of IFNAR signaling impacts NK cell maturation with a significant increase in the CD27+CD11b+ double positive (DP compartment in all organs. However, there is tissue specificity, and only in liver and bone marrow is the maturation defect strictly dependent on cell intrinsic IFNAR signaling. Finally, using adoptive transfer and mixed bone marrow approaches, we also show that cell intrinsic IFNAR signaling is not required for NK cell IFN-γ production in the context of MCMV infection. Taken together, our studies provide novel insights on how type I IFN receptor signaling regulates NK cell development and functions.

  7. Cell Type-specific Intrinsic Perithreshold Oscillations in Hippocampal GABAergic Interneurons.

    Science.gov (United States)

    Kang, Young-Jin; Lewis, Hannah Elisabeth Smashey; Young, Mason William; Govindaiah, Gubbi; Greenfield, Lazar John; Garcia-Rill, Edgar; Lee, Sang-Hun

    2018-04-15

    The hippocampus plays a critical role in learning, memory, and spatial processing through coordinated network activity including theta and gamma oscillations. Recent evidence suggests that hippocampal subregions (e.g., CA1) can generate these oscillations at the network level, at least in part, through GABAergic interneurons. However, it is unclear whether specific GABAergic interneurons generate intrinsic theta and/or gamma oscillations at the single-cell level. Since major types of CA1 interneurons (i.e., parvalbumin-positive basket cells (PVBCs), cannabinoid type 1 receptor-positive basket cells (CB 1 BCs), Schaffer collateral-associated cells (SCAs), neurogliaform cells and ivy cells) are thought to play key roles in network theta and gamma oscillations in the hippocampus, we tested the hypothesis that these cells generate intrinsic perithreshold oscillations at the single-cell level. We performed whole-cell patch-clamp recordings from GABAergic interneurons in the CA1 region of the mouse hippocampus in the presence of synaptic blockers to identify intrinsic perithreshold membrane potential oscillations. The majority of PVBCs (83%), but not the other interneuron subtypes, produced intrinsic perithreshold gamma oscillations if the membrane potential remained above -45 mV. In contrast, CB 1 BCs, SCAs, neurogliaform cells, ivy cells, and the remaining PVBCs (17%) produced intrinsic theta, but not gamma, oscillations. These oscillations were prevented by blockers of persistent sodium current. These data demonstrate that the major types of hippocampal interneurons produce distinct frequency bands of intrinsic perithreshold membrane oscillations. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Digital sorting of complex tissues for cell type-specific gene expression profiles.

    Science.gov (United States)

    Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong

    2013-03-07

    Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.

  9. Secretory activity and cell cycle alteration of alveolar type II cells in the early and late phase after irradiation

    International Nuclear Information System (INIS)

    Willner, Jochen; Vordermark, Dirk; Schmidt, Michael; Gassel, Andreamaria; Flentje, Michael; Wirtz, Hubert

    2003-01-01

    Purpose: Type II cells and the surfactant system have been proposed to play a central role in pathogenesis of radiation pneumonitis. We analyzed the secretory function and proliferation parameters of alveolar type II cells in the early (until 24 h) and late phase (1-5 weeks) after irradiation (RT) in vitro and in vivo. Methods and Materials: Type II cells were isolated from rats according to the method of Dobbs. Stimulation of secretion was induced with terbutaline, adenosine triphosphate (ATP), and 12-O-tetradecanoylphorbol-13-acetate (TPA) for a 2-h period. Determination of secretion was performed using 3 H-labeled phosphatidylcholine. For the early-phase analysis, freshly isolated and adherent type II cells were irradiated in vitro with 9-21 Gy (stepwise increase of 3 Gy). Secretion stimulation was initiated 1, 6, 24, and 48 h after RT. For late-phase analysis, type II cells were isolated 1-5 weeks after 18 Gy whole lung or sham RT. Each experiment was repeated at least fivefold. Flow cytometry was used to determine cell cycle distribution and proliferating cell nuclear antigen index. Results: During the early-phase (in vitro) analysis, we found a normal stimulation of surfactant secretion in irradiated, as well as unirradiated, cells. No change in basal secretion and no dose effect were seen. During the late phase, 1-5 weeks after whole lung RT, we observed enhanced secretory activity for all secretagogues and a small increase in basal secretion in Weeks 3 and 4 (pneumonitis phase) compared with controls. The total number of isolated type II cells, as well as the rate of viable cells, decreased after the second post-RT week. Cell cycle alterations suggesting an irreversible G 2 /M block occurred in the second post-RT week and did not resolve during the observation period. The proliferating cell nuclear antigen index of type II cells from irradiated rats did not differ from that of controls. Conclusion: In contrast to literature data, we observed no direct

  10. Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia.

    Science.gov (United States)

    Sabir, Jamal S M; Lam, Tommy T-Y; Ahmed, Mohamed M M; Li, Lifeng; Shen, Yongyi; Abo-Aba, Salah E M; Qureshi, Muhammd I; Abu-Zeid, Mohamed; Zhang, Yu; Khiyami, Mohammad A; Alharbi, Njud S; Hajrah, Nahid H; Sabir, Meshaal J; Mutwakil, Mohammed H Z; Kabli, Saleh A; Alsulaimany, Faten A S; Obaid, Abdullah Y; Zhou, Boping; Smith, David K; Holmes, Edward C; Zhu, Huachen; Guan, Yi

    2016-01-01

    Outbreaks of Middle East respiratory syndrome (MERS) raise questions about the prevalence and evolution of the MERS coronavirus (CoV) in its animal reservoir. Our surveillance in Saudi Arabia in 2014 and 2015 showed that viruses of the MERS-CoV species and a human CoV 229E-related lineage co-circulated at high prevalence, with frequent co-infections in the upper respiratory tract of dromedary camels. viruses of the betacoronavirus 1 species, we found that dromedary camels share three CoV species with humans. Several MERS-CoV lineages were present in camels, including a recombinant lineage that has been dominant since December 2014 and that subsequently led to the human outbreaks in 2015. Camels therefore serve as an important reservoir for the maintenance and diversification of the MERS-CoVs and are the source of human infections with this virus. Copyright © 2016, American Association for the Advancement of Science.

  11. Overview of preparedness and response for Middle East respiratory syndrome coronavirus (MERS-CoV) in Oman.

    Science.gov (United States)

    Al-Abaidani, I S; Al-Maani, A S; Al-Kindi, H S; Al-Jardani, A K; Abdel-Hady, D M; Zayed, B E; Al-Harthy, K S; Al-Shaqsi, K H; Al-Abri, S S

    2014-12-01

    Several countries in the Middle East and around 22 countries worldwide have reported cases of human infection with the Middle East respiratory syndrome coronavirus (MERS-CoV). The exceptionally high fatality rate resulting from MERS-CoV infection in conjunction with the paucity of knowledge about this emerging virus has led to major public and international concern. Within the framework of the national acute respiratory illness surveillance, the Ministry of Health in the Sultanate of Oman has announced two confirmed cases of MERS-CoV to date. The aim of this report is to describe the epidemiological aspects of these two cases and to highlight the importance of public health preparedness and response. The absence of secondary cases among contacts of the reported cases can be seen as evidence of the effectiveness of infection prevention and control precautions as an important pillar of the national preparedness and response plan applied in the health care institutions in Oman. Copyright © 2014. Published by Elsevier Ltd.

  12. Overview of preparedness and response for Middle East respiratory syndrome coronavirus (MERS-CoV in Oman

    Directory of Open Access Journals (Sweden)

    I.S. Al-Abaidani

    2014-12-01

    Full Text Available Several countries in the Middle East and around 22 countries worldwide have reported cases of human infection with the Middle East respiratory syndrome coronavirus (MERS-CoV. The exceptionally high fatality rate resulting from MERS-CoV infection in conjunction with the paucity of knowledge about this emerging virus has led to major public and international concern. Within the framework of the national acute respiratory illness surveillance, the Ministry of Health in the Sultanate of Oman has announced two confirmed cases of MERS-CoV to date. The aim of this report is to describe the epidemiological aspects of these two cases and to highlight the importance of public health preparedness and response. The absence of secondary cases among contacts of the reported cases can be seen as evidence of the effectiveness of infection prevention and control precautions as an important pillar of the national preparedness and response plan applied in the health care institutions in Oman.

  13. Human coronavirus and severe acute respiratory infection in Southern Brazil.

    Science.gov (United States)

    Trombetta, Hygor; Faggion, Heloisa Z; Leotte, Jaqueline; Nogueira, Meri B; Vidal, Luine R R; Raboni, Sonia M

    2016-05-01

    Human coronaviruses (HCoVs) are an important cause of respiratory tract infection and are responsible for causing the common cold in the general population. Thus, adequate surveillance of HCoV is essential. This study aimed to analyze the impact of HCoV infections and their relation to severe acute respiratory infection (SARI) in a hospitalized population in Southern Brazil. A cross-sectional study was conducted at a tertiary care hospital, and assessed inpatients under investigation for SARI by the hospital epidemiology department, and all patients who had nasopharyngeal aspirates collected from January 2012 to December 2013 to detect respiratory viruses (RVs). Viral infection was detected by multiplex reverse transcriptase polymerase chain reaction (RT-PCR), with primers specific to the subtypes HCoV-229E/NL63 and OC43/HKU1. The overall positivity rate was 58.8% (444/755), and HCoVs were detected in 7.6% (n = 34) of positive samples. Children below two years of age were most frequently affected (62%). Comorbidities were more likely to be associated with HCoVs than with other RVs. Immunosuppression was an independent risk factor for HCoV infection (OR = 3.5, 95% CI 1.6-7.6). Dyspnea was less frequently associated with HCoV infection (p infected with HCoV (9%) died from respiratory infection. HCoVs are important respiratory pathogens, especially in hospitalized children under 2 years of age and in immunosuppressed patients. They may account for a small proportion of SARI diagnoses, increased need for mechanical ventilation, intensive care unit admission, and death.

  14. Expression weighted cell type enrichments reveal genetic and cellular nature of major brain disorders

    Directory of Open Access Journals (Sweden)

    Nathan Gerald Skene

    2016-01-01

    Full Text Available The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment (EWCE method that uses single cell transcriptomes to generate the probability distribution associated with a gene list having an average level of expression within a cell type. Following validation, we applied EWCE to human genetic data from cases of epilepsy, Schizophrenia, Autism, Intellectual Disability, Alzheimer’s disease, Multiple Sclerosis and anxiety disorders. Genetic susceptibility primarily affected microglia in Alzheimer’s and Multiple Sclerosis; was shared between interneurons and pyramidal neurons in Autism and Schizophrenia; while intellectual disabilities and epilepsy were attributable to a range of cell-types, with the strongest enrichment in interneurons. We hypothesised that the primary cell type pathology could trigger secondary changes in other cell types and these could be detected by applying EWCE to transcriptome data from diseased tissue. In Autism, Schizophrenia and Alzheimer’s disease we find evidence of pathological changes in all of the major brain cell types. These findings give novel insight into the cellular origins and progression in common brain disorders. The methods can be applied to any tissue and disorder and have applications in validating mouse models.

  15. Carbon ion beam is more effective to induce cell death in sphere-type A172 human glioblastoma cells compared with X-rays.

    Science.gov (United States)

    Takahashi, Momoko; Hirakawa, Hirokazu; Yajima, Hirohiko; Izumi-Nakajima, Nakako; Okayasu, Ryuichi; Fujimori, Akira

    2014-12-01

    To obtain human glioblastoma cells A172 expressing stem cell-related protein and comparison of radiosensitivity in these cells with X-rays and carbon beam. Human monolayer-type A172 glioblastoma cells were maintained in normal medium with 10% bovine serum. In order to obtain sphere-type A172 cells the medium was replaced with serum-free medium supplemented with growth factors. Both types of A172 cells were irradiated with either X-rays or carbon ion beams and their radiosensitivity was evaluated. Serum-free medium induced expression of stem cell-related proteins in A172 cells along with the neurosphere-like appearance. These sphere-type cells were found resistant to both X-rays and carbon ion beams. Phosphorylation of histone H2A family member X persisted for a longer period in the cells exposed to carbon ion beams than in those exposed to X-rays and it disappeared quicker in the sphere type than in the monolayer type. Relative radioresistance of the sphere type cells was smaller for carbon ion beams than for X-rays. We demonstrated that glioblastoma A172 cells with induced stem cell-related proteins turned resistant to irradiation. Accelerated heavy ion particles may have advantage over X-rays in overcoming the tumor resistance due to cell stemness.

  16. Possible Therapeutic Application of Targeting Type II Natural Killer T Cell-Mediated Suppression of Tumor Immunity

    Science.gov (United States)

    Kato, Shingo; Berzofsky, Jay A.; Terabe, Masaki

    2018-01-01

    Natural killer T (NKT) cells are a unique T cell subset that exhibits characteristics from both the innate immune cells and T cells. There are at least two subsets of NKT cells, type I and type II. These two subsets of NKT cells have opposite functions in antitumor immunity. Type I NKT cells usually enhance and type II NKT cells suppress antitumor immunity. In addition, these two subsets of NKT cells cross-regulate each other. In this review, we mainly focus on immunosuppressive NKT cells, type II NKT cells. After summarizing their definition, experimental tools to study them, and subsets of them, we will discuss possible therapeutic applications of type II NKT cell pathway targeted therapies. PMID:29520281

  17. Discovery of cell-type specific DNA motif grammar in cis-regulatory elements using random Forest.

    Science.gov (United States)

    Wang, Xin; Lin, Peijie; Ho, Joshua W K

    2018-01-19

    It has been observed that many transcription factors (TFs) can bind to different genomic loci depending on the cell type in which a TF is expressed in, even though the individual TF usually binds to the same core motif in different cell types. How a TF can bind to the genome in such a highly cell-type specific manner, is a critical research question. One hypothesis is that a TF requires co-binding of different TFs in different cell types. If this is the case, it may be possible to observe different combinations of TF motifs - a motif grammar - located at the TF binding sites in different cell types. In this study, we develop a bioinformatics method to systematically identify DNA motifs in TF binding sites across multiple cell types based on published ChIP-seq data, and address two questions: (1) can we build a machine learning classifier to predict cell-type specificity based on motif combinations alone, and (2) can we extract meaningful cell-type specific motif grammars from this classifier model. We present a Random Forest (RF) based approach to build a multi-class classifier to predict the cell-type specificity of a TF binding site given its motif content. We applied this RF classifier to two published ChIP-seq datasets of TF (TCF7L2 and MAX) across multiple cell types. Using cross-validation, we show that motif combinations alone are indeed predictive of cell types. Furthermore, we present a rule mining approach to extract the most discriminatory rules in the RF classifier, thus allowing us to discover the underlying cell-type specific motif grammar. Our bioinformatics analysis supports the hypothesis that combinatorial TF motif patterns are cell-type specific.

  18. When Is an Alveolar Type 2 Cell an Alveolar Type 2 Cell? A Conundrum for Lung Stem Cell Biology and Regenerative Medicine.

    Science.gov (United States)

    Beers, Michael F; Moodley, Yuben

    2017-07-01

    Generating mature, differentiated, adult lung cells from pluripotent cells, such as induced pluripotent stem cells and embryonic stem cells, offers the hope of both generating disease-specific in vitro models and creating definitive and personalized therapies for a host of debilitating lung parenchymal and airway diseases. With the goal of advancing lung-regenerative medicine, several groups have developed and reported on protocols using defined media, coculture with mesenchymal components, or sequential treatments mimicking lung development, to obtain distal lung epithelial cells from stem cell precursors. However, there remains significant controversy about the degree of differentiation of these cells compared with their primary counterparts, coupled with a lack of consistency or uniformity in assessing the resultant phenotypes. Given the inevitable, exponential expansion of these approaches and the probable, but yet-to-emerge second and higher generation techniques to create such assets, we were prompted to pose the question, what makes a lung epithelial cell a lung epithelial cell? More specifically for this Perspective, we also posed the question, what are the minimum features that constitute an alveolar type (AT) 2 epithelial cell? In addressing this, we summarize a body of work spanning nearly five decades, amassed by a series of "lung epithelial cell biology pioneers," which carefully describes well characterized molecular, functional, and morphological features critical for discriminately assessing an AT2 phenotype. Armed with this, we propose a series of core criteria to assist the field in confirming that cells obtained following a differentiation protocol are indeed mature and functional AT2 epithelial cells.

  19. Type 2 innate lymphoid cells-new members of the "type 2 franchise" that mediate allergic airway inflammation.

    Science.gov (United States)

    Mjösberg, Jenny; Spits, Hergen

    2012-05-01

    Type 2 innate lymphoid cells (ILC2s) are members of an ILC family, which contains NK cells and Rorγt(+) ILCs, the latter including lymphoid tissue inducer (LTi) cells and ILCs producing IL-17 and IL-22. ILC2s are dedicated to the production of IL-5 and IL-13 and, as such, ILC2s provide an early and important source of type 2 cytokines critical for helminth expulsion in the gut. Several studies have also demonstrated a role for ILC2s in airway inflammation. In this issue of the European Journal of Immunology, Klein Wolterink et al. [Eur. J. Immunol. 2012. 42: 1106-1116] show that ILC2s are instrumental in several models of experimental asthma where they significantly contribute to production of IL-5 and IL-13, key cytokines in airway inflammation. This study sheds light over the relative contribution of ILC2s versus T helper type 2 cells (Th2) in type 2 mediated allergen-specific inflammation in the airways as discussed in this commentary. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Small cell type neuroendocrine carcinoma colliding with squamous cell carcinoma at esophagus

    Science.gov (United States)

    Yang, Luoluo; Sun, Xun; Zou, Yabin; Meng, Xiangwei

    2014-01-01

    Collision tumor is an extremely rare tumor which defined as the concrescence of two distinct primaries neoplasms. We report here a case of collision tumor at lower third esophagus composed of small cell type neuroendocrine carcinoma (NEC), which is an very rare, highly aggressive and poorly prognostic carcinoma and squamous cell carcinoma (SqCC). In our case, pathologically, the small cell carcinoma display the characteristic of small, round, ovoid or spindle-shaped tumor cells with scant cytoplasm, which colliding with a moderately differentiated squamous cell carcinoma. Immunohistochemical staining demonstrated positive activities for CD56, synaptophysin, 34βE12, CK 5/6, ki-67 (70%-80%), but negative for CD99, chromogranin A, and TTF-1. Accurate diagnosis was made base on these findings. PMID:24817981

  1. DNA loop domain organization in nucleoids from cells of different types.

    Science.gov (United States)

    Afanasieva, Katerina; Chopei, Marianna; Lozovik, Alexandra; Semenova, Anastasia; Lukash, Lyubov; Sivolob, Andrei

    2017-01-29

    The loop domain organization of chromatin plays an important role in transcription regulation and thus may be assumed to vary in cells of different types. We investigated the kinetics of DNA loop migration during single cell gel electrophoresis (the comet assay) for nucleoids obtained from human lymphocytes, lymphoblasts and glioblastoma T98G cells. The results confirm our previous observation that there are three parts of DNA in nucleoids: DNA on the nucleoid surface, loops up to ∼150 kb inside the nucleoid, and larger loops that cannot migrate. However, the relative amounts of the three parts were found to be very different for different cell types. The distributions of the loop length up to 150 kb were shown to be exponential, with the distribution parameter, the loop density, to be dependent on the cell type. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. CD4+ type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes

    DEFF Research Database (Denmark)

    Kadri, Nadir; Korpos, Eva; Gupta, Shashank

    2012-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic ß cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry ...

  3. ER Stress and β-Cell Pathogenesis of Type 1 and Type 2 Diabetes and Islet Transplantation

    OpenAIRE

    Kataoka, Hitomi Usui; Noguchi, Hirofumi

    2013-01-01

    Endoplasmic reticulum (ER) stress affects the pathogenesis of diabetes. ER stress plays important roles, both in type 1 and type 2 diabetes, because pancreatic β-cells possess highly developed ER for insulin secretion. This review summarizes the relationship between ER stress and the pathogenesis of type 1 and type 2 diabetes. In addition, the association between islet transplantation and ER stress is discussed.

  4. Islet β cell failure in type 2 diabetes

    Science.gov (United States)

    Prentki, Marc; Nolan, Christopher J.

    2006-01-01

    The major focus of this Review is on the mechanisms of islet β cell failure in the pathogenesis of obesity-associated type 2 diabetes (T2D). As this demise occurs within the context of β cell compensation for insulin resistance, consideration is also given to the mechanisms involved in the compensation process, including mechanisms for expansion of β cell mass and for enhanced β cell performance. The importance of genetic, intrauterine, and environmental factors in the determination of “susceptible” islets and overall risk for T2D is reviewed. The likely mechanisms of β cell failure are discussed within the two broad categories: those with initiation and those with progression roles. PMID:16823478

  5. The repair of damage to DNA in different cell types

    International Nuclear Information System (INIS)

    Karran, P.

    1974-01-01

    DNA single strand breaks induced by either X-ray irradiation or by methyl methanesulphonate (MMS) were studied in different lymphoid cell populations directly taken from the animal and maintained in tissue culture merely for the duration of the experiment. The results obtained from these cell populations were compared with those obtained with L5178Y cells maintained in tissue culture. All cell types studied were found to possess at least one class of enzymes required for repair of DNA damage, namely those enzymes involved in the rejoining of X-ray induced by MMS is different in each cell type. Repair replication was at much reduced levels and the endonucleolytic degradation was at much reduced levels and the endonucleolytic degradation was initiated at lower MMS concentration in the lymphoid cells as compared to L5178Y cells. It is suggested that the overall ''repair capacity'' of a population may be related to the number of cells in a cycle which, moreover, might be the only ones to have the ability to repair damage to DNA induced by MMS (G.G.)

  6. Cardiac Glycoside Glucoevatromonoside Induces Cancer Type-Specific Cell Death

    Directory of Open Access Journals (Sweden)

    Naira F. Z. Schneider

    2018-03-01

    Full Text Available Cardiac glycosides (CGs are natural compounds used traditionally to treat congestive heart diseases. Recent investigations repositioned CGs as potential anticancer agents. To discover novel cytotoxic CG scaffolds, we selected the cardenolide glucoevatromonoside (GEV out of 46 CGs for its low nanomolar anti-lung cancer activity. GEV presented reduced toxicity toward non-cancerous cell types (lung MRC-5 and PBMC and high-affinity binding to the Na+/K+-ATPase α subunit, assessed by computational docking. GEV-induced cell death was caspase-independent, as investigated by a multiparametric approach, and culminates in severe morphological alterations in A549 cells, monitored by transmission electron microscopy, live cell imaging and flow cytometry. This non-canonical cell death was not preceded or accompanied by exacerbation of autophagy. In the presence of GEV, markers of autophagic flux (e.g. LC3I-II conversion were impacted, even in presence of bafilomycin A1. Cell death induction remained unaffected by calpain, cathepsin, parthanatos, or necroptosis inhibitors. Interestingly, GEV triggered caspase-dependent apoptosis in U937 acute myeloid leukemia cells, witnessing cancer-type specific cell death induction. Differential cell cycle modulation by this CG led to a G2/M arrest, cyclin B1 and p53 downregulation in A549, but not in U937 cells. We further extended the anti-cancer potential of GEV to 3D cell culture using clonogenic and spheroid formation assays and validated our findings in vivo by zebrafish xenografts. Altogether, GEV shows an interesting anticancer profile with the ability to exert cytotoxic effects via induction of different cell death modalities.

  7. Silicon heterojunction solar cells with novel fluorinated n-type nanocrystalline silicon oxide emitters on p-type crystalline silicon

    Science.gov (United States)

    Dhar, Sukanta; Mandal, Sourav; Das, Gourab; Mukhopadhyay, Sumita; Pratim Ray, Partha; Banerjee, Chandan; Barua, Asok Kumar

    2015-08-01

    A novel fluorinated phosphorus doped silicon oxide based nanocrystalline material have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) Czochralski (CZ) wafers. The n-type nc-SiO:F:H material were deposited by radio frequency plasma enhanced chemical vapor deposition. Deposited films were characterized in detail by using atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM), Raman, fourier transform infrared spectroscopy (FTIR) and optoelectronics properties have been studied using temperature dependent conductivity measurement, Ellipsometry, UV-vis spectrum analysis etc. It is observed that the cell fabricated with fluorinated silicon oxide emitter showing higher initial efficiency (η = 15.64%, Jsc = 32.10 mA/cm2, Voc = 0.630 V, FF = 0.77) for 1 cm2 cell area compare to conventional n-a-Si:H emitter (14.73%) on flat c-Si wafer. These results indicate that n type nc-SiO:F:H material is a promising candidate for heterojunction solar cell on p-type crystalline wafers. The high Jsc value is associated with excellent quantum efficiencies at short wavelengths (<500 nm).

  8. Influence of collagen type II and nucleus pulposus cells on aggregation and differentiation of adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Lu, Z.F.; Zandieh Doulabi, B.; Wuisman, P.I.; Bank, R.A.; Helder, M.N.

    2008-01-01

    Tissue microenvironment plays a critical role in guiding local stem cell differentiation. Within the intervertebral disc, collagen type II and nucleus pulposus (NP) cells are two major components. This study aimed to investigate how collagen type II and NP cells affect adipose tissue-derived stem

  9. Cell type specific DNA methylation in cord blood: A 450K-reference data set and cell count-based validation of estimated cell type composition

    NARCIS (Netherlands)

    Gervin, K. (Kristina); Page, C.M. (Christian Magnus); H.C.D. Aass (Hans Christian Dalsbotten); M.A.E. Jansen (Michelle); Fjeldstad, H.E. (Heidi Elisabeth); B.K. Andreassen (Bettina Kulle); L. Duijts (Liesbeth); J.B.J. van Meurs (Joyce); M.C. van Zelm (Menno); V.W.V. Jaddoe (Vincent); Nordeng, H. (Hedvig); Knudsen, G.P. (Gunn Peggy); P. Magnus (Per); W. Nystad (Wenche); Staff, A.C. (Anne Cathrine); J.F. Felix (Janine); R. Lyle (Robert)

    2016-01-01

    textabstractEpigenome-wide association studies of prenatal exposure to different environmental factors are becoming increasingly common. These studies are usually performed in umbilical cord blood. Since blood comprises multiple cell types with specific DNA methylation patterns, confounding caused

  10. The Concerted Action of Type 2 and Type 3 Deiodinases Regulates the Cell Cycle and Survival of Basal Cell Carcinoma Cells.

    Science.gov (United States)

    Miro, Caterina; Ambrosio, Raffaele; De Stefano, Maria Angela; Di Girolamo, Daniela; Di Cicco, Emery; Cicatiello, Annunziata Gaetana; Mancino, Giuseppina; Porcelli, Tommaso; Raia, Maddalena; Del Vecchio, Luigi; Salvatore, Domenico; Dentice, Monica

    2017-04-01

    Thyroid hormones (THs) mediate pleiotropic cellular processes involved in metabolism, cellular proliferation, and differentiation. The intracellular hormonal environment can be tailored by the type 1 and 2 deiodinase enzymes D2 and D3, which catalyze TH activation and inactivation respectively. In many cellular systems, THs exert well-documented stimulatory or inhibitory effects on cell proliferation; however, the molecular mechanisms by which they control rates of cell cycle progression have not yet been entirely clarified. We previously showed that D3 depletion or TH treatment influences the proliferation and survival of basal cell carcinoma (BCC) cells. Surprisingly, we also found that BCC cells express not only sustained levels of D3 but also robust levels of D2. The aim of the present study was to dissect the contribution of D2 to TH metabolism in the BCC context, and to identify the molecular changes associated with cell proliferation and survival induced by TH and mediated by D2 and D3. We used the CRISPR/Cas9 technology to genetically deplete D2 and D3 in BCC cells and studied the consequences of depletion on cell cycle progression and on cell death. Cell cycle progression was analyzed by fluorescence activated cell sorting analysis of synchronized cells, and the apoptosis rate by annexin V incorporation. Mechanistic investigations revealed that D2 inactivation accelerates cell cycle progression thereby enhancing the proportion of S-phase cells and cyclin D1 expression. Conversely, D3 mutagenesis drastically suppressed cell proliferation and enhanced apoptosis of BCC cells. Furthermore, the basal apoptotic rate was oppositely regulated in D2- and D3-depleted cells. Our results indicate that BCC cells constitute an example in which the TH signal is finely tuned by the concerted expression of opposite-acting deiodinases. The dual regulation of D2 and D3 expression plays a critical role in cell cycle progression and cell death by influencing cyclin D1-mediated

  11. [Red Blood Cells Raman Spectroscopy Comparison of Type Two Diabetes Patients and Rats].

    Science.gov (United States)

    Wang, Lei; Liu, Gui-dong; Mu, Xin; Xiao, Hong-bin; Qi, Chao; Zhang, Si-qi; Niu Wen-ying; Jiang, Guang-kun; Feng, Yue-nan; Bian, Jing-qi

    2015-10-01

    By using confocal Raman spectroscopy, Raman spectra were measured in normal rat red blood cells, normal human red blood cells, STZ induced diabetetic rats red blood cells, Alloxan induced diabetetic rats red blood cells and human type 2 diabetes red blood cells. Then principal component analysis (PCA) with support vector machine (SVM) classifier was used for data analysis, and then the distance between classes was used to judge the degree of close to two kinds of rat model with type 2 diabetes. The results found significant differences in the Raman spectra of red blood cell in diabetic and normal red blood cells. To diabetic red blood cells, the peak in the amide VI C=O deformation vibration band is obvious, and amide V N-H deformation vibration band spectral lines appear deviation. Belong to phospholipid fatty acyl C-C skeleton, the 1 130 cm(-1) spectral line is enhanced and the 1 088 cm(-1) spectral line is abated, which show diabetes red cell membrane permeability increased. Raman spectra of PCA combined with SVM can well separate 5 types of red blood cells. Classifier test results show that the classification accuracy is up to 100%. Through the class distance between the two induced method and human type 2 diabetes, it is found that STZ induced model is more close to human type 2 diabetes. In conclusion, Raman spectroscopy can be used for diagnosis of diabetes and rats STZ induced diabetes method is closer to human type 2 diabetes.

  12. Proliferation requirements of cytomegalovirus-specific, effector-type human CD8+ T cells

    NARCIS (Netherlands)

    van Leeuwen, Ester M.; Gamadia, Laila E.; Baars, Paul A.; Remmerswaal, Ester B.; ten Berge, Ineke J.; van Lier, René A.

    2002-01-01

    Two prototypic types of virus-specific CD8(+) T cells can be found in latently infected individuals: CD45R0(+)CD27(+)CCR7(-) effector-memory, and CD45RA(+)CD27(-)CCR7(-) effector-type cells. It has recently been implied that CD45RA(+)CD27(-)CCR7(-) T cells are terminally differentiated effector

  13. Receptosecretory nature of type III cells in the taste bud.

    Science.gov (United States)

    Yoshie, Sumio

    2009-01-01

    Type III cells in taste buds form chemical synapses with intragemmal afferent nerve fibers and are characterized by the presence of membrane-bound vesicles in the cytoplasm. Although the vesicles differ in shape and size among species, they are primarily categorized into small clear (40 nm in diameter) and large dense-cored (90-200 nm) types. As such vesicles tend to be closely juxtaposed to the synaptic membrane of the cells, it is reasonable to consider that the vesicles include transmitter(s) towards the gustatory nerve. In the guinea-pig taste bud, stimulation with various taste substances (sucrose, sodium chloride, quinine hydrochloride, or monosodium L-glutamate) causes ultrastructural alterations of the type III cells. At the synapse, the presynaptic plasma membrane often displays invaginations of 90 nm in a mean diameter towards the cytoplasm, which indicates the dense-cored vesicles opening into the synaptic cleft by means of exocytosis. The vesicles are also exocytosed at the non-synaptic region into the intercellular space. These findings strongly suggest that the transmitters presumably contained in the vesicles are released to conduct the excitement of the type III cells to the nerves and also to exert their paracrine effects upon the surroundings, such as the Ebner's salivary gland, acting as local hormones.

  14. Towards Optimal Diagnosis of Type II Germ Cell Tumors

    NARCIS (Netherlands)

    J.A. Stoop (Hans)

    2011-01-01

    textabstractThe aim of the work described in this thesis is to improve the understanding of the pathobiology of testicular cancer (type II Germ Cell Tumors) to create possibilities for optimalization of diagnosis for this type of malignancy in routine pathology laboratories. The different studies

  15. Role of Type 2 Innate Lymphoid Cells in Allergic Diseases.

    Science.gov (United States)

    Cosmi, Lorenzo; Liotta, Francesco; Maggi, Laura; Annunziato, Francesco

    2017-09-11

    The adaptive immune response orchestrated by type 2 T helper (Th2) lymphocytes, strictly cooperates with the innate response of group 2 innate lymphoid cells (ILC2), in the protection from helminths infection, as well as in the pathogenesis of allergic disease. The aim of this review is to explore the pathogenic role of ILC2 in different type 2-mediated disorders. Recent studies have shown that epithelial cell-derived cytokines and their responding cells, ILC2, play a pathogenic role in bronchial asthma, chronic rhinosinusitis, and atopic dermatitis. The growing evidences of the contribution of ILC2 in the induction and maintenance of allergic inflammation in such disease suggest the possibility to target them in therapy. Biological therapies blocking ILC2 activation or neutralizing their effector cytokines are currently under evaluation to be used in patients with type 2-dominated diseases.

  16. Type C virus activation in nontransformed mouse cells by uv-irradiated herpes simplex virus

    Energy Technology Data Exchange (ETDEWEB)

    Hampar, B. (National Institutes of Health, Bethesda, MD); Hatanaka, M.; Aulakh, G.; Derge, J.G.; Lee, L.; Showalter, S.

    1977-02-01

    Infection of nontransformed mouse cells with uv-irradiated herpes simplex virus (uv-HSV) resulted in the activation of an endogenous xenotropic (x-tropic) type C virus. Synthesis of type C virus persisted for only a few days, with most of the virus remaining cell associated. The levels of type C virus activated by uv-HSV varied depending on the multiplicity of infection (m.o.i.) and the uv dose. At low uv doses, where cell killing occurred, little or no type C virus synthesis was observed. Maximum levels of type C virus synthesis were observed with the minimum uv dose which eliminated cell killing by HSV. Synthesis of type C virus, albeit at lower levels, was still observed at uv doses beyond those required to prevent cell killing.

  17. Type C virus activation in nontransformed mouse cells by uv-irradiated herpes simplex virus

    International Nuclear Information System (INIS)

    Hampar, B.; Hatanaka, M.; Aulakh, G.; Derge, J.G.; Lee, L.; Showalter, S.

    1977-01-01

    Infection of nontransformed mouse cells with uv-irradiated herpes simplex virus (uv-HSV) resulted in the activation of an endogenous xenotropic (x-tropic) type C virus. Synthesis of type C virus persisted for only a few days, with most of the virus remaining cell associated. The levels of type C virus activated by uv-HSV varied depending on the multiplicity of infection (m.o.i.) and the uv dose. At low uv doses, where cell killing occurred, little or no type C virus synthesis was observed. Maximum levels of type C virus synthesis were observed with the minimum uv dose which eliminated cell killing by HSV. Synthesis of type C virus, albeit at lower levels, was still observed at uv doses beyond those required to prevent cell killing

  18. Maternal T-Cell Engraftment Interferes With Human Leukocyte Antigen Typing in Severe Combined Immunodeficiency.

    Science.gov (United States)

    Liu, Chang; Duffy, Brian; Bednarski, Jeffrey J; Calhoun, Cecelia; Lay, Lindsay; Rundblad, Barrett; Payton, Jacqueline E; Mohanakumar, Thalachallour

    2016-02-01

    To report the laboratory investigation of a case of severe combined immunodeficiency (SCID) with maternal T-cell engraftment, focusing on the interference of human leukocyte antigen (HLA) typing by blood chimerism. HLA typing was performed with three different methods, including sequence-specific primer (SSP), sequence-specific oligonucleotide, and Sanger sequencing on peripheral blood leukocytes and buccal cells, from a 3-month-old boy and peripheral blood leukocytes from his parents. Short tandem repeat (STR) testing was performed in parallel. HLA typing of the patient's peripheral blood leukocytes using the SSP method demonstrated three different alleles for each of the HLA-B and HLA-C loci, with both maternal alleles present at each locus. Typing results from the patient's buccal cells showed a normal pattern of inheritance for paternal and maternal haplotypes. STR enrichment testing of the patient's CD3+ T lymphocytes and CD15+ myeloid cells confirmed maternal T-cell engraftment, while the myeloid cell profile matched the patient's buccal cells. Maternal T-cell engraftment may interfere with HLA typing in patients with SCID. Selection of the appropriate typing methods and specimens is critical for accurate HLA typing and immunologic assessment before allogeneic hematopoietic stem cell transplantation. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Transcriptome atlas of eight liver cell types uncovers effects of ...

    Indian Academy of Sciences (India)

    ... types, and bioinformatic and systems biology approaches were employed to analyse the relationship between above genes and rat liver regeneration. The results showed that the urocanic acid (UA) was degraded from histidine in Kupffer cells, acts on Kupffer cells itself and dendritic cells to generate immune suppression ...

  20. Trophic significance of solitary cells of the prymnesiophyte Phaeocystis globosa depends on cell type

    DEFF Research Database (Denmark)

    Dutz, Jörg; Koski, Marja

    2006-01-01

    With the use of five different isolates of Phaeocystis globosa solitary cells from the North Sea, we conducted experiments to reveal whether grazing and development of the nauplii of the calanoid copepod Temora longicornis varies in response to the cell type. Two P. globosa strains representing n...

  1. The alpha-cell as target for type 2 diabetes therapy

    DEFF Research Database (Denmark)

    Christensen, Mikkel; Bagger, Jonatan I; Vilsboll, Tina

    2011-01-01

    for type 2 diabetes. Several lines of preclinical evidence have paved the way for the development of drugs, which suppress glucagon secretion or antagonize the glucagon receptor. In this review, the physiological actions of glucagon and the role of glucagon in type 2 diabetic pathophysiology are outlined...... antagonists are confronted with several safety issues. At present, available pharmacological agents based on the glucose-dependent glucagonostatic effects of GLP-1 represent the most favorable way to apply constraints to the alpha-cell in type 2 diabetes.......-coupled receptors in the hepatocytes. Type 2 diabetic patients are characterized by elevated glucagon levels contributing decisively to hyperglycemia in these patients. Accumulating evidence demonstrates that targeting the pancreatic alpha-cell and its main secretory product glucagon is a possible treatment...

  2. Vitamin E alters alveolar type II cell phospholipid synthesis in oxygen and air

    International Nuclear Information System (INIS)

    Kennedy, K.A.; Snyder, J.M.; Stenzel, W.; Saito, K.; Warshaw, J.B.

    1990-01-01

    Newborn rats were injected with vitamin E or placebo daily until 6 days after birth. The effect of vitamin E pretreatment on in vitro surfactant phospholipid synthesis was examined in isolated type II cells exposed to oxygen or air form 24 h in vitro. Type II cells were also isolated from untreated 6-day-old rats and cultured for 24 h in oxygen or air with control medium or vitamin E supplemented medium. These cells were used to examine the effect of vitamin E exposure in vitro on type II cell phospholipid synthesis and ultrastructure. Phosphatidylcholine (PC) synthesis was reduced in cells cultured in oxygen as compared with air. This decrease was not prevented by in vivo pretreatment or in vitro supplementation with vitamin E. Vitamin E pretreatment increased the ratio of disaturated PC to total PC and increased phosphatidylglycerol synthesis. The volume density of lamellar bodies in type II cells was increased in cells maintained in oxygen. Vitamin E did not affect the volume density of lamellar bodies. We conclude that in vitro hyperoxia inhibits alveolar type II cell phosphatidylcholine synthesis without decreasing lamellar body volume density and that supplemental vitamin E does not prevent hyperoxia-induced decrease in phosphatidylcholine synthesis

  3. Dendritic cells and anergic type I NKT cells play a crucial role in sulfatide-mediated immune regulation in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Maricic, Igor; Halder, Ramesh; Bischof, Felix; Kumar, Vipin

    2014-08-01

    CD1d-restricted NKT cells can be divided into two groups: type I NKT cells use a semi-invariant TCR, whereas type II express a relatively diverse set of TCRs. A major subset of type II NKT cells recognizes myelin-derived sulfatides and is selectively enriched in the CNS tissue during experimental autoimmune encephalomyelitis (EAE). We have shown that activation of sulfatide-reactive type II NKT cells by sulfatide prevents induction of EAE. In this article, we have addressed the mechanism of regulation, as well as whether a single immunodominant form of synthetic sulfatide can treat ongoing chronic and relapsing EAE in SJL/J mice. We have shown that the activation of sulfatide-reactive type II NKT cells leads to a significant reduction in the frequency and effector function of myelin proteolipid proteins 139-151/I-A(s)-tetramer(+) cells in lymphoid and CNS tissues. In addition, type I NKT cells and dendritic cells (DCs) in the periphery, as well as CNS-resident microglia, are inactivated after sulfatide administration, and mice deficient in type I NKT cells are not protected from disease. Moreover, tolerized DCs from sulfatide-treated animals can adoptively transfer protection into naive mice. Treatment of SJL/J mice with a synthetic cis-tetracosenoyl sulfatide, but not α-galactosylceramide, reverses ongoing chronic and relapsing EAE. Our data highlight a novel immune-regulatory pathway involving NKT subset interactions leading to inactivation of type I NKT cells, DCs, and microglial cells in suppression of autoimmunity. Because CD1 molecules are nonpolymorphic, the sulfatide-mediated immune-regulatory pathway can be targeted for development of non-HLA-dependent therapeutic approaches to T cell-mediated autoimmune diseases. Copyright © 2014 by The American Association of Immunologists, Inc.

  4. Evaluation of a multiplex immunoassay for bovine respiratory syncytial virus and bovine coronavirus antibodies in bulk tank milk against two indirect ELISAs using latent class analysis

    DEFF Research Database (Denmark)

    Toftaker, Ingrid; Toft, Nils; Stokstad, Maria

    2018-01-01

    Bovine respiratory syncytial virus (BRSV) and bovine coronavirus (BCV) are responsible for respiratory disease and diarrhea in cattle worldwide. The Norwegian control program against these infections is based on herd-level diagnosis using a new multiplex immunoassay. The objective of this study...... was to estimate sensitivity and specificity across different cut-off values for the MVD-Enferplex BCV/BRSV multiplex, by comparing them to a commercially available ELISA, the SVANOVIR® BCV-Ab and SVANOVIR® BRSV-Ab, respectively. We analyzed bulk tank milk samples from 360 herds in a low- and 360 herds in a high...

  5. DNA Methylation Patterns in Cord Blood of Neonates Across Gestational Age: Association With Cell-Type Proportions.

    Science.gov (United States)

    Braid, Susan M; Okrah, Kwame; Shetty, Amol; Corrada Bravo, Hector

    A statistical methodology is available to estimate the proportion of cell types (cellular heterogeneity) in adult whole blood specimens used in epigenome-wide association studies (EWAS). However, there is no methodology to estimate the proportion of cell types in umbilical cord blood (also a heterogeneous tissue) used in EWAS. The objectives of this study were to determine whether differences in DNA methylation (DNAm) patterns in umbilical cord blood are the result of blood cell type proportion changes that typically occur across gestational age and to demonstrate the effect of cell type proportion confounding by comparing preterm infants exposed and not exposed to antenatal steroids. We obtained DNAm profiles of cord blood using the Illumina HumanMethylation27k BeadChip array for 385 neonates from the Boston Birth Cohort. We estimated cell type proportions for six cell types using the deconvolution method developed by . The cell type proportion estimates segregated into two groups that were significantly different by gestational age, indicating that gestational age was associated with cell type proportion. Among infants exposed to antenatal steroids, the number of differentially methylated CpGs dropped from 127 to 1 after controlling for cell type proportion. EWAS utilizing cord blood are confounded by cell type proportion. Careful study design including correction for cell type proportion and interpretation of results of EWAS using cord blood are critical.

  6. An improved ontological representation of dendritic cells as a paradigm for all cell types

    Directory of Open Access Journals (Sweden)

    Mungall Chris

    2009-02-01

    Full Text Available Abstract Background Recent increases in the volume and diversity of life science data and information and an increasing emphasis on data sharing and interoperability have resulted in the creation of a large number of biological ontologies, including the Cell Ontology (CL, designed to provide a standardized representation of cell types for data annotation. Ontologies have been shown to have significant benefits for computational analyses of large data sets and for automated reasoning applications, leading to organized attempts to improve the structure and formal rigor of ontologies to better support computation. Currently, the CL employs multiple is_a relations, defining cell types in terms of histological, functional, and lineage properties, and the majority of definitions are written with sufficient generality to hold across multiple species. This approach limits the CL's utility for computation and for cross-species data integration. Results To enhance the CL's utility for computational analyses, we developed a method for the ontological representation of cells and applied this method to develop a dendritic cell ontology (DC-CL. DC-CL subtypes are delineated on the basis of surface protein expression, systematically including both species-general and species-specific types and optimizing DC-CL for the analysis of flow cytometry data. We avoid multiple uses of is_a by linking DC-CL terms to terms in other ontologies via additional, formally defined relations such as has_function. Conclusion This approach brings benefits in the form of increased accuracy, support for reasoning, and interoperability with other ontology resources. Accordingly, we propose our method as a general strategy for the ontological representation of cells. DC-CL is available from http://www.obofoundry.org.

  7. Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Ming-Hsien Li

    2016-04-01

    Full Text Available Considering the increasing global demand for energy and the harmful ecological impact of conventional energy sources, it is obvious that development of clean and renewable energy is a necessity. Since the Sun is our only external energy source, harnessing its energy, which is clean, non-hazardous and infinite, satisfies the main objectives of all alternative energy strategies. With attractive features, i.e., good performance, low-cost potential, simple processibility, a wide range of applications from portable power generation to power-windows, photoelectrochemical solar cells like dye-sensitized solar cells (DSCs represent one of the promising methods for future large-scale power production directly from sunlight. While the sensitization of n-type semiconductors (n-SC has been intensively studied, the use of p-type semiconductor (p-SC, e.g., the sensitization of wide bandgap p-SC and hole transport materials with p-SC have also been attracting great attention. Recently, it has been proved that the p-type inorganic semiconductor as a charge selective material or a charge transport material in organometallic lead halide perovskite solar cells (PSCs shows a significant impact on solar cell performance. Therefore the study of p-type semiconductors is important to rationally design efficient DSCs and PSCs. In this review, recent published works on p-type DSCs and PSCs incorporated with an inorganic p-type semiconductor and our perspectives on this topic are discussed.

  8. Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent.

    Science.gov (United States)

    Blechinger, Julia; Bauer, Alexander T; Torrano, Adriano A; Gorzelanny, Christian; Bräuchle, Christoph; Schneider, Stefan W

    2013-12-09

    In this study, it is shown that the cytotoxic response of cells as well as the uptake kinetics of nanoparticles (NPs) is cell type dependent. We use silica NPs with a diameter of 310 nm labeled with perylene dye and 304 nm unlabeled particles to evaluate cell type-dependent uptake and cytotoxicity on human vascular endothelial cells (HUVEC) and cancer cells derived from the cervix carcinoma (HeLa). Besides their size, the particles are characterized concerning homogeneity of the labeling and their zeta potential. The cellular uptake of the labeled NPs is quantified by imaging the cells via confocal microscopy in a time-dependent manner, with subsequent image analysis via a custom-made and freely available digital method, Particle_in_Cell-3D. We find that within the first 4 h of interaction, the uptake of silica NPs into the cytoplasm is up to 10 times more efficient in HUVEC than in HeLa cells. Interestingly, after 10 or 24 h of interaction, the number of intracellular particles for HeLa cells by far surpasses the one for HUVEC. Inhibitor studies show that these endothelial cells internalize 310 nm SiO₂ NPs via the clathrin-dependent pathway. Remarkably, the differences in the amount of taken up NPs are not directly reflected by the metabolic activity and membrane integrity of the individual cell types. Interaction with NPs leads to a concentration-dependent decrease in mitochondrial activity and an increase in membrane leakage for HUVEC, whereas HeLa cells show only a reduced mitochondrial activity and no membrane leakage. In addition, silica NPs lead to HUVEC cell death while HeLa cells survive. These findings indicate that HUVEC are more sensitive than HeLa cells upon silica NP exposure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Characterization of human coronavirus etiology in Chinese adults with acute upper respiratory tract infection by real-time RT-PCR assays.

    Directory of Open Access Journals (Sweden)

    Roujian Lu

    Full Text Available BACKGROUND: In addition to SARS associated coronaviruses, 4 non-SARS related human coronaviruses (HCoVs are recognized as common respiratory pathogens. The etiology and clinical impact of HCoVs in Chinese adults with acute upper respiratory tract infection (URTI needs to be characterized systematically by molecular detection with excellent sensitivity. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we detected 4 non-SARS related HCoV species by real-time RT-PCR in 981 nasopharyngeal swabs collected from March 2009 to February 2011. All specimens were also tested for the presence of other common respiratory viruses and newly identified viruses, human metapneumovirus (hMPV and human bocavirus (HBoV. 157 of the 981 (16.0% nasopharyngeal swabs were positive for HCoVs. The species detected were 229E (96 cases, 9.8%, OC43 (42 cases, 4.3%, HKU1 (16 cases, 1.6% and NL63 (11 cases, 1.1%. HCoV-229E was circulated in 21 of the 24 months of surveillance. The detection rates for both OC43 and NL63 were showed significantly year-to-year variation between 2009/10 and 2010/11, respectively (P<0.001 and P = 0.003, and there was a higher detection frequency of HKU1 in patients aged over 60 years (P = 0.03. 48 of 157(30.57% HCoV positive patients were co-infected. Undifferentiated human rhinoviruses and influenza (Flu A were the most common viruses detected (more than 35% in HCoV co-infections. Respiratory syncytial virus (RSV, human parainfluenza virus (PIV and HBoV were detected in very low rate (less than 1% among adult patients with URTI. CONCLUSIONS/SIGNIFICANCE: All 4 non-SARS-associated HCoVs were more frequently detected by real-time RT-PCR assay in adults with URTI in Beijing and HCoV-229E led to the most prevalent infection. Our study also suggested that all non-SARS-associated HCoVs contribute significantly to URTI in adult patients in China.

  10. Generation of multiple cell types in Bacillus subtilis.

    Science.gov (United States)

    Lopez, Daniel; Vlamakis, Hera; Kolter, Roberto

    2009-01-01

    Bacillus subtilis is a Gram-positive bacterium that is well known for its ability to differentiate into metabolically inactive spores that are highly resistant to environmental stresses. In fact, populations of genetically identical B. subtilis comprise numerous distinct cell types. In addition to spores, cells can become genetically competent, motile, produce extracellular matrix or degradative enzymes, or secrete toxins that allow them to cannibalize their neighbors. Many of the cell fates listed above appear to be mutually exclusive. In this review, we discuss how individual cells within a population control their gene expression to ensure that proper regulation of differentiation occurs. These different cell fates are regulated by an intricate network that relies primarily on the activity of three major transcriptional regulators: Spo0A, DegU, and ComK. While individual cells must choose distinct cell fates, the population as a whole exhibits a spectrum of phenotypes whose diversity may increase fitness.

  11. Genome-Wide Progesterone Receptor Binding: Cell Type-Specific and Shared Mechanisms in T47D Breast Cancer Cells and Primary Leiomyoma Cells

    Science.gov (United States)

    Huang, Lei; Owen, Jonas K.; Xie, Anna; Navarro, Antonia; Monsivais, Diana; Coon V, John S.; Kim, J. Julie; Dai, Yang; Bulun, Serdar E.

    2012-01-01

    Background Progesterone, via its nuclear receptor (PR), exerts an overall tumorigenic effect on both uterine fibroid (leiomyoma) and breast cancer tissues, whereas the antiprogestin RU486 inhibits growth of these tissues through an unknown mechanism. Here, we determined the interaction between common or cell-specific genome-wide binding sites of PR and mRNA expression in RU486-treated uterine leiomyoma and breast cancer cells. Principal Findings ChIP-sequencing revealed 31,457 and 7,034 PR-binding sites in breast cancer and uterine leiomyoma cells, respectively; 1,035 sites overlapped in both cell types. Based on the chromatin-PR interaction in both cell types, we statistically refined the consensus progesterone response element to G•ACA• • •TGT•C. We identified two striking differences between uterine leiomyoma and breast cancer cells. First, the cis-regulatory elements for HSF, TEF-1, and C/EBPα and β were statistically enriched at genomic RU486/PR-targets in uterine leiomyoma, whereas E2F, FOXO1, FOXA1, and FOXF sites were preferentially enriched in breast cancer cells. Second, 51.5% of RU486-regulated genes in breast cancer cells but only 6.6% of RU486-regulated genes in uterine leiomyoma cells contained a PR-binding site within 5 kb from their transcription start sites (TSSs), whereas 75.4% of RU486-regulated genes contained a PR-binding site farther than 50 kb from their TSSs in uterine leiomyoma cells. RU486 regulated only seven mRNAs in both cell types. Among these, adipophilin (PLIN2), a pro-differentiation gene, was induced via RU486 and PR via the same regulatory region in both cell types. Conclusions Our studies have identified molecular components in a RU486/PR-controlled gene network involved in the regulation of cell growth, cell migration, and extracellular matrix function. Tissue-specific and common patterns of genome-wide PR binding and gene regulation may determine the therapeutic effects of antiprogestins in uterine fibroids and

  12. Glucocorticoid-regulated and constitutive trafficking of proteolytically processed cell surface-associated glycoproteins in wild type and variant rat hepatoma cells

    International Nuclear Information System (INIS)

    Amacher, S.L.; Goodman, L.J.; Bravo, D.A.; Wong, K.Y.; Goldfine, I.D.; Hawley, D.M.; Firestone, G.L.

    1989-01-01

    Glucocorticoids regulate the trafficking of mouse mammary tumor virus (MMTV) glycoproteins to the cell surface in the rat hepatoma cell line M1.54, but not in the immunoselected sorting variant CR4. To compare the localization of MMTV glycoproteins to another proteolytically processed glycoprotein, both wild type M1.54 cells and variant CR4 cells were transfected with a human insulin receptor (hIR) expression vector, pRSVhIR. The production of cell surface hIR was monitored in dexamethasone-treated and -untreated wild type M1.54 and variant CR4 cells by indirect immunofluorescence, direct plasma membrane immunoprecipitation, and by [125I] insulin binding. In both wild type and variant rat hepatoma cells, hIR were localized at the cell surface in the presence or in the absence of 1 microM dexamethasone. In contrast, the glucocorticoid-regulated trafficking of cell surface MMTV glycoproteins occurred only in wild type M1.54 cells. We conclude that the hIR, which undergoes posttranslational processing reactions similar to MMTV glycoproteins, does not require glucocorticoids to be transported to the plasma membrane and is representative of a subset of cell surface glycoproteins whose trafficking is constitutive in rat hepatoma cells. Thus, MMTV glycoproteins and hIR provide specific cell surface markers to characterize the glucocorticoid-regulated and constitutive sorting pathways

  13. Rapid detection of MERS coronavirus-like viruses in bats: pote1ntial for tracking MERS coronavirus transmission and animal origin.

    Science.gov (United States)

    Woo, Patrick C Y; Lau, Susanna K P; Chen, Yixin; Wong, Emily Y M; Chan, Kwok-Hung; Chen, Honglin; Zhang, Libiao; Xia, Ningshao; Yuen, Kwok-Yung

    2018-03-07

    Recently, we developed a monoclonal antibody-based rapid nucleocapsid protein detection assay for diagnosis of MERS coronavirus (MERS-CoV) in humans and dromedary camels. In this study, we examined the usefulness of this assay to detect other lineage C betacoronaviruses closely related to MERS-CoV in bats. The rapid MERS-CoV nucleocapsid protein detection assay was tested positive in 24 (88.9%) of 27 Tylonycteris bat CoV HKU4 (Ty-BatCoV-HKU4) RNA-positive alimentary samples of Tylonycteris pachypus and 4 (19.0%) of 21 Pipistrellus bat CoV HKU5 (Pi-BatCoV-HKU5) RNA-positive alimentary samples of Pipistrellus abramus. There was significantly more Ty-BatCoV-HKU4 RNA-positive alimentary samples than Pi-BatCoV-HKU5 RNA-positive alimentary samples that were tested positive by the rapid MERS-CoV nucleocapsid protein detection assay (P < 0.001 by Chi-square test). The rapid assay was tested negative in all 51 alimentary samples RNA-positive for alphacoronaviruses (Rhinolophus bat CoV HKU2, Myotis bat CoV HKU6, Miniopterus bat CoV HKU8 and Hipposideros batCoV HKU10) and 32 alimentary samples positive for lineage B (SARS-related Rhinolophus bat CoV HKU3) and lineage D (Rousettus bat CoV HKU9) betacoronaviruses. No significant difference was observed between the viral loads of Ty-BatCoV-HKU4/Pi-BatCoV-HKU5 RNA-positive alimentary samples that were tested positive and negative by the rapid test (Mann-Witney U test). The rapid MERS-CoV nucleocapsid protein detection assay is able to rapidly detect lineage C betacoronaviruses in bats. It detected significantly more Ty-BatCoV-HKU4 than Pi-BatCoV-HKU5 because MERS-CoV is more closely related to Ty-BatCoV-HKU4 than Pi-BatCoV-HKU5. This assay will facilitate rapid on-site mass screening of animal samples for ancestors of MERS-CoV and tracking transmission in the related bat species.

  14. Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Donaldson Ken

    2005-12-01

    Full Text Available Abstract Background Alveolar macrophages are a key cell in dealing with particles deposited in the lungs and in determining the subsequent response to that particle exposure. Nanoparticles are considered a potential threat to the lungs and the mechanism of pulmonary response to nanoparticles is currently under intense scrutiny. The type II alveolar epithelial cell has previously been shown to release chemoattractants which can recruit alveolar macrophages to sites of particle deposition. The aim of this study was to assess the responses of a type II epithelial cell line (L-2 to both fine and nanoparticle exposure in terms of secretion of chemotactic substances capable of inducing macrophage migration. Results Exposure of type II cells to carbon black nanoparticles resulted in significant release of macrophage chemoattractant compared to the negative control and to other dusts tested (fine carbon black and TiO2 and nanoparticle TiO2 as measured by macrophage migration towards type II cell conditioned medium. SDS-PAGE analysis of the conditioned medium from particle treated type II cells revealed that a higher number of protein bands were present in the conditioned medium obtained from type II cells treated with nanoparticle carbon black compared to other dusts tested. Size-fractionation of the chemotaxin-rich supernatant determined that the chemoattractants released from the epithelial cells were between 5 and 30 kDa in size. Conclusion The highly toxic nature and reactive surface chemistry of the carbon black nanoparticles has very likely induced the type II cell line to release pro-inflammatory mediators that can potentially induce migration of macrophages. This could aid in the rapid recruitment of inflammatory cells to sites of particle deposition and the subsequent removal of the particles by phagocytic cells such as macrophages and neutrophils. Future studies in this area could focus on the exact identity of the substance(s released by the

  15. Primary NK/T cell lymphoma nasal type of the colon

    Directory of Open Access Journals (Sweden)

    Ana María Chirife

    2013-02-01

    Full Text Available Since nasal NK/T-cell lymphoma and NK/T-cell lymphoma nasal type are rare diseases, colonic involvement has seldom been seen. We report a case of a patient with a primary NK/T-cell lymphoma nasal type of the colon. The patient had no history of malignant diseases and was diagnosed after exhaustive study in the context of fever of unknown origin. The first therapeutic approach followed the DAEPOCH-protocol: etoposide, prednisone, doxor-rubicin, vincristine and cyclophosphamide. The persistence of constitutional symptoms after the first treatment course motivated the switch to a second line following the SMILE-protocol: dexamethasone, metotrexate, ifosfamide, E.coli L-asparaginase, and etoposide. Despite intensive chemotherapy, the patient died 2 months after the diagnose of an extranodal NK/T-cell lymphoma of the colon and 4 months after the first symptomatic appearance of disease.

  16. A probabilistic approach for the interpretation of RNA profiles as cell type evidence.

    Science.gov (United States)

    de Zoete, Jacob; Curran, James; Sjerps, Marjan

    2016-01-01

    DNA profiles can be used as evidence to distinguish between possible donors of a crime stain. In some cases, both the prosecution and the defence claim that the cell material was left by the suspect but they dispute which cell type was left behind. For example, in sexual offense cases the prosecution could claim that the sample contains semen cells where the defence argues that the sample contains skin cells. In these cases, traditional methods (e.g. a phosphatase test) can be used to examine the cell type contained in the sample. However, there are some drawbacks when using these methods. For instance, many of these techniques need to be carried out separately for each cell type and each of them requires part of the available sample, which reduces the amount that can be used for DNA analysis. Another option is messenger RNA (mRNA) evidence. mRNA expression levels vary among cell types and can be used to make (probability) statements about the cell type(s) present in a sample. Existing methods for the interpretation of RNA profiles as evidence for the presence of certain cell types aim at making categorical statements. Such statements limit the possibility to report the associated uncertainty. Some of these existing methods will be discussed. Most notably, a method based on a 'n/2' scoring rule (Lindenbergh et al.) and a method using marker values and cell type scoring thresholds (Roeder et al.). From a statistical point of view, a probabilistic approach is the most obvious choice. Two approaches (multinomial logistic regression and naïve Bayes') are suggested. All methods are compared, using two different datasets and several criteria regarding their ability to assess the evidential value of RNA profiles. We conclude that both the naïve Bayes' method and a method based on multinomial logistic regression, that produces a probabilistic statement as measure of the evidential value, are an important improvement of the existing methods. Besides a better performance

  17. Comparative Evaluation of Three Homogenization Methods for Isolating Middle East Respiratory Syndrome Coronavirus Nucleic Acids From Sputum Samples for Real-Time Reverse Transcription PCR.

    Science.gov (United States)

    Sung, Heungsup; Yong, Dongeun; Ki, Chang Seok; Kim, Jae Seok; Seong, Moon Woo; Lee, Hyukmin; Kim, Mi Na

    2016-09-01

    Real-time reverse transcription PCR (rRT-PCR) of sputum samples is commonly used to diagnose Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Owing to the difficulty of extracting RNA from sputum containing mucus, sputum homogenization is desirable prior to nucleic acid isolation. We determined optimal homogenization methods for isolating viral nucleic acids from sputum. We evaluated the following three sputum-homogenization methods: proteinase K and DNase I (PK-DNase) treatment, phosphate-buffered saline (PBS) treatment, and N-acetyl-L-cysteine and sodium citrate (NALC) treatment. Sputum samples were spiked with inactivated MERS-CoV culture isolates. RNA was extracted from pretreated, spiked samples using the easyMAG system (bioMérieux, France). Extracted RNAs were then subjected to rRT-PCR for MERS-CoV diagnosis (DiaPlex Q MERS-coronavirus, SolGent, Korea). While analyzing 15 spiked sputum samples prepared in technical duplicate, false-negative results were obtained with five (16.7%) and four samples (13.3%), respectively, by using the PBS and NALC methods. The range of threshold cycle (Ct) values observed when detecting upE in sputum samples was 31.1-35.4 with the PK-DNase method, 34.7-39.0 with the PBS method, and 33.9-38.6 with the NALC method. Compared with the control, which were prepared by adding a one-tenth volume of 1:1,000 diluted viral culture to PBS solution, the ranges of Ct values obtained by the PBS and NALC methods differed significantly from the mean control Ct of 33.2 (both Phomogenizing sputum samples prior to RNA extraction.

  18. The adaptor protein SAP regulates type II NKT-cell development, cytokine production, and cytotoxicity against lymphoma.

    Science.gov (United States)

    Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L; Stein, Paul L; Wang, Chyung-Ru

    2014-12-01

    CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT-cell TCR transgenic mouse model, we demonstrated that CD1d-expressing hematopoietic cells, but not thymic epithelial cells, meditate efficient selection of type II NKT cells. Furthermore, we showed that SAP regulates type II NKT-cell development by controlling early growth response 2 protein and promyelocytic leukemia zinc finger expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IFN regulatory factor 4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus.

    Science.gov (United States)

    Xi, Wang; Song, Dongliang; Sun, Jiayan; Shen, Junhui; Li, Laigeng

    2017-03-01

    Cellulose biosynthesis is mediated by cellulose synthases (CesAs), which constitute into rosette-like cellulose synthase complexe (CSC) on the plasma membrane. Two types of CSCs in Arabidopsis are believed to be involved in cellulose synthesis in the primary cell wall and secondary cell walls, respectively. In this work, we found that the two type CSCs participated cellulose biosynthesis in differentiating xylem cells undergoing secondary cell wall thickening in Populus. During the cell wall thickening process, expression of one type CSC genes increased while expression of the other type CSC genes decreased. Suppression of different type CSC genes both affected the wall-thickening and disrupted the multilaminar structure of the secondary cell walls. When CesA7A was suppressed, crystalline cellulose content was reduced, which, however, showed an increase when CesA3D was suppressed. The CesA suppression also affected cellulose digestibility of the wood cell walls. The results suggest that two type CSCs are involved in coordinating the cellulose biosynthesis in formation of the multilaminar structure in Populus wood secondary cell walls.

  20. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin.

    Science.gov (United States)

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. Copyright© Ferrata Storti Foundation.

  1. Proportion of collagen type II in the extracellular matrix promotes the differentiation of human adipose-derived mesenchymal stem cells into nucleus pulposus cells.

    Science.gov (United States)

    Tao, Yiqing; Zhou, Xiaopeng; Liu, Dongyu; Li, Hao; Liang, Chengzhen; Li, Fangcai; Chen, Qixin

    2016-01-01

    During degeneration process, the catabolism of collagen type II and anabolism of collagen type I in nucleus pulposus (NP) may influence the bioactivity of transplanted cells. Human adipose-derived mesenchymal stem cells (hADMSCs) were cultured as a micromass or in a series of gradual proportion hydrogels of a mix of collagen types I and II. Cell proliferation and cytotoxicity were detected using CCK-8 and LDH assays respectively. The expression of differentiation-related genes and proteins, including SOX9, aggrecan, collagen type I, and collagen type II, was examined using RT-qPCR and Western blotting. Novel phenotypic genes were also detected by RT-qPCR and western blotting. Alcian blue and dimethylmethylene blue assays were used to investigate sulfate proteoglycan expression, and PI3K/AKT, MAPK/ERK, and Smad signaling pathways were examined by Western blotting. The results showed collagen hydrogels have good biocompatibility, and cell proliferation increased after collagen type II treatment. Expressions of SOX9, aggrecan, and collagen type II were increased in a collagen type II dependent manner. Sulfate proteoglycan synthesis increased in proportion to collagen type II concentration. Only hADMSCs highly expressed NP cell marker KRT19 in collagen type II culture. Additionally, phosphorylated Smad3, which is associated with phosphorylated ERK, was increased after collagen type II-stimulation. The concentration and type of collagen affect hADMSC differentiation into NP cells. Collagen type II significantly ameliorates hADMSC differentiation into NP cells and promotes extracellular matrix synthesis. Therefore, anabolism of collagen type I and catabolism of type II may attenuate the differentiation and biosynthesis of transplanted stem cells. © 2016 International Union of Biochemistry and Molecular Biology.

  2. Cell-type specificity of ChIP-predicted transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Håndstad Tony

    2012-08-01

    Full Text Available Abstract Background Context-dependent transcription factor (TF binding is one reason for differences in gene expression patterns between different cellular states. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identifies genome-wide TF binding sites for one particular context—the cells used in the experiment. But can such ChIP-seq data predict TF binding in other cellular contexts and is it possible to distinguish context-dependent from ubiquitous TF binding? Results We compared ChIP-seq data on TF binding for multiple TFs in two different cell types and found that on average only a third of ChIP-seq peak regions are common to both cell types. Expectedly, common peaks occur more frequently in certain genomic contexts, such as CpG-rich promoters, whereas chromatin differences characterize cell-type specific TF binding. We also find, however, that genotype differences between the cell types can explain differences in binding. Moreover, ChIP-seq signal intensity and peak clustering are the strongest predictors of common peaks. Compared with strong peaks located in regions containing peaks for multiple transcription factors, weak and isolated peaks are less common between the cell types and are less associated with data that indicate regulatory activity. Conclusions Together, the results suggest that experimental noise is prevalent among weak peaks, whereas strong and clustered peaks represent high-confidence binding events that often occur in other cellular contexts. Nevertheless, 30-40% of the strongest and most clustered peaks show context-dependent regulation. We show that by combining signal intensity with additional data—ranging from context independent information such as binding site conservation and position weight matrix scores to context dependent chromatin structure—we can predict whether a ChIP-seq peak is likely to be present in other cellular contexts.

  3. Abnormal A-type lamin organization in a human lung carcinoma cell line

    NARCIS (Netherlands)

    Machiels, BM; Broers, JL; Raymond, Y; de Leij, Louis; Kuijpers, HJH; Caberg, NEH; Ramaekers, Frans C. S.

    We have studied the expression of lamins A and C (A-type lamins) in a lung carcinoma cell line using type-specific monoclonal antibodies, Using immunofluorescence and immunoblotting studies it was noted that several irregularities in lamin expression exist in the cell line GLC-A1, derived from an

  4. Hematopoietic Cancer Cell Lines Can Support Replication of Sabin Poliovirus Type 1

    Science.gov (United States)

    van Eikenhorst, Gerco; de Gruijl, Tanja D.; van der Pol, Leo A.; Bakker, Wilfried A. M.

    2015-01-01

    Viral vaccines can be produced in adherent or in suspension cells. The objective of this work was to screen human suspension cell lines for the capacity to support viral replication. As the first step, it was investigated whether poliovirus can replicate in such cell lines. Sabin poliovirus type 1 was serially passaged on five human cell lines, HL60, K562, KG1, THP-1, and U937. Sabin type 1 was capable of efficiently replicating in three cell lines (K562, KG1, and U937), yielding high viral titers after replication. Expression of CD155, the poliovirus receptor, did not explain susceptibility to replication, since all cell lines expressed CD155. Furthermore, we showed that passaged virus replicated more efficiently than parental virus in KG1 cells, yielding higher virus titers in the supernatant early after infection. Infection of cell lines at an MOI of 0.01 resulted in high viral titers in the supernatant at day 4. Infection of K562 with passaged Sabin type 1 in a bioreactor system yielded high viral titers in the supernatant. Altogether, these data suggest that K562, KG1, and U937 cell lines are useful for propagation of poliovirus. PMID:25815312

  5. Regulated gene expression in cultured type II cells of adult human lung.

    Science.gov (United States)

    Ballard, Philip L; Lee, Jae W; Fang, Xiaohui; Chapin, Cheryl; Allen, Lennell; Segal, Mark R; Fischer, Horst; Illek, Beate; Gonzales, Linda W; Kolla, Venkatadri; Matthay, Michael A

    2010-07-01

    Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at approximately 95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days on collagen-coated dishes with or without DCI for the final 3 days. In freshly isolated cells, highly expressed genes included SFTPA/B/C, SCGB1A, IL8, CXCL2, and SFN in addition to ubiquitously expressed genes. Transcript abundance was correlated between fetal and adult cells (r = 0.88), with a subset of 187 genes primarily related to inflammation and immunity that were expressed >10-fold higher in adult cells. During control culture, expression increased for 8.1% of expressed genes and decreased for approximately 4% including 118 immune response and 10 surfactant-related genes. DCI treatment promoted lamellar body production and increased expression of approximately 3% of probed genes by > or =1.5-fold; 40% of these were also induced in fetal cells. Highly induced genes (> or =10-fold) included PGC, ZBTB16, DUOX1, PLUNC, CIT, and CRTAC1. Twenty-five induced genes, including six genes related to surfactant (SFTPA/B/C, PGC, CEBPD, and ADFP), also had decreased expression during control culture and thus are candidates for hormonal regulation in vivo. Our results further define the adult human type II cell molecular phenotype and demonstrate that a subset of genes remains hormone responsive in cultured adult cells.

  6. Virus-specific regulatory T cells ameliorate encephalitis by repressing effector T cell functions from priming to effector stages.

    Directory of Open Access Journals (Sweden)

    Jingxian Zhao

    2014-08-01

    Full Text Available Several studies have demonstrated the presence of pathogen-specific Foxp3+ CD4 regulatory T cells (Treg in infected animals, but little is known about where and how these cells affect the effector T cell responses and whether they are more suppressive than bulk Treg populations. We recently showed the presence of both epitope M133-specific Tregs (M133 Treg and conventional CD4 T cells (M133 Tconv in the brains of mice with coronavirus-induced encephalitis. Here, we provide new insights into the interactions between pathogenic Tconv and Tregs responding to the same epitope. M133 Tregs inhibited the proliferation but not initial activation of M133 Tconv in draining lymph nodes (DLN. Further, M133 Tregs inhibited migration of M133 Tconv from the DLN. In addition, M133 Tregs diminished microglia activation and decreased the number and function of Tconv in the infected brain. Thus, virus-specific Tregs inhibited pathogenic CD4 T cell responses during priming and effector stages, particularly those recognizing cognate antigen, and decreased mortality and morbidity without affecting virus clearance. These cells are more suppressive than bulk Tregs and provide a targeted approach to ameliorating immunopathological disease in infectious settings.

  7. Graft rejection as a Th1-type process amenable to regulation by donor Th2-type cells through an interleukin-4/STAT6 pathway.

    Science.gov (United States)

    Mariotti, Jacopo; Foley, Jason; Ryan, Kaitlyn; Buxhoeveden, Nicole; Kapoor, Veena; Amarnath, Shoba; Fowler, Daniel H

    2008-12-01

    Graft rejection has been defined as the mirror image of graft-versus-host disease, which is biologically characterized primarily as a Th1-type process. As such, we reasoned that graft rejection would represent a Th1 response amenable to Th2 modulation. Indeed, adoptive transfer of host Th1-type cells mediated rejection of fully MHC-disparate murine bone marrow allografts more effectively than host Th2-type cells. Furthermore, STAT1-deficient host T cells did not differentiate into Th1-type cells in vivo and failed to mediate rejection. We next hypothesized that donor Th2 cell allograft augmentation would prevent rejection by modulation of the host Th1/Th2 balance. In the setting of donor Th2 cell therapy, host-anti-donor allospecific T cells acquired Th2 polarity, persisted posttransplantation, and did not mediate rejection. Abrogation of rejection required donor Th2 cell IL-4 secretion and host T-cell STAT6 signaling. In conclusion, T cell-mediated marrow graft rejection primarily resembles a Th1-type process that can be abrogated by donor Th2 cell therapy that promotes engraftment through a novel mechanism whereby cytokine polarization is transferred to host T cells.

  8. Low-cost zinc-plated photoanode for fabric-type dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingfeng; Bao, Yunna; Guo, Wanwan; Cheng, Li; Du, Jun; Liu, Renlong [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Wang, Yundong [Department of Chemical Engineering, Tsinghua University, State Key Lab of Chemical Engineering, Beijing 100084 (China); Fan, Xing, E-mail: foxcqdx@cqu.edu.cn [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Tao, Changyuan [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China)

    2016-02-15

    Graphical abstract: - Highlights: • Fabric-type flexible solar cells have been assembled on Zn-plated wires and meshes. • Metal Zn can improve the carriers transfer over the metal/ZnO nanoarrays interface. • A current increase by ∼6 mA/cm{sup 2} was realized by plating Zn on various metal substrates. • All-solid fabric-type DSSC was also assembled on Zn-plated metal wires. - Abstract: Fabric-type flexible solar cells have been recently proposed as a very promising power source for wearable electronics. To increase the photocurrent of fabric-type flexible solar cells, low-cost zinc-plated wire and mesh photoanodes are assembled for the first time through a mild wet process. Given the protection of the compact protection layer, the DSSC device could benefit from the low work function of Zn and self-repairing behavior on the Zn/ZnO interface. An evident current increase by ∼6 mA/cm{sup 2} could be observed after coating a layer of metal Zn on various metal substrates, such as traditional stainless steel wire. Given the self-repairing behavior on Zn/ZnO interface, the Zn layer can help to improve the interfacial carrier transfer, leading to better photovoltaic performance, for both liquid-type and solid-type cells.

  9. Low-cost zinc-plated photoanode for fabric-type dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kong, Lingfeng; Bao, Yunna; Guo, Wanwan; Cheng, Li; Du, Jun; Liu, Renlong; Wang, Yundong; Fan, Xing; Tao, Changyuan

    2016-01-01

    Graphical abstract: - Highlights: • Fabric-type flexible solar cells have been assembled on Zn-plated wires and meshes. • Metal Zn can improve the carriers transfer over the metal/ZnO nanoarrays interface. • A current increase by ∼6 mA/cm"2 was realized by plating Zn on various metal substrates. • All-solid fabric-type DSSC was also assembled on Zn-plated metal wires. - Abstract: Fabric-type flexible solar cells have been recently proposed as a very promising power source for wearable electronics. To increase the photocurrent of fabric-type flexible solar cells, low-cost zinc-plated wire and mesh photoanodes are assembled for the first time through a mild wet process. Given the protection of the compact protection layer, the DSSC device could benefit from the low work function of Zn and self-repairing behavior on the Zn/ZnO interface. An evident current increase by ∼6 mA/cm"2 could be observed after coating a layer of metal Zn on various metal substrates, such as traditional stainless steel wire. Given the self-repairing behavior on Zn/ZnO interface, the Zn layer can help to improve the interfacial carrier transfer, leading to better photovoltaic performance, for both liquid-type and solid-type cells.

  10. ACh-induced hyperpolarization and decreased resistance in mammalian type II vestibular hair cells.

    Science.gov (United States)

    Poppi, Lauren A; Tabatabaee, Hessam; Drury, Hannah R; Jobling, Phillip; Callister, Robert J; Migliaccio, Americo A; Jordan, Paivi M; Holt, Joseph C; Rabbitt, Richard D; Lim, Rebecca; Brichta, Alan M

    2018-01-01

    In the mammalian vestibular periphery, electrical activation of the efferent vestibular system (EVS) has two effects on afferent activity: 1) it increases background afferent discharge and 2) decreases afferent sensitivity to rotational stimuli. Although the cellular mechanisms underlying these two contrasting afferent responses remain obscure, we postulated that the reduction in afferent sensitivity was attributed, in part, to the activation of α9- containing nicotinic acetylcholine (ACh) receptors (α9*nAChRs) and small-conductance potassium channels (SK) in vestibular type II hair cells, as demonstrated in the peripheral vestibular system of other vertebrates. To test this hypothesis, we examined the effects of the predominant EVS neurotransmitter ACh on vestibular type II hair cells from wild-type (wt) and α9-subunit nAChR knockout (α9 -/- ) mice. Immunostaining for choline acetyltransferase revealed there were no obvious gross morphological differences in the peripheral EVS innervation among any of these strains. ACh application onto wt type II hair cells, at resting potentials, produced a fast inward current followed by a slower outward current, resulting in membrane hyperpolarization and decreased membrane resistance. Hyperpolarization and decreased resistance were due to gating of SK channels. Consistent with activation of α9*nAChRs and SK channels, these ACh-sensitive currents were antagonized by the α9*nAChR blocker strychnine and SK blockers apamin and tamapin. Type II hair cells from α9 -/- mice, however, failed to respond to ACh at all. These results confirm the critical importance of α9nAChRs in efferent modulation of mammalian type II vestibular hair cells. Application of exogenous ACh reduces electrical impedance, thereby decreasing type II hair cell sensitivity. NEW & NOTEWORTHY Expression of α9 nicotinic subunit was crucial for fast cholinergic modulation of mammalian vestibular type II hair cells. These findings show a multifaceted

  11. Type II cGMP‑dependent protein kinase inhibits the migration, invasion and proliferation of several types of human cancer cells.

    Science.gov (United States)

    Wu, Min; Wu, Yan; Qian, Hai; Tao, Yan; Pang, Ji; Wang, Ying; Chen, Yongchang

    2017-10-01

    Previous studies have indicated that type II cyclic guanosine monophosphate (cGMP)‑dependent protein kinase (PKG II) could inhibit the proliferation and migration of gastric cancer cells. However, the effects of PKG II on the biological functions of other types of cancer cells remain to be elucidated. Therefore, the aim of the present study was to investigate the effects of PKG II on cancer cells derived from various types of human tissues, including A549 lung, HepG2 hepatic, OS‑RC‑2 renal, SW480 colon cancer cells and U251 glioma cells. Cancer cells were infected with adenoviral constructs coding PKG II (Ad‑PKG II) to up‑regulate PKG II expression, and treated with 8‑(4‑chlorophenylthio) (8‑pCPT)‑cGMP to activate the kinase. A Cell Counting kit 8 assay was used to detect cell proliferation. Cell migration was measured using a Transwell assay, whereas a terminal deoxynucleotidyl transferase 2'‑deoxyuridine, 5'‑triphosphate nick‑end labeling assay was used to detect cell apoptosis. A pull‑down assay was used to investigate the activation of Ras‑related C3 botulinum toxin substrate (Rac) 1 and western blotting was used to detect the expression of proteins of interest. The present results demonstrated that EGF (100 ng/ml, 24 h) promoted the proliferation and migration of cancer cells, and it suppressed their apoptosis. In addition, treatment with EGF enhanced the activation of Rac1, and up‑regulated the protein expression of proliferating cell nuclear antigen, matrix metalloproteinase (MMP)2, MMP7 and B‑cell lymphoma (Bcl)‑2, whereas it down‑regulated the expression of Bcl‑2‑associated X protein. Transfection of cancer cells with Ad‑PKG II, and PKG II activation with 8‑pCPT‑cGMP, was identified to counteract the effects triggered by EGF. The present results suggested that PKG II may exert inhibitory effects on the proliferation and migration of various types of cancer cells.

  12. Cross-sectional surveillance of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels and other mammals in Egypt, August 2015 to January 2016.

    Science.gov (United States)

    Ali, Mohamed; El-Shesheny, Rabeh; Kandeil, Ahmed; Shehata, Mahmoud; Elsokary, Basma; Gomaa, Mokhtar; Hassan, Naglaa; El Sayed, Ahmed; El-Taweel, Ahmed; Sobhy, Heba; Fasina, Folorunso Oludayo; Dauphin, Gwenaelle; El Masry, Ihab; Wolde, Abebe Wossene; Daszak, Peter; Miller, Maureen; VonDobschuetz, Sophie; Morzaria, Subhash; Lubroth, Juan; Makonnen, Yilma Jobre

    2017-03-16

    A cross-sectional study was conducted in Egypt to determine the prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in imported and resident camels and bats, as well as to assess possible transmission of the virus to domestic ruminants and equines. A total of 1,031 sera, 1,078 nasal swabs, 13 rectal swabs, and 38 milk samples were collected from 1,078 camels in different types of sites. In addition, 145 domestic animals and 109 bats were sampled. Overall, of 1,031 serologically-tested camels, 871 (84.5%) had MERS-CoV neutralising antibodies. Seroprevalence was significantly higher in imported (614/692; 88.7%) than resident camels (257/339; 5.8%) (p MERS-CoV seroprevalence (p MERS-CoV antibodies except one sheep sample which showed a 1:640 titre. Of 1,078 camels, 41 (3.8%) were positive for MERS-CoV genetic material. Sequences obtained were not found to cluster with clade A or B MERS-CoV sequences and were genetically diverse. The presence of neutralising antibodies in one sheep apparently in contact with seropositive camels calls for further studies on domestic animals in contact with camels. This article is copyright of The Authors, 2017.

  13. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles

    Science.gov (United States)

    Lojk, Jasna; Bregar, Vladimir B; Rajh, Maruša; Miš, Katarina; Kreft, Mateja Erdani; Pirkmajer, Sergej; Veranič, Peter; Pavlin, Mojca

    2015-01-01

    Magnetic nanoparticles (NPs) are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs) are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA) in three cell types: Chinese Hamster Ovary (CHO), mouse melanoma (B16) cell line, and primary human myoblasts (MYO). We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM) as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours’ exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS) upon 24 and 48 hours’ exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP–cell interactions on several different cell types for better prediction of possible toxic effects on different cell and tissue types in vivo. PMID:25733835

  14. Selective expression of muscarinic acetylcholine receptor subtype M3 by mouse type III taste bud cells.

    Science.gov (United States)

    Mori, Yusuke; Eguchi, Kohgaku; Yoshii, Kiyonori; Ohtubo, Yoshitaka

    2016-11-01

    Each taste bud cell (TBC) type responds to a different taste. Previously, we showed that an unidentified cell type(s) functionally expresses a muscarinic acetylcholine (ACh) receptor subtype, M3, and we suggested the ACh-dependent modification of its taste responsiveness. In this study, we found that M3 is expressed by type III TBCs, which is the only cell type that possesses synaptic contacts with taste nerve fibers in taste buds. The application of ACh to the basolateral membrane of mouse fungiform TBCs in situ increased the intracellular Ca 2+ concentration in 2.4 ± 1.4 cells per taste bud (mean ± SD, n = 14). After Ca 2+ imaging, we supravitally labeled type II cells (phospholipase C β2 [PLCβ2]-immunoreactive cells) with Lucifer yellow CH (LY), a fluorescent dye and investigated the positional relationship between ACh-responding cells and LY-labeled cells. After fixation, the TBCs were immunohistostained to investigate the positional relationships between immunohistochemically classified cells and LY-labeled cells. The overlay of the two positional relationships obtained by superimposing the LY-labeled cells showed that all of the ACh-responding cells were type III cells (synaptosomal-associated protein 25 [SNAP-25]-immunoreactive cells). The ACh responses required no added Ca 2+ in the bathing solution. The addition of 1 μM U73122, a phospholipase C inhibitor, decreased the magnitude of the ACh response, whereas that of 1 μM U73343, a negative control, had no effect. These results suggest that type III cells respond to ACh and release Ca 2+ from intracellular stores. We also discuss the underlying mechanism of the Ca 2+ response and the role of M3 in type III cells.

  15. Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes

    International Nuclear Information System (INIS)

    Pascal, Laura E; Liu, Alvin Y; Vêncio, Ricardo ZN; Page, Laura S; Liebeskind, Emily S; Shadle, Christina P; Troisch, Pamela; Marzolf, Bruz; True, Lawrence D; Hood, Leroy E

    2009-01-01

    Prostate cancer cells in primary tumors have been typed CD10 - /CD13 - /CD24 hi /CD26 + /CD38 lo /CD44 - /CD104 - . This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure. CD26 + cancer cells were isolated from Gleason 3+3 (G3) and Gleason 4+4 (G4) tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells. The G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines. Genes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types

  16. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology.

    Science.gov (United States)

    Xu, Tao; Zhao, Weixin; Zhu, Jian-Ming; Albanna, Mohammad Z; Yoo, James J; Atala, Anthony

    2013-01-01

    This study was designed to develop a versatile method for fabricating complex and heterogeneous three-dimensional (3D) tissue constructs using simultaneous ink-jetting of multiple cell types. Human amniotic fluid-derived stem cells (hAFSCs), canine smooth muscle cells (dSMCs), and bovine aortic endothelial cells (bECs), were separately mixed with ionic cross-linker calcium chloride (CaCl(2)), loaded into separate ink cartridges and printed using a modified thermal inkjet printer. The three cell types were delivered layer-by-layer to pre-determined locations in a sodium alginate-collagen composite located in a chamber under the printer. The reaction between CaCl(2) and sodium alginate resulted in a rapid formation of a solid composite gel and the printed cells were anchored in designated areas within the gel. The printing process was repeated for several cycles leading to a complex 3D multi-cell hybrid construct. The biological functions of the 3D printed constructs were evaluated in vitro and in vivo. Each of the printed cell types maintained their viability and normal proliferation rates, phenotypic expression, and physiological functions within the heterogeneous constructs. The bioprinted constructs were able to survive and mature into functional tissues with adequate vascularization in vivo. These findings demonstrate the feasibility of fabricating complex heterogeneous tissue constructs containing multiple cell types using inkjet printing technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. 9 CFR 113.47 - Detection of extraneous viruses by the fluorescent antibody technique.

    Science.gov (United States)

    2010-01-01

    ... respiratory syncytial virus. (3) Canine cells shall, in addition, be tested for: (i) Canine coronavirus; (ii) Canine distemper virus; and (iii) Canine parvovirus. (4) Equine cells shall, in addition, be tested for...

  18. Cell Type Preference of a Novel Human Derived Cell-Permeable Peptide dNP2 and TAT in Murine Splenic Immune Cells.

    Directory of Open Access Journals (Sweden)

    Sangho Lim

    Full Text Available Cell-permeable peptides (CPPs have been widely studied as an attractive drug delivery system to deliver therapeutic macromolecules such as DNA, RNA, and protein into cells. However, its clinical application is still limited and controversial due to the lack of a complete understanding of delivery efficiency in target cells. Previously we identified and characterized the novel and superior CPP, named dNP2, and here we comparatively analyzed intracellular delivery efficiency of dNP2 and TAT in various immune cells of mouse spleen to demonstrate their cell type preference. dNP2- or TAT-conjugated fluorescent proteins were most efficiently taken up by phagocytic cells such as dendritic cells and macrophages while little protein uptake was seen by lymphocytes including T cells, B cells, and NK cells. Interestingly CD8+ lymphoid dendritic cells and CD62LloCD44hi memory like T cell subsets showed significantly better uptake efficiency in vitro and in vivo relative to other dendritic cells or T cells, respectively. In addition, activated macrophages, T cells, and B cells took up the proteins more efficiently relative to when in the resting state. Importantly, only dNP2, not TAT, shows significant intracellular protein delivery efficiency in vivo. Collectively, this study provides important information regarding heterogeneous intracellular delivery efficiency of CPPs such as dNP2 and TAT with cell type preference in the spleen needed for its application in phagocytic cells or activated immune cells.

  19. Autoreactive T effector memory differentiation mirrors β-cell function in type 1 diabetes.

    Science.gov (United States)

    Yeo, Lorraine; Woodwyk, Alyssa; Sood, Sanjana; Lorenc, Anna; Eichmann, Martin; Pujol-Autonell, Irma; Melchiotti, Rossella; Skowera, Ania; Fidanis, Efthymios; Dolton, Garry M; Tungatt, Katie; Sewell, Andrew K; Heck, Susanne; Saxena, Alka; Beam, Craig A; Peakman, Mark

    2018-05-31

    In type 1 diabetes, cytotoxic CD8 T cells with specificity for β-cell autoantigens are found in the pancreatic islets where they are implicated in the destruction of insulin-secreting β cells. In contrast, the disease relevance of β-cell-reactive CD8 T cells that are detectable in the circulation, and their relationship to β-cell function, are not known. Here, we tracked multiple, circulating β-cell-reactive CD8 T cell subsets and measured β-cell function longitudinally for two years, starting immediately after diagnosis of type 1 diabetes. We found that change in β-cell-specific effector memory CD8 T cells expressing CD57 was positively correlated with C-peptide change in subjects below 12 years of age. Autoreactive CD57+ effector memory CD8 T cells bore the signature of enhanced effector function (higher expression of granzyme B, killer specific protein 37 and CD16, and reduced expression of CD28) compared with their CD57-negative counterparts, and network association modelling indicated that the dynamics of β-cell-reactive CD57+ effector memory CD8 T cell subsets were strongly linked. Thus, coordinated changes in circulating β-cell-specific CD8 T cells within the CD57+ effector memory subset calibrate to functional insulin reserve in type 1 diabetes, providing a tool for immune monitoring and a mechanism-based target for immunotherapy.

  20. Cell type-specific termination of transcription by transposable element sequences.

    Science.gov (United States)

    Conley, Andrew B; Jordan, I King

    2012-09-30

    Transposable elements (TEs) encode sequences necessary for their own transposition, including signals required for the termination of transcription. TE sequences within the introns of human genes show an antisense orientation bias, which has been proposed to reflect selection against TE sequences in the sense orientation owing to their ability to terminate the transcription of host gene transcripts. While there is evidence in support of this model for some elements, the extent to which TE sequences actually terminate transcription of human gene across the genome remains an open question. Using high-throughput sequencing data, we have characterized over 9,000 distinct TE-derived sequences that provide transcription termination sites for 5,747 human genes across eight different cell types. Rarefaction curve analysis suggests that there may be twice as many TE-derived termination sites (TE-TTS) genome-wide among all human cell types. The local chromatin environment for these TE-TTS is similar to that seen for 3' UTR canonical TTS and distinct from the chromatin environment of other intragenic TE sequences. However, those TE-TTS located within the introns of human genes were found to be far more cell type-specific than the canonical TTS. TE-TTS were much more likely to be found in the sense orientation than other intragenic TE sequences of the same TE family and TE-TTS in the sense orientation terminate transcription more efficiently than those found in the antisense orientation. Alu sequences were found to provide a large number of relatively weak TTS, whereas LTR elements provided a smaller number of much stronger TTS. TE sequences provide numerous termination sites to human genes, and TE-derived TTS are particularly cell type-specific. Thus, TE sequences provide a powerful mechanism for the diversification of transcriptional profiles between cell types and among evolutionary lineages, since most TE-TTS are evolutionarily young. The extent of transcription