WorldWideScience

Sample records for coronary vascular endothelium

  1. Nitric oxide and coronary vascular endothelium adaptations in hypertension

    Directory of Open Access Journals (Sweden)

    Andrew S Levy

    2009-12-01

    Full Text Available Andrew S Levy*, Justin CS Chung*, Jeffrey T Kroetsch*, James WE RushDepartment of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada; *These authors contributed equally to this workAbstract: This review highlights a number of nitric oxide (NO-related mechanisms that contribute to coronary vascular function and that are likely affected by hypertension and thus become important clinically as potential considerations in prevention, diagnosis, and treatment of coronary complications of hypertension. Coronary vascular resistance is elevated in hypertension in part due to impaired endothelium-dependent function of coronary arteries. Several lines of evidence suggest that other NO synthase isoforms and dilators other than NO may compensate for impairments in endothelial NO synthase (eNOS to protect coronary artery function, and that NO-dependent function of coronary blood vessels depends on the position of the vessel in the vascular tree. Adaptations in NOS isoforms in the coronary circulation to hypertension are not well described so the compensatory relationship between these and eNOS in hypertensive vessels is not clear. It is important to understand potential functional consequences of these adaptations as they will impact the efficacy of treatments designed to control hypertension and coronary vascular disease. Polymorphisms of the eNOS gene result in significant associations with incidence of hypertension, although mechanistic details linking the polymorphisms with alterations in coronary vasomotor responses and adaptations to hypertension are not established. This understanding should be developed in order to better predict those individuals at the highest risk for coronary vascular complications of hypertension. Greater endothelium-dependent dilation observed in female coronary arteries is likely related to endothelial Ca2+ control and eNOS expression and activity. In hypertension models, the coronary vasculature has not been

  2. Pathophysiology of vascular endothelium and circulating platelets : implications for coronary revascularisation and treatment

    NARCIS (Netherlands)

    Amoroso, G; van Veldhuisen, DJ; Tio, RA; Mariani, M

    2001-01-01

    Constant vasodilatation, inhibition of platelet and leukocyte adhesion, and local thrombolysis are the mechanisms through which an intact endothelial layer exerts its protective action on coronary circulation. A loss in these features is not only the first step in the development of atherosclerosis,

  3. Vascular Endothelium and Hypovolemic Shock.

    Science.gov (United States)

    Gulati, Anil

    2016-01-01

    Endothelium is a site of metabolic activity and has a major reservoir of multipotent stem cells. It plays a vital role in the vascular physiological, pathophysiological and reparative processes. Endothelial functions are significantly altered following hypovolemic shock due to ischemia of the endothelial cells and by reperfusion due to resuscitation with fluids. Activation of endothelial cells leads to release of vasoactive substances (nitric oxide, endothelin, platelet activating factor, prostacyclin, mitochondrial N-formyl peptide), mediators of inflammation (tumor necrosis factor α, interleukins, interferons) and thrombosis. Endothelial cell apoptosis is induced following hypovolemic shock due to deprivation of oxygen required by endothelial cell mitochondria; this lack of oxygen initiates an increase in mitochondrial reactive oxygen species (ROS) and release of apoptogenic proteins. The glycocalyx structure of endothelium is compromised which causes an impairment of the protective endothelial barrier resulting in increased permeability and leakage of fluids in to the tissue causing edema. Growth factors such as angiopoetins and vascular endothelial growth factors also contribute towards pathophysiology of hypovolemic shock. Endothelium is extremely active with numerous functions, understanding these functions will provide novel targets to design therapeutic agents for the acute management of hypovolemic shock. Hypovolemic shock also occurs in conditions such as dengue shock syndrome and Ebola hemorrhagic fever, defining the role of endothelium in the pathophysiology of these conditions will provide greater insight regarding the functions of endothelial cells in vascular regulation.

  4. Vascular Protective Effect of an Ethanol Extract of Camellia japonica Fruit: Endothelium-Dependent Relaxation of Coronary Artery and Reduction of Smooth Muscle Cell Migration

    Directory of Open Access Journals (Sweden)

    Sin-Hee Park

    2016-01-01

    Full Text Available Camellia japonica is a popular garden plant in Asia and widely used as cosmetic sources and traditional medicine. However, the possibility that C. japonica affects cardiovascular system remains unclear. The aim of the present study was to evaluate vascular effects of an extract of C. japonica. Vascular reactivity was assessed in organ baths using porcine coronary arteries and inhibition of proliferation and migration were assessed using human vascular smooth muscle cells (VSMCs. All four different parts, leaf, stem, flower, and fruits, caused concentration-dependent relaxations and C. japonica fruit (CJF extract showed the strongest vasorelaxation and its effect was endothelium dependent. Relaxations to CJF were markedly reduced by inhibitor of endothelial nitric oxide synthase (eNOS and inhibitor of PI3-kinase, but not affected by inhibitor of cyclooxygenase and endothelium-derived hyperpolarizing factor-mediated response. CJF induced activated a time- and concentration-dependent phosphorylation of eNOS in endothelial cells. Altogether, these studies have demonstrated that CJF is a potent endothelium-dependent vasodilator and this effect was involved in, at least in part, PI3K-eNOS-NO pathway. Moreover, CJF attenuated TNF-α induced proliferation and PDGF-BB induced migration of VSMCs. The present findings indicate that CJF could be a valuable candidate of herbal medicine for cardiovascular diseases associated with endothelial dysfunction and atherosclerosis.

  5. Vascular endothelium receptors and transduction mechanisms

    CERN Document Server

    Gillis, C; Ryan, Una; Proceedings of the Advanced Studies Institute on "Vascular Endothelium: Receptors and Transduction Mechanisms"

    1989-01-01

    Beyond their obvious role of a barrier between blood and tissue, vascular endothelial cells are now firmly established as active and essential participants in a host of crucial physiological and pathophysiological functions. Probably the two most important factors responsible for promoting the current knowledge of endothelial functions are 1) observations in the late sixties-early seventies that many non-ventilatory properties of the lung could be attributed to the pulmonary endothelium and 2) the establishment, in the early and mid-seventies of procedures for routine culture of vascular endothelial cells. Many of these endothelial functions require the presence of receptors on the surface of the plasma membrane. There is now evidence for the existence among others of muscarinic, a-and /3-adrenergic, purine, insulin, histamine, bradykinin, lipoprotein, thrombin, paf, fibronectin, vitronectin, interleukin and albumin receptors. For some of these ligands, there is evidence only for the existence of endothelial ...

  6. Decreased endothelium-dependent coronary vasomotion in healthy young smokers

    Energy Technology Data Exchange (ETDEWEB)

    Iwado, Yasuyoshi; Yoshinaga, Keiichiro; Furuyama, Hideto; Tsukamoto, Eriko; Tamaki, Nagara [Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita-Ku, Kita 15 Nishi 7, Sapporo, 060-8638 (Japan); Ito, Yoshinori; Noriyasu, Kazuyuki [Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Katoh, Chietsugu; Kuge, Yuji [Department of Tracer Kinetics, Hokkaido University Graduate School of Medicine, Sapporo (Japan)

    2002-08-01

    Chronic cigarette smoking alters coronary vascular endothelial response. To determine whether altered response also occurs in young individuals without manifest coronary disease we quantified coronary blood flow at rest, following adenosine vasodilator stress and during the cold pressor test in healthy young smokers. Myocardial blood flow (MBF) was quantified by oxygen-15 labelled water positron emission tomography in 30 healthy men aged from 20 to 35 years (18 smokers and 12 non-smokers, aged 27.4{+-}4.4 vs 26.3{+-}3.3). The smokers had been smoking cigarettes for 9.4{+-}4.9 pack-years. MBF was measured at rest, during intravenous adenosine triphosphate (ATP: 0.16 mg kg{sup -1} min{sup -1}) infusion (hyperaemic response), and during cold pressor test (CPT) (endothelial vasodilator response). Rest MBF and hyperaemic MBF did not differ significantly between the smokers and the non-smokers (rest: 0.86{+-}0.11 vs 0.92{+-}0.14 and ATP: 3.20{+-}1.12 vs 3.69{+-}0.76 ml g{sup -1} min{sup -1}; P=NS). Coronary flow reserve was similar between the two groups (smokers: 3.78{+-}1.83; non-smokers: 4.03{+-}0.68; P=NS). Although CPT induced a similar increase in rate-pressure product (RPP) in the smokers and the non-smokers (10,430{+-}1,820 vs 9,236{+-}1,356 beats min{sup -1} mmHg{sup -1}), CPT MBF corrected by RPP was significantly decreased in the smokers (0.65{+-}0.12 ml g{sup -1} min{sup -1}) compared with the non-smokers (0.87{+-}0.12 ml g{sup -1} min{sup -1}) (P<0.05). In addition, the ratio of CPT MBF to resting MBF was inversely correlated with pack-years (r=-0.57, P=0.014). Endothelium-dependent coronary artery vasodilator function is impaired in apparently healthy young smokers. (orig.)

  7. Insulin action and insulin resistance in vascular endothelium.

    Science.gov (United States)

    Muniyappa, Ranganath; Quon, Michael J

    2007-07-01

    Vasodilator actions of insulin are mediated by phosphatidylinositol 3-kinase dependent insulin signaling pathways in endothelium, which stimulate production of nitric oxide. Insulin-stimulated nitric oxide mediates capillary recruitment, vasodilation, increased blood flow, and subsequent augmentation of glucose disposal in skeletal muscle. Distinct mitogen-activated protein kinase dependent insulin signaling pathways regulate secretion of the vasoconstrictor endothelin-1 from endothelium. These vascular actions of insulin contribute to the coupling of metabolic and hemodynamic homeostasis that occurs under healthy conditions. Insulin resistance is characterized by pathway-specific impairment in phosphatidylinositol 3-kinase dependent signaling in both metabolic and vascular insulin target tissues. Here we discuss consequences of pathway-specific insulin resistance in endothelium and therapeutic interventions targeting this selective impairment. Shared causal factors such as glucotoxicity, lipotoxicity, and inflammation selectively impair phosphatidylinositol 3-kinase dependent insulin signaling pathways, creating reciprocal relationships between insulin resistance and endothelial dysfunction. Diet, exercise, cardiovascular drugs, and insulin sensitizers simultaneously modulate phosphatidylinositol 3-kinase and mitogen-activated protein kinase dependent pathways, improving metabolic and vascular actions of insulin. Pathway-specific impairment in insulin action contributes to reciprocal relationships between endothelial dysfunction and insulin resistance, fostering clustering of metabolic and cardiovascular diseases in insulin-resistant states. Therapeutic interventions that target this selective impairment often simultaneously improve both metabolic and vascular function.

  8. Toxicological effects of beryllium on platelets and vascular endothelium.

    Science.gov (United States)

    Togna, G; Togna, A R; Russo, P; Caprino, L

    1997-06-01

    Although ample research has described the toxic effects of the metal beryllium on the respiratory apparatus, less is known about its effects on the vascular apparatus, including pulmonary blood vessels. We investigated the in vitro effects of beryllium on endothelial vascular adenosine diphosphatase activity and prostacyclin production in bovine aortic endothelium, and on nitric oxide release in isolated rabbit arteries. Rabbit and human platelet responsiveness was also evaluated. Beryllium inhibited vascular endothelial adenosine diphosphatase activity, prostacyclin production, and nitric oxide release, thus inducing functional alterations in vascular endothelial cells. It also induced platelet hyperreactivity to arachidonic acid, as shown by a lowering of the threshold of aggregating concentration and by concurrently increasing thromboxane production. In contrast, beryllium left the response to aggregating and nonaggregating concentrations of ADP and collagen unchanged. These findings show that beryllium may impair some vascular endothelial functions and alter the interaction between platelet and endothelial mediators.

  9. Protection of the vascular endothelium in experimental situations

    OpenAIRE

    2011-01-01

    One of the factors proposed as mediators of vascular dysfunction observed in diabetes is the increased generation of reactive oxygen species (ROS). This provides support for the use of antioxidants as early and appropriate pharmacological intervention in the development of late diabetic complications. In streptozotocin (STZ)-induced diabetes in rats we observed endothelial dysfuction manifested by reduced endothelium-dependent response to acetylcholine of the superior mesenteric artery (SMA) ...

  10. Evolutionary origins of the blood vascular system and endothelium

    Science.gov (United States)

    Monahan-Earley, Rita; Dvorak, Ann M.; Aird, William C.

    2017-01-01

    Every biological trait requires both a proximate and evolutionary explanation. The field of vascular biology is focused primarily on proximate mechanisms in health and disease. Comparatively little attention has been given to the evolutionary basis of the cardiovascular system. Here, we employ a comparative approach to review the phylogenetic history of the blood vascular system and endothelium. In addition to drawing on the published literature, we provide primary ultrastructural data related to the lobster, earthworm, amphioxus and hagfish. Existing evidence suggests that the blood vascular system first appeared in an ancestor of the triploblasts over 600 million years ago, as a means to overcome the time-distance constraints of diffusion. The endothelium evolved in an ancestral vertebrate some 540–510 million years ago to optimize flow dynamics and barrier function, and/or to localize immune and coagulation functions. Finally, we emphasize that endothelial heterogeneity evolved as a core feature of the endothelium from the outset, reflecting its role in meeting the diverse needs of body tissues. PMID:23809110

  11. Dynamic, nondestructive imaging of a bioengineered vascular graft endothelium.

    Directory of Open Access Journals (Sweden)

    Bryce M Whited

    Full Text Available Bioengineering of vascular grafts holds great potential to address the shortcomings associated with autologous and conventional synthetic vascular grafts used for small diameter grafting procedures. Lumen endothelialization of bioengineered vascular grafts is essential to provide an antithrombogenic graft surface to ensure long-term patency after implantation. Conventional methods used to assess endothelialization in vitro typically involve periodic harvesting of the graft for histological sectioning and staining of the lumen. Endpoint testing methods such as these are effective but do not provide real-time information of endothelial cells in their intact microenvironment, rather only a single time point measurement of endothelium development. Therefore, nondestructive methods are needed to provide dynamic information of graft endothelialization and endothelium maturation in vitro. To address this need, we have developed a nondestructive fiber optic based (FOB imaging method that is capable of dynamic assessment of graft endothelialization without disturbing the graft housed in a bioreactor. In this study we demonstrate the capability of the FOB imaging method to quantify electrospun vascular graft endothelialization, EC detachment, and apoptosis in a nondestructive manner. The electrospun scaffold fiber diameter of the graft lumen was systematically varied and the FOB imaging system was used to noninvasively quantify the affect of topography on graft endothelialization over a 7-day period. Additionally, results demonstrated that the FOB imaging method had a greater imaging penetration depth than that of two-photon microscopy. This imaging method is a powerful tool to optimize vascular grafts and bioreactor conditions in vitro, and can be further adapted to monitor endothelium maturation and response to fluid flow bioreactor preconditioning.

  12. Endothelium-Derived Hyperpolarizing Factor and Vascular Function

    Directory of Open Access Journals (Sweden)

    Muhiddin A. Ozkor

    2011-01-01

    Full Text Available Endothelial function refers to a multitude of physiological processes that maintain healthy homeostasis of the vascular wall. Exposure of the endothelium to cardiac risk factors results in endothelial dysfunction and is associated with an alteration in the balance of vasoactive substances produced by endothelial cells. These include a reduction in nitric oxide (NO, an increase in generation of potential vasoconstrictor substances and a potential compensatory increase in other mediators of vasodilation. The latter has been surmised from data demonstrating persistent endothelium-dependent vasodilatation despite complete inhibition of NO and prostaglandins. This remaining non-NO, non-prostaglandin mediated endothelium-dependent vasodilator response has been attributed to endothelium-derived hyperpolarizing factor/s (EDHF. Endothelial hyperpolarization is likely due to several factors that appear to be site and species specific. Experimental studies suggest that the contribution of the EDHFs increase as the vessel size decreases, with a predominance of EDHF activity in the resistance vessels, and a compensatory up-regulation of hyperpolarization in states characterized by reduced NO availability. Since endothelial dysfunction is a precursor for atherosclerosis development and its magnitude is a reflection of future risk, then the mechanisms underlying endothelial dysfunction need to be fully understood, so that adequate therapeutic interventions can be designed.

  13. Vascular endothelium leaves fingerprints on the surface of erythrocytes.

    Science.gov (United States)

    Oberleithner, Hans

    2013-10-01

    Gliding of red blood cells (RBC) through blood vessels is mediated by the negatively charged glycocalyx located on the surfaces of both RBC and endothelial cells (EC). In various vasculopathies, EC gradually lose this protective surface layer. As a consequence, RBC come into close physical contact with the vascular endothelium. It is hypothesized that the RBC glycocalyx could be adversely affected by a poor EC glycocalyx. This hypothesis was tested by evaluating the RBC and EC surface layers with atomic force microscopy techniques. In the first series of experiments, EC monolayers grown in culture were exposed to rhythmic drag forces exerted from a blood overlay (drag force treatment), and thereafter, the EC surface was investigated in terms of thickness and adhesiveness. In the second series, the glycocalyx of the EC monolayers was disturbed by enzymatic cleavage of negatively charged heparan sulfates before drag force treatment, and thereafter, the RBC surface was evaluated. In the third series, the RBC glycocalyx of the blood overlay was enzymatically disturbed before drag force treatment, and thereafter, the EC surface was evaluated. A strong positive correlation between the RBC and EC surface properties was found (r (2) = 0.95). An enzymatically affected EC glycocalyx lead to the shedding of the RBC glycocalyx and vice versa. It is concluded that there is physical interaction between the blood and endothelium. Apparently, the RBC glycocalyx reflects properties of the EC glycocalyx. This observation could have a significant impact on diagnosis and treatment of cardiovascular diseases.

  14. Activation of G protein-coupled estrogen receptor induces endothelium-independent relaxation of coronary artery smooth muscle

    Science.gov (United States)

    Yu, Xuan; Ma, Handong; Barman, Scott A.; Liu, Alexander T.; Sellers, Minga; Stallone, John N.; Prossnitz, Eric R.; White, Richard E.

    2011-01-01

    Estrogens can either relax or contract arteries via rapid, nongenomic mechanisms involving classic estrogen receptors (ER). In addition to ERα and ERβ, estrogen may also stimulate G protein-coupled estrogen receptor 1 (GPER) in nonvascular tissue; however, a potential role for GPER in coronary arteries is unclear. The purpose of this study was to determine how GPER activity influenced coronary artery reactivity. In vitro isometric force recordings were performed on endothelium-denuded porcine arteries. These studies were augmented by RT-PCR and single-cell patch-clamp experiments. RT-PCR and immunoblot studies confirmed expression of GPER mRNA and protein, respectively, in smooth muscle from either porcine or human coronary arteries. G-1, a selective GPER agonist, produced a concentration-dependent relaxation of endothelium-denuded porcine coronary arteries in vitro. This response was attenuated by G15, a GPER-selective antagonist, or by inhibiting large-conductance calcium-activated potassium (BKCa) channels with iberiotoxin, but not by inhibiting NO signaling. Last, single-channel patch-clamp studies demonstrated that G-1 stimulates BKCa channel activity in intact smooth muscle cells from either porcine or human coronary arteries but had no effect on channels isolated in excised membrane patches. In summary, GPER activation relaxes coronary artery smooth muscle by increasing potassium efflux via BKCa channels and requires an intact cellular signaling mechanism. This novel action of estrogen-like compounds may help clarify some of the controversy surrounding the vascular effects of estrogens. PMID:21791623

  15. Endothelium-derived hyperpolarization and coronary vasodilation: diverse and integrated roles of epoxyeicosatrienoic acids, hydrogen peroxide and gap junctions

    Science.gov (United States)

    Ellinsworth, David C.; Sandow, Shaun L.; Shukla, Nilima; Liu, Yanping; Jeremy, Jamie Y.; Gutterman, David D.

    2015-01-01

    Myocardial perfusion and coronary vascular resistance are regulated by signalling metabolites released from the local myocardium that act either directly on the vascular smooth muscle cells (VSMC) or indirectly via stimulation of the endothelium. A prominent mechanism of vasodilation is endothelium-derived hyperpolarization (EDH) of the arteriolar smooth muscle, with epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H2O2) playing important roles in EDH in the coronary microcirculation. In some cases, EETs and H2O2 are released as transferable hyperpolarizing factors (EDHFs) that act directly on the VSMCs. By contrast, EETs and H2O2 can also promote endothelial Ca2+-activated K+ channel activity secondary to the amplification of extracellular Ca2+ influx and Ca2+ mobilization from intracellular stores, respectively. The resulting endothelial hyperpolarization may subsequently conduct to the media via myoendothelial gap junctions, or potentially lead to the release of a chemically-distinct factor(s). Furthermore, in human isolated coronary arterioles dilator signalling involving EETs and H2O2 may be integrated; being either complimentary or inhibitory depending on the stimulus. With an emphasis on the human coronary microcirculation, this review addresses the diverse and integrated mechanisms by which EETs and H2O2 regulate vessel tone, and also examines the hypothesis that myoendothelial microdomain signalling facilitates EDH activity in the human heart. PMID:26541094

  16. Potentiation of phorbol ester-induced coronary vasoconstriction in dogs following endothelium disruption

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.B.; Ku, D.D.

    1986-03-05

    In the present study, the effect of phorbol ester, 12-0-tetradecanoylphorbol 13-acetate (TPA), activation of protein kinase C on coronary vascular reactivity was studied in isolated dog coronary arteries. Addition of TPA (10-100 nM) produced a slow, time- and dose-dependent contraction reaching a maximum at approx 2-3 hrs and was essentially irreversible upon washing. Disruption of the endothelium(EC) greatly accelerated the development as well as increase the magnitude of TPA contraction (50-100%). Prior treatment of vessels with phentolamine (1..mu..M), cyproheptadine (1..mu..H) and ibuprofen (1..mu..g/ml) did not alter the TPA contraction. Furthermore, in contrast to previously reported calcium-dependence of TPA contraction in other vessels, complete removal of extracellular calcium (Ca/sub 0/) or addition of 1..mu..M nimodipine after TPA(30nM) resulted in only 32 +/- 4% and 25 +/- 3% reversal of TPA contraction, respectively. Addition of amiloride (10..mu..M to 1mM), however, resulted in a dose-dependent reversal of TPA contraction. The results of the present study indicate that a similar activation of protein kinase C by TPA leads to potent coronary vasoconstriction, which is not completely dependent on Ca/sub 0/. More importantly, these results further support their hypothesis that EC also functions as an inhibitory barrier to prevent circulating vasoconstrictors from exerting their deleterious constrictory effects.

  17. Impairment of Coronary Arteriolar Endothelium-Dependent Dilation after Multi-Walled Carbon Nanotube Inhalation: A Time-Course Study

    Directory of Open Access Journals (Sweden)

    Timothy R. Nurkiewicz

    2012-10-01

    Full Text Available Engineered nanomaterials have been developed for widespread applications due to many highly unique and desirable characteristics. The purpose of this study was to assess pulmonary inflammation and subepicardial arteriolar reactivity in response to multi-walled carbon nanotube (MWCNT inhalation and evaluate the time course of vascular alterations. Rats were exposed to MWCNT aerosols producing pulmonary deposition. Pulmonary inflammation via bronchoalveolar lavage and MWCNT translocation from the lungs to systemic organs was evident 24 h post-inhalation. Coronary arterioles were evaluated 24–168 h post-exposure to determine microvascular response to changes in transmural pressure, endothelium-dependent and -independent reactivity. Myogenic responsiveness, vascular smooth muscle reactivity to nitric oxide, and α-adrenergic responses all remained intact. However, a severe impact on endothelium-dependent dilation was observed within 24 h after MWCNT inhalation, a condition which improved, but did not fully return to control after 168 h. In conclusion, results indicate that MWCNT inhalation not only leads to pulmonary inflammation and cytotoxicity at low lung burdens, but also a low level of particle translocation to systemic organs. MWCNT inhalation also leads to impairments of endothelium-dependent dilation in the coronary microcirculation within 24 h, a condition which does not fully dissipate within 168 h. The innovations within the field of nanotechnology, while exciting and novel, can only reach their full potential if toxicity is first properly assessed.

  18. The sulphydryl containing ACE inhibitor Zofenoprilat protects coronary endothelium from Doxorubicin-induced apoptosis.

    Science.gov (United States)

    Monti, Martina; Terzuoli, Erika; Ziche, Marina; Morbidelli, Lucia

    2013-10-01

    Pediatric and adult cancer patients, following the use of the antitumor drug Doxorubicin develop cardiotoxicity. Pharmacological protection of microvascular endothelium might produce a double benefit: (i) reduction of myocardial toxicity (the primary target of Doxorubicin action) and (ii) maintenance of the vascular functionality for the adequate delivery of chemotherapeutics to tumor cells. This study was aimed to evaluate the mechanisms responsible of the protective effects of the angiotensin converting enzyme inhibitor (ACEI) Zofenoprilat against the toxic effects exerted by Doxorubicin on coronary microvascular endothelium. We found that exposure of endothelial cells to Doxorubicin (0.1-1μM range) impaired cell survival by promoting their apoptosis. ERK1/2 related p53 activation, but not reactive oxygen species, was responsible for Doxorubicin induced caspase-3 cleavage. P53 mediated-apoptosis and impairment of survival were reverted by treatment with Zofenoprilat. The previously described PI-3K/eNOS/endogenous fibroblast growth factor signaling was not involved in the protective effect, which, instead, could be ascribed to cystathionine gamma lyase dependent availability of H2S from Zofenoprilat. Furthermore, considering the tumor environment, the treatment of endothelial/tumor co-cultures with Zofenoprilat did not affect the antitumor efficacy of Doxorubicin. In conclusion the ACEI Zofenoprilat exerts a protective effect on Doxorubicin induced endothelial damage, without affecting its antitumor efficacy. Thus, sulfhydryl containing ACEI may be a useful therapy for Doxorubicin-induced cardiotoxicity.

  19. Decoding Dynamic Ca2+ Signaling in the Vascular Endothelium

    Directory of Open Access Journals (Sweden)

    Mark Stephen Taylor

    2014-11-01

    Full Text Available Although acute and chronic vasoregulation is inherently driven by endothelial Ca2+, control and targeting of Ca2+-dependent signals are poorly understood. Recent studies have revealed localized and dynamic endothelial Ca2+ events comprising an intricate signaling network along the vascular intima. Discrete Ca2+ transients emerging from both internal stores and plasmalemmal cation channels couple to specific membrane K+ channels, promoting endothelial hyperpolarization and vasodilation. The spatiotemporal tuning of these signals, rather than global Ca2+ elevation, appear to direct endothelial functions under physiologic conditions. In fact, altered patterns of dynamic Ca2+ signaling may underlie essential endothelial dysfunction in a variety of cardiovascular diseases. Advances in imaging approaches and analyses in recent years have allowed for detailed detection, quantification, and evaluation of Ca2+ dynamics in intact endothelium. Here, we discuss recent insights into these signals, including their sources of origination and their functional encoding. We also address key aspects of data acquisition and interpretation, including broad applications of automated high-content analysis.

  20. Effects of intravenous anesthetic agents on vascular endothelium

    Directory of Open Access Journals (Sweden)

    Alp Gurbet

    2012-06-01

    Full Text Available Objectives: The objective of this study was to comparethe effects of Propofol 1%, Propofol 2%, Ketamine, Pentothal,Etomidate and Etomidate-lipuro on venous endothelium.Materials and methods: The study was done fromAugust 2007 to May 2008 after approval of Faculty’sEthic Committee. Forty rabbits were obtained. Propofol1% (n=6, Propofol 2% (n=6, Ketamin (n=6, Penthotal(n=6, Etomidate (n=6, Etomidate lipuro (n=6 and normalsaline (Control Group, n=4 was given 1 cc via externaljugular vein. After 5 minutes from the injenction 6species 2 mm in length segments were taken from theinjencted veins. Species were fixed in 4˚C gluteraldehydethan postfixed in 4°C osmium tetroxide. Visualisation wasperformed with scanning electron microscope.Results: In Propofol 1 %, Propofol 2% and Penthotalgroups normal endothelial structures were observed. InEtomidate group damage of the endothelial cells were observedsignificantly compared with control. In Etomidatelipuro group minimal deformation was observed comparedto control.Conclusion: Etomidat causes significant endothelial deformation,moreover lipuro minimalises these effects. Inorder to need to use etomidate for general anesthesia,for less pain during injection depending on vascular injurylipuro form would be more appropriate. However, furtherstudy is required. J Clin Exp Invest 2011; 3(2: 164-167

  1. Transport of Gold Nanoparticles by Vascular Endothelium from Different Human Tissues

    Science.gov (United States)

    Gromnicova, Radka; Kaya, Mehmet; Romero, Ignacio A.; Williams, Phil; Satchell, Simon; Sharrack, Basil; Male, David

    2016-01-01

    The selective entry of nanoparticles into target tissues is the key factor which determines their tissue distribution. Entry is primarily controlled by microvascular endothelial cells, which have tissue-specific properties. This study investigated the cellular properties involved in selective transport of gold nanoparticles (<5 nm) coated with PEG-amine/galactose in two different human vascular endothelia. Kidney endothelium (ciGENC) showed higher uptake of these nanoparticles than brain endothelium (hCMEC/D3), reflecting their biodistribution in vivo. Nanoparticle uptake and subcellular localisation was quantified by transmission electron microscopy. The rate of internalisation was approximately 4x higher in kidney endothelium than brain endothelium. Vesicular endocytosis was approximately 4x greater than cytosolic uptake in both cell types, and endocytosis was blocked by metabolic inhibition, whereas cytosolic uptake was energy-independent. The cellular basis for the different rates of internalisation was investigated. Morphologically, both endothelia had similar profiles of vesicles and cell volumes. However, the rate of endocytosis was higher in kidney endothelium. Moreover, the glycocalyces of the endothelia differed, as determined by lectin-binding, and partial removal of the glycocalyx reduced nanoparticle uptake by kidney endothelium, but not brain endothelium. This study identifies tissue-specific properties of vascular endothelium that affects their interaction with nanoparticles and rate of transport. PMID:27560685

  2. Effects of catechins on vascular tone in rat thoracic aorta with endothelium.

    Science.gov (United States)

    Sanae, Fujiko; Miyaichi, Yukinori; Kizu, Haruhisa; Hayashi, Hisao

    2002-10-11

    The effects of eight catechin derivatives on vascular tone in rat thoracic aorta were examined. Catechin derivatives (10 microM) potentiated the contractile response to phenylephrine in endothelium-intact arteries. The potentiations produced by EGCg and EGC were almost absent in endothelium-denuded arteries and abolished by N(G)-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis. The catechin derivatives also inhibited endothelium-dependent relaxation in response to acetylcholine. The order of catechin derivatives ranked in terms of both increasing vascular reactivity and impairing endothelium-dependent relaxation was similar; (-)-gallocatechin (GC) >or= (-)-epigallocatechin (EGC) >or= (-)-gallocatechin gallate (GCg) >or= (-)-epigallocatechin gallate (EGCg) >or= (-)-catechin (C) >or= (-)-epicatechin (EC) >or= (-)-catechin gallate (Cg) >or= (-)-epicatechin gallate (ECg). In addition, EGC inhibited the endothelium-independent relaxation evoked by both sodium nitroprusside and NOC-7, a spontanous NO releaser, but EGCg inhibited only that by NOC-7. These findings indicate that catechin derivatives produce a potentiation of the contractile response and an inhibition of the vasorelaxant response, probably through inactivation of endothelium-derived nitric oxide (NO), and that the hydroxyl on C-5 of the B ring together with the stereoscopic structure between the C-3 group and the B ring of flavanols was of importance in mediating the above effects and that the substitution of a gallate group of C-3 attenuated the effects, probably due to a decreased response to solube guanylate cyclase in vascular smooth muscle cells.

  3. Effects of intravenous anesthetic agents on vascular endothelium

    OpenAIRE

    Alp Gurbet; Fatma Nur Kaya; Alper Bayraktar; İlkin Cavuşoğlu; Serap Şirvancı; Berin Özcan

    2012-01-01

    Objectives: The objective of this study was to comparethe effects of Propofol 1%, Propofol 2%, Ketamine, Pentothal,Etomidate and Etomidate-lipuro on venous endothelium.Materials and methods: The study was done fromAugust 2007 to May 2008 after approval of Faculty’sEthic Committee. Forty rabbits were obtained. Propofol1% (n=6), Propofol 2% (n=6), Ketamin (n=6), Penthotal(n=6), Etomidate (n=6), Etomidate lipuro (n=6) and normalsaline (Control Group, n=4) was given 1 cc via externaljugular vein....

  4. Relationship between vascular endothelium and periodontal disease in atherosclerotic lesions: Review article

    Science.gov (United States)

    Saffi, Marco Aurélio Lumertz; Furtado, Mariana Vargas; Polanczyk, Carisi Anne; Montenegro, Márlon Munhoz; Ribeiro, Ingrid Webb Josephson; Kampits, Cassio; Haas, Alex Nogueira; Rösing, Cassiano Kuchenbecker; Rabelo-Silva, Eneida Rejane

    2015-01-01

    Inflammation and endothelial dysfunction are linked to the pathogenesis of atherosclerotic disease. Recent studies suggest that periodontal infection and the ensuing increase in the levels of inflammatory markers may be associated with myocardial infarction, peripheral vascular disease and cerebrovascular disease. The present article aimed at reviewing contemporary data on the pathophysiology of vascular endothelium and its association with periodontitis in the scenario of cardiovascular disease. PMID:25632316

  5. Relationship between vascular endothelium and periodontal disease in atherosclerotic lesions: Review article

    Institute of Scientific and Technical Information of China (English)

    Marco; Aurélio; Lumertz; Saffi; Mariana; Vargas; Furtado; Carisi; Anne; Polanczyk; Márlon; Munhoz; Montenegro; Ingrid; Webb; Josephson; Ribeiro; Cassio; Kampits; Alex; Nogueira; Haas; Cassiano; Kuchenbecker; R?sing; Eneida; Rejane; Rabelo-Silva

    2015-01-01

    Inflammation and endothelial dysfunction are linked to the pathogenesis of atherosclerotic disease. Recent studies suggest that periodontal infection and the ensuing increase in the levels of inflammatory markers may be associated with myocardial infarction, peripheral vascular disease and cerebrovascular disease. The present article aimed at reviewing contemporary data on the pathophysiology of vascular endothelium and its association with periodontitis in the scenario of cardiovascular disease.

  6. 丹参酮ⅡA 磺酸钠联合氯吡格雷对冠心病心绞痛疗效及血管内皮功能的影响%Effect of TanshinoneIIA Sulfonic Sodium combined with Clopidogrel on coronary heart disease and angina pectoris and vascular endothelium function

    Institute of Scientific and Technical Information of China (English)

    周芸羽; 吴敏; 叶张章; 陈明华

    2016-01-01

    Objective It is to explore the effect of TanshinoneIIA Sulfonic Sodium combined with Clopidogrel on coronaryheart disease and angina pectoris and vascular endothelium function .Methods 60 patients with coronary heart disease and anginapectoris were randomly divided into experimental group and control group , both the groups were given normal therapy , onthis basis the control group was treated with Clopidogrel , the experimental group was treated with TanshinoneIIA Sulfonic Sodi -um combined with Clopidogrel.The attack times and lasting time of angina pectoris and dosage needed of nitroglycerin beforeand after treatment were observed in both groups , and the levels of NO, ET and TXB2 were determined.Results The attacktimes and lasting time of angina pectoris and dosage needed of nitroglycerin, the levels of ET and TXB2 all decreased aftertreatment while that of NO increased in both groups compared with that before treatment , and the decrease or increase in experimentalgroup was more significant (P <0.05).The total effective rate in experimental group was obviously higher thanthat in control group (P <0.05).Conclusion TanshinoneIIA Sulfonic Sodium combined with Clopidogrel can promote coro -nary artery dilatation, improve vascular endothelium function in the treatment with coronary heart disease and angina pectoris ,the curative effect is good and it is worthy of popularization and application .%目的:探讨丹参酮ⅡA磺酸钠联合氯吡格雷对冠心病心绞痛疗效及血管内皮功能的影响。方法将冠心病心绞痛患者60例随机分为实验组和对照组,均给予常规治疗,对照组在此基础上联合氯吡格雷进行治疗,实验组在对照组治疗基础上加用丹参酮ⅡA磺酸钠进行治疗,观察2组治疗前后心绞痛发作次数、持续时间以及缓解所需硝酸甘油剂量,同时检测2组治疗前后血液内一氢化氮( NO)、内皮素( ET)及血栓素A2( TXB2)水平。结果2组治疗后

  7. Role of endothelium/nitric oxide in vascular response to flavonoids and epicatechin

    Institute of Scientific and Technical Information of China (English)

    HUANG Yu; YAO Xiao-qiang; TSANG Suk Ying; LAU Chi-Wai; CHEN Zhen-Yu

    2000-01-01

    AIM: To examine the role of endothelium in the vascular responses to flavonoids, baicalein, baicalin, cardamonin, alpinetin, and to purified jasmine green tea (-)epicatechin in the isolated rat mesenteric artery rings. METHODS: The isometric contraction was measured by Grass force-displacement transducers. RESULTS: Both baicalein and baicalin enhanced the phenylephrine-induced contractile response in the endothelium-intact rings. This enhancement was abolished by pretreatment with the nitric oxide inhibitor NG-nitro- L-arginine or in the absence of the endothelium. Both flavonoids also inhibited the acetylcholine-induced endothelial nitric oxide-dependent relaxation. In contrast, cardamonin, alpinetin or (-)epicatechin induced both endothelium-dependent and -independent relaxation. NG-nitro-L-arginine meyhyl ester or endothelium denudation attenuated the endotheliurn-dependent relaxation to the same extent. CONCLUSION: Baicalein and baicalin enhanced the phenylephrine-induced contraction most likely through inhibiting production or/and release of endothelial nitric oxide. Whilst, cardamonin-, alpinetin- or (-)epicatechin-induced endothelium-dependent relaxation is primarily mediated through endothelial nitric oxide.

  8. Vascular endothelium-leukocyte interaction; sticking shear force in venules.

    Science.gov (United States)

    Schmid-Schoenbein, G W; Fung, Y C; Zweifach, B W

    1975-01-01

    To determine the shear force acting on a white blood cell sticking to the endothelium of a blood vessel, the flow field about a single white blood cell in a venule was determined by hign-speed motion picture photomicrography. The force acting on the white blood cell was then calculated according to the principles of fluid mechanics. In this paper, the calculation was made using an experimentally determined dimensionless shear force coefficient obtained from a kinematically and dynamically similar model. The large physical model of the hemodynamic system could be easily instrumented, and the shear force acting on the model cell and the flow field around it were measured. The data were then used to calculate a shear force coefficient. On the basis of dynamic similarity, this shear force coefficient was applied to the white blood cell in the venule. The shear force coefficient was strongly influenced by the hematocrit, so in vivo hematocrits were measured from electron micrographs. It was found that in the venules of the rabbit omentum a white blood cell sticking to the endothelial wall was subjected to a shear force in the range of 4 times 10--5 dynes to 234 times 10--5 dynes; the exact value depended on the size and motion of the white blood cell, the size of the blood vessel, the velocity of the blood flow, and the local hematocrit, which varied between 20% and 40% in venules of about 40 mum in diameter. The contact area between the white blood cell and the endothelial cell was estimated, and the shear stress was found to range between 50 dynes/cm-2 and 1060 dynes/cm-2. The normal stress of interaction between the white blood cell and the endothelium had a maximum value that was of the same order of magnitude as the shear stress. The accumulated relative error of the experimental procedure was about 49%. The instantaneous shear force was a random function of time because of random fluctuations of the hematocrit.

  9. Bone marrow X kinase-mediated signal transduction in irradiated vascular endothelium.

    Science.gov (United States)

    Tu, Tianxiang; Thotala, Dinesh; Geng, Ling; Hallahan, Dennis E; Willey, Christopher D

    2008-04-15

    Radiation-induced activation of the phosphatidyl inositol-3 kinase/Akt signal transduction pathway requires Akt binding to phosphatidyl-inositol phosphates (PIP) on the cell membrane. The tyrosine kinase bone marrow X kinase (Bmx) binds to membrane-associated PIPs in a manner similar to Akt. Because Bmx is involved in cell growth and survival pathways, it could contribute to the radiation response within the vascular endothelium. We therefore studied Bmx signaling within the vascular endothelium. Bmx was activated rapidly in response to clinically relevant doses of ionizing radiation. Bmx inhibition enhanced the efficacy of radiotherapy in endothelial cells as well as tumor vascular endothelium in lung cancer tumors in mice. Retroviral shRNA knockdown of Bmx protein enhanced human umbilical vascular endothelial cell (HUVEC) radiosensitization. Furthermore, pretreatment of HUVEC with a pharmacologic inhibitor of Bmx, LFM-A13, produced significant radiosensitization of endothelial cells as measured by clonogenic survival analysis and apoptosis as well as functional assays including cell migration and tubule formation. In vivo, LFM-A13, when combined with radiation, resulted in significant tumor microvascular destruction as well as enhanced tumor growth delay. Bmx therefore represents a molecular target for the development of novel radiosensitizing agents.

  10. Increased TRPC3 expression in vascular endothelium of patients with malignant hypertension

    DEFF Research Database (Denmark)

    Thilo, Florian; Loddenkemper, Christoph; Berg, Erika

    2009-01-01

    An increased expression of transient receptor potential canonical type 3 (TRPC3) cation channels has been proposed as one of the factors contributing to the pathogenesis of hypertension. To test that hypothesis we compared the expression of TRPC3 and TRPC6 as an endogenous control in human vascular...... endothelium of preglomerular arterioles in kidney biopsies from six patients with malignant hypertension and from four patients with diarrhea-associated hemolytic-uremic syndrome. Patients with malignant hypertension showed significantly higher systolic blood pressure and more prominent expression of TRPC3...... in vascular endothelium of preglomerular arterioles compared to patients with hemolytic-uremic syndrome. The expression of TRPC6 was not different between the two groups. The study supports the hypothesis that the increased expression of TRPC3 is associated with malignant hypertension in humans....

  11. The ASSURE ROT Registry: Bioresorbable Vascular Scaffold Following Rotablation for Complex Coronary Lesions

    Science.gov (United States)

    2015-02-05

    Cardiovascular Diseases; Coronary Artery Disease; Myocardial Ischemia; Coronary Disease; Coronary Restenosis; Heart Diseases; Coronary Stenosis; Arteriosclerosis; Arterial Occlusive Diseases; Vascular Diseases

  12. Calpains and Coronary Vascular Disease.

    Science.gov (United States)

    Potz, Brittany A; Sabe, Ashraf A; Abid, M Ruhul; Sellke, Frank W

    2016-01-01

    Despite many advances in percutaneous and surgical interventions in the treatment of coronary artery disease (CAD), up to one-third of patients are still either not candidates or receive suboptimal revascularization. Calpains are a class of calcium-activated non-lysosomal cysteine proteases that serve as a proteolytic unit for cellular homeostasis. Uncontrolled activation of calpain has been found to be involved in the pathogenesis of myocardial reperfusion injury, cardiac hypertrophy, myocardial stunning and cardiac ischemia. Inhibition of calpains has been shown to significantly attenuate myocardial stunning and reduced infarct size after ischemia-reperfusion. Calpain inhibition therefore serves as a potential medical therapy for patients suffering from a number of diseases, including CAD.

  13. Testosterone Replacement Therapy Prevents Alterations of Coronary Vascular Reactivity Caused by Hormone Deficiency Induced by Castration.

    Science.gov (United States)

    Rouver, Wender Nascimento; Delgado, Nathalie Tristão Banhos; Menezes, Jussara Bezerra; Santos, Roger Lyrio; Moyses, Margareth Ribeiro

    2015-01-01

    The present study aimed to determine the effects of chronic treatment with different doses of testosterone on endothelium-dependent coronary vascular reactivity in male rats. Adult male rats were divided into four experimental groups: control (SHAM), castrated (CAST), castrated and immediately treated subcutaneously with a physiological dose (0.5 mg/kg/day, PHYSIO group) or supraphysiological dose (2.5 mg/kg/day, SUPRA group) of testosterone for 15 days. Systolic blood pressure (SBP) was assessed at the end of treatment through tail plethysmography. After euthanasia, the heart was removed and coronary vascular reactivity was assessed using the Langendorff retrograde perfusion technique. A dose-response curve for bradykinin (BK) was constructed, followed by inhibition with 100 μM L-NAME, 2.8 μM indomethacin (INDO), L-NAME + INDO, or L-NAME + INDO + 0.75 μM clotrimazole (CLOT). We observed significant endothelium-dependent, BK-induced coronary vasodilation, which was abolished in the castrated group and restored in the PHYSIO and SUPRA groups. Furthermore, castration modulated the lipid and hormonal profiles and decreased body weight, and testosterone therapy restored all of these parameters. Our results revealed an increase in SBP in the SUPRA group. In addition, our data led us to conclude that physiological concentrations of testosterone may play a beneficial role in the cardiovascular system by maintaining an environment that is favourable for the activity of an endothelium-dependent vasodilator without increasing SBP.

  14. Testosterone Replacement Therapy Prevents Alterations of Coronary Vascular Reactivity Caused by Hormone Deficiency Induced by Castration.

    Directory of Open Access Journals (Sweden)

    Wender Nascimento Rouver

    Full Text Available The present study aimed to determine the effects of chronic treatment with different doses of testosterone on endothelium-dependent coronary vascular reactivity in male rats. Adult male rats were divided into four experimental groups: control (SHAM, castrated (CAST, castrated and immediately treated subcutaneously with a physiological dose (0.5 mg/kg/day, PHYSIO group or supraphysiological dose (2.5 mg/kg/day, SUPRA group of testosterone for 15 days. Systolic blood pressure (SBP was assessed at the end of treatment through tail plethysmography. After euthanasia, the heart was removed and coronary vascular reactivity was assessed using the Langendorff retrograde perfusion technique. A dose-response curve for bradykinin (BK was constructed, followed by inhibition with 100 μM L-NAME, 2.8 μM indomethacin (INDO, L-NAME + INDO, or L-NAME + INDO + 0.75 μM clotrimazole (CLOT. We observed significant endothelium-dependent, BK-induced coronary vasodilation, which was abolished in the castrated group and restored in the PHYSIO and SUPRA groups. Furthermore, castration modulated the lipid and hormonal profiles and decreased body weight, and testosterone therapy restored all of these parameters. Our results revealed an increase in SBP in the SUPRA group. In addition, our data led us to conclude that physiological concentrations of testosterone may play a beneficial role in the cardiovascular system by maintaining an environment that is favourable for the activity of an endothelium-dependent vasodilator without increasing SBP.

  15. Lipoxin A4 inhibits immune cell binding to salivary epithelium and vascular endothelium.

    Science.gov (United States)

    Chinthamani, Sreedevi; Odusanwo, Olutayo; Mondal, Nandini; Nelson, Joel; Neelamegham, Sriram; Baker, Olga J

    2012-04-01

    Lipoxins are formed by leukocytes during cell-cell interactions with epithelial or endothelial cells. Native lipoxin A(4) (LXA(4)) binds to the G protein-coupled lipoxin receptors formyl peptide receptor 2 (FPR2)/ALX and CysLT1. Furthermore, LXA(4) inhibits recruitment of neutrophils, by attenuating chemotaxis, adhesion, and transmigration across vascular endothelial cells. LXA(4) thus appears to serve as an endogenous "stop signal" for immune cell-mediated tissue injury (Serhan CN; Annu Rev Immunol 25: 101-137, 2007). The role of LXA(4) has not been addressed in salivary epithelium, and little is known about its effects on vascular endothelium. Here, we determined that interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) receptor activation in vascular endothelium and salivary epithelium upregulated the expression of adhesion molecules that facilitates the binding of immune cells. We hypothesize that the activation of the ALX/FPR2 and/or CysLT1 receptors by LXA(4) decreases this cytokine-mediated upregulation of cell adhesion molecules that enhance lymphocyte binding to both the vascular endothelium and salivary epithelium. In agreement with this hypothesis, we observed that nanomolar concentrations of LXA(4) blocked IL-1β- and TNF-α-mediated upregulation of E-selectin and intercellular cell adhesion molecule-1 (ICAM-1) on human umbilical vein endothelial cells (HUVECs). Binding of Jurkat cells to stimulated HUVECs was abrogated by LXA(4). Furthermore, LXA(4) preincubation with human submandibular gland cell line (HSG) also blocked TNF-α-mediated upregulation of vascular cell adhesion molecule-1 (VCAM-1) in these cells, and it reduced lymphocyte adhesion. These findings suggest that ALX/FPR2 and/or CysLT1 receptor activation in endothelial and epithelial cells blocks cytokine-induced adhesion molecule expression and consequent binding of lymphocytes, a critical event in the pathogenesis of Sjögren's syndrome (SS).

  16. Endothelium negatively modulates the vascular relaxation induced by nitric oxide donor, due to uncoupling NO synthase.

    Science.gov (United States)

    Bonaventura, Daniella; Lunardi, Claure N; Rodrigues, Gerson J; Neto, Mário A; Vercesi, Juliana A; de Lima, Renata G; da Silva, Roberto S; Bendhack, Lusiane M

    2009-10-01

    Nitrosyl ruthenium complexes have been characterized as nitric oxide (NO) donors that induce relaxation in the denuded rat aorta. There are some differences in their vascular relaxation mechanisms compared with sodium nitroprusside. This study investigates whether the endothelium could interfere with the [Ru(terpy)(bdq)NO](3+)-TERPY-induced vascular relaxation, by analyzing the maximal relaxation (Emax) and potency (pD(2)) of TERPY. Vascular reactivity experiments showed that the endothelium negatively modulates (pD(2): 6.17+/-0.07) the TERPY relaxation in intact rat aortic rings compared with the denuded rat aorta (pD(2): 6.65+/-0.07). This effect is abolished by a non-selective NO-synthase (NOS) inhibitor L-NAME (pD(2): 6.46+/-0.10), by the superoxide anion (O(2)(-)) scavenger TIRON (pD(2): 6.49+/-0.08), and by an NOS cofactor BH(4) (pD(2): 6.80+/-0.10). The selective dye for O(2)(-) (DHE) shows that TERPY enhances O(2)(-) concentration in isolated endothelial cells (intensity of fluorescence (IF):11258.00+/-317.75) compared with the basal concentration (IF: 7760.67+/-381.50), and this enhancement is blocked by L-NAME (IF: 8892.33+/-1074.41). Similar results were observed in vascular smooth muscle cells (concentration of superoxide after TERPY: 2.63+/-0.17% and after TERPY+L-NAME: -4.63+/-0.14%). Considering that TERPY could induce uncoupling NOS, thus producing O(2)(-), we have also investigated the involvement of prostanoids in the negative modulation of the endothelium. The non-selective cyclooxygenase (COX) inhibitor indomethacin and the selective tromboxane (TXA(2)) receptor antagonist SQ29548 reduce the effect of the endothelium on TERPY relaxation (pD(2) INDO: 6.80+/-0.17 and SQ29548: 6.85+/-0.15, respectively). However, a selective prostaglandin F(2alpha) receptor antagonist (AH6809) does not change the endothelium effect. Moreover, TERPY enhances the concentration of TXA(2) stable metabolite (TXB(2)), but this effect is blocked by L-NAME and TIRON. The

  17. Pomegranate Extract Enhances Endothelium-Dependent Coronary Relaxation in Isolated Perfused Hearts from Spontaneously Hypertensive Ovariectomized Rats

    Science.gov (United States)

    Delgado, Nathalie T. B.; Rouver, Wender do N.; Freitas-Lima, Leandro C.; de Paula, Tiago D.-C.; Duarte, Andressa; Silva, Josiane F.; Lemos, Virgínia S.; Santos, Alexandre M. C.; Mauad, Helder; Santos, Roger L.; Moysés, Margareth R.

    2017-01-01

    Decline in estrogen levels promotes endothelial dysfunction and, consequently, the most prevalent cardiovascular diseases in menopausal women. The use of natural therapies such as pomegranate can change these results. Pomegranate [Punica granatum L. (Punicaceae)] is widely used as a phytotherapeutic agent worldwide, including in Brazil. We hypothesized that treatment with pomegranate hydroalcoholic extract (PHE) would improve coronary vascular reactivity and cardiovascular parameters. At the beginning of treatment, spontaneously hypertensive female rats were divided into Sham and ovariectomized (OVX) groups, which received pomegranate extract (PHE) (250 mg/kg) or filtered water (V) for 30 days by gavage. Systolic blood pressure was measured by tail plethysmography. After euthanasia, the heart was removed and coronary vascular reactivity was assessed by Langendorff retrograde perfusion technique. A dose-response curve for bradykinin was performed, followed by L-NAME inhibition. The protein expression of p-eNOS Ser1177, p-eNOS Thr495, total eNOS, p-AKT Ser473, total AKT, SOD-2, and catalase was quantified by Western blotting. The detection of coronary superoxide was performed using the protocol of dihydroethidium (DHE) staining Plasma nitrite measurement was analyzed by Griess method. Systolic blood pressure increased in both Sham-V and OVX-V groups, whereas it was reduced after treatment in Sham-PHE and OVX-PHE groups. The baseline coronary perfusion pressure was reduced in the Sham-PHE group. The relaxation was significantly higher in the treated group, and L-NAME attenuated the relaxation in all groups. The treatment has not changed p-eNOS (Ser1177), total eNOS, p-AKT (Ser473) and total AKT in any groups. However, in Sham and OVX group the treatment reduced the p-eNOS (Thr495) and SOD-2. The ovariectomy promoted an increasing in the superoxide anion levels and the treatment was able to prevent this elevation and reducing oxidative stress. Moreover, the treatment

  18. Dysfunction of pulmonary vascular endothelium in chronic obstructive pulmonary disease: basic considerations for future drug development.

    Science.gov (United States)

    Yang, Qin; Underwood, Malcolm J; Hsin, Michael K Y; Liu, Xiao-Cheng; He, Guo-Wei

    2008-09-01

    Chronic obstructive pulmonary disease (COPD) is one of the leading health problems worldwide and continues to be a major cause of morbidity and mortality in developed countries. The clinical features of COPD are chronic obstructive bronchiolitis and emphysema. Pulmonary vascular endothelial dysfunction is a characteristic pathological finding of COPD at different stages of the disease. Functional changes of pulmonary endothelial cells in COPD include antiplatelet abnormalities, anticoagulant disturbances, endothelial activation, atherogenesis, and compromised regulation of vascular tone which may adversely affect the ventilation-perfusion match in COPD. As the most important risk factor of COPD, cigarette smoking may initiate pulmonary vascular impairment through direct injury of endothelial cells or release of inflammatory mediators. Morphological changes such as denudation of endothelium and endothelial cell apoptosis have been observed in the pulmonary vasculature in COPD patients as well as functional alterations. Changes in the expression of tissue factor pathway inhibitor (TFPI), thrombomodulin, selectins, and adhesion molecules in pulmonary endothelial cells as well as complex regulation and interaction of vasoactive substances and growth factors released from endothelium may underlie the mechanisms of pulmonary endothelial dysfunction in COPD. The mechanism of endothelial repair/regeneration in COPD, although not fully understood, may involve upregulation of vascular endothelial growth factors in the early stages along with an increased number of bone marrow-derived progenitor cells. These factors should be taken into account when developing new strategies for the pharmacological therapy of patients with COPD.

  19. The development of coronary vascular system

    Directory of Open Access Journals (Sweden)

    Олена Олександрівна Яковець

    2015-05-01

    Full Text Available Aim. Set the terms of occurrence and morphological markers of coronary vessels in the embryonic period of human ontogenesis.Material and methods. To realize the aim of our work the embryos of human heart from 5 th to 8 th week of prenatal development period were investigated in the amount of 60. The obtained specimens were evaluated by immunohistochemical study. For this purpose, the original monoclonal antibodies have been used, such as transcription factor Prox-1, cell proliferation marker Ki-67, an endothelial marker CD-34 and smooth-muscle actin (α-SMA. To identify the reaction the solution of chromogen 3-diaminobenzidine tetrachloride was applied, which is manifested in a rich brown color in the sensitive cells of the cardiac wall.Conclusions: The morphological specialization of vascular links of coronary system in the embryonic period has a natural sequence - acquisition of venous properties at first and parallel differentiation of arterial structures. After arteriovenous determination the next phase begins – lymphatic specialization of venous endothelial cells with the formation of lymphatic links of coronary vascular system

  20. Mechanisms underlying the endothelium-dependent vasodilatory effect of an aqueous extract of Elaeis Guineensis Jacq. (Arecaceae) in porcine coronary artery rings.

    Science.gov (United States)

    Ndiaye, Mamadou; Anselm, Eric; Séne, Madièye; Diatta, Williams; Dièye, Amadou Moctar; Faye, Babacar; Schini-Kerth, Valérie B

    2009-12-30

    This study was undertaken to investigate the vasodilatory effect of an aqueous extract of Elaeis guineensis Jacq (EGE) in the porcine coronary artery and elicit its possible mechanism(s) of action. Vascular effects of crude extract of dried and powdered leaves of Elaeis guineensis were evaluated on isolated coronary arteries on organ chambers. Determination of eNOS expression and the phosphorylation level of eNOS were determined by Western blot analysis. In the presence of indomethacin, EGE caused pronounced relaxations in endothelium-intact but not in endothelium-denuded coronary artery rings. Relaxations to EGE were significantly reduced by N(ω)-nitro-L-arginine (L-NA, a competitive inhibitor of NO synthase), slightly but not significantly by charybdotoxin plus apamin (two potent inhibitors of EDHF-mediated responses) and abolished by the combination of L-NA and charybdotoxin plus apamin. Relaxations to EGE were abolished by the membrane permeant, SOD mimetic, MnTMPyP, and significantly reduced by wortmannin, an inhibitor of PI3-kinase. Exposure of endothelial cells to EGE increased the phosphorylation level of eNOS at Ser1177 in a time and concentration-dependent manner. MnTMPyP abolished the EGE-induced phosphorylation of eNOS.In conclusion, the obtained data indicate that EGE induces pronounced endothelium-dependent relaxations of the porcine coronary artery, which involve predominantly NO. The stimulatory effect of EGE on eNOS involves the redox-sensitive phosphorylation of eNOS at Ser1177 most likely via the PI3-kinase pathway.

  1. Iron ion irradiation increases promotes adhesion of monocytic cells to arterial vascular endothelium

    Science.gov (United States)

    Kucik, Dennis; Khaled, Saman; Gupta, Kiran; Wu, Xing; Yu, Tao; Chang, Polly; Kabarowski, Janusz

    Radiation causes inflammation, and chronic, low-level vascular inflammation is a risk factor for atherosclerosis. Consistent with this, exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. Part of the inflammatory response to radiation is a change in the adhesiveness of the endothelial cells that line the blood vessels, triggering inappropriate accumulation of leukocytes, leading to later, damaging effects of inflammation. Although some studies have been done on the effects of gamma irradiation on vascular endothelium, the response of endothelium to heavy ion radiation likely to be encountered in prolonged space flight has not been determined. We investigated how irradiation of aortic endothelial cells with iron ions affects adhesiveness of cultured aortic endothelial cells for monocytic cells and the consequences of this for development of atherosclerosis. Aortic endothelial cells were irradiated with 600 MeV iron ions at Brookhaven National Laboratory and adhesion-related changes were measured. Cells remained viable for at least 72 hours, and were even able to repair acute damage to cell junctions. We found that iron ion irradiation altered expression levels of specific endothelial cell adhesion molecules. Further, these changes had functional consequences. Using a flow chamber adhesion assay to measure adhesion of monocytic cells to endothelial cells under physiological shear stress, we found that adhesivity of vascular endothelium was enhanced in as little as 24 hours after irradiation. Further, the radiation dose dependence was not monotonic, suggesting that it was not simply the result of endothelial cell damage. We also irradiated aortic arches and carotid arteries of Apolipoprotein-E-deficient mice. Histologic analysis of these mice will be conducted to determine whether effects of radiation on endothelial adhesiveness result in consequences for development of atherosclerosis. (Supported by NSBRI

  2. Gpr116 Receptor Regulates Distinctive Functions in Pneumocytes and Vascular Endothelium.

    Science.gov (United States)

    Niaudet, Colin; Hofmann, Jennifer J; Mäe, Maarja A; Jung, Bongnam; Gaengel, Konstantin; Vanlandewijck, Michael; Ekvärn, Elisabet; Salvado, M Dolores; Mehlem, Annika; Al Sayegh, Sahar; He, Liqun; Lebouvier, Thibaud; Castro-Freire, Marco; Katayama, Kan; Hultenby, Kjell; Moessinger, Christine; Tannenberg, Philip; Cunha, Sara; Pietras, Kristian; Laviña, Bàrbara; Hong, JongWook; Berg, Tove; Betsholtz, Christer

    2015-01-01

    Despite its known expression in both the vascular endothelium and the lung epithelium, until recently the physiological role of the adhesion receptor Gpr116/ADGRF5 has remained elusive. We generated a new mouse model of constitutive Gpr116 inactivation, with a large genetic deletion encompassing exon 4 to exon 21 of the Gpr116 gene. This model allowed us to confirm recent results defining Gpr116 as necessary regulator of surfactant homeostasis. The loss of Gpr116 provokes an early accumulation of surfactant in the lungs, followed by a massive infiltration of macrophages, and eventually progresses into an emphysema-like pathology. Further analysis of this knockout model revealed cerebral vascular leakage, beginning at around 1.5 months of age. Additionally, endothelial-specific deletion of Gpr116 resulted in a significant increase of the brain vascular leakage. Mice devoid of Gpr116 developed an anatomically normal and largely functional vascular network, surprisingly exhibited an attenuated pathological retinal vascular response in a model of oxygen-induced retinopathy. These data suggest that Gpr116 modulates endothelial properties, a previously unappreciated function despite the pan-vascular expression of this receptor. Our results support the key pulmonary function of Gpr116 and describe a new role in the central nervous system vasculature.

  3. Gpr116 Receptor Regulates Distinctive Functions in Pneumocytes and Vascular Endothelium.

    Directory of Open Access Journals (Sweden)

    Colin Niaudet

    Full Text Available Despite its known expression in both the vascular endothelium and the lung epithelium, until recently the physiological role of the adhesion receptor Gpr116/ADGRF5 has remained elusive. We generated a new mouse model of constitutive Gpr116 inactivation, with a large genetic deletion encompassing exon 4 to exon 21 of the Gpr116 gene. This model allowed us to confirm recent results defining Gpr116 as necessary regulator of surfactant homeostasis. The loss of Gpr116 provokes an early accumulation of surfactant in the lungs, followed by a massive infiltration of macrophages, and eventually progresses into an emphysema-like pathology. Further analysis of this knockout model revealed cerebral vascular leakage, beginning at around 1.5 months of age. Additionally, endothelial-specific deletion of Gpr116 resulted in a significant increase of the brain vascular leakage. Mice devoid of Gpr116 developed an anatomically normal and largely functional vascular network, surprisingly exhibited an attenuated pathological retinal vascular response in a model of oxygen-induced retinopathy. These data suggest that Gpr116 modulates endothelial properties, a previously unappreciated function despite the pan-vascular expression of this receptor. Our results support the key pulmonary function of Gpr116 and describe a new role in the central nervous system vasculature.

  4. TNFα regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation

    Science.gov (United States)

    Sata, Masataka; Walsh, Kenneth

    2010-01-01

    It is generally believed that the vascular endothelium serves as an inflammatory barrier by providing a nonadherent surface to leukocytes. Here, we report that Fas ligand (FasL) is expressed on vascular endothelial cells (ECs) and that it may function to actively inhibit leukocyte extravasation. TNFα downregulates FasL expression with an accompanying decrease in EC cytotoxicity toward co-cultured Fas-bearing cells. Local administration of TNFα to arteries downregulates endothelial FasL expression and induces mononuclear cell infiltration. Constitutive FasL expression markedly attenuates TNFα-induced cell infiltration and adherent mononuclear cells undergo apoptosis under these conditions. These findings suggest that endothelial FasL expression can negatively regulate leukocyte extravasation. PMID:9546786

  5. Vascular endothelium and platelet preparations for the prediction of xenobiotic effects on the vascular system.

    Science.gov (United States)

    Togna, G; Togna, A R; Caprino, L

    1985-01-01

    Platelets and vascular cells play a fundamental role in the pathogenesis of cardiovascular diseases including thrombus formation and atherosclerotic phenomena. Preparations of platelets and aortic rings have been developed to study the potential of xenobiotics to produce evidence of vascular toxicity in vitro. The xenobiotics cadmium and mercury which exert vascular toxicity in vivo, modify platelet and endothelial-cell reactivity in these in vitro systems.

  6. Aging and estrogen status: a possible endothelium-dependent vascular coupling mechanism in bone remodeling.

    Directory of Open Access Journals (Sweden)

    Rhonda D Prisby

    Full Text Available Bone loss with aging and menopause may be linked to vascular endothelial dysfunction. The purpose of the study was to determine whether putative modifications in endothelium-dependent vasodilation of the principal nutrient artery (PNA of the femur are associated with changes in trabecular bone volume (BV/TV with altered estrogen status in young (6 mon and old (24 mon female Fischer-344 rats. Animals were divided into 6 groups: 1 young intact, 2 old intact, 3 young ovariectomized (OVX, 4 old OVX, 5 young OVX plus estrogen replacement (OVX+E2, and 6 old OVX+E2. PNA endothelium-dependent vasodilation was assessed in vitro using acetylcholine. Trabecular bone volume of the distal femoral metaphysis was determined by microCT. In young rats, vasodilation was diminished by OVX and restored with estrogen replacement (intact, 82±7; OVX, 61±9; OVX+E2, 90±4%, which corresponded with similar modifications in BV/TV (intact, 28.7±1.6; OVX, 16.3±0.9; OVX+E2, 25.7±1.4%. In old animals, vasodilation was unaffected by OVX but enhanced with estrogen replacement (intact, 55±8; OVX, 59±7; OVX+E2, 92±4%. Likewise, modifications in BV/TV followed the same pattern (intact, 33.1±1.6; OVX, 34.4±3.7; OVX+E2, 42.4±2.1%. Furthermore, in old animals with low endogenous estrogen (i.e., intact and old OVX, vasodilation was correlated with BV/TV (R(2 = 0.630; P<0.001. These data demonstrate parallel effects of estrogen on vascular endothelial function and BV/TV, and provide for a possible coupling mechanism linking endothelium-dependent vasodilation to bone remodeling.

  7. Dehydroepiandrosterone (DHEA) inhibition of monocyte binding by vascular endothelium is associated with sialylation of neural cell adhesion molecule.

    Science.gov (United States)

    Curatola, Anna-Maria; Huang, Kui; Naftolin, Frederick

    2012-01-01

    Adhesion of monocytes to vascular endothelium is necessary for atheroma formation. This adhesion requires binding of endothelial neural cell adhesion molecule (NCAM) to monocyte NCAM. NCAM:NCAM binding is blocked by sialylation of NCAM (polysialylated NCAM; PSA-NCAM). Since estradiol (E2) and dihydrotestosterone (DHT) induced PSA-NCAM and decreased monocyte adhesion, in consideration of possible clinical applications we tested whether their prohormone dehydroepiandrosterone (DHEA) has similar effects. (1) DHEA was administered to cultured human coronary artery endothelial cells (HCAECs) from men and women. Monocyte binding was assessed using fluorescence-labeled monocytes. (2) HCEACs were incubated with E2, DHT, DHEA alone, or with trilostane, fulvestrant or flutamide. Expression of PSA-NCAM was assessed by immunohistochemistry and Western blotting. Dehydroepiandrosterone inhibited monocyte adhesion to HCAECs by ≥50% (P DHEA's inhibition of monocyte binding appeared to be gender dependent. The DHEA-induced expression of PSA-NCAM was completely blocked by trilostane. In these preliminary in vitro studies, DHEA increased PSA-NCAM expression and inhibited monocyte binding in an estrogen- and androgen receptor-dependent manner. Dehydroepiandrosteroneappears to act via its end metabolites, E2 and DHT. Dehydroepiandrosterone could furnish clinical prevention against atherogenesis and arteriosclerosis.

  8. [Clinicofunctional evaluation of ischemic episodes and vascular endothelium in patients with type 2 diabetes].

    Science.gov (United States)

    Tatarchenko, I P; Pozdniakova, N V; Dudukina, E A; Morozova, O I

    2006-01-01

    The aim of the investigation was to study the significance of the functional condition of endothelium for the evaluation of ischemic episodes in patients with type 2 diabetes mellitus (DM2). Ninety-three patients (52 men; 41 women; mean age 58.3+/-4.8 years) were examined. Group 1 consisted of 47 patients with coronary heart disease (CHD) and CD2; group 2 consisted of 46 CAD patients without carbohydrate exchange disorder. Both groups were comparable by gender, age, and the main risk factors. The patients were examined using Holter monitoring, physical load test, EchoCG, reactive hyperemia test (ultrasound evaluation of the endothelium-dependent brachial artery dilation). The number of painless ischemic episodes (PIE), the total duration of ischemia, the maximum degree of ST depression prevailed in group 1 patients. Correlation analysis demonstrated a significant negative correlation between endothelial dysfunction, one the one part, and the number and duration of PIE and the time between the ischemic ST depression and pain syndrome, on the other, in group 1 patients.

  9. ROCK2 primes the endothelium for vascular hyperpermeability responses by raising baseline junctional tension.

    Science.gov (United States)

    Beckers, Cora M L; Knezevic, Nebojsa; Valent, Erik T; Tauseef, Mohammad; Krishnan, Ramaswamy; Rajendran, Kavitha; Hardin, C Corey; Aman, Jurjan; van Bezu, Jan; Sweetnam, Paul; van Hinsbergh, Victor W M; Mehta, Dolly; van Nieuw Amerongen, Geerten P

    2015-07-01

    Rho kinase mediates the effects of inflammatory permeability factors by increasing actomyosin-generated traction forces on endothelial adherens junctions, resulting in disassembly of intercellular junctions and increased vascular leakage. In vitro, this is accompanied by the Rho kinase-driven formation of prominent radial F-actin fibers, but the in vivo relevance of those F-actin fibers has been debated, suggesting other Rho kinase-mediated events to occur in vascular leak. Here, we delineated the contributions of the highly homologous isoforms of Rho kinase (ROCK1 and ROCK2) to vascular hyperpermeability responses. We show that ROCK2, rather than ROCK1 is the critical Rho kinase for regulation of thrombin receptor-mediated vascular permeability. Novel traction force mapping in endothelial monolayers, however, shows that ROCK2 is not required for the thrombin-induced force enhancements. Rather, ROCK2 is pivotal to baseline junctional tension as a novel mechanism by which Rho kinase primes the endothelium for hyperpermeability responses, independent from subsequent ROCK1-mediated contractile stress-fiber formation during the late phase of the permeability response.

  10. Endothelium-derived fibronectin regulates neonatal vascular morphogenesis in an autocrine fashion.

    Science.gov (United States)

    Turner, Christopher J; Badu-Nkansah, Kwabena; Hynes, Richard O

    2017-06-30

    Fibronectin containing alternatively spliced EIIIA and EIIIB domains is largely absent from mature quiescent vessels in adults, but is highly expressed around blood vessels during developmental and pathological angiogenesis. The precise functions of fibronectin and its splice variants during developmental angiogenesis however remain unclear due to the presence of cardiac, somitic, mesodermal and neural defects in existing global fibronectin KO mouse models. Using a rare family of surviving EIIIA EIIIB double KO mice, as well as inducible endothelial-specific fibronectin-deficient mutant mice, we show that vascular development in the neonatal retina is regulated in an autocrine manner by endothelium-derived fibronectin, and requires both EIIIA and EIIIB domains and the RGD-binding α5 and αv integrins for its function. Exogenous sources of fibronectin do not fully substitute for the autocrine function of endothelial fibronectin, demonstrating that fibronectins from different sources contribute differentially to specific aspects of angiogenesis.

  11. Targeting an adenoviral gene vector to cytokine-activated vascular endothelium via E-selectin.

    Science.gov (United States)

    Harari, O A; Wickham, T J; Stocker, C J; Kovesdi, I; Segal, D M; Huehns, T Y; Sarraf, C; Haskard, D O

    1999-05-01

    We have aimed at selective gene delivery to vascular endothelial cells (EC) at sites of inflammation, by targeting E-selectin, a surface adhesion molecule that is only expressed by activated EC. An anti-E-selectin mAb, 1.2B6, was complexed with the adenovirus vector AdZ.FLAG (expressing the FLAG peptide) by conjugating it to an anti-FLAG mAb. Gene transduction of cultured EC was increased 20-fold compared with AdZ.FLAG complexed with a control bsAb providing EC were activated by cytokines. The anti-E-selectin-complexed vector transduced 29 +/- 9% of intimal EC in segments of pig aorta cultured with cytokines ex vivo, compared with less than 0.1% transduced with the control construct (P < 0.05). This strategy could be developed to target endothelium in inflammation with genes capable of modifying the inflammatory response.

  12. Hypotensive effect and endothelium-dependent vascular action of leaves of Alpinia purpurata (Vieill K. Schum

    Directory of Open Access Journals (Sweden)

    Alessandra Tesch da Silva

    2014-04-01

    Full Text Available The aims of this study were to evaluate the chemical profile, vascular reactivity, and acute hypotensive effect (AHE of the ethanolic extract of leaves of Alpinia purpurata (Vieill K. Schum (EEAP. Its chemical profile was evaluated using HPLC-UV, ICP-OES, and colorimetric quantification of total flavonoids and polyphenols. The vascular reactivity of the extract was determined using the mesenteric bed isolated from WKY. AHE dose-response curves were obtained for both EEAP and inorganic material isolated from AP (IAP in WKY and SHR animals. Cytotoxic and mutagenic safety levels were determined by the micronucleus test. Rutin-like flavonoids were quantified in the EEAP (1.8 ± 0.03%, and the total flavonoid and polyphenol ratios were 4.1 ± 1.8% and 5.1 ± 0.3%, respectively. We observed that the vasodilation action of EEAP was partially mediated by nitric oxide (·NO. The IAP showed the presence of calcium (137.76 ± 4.08 μg mg-1. The EEAP and IAP showed an AHE in WKY and SHR animals. EEAP did not have cytotoxic effects or cause chromosomic alterations. The AHE shown by EEAP could result from its endothelium-dependent vascular action. Rutin-like flavonoids, among other polyphenols, could contribute to these biological activities, and the calcium present in EEAP could act in a synergistic way.

  13. Hormonal therapy with estradiol and drospirenone improves endothelium-dependent vasodilation in the coronary bed of ovariectomized spontaneously hypertensive rats.

    Science.gov (United States)

    Borgo, M V; Claudio, E R G; Silva, F B; Romero, W G; Gouvea, S A; Moysés, M R; Santos, R L; Almeida, S A; Podratz, P L; Graceli, J B; Abreu, G R

    2016-01-01

    Drospirenone (DRSP) is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2) and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX) spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87) at 12 weeks of age were randomly divided into sham operated (Sham), OVX, OVX treated with E2 (E2), and OVX treated with E2 and DRSP (E2+DRSP) groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α) was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women.

  14. Hormonal therapy with estradiol and drospirenone improves endothelium-dependent vasodilation in the coronary bed of ovariectomized spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Borgo, M.V.; Claudio, E.R.G.; Silva, F.B.; Romero, W.G.; Gouvea, S.A.; Moysés, M.R.; Santos, R.L.; Almeida, S.A. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal de Espírito Santo, Vitória, ES (Brazil); Podratz, P.L.; Graceli, J.B. [Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Abreu, G.R. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal de Espírito Santo, Vitória, ES (Brazil)

    2015-11-17

    Drospirenone (DRSP) is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2) and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX) spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87) at 12 weeks of age were randomly divided into sham operated (Sham), OVX, OVX treated with E2 (E2), and OVX treated with E2 and DRSP (E2+DRSP) groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α) was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women.

  15. 焦虑状态的干预对急性冠脉综合征患者血管内皮功能及血小板活化的影响%The imapct of anti-anxiety therapy on vascular endothelium function and platelet activation in patients with acute coronary syndrome

    Institute of Scientific and Technical Information of China (English)

    袁敏; 杨国灿; 郭航远; 彭放; 裘宇芳; 房溶娟; 周妍; 孙勇; 周国忠; 王兴木

    2011-01-01

    目的 探讨焦虑情绪障碍和抗焦虑治疗对急性冠脉综合征(ACS)患者血管内皮功能及血小板活化状态的影响及其临床意义.方法 前瞻、对照方法观察2009年1月至2010年12月入住绍兴人民医院心内科的ACS患者139例,排除严重心衰、肝肾功能不全、炎性感染、苯二氮卓类药物过敏、2周内服用过任何抗精神类药物、无法完成问卷调查者.经汉密尔顿焦虑量表(HAMA)评定,入选焦虑组患者68例,非焦虑组患者71例.检测两组患者血清一氧化氮(NO)、内皮素(ET)、活化血小板CD62p、CD63水平和肱动脉血流介导的血管舒张功能(FMD);并将68例焦虑患者随机分为焦虑A组和焦虑B组,在基础治疗同时分别给予劳拉西泮片0.5 mg,2次/d和安慰剂(维生素B6片)10 mg,2次/d治疗,2周后再次检测上述指标并进行HAMA评定.采用独立样本t检验和x2检验进行组间计量资料及计数资料的比较.结果 焦虑组与非焦虑组ACS患者相比,NO水平和FMD明显降低(t=2.090和2.558,P=0.038和0.012),ET、CD62p、CD63的水平明显升高(t=2.082,2.042和2.145,P=0.039,0.043和0.034).抗焦虑治疗前焦虑A组和焦虑B组上述参数以及HAMA评分比较差异无统计学意义;经劳拉西泮2周治疗后,焦虑A组与焦虑B组相比较,NO水平和FMD明显升高(t=2.821和2.246,P=0.006和0.028),而ET,CD62p,CD63水平和HAMA评分则显著降低(t=2.107,3.242,2.079,7.779,P=0.039,0.002,0.041,0.001).结论 焦虑情绪障碍可明显加重ACS患者血管内皮功能紊乱,激活血小板,而积极的抗焦虑干预,则可有效地改善内皮功能和血小板的活化,从而改善ACS患者的临床预后.%Objective To investigate the effects of anxiety and anti - anxiety therapy on vascular endothelium function and platelet activation in patients with acute coronary syndrome (ACS).Methods One hundred and thirty -nine ACS patients were enrolled in this prospective and controlled clinical study from January

  16. GM-CSF Differentially Regulates Eosinophil and Neutrophil Adhesive Interactions with Vascular Endothelium in Vivo

    Directory of Open Access Journals (Sweden)

    Nooshin Sheikh Bahaie

    2010-12-01

    Full Text Available Allergic airway inflammation is characterized by elaboration of cytokines and chemokines leading to recruitment of inflammatory leukocytes, predominantly eosinophils, to the airways. Granulocyte macrophage colony stimulating factor (GM-CSF is generated in the lungs of human subjects with asthma in response to allergen challenge and is necessary for the development of allergen-induced bronchial eosinophilia in mice. The effect of GM-CSF on human eosinophil and neutrophil interactions with the vascular endothelium under conditions of blood flow was investigated in post-capillary venules of the rabbit mesentery by intravital microscopy.While GM-CSF significantly reduced the rolling fraction of neutrophils in vivo and induced consistent shedding of neutrophil L-selectin in vitro, its effect on eosinophil rolling was variable. Eosinophils from 57% of the donors demonstrated inhibition of rolling, while eosinophils from the remaining 43% of donors demonstrated no inhibition or increased rolling. The variable effect of GM-CSF on inhibition of eosinophil rolling was associated with variable shedding of L-selectin in vitro. In contrast to the differential effect of GM-CSF on neutrophils versus eosinophils, stimulation with phorbol myristate acetate demonstrated a similar degree of inhibition of rolling and L-selectin shedding by neutrophils and eosinophils suggesting that there was no defect in L-selectin shedding in the eosinophil donors who did not respond to GM-CSF. Overall, these studies demonstrate that GM-CSF consistently inhibits interaction of neutrophils with endothelium in vivo, whereas its effect on eosinophil-endothelial interactions is variable. GM-CSF may thus be one factor accounting for the varying percentage of eosinophils and neutrophils recruited to sites of allergic inflammation in different individuals.

  17. Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress.

    Science.gov (United States)

    Yao, Yu; Rabodzey, Aleksandr; Dewey, C Forbes

    2007-08-01

    Flow-induced mechanotransduction in vascular endothelial cells has been studied over the years with a major focus on putative connections between disturbed flow and atherosclerosis. Recent studies have brought in a new perspective that the glycocalyx, a structure decorating the luminal surface of vascular endothelium, may play an important role in the mechanotransduction. This study reports that modifying the amount of the glycocalyx affects both short-term and long-term shear responses significantly. It is well established that after 24 h of laminar flow, endothelial cells align in the direction of flow and their proliferation is suppressed. We report here that by removing the glycocalyx by using the specific enzyme heparinase III, endothelial cells no longer align under flow after 24 h and they proliferate as if there were no flow present. In addition, confluent endothelial cells respond rapidly to flow by decreasing their migration speed by 40% and increasing the amount of vascular endothelial cadherin in the cell-cell junctions. These responses are not observed in the cells treated with heparinase III. Heparan sulfate proteoglycans (a major component of the glycocalyx) redistribute after 24 h of flow application from a uniform surface profile to a distinct peripheral pattern with most molecules detected above cell-cell junctions. We conclude that the presence of the glycocalyx is necessary for the endothelial cells to respond to fluid shear, and the glycocalyx itself is modulated by the flow. The redistribution of the glycocalyx also appears to serve as a cell-adaptive mechanism by reducing the shear gradients that the cell surface experiences.

  18. Shear stress regulates forward and reverse planar cell polarity of vascular endothelium in vivo and in vitro.

    Science.gov (United States)

    McCue, Shannon; Dajnowiec, Dorota; Xu, Feng; Zhang, Ming; Jackson, Moira R; Langille, B Lowell

    2006-04-14

    Cultured vascular endothelium displays profound morphological adaptations to shear stress that include planar cell polarity (PCP) that is directed downstream. Endothelial cells in blood vessels are also polarized; however, the direction of polarity is vessel specific, and shear-independent mechanisms have been inferred. The regulation of endothelial PCP is therefore controversial. We report that the direction of PCP in blood vessels is age and vessel specific; nonetheless, it is caused by shear-related regulation of glycogen synthase kinase-3beta (GSK-3beta), a profound regulator of endothelial microtubule stability. When GSK-3beta is inhibited, PCP reverses direction. Endothelium is the only cell type studied to date that can reverse direction of polarity. Tight regulation of GSK-3beta, microtubule dynamics, and cell polarity was also required for the striking morphological responses of endothelium to shear stress (cell elongation and orientation with shear). Finally, the cytoskeletal polarity displayed in blood vessels is associated with polarized (shear-directed) cell mitoses that have important effects on endothelial repair. Vascular endothelium therefore displays a novel mode of mechanosensitive PCP that represents the first example of a single cell type that can reverse direction of polarity.

  19. RO-heparin Inhibits L-Selectin-mediated Neutrophils Adhesion to Vascular Endothelium Under Flow Conditions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Selectins are carbohydrate-binding cell adhesion molecules that play a major role in the initiation of inflammatory responses. Accumulaed evidence has suggested that heparin's anti-inflammatory effects are mainly mediated by blocking L- or P-selectin-initiated cell adhesion. Recently, we have reported that periodate-oxidized, borohydridereduced heparin (RO-heparin) can inhibit P-selectin-mediated acute inflammation. Here we further examined the effect of RO-heparin on the adhesion of L-selectin-mediated leukocytes to vascular endothelium under flow conditions in vivo and in vitro. The results show that RO-heparin with a low anticoagulant activity can effectively reduce leucocyte rolling on thioglycollate-induced rat mesenteric venules and L-selectin-metadiated neutrophil rolling on TNF-α-induced human umbilical vein endothelial cells(HUVECs) under flow conditions. Our findings suggest that the effect of RO-heparin on inflammatory responses is mainly a result of its inhibiting the interaction between P- or L-selectin and its ligands. The findings also suggest that RO-heparin may be useful in preventing inflammation diseases.

  20. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids.

    Directory of Open Access Journals (Sweden)

    Cyrill Géraud

    Full Text Available Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ, i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

  1. Construction of human liver cancer vascular endothelium cDNA expression library and screening of the endothelium-associated antigen genes

    Institute of Scientific and Technical Information of China (English)

    Xing Zhong; Yu-Liang Ran; Jin-Ning Lou; Dong Hu; Long Yu; Yu-Shan Zhang; Zhuan Zhou; Zhi-Hua Yang

    2004-01-01

    AIM: To gain tumor endothelium associated antigen genes from human liver cancer vascular endothelial cells (HLCVECs)cDNA expression library, so as to find some new possible targets for the diagnosis and therapy of liver tumor.METHODS: HLCVECs were isolated and purified from a fresh hepatocellular carcinoma tissue sample, and were cultured and proliferated in vitro. A cDNA expression library was constructed with the mRNA extracted from HLCVECs.Anti-sera were prepared from immunized BALB/c mice through subcutaneous injection with high dose of fixed HLCVECs, and were then tested for their specificity against HLCVECs and angiogenic effectsin vitro, such as inhibiting proliferation and inducing apoptosis of tumor endothelial cells, using immunocytochemistry, immunofiuorescence,cell cycle analysis and MTT assays, etc. The identified xenogeneic sera from immunized mice were employed to screen the library of HLCVECs by modified serological analyses of recombinant cDNA expression libraries (SEREX).The positive clones were sequenced and analyzed by bioinformatics.RESULTS: The primary cDNA library consisted of 2x106recombinants. Thirty-six positive clones were obtained from6×10s independent clones by immunoscreening. Bio-informatics analysis of cDNA sequences indicated that 36 positive clones represented 18 different genes. Among them, 3 were new genes previously unreported, 2 of which were hypothetical genes. The other L5 were already known ones. Series analysis of gene expression (SAGE) database showed that ERP70,GRP58, GAPDH, SSB, S100A6, BMP-6, DVS27, HSP70 and NAC alpha in these genes were associated with endothelium and angiogenesis, but their effects on HLCVECs were still unclear. GAPDH, S100A6, BMP-6 and hsp70 were identified by SEREX in other tumor cDNA expression libraries.CONCLUSION: By screening of HLCVECs cDNA expression library using sera from immunized mice with HLCVECs,the functional genes associated with tumor endothelium or angiogenesis were identified. The

  2. Endothelium-dependent Effect of Sesame Seed Feeding on Vascular Reactivity of Streptozotocin-diabetic Rats: Underlying Mechanisms.

    Science.gov (United States)

    Roghani, Mehrdad; Jalali-Nadoushan, Mohammad Reza; Baluchnejadmojarad, Tourandokht; Vaez Mahdavi, Mohammad-Reza; Naderi, Gholamali; Roghani Dehkordi, Farshad; Joghataei, Mohammad Taghi

    2013-01-01

    Cardiovascular disorders continue to constitute major causes of morbidity and mortality in diabetic patients. In this study, the effect of chronic administration of sesame (Sesamum indicum L) seed feeding was studied on aortic reactivity of streptozotocin (STZ)-diabetic rats. Male diabetic rats received sesame seed-mixed food at weight ratios of 3% and 6% for 7 weeks, one week after diabetes induction. Contractile responses to KCl and phenylephrine (PE) and relaxation response to acetylcholine (ACh) and sodium nitroprusside (SNP) were obtained from aortic rings. Maximum contractile response of endothelium-intact rings to PE was significantly lower in sesame-treated diabetic rats (at a ratio of 6%) relative to untreated diabetics and endothelium removal abolished this difference. Endothelium-dependent relaxation to ACh was also significantly higher in sesame-treated diabetic rats (at a ratio of 6%) as compared to diabetic rats and pretreatment of rings with nitric oxide synthase inhibitor, N(G)-nitro-l-arginine methyl ester (L-NAME) significantly attenuated the observed response. Two-month diabetes also resulted in an elevation of malondialdehyde (MDA) and decreased superoxide dismutase (SOD) activity and sesame treatment significantly reversed the increased MDA content and restored activity of SOD. We thus conclude that chronic treatment of diabetic rats with sesame seed could in a dose-manner prevent some abnormal changes in vascular reactivity through nitric oxide and via attenuation of oxidative stress in aortic tissue and endothelium integrity is necessary for this beneficial effect.

  3. Serum galectin-2, -4, and -8 are greatly increased in colon and breast cancer patients and promote cancer cell adhesion to blood vascular endothelium

    DEFF Research Database (Denmark)

    Barrow, Hannah; Guo, Xiuli; Wandall, Hans H

    2011-01-01

    Adhesion of disseminating tumor cells to the blood vascular endothelium is a pivotal step in metastasis. Previous investigations have shown that galectin-3 concentrations are increased in the bloodstream of patients with cancer and that galectin-3 promotes adhesion of disseminating tumor cells...... to vascular endothelium in vitro and experimental metastasis in vivo. This study determined the levels of galectin-1, -2, -3, -4, -8, and -9 in the sera of healthy people and patients with colon and breast cancer and assessed the influence of these galectins on cancer-endothelium adhesion....

  4. Acute lead-induced vasoconstriction in the vascular beds of isolated perfused rat tails is endothelium-dependent

    Directory of Open Access Journals (Sweden)

    E.A. Silveira

    2010-05-01

    Full Text Available Chronic lead exposure induces hypertension in humans and animals, affecting endothelial function. However, studies concerning acute cardiovascular effects are lacking. We investigated the effects of acute administration of a high concentration of lead acetate (100 µΜ on the pressor response to phenylephrine (PHE in the tail vascular bed of male Wistar rats. Animals were anesthetized with sodium pentobarbital and heparinized. The tail artery was dissected and cannulated for drug infusion and mean perfusion pressure measurements. Endothelium and vascular smooth muscle relaxation were tested with acetylcholine (5 µg/100 µL and sodium nitroprusside (0.1 µg/100 µL, respectively, in arteries precontracted with 0.1 µM PHE. Concentration-response curves to PHE (0.001-300 µg/100 µL were constructed before and after perfusion for 1 h with 100 µΜ lead acetate. In the presence of endothelium (E+, lead acetate increased maximal response (Emax (control: 364.4 ± 36, Pb2+: 480.0 ± 27 mmHg; P < 0.05 and the sensitivity (pD2; control: 1.98 ± 0.07, 2.38 ± 0.14 log mM to PHE. In the absence of endothelium (E- lead had no effect but increased baseline perfusion pressure (E+: 79.5 ± 2.4, E-: 118 ± 2.2 mmHg; P < 0.05. To investigate the underlying mechanisms, this protocol was repeated after treatment with 100 µM L-NAME, 10 µM indomethacin and 1 µM tempol in the presence of lead. Lead actions on Emax and pD2 were abolished in the presence of indomethacin, and partially abolished with L-NAME and tempol. Results suggest that acute lead administration affects the endothelium, releasing cyclooxygenase-derived vasoconstrictors and involving reactive oxygen species.

  5. Endothelium-derived hyperpolarizing factor mediated relaxations in pig coronary arteries do not involve Gi/o proteins

    Institute of Scientific and Technical Information of China (English)

    Kwok Fu Jacobus NG; Susan Wai Sum LEUNG; Picky Ying Keung MAN; Paul M VANHOUTTE

    2008-01-01

    Aim: Endothelium-dependent relaxations to certain neurohumoral substances are mediated by pertussis toxin-sensitive Gi/o protein. Our experiments were designed to determine the role, if any, of pertussis toxin-sensitive G-proteins in relaxations attributed to endothelium-derived hyperpolarizing factor (EDHF). Methods: Pig coronary arterial rings with endothelia were suspended in organ chambers filled with Krebs-Ringer bicarbonate solution maintained at 37℃ and continuously aerated with 95%O2 and 5% CO2. Isometric tension was measured during contractions to prostaglandin F2, in the presence of indomethacin and Nω-nitro-L-arginine methyl ester (L-NAME). Results: Thrombin, the thrombin re-ceptor-activating peptide SFLLRN, bradykinin, substance P, and calcimycin pro-duced dose-dependent relaxations. These relaxations were not inhibited by prior incubation with pertussis toxin, but were abolished upon the addition of charyb-dotoxin plus apamin. Relaxations to the α2-adrenergic agonist UK14304 and those to serotonin were abolished in the presence of indomethacin and L-NAME. Conclusion: Unlike nitric oxide-mediated relaxations, EDHF-mediated relax-ations of pig coronary arteries do not involve pertussis toxin-sensitive pathways and are Gi/o protein independent.

  6. Biomimicry, vascular restenosis and coronary stents.

    Science.gov (United States)

    Schwartz, R S; van der Giessen, W J; Holmes, D R

    1998-01-01

    Biomimicry is in its earliest stages and is being considered in the realm of tissue engineering. If arterial implants are to limit neointimal thickening, purely passive structures cannot succeed. Bioactivity must be present, either by pharmacologic intervention or by fabricating a 'living stent' that contains active cellular material. As tissue engineering evolves, useful solutions will emerge from applying this knowledge directly to vascular biologic problems resulting from angioplasty, stenting, and vascular prosthesis research.

  7. Theoretical models for coronary vascular biomechanics: Progress & challenges

    Science.gov (United States)

    Waters, Sarah L.; Alastruey, Jordi; Beard, Daniel A.; Bovendeerd, Peter H.M.; Davies, Peter F.; Jayaraman, Girija; Jensen, Oliver E.; Lee, Jack; Parker, Kim H.; Popel, Aleksander S.; Secomb, Timothy W.; Siebes, Maria; Sherwin, Spencer J.; Shipley, Rebecca J.; Smith, Nicolas P.; van de Vosse, Frans N.

    2013-01-01

    A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies. PMID:21040741

  8. Smoking as a confounding factor on the influence of cold therapy on the vascular endothelium function of young men.

    Science.gov (United States)

    Noguchi, Masahiro; Fujikawa, Ryoya; Kimura, Akira

    2013-10-01

    [Purpose] This study was designed to determine whether smoking affects endothelium function after cold therapy in young men. [Subjects] The final cohort included 27 healthy men (age, 20-21 years). Because an impact on vascular endothelium function was anticipated to be caused by smoking, the study enrolled 14 participants in a smoking group and 13 in a non-smoking group. [Methods] Vascular endothelial function was assessed by determining the reactive hyperemia index (RHI), using finger-tonometry. RHI was measured twice, at rest (baseline) and after a cold stimulus. The forearm was cooled with an ice bag for 10 min as the cold stimulus. Comparisons between the RHI at baseline and after cold treatment, and between the smoking and non-smoking groups, were performed using the paired and unpaired t-tests, respectively. [Results] There was a significant difference in baseline RHI values between the smoking and non-smoking groups, but there was no significant difference between the baseline and post-treatment RHI values in either group. [Conclusion] These results suggest that cigarette smoking damages the endothelial cells in young men with a short history of smoking. However, cold therapy did not have a significant impact on the RHI in either group.

  9. Optimisation of coronary vascular territorial 3D echocardiographic strain imaging using computed tomography

    DEFF Research Database (Denmark)

    de Knegt, Martina Chantal; Fuchs, A; Weeke, P;

    2016-01-01

    Current echocardiographic assessments of coronary vascular territories use the 17-segment model and are based on general assumptions of coronary vascular distribution. Fusion of 3D echocardiography (3DE) with multidetector computed tomography (MDCT) derived coronary anatomy may provide a more acc...

  10. Relationship between dyslipidemia and vascular endothelial function in patients with coronary artery spasm

    Institute of Scientific and Technical Information of China (English)

    向定成

    2006-01-01

    Objectives To investigate the effects of dyslipidemia on vascular endothelial function in patients with coronary artery spasm. Methods Sixty-four patients with chest pain but without significant angiographic stenosis were divided into coronary spasm group (n=46 with coronary spasm) and control group (n=18 without coronary spasm) according to acetylcholine provoking test. Endothelin-1 (ET-1), nitric oxide (NO) and lipids were

  11. A key role for the endothelium in NOD1 mediated vascular inflammation: comparison to TLR4 responses.

    Directory of Open Access Journals (Sweden)

    Timothy Gatheral

    Full Text Available Understanding the mechanisms by which pathogens induce vascular inflammation and dysfunction may reveal novel therapeutic targets in sepsis and related conditions. The intracellular receptor NOD1 recognises peptidoglycan which features in the cell wall of gram negative and some gram positive bacteria. NOD1 engagement generates an inflammatory response via activation of NFκB and MAPK pathways. We have previously shown that stimulation of NOD1 directly activates blood vessels and causes experimental shock in vivo. In this study we have used an ex vivo vessel-organ culture model to characterise the relative contribution of the endothelium in the response of blood vessels to NOD1 agonists. In addition we present the novel finding that NOD1 directly activates human blood vessels. Using human cultured cells we confirm that endothelial cells respond more avidly to NOD1 agonists than vascular smooth muscle cells. Accordingly we have sought to pharmacologically differentiate NOD1 and TLR4 mediated signalling pathways in human endothelial cells, focussing on TAK1, NFκB and p38 MAPK. In addition we profile novel inhibitors of RIP2 and NOD1 itself, which specifically inhibit NOD1 ligand induced inflammatory signalling in the vasculature. This paper is the first to demonstrate activation of whole human artery by NOD1 stimulation and the relative importance of the endothelium in the sensing of NOD1 ligands by vessels. This data supports the potential utility of NOD1 and RIP2 as therapeutic targets in human disease where vascular inflammation is a clinical feature, such as in sepsis and septic shock.

  12. A key role for the endothelium in NOD1 mediated vascular inflammation: comparison to TLR4 responses.

    Science.gov (United States)

    Gatheral, Timothy; Reed, Daniel M; Moreno, Laura; Gough, Peter J; Votta, Bart J; Sehon, Clark A; Rickard, David J; Bertin, John; Lim, Eric; Nicholson, Andrew G; Mitchell, Jane A

    2012-01-01

    Understanding the mechanisms by which pathogens induce vascular inflammation and dysfunction may reveal novel therapeutic targets in sepsis and related conditions. The intracellular receptor NOD1 recognises peptidoglycan which features in the cell wall of gram negative and some gram positive bacteria. NOD1 engagement generates an inflammatory response via activation of NFκB and MAPK pathways. We have previously shown that stimulation of NOD1 directly activates blood vessels and causes experimental shock in vivo. In this study we have used an ex vivo vessel-organ culture model to characterise the relative contribution of the endothelium in the response of blood vessels to NOD1 agonists. In addition we present the novel finding that NOD1 directly activates human blood vessels. Using human cultured cells we confirm that endothelial cells respond more avidly to NOD1 agonists than vascular smooth muscle cells. Accordingly we have sought to pharmacologically differentiate NOD1 and TLR4 mediated signalling pathways in human endothelial cells, focussing on TAK1, NFκB and p38 MAPK. In addition we profile novel inhibitors of RIP2 and NOD1 itself, which specifically inhibit NOD1 ligand induced inflammatory signalling in the vasculature. This paper is the first to demonstrate activation of whole human artery by NOD1 stimulation and the relative importance of the endothelium in the sensing of NOD1 ligands by vessels. This data supports the potential utility of NOD1 and RIP2 as therapeutic targets in human disease where vascular inflammation is a clinical feature, such as in sepsis and septic shock.

  13. Vascular function and mild renal impairment in stable coronary artery disease

    NARCIS (Netherlands)

    van der Harst, P; Smilde, TDJ; Buikema, H; Voors, AA; Navis, G; van Veldhuisen, DJ; van Gilst, WH

    2006-01-01

    Objective - In patients with coronary artery disease, the concomitant presence of renal function impairment is associated with decreased survival. We aimed to assess whether in coronary artery diseased patients renal function impairment is associated with systemic vascular function, functional param

  14. Effect of Carvedilol on the Coronary Vascular Endothelial Function after Percutaneous Transluminal Coronary Angioplasty

    Institute of Scientific and Technical Information of China (English)

    苏显明; 马奕; 崔长琮

    2003-01-01

    Objectives To understand the effect of carvedilol on the coronary vascular endothelial function of the patients with coronary heart disease after percutaneous transluminal coronary angioplasty (PTCA). Methods 51cases, having one or more than two branches narrow ( ≥ 70% ) , were diagnosed by coronary angiography. These patients were divided randomly into carvedilol group (n = 28 ) and control group (n = 23) who did not take carvedilol.Endothelin (ET) and nitro dioxide (NO) levels of peripheral blood were measured before and after PTCA,before and after two weeks by taking carvedilol. Results Compared with the ET and NO levels before PTCA, ET were markedly increased and NO were decreased after PTCA (p < 0.05); compared with the ET and NO levels before taking carvedilol, ET were decreased and NO were increased after two week (p <0.05) , but the ET and NO levels of the control group did not change in the period of two weeks observation (p > 0.05). Conclusions Carvedilol may improve the coronary vascular endothelial function after PTCA.

  15. TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role in monocyte adhesion to vascular endothelium.

    Science.gov (United States)

    Lee, Seung Jin; Choi, Eun Kyoung; Seo, Kyo Won; Bae, Jin Ung; Park, So Youn; Kim, Chi Dae

    2014-01-01

    Toll-like receptor 4 (TLR4) is known to mediate monocyte adhesion to endothelial cells, however, its role on the expression of monocyte adhesion molecules is unclear. In the present study, we investigated the role of TLR4 on the expression of monocyte adhesion molecules, and determined the functional role of TLR4-induced adhesion molecules on monocyte adhesion to endothelial cells. When THP-1 monocytes were stimulated with Kdo2-Lipid A (KLA), a specific TLR4 agonist, Mac-1 expression was markedly increased in association with an increased adhesion of monocytes to endothelial cells. These were attenuated by anti-Mac-1 antibody, suggesting a functional role of TLR4-induced Mac-1 on monocyte adhesion to endothelial cells. In monocytes treated with MK886, a 5-lipoxygenase (LO) inhibitor, both Mac-1 expression and monocyte adhesion to endothelial cells induced by KLA were markedly attenuated. Moreover, KLA increased the expression of mRNA and protein of 5-LO, suggesting a pivotal role of 5-LO on these processes. In in vivo studies, KLA increased monocyte adhesion to aortic endothelium of wild-type (WT) mice, which was attenuated in WT mice treated with anti-Mac-1 antibody as well as in TLR4-deficient mice. Taken together, TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role on monocyte adhesion to vascular endothelium, leading to increased foam cell formation in the development of atherosclerosis.

  16. Molecular imaging of the human pulmonary vascular endothelium in pulmonary hypertension: a phase II safety and proof of principle trial

    Energy Technology Data Exchange (ETDEWEB)

    Harel, Francois [Montreal Heart Institute, Research Center, Montreal, QC (Canada); Universite de Montreal, Department of Nuclear Medicine, Montreal, Quebec (Canada); Langleben, David; Abikhzer, Gad [McGill University, Lady Davis Institute and Jewish General Hospital, Montreal, Quebec (Canada); Provencher, Steve; Guimond, Jean [Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Quebec (Canada); Fournier, Alain; Letourneau, Myriam [INRS-Institut Armand-Frappier, Laval, Quebec (Canada); Finnerty, Vincent; Nguyen, Quang T.; Levac, Xavier [Montreal Heart Institute, Research Center, Montreal, QC (Canada); Mansour, Asmaa; Guertin, Marie-Claude [Montreal Health Innovation Coordination Center, Montreal, QC (Canada); Dupuis, Jocelyn [Montreal Heart Institute, Research Center, Montreal, QC (Canada); Universite de Montreal, Department of Medicine, Montreal, Quebec (Canada)

    2017-07-15

    The adrenomedullin receptor is densely expressed in the pulmonary vascular endothelium. PulmoBind, an adrenomedullin receptor ligand, was developed for molecular diagnosis of pulmonary vascular disease. We evaluated the safety of PulmoBind SPECT imaging and its capacity to detect pulmonary vascular disease associated with pulmonary hypertension (PH) in a human phase II study. Thirty patients with pulmonary arterial hypertension (PAH, n = 23) or chronic thromboembolic PH (CTEPH, n = 7) in WHO functional class II (n = 26) or III (n = 4) were compared to 15 healthy controls. Lung SPECT was performed after injection of 15 mCi {sup 99m}Tc-PulmoBind in supine position. Qualitative and semi-quantitative analyses of lung uptake were performed. Reproducibility of repeated testing was evaluated in controls after 1 month. PulmoBind injection was well tolerated without any serious adverse event. Imaging was markedly abnormal in PH with ∝50% of subjects showing moderate to severe heterogeneity of moderate to severe extent. The abnormalities were unevenly distributed between the right and left lungs as well as within each lung. Segmental defects compatible with pulmonary embolism were present in 7/7 subjects with CTEPH and in 2/23 subjects with PAH. There were no segmental defects in controls. The PulmoBind activity distribution index, a parameter indicative of heterogeneity, was elevated in PH (65% ± 28%) vs. controls (41% ± 13%, p = 0.0003). In the only subject with vasodilator-responsive idiopathic PAH, PulmoBind lung SPECT was completely normal. Repeated testing 1 month later in healthy controls was well tolerated and showed no significant variability of PulmoBind distribution. In this phase II study, molecular SPECT imaging of the pulmonary vascular endothelium using {sup 99m}Tc-PulmoBind was safe. PulmoBind showed potential to detect both pulmonary embolism and abnormalities indicative of pulmonary vascular disease in PAH. Phase III studies with this novel tracer and

  17. Effect of intensive versus moderate lipid lowering on endothelial function and vascular responsiveness to angiotensin II in stable coronary artery disease.

    Science.gov (United States)

    van der Harst, Pim; Wagenaar, Lodewijk J; Buikema, Hendrik; Voors, Adriaan A; Plokker, H W Thijs; Morshuis, Wim J; Six, A Jacob; Boonstra, Piet W; Nickenig, Georg; Wassmann, Sven; van Veldhuisen, Dirk J; van Gilst, Wiek H

    2005-11-15

    Recent evidence has demonstrated that intensive lipid-lowering therapy with a high-dose statin provides significant clinical benefit beyond moderate lipid-lowering therapy. However, dose-dependent effects of short-term statin therapy on vascular function have not been demonstrated. We studied endothelial function and vascular responsiveness to angiotensin II in patients who had coronary artery diseased and were randomized to receive low- or high-dose atorvastatin (10 or 80 mg, respectively) or placebo. Internal thoracic artery segments were obtained during coronary bypass surgery and studied in vitro. Endothelium-dependent vasodilation was increased with atorvastatin therapy (p = 0.035) but was significantly increased further in patients who received 80 mg compared with those who received 10 mg of atorvastatin (p = 0.05). Endothelium improvement was accompanied by decreased vascular response to angiotensin II (p = 0.039). These findings suggest a mechanism for the clinical benefit of intensive lipid-lowering treatment in coronary heart disease.

  18. Mechanisms of oxidative stress and vascular dysfunction

    Science.gov (United States)

    Nedeljkovic, Z; Gokce, N; Loscalzo, J

    2003-01-01

    The endothelium regulates vascular homoeostasis through local elaboration of mediators that modulate vascular tone, platelet adhesion, inflammation, fibrinolysis, and vascular growth. Impaired vascular function contributes to the pathogenesis of atherosclerosis and acute coronary syndromes. There is growing pathophysiological evidence that increased generation of reactive oxygen species and oxidative stress participates in proatherogenic mechanisms of vascular dysfunction and atherothrombosis. In this review, the role of oxidative stress in mechanisms of vascular dysfunction is discussed, and potential antioxidant strategies are reviewed. PMID:12743334

  19. Endothelium-dependent vasorelaxation in inhibited by in vivo depletion of vascular thiol levels

    DEFF Research Database (Denmark)

    Laursen, J B; Boesgaard, S; Trautner, S;

    2001-01-01

    Thiols like glutathione may serve as reducing cofactors in the production of nitric oxide (NO) and protect NO from inactivation by radical oxygen species. Depletion of thiol compounds reduces NO-mediated vascular effects in vitro and in vivo. The mechanisms underlying these actions are not clear......, but may involve decreased synthesis of NO and/or increased degradation of NO. This study investigates the effect of glutathione depletion on the response to NO-mediated vasodilation induced by acetylcholine (Ach, 10 micrograms/kg), endothelial NO synthase (eNOS) activity and potential markers of vascular...

  20. Oxidants downstream from superoxide inhibit nitric oxide production by vascular endothelium--a key role for selenium-dependent enzymes in vascular health.

    Science.gov (United States)

    McCarty, M F

    1999-10-01

    Although superoxide can directly quench endothelium-generated nitric oxide (NO), there is considerable evidence that oxidants derived from superoxide--notably peroxides and their further derivatives--can also impair NO bioactivity. In part, this reflects inhibition of NO synthase activity, perhaps mediated by the oxidation of labile sulfhydryl groups, as well as the activation of protein kinase C. Selenium deficiency exacerbates these effects, presumably owing to the crucial role of selenium-dependent thioredoxin reductase and glutathione peroxidases in preventing and reversing oxidant damage to proteins. High-normal homocyst(e)ine levels may induce an 'effective selenium deficiency' by suppressing glutathione peroxidase transcription in endothelial cells. Considerable epidemiology, primarily of European origin, points to mediocre selenium nutrition as a significant vascular risk factor; the risk associated with elevated plasma homocyst(e)ine levels is now well established. In addition to preventing LDL oxidation, vitamin E can be expected to minimize the contribution of lipid peroxides to endothelial dysfunction. Lipoic acid, which can function in vivo as a versatile antioxidant and sulfhydryl reductant, may have particular value for protecting endothelium from oxidants; its clinical utility in diabetic neuropathy may reflect this benefit. Good selenium status, as well as supra-nutritional intakes of lipoic acid, may down-regulate cytokine-mediated endothelial activation by helping to maintain the proper structure of oxidant-labile proteins--such as tyrosine phosphatases--that modulate this signaling. It can be concluded that a number of supplemental nutrients--including selenium, vitamin E, lipoic acid, and the vitamins that promote catabolism of homocysteine--have the potential to promote vascular health by mitigating the adverse impact of superoxide-derived oxidants on endothelial function.

  1. Aronia melanocarpa juice, a rich source of polyphenols, induces endothelium-dependent relaxations in porcine coronary arteries via the redox-sensitive activation of endothelial nitric oxide synthase.

    Science.gov (United States)

    Kim, Jong Hun; Auger, Cyril; Kurita, Ikuko; Anselm, Eric; Rivoarilala, Lalainasoa Odile; Lee, Hyong Joo; Lee, Ki Won; Schini-Kerth, Valérie B

    2013-11-30

    This study examined the ability of Aronia melanocarpa (chokeberry) juice, a rich source of polyphenols, to cause NO-mediated endothelium-dependent relaxations of isolated coronary arteries and, if so, to determine the underlying mechanism and the active polyphenols. A. melanocarpa juice caused potent endothelium-dependent relaxations in porcine coronary artery rings. Relaxations to A. melanocarpa juice were minimally affected by inhibition of the formation of vasoactive prostanoids and endothelium-derived hyperpolarizing factor-mediated responses, and markedly reduced by N(ω)-nitro-l-arginine (endothelial NO synthase (eNOS) inhibitor), membrane permeant analogs of superoxide dismutase and catalase, PP2 (Src kinase inhibitor), and wortmannin (PI3-kinase inhibitor). In cultured endothelial cells, A. melanocarpa juice increased the formation of NO as assessed by electron paramagnetic resonance spectroscopy using the spin trap iron(II)diethyldithiocarbamate, and reactive oxygen species using dihydroethidium. These responses were associated with the redox-sensitive phosphorylation of Src, Akt and eNOS. A. melanocarpa juice-derived fractions containing conjugated cyanidins and chlorogenic acids induced the phosphorylation of Akt and eNOS. The present findings indicate that A. melanocarpa juice is a potent stimulator of the endothelial formation of NO in coronary arteries; this effect involves the phosphorylation of eNOS via the redox-sensitive activation of the Src/PI3-kinase/Akt pathway mostly by conjugated cyanidins and chlorogenic acids.

  2. Endothelium-Independent Effect of Fisetin on the Agonist-Induced Regulation of Vascular Contractility.

    Science.gov (United States)

    Je, Hyun Dong; Sohn, Uy Dong; La, Hyen-Oh

    2016-01-01

    Fisetin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of fisetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Fisetin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, fisetin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of fisetin on agonist-induced vascular contraction regardless of endothelial function.

  3. Protective effects of Rho kinase inhibitor on rats’ vascular endothelium and its effects on the expression of eNO

    Directory of Open Access Journals (Sweden)

    Qiao WU

    2012-11-01

    Full Text Available Objective  To explore the protective effects of Rho kinase inhibitor (fasudil on rats' vascular endothelial cells and the effects on the expression of endothelial nitric oxide synthase (eNOS. Methods  Thirty male SD rats were randomly divided into 5 groups (6 each: control group (intraperitoneal injection with 0.9% normal saline, hyperhomocysteinemia (HHcy group, low-dose fasudil group [L -treatment group, intraperitoneal injection with 1mg/(kg•d fasudil], middle-dose fasudil group [M-treatment group, intraperitoneal injection with 5mg/(kg•d fasudil], and high-dose fasudil group [H-treatment group, intraperitoneal injection with 15mg/(kg•d fasudil]. Animals in HHcy group and fasudil groups were administered continuously with water containing 1.5% methionine for 4 weeks to establish HHcy damaged vascular endothelium model, and those in control group were only fed drinking water. After successful reproduction of model, the enzymatic method was applied to measure the serum level of nitric oxide (NO. The expressions of eNOS, Rho-associated coiled-coil protein kinase 2 (ROCK2 and RhoA protein in aorta were assessed by immunohistochemistry and Western blotting. Results  Compared with control group, the serum NO level and expression of eNOS protein in aorta decreased significantly in HHcy group (P 0.05. The aortic endothelial eNOS positive cells increased significantly in H-treatment group compared with that in HHcy group and L -treatment group (P 0.05. Compared with HHcy group, the expressions of RhoA and ROCK2 decreased significantly in H-treatment group (P 0.05. Conclusions  High-dose fasudil can protect vascular endothelia by inhibiting Rho/ROCK pathway to increase the expression of eNOS and NO.

  4. Effects of temporary vascular occluder poloxamer 407 Gel on the endothelium

    Directory of Open Access Journals (Sweden)

    Gucu Arif

    2013-01-01

    Full Text Available Abstract Background Coronary occlusion techniques during OPCAB may lead to an endothelial damage to the target vessel. The adverse effects of these techniques are well-known, and researches have been trying to find out new materials to occlude the coronary artery without an endothelial damage. In the present study, we investigate to the endothelial damage in the rat aorta which is occluded by Poloxamer 407 gel. Methods Forty-five rats were randomized in three groups: (1 segment of the aorta was occluded with Poloxamer 407 gel in P 407 group; (2 segment of the aorta was occluded with microvascular clamp in MV clamp group; and (3 no onclusion was available in the Control group. The rats were sacrificed of observation, and a 15mm segment of the aorta was obtained as a specimen. Integrity of the endothelial lining was observed with a scanning electron microscopy. Results Scanning electron microscopy revealed a statistically significant difference among the 3 groups (p Conclusions We suggest that Poloxamer 407 gel occlusion may be a safer and more effective method compared to the microvascular clamp occlusion.

  5. Epigenetics in the Vascular Endothelium: Looking From a Different Perspective in the Epigenomics Era.

    Science.gov (United States)

    Yan, Matthew S; Marsden, Philip A

    2015-11-01

    Cardiovascular diseases are commonly thought to be complex, non-Mendelian diseases that are influenced by genetic and environmental factors. A growing body of evidence suggests that epigenetic pathways play a key role in vascular biology and might be involved in defining and transducing cardiovascular disease inheritability. In this review, we argue the importance of epigenetics in vascular biology, especially from the perspective of endothelial cell phenotype. We highlight and discuss the role of epigenetic modifications across the transcriptional unit of protein-coding genes, especially the role of intragenic chromatin modifications, which are underappreciated and not well characterized in the current era of genome-wide studies. Importantly, we describe the practical application of epigenetics in cardiovascular disease therapeutics. © 2015 American Heart Association, Inc.

  6. Sevoflurane mitigates shedding of hyaluronan from the coronary endothelium, also during ischemia/reperfusion: an ex vivo animal study

    Directory of Open Access Journals (Sweden)

    Chen C

    2016-04-01

    Full Text Available Congcong Chen,1,3 Daniel Chappell,2,3 Thorsten Annecke,2,3 Peter Conzen,2 Matthias Jacob,2,3 Ulrich Welsch,4 Bernhard Zwissler,2 Bernhard F Becker3 1Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China; 2Clinic of Anesthesiology, Ludwig-Maximilians-University, Munich, Germany; 3Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany; 4Institute of Anatomy, Ludwig-Maximilians-University, Munich, Germany Abstract: Glycosaminoglycan hyaluronan (HA, a major constituent of the endothelial glycocalyx, helps to maintain vascular integrity. Preconditioning the heart with volatile anesthetic agents protects against ischemia/reperfusion injury. We investigated a possible protective effect of sevoflurane on the glycocalyx, especially on HA. The effect of pre-ischemic treatment with sevoflurane (15 minutes at 2% vol/vol gas on shedding of HA was evaluated in 28 isolated, beating guinea pig hearts, subjected to warm ischemia (20 minutes at 37°C followed by reperfusion (40 minutes, half with and half without preconditioning by sevoflurane. HA concentration was measured in the coronary effluent. Over the last 20 minutes of reperfusion hydroxyethyl starch (1 g% was continuously infused and the epicardial transudate collected over the last 5 minutes for measuring the colloid extravasation. Additional hearts were fixed by perfusion after the end of reperfusion for immunohistology and electron microscopy. Sevoflurane did not significantly affect post-ischemic oxidative stress, but strongly inhibited shedding of HA during the whole period, surprisingly even prior to ischemia. Immunohistology demonstrated that heparan sulfates and SDC1 of the glycocalyx were also preserved by sevoflurane. Electron microscopy revealed shedding of glycocalyx caused by ischemia and a mostly intact glycocalyx in hearts exposed to sevoflurane. Coronary vascular permeability of the

  7. Exploring the Relationships between Hemoglobin, the Endothelium and Vascular Health in Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Catherine Weber

    2011-11-01

    Full Text Available Background/Aims: The ideal hemoglobin target in chronic kidney disease remains unknown. Ultimately, individualized targets may depend upon the properties of the patient’s endothelial and vascular milieu, and thus the complex relationships between these factors need to be further explored. Methods: Forty-six patients with a glomerular filtration rate (GFR 2 or on renal replacement therapy underwent measurement of hemoglobin, endothelial microparticles (EMPs and aortic pulse wave velocity (PWV at 0, 3 and 6 months. In addition, a number of inflammatory, cardiac and vascular biomarkers were measured at baseline. Results: No correlation was observed between baseline values of PWV and EMPs, PWV and hemoglobin, or hemoglobin and EMPs in the overall cohort. When stratified by CKD status, a positive correlation was observed between PWV and EMP CD41–/CD144+ in patients with GFR 2 only (r = 0.54, p = 0.01. Asymmetric dimethylarginine correlated with baseline PWV (r = 0.27, p = 0.07, and remained significantly correlated with the 3- and 6-month PWV measurement. Conclusions: In this small heterogeneous cohort of dialysis and non-dialysis patients, we were unable to describe a physiologic link between anemia, endothelial dysfunction and arterial stiffness.

  8. Differences in Vascular Nitric Oxide and Endothelium-Derived Hyperpolarizing Factor Bioavailability in African Americans and Whites

    Science.gov (United States)

    Ozkor, Muhiddin A; Rahman, Ayaz M; Murrow, Jonathan R; Kavtaradze, Nino; Lin, Ji; Manatunga, Amita; Hayek, Salim; Quyyumi, Arshed A

    2014-01-01

    Objectives Abnormalities in nitric oxide (NO) bioavailability have been reported in African Americans. Whether there are differences in endothelium-derived hyperpolarizing factor (EDHF) in addition to NO between African Americans and whites, and how these affect physiologic vasodilation remains unknown. We hypothesized that the bioavailability of vascular NO and EDHF, at rest and with pharmacologic and physiologic vasodilation, varies between white and African Americans. Approach and Results In 74 white and 86 African American subjects without known cardiovascular disease risk factors, forearm blood flow (FBF) was measured using plethysmography at rest and during inhibition of NO with NG-monomethyl-L-arginine (L-NMMA) and/or of K+Ca channels (EDHF) with tetraethylammonium (TEA). The reduction in resting FBF was greater with L-NMMA (p=0.019) and similar with TEA in whites compared to African Americans. Vasodilation with bradykinin, acetylcholine, and sodium nitroprusside was lower in African Americans compared to whites (all p<0.0001). Inhibition with L-NMMA was greater in whites compared to African Americans with bradykinin, acetylcholine, and exercise. Inhibition with TEA was lower in African Americans with bradykinin, but greater during exercise and with acetylcholine. Conclusions The contribution to both resting and stimulus-mediated vasodilator tone of NO is greater in whites compared to African Americans. EDHF partly compensates for the reduced NO release in exercise and acetylcholine-mediated vasodilation in African Americans. Preserved EDHF but reduced NO bioavailability and sensitivity characterizes the vasculature in healthy African Americans. PMID:24675657

  9. Bmx tyrosine kinase has a redundant function downstream of angiopoietin and vascular endothelial growth factor receptors in arterial endothelium.

    Science.gov (United States)

    Rajantie, I; Ekman, N; Iljin, K; Arighi, E; Gunji, Y; Kaukonen, J; Palotie, A; Dewerchin, M; Carmeliet, P; Alitalo, K

    2001-07-01

    The Bmx gene, a member of the Tec tyrosine kinase gene family, is known to be expressed in subsets of hematopoietic and endothelial cells. In this study, mice were generated in which the first coding exon of the Bmx gene was replaced with the lacZ reporter gene by a knock-in strategy. The homozygous mice lacking Bmx activity were fertile and had a normal life span without an obvious phenotype. Staining of their tissues using beta-galactosidase substrate to assess the sites of Bmx expression revealed strong signals in the endothelial cells of large arteries and in the endocardium starting between days 10.5 and 12.5 of embryogenesis and continuing in adult mice, while the venular endothelium showed a weak signal only in the superior and inferior venae cavae. Of the five known endothelial receptor tyrosine kinases tested, activated Tie-2 induced tyrosyl phosphorylation of the Bmx protein and both Tie-2 and vascular endothelial growth factor receptor 1 (VEGFR-1) stimulated Bmx tyrosine kinase activity. Thus, the Bmx tyrosine kinase has a redundant role in arterial endothelial signal transduction downstream of the Tie-2 and VEGFR-1 growth factor receptors.

  10. Microparticle-Induced Activation of the Vascular Endothelium Requires Caveolin-1/Caveolae.

    Directory of Open Access Journals (Sweden)

    Allison M Andrews

    Full Text Available Microparticles (MPs are small membrane fragments shed from normal as well as activated, apoptotic or injured cells. Emerging evidence implicates MPs as a causal and/or contributing factor in altering normal vascular cell phenotype through initiation of proinflammatory signal transduction events and paracrine delivery of proteins, mRNA and miRNA. However, little is known regarding the mechanism by which MPs influence these events. Caveolae are important membrane microdomains that function as centers of signal transduction and endocytosis. Here, we tested the concept that the MP-induced pro-inflammatory phenotype shift in endothelial cells (ECs depends on caveolae. Consistent with previous reports, MP challenge activated ECs as evidenced by upregulation of intracellular adhesion molecule-1 (ICAM-1 expression. ICAM-1 upregulation was mediated by activation of NF-κB, Poly [ADP-ribose] polymerase 1 (PARP-1 and the epidermal growth factor receptor (EGFR. This response was absent in ECs lacking caveolin-1/caveolae. To test whether caveolae-mediated endocytosis, a dynamin-2 dependent process, is a feature of the proinflammatory response, EC's were pretreated with the dynamin-2 inhibitor dynasore. Similar to observations in cells lacking caveolin-1, inhibition of endocytosis significantly attenuated MPs effects including, EGFR phosphorylation, activation of NF-κB and upregulation of ICAM-1 expression. Thus, our results indicate that caveolae play a role in mediating the pro-inflammatory signaling pathways which lead to EC activation in response to MPs.

  11. Proteomic identification of dysferlin-interacting protein complexes in human vascular endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Cleo; Utokaparch, Soraya; Sharma, Arpeeta; Yu, Carol; Abraham, Thomas; Borchers, Christoph [UBC James Hogg Research Centre, Institute for Heart and Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia (Canada); University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia (Canada); Bernatchez, Pascal, E-mail: pbernatc@mail.ubc.ca [UBC James Hogg Research Centre, Institute for Heart and Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia (Canada); University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia (Canada)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Bi-directional (inward and outward) movement of GFP-dysferlin in COS-7 cells. Black-Right-Pointing-Pointer Dysferlin interacts with key signaling proteins for transcytosis in EC. Black-Right-Pointing-Pointer Dysferlin mediates trafficking of vesicles carrying protein cargos in EC. -- Abstract: Dysferlin is a membrane-anchored protein known to facilitate membrane repair in skeletal muscles following mechanical injury. Mutations of dysferlin gene impair sarcolemma integrity, a hallmark of certain forms of muscular dystrophy in patients. Dysferlin contains seven calcium-dependent C2 binding domains, which are required to promote fusion of intracellular membrane vesicles. Emerging evidence reveal the unexpected expression of dysferlin in non-muscle, non-mechanically active tissues, such as endothelial cells, which cast doubts over the belief that ferlin proteins act exclusively as membrane repair proteins. We and others have shown that deficient trafficking of membrane bound proteins in dysferlin-deficient cells, suggesting that dysferlin might mediate trafficking of client proteins. Herein, we describe the intracellular trafficking and movement of GFP-dysferlin positive vesicles in unfixed reconstituted cells using live microscopy. By performing GST pull-down assays followed by mass spectrometry, we identified dysferlin binding protein complexes in human vascular endothelial cells. Together, our data further support the claims that dysferlin not only mediates membrane repair but also trafficking of client proteins, ultimately, help bridging dysferlinopathies to aberrant membrane signaling.

  12. Clinical features and coronary backgrounds of coexistent peripheral vascular disease in Japanese coronary artery disease patients.

    Science.gov (United States)

    Seino, Y; Takita, T; Tanaka, K; Takano, T; Hayakawa, H; Okumura, H

    1991-11-01

    By use of noninvasive tests (Doppler segmental pressure study, supraorbital Doppler flow analysis, and segmental plethysmography), coexistent carotid (CTD) or lower extremity peripheral vascular disease (PVD) were diagnosed and correlated with subjective symptoms, coronary risk factors (CRFs), coronary arteriograms (CAGs), cardiac hemodynamics, and infarct size in 121 consecutive patients with documented coronary artery disease (CAD). PVD was found in 16.5%, CTD in 33.1%, and both PVD and CTD in 9.9% of the patients studied; 20% of PVD patients and 47.5% of CTD patients were asymptomatic with respect to coexistent PVD or CTD. There were no significant differences between the presence or absence of PVD or CTD as regards number of CRFs, Killip classification, cardiac hemodynamics, or number of stenotic coronary arteries. However, serum creatine kinase (CK) and CKMB release curves in the PVD group showed significantly higher peak CK and peak CKMB values than those in the PVD(-) group (4096 +/- 5408/282 +/- 263 vs 1706 +/- 1715/179 +/- 186, p less than 0.05) because of the higher prevalence (100%) of multivessel disease on CAG. Investigation of the relationship of CRFs to coexistent PVD revealed that the smoking ratio in men (86.7%) and the hypertension ratio in women (80%) were extremely high in PVD patients, and statistically significant differences between PVD(+) patients and PVD(-) groups were found with respect to the obesity ratio (p less than 0.05) in men and the hypercholesterolemia ratio (p less than 0.05) and obesity ratio (60%, p less than 0.05) in women.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Does vitamin C or its combination with vitamin E improve radial artery endothelium-dependent vasodilatation in patients awaiting coronary artery bypass surgery?

    OpenAIRE

    Uzun, Alper; Yener, Umit; Cicek, Omer Faruk; Yalcinkaya, Adnan; Diken, Adem; Ozkan, Turgut; Ulas, Mahmut; Yener, Ozlem; Turkvatan, Aysel

    2013-01-01

    Background We evaluated the vasodilatory effects of two antioxidants, vitamins C (ascorbic acid) and E (α-tocopherol), on radial artery and endothelium-dependent responses in patients awaiting coronary artery bypass surgery. Methods The study was performed in three groups. The first group took 2 g of vitamin C orally (n = 31, vitamin C group), the second group took 2 g of vitamin C with 600 mg of vitamin E orally (n = 31, vitamins C + E group), and the third group took no medication (n = 31, ...

  14. Expression of mucosal addressin cell adhesion molecule 1 on vascular endothelium of gastric mucosa in patients with nodular gastritis

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Ohara; Takehiko Koji; Hiroshi Nagura; Shigeru Kohno; Hajime Isomoto; Chun-Yang Wen; Chieko Ejima; Masahiro Murata; Masanobu Miyazaki; Fuminao Takeshima; Yohei Mizuta; Ikuo Murata

    2003-01-01

    AIM: The interaction of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) with integrin α4β7 mediates lymphocyte recruitment into mucosa-associated lymphoid tissue (MALT). Nodular gastritis is characterized by a unique military pattern on endoscopy representing increased numbers of lymphoid follicles with germinal center, strongly associated with H pylori infection. The purpose of this study was to address the implication of the MAdCAM-1/integrin β7 pathway in NG.METHODS: We studied 17 patients with NG and H pylori infection and 19 H pylori-positive and 14 H pylori-negative controls. A biopsy sample was taken from the antrum and snap-frozen for immunohistochemical analysis of MAdCAM1 and integrin β7. In simultaneous viewing of serial sections,the percentage of MAdCAM-1-positive to von Willebrand factor-positive vessels was calculated. We also performed immunostaining with anti-CD20, CD4, CD8 and CD68 antibodies to determine the lymphocyte subsets coexpressing integrin β7.RESULTS: Vascular endothelial MAdCAM-1 expression was more enhanced in gastric mucosa with than without H pylori infection. Of note, the percentages of MAdCAM-1-positive vessels were significantly higher in the lamina propria of NG patients than in H pylori-positive controls. Strong expression of MAdCAM-1 was identified adjacent to lymphoid follicles and dense lymphoid aggregates. Integrin β7-expressing mononuclear cells, mainly composed of CD20 and CD4 lymphocytes, were associated with vessels lined with MAdCAM-1-expressing endothelium.CONCLUSION: Our results suggest that the MAdCAM-1/integrin α4β7 homing system may participate in gastric inflammation in response to H pylori-infection and contributes to MALT formation, typically leading to the development of NG.

  15. Delay in liver bud development during early embryogenesis leads to violation of epicardium formation and its epithelial-to-mesenchymal transformation, but do not affect coronary endothelium formation

    Directory of Open Access Journals (Sweden)

    Pototskaya O. Yu.

    2010-01-01

    Full Text Available Despite intensive investigation of heart embryogenesis the origin of coronary endothelium is still under debate. Existence of close interrelation between proepicardium, liver bud, sinus venosus and early coronary vessels is obvious, but the nature of this interconnection is unclear as well as exact source of endothelial cells. Thus, the purpose of our research was to investigate the effect of inhibition of liver bud development on formation of coronary vessels. To inhibit the liver bud we injected aminoguanidine sulfate into the yolk sack of chick embryos on 14 stage of development by HH (first group - to prevent contact between proepicardium and liver, and on 16 stage (second group to allow contact between proepicardium and liver during a short period of time. In the first group it was observed the violation of epicardium formation and early death during first 3 days of incubation. At embryos it was revealed thinning of myocardium and atrio-ventricular cushions, abnormal looping – presumably due to the absence of epicardium. The death was caused by heart insufficiency. In the second group it was observed the beginning of epicardium formation, but the heart defects were the same as in the first group – presumably due to the absence of epicardium-derived cells. At embryos of this group, who survived till 26 stage of development (4.5 day of incubation, despite absence of cellular component in subepicardial space and almost completely absence of liver, we observed formation of coronary vessels. They were concentrated on the dorsal surface of atrio-vetricular channel and were presented by continuation of endothelium of the sinus venosus.

  16. Exercise training-induced adaptations in mediators of sustained endothelium-dependent coronary artery relaxation in a porcine model of ischemic heart disease

    Science.gov (United States)

    Heaps, Cristine L.; Robles, Juan Carlos; Sarin, Vandana; Mattox, Mildred L.; Parker, Janet L.

    2014-01-01

    Objective Test the hypothesis that exercise training enhances sustained relaxation to persistent endothelium-dependent vasodilator exposure via increased nitric oxide contribution in small coronary arteries of control and ischemic hearts. Methods Yucatan swine were designated to a control group or a group in which an ameroid constrictor was placed around the proximal LCX. Subsequently, pigs from both groups were assigned to exercise (5 days/week; 16 weeks) or sedentary regimens. Coronary arteries (~100–350 μm) were isolated from control pigs and from both nonoccluded and collateral-dependent regions of chronically-occluded hearts. Results In arteries from control pigs, training significantly enhanced relaxation responses to increasing concentrations of bradykinin (10−10 to 10−7 M) and sustained relaxation to a single bradykinin concentration (30 nM), which were abolished by NOS inhibition. Training also significantly prolonged bradykinin-mediated relaxation in collateral-dependent arteries of occluded pigs, which was associated with more persistent increases in endothelial cellular Ca2+ levels, and reversed with NOS inhibition. Protein levels for eNOS and p-eNOS-(Ser1179), but not caveolin-1, Hsp90, or Akt, were significantly increased with occlusion, independent of training state. Conclusions Exercise training enhances sustained relaxation to endothelium-dependent agonist stimulation in small arteries of control and ischemic hearts by enhanced nitric oxide contribution and endothelial Ca2+ responses. PMID:24447072

  17. Malaria and Vascular Endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, Aristóteles Comte Filho de, E-mail: aristoteles.caf@gmail.com [Universidade Federal do Amazonas, Manaus, AM (Brazil); Lacerda, Marcus Vinícius Guimarães de [Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM (Brazil); Okoshi, Katashi; Okoshi, Marina Politi [Faculdade de Medicina de Botucatu (Unesp), Botucatu, SP (Brazil)

    2014-08-15

    Involvement of the cardiovascular system in patients with infectious and parasitic diseases can result from both intrinsic mechanisms of the disease and drug intervention. Malaria is an example, considering that the endothelial injury by Plasmodium-infected erythrocytes can cause circulatory disorders. This is a literature review aimed at discussing the relationship between malaria and endothelial impairment, especially its effects on the cardiovascular system. We discuss the implications of endothelial aggression and the interdisciplinarity that should guide the malaria patient care, whose acute infection can contribute to precipitate or aggravate a preexisting heart disease.

  18. 3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Tong Luo

    Full Text Available The 3D geometry of individual vascular smooth muscle cells (VSMCs, which are essential for understanding the mechanical function of blood vessels, are currently not available. This paper introduces a new 3D segmentation algorithm to determine VSMC morphology and orientation.A total of 112 VSMCs from six porcine coronary arteries were used in the analysis. A 3D semi-automatic segmentation method was developed to reconstruct individual VSMCs from cell clumps as well as to extract the 3D geometry of VSMCs. A new edge blocking model was introduced to recognize cell boundary while an edge growing was developed for optimal interpolation and edge verification. The proposed methods were designed based on Region of Interest (ROI selected by user and interactive responses of limited key edges. Enhanced cell boundary features were used to construct the cell's initial boundary for further edge growing. A unified framework of morphological parameters (dimensions and orientations was proposed for the 3D volume data. Virtual phantom was designed to validate the tilt angle measurements, while other parameters extracted from 3D segmentations were compared with manual measurements to assess the accuracy of the algorithm. The length, width and thickness of VSMCs were 62.9±14.9 μm, 4.6±0.6 μm and 6.2±1.8 μm (mean±SD. In longitudinal-circumferential plane of blood vessel, VSMCs align off the circumferential direction with two mean angles of -19.4±9.3° and 10.9±4.7°, while an out-of-plane angle (i.e., radial tilt angle was found to be 8±7.6° with median as 5.7°.A 3D segmentation algorithm was developed to reconstruct individual VSMCs of blood vessel walls based on optical image stacks. The results were validated by a virtual phantom and manual measurement. The obtained 3D geometries can be utilized in mathematical models and leads a better understanding of vascular mechanical properties and function.

  19. Amiodarona causa vasodilatação dependente do endotélio em artérias coronárias caninas Amiodarone causes endothelium-dependent vasodilation in canine coronary arteries

    Directory of Open Access Journals (Sweden)

    Alfredo José Rodrigues

    2005-03-01

    Full Text Available OBJETIVO: Avaliar os efeitos vasodilatadores da amiodarona em artérias coronárias caninas empregando soluções de amiodarona dissolvida em polisorbato 80 ou em água. MÉTODOS: Anéis de artéria coronária, com e sem o endotélio íntegro, foram imersos em solução de krebs e conectadas a um transdutor para aferição de força isométrica promovida por contração vascular. As artérias foram expostas a concentrações crescentes de polisorbato 80, amiodarona dissolvida em água, amiodarona dissolvida em polisorbato 80 e uma apresentação comercial da amiodarona (Cordarone®. Os experimentos foram conduzidos na presença e na ausência dos seguintes bloqueadores enzimáticos: apenas indometacina, Nômega-nitro-L-arginina associada à indometacina e apenas Nômega-nitro-L-arginina. RESULTADOS: O polisorbato 80 causou pequeno relaxamento não dependente do endotélio. O Cordarone®, a amiodarona dissolvida em água e em polisorbato 80 promoveram relaxamento dependente do endotélio, que foi de maior magnitude para a amiodarona dissolvida em polisorbato e para o Cordarone®. Apenas a associação de indometacina com a Nômega-nitro-L-arginina foi capaz de abolir o relaxamento dependente do endotélio provocado pela amiodarona dissolvida em polisorbato 80. CONCLUSÃO: Os resultados obtidos indicam que a vasodilatação promovida pela amiodarona em artérias coronárias caninas é causada principalmente pela estimulação da liberação de óxido nítrico e fatores endoteliais relaxantes dependentes das ciclo-oxigenases.OBJECTIVE: To assess the vasodilating effects of amiodarone on canine coronary arteries by using solutions of amiodarone dissolved in polysorbate 80 or water. METHODS: Rings of coronary arteries, with or without intact endothelium, were immersed in Krebs solution and connected to a transducer for measuring the isometric force promoted by a vascular contraction. The arteries were exposed to increasing concentrations of

  20. Effect of Shengmai Injection on Vascular Endothelial and Heart Functions in Patients with Coronary Heart Disease Complicated with Diabetes Mellitus

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ya-chen; LU Bao-jing; ZHAO Mei-hua; RONG Ye-zhi; CHEN Rui-ming

    2008-01-01

    Objective: To study the effect of Shengrnai injection (生脉注射液, SMI) on vascular endothelial and heart functions in coronary heart disease patients complicated with diabetes mellitus (CHD-DM). Methods: One hundred and twenty patients with CHD-DM, their diagnosis confirmed by coronary arteriography, were equally randomized into a control group treated with conventional treatment and a treated group treated with conventional treatment plus SMI. The changes in blood levels of nitric oxide (NO), endothelin-1 (ET-1) and angiotensin Ⅱ (Ang Ⅱ ), as well as endothelium-dependent vascular dilating function and heart function in the patients were observed before treatment and after the 3-week treatment. Results: After being treated with SMI for 3 weeks, in the treated group, blood level of NO was raised significantly from 69.8 ± 33.1 μ mol/L to 120.1 ± 50.8 μ mol/L, and ET-1 was lowered from 70.1 ± 32.1 ng/L to 46.2±21.3 ng/L, respectively (P<0.01); that of Ang Ⅱ was lowered from 81.3 ± 24.3 ng/L to 50.2 ± 27.3 ng/L (P<0.01); brachial arterial post-congestion blood flow increasing rate was raised from 389.4 ± 26.3% to 459.3 ± 27.8% (P<0.01); and the improvement in heart function as seen through the ejection fraction (EF) was increased from 44 ± 5% to 68 ± 6% (P<0.01), all the changes being more significant than those in the control group (all P<0.01). Conclusion: SMI can improve not only the endothelial function in CHD-DM patients, but also heart contraction significantly.

  1. Flow regulation in coronary vascular tree: a model study.

    Directory of Open Access Journals (Sweden)

    Xinzhou Xie

    Full Text Available Coronary blood flow can always be matched to the metabolic demand of the myocardium due to the regulation of vasoactive segments. Myocardial compressive forces play an important role in determining coronary blood flow but its impact on flow regulation is still unknown. The purpose of this study was to develop a coronary specified flow regulation model, which can integrate myocardial compressive forces and other identified regulation factors, to further investigate the coronary blood flow regulation behavior.A theoretical coronary flow regulation model including the myogenic, shear-dependent and metabolic responses was developed. Myocardial compressive forces were included in the modified wall tension model. Shear-dependent response was estimated by using the experimental data from coronary circulation. Capillary density and basal oxygen consumption were specified to corresponding to those in coronary circulation. Zero flow pressure was also modeled by using a simplified capillary model.Pressure-flow relations predicted by the proposed model are consistent with previous experimental data. The predicted diameter changes in small arteries are in good agreement with experiment observations in adenosine infusion and inhibition of NO synthesis conditions. Results demonstrate that the myocardial compressive forces acting on the vessel wall would extend the auto-regulatory range by decreasing the myogenic tone at the given perfusion pressure.Myocardial compressive forces had great impact on coronary auto-regulation effect. The proposed model was proved to be consistent with experiment observations and can be employed to investigate the coronary blood flow regulation effect in physiological and pathophysiological conditions.

  2. [Comprehensive assessment of ischemic episodes and vasomotor function of vascular endothelium in patients with type II diabetes mellitus].

    Science.gov (United States)

    Tatarchenko, I P; Posdniakova, N V; Dudukina, E A; Morozova, O I

    2007-01-01

    Value of functional state of endothelium in assessment of episodes of ischemia was studied in 93 patients (52 men and 41 women, mean age 58.3 +/- 4.8 years) divided into 2 groups. Group 1 comprised 47 patients with ischemic heart disease (IHD) and type II diabetes, group 2 comprised 46 patients with IHD without disturbances of carbohydrate metabolism. Patients of these groups had similar sex, age, and main risk factors. Examination included Holter ECG monitoring, stress test, echocardiography, test with reactive hyperemia (ultrasound measurement of endothelium dependent vasodilation of brachial artery). Number of painless ischemic episodes (PIE), total duration of episodes of ischemia, maximal depth of ST-segment lowering were greater in patients of group I compared with group 2. Correlation analysis revealed significant negative relationship between endothelial dysfunction and number and duration of episodes of ischemia, time interval between appearances of pain and ischemic ST depression.

  3. Major femoral vascular access complications after coronary diagnostic and interventional procedures

    DEFF Research Database (Denmark)

    Dencker, Ditte; Pedersen, Frants; Engstrøm, Thomas

    2016-01-01

    BACKGROUND: Vascular access complications after coronary angiography (CAG) and percutaneous coronary intervention (PCI) are known to increase morbidity, prolong hospitalization and raise hospital costs. Therefore, risk factor identification and improvement of safety strategies for vascular...... management are important. We aimed to assess the incidence of major vascular complications related to femoral access, and to identify potential risk factors. METHODS: Over a period of six years, 23,870 index procedures (CAG) were performed in two centres, prospectively entered in the database...... and retrospectively analysed. Data was obtained from the Eastern Danish Heart Registry and cross-matched with data from the Danish Vascular Registry. Index procedures were defined as the first trans-femoral procedure. Demographic, procedural and mortality data, as well as information on access complications requiring...

  4. Relaxation of rabbit corpus cavernosum smooth muscle and aortic vascular endothelium induced by new nitric oxide donor substances of the nitrosyl-ruthenium complex

    Directory of Open Access Journals (Sweden)

    Joao B. G. Cerqueira

    2008-10-01

    Full Text Available INTRODUCTION: Endothelial dysfunction characterized by endogenous nitric oxide (NO deficiency made 56% of patients affected with erectile dysfunction decline treatment with PDE-5 inhibitors. New forms of treatment are currently being developed for this group of patients. MATERIALS AND METHODS: The study compared the effect of sodium nitroprusside (SNP and two substances of the nitrosyl-ruthenium complex, cis-[Ru(bpy2(SO3(NO]PF-6-9 ("FONO1” and trans-[Ru(NH34(caffeine(NO]C13 ("LLNO1” on relaxation of rabbit corpus cavernosum smooth muscle and aortic vascular endothelium. The samples were immersed in isolated baths and precontracted with 0.1 µM phenylephrine (PE and the corresponding relaxation concentration/response curves were plotted. In order to investigate the relaxation mechanisms involved, 100 µM ODQ (a soluble guanylate cyclase-specific inhibitor, 3 µM or 10 µM oxyhemoglobin (an extracellular NO scavenger or 1 mM L-cysteine (a nitrosyl anion-specific scavenger was added to the samples. RESULTS: All the NO donors tested produced a significant level of relaxation in the vascular endothelium. In corpus cavernosum samples, FONO1 produced no significant effect, but LLNO1 and SNP induced dose-dependent relaxation with comparable potency (pEC50 = 6.14 ± 0.08 and 6.4 ± 0.14, respectively and maximum effect (Emax = 82% vs. 100%, respectively. All NO donors were found to activate soluble guanylate cyclase, since the addition of the corresponding inhibitor (100 µM ODQ completely neutralized the relaxation effect observed. The addition of oxyhemoglobin reduced the relaxation effect, but did not inhibit it completely. In aortic vascular endothelium 3 µM oxyhemoglobin decreased the relaxation effect by 26% on the average, while 10 µM oxyhemoglobin reduced it by over 52%. The addition of 100 µM L-cysteine produced no significant inhibiting effect. CONCLUSIONS: These results suggest that LLNO1 and FONO1 are potent vasodilators. LLNO1 was

  5. The management of combined coronary artery disease and peripheral vascular disease

    NARCIS (Netherlands)

    A. Cassar (Andrew); D. Poldermans (Don); C.S. Rihal (Charanjit); B.J. Gersh (Bernard)

    2010-01-01

    textabstractCoronary artery disease (CAD) and peripheral vascular disease (PVD) remain highly prevalent in the population due to population ageing, smoking, diabetes, unhealthy lifestyles, and the epidemic of obesity, and frequently coexist. The management of combined CAD and PVD is a common challen

  6. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease

    Science.gov (United States)

    Cranberry juice contains polyphenolic compounds that could improve endothelial function and reduce cardiovascular disease risk. The objective was to examine the effects of cranberry juice on vascular function in subjects with coronary artery disease. We completed an acute pilot study with no placebo...

  7. Vascular endothelial growth factor and hypoxia-inducible factor-1α gene polymorphisms and coronary collateral formation in patients with coronary chronic total occlusions

    Directory of Open Access Journals (Sweden)

    Vincent Amoah

    2016-06-01

    Full Text Available Introduction: We evaluated the association between two single nucleotide polymorphisms of the vascular endothelial growth factor gene and one of the hypoxia-inducible factor-1α gene and the degree of coronary collateral formation in patients with a coronary chronic total occlusion. Methods: Totally, 98 patients with symptomatic coronary artery disease and a chronic total occlusion observed during coronary angiography were recruited. Genotyping of two vascular endothelial growth factor promoter single nucleotide polymorphisms (−152G>A and −165C>T and the C1772T single nucleotide polymorphism of hypoxia-inducible factor-1α were performed using polymerase chain reaction and restriction fragment length polymorphism analysis. The presence and extent of collateral vessel filling was scored by blinded observers using the Rentrop grade. Results: We found no association between the vascular endothelial growth factor −152G>A, −165C>T and hypoxia-inducible factor-1α −1772C>T with the presence and filling of coronary collateral vessels. A history of percutaneous coronary intervention and transient ischaemic attack/cerebrovascular accident were associated with the presence of enhanced collateral vessel formation following binary logistic regression analysis. Conclusion: The study findings suggest that coronary collateral formation is not associated with the tested polymorphic variants of vascular endothelial growth factor and hypoxia-inducible factor-1α in patients with symptomatic coronary artery disease and the presence of a chronic total occlusion.

  8. Glycolaldehyde-derived advanced glycation end products (glycol-AGEs)-induced vascular smooth muscle cell dysfunction is regulated by the AGES-receptor (RAGE) axis in endothelium.

    Science.gov (United States)

    Nam, Mi-Hyun; Son, Won-Rak; Lee, Young Sik; Lee, Kwang-Won

    Advanced glycation end-products (AGEs) are involved in the development of vascular smooth muscle cell (VSMC) dysfunction and the progression of atherosclerosis. However, AGEs may indirectly affect VSMCs via AGEs-induced signal transduction between monocytes and human umbilical endothelial cells (HUVECs), rather than having a direct influence. This study was designed to elucidate the signaling pathway underlying AGEs-RAGE axis influence on VSMC dysfunction using a co-culture system with monocytes, HUVECs and VSMCs. AGEs stimulated production of reactive oxygen species and pro-inflammatory mediators such as tumor necrosis factor-α and interleukin-1β via extracellular-signal-regulated kinases phosphorylation and nuclear factor-κB activation in HUVECs. It was observed that AGEs-induced pro-inflammatory cytokines increase VSMC proliferation, inflammation and vascular remodeling in the co-culture system. This result implies that RAGE plays a role in AGEs-induced VSMC dysfunction. We suggest that the regulation of signal transduction via the AGEs-RAGE axis in the endothelium can be a therapeutic target for preventing atherosclerosis.

  9. Bone marrow-derived macrophages incorporate into the endothelium and influence vascular and renal function after irradiation

    NARCIS (Netherlands)

    de Cortie, Karin; Russell, Nicola S.; Coppes, Rob P.; Stewart, Fiona A.; Scharpfenecker, Marion

    Purpose: We recently demonstrated that endoglin, an ancillary transforming growth factor beta (TGF-beta) receptor, modulates vascular damage and fibrosis formation and influences renal function after kidney irradiation. We also suggested that this was partially accomplished by endoglin-mediated

  10. Bone marrow-derived macrophages incorporate into the endothelium and influence vascular and renal function after irradiation

    NARCIS (Netherlands)

    de Cortie, Karin; Russell, Nicola S.; Coppes, Rob P.; Stewart, Fiona A.; Scharpfenecker, Marion

    2014-01-01

    Purpose: We recently demonstrated that endoglin, an ancillary transforming growth factor beta (TGF-beta) receptor, modulates vascular damage and fibrosis formation and influences renal function after kidney irradiation. We also suggested that this was partially accomplished by endoglin-mediated regu

  11. Adipose tissue and vascular inflammation in coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    Enrica; Golia; Giuseppe; Limongelli; Francesco; Natale; Fabio; Fimiani; Valeria; Maddaloni; Pina; Elvira; Russo; Lucia; Riegler; Renatomaria; Bianchi; Mario; Crisci; Gaetano; Di; Palma; Paolo; Golino; Maria; Giovanna; Russo; Raffaele; Calabrò; Paolo; Calabrò

    2014-01-01

    Obesity has become an important public health issue in Western and developing countries,with well known metabolic and cardiovascular complications.In the last decades,evidence have been growing about the active role of adipose tissue as an endocrine organ in determining these pathological consequences.As a consequence of the expansion of fat depots,in obese subjects,adipose tissue cells develope a phenotypic modification,which turns into a change of the secretory output.Adipocytokines produced by both adipocytes and adipose stromal cells are involved in the modulation of glucose and lipid handling,vascular biology and,moreover,participate to the systemic inflammatory response,which characterizes obesity and metabolic syndrome.This might represent an important pathophysiological link with atherosclerotic complications and cardiovascular events.A great number of adipocytokines have been described recently,linking inflammatory mileu and vascular pathology.The understanding of these pathways is crucial not only from a pathophysiological point of view,but also to a better cardiovascular disease risk stratification and to the identification of possible therapeutic targets.The aim of this paper is to review the role of Adipocytokines as a possible link between obesity and vascular disease.

  12. Vascular Tone Regulation Induced by C-Type Natriuretic Peptide: Differences in Endothelium-Dependent and -Independent Mechanisms Involved in Normotensive and Spontaneously Hypertensive Rats

    Science.gov (United States)

    Caniffi, Carolina; Cerniello, Flavia M.; Gobetto, María N.; Sueiro, María L.; Arranz, Cristina

    2016-01-01

    Given that the role of C-type natriuretic peptide (CNP) in the regulation of vascular tone in hypertensive states is unclear, we hypothesized that impaired response of the nitric oxide system to CNP in spontaneously hypertensive rats (SHR) could affect vascular relaxation induced by the peptide in this model of hypertension, and that other endothelial systems or potassium channels opening could also be involved. We examined the effect of CNP on isolated SHR aortas, and the hindlimb vascular resistance (HVR) in response to CNP administration compared to normotensive rats. Aortas were mounted in an isometric organ bath and contracted with phenylephrine. CNP relaxed arteries in a concentration-dependent manner but was less potent in inducing relaxation in SHR. The action of CNP was diminished by removal of the endothelium, inhibition of nitric oxide synthase by Nω-nitro-L-arginine methyl ester, and inhibition of soluble guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one in both groups. In contrast, blockade of cyclooxygenase or subtype 2 bradykinin receptor increased CNP potency only in SHR. In both Wistar and SHR, CNP relaxation was blunted by tetraethylammonium and partially inhibited by BaCl2 and iberiotoxin, indicating that it was due to opening of the Kir and BKCa channels. However, SHR seem to be more sensitive to Kir channel blockade and less sensitive to BKCa channel blockade than normotensive rats. In addition, CNP decreases HVR in Wistar and SHR, but the effect of CNP increasing blood flow was more marked in SHR. We conclude that CNP induces aorta relaxation by activation of the nitric oxide system and opening of potassium channels, but the response to the peptide is impaired in conductance vessel of hypertensive rats. PMID:27936197

  13. Acute lead-induced vasoconstriction in the vascular beds of isolated perfused rat tails is endothelium-dependent

    OpenAIRE

    2010-01-01

    Chronic lead exposure induces hypertension in humans and animals, affecting endothelial function. However, studies concerning acute cardiovascular effects are lacking. We investigated the effects of acute administration of a high concentration of lead acetate (100 µΜ) on the pressor response to phenylephrine (PHE) in the tail vascular bed of male Wistar rats. Animals were anesthetized with sodium pentobarbital and heparinized. The tail artery was dissected and cannulated for drug infusio...

  14. Incidence of severe coronary stenosis in asymptomatic patients with peripheral arterial disease scheduled for major vascular surgery.

    Science.gov (United States)

    Hromadka, Milan; Baxa, Jana; Seidlerova, Jitka; Suchy, David; Sedivy, Jakub; Stepankova, Lucie; Rajdl, Daniel; Rokyta, Richard

    2016-08-01

    Peripheral arterial disease (PAD) has the risk equivalent of coronary heart disease. The biochemical parameters associated with functionally significant coronary artery stenosis were investigated in asymptomatic patients with PAD who were scheduled for major vascular intervention. A total of 50 PAD patients asymptomatic for coronary heart disease were examined using coronary computed tomography angiography (CTA). A stress myocardial CT perfusion (CTP) test was performed in patients who exhibited coronary stenosis >40%. In patients with stress-induced perfusion defects, the severity of stenosis was assessed using invasive coronary angiography including fractional flow reserve assessment. The CT findings were correlated with both classical and more recently developed parameters of atherosclerosis. According to the combined CT examination (CTA and stress CT perfusion), 36% of patients exhibited significant coronary stenosis. Stress-induced hypoperfusion was observed in 95.7% of severe stenotic lesions. After adjustment for confounders, the level of high-sensitivity troponin I was associated with severe coronary stenosis (OR 1.260 [95% CI 1.054 to 1.505]). Other biochemical parameters did not correlate with coronary stenosis. The annual mortality rate was 4%. The results of the present study confirm a significant diagnostic contribution of a complex cardiac CT examination in patients scheduled for major vascular surgery. A high prevalence of asymptomatic coronary heart disease was observed in this particular patient group. High-sensitivity measurements of troponin I correlated with the extent of the coronary stenosis.

  15. Successful Treatment of a Subclavian Artery Stenosis With a Coronary Bioresorbable Vascular Scaffold.

    Science.gov (United States)

    Giordano, Arturo; Messina, Stefano; Biondi-Zoccai, Giuseppe

    2016-08-01

    To report the use of a coronary bioresorbable vascular scaffold to treat subclavian artery disease. A 58-year-old man was admitted for left subclavian steal syndrome. Angiography showed significant left subclavian stenosis in proximity to the ostium of the left vertebral artery. To maximize radial support and minimize restenosis risk while avoiding the chance of vertebral compromise, a coronary bioresorbable vascular scaffold (3.5×28 mm) was implanted after predilation. The device was postdilated with a 1.0-mm oversized balloon, with immediate improvement in hemodynamics and symptoms. Two-year clinical and imaging follow-up confirmed vessel patency. This clinical vignette highlights the flexibility and potential of bioresorbable devices for endovascular specialists and calls for further development and use of this innovative technology. © The Author(s) 2016.

  16. Bioresorbable vascular scaffold for the treatment of coronary bifurcations: What have we learned?

    Science.gov (United States)

    Belardi, Jorge A; Albertal, Mariano

    2015-10-01

    Bioresorbable vascular scaffolds (BVS) remain experimental for the treatment of coronary bifurcations (B) and further clinical data is needed before widespread adoption in this setting. Preliminary, clinical outcome in B using a provisional stenting or double stenting approach with BVS is encouraging and close to the one observed with next-generation drug-eluting stent. Improvements in device navigability, reduction in strut bulk and reabsorption time may render the device more predictable and simpler to use.

  17. Pathology of Human Coronary and Carotid Artery Atherosclerosis and Vascular Calcification in Diabetes Mellitus.

    Science.gov (United States)

    Yahagi, Kazuyuki; Kolodgie, Frank D; Lutter, Christoph; Mori, Hiroyoshi; Romero, Maria E; Finn, Aloke V; Virmani, Renu

    2017-02-01

    The continuing increase in the prevalence of diabetes mellitus in the general population is predicted to result in a higher incidence of cardiovascular disease. Although the mechanisms of diabetes mellitus-associated progression of atherosclerosis are not fully understood, at clinical and pathological levels, there is an appreciation of increased disease burden and higher levels of arterial calcification in these subjects. Plaques within the coronary arteries of patients with diabetes mellitus generally exhibit larger necrotic cores and significantly greater inflammation consisting mainly of macrophages and T lymphocytes relative to patients without diabetes mellitus. Moreover, there is a higher incidence of healed plaque ruptures and positive remodeling in hearts from subjects with type 1 diabetes mellitus and type 2 diabetes mellitus, suggesting a more active atherogenic process. Lesion calcification in the coronary, carotid, and other arterial beds is also more extensive. Although the role of coronary artery calcification in identifying cardiovascular disease and predicting its outcome is undeniable, our understanding of how key hormonal and physiological alterations associated with diabetes mellitus such as insulin resistance and hyperglycemia influence the process of vascular calcification continues to grow. Important drivers of atherosclerotic calcification in diabetes mellitus include oxidative stress, endothelial dysfunction, alterations in mineral metabolism, increased inflammatory cytokine production, and release of osteoprogenitor cells from the marrow into the circulation. Our review will focus on the pathophysiology of type 1 diabetes mellitus- and type 2 diabetes mellitus-associated vascular disease with particular focus on coronary and carotid atherosclerotic calcification.

  18. Emergency Percutaneous Coronary Intervention Through the Left Radial Artery is Associated with Less Vascular Complications than Emergency Percutaneous Coronary Intervention Through the Femoral Artery.

    Science.gov (United States)

    Qi, Guoqing; Sun, Qi; Xia, Yue; Wei, Liye

    2017-01-01

    To compare the advantages and disadvantages of emergency percutaneous coronary intervention through the left radial artery with those of emergency percutaneous coronary intervention through the femoral artery. A total of 206 patients with acute myocardial infarction who required emergency percutaneous coronary intervention and were admitted to our hospital between January 2011 and August 2013 were divided into the following two groups: a group that underwent percutaneous coronary intervention through the left radial artery and a group that underwent percutaneous coronary intervention through the femoral artery. The times required for angiographic catheter and guiding catheter placement, the success rate of the procedure and the incidence of vascular complications in the two groups were observed. There was no significant difference in catheter placement time or the ultimate success rate of the procedure between the two groups. However, the left radial artery group showed a significantly lower incidence of vascular complications than the femoral artery group (pEmergency percutaneous coronary intervention through the left radial artery is associated with less vascular complications than emergency percutaneous coronary intervention through the femoral artery and is thus potentially advantageous for patients.

  19. Apollo Lunar Astronauts Show Higher Cardiovascular Disease Mortality: Possible Deep Space Radiation Effects on the Vascular Endothelium.

    Science.gov (United States)

    Delp, Michael D; Charvat, Jacqueline M; Limoli, Charles L; Globus, Ruth K; Ghosh, Payal

    2016-07-28

    As multiple spacefaring nations contemplate extended manned missions to Mars and the Moon, health risks could be elevated as travel goes beyond the Earth's protective magnetosphere into the more intense deep space radiation environment. The primary purpose of this study was to determine whether mortality rates due to cardiovascular disease (CVD), cancer, accidents and all other causes of death differ in (1) astronauts who never flew orbital missions in space, (2) astronauts who flew only in low Earth orbit (LEO), and (3) Apollo lunar astronauts, the only humans to have traveled beyond Earth's magnetosphere. Results show there were no differences in CVD mortality rate between non-flight (9%) and LEO (11%) astronauts. However, the CVD mortality rate among Apollo lunar astronauts (43%) was 4-5 times higher than in non-flight and LEO astronauts. To test a possible mechanistic basis for these findings, a secondary purpose was to determine the long-term effects of simulated weightlessness and space-relevant total-body irradiation on vascular responsiveness in mice. The results demonstrate that space-relevant irradiation induces a sustained vascular endothelial cell dysfunction. Such impairment is known to lead to occlusive artery disease, and may be an important risk factor for CVD among astronauts exposed to deep space radiation.

  20. Endovenous Laser Ablation of Varicose Veins Preserves Biological Properties of Vascular Endothelium and Modulates Proinflammatory Agent Profile More Favorably Than Classic Vein Stripping

    Science.gov (United States)

    Uruski, Paweł; Aniukiewicz, Krzysztof; Mikuła-Pietrasik, Justyna; Sosińska, Patrycja; Tykarski, Andrzej; Krasiński, Zbigniew

    2017-01-01

    Here we compared effect of serum from varicose patients undergoing endovenous laser ablation (EVLA) and classic vein stripping (CVS) on biological properties of endothelial cells and on the local and systemic profiles of proinflammatory agents. Results showed that serum from EVLA patients improved proliferation and reduced senescence and oxidative stress in the endothelial cells, as compared with the serum from CVS patients. These effects were related to a suppressed activity of TGF-β1, the level of which in the serum from the EVLA patients was decreased. Medium generated by the cells subjected to EVLA serum contained decreased amounts of ICAM-1, VCAM-1, and E-selectin and increased amount of uPA, whereas the serum itself contained decreased concentrations of ICAM-1, E-selectin, and P-selectin and increased concentrations of uPA, PAI-1, and TFPI. Both EVLA and CVS resulted in diversified patients' reaction with respect to a direction of postprocedure changes in proinflammatory factors' serum level. Analysis of proportions showed that the groups differed remarkably in case of ICAM-1 and ET-1, the level of which declined in a higher fraction of patients treated endovenously. Our findings indicate that EVLA preserves better than CVS the functionality of vascular endothelium and modulates better both local and systemic profile of proinflammatory mediators. PMID:28316983

  1. Endovenous Laser Ablation of Varicose Veins Preserves Biological Properties of Vascular Endothelium and Modulates Proinflammatory Agent Profile More Favorably Than Classic Vein Stripping

    Directory of Open Access Journals (Sweden)

    Paweł Uruski

    2017-01-01

    Full Text Available Here we compared effect of serum from varicose patients undergoing endovenous laser ablation (EVLA and classic vein stripping (CVS on biological properties of endothelial cells and on the local and systemic profiles of proinflammatory agents. Results showed that serum from EVLA patients improved proliferation and reduced senescence and oxidative stress in the endothelial cells, as compared with the serum from CVS patients. These effects were related to a suppressed activity of TGF-β1, the level of which in the serum from the EVLA patients was decreased. Medium generated by the cells subjected to EVLA serum contained decreased amounts of ICAM-1, VCAM-1, and E-selectin and increased amount of uPA, whereas the serum itself contained decreased concentrations of ICAM-1, E-selectin, and P-selectin and increased concentrations of uPA, PAI-1, and TFPI. Both EVLA and CVS resulted in diversified patients’ reaction with respect to a direction of postprocedure changes in proinflammatory factors’ serum level. Analysis of proportions showed that the groups differed remarkably in case of ICAM-1 and ET-1, the level of which declined in a higher fraction of patients treated endovenously. Our findings indicate that EVLA preserves better than CVS the functionality of vascular endothelium and modulates better both local and systemic profile of proinflammatory mediators.

  2. Age-related changes to vascular protease-activated receptor 2 in metabolic syndrome: a relationship between oxidative stress, receptor expression, and endothelium-dependent vasodilation.

    Science.gov (United States)

    Maruyama, Kana; Kagota, Satomi; McGuire, John J; Wakuda, Hirokazu; Yoshikawa, Noriko; Nakamura, Kazuki; Shinozuka, Kazumasa

    2017-04-01

    Protease-activated receptor 2 (PAR2) is expressed in vascular endothelium. Nitric oxide (NO) - cyclic GMP-mediated vasodilation in response to 2-furoyl-LIGRLO-amide (2fLIGRLO), a PAR2-activating peptide, is impaired in aortas from aged SHRSP.Z-Lepr(fa)/IzmDmcr (SHRSP.ZF) rats with metabolic syndrome. Here we investigated mechanisms linking PAR2's vascular effects to phenotypic characteristics of male SHRSP.ZF rats at 10, 20, and 30 weeks of age. We found vasodilation responses to either 2fLIGRLO or enzyme-mediated PAR2 activation by trypsin were sustained until 20 weeks and lessened at 30 weeks. PAR2 protein and mRNA levels were lower in aortas at 30 weeks than at 10 and 20 weeks. PAR2-mediated responses positively correlated with PAR2 protein and mRNA levels. Decreased cGMP accumulation in the presence of 2fLIGRLO paralleled the decreased relaxations elicited by nitroprusside and the cGMP analog 8-pCPT-cGMP, and the less soluble guanylyl cyclase protein at 30 weeks. 2fLIGRLO-induced relaxation was negatively correlated with serum thiobarbituric acid reactive substances, an index of oxidative stress, which increased with age. Forward stepwise data regression supported a model of age-related decreases in PAR2 function resulting from decreased PAR2 mRNA and increased oxidative stress. We conclude that decreased responsiveness of aortic smooth muscle to NO and downregulation of receptor expression impair PAR2 functions at later stages of metabolic syndrome in SHRSP.ZF rats.

  3. Differential Sensitivities of Pulmonary and Coronary Arteries to Hemoglobin-Based Oxygen Carriers and Nitrovasodilators: Study in a Bovine Ex Vivo Model of Vascular Strips

    Science.gov (United States)

    2010-01-01

    lsev ier.c omflocate/ vph Differential sensitivities of pulmonary and coronary arteries to hemoglobin-based oxygen carriers and nitrovasodilators...preparation has been used extensively in multiple studies that led to the discovery of NO as endothelium-derived relaxing factor (lgnarro et al., 1984...G.M .• Wood, K.S., Chaudhuri, G., 1988a. Pharmacological evidence that endothelium-derived relaxing factor is nitric oxide: use or pyrogallol and

  4. Tibolone and its metabolites acutely relax rabbit coronary arteries in vitro

    DEFF Research Database (Denmark)

    Lund, Claus Otto; Nilas, Lisbeth; Pedersen, Susan Helene

    2004-01-01

    OBJECTIVES: To compare the acute effects of estradiol, tibolone and its metabolites on coronary arteries in vitro and to investigate possible vascular mechanisms. METHODS: Coronary artery ring segments from female rabbits were mounted in myographs for isometric tension recordings. Concentration.......05, ANOVA). CONCLUSIONS: Our data indicate that the acute relaxation induced by tibolone and its metabolites in coronary arteries in vitro are probably mediated by endothelium independent inhibition of calcium channels but may also involve an endothelium-dependent mechanism via nitric oxide. The effect...

  5. Beneficial Effects of Calcitriol on Hypertension, Glucose Intolerance, Impairment of Endothelium-Dependent Vascular Relaxation, and Visceral Adiposity in Fructose-Fed Hypertensive Rats

    Science.gov (United States)

    Chou, Chu-Lin; Pang, Cheng-Yoong; Lee, Tony J. F.; Fang, Te-Chao

    2015-01-01

    Besides regulating calcium homeostasis, the effects of vitamin D on vascular tone and metabolic disturbances remain scarce in the literature despite an increase intake with high-fructose corn syrup worldwide. We investigated the effects of calcitriol, an active form of vitamin D, on vascular relaxation, glucose tolerance, and visceral fat pads in fructose-fed rats. Male Wistar-Kyoto rats were divided into 4 groups (n = 6 per group). Group Con: standard chow diet for 8 weeks; Group Fru: high-fructose diet (60% fructose) for 8 weeks; Group Fru-HVD: high-fructose diet as Group Fru, high-dose calcitriol treatment (20 ng / 100 g body weight per day) 4 weeks after the beginning of fructose feeding; and Group Fru-LVD: high-fructose diet as Group Fru, low-dose calcitriol treatment (10 ng / 100 g body weight per day) 4 weeks after the beginning of fructose feeding. Systolic blood pressure was measured twice a week by the tail-cuff method. Blood was examined for serum ionized calcium, phosphate, creatinine, glucose, triglycerides, and total cholesterol. Intra-peritoneal glucose intolerance test, aortic vascular reactivity, the weight of visceral fat pads, adipose size, and adipose angiotensin II levels were analyzed at the end of the study. The results showed that the fructose-fed rats significantly developed hypertension, impaired glucose tolerance, heavier weight and larger adipose size of visceral fat pads, and raised adipose angiotensin II expressions compared with the control rats. High- and low-dose calcitriol reduced modestly systolic blood pressure, increased endothelium-dependent aortic relaxation, ameliorated glucose intolerance, reduced the weight and adipose size of visceral fat pads, and lowered adipose angiotensin II expressions in the fructose-fed rats. However, high-dose calcitriol treatment mildly increased serum ionized calcium levels (1.44 ± 0.05 mmol/L). These results suggest a protective role of calcitriol treatment on endothelial function, glucose

  6. Beneficial effects of calcitriol on hypertension, glucose intolerance, impairment of endothelium-dependent vascular relaxation, and visceral adiposity in fructose-fed hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Chu-Lin Chou

    Full Text Available Besides regulating calcium homeostasis, the effects of vitamin D on vascular tone and metabolic disturbances remain scarce in the literature despite an increase intake with high-fructose corn syrup worldwide. We investigated the effects of calcitriol, an active form of vitamin D, on vascular relaxation, glucose tolerance, and visceral fat pads in fructose-fed rats. Male Wistar-Kyoto rats were divided into 4 groups (n = 6 per group. Group Con: standard chow diet for 8 weeks; Group Fru: high-fructose diet (60% fructose for 8 weeks; Group Fru-HVD: high-fructose diet as Group Fru, high-dose calcitriol treatment (20 ng / 100 g body weight per day 4 weeks after the beginning of fructose feeding; and Group Fru-LVD: high-fructose diet as Group Fru, low-dose calcitriol treatment (10 ng / 100 g body weight per day 4 weeks after the beginning of fructose feeding. Systolic blood pressure was measured twice a week by the tail-cuff method. Blood was examined for serum ionized calcium, phosphate, creatinine, glucose, triglycerides, and total cholesterol. Intra-peritoneal glucose intolerance test, aortic vascular reactivity, the weight of visceral fat pads, adipose size, and adipose angiotensin II levels were analyzed at the end of the study. The results showed that the fructose-fed rats significantly developed hypertension, impaired glucose tolerance, heavier weight and larger adipose size of visceral fat pads, and raised adipose angiotensin II expressions compared with the control rats. High- and low-dose calcitriol reduced modestly systolic blood pressure, increased endothelium-dependent aortic relaxation, ameliorated glucose intolerance, reduced the weight and adipose size of visceral fat pads, and lowered adipose angiotensin II expressions in the fructose-fed rats. However, high-dose calcitriol treatment mildly increased serum ionized calcium levels (1.44 ± 0.05 mmol/L. These results suggest a protective role of calcitriol treatment on endothelial

  7. Beneficial effects of calcitriol on hypertension, glucose intolerance, impairment of endothelium-dependent vascular relaxation, and visceral adiposity in fructose-fed hypertensive rats.

    Science.gov (United States)

    Chou, Chu-Lin; Pang, Cheng-Yoong; Lee, Tony J F; Fang, Te-Chao

    2015-01-01

    Besides regulating calcium homeostasis, the effects of vitamin D on vascular tone and metabolic disturbances remain scarce in the literature despite an increase intake with high-fructose corn syrup worldwide. We investigated the effects of calcitriol, an active form of vitamin D, on vascular relaxation, glucose tolerance, and visceral fat pads in fructose-fed rats. Male Wistar-Kyoto rats were divided into 4 groups (n = 6 per group). Group Con: standard chow diet for 8 weeks; Group Fru: high-fructose diet (60% fructose) for 8 weeks; Group Fru-HVD: high-fructose diet as Group Fru, high-dose calcitriol treatment (20 ng / 100 g body weight per day) 4 weeks after the beginning of fructose feeding; and Group Fru-LVD: high-fructose diet as Group Fru, low-dose calcitriol treatment (10 ng / 100 g body weight per day) 4 weeks after the beginning of fructose feeding. Systolic blood pressure was measured twice a week by the tail-cuff method. Blood was examined for serum ionized calcium, phosphate, creatinine, glucose, triglycerides, and total cholesterol. Intra-peritoneal glucose intolerance test, aortic vascular reactivity, the weight of visceral fat pads, adipose size, and adipose angiotensin II levels were analyzed at the end of the study. The results showed that the fructose-fed rats significantly developed hypertension, impaired glucose tolerance, heavier weight and larger adipose size of visceral fat pads, and raised adipose angiotensin II expressions compared with the control rats. High- and low-dose calcitriol reduced modestly systolic blood pressure, increased endothelium-dependent aortic relaxation, ameliorated glucose intolerance, reduced the weight and adipose size of visceral fat pads, and lowered adipose angiotensin II expressions in the fructose-fed rats. However, high-dose calcitriol treatment mildly increased serum ionized calcium levels (1.44 ± 0.05 mmol/L). These results suggest a protective role of calcitriol treatment on endothelial function, glucose

  8. Vascular endothelium derived endothelin-1 is required for normal heart function after chronic pressure overload in mice.

    Directory of Open Access Journals (Sweden)

    Susi Heiden

    Full Text Available BACKGROUND: Endothelin-1 participates in the pathophysiology of heart failure. The reasons for the lack of beneficial effect of endothelin antagonists in heart failure patients remain however speculative. The anti-apoptotic properties of ET-1 on cardiomyocytes could be a reasonable explanation. We therefore hypothesized that blocking the pro-apoptotic TNF-α pathway using pentoxifylline could prevent the deleterious effect of the lack of ET-1 in a model for heart failure. METHODS: We performed transaortic constriction (TAC in vascular endothelial cells specific ET-1 deficient (VEETKO and wild type (WT mice (n = 5-9 and treated them with pentoxifylline for twelve weeks. RESULTS: TAC induced a cardiac hypertrophy in VEETKO and WT mice but a reduction of fractional shortening could be detected by echocardiography in VEETKO mice only. Cardiomyocyte diameter was significantly increased by TAC in VEETKO mice only. Pentoxifylline treatment prevented cardiac hypertrophy and reduction of fractional shortening in VEETKO mice but decreased fractional shortening in WT mice. Collagen deposition and number of apoptotic cells remained stable between the groups as did TNF-α, caspase-3 and caspase-8 messenger RNA expression levels. TAC surgery enhanced ANP, BNP and bcl2 expression. Pentoxifylline treatment reduced expression levels of BNP, bcl2 and bax. CONCLUSIONS: Lack of endothelial ET-1 worsened the impact of TAC-induced pressure overload on cardiac function, indicating the crucial role of ET-1 for normal cardiac function under stress. Moreover, we put in light a TNF-α-independent beneficial effect of pentoxifylline in the VEETKO mice suggesting a therapeutic potential for pentoxifylline in a subpopulation of heart failure patients at higher risk.

  9. Study on Effect of Zhixinkang Capsule (脂欣康胶囊)in Treating Unstable Effort Angina and Hyperlipidemia and Its Function in Vascular Endothelium Protection

    Institute of Scientific and Technical Information of China (English)

    张文高; 颜亭祥; 高福军; 孟宪忠; 刘建平; 尹格平; 刘丽莉; 罗南萍; 史炳娥; 马学盛

    2003-01-01

    Objective:To observe the clinical effect and protection of vascular endothelium of Zhixinkang Capsule (ZXKC) in middle-aged and old people with unstable effort angina and hyperlipidemia.Methods: Sixty-five patients with unstable effort angina were randomly divided into ZXKC group (34 cases)and control group (31 cases). Conventional western medical therapy was given to both groups, with ZXKC group receiving additional ZXKC treatment. Data of 20 healthy persons were taken as normal group. Forty-eight patients with hyperlipidemia were divided into ZXKC group treated with ZXKC (31 cases) and control group treated with Yixintong (17 cases). The changes of clinical symptoms and laboratory indexes in all the patients were observed before and after treatment. Results: In patients with unstable effort angina, the efficacy of treatment of ZXKC, the withdrawal rate of nitroglycerin, the relieving of symptoms, the improvement of the electrocardiogram, the counts of circulating endothelial cells, the content of platelet P-selectin, the content of plasma endothelin (ET), the activity of superoxide dismutase (SOD) and the activity of malonyldialdehyde (MDA) were all better than those in the control group. In patients with hyperlipidemia, there was no significant difference in lipids reduction between ZXKC group and the control group. In both groups, the total cholesterol (TC), triglyceride (TG), low density lipoprotein-cholesterol (LDL-C), lipoprotein(a) [Lp(a)], ET, oxidized low density lipoprotein, MDA, arteriosclerotic index (AI) all lowered obviously, while the SOD, HDL-C and calcitonin gene-related peptide (CGRP) were all elevated markedly. In the ZXKC group, the nitric oxide(NO) increased significantly whereas the ET/CGRP and ET/NO decreased markedly. The total effective rate in symptom relieving, the markedly effective rate, the reduction of TC, ET and ET/CGRP, and the elevation of SOD in ZXKC group were all superior to those in the control group. Conclusion: ZXKC could

  10. Known players, new interplay in atherogenesis: Chronic shear stress and carbamylated-LDL induce and modulate expression of atherogenic LR11 in human coronary artery endothelium.

    Science.gov (United States)

    Bajari, Tarek M; Winnicki, Wolfgang; Gensberger, Eva-Theres; Scharrer, Susanna I; Regele, Heinz; Aumayr, Klaus; Kopecky, Chantal; Gmeiner, Bernhard M; Hermann, Marcela; Zeillinger, Robert; Sengölge, Gürkan

    2014-02-01

    In this study we examined whether low-density lipoprotein (LDL) receptor family members represent a link between blood flow characteristics and modified low-density lipoproteins involved in endothelial injury, a pivotal factor in atherogenesis. We demonstrated the expression of pro-atherogenic LDL receptor relative (LR11) for the first time in human coronary artery endothelial cells (HCAEC) in vitro and in vivo. Next, LR11 expression and regulation were explored in HCAEC cultured conventionally or on the inner surface of hollow fiber capillaries under exposure to shear stress for 10 days in the presence or absence of LDL. There was no LR11 expression under static conditions. When exposed to chronic low shear stress (2.5 dynes/cm²) transmembrane and soluble endothelial-LR11 were detected in high levels irrespective of the type of LDL added (carbamylated or native). In contrast, chronic high shear stress (25 dynes/cm²) inhibited the LR11-inducing effect of LDL such that transmembrane and soluble LR11 expression became non-detectable with native LDL. Carbamylated LDL significantly counteracted this atheroprotective effect of high shear stress as shown by lower, yet sustained expression of soluble and transmembrane LR11. Oxidised LDL showed similar effects compared to carbamylated LDL but caused significantly lower LR11 expression under chronic high shear stress. Medium from HCAEC under LR11-inducing conditions enhanced vascular smooth muscle cell migration, which was abrogated by the anti-LR11 antibody. Expression of LR11 depended entirely on p38MAPK phosphorylation. We conclude that coronary endothelial LR11 expression modulated by LDL and chronic shear stress contributes to atherogenesis. LR11 and p38MAPK are potential targets for prevention of atherosclerosis.

  11. Endothelium-dependent vasodilation in response to Pseudomonas aeruginosa lipopolysaccharide: an in vitro study on canine arteries

    Directory of Open Access Journals (Sweden)

    P.R.B. Evora

    1998-10-01

    Full Text Available Early systemic arterial hypotension is a common clinical feature of Pseudomonas septicemia. To determine if Pseudomonas aeruginosa endotoxin induces the release of endothelium-derived nitric oxide (EDNO, an endogenous nitrovasodilator, segments of canine femoral, renal, hepatic, superior mesenteric, and left circumflex coronary arteries were suspended in organ chambers (physiological salt solution, 95% O2/5% CO2, pH 7.4, 37oC to measure isometric force. In arterial segments contracted with 2 µM prostaglandin F2a, Pseudomonas endotoxin (lipopolysaccharide (LPS serotype 10(Habs from Pseudomonas aeruginosa (0.05 to 0.50 mg/ml induced concentration-dependent relaxation of segments with endothelium (P<0.05 but no significant change in tension of arteries without endothelium. Endothelium-dependent relaxation in response to Pseudomonas LPS occurred in the presence of 1 µM indomethacin, but could be blocked in the coronary artery with 10 µM NG-monomethyl-L-arginine (L-NMMA, a competitive inhibitor of nitric oxide synthesis from L-arginine. The inhibitory effect of L-NMMA on LPS-mediated vasorelaxation of the coronary artery could be reversed by exogenous 100 µM L-arginine but not by 100 µM D-arginine. These experiments indicate that Pseudomonas endotoxin induces synthesis of nitric oxide from L-arginine by the vascular endothelium. LPS-mediated production of EDNO by the endothelium, possibly through the action of constitutive nitric oxide synthase (NOSc, may decrease systemic vascular resistance and may be the mechanism of early hypotension characteristic of Pseudomonas septicemia.

  12. Targeting of ICAM-1 on vascular endothelium under static and shear stress conditions using a liposomal Gd-based MRI contrast agent

    NARCIS (Netherlands)

    Paulis, L.E.M.; Jacobs, I.; Akker, N. van de; Geelen, T.; Molin, D.; Starmans, L.W.; Nicolay, K.; Strijkers, G.J.

    2012-01-01

    ABSTRACT: BACKGROUND: The upregulation of intercellular adhesion molecule-1 (ICAM-1) on the endothelium of bloodvessels in response to pro-inflammatory stimuli is of major importance for the regulation oflocal inflammation in cardiovascular diseases such as atherosclerosis, myocardial infarctionand

  13. Tissue speciality of endothelium-dependent vascular relaxation mediated by EPA and its relationship with pathophysiological property%EPA介导内皮依赖性舒血管效应的组织特异性及其在动脉粥样硬化形成中的特性

    Institute of Scientific and Technical Information of China (English)

    王莉莉; 张雁芳; 路新强; 汪海

    2001-01-01

    目的:探讨不同种属动物、不同区域血管内皮细胞乙酰胆碱激活蛋白(endothelial protein acetivated by acetylcholine,EPA)介导内皮依赖性舒血管效应的特性及其在高血脂诱发动脉粥样硬化形成过程中的变化特征.方法:采用离体血管条实验方法,以去甲肾上腺素预收缩血管,观察乙酰胆碱(ACh)诱导正常和高血脂动物血管舒张反应,并计算EC50.结果:在兔主动脉、颈动脉、股动脉、肺动脉、肾动脉,猫主动脉、股动脉、肾动脉、肠系膜动脉、冠状动脉,ACh 均诱导内皮依赖性血管舒张反应,但EC50值不同.兔血管中,EPA对于ACh敏感性的顺序依次为肺动脉>肾动脉>主动脉>股动脉>颈动脉.在猫血管中其顺序为冠状动脉>主动脉>股动脉>肠系膜动脉>肾动脉.在高血脂诱发动脉粥样硬化兔主动脉、颈动脉及肺动脉上,ACh 诱导的舒张反应明显降低,但在肾动脉和股动脉上无显著变化.结论:EPA介导的内皮依赖性血管舒张反应广泛存在于猫、兔不同组织的动脉血管上,但不同种属动物、不同区域组织血管EPA对于ACh的敏感性不同.在高血脂诱发兔动脉粥样硬化的实验模型上,EPA功能降低.%Objective:To study the tissue speciality of endothelium-dependent vascular relaxation mediated by endothelial protein activated by acetylcholine (EPA)and its relationship with atherosclerosis.Methods:The tension of the isolated artery preparations was recorded using isometric-tension method and the isolated endothelium-intact vessels derived from normal and hyperlipidemic animal artery.Results:The EPA-mediated endothelium-dependent vascular relaxation was exhibited in rabbit aorta, renal, femoral, carotid, pulmonary arteries and cat aorta, renal, femoral, mesentery, coronary arteries but with different EC50. The sensitivity of EPA to ACh in descending order: pulmonary>renal>aorta>femoral>carotid arteries in rabbits. In cats,coronary

  14. 内皮源性缩血管因子花生四烯酸代谢物的作用多样性%Diversity of endothelium-derived vasocontracting factors--arachidonic acid metabolites

    Institute of Scientific and Technical Information of China (English)

    KURAHASHI Kazuyoshi; NISHIHASHI Tsuyoshi; TRANDAFIR Cristina Corina; WANG Ai-Min; MURAKAMI Shizuka; JI Xu

    2003-01-01

    Vascular endothelium releases vasocontracting and/or vasorelaxing substances. Here, we report the diversity of endothelium-derived vasocontracting factors (EDCFs), arachidonic acid metabolites, and discuss the pathophysiological significance. In the canine basilar artery and the rabbit intrapulmonary artery, acetylcholine-induced contractions (Ach-induced EDC) are due to endothelial thromboxane A2 (TXA2) (TXA2-type). The Ach-induced EDC in the rabbit coronary artery is due to endothelial leukotrienes (LTs) (LTs-type). In addition, in the rat coronary artery, nicotine and noradrenaline (Nad)-induced EDCs are due to endothelial COX-metabolites (COX metabolite-type). These arachidonic acid metabolites derived from endothelium (activation by vasoactive substances including Ach, Nad and nicotine) cause a contraction of vascular smooth muscle cells and may disturb the local circulation. These EDCFs (TXA2, LTs and COX-metabolites) may be involved in the pathophysiology of cardiovascular immuno-inflammatory diseases.

  15. Adenosine A2A receptor regulates expression of vascular endothelial growth factor in feto-placental endothelium from normal and late-onset pre-eclamptic pregnancies.

    Science.gov (United States)

    Acurio, Jesenia; Herlitz, Kurt; Troncoso, Felipe; Aguayo, Claudio; Bertoglia, Patricio; Escudero, Carlos

    2017-03-01

    We aim to investigate whether A2A/nitric oxide-mediated regulation of vascular endothelial growth factor (VEGF) expression is impaired in feto-placental endothelial cells from late-onset pre-eclampsia. Cultures of human umbilical vein endothelial cells (HUVECs) and human placental microvascular endothelial cells (hPMECs) from normal and pre-eclamptic pregnancies were used. Assays by using small interference RNA (siRNA) for A2A were performed, and transfected cells were used for estimation of messenger RNA (mRNA) levels of VEGF, as well as for cell proliferation and angiogenesis in vitro. CGS-21680 (A2A agonist, 24 h) increases HUVEC and hPMEC proliferation in a dose response manner. Furthermore, similar to CGS-21680, the nitric oxide donor, S-nitroso-N-acetyl-penicillamine oxide (SNAP), increased cell proliferation in a dose response manner (logEC50 10(-9.2) M). In hPMEC, CGS-21680 increased VEGF protein levels in both normal (∼1.5-fold) and pre-eclamptic pregnancies (∼1.2-fold), an effect blocked by the A2A antagonist, ZM-241385 (10(-5) M) and the inhibitor of NO synthase, N ω-nitro-L-arginine methyl ester hydrochloride (L-NAME). Subsequently, SNAP partially recovered cell proliferation and in vitro angiogenesis capacity of cells from normal pregnancies exposed to siRNA for A2A. CGS-21680 also increased (∼1.5-fold) the level of VEGF mRNA in HUVEC from normal pregnancies, but not in pre-eclampsia. Additionally, transfection with siRNA for A2A decrease (∼30 %) the level of mRNA for VEGF in normal pregnancy compared to untransfected cells, an effect partially reversed by co-incubation with SNAP. The A2A-NO-VEGF pathway is present in endothelium from microcirculation and macrocirculation in both normal and pre-eclamptic pregnancies. However, NO signaling pathway seems to be impaired in HUVEC from pre-eclampsia.

  16. Influence of acute renal failure on coronary vasoregulation in dogs.

    Science.gov (United States)

    Kingma, John G; Vincent, Chantal; Rouleau, Jacques R; Kingma, Iris

    2006-05-01

    Impaired renal function is associated with an increased risk for cardiovascular events and death, but the pathophysiology is poorly defined. The hypothesis that coronary blood flow regulation and distribution of ventricular blood flow could be compromised during acute renal failure (ARF) was tested. In two separate groups (n = 14 each) of dogs with ARF, (1) coronary autoregulation (pressure-flow relations), vascular reserve (reactive hyperemia), and myocardial blood flow distribution (microspheres) and (2) coronary vessel responses to intracoronary infusion of select endothelium-dependent and -independent vasodilators were evaluated. In addition, coronary pressure-flow relations and vascular reserve after inhibition of nitric oxide and prostaglandin release were evaluated. Under resting conditions, myocardial oxygen consumption increased in dogs with ARF compared with no renal failure (NRF; 11.8 +/- 9.2 versus 5.0 +/- 1.5 ml O(2)/min per 100 g; P = 0.01), and the autoregulatory break point of the coronary pressure-flow relation was shifted to higher diastolic coronary pressures (60 +/- 17 versus 52 +/- 8 mmHg in NRF; P = 0.003); the latter was shifted further rightward after inhibition of both nitric oxide and prostaglandin release. The endocardial/epicardial blood flow ratio was comparable for both groups, suggesting preserved ventricular distribution of blood flow. In dogs with ARF, coronary vascular conductance also was reduced (P = 0.001 versus NRF), but coronary zero-flow pressure was unchanged. Vessel reactivity to each endothelium-dependent/independent compound also was blunted significantly. In conclusion, under resting conditions, coronary vascular tone, reserve, and vessel reactivity are markedly diminished with ARF, suggesting impaired vascular function. Consequently, during ARF, small increases in myocardial oxygen demand would induce subendocardial ischemia as a result of a limited capacity to increase oxygen supply and thereby contribute to higher

  17. Functional characteristics of coronary vasomotor function following intramyocardial gene therapy with naked DNA encoding for vascular endothelial growth factor 165

    NARCIS (Netherlands)

    Tio, RA; Wijpkema, JS; Tan, ES; Asselbergs, FW; Hospers, GAP; Jessurun, GAJ; Zijlstra, F

    2005-01-01

    Vascular endothelial growth factor (VEGF) is a potent angiogenic factor. VEGF gene therapy improves perfusion of ischemic myocardium in experimental models and possibly in patients with end-stage coronary artery disease. In addition to its proliferative and migratory effect on endothelial cells, it

  18. Endoplasmic reticulum stress induced by Thapsigargin in vascular smooth muscle cells of rat coronary artery

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-yan; DENG Chun-yu; JIANG Li

    2016-01-01

    AIM:To establish the endoplasmic reticulum stress ( ERS) cell model in vascular smooth muscle cells ( VSMCs) of Sprague-Dawley (SD) rats.METHODS:Under sterile condition, the coronary arteries were isolated from SD rats .The primary VSMCs were cultured by tissue-sticking method , and observed the basic morphological characteristics under optical microscope .The marker proteins of VSMCs including α-smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain ( SM-MHC) were identified by immuno-fluorescence technique .VSMCs were treated with thapsigargin (0.5, 1 and 2 μmol/L) for 24 h, and the expression levels of binding immunoglobulin protein (BiP) and C/EBP homologus protein (CHOP), the marker molecules of ERS, were detected using Western blotting.RESULTS:VSMCs climbed out from coronary artery tissues after about six days , and the cells had a nice state and formed the VSMC-like typical "peak valley".The results of immunofluorescence technique show that the marker proteins of VSMCs ,α-SMA and SM-MHC were expressed significantly .The results of Western blotting show that the protein expression levels of BiP and CHOP were increased by thapsigargin in a dose-dependent manner .CONCLUSION:VSMCs can be successfully cultured by tissue-sticking method and built the ERS model induced by thapsigargin .

  19. Assessment by dipyridamole-thallium-201 myocardial scintigraphy of coronary risk before peripheral vascular surgery

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, R.N.; Tellier, P.; Larmignat, P.; Azorin, J.; Fischbein, L.; Beaudet, B.; Cadilhac, P.; Cupa, M.; De Saint Florent, G.; Vulpillat, M.

    1988-05-01

    From October 1983 to January 1985, 46 patients (38 men and 8 women; average age, 60 years; range, 37 to 83 years) underwent peripheral vascular surgery of either the internal carotid artery or the arteries of the lower limbs. Each patient had a thorough clinical examination, an ECG, and a dipyridamole-thallium-201 myocardial scan before operation. On the basis of results, they were divided into two groups: 20 patients with and 26 patients without chronic ischemic heart disease. Three major cardiac events were noted during or after a period of 1 month after surgery: There were two deaths due to cardiac ischemic events and one patient had postoperative unstable angina pectoris. These three patients were classified in the coronary group (NS). When the patients were classified on the basis of whether or not there was thallium redistribution on serial images after infusion of dipyridamole, 14 with redistribution and 32 without redistribution were noted. The three patients who had major cardiac events were in the former group (p less than 0.04). Our data suggest that patients in whom redistribution occurs have a high incidence of postoperative ischemic events. These patients should be considered for particular preoperative coronary care to avoid major postoperative cardiac events and to increase chances of survival.

  20. High-density lipoprotein of patients with breast cancer complicated with type 2 diabetes mellitus promotes cancer cells adhesion to vascular endothelium via ICAM-1 and VCAM-1 upregulation.

    Science.gov (United States)

    Huang, Xiaoqin; He, Dan; Ming, Jia; He, Yubin; Zhou, Champion; Ren, Hui; He, Xin; Wang, Chenguang; Jin, Jingru; Ji, Liang; Willard, Belinda; Pan, Bing; Zheng, Lemin

    2016-02-01

    Adhesion of disseminating tumor cells to vascular endothelium is a pivotal starting point in the metastasis cascade. We have shown previously that diabetic high-density lipoprotein (HDL) has the capability of promoting breast cancer metastasis, and this report summarizes our more recent work studying the role of abnormal HDL in facilitating the adhesion of the circulating tumor cells to the endothelium. This is an initiating step in breast cancer metastasis, and this work assesses the role of ICAM-1 and VCAM-1 in this process. MDA-MB-231, MCF 7, and human umbilical vein endothelial cells (HUVECs) were treated with normal HDL from healthy controls (N-HDL), HDL from breast cancer patients (B-HDL), or HDL from breast cancer patients complicated with type 2 diabetes mellitus (BD-HDL), and the cell adhesion abilities were determined. ICAM-1 and VCAM-1 expression as well as the protein kinase C (PKC) activity were evaluated. The effect of PKC inhibitor and PKC siRNA on adhesion was also studied. The immunohistochemical staining of ICAM-1, VCAM-1, and E-selectin from breast cancer patients and breast cancer patients complicated with type 2 diabetes mellitus (T2DM) were examined. Our results indicate that BD-HDL promoted an increase in breast cancer cell adhesion to HUVECs and stimulated higher ICAM-1 and VCAM-1 expression on the cells surface of both breast cancer and HUVEC cells, along with the activation of PKC. Increased tumor cell (TC)-HUVEC adhesion, as well as ICAM-1 and VCAM-1 expression induced by BD-HDL, could be inhibited by staurosporine and PKC siRNA. In addition, a Db/db type 2 diabetes mouse model has more TC-Vascular Endothelium adhesion compared to a normal model. However, BD patients have a lower expression of ICAM-1, VCAM-1, and E-selectin in their tumor tissues. BD-HDL facilitates the adhesion of tumor cells to vascular endothelium by upregulating the expression of ICAM-1 and VCAM-1, thereby promoting the initial progression of breast cancer metastasis

  1. Endothelium-dependent relaxation of blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Hynes, M.R.

    1987-01-01

    Dilation of blood vessels in response to a large number of agents has been shown to be dependent on an intact vascular endothelium. The present studies examine some aspects of endothelium-dependent vasodilation in blood vessels of the rabbit and rat. Using the rabbit ear artery and the subtype-selective muscarinic antagonist pirenzepine, muscarinic receptors of the endothelium and smooth muscle cells were shown to be of the low affinity M/sub 2/ subtype. Inhibition of (/sup 3/H)(-)quinuclidinyl benzilate was used to determine affinity for the smooth muscle receptors while antagonism of methacholine induced vasodilation yielded the endothelial cell receptor affinity. The effect of increasing age (1-27 months) on endothelium-dependent relaxation was studied in aortic rings, perfused tail artery and perfused mesenteric bed of the Fisher 344 rat. The influence of endothelium on contractile responses was examined using the perfused caudal artery.

  2. Percutaneous coronary intervention with ABSORB biodegradable vascular scaffold in patients with left anterior descending artery disease

    Directory of Open Access Journals (Sweden)

    К. М. Ваккосов

    2017-04-01

    Full Text Available Aim. The article evaluates 30-day results of percutaneous coronary intervention (PCI with ABSORB biodegradable vascular scaffold (BVS implanted in the case of stenosis of the left anterior descending (LAD coronary artery in patients with stable angina.Methods. 64 patients with significant (≥ 70% LAD disease were included in the study. At 30 days, scaffold thrombosis and major adverse cardiovascular events (all-cause mortality, myocardial infarction, stroke, target vessel revascularization were evaluated. The indicator of successful percutaneous coronary intervention (residual stenosis ≤20% in the presence of counterpulsation corresponding to TIMI 3rd Grade and in the absence of significant in-patient clinical complications and successful intervention assessed by clinical criteria (successful percutaneous coronary intervention alongside with a decrease in objective and subjective symptoms of myocardial ischemia, or their complete disappearance were also analyzed. Results. Mean age of patients was 61.6±8.5 years, with males accounting for 64%; 33% had earlier MI, 14% – diabetes mellitus. Mean left ventricular ejection fraction was 61.3±6.8%. Left anterior descending artery disease was presented in 89% of patients with SYNTAX Score 6.6±2.2. Mean number of implanted stents was 1.2±0.4, with mean length of the stented segment equal to18.7±1.8 mm and mean diameter 3.2±0.3 mm. At 30-day follow-up, the success of intervention assessed by clinical criteria amounted to 96.9% (n=62; that of myocardial infarction 3.1% (n=2; stent thrombosis 1.56% (n=1; repeated revascularization 1.56% (n=1; major adverse cardiovascular events (MACE 3.1%.Conclusion. The implantation of everolimus-eluting BVS for LAD stenosis demonstrates satisfactory results at 30-day follow-up.Received 16 January 2017. Accepted 21 March 2017.Financing: The study did not have sponsorship.Conflict of interest: The authors declare no conflict of interest.

  3. FGFR-1 is required by epicardium-derived cells for myocardial invasion and correct coronary vascular lineage differentiation.

    Science.gov (United States)

    Pennisi, David J; Mikawa, Takashi

    2009-04-01

    Critical steps in coronary vascular formation include the epithelial-mesenchyme transition (EMT) that epicardial cells undergo to become sub-epicardial; the invasion of the myocardium; and the differentiation of coronary lineages. However, the factors controlling these processes are not completely understood. Epicardial and coronary vascular precursors migrate to the avascular heart tube during embryogenesis via the proepicardium (PE). Here, we show that in the quail embryo fibroblast growth factor receptor (FGFR)-1 is expressed in a spatially and temporally restricted manner in the PE and epicardium-derived cells, including vascular endothelial precursors, and is up-regulated in epicardial cells after EMT. We used replication-defective retroviral vectors to over-express or knock-down FGFR-1 in the PE. FGFR-1 over-expression resulted in increased epicardial EMT. Knock-down of FGFR-1, however, did not inhibit epicardial EMT but greatly compromised the ability of PE progeny to invade the myocardium. The latter could, however, contribute to endothelia and smooth muscle of sub-epicardial vessels. Correct FGFR-1 levels were also important for correct coronary lineage differentiation with, at E12, an increase in the proportion of endothelial cells amongst FGFR-1 over-expressing PE progeny and a decrease in the proportion of smooth muscle cells in antisense FGFR-1 virus-infected PE progeny. Finally, in a heart explant system, constitutive activation of FGFR-1 signaling in epicardial cells resulted in increased delamination from the epicardium, invasion of the sub-epicardium, and invasion of the myocardium. These data reveal novel roles for FGFR-1 signaling in epicardial biology and coronary vascular lineage differentiation, and point to potential new therapeutic avenues.

  4. A comparison of genome-wide DNA methylation patterns between different vascular tissues from patients with coronary heart disease.

    Science.gov (United States)

    Nazarenko, Maria S; Markov, Anton V; Lebedev, Igor N; Freidin, Maxim B; Sleptcov, Aleksei A; Koroleva, Iuliya A; Frolov, Aleksei V; Popov, Vadim A; Barbarash, Olga L; Puzyrev, Valery P

    2015-01-01

    Epigenetic mechanisms of gene regulation in context of cardiovascular diseases are of considerable interest. So far, our current knowledge of the DNA methylation profiles for atherosclerosis affected and healthy human vascular tissues is still limited. Using the Illumina Infinium Human Methylation27 BeadChip, we performed a genome-wide analysis of DNA methylation in right coronary artery in the area of advanced atherosclerotic plaques, atherosclerotic-resistant internal mammary arteries, and great saphenous veins obtained from same patients with coronary heart disease. The resulting DNA methylation patterns were markedly different between all the vascular tissues. The genes hypomethylated in athero-prone arteries to compare with atherosclerotic-resistant arteries were predominately involved in regulation of inflammation and immune processes, as well as development. The great saphenous veins exhibited an increase of the DNA methylation age in comparison to the internal mammary arteries. Gene ontology analysis for genes harboring hypermethylated CpG-sites in veins revealed the enrichment for biological processes associated with the development. Four CpG-sites located within the MIR10B gene sequence and about 1 kb upstream of the HOXD4 gene were also confirmed as hypomethylated in the independent dataset of the right coronary arteries in the area of advanced atherosclerotic plaques in comparison with the other vascular tissues. The DNA methylation differences observed in vascular tissues of patients with coronary heart disease can provide new insights into the mechanisms underlying the development of pathology and explanation for the difference in graft patency after coronary artery bypass grafting surgery.

  5. A comparison of genome-wide DNA methylation patterns between different vascular tissues from patients with coronary heart disease.

    Directory of Open Access Journals (Sweden)

    Maria S Nazarenko

    Full Text Available Epigenetic mechanisms of gene regulation in context of cardiovascular diseases are of considerable interest. So far, our current knowledge of the DNA methylation profiles for atherosclerosis affected and healthy human vascular tissues is still limited. Using the Illumina Infinium Human Methylation27 BeadChip, we performed a genome-wide analysis of DNA methylation in right coronary artery in the area of advanced atherosclerotic plaques, atherosclerotic-resistant internal mammary arteries, and great saphenous veins obtained from same patients with coronary heart disease. The resulting DNA methylation patterns were markedly different between all the vascular tissues. The genes hypomethylated in athero-prone arteries to compare with atherosclerotic-resistant arteries were predominately involved in regulation of inflammation and immune processes, as well as development. The great saphenous veins exhibited an increase of the DNA methylation age in comparison to the internal mammary arteries. Gene ontology analysis for genes harboring hypermethylated CpG-sites in veins revealed the enrichment for biological processes associated with the development. Four CpG-sites located within the MIR10B gene sequence and about 1 kb upstream of the HOXD4 gene were also confirmed as hypomethylated in the independent dataset of the right coronary arteries in the area of advanced atherosclerotic plaques in comparison with the other vascular tissues. The DNA methylation differences observed in vascular tissues of patients with coronary heart disease can provide new insights into the mechanisms underlying the development of pathology and explanation for the difference in graft patency after coronary artery bypass grafting surgery.

  6. Role of endothelium-derived hyperpolarization in the vasodilatation of rat intrarenal arteries

    DEFF Research Database (Denmark)

    Pinilla, Estéfano; Sánchez-Pina, Ana; Muñoz Picos, Mercedes

    2016-01-01

    Background and purpose: Endothelium-dependent vasodilation plays an important role in the regulation of vascular tone in different vascular beds. Besides the release of prostacyclin (PGI2) and nitric oxide (NO), the endothelium mediates vasodilation through endothelium-derived hyperpolarization (...

  7. miRNA-146a induces vascular smooth muscle cell apoptosis in a rat model of coronary heart disease via NF-κB pathway.

    Science.gov (United States)

    Wu, Z W; Liu, Y F; Wang, S; Li, B

    2015-12-29

    The aim of this study was to investigate the role of miRNA-146a in modulating the function of vascular smooth muscle cells in a rat model of coronary heart disease. Vascular smooth muscle cells were isolated and cultured from the rat coronary heart disease model and normal rats (controls). miRNA-146a levels were measured in vascular smooth muscle cells obtained from rats with coronary heart disease and control rats. The proliferation, growth, apoptosis, and activation of the NF-κB pathway in the vascular smooth muscle cells were detected using the MTT assay and flow cytometry, respectively. The role of the NF-κB pathway in modulating the apoptosis of vascular smooth muscle cells was investigated by measuring the reactivity of the cells to an NF-κB pathway inhibitor (TPCA-1). Vascular smooth muscle cells from the disease model exhibited higher levels of miRNA-146a than that by the normal controls (P = 0.0024). The vascular smooth muscle cells obtained from rats with coronary heart disease showed decreased proliferation and growth and increased apoptosis. miRNA-146a overexpression elevated the rate of cell apoptosis. The NF-κB pathway was activated in vascular smooth muscle cells obtained from rats with coronary heart disease. Inhibition of the NF- κB pathway significantly decreased the rate of vascular smooth muscle cell apoptosis in coronary heart disease rats (P = 0.0038). In conclusion, miRNA- 146a was found to induce vascular smooth muscle cell apoptosis in rats with coronary heart disease via the activation of the NF-κB signal pathway.

  8. Series "Cardiovascular System" (4) : Endothelium-derived Vasoactive Hormones and Diseases

    OpenAIRE

    平田, 結喜緒; HIRATA, Yukio

    2003-01-01

    Vascular endothelium synthesize and secrete a variety of bioactive substances. Among them, endothelium-derived vasoactive hormones function to regulate not only tonus of the neighboring vascular smooth muscle, but vascular remodeling as well. Therefore, endothelial dysfunction eventually leads to blood pressure abnormality as well as vascular lesions. By focusing on several novel endothelium-derived vasoconstrictors (endothelin, urotensin II) and vasodilators (nitric oxide, adrenomedullin), t...

  9. Deferoxamine improves coronary vascular responses to sympathetic stimulation in patients with type 1 diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Naoya; Bengel, Frank M.; Nekolla, Stephan G.; Drzezga, Alexander E.; Schwaiger, Markus [Nuklearmedizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technischen Universitaet Muenchen (Germany); Schnell, Oliver; Rihl, Julian; Standl, Eberhard [Diabetes Research Center, Schwabing City Hospital, Munich (Germany)

    2002-07-01

    Effects of oxygen-derived free radicals are suggested to be a potential pathogenic factor for endothelial dysfunction. In this study we sought to evaluate the effect of hydroxyl radicals on the human coronary vascular bed in type I diabetes mellitus using positron emission tomography (PET). Thirteen patients with type 1 diabetes underwent PET using nitrogen-13 ammonia at rest and during sympathetic stimulation with the cold pressor test (CPT). The rest-stress study protocol was repeated twice (on different days) using pre-stress infusion of either saline as placebo or deferoxamine, an iron chelator which inhibits generation of hydroxyl radicals. At rest, global MBF was higher in diabetics than in normal controls (78.1{+-}17.5 vs 63.2{+-}14.9 mg 100 g{sup -1} min{sup -1}, P<0.05) and myocardial vascular resistance (MVR) showed a trend towards lower values (patients, 1.28{+-}0.35; controls, 1.55{+-}0.32, P=NS). CPT increased MBF in all controls while 7/13 diabetics responded normally. CPT decreased MVR in 10/13 controls but in only 4/13 diabetics. There was no significant difference in the duration of diabetes, HbA1c, daily insulin dose, body mass index, or lipid profiles between patients with and patients without abnormal MBF or MVR responses. Pre-stress infusion of deferoxamine normalized MBF response in all six patients, and MVR response in six of the nine patients. Another group consisting of seven patients underwent a rest-rest protocol after infusion of deferoxamine and saline to investigate the effect of deferoxamine on resting MBF. Deferoxamine did not change the resting MBF (deferoxamine, 81{+-}17 ml 100 g{sup -1} min{sup -1}; saline, 75{+-}19 ml 100 g{sup -1} min{sup -1}, P=NS) or MVR (deferoxamine, 1.0{+-}0.5 mmHg ml{sup -1} 100 g{sup -1} min{sup -1}; saline, 1.2{+-}0.6 mmHg ml{sup -1} 100 g{sup -1} min{sup -1}, P=NS). In conclusion, inhibition of hydroxyl radical formation using deferoxamine significantly improved the responses of coronary

  10. Whole blood viscosity and erythrocyte deformability are related to endothelium-dependent vasodilation and coronary risk in the elderly. The prospective investigation of the vasculature in Uppsala seniors (PIVUS) study.

    Science.gov (United States)

    Sandhagen, Bo; Lind, Lars

    2012-01-01

    It has previously been shown that a high hemoglobin value, a major determinant of whole blood viscosity (WBV), predicts cardiovascular events. One putative mechanism might be an impaired endothelial function. Erythrocyte deformability is another rheologic feature of the erythrocyte being of importance for the flow properties of the blood, especially in the capillaries. The present study evaluates the relationships between blood viscosity, erythrocyte deformability assessed as erythrocyte fluidity (EF), coronary risk and endothelial vasodilatory function. In the population-based PIVUS study (1016 subjects aged 70); endothelium-dependent vasodilation (EDV) was evaluated by the invasive forearm technique with acetylcholine given in the brachial artery and the brachial artery ultrasound technique with measurement of flow-mediated dilatation (FMD). WBV, plasma viscosity (PV) and EF were measured in a random sample of 573 subjects. WBV and PV were positively and EF negatively related to Framingham risk score. EDV was inversely related to both whole blood and plasma viscosity. FMD was not related to any rheologic variable. In multiple regression analyses WBV and EF were significantly related to EDV independently of gender, hypertension, smoking, hypercholesterolemia, obesity and diabetes. Acetylcholine-induced vasodilation in the forearm, but not FMD, was negatively related to whole blood viscosity and positively related to EF independently of traditional risk factors in elderly subjects, indicating a pathophysiological link between impaired hemorheology and coronary risk.

  11. Vascular Pharmacology of Mokuboito (Mu-Fang-Yi-Tang and Its Constituents on the Smooth Muscle and the Endothelium in Rat Aorta

    Directory of Open Access Journals (Sweden)

    Seiichiro Nishida

    2007-01-01

    Full Text Available Pharmacological actions of Mokuboito and its constituents (Sinomenium acutum and sinomenine on rat aorta were examined. Mokuboito and S. acutum at lower concentrations (0.03–1 mg ml−1 contracted the non-loaded aorta, but at higher concentrations (1–3 mg ml−1, reversed to dilate it. The vasoconstriction was blocked by phentolamine (10 μM. Sinomenine failed to exhibit the vasoconstriction. On the other hand, Mokuboito and S. acutum dilated the NE (5 μM-induced vasoconstriction: at 3 mg ml−1, by 98.9 ± 2.5% (n = 6, P < 0.01 and 97.0 ± 4.8% (n = 6, P < 0.01. Vasorelaxation induced by Mokuboito and S. acutum was attenuated by indomethacin, L-NMMA and nicardipine. Propranolol decreased the vasorelaxation induced by Mokuboito, but not by S. acutum. Sinomenine also relaxed the constriction and at 100 μM, by 68.8 ± 5.1% (n = 7, P < 0.01. This vasorelaxation was attenuated by indomethacin, L-NMMA and nicardipine, and also by propranolol. Therefore, these results indicate that Mokuboito and its constituents exert both vasodilating actions mediated by endothelium-dependent mechanisms (PGI2 and NO from endothelium and by endothelium-independent mechanisms (Ca2+ influx control on smooth muscle cells. Simultaneously, Mokuboito and S. acutum cause the vasoconstrictions mediated through α-adrenoceptor stimulation, but not sinomenine. Also, Mokuboito and sinomenine possess β-adrenoreceptor stimulating action, but not S. acutum.

  12. Multimodal cardiovascular magnetic resonance quantifies regional variation in vascular structure and function in patients with coronary artery disease: Relationships with coronary disease severity

    Directory of Open Access Journals (Sweden)

    Kylintireas Ilias

    2011-10-01

    Full Text Available Abstract Background Cardiovascular magnetic resonance (CMR of the vessel wall is highly reproducible and can evaluate both changes in plaque burden and composition. It can also measure aortic compliance and endothelial function in a single integrated examination. Previous studies have focused on patients with pre-identified carotid atheroma. We define these vascular parameters in patients presenting with coronary artery disease and test their relations to its extent and severity. Methods and Results 100 patients with CAD [single-vessel (16%; two-vessel (39%; and three-vessel (42% non-obstructed coronary arteries (3%] were studied. CAD severity and extent was expressed as modified Gensini score (mean modified score 12.38 ± 5.3. A majority of carotid plaque was located in the carotid bulb (CB. Atherosclerosis in this most diseased segment correlated modestly with the severity and extent of CAD, as expressed by the modified Gensini score (R = 0.251, P Conclusions Multimodal vascular CMR shows regional abnormalities of vascular structure and function that correlate modestly with the degree and extent of CAD.

  13. Cardioprotective effect of sevoflurane in patients with coronary artery disease undergoing vascular surgery

    Directory of Open Access Journals (Sweden)

    Ahmed S Bassuoni

    2012-01-01

    Full Text Available Objectives: The present study was conducted to evaluate the cardioprotective effect of sevoflurane compared with propofol in patients with coronary artery disease (CAD undergoing peripheral vascular surgery; and to address the question whether a volatile anesthetic might improve cardiac outcome in these patients. Methods: One hundred twenty-six patients scheduled for elective peripheral vascular surgery were prospectively randomized to receive either sevoflurane inhalation anesthesia or total intravenous anesthesia. ST-segment monitoring was performed continuously during intra- and post-operative 48 h periods. The number of ischemic events and the cumulative duration of ischemia in each patient were recorded. Blood was sampled in all patients for the determination of cTnI. Samples were obtained before the induction of anesthesia, on admission to the ICU, and at 6, 12, 24, and 48 h after admission to the intensive care unit (ICU. Patients were followed-up during their hospital stay for any adverse cardiac events. Results: The incidence of ischemia were comparable among the groups [16 (25% patients in sevoflurane group vs 24 (39% patients in propofol group; P=0.126]. Duration, cumulative duration, and magnitude of ST-segment depression of ischemic events in each patient were significantly less in sevoflurane group (P=0.008, 0.048, 0.038, respectively. cTnI levels of the overall population were significantly less in sevoflurane group vs propofol group (P values <0.0001 from 6 h postoperative and onward. Meanwhile, cTnI levels at 6, 12, 24, and 48 h after admission to the ICU in patients who presented with ischemic electrocardiographic (ECG changes were significantly lower in sevoflurane group than in the propofol group (P<0.0001, <0.0001, <0.0001, 0.0003. None of the patients presented with unstable angina, myocardial infarction, congestive heart failure, or serious arrhythmia either during ICU or hospital stay. Conclusion: Patients with CAD

  14. Phenotype commitment in vascular smooth muscle cells derived from coronary atherosclerotic plaques: differential gene expression of endothelial Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    ML Rossi

    2009-06-01

    Full Text Available Unstable angina and myocardial infarction are the clinical manifestations of the abrupt thrombotic occlusion of an epicardial coronary artery as a result of spontaneous atherosclerotic plaque rupture or fissuring, and the exposure of highly thrombogenic material to blood. It has been demonstrated that the proliferation of vascular smooth muscle cells (VSMCs and impaired bioavailabilty of nitric oxide (NO are among the most important mechanisms involved in the progression of atherosclerosis. It has also been suggested that a NO imbalance in coronary arteries may be involved in myocardial ischemia as a result of vasomotor dysfunction triggering plaque rupture and the thrombotic response. We used 5’ nuclease assays (TaqMan™ PCRs to study gene expression in coronary plaques collected by means of therapeutic directional coronary atherectomy from 15 patients with stable angina (SA and 15 with acute coronary syndromes (ACS without ST elevation. Total RNA was extracted from the 30 plaques and the cDNA was amplified in order to determine endothelial nitric oxide synthase (eNOS gene expression. Analysis of the results showed that the expression of eNOS was significantly higher (p<0.001 in the plaques from the ACS patients. Furthermore, isolated VSMCs from ACS and SA plaques confirmed the above pattern even after 25 plating passages. In situ RT-PCR was also carried out to co-localize the eNOS messengers and the VSMC phenotype.

  15. The influence of genotype on vascular endothelial growth factor and regulation of myocardial collateral blood flow in patients with acute and chronic coronary heart disease

    DEFF Research Database (Denmark)

    Ripa, R.S.; Jorgensen, E.; Baldazzi, F.;

    2009-01-01

    OBJECTIVE: To test the hypothesis that mutations in the vascular endothelial growth factor (VEGF) gene are associated with plasma concentration of VEGF and subsequently the ability to influence coronary collateral arteries in patients with coronary heart disease (CHD). METHODS: Blood samples from...... patients with chronic ischemic heart disease (n=53) and acute coronary syndrome (n=61) were analysed. Coronary collaterals were scored from diagnostic biplane coronary angiograms. RESULTS: The plasma concentration of VEGF was increased in patients with acute compared to chronic CHD (p=0.01). The genotype......-1154 and coronary collateral size (p=0.03) and a significant association between the VEGF plasma concentration and the collateral size (p=0.03). CONCLUSION: VEGF plasma concentration seems related to coronary collateral function in patients with CHD. The results did not support the hypothesis...

  16. LPS from Porphyromonas gingivalis increases the sensitivity of contractile response mediated by endothelin-B (ET(B)) receptors in cultured endothelium-intact rat coronary arteries

    DEFF Research Database (Denmark)

    Ghorbani, Bahareh; Holmstrup, Palle; Edvinsson, Lars;

    2010-01-01

    The purpose of our study was to examine if lipopolysaccharide (LPS) from Porphyromonas gingivalis (P.g.) modifies the vasomotor responses to Endothelin-1 (ET-1) and Sarafotoxin 6c (S6c) in rat coronary arteries. The arteries were studied directly or following organ culture for 24h in absence and ...

  17. Oxidative Stress-Dependent Coronary Endothelial Dysfunction in Obese Mice.

    Science.gov (United States)

    Gamez-Mendez, Ana María; Vargas-Robles, Hilda; Ríos, Amelia; Escalante, Bruno

    2015-01-01

    Obesity is involved in several cardiovascular diseases including coronary artery disease and endothelial dysfunction. Endothelial Endothelium vasodilator and vasoconstrictor agonists play a key role in regulation of vascular tone. In this study, we evaluated coronary vascular response in an 8 weeks diet-induced obese C57BL/6 mice model. Coronary perfusion pressure in response to acetylcholine in isolated hearts from obese mice showed increased vasoconstriction and reduced vasodilation responses compared with control mice. Vascular nitric oxide assessed in situ with DAF-2 DA showed diminished levels in coronary arteries from obese mice in both basal and acetylcholine-stimulated conditions. Also, released prostacyclin was decreased in heart perfusates from obese mice, along with plasma tetrahydrobiopterin level and endothelium nitric oxide synthase dimer/monomer ratio. Obesity increased thromboxane A2 synthesis and oxidative stress evaluated by superoxide and peroxynitrite levels, compared with control mice. Obese mice treated with apocynin, a NADPH oxidase inhibitor, reversed all parameters to normal levels. These results suggest that after 8 weeks on a high-fat diet, the increase in oxidative stress lead to imbalance in vasoactive substances and consequently to endothelial dysfunction in coronary arteries.

  18. Repeated sauna therapy attenuates ventricular remodeling after myocardial infarction in rats by increasing coronary vascularity of noninfarcted myocardium.

    Science.gov (United States)

    Sobajima, Mitsuo; Nozawa, Takashi; Shida, Takuya; Ohori, Takashi; Suzuki, Takayuki; Matsuki, Akira; Inoue, Hiroshi

    2011-08-01

    Repeated sauna therapy (ST) increases endothelial nitric oxide synthase (eNOS) activity and improves cardiac function in heart failure as well as peripheral blood flow in ischemic limbs. The present study investigates whether ST can increase coronary vascularity and thus attenuate cardiac remodeling after myocardial infarction (MI). We induced MI by ligating the left coronary artery of Wistar rats. The rats were placed in a far-infrared dry sauna at 41°C for 15 min and then at 34°C for 20 min once daily for 4 wk. Cardiac hemodynamic, histopathological, and gene analyses were performed. Despite the similar sizes of MI between the ST and non-ST groups (51.4 ± 0.3 vs. 51.1 ± 0.2%), ST reduced left ventricular (LV) end-diastolic (9.7 ± 0.4 vs. 10.7 ± 0.5 mm, P myocardial atrial natriuretic peptide mRNA levels. Vascular density was reduced in the noninfarcted myocardium of non-ST rats, and the density of cells positive for CD31 and for α-smooth muscle actin was decreased. These decreases were attenuated in ST rats compared with non-ST rats and associated with increases in myocardial eNOS and vascular endothelial growth factor mRNA levels. In conclusion, ST attenuates cardiac remodeling after MI, at least in part, through improving coronary vascularity in the noninfarcted myocardium. Repeated ST might serve as a novel noninvasive therapy for patients with MI.

  19. Soluble interleukin 6 receptor (sIL-6R) mediates colonic tumor cell adherence to the vascular endothelium: a mechanism for metastatic initiation?

    LENUS (Irish Health Repository)

    Dowdall, J F

    2012-02-03

    The mechanisms by which surgery increases metastatic proliferation remain poorly characterized, although endotoxin and immunocytes play a role. Recent evidence suggests that endothelial adherence of tumor cells may be important in the formation of metastases. Soluble receptors of interleukin-6 (sIL-6R) shed by activated neutrophils exert IL-6 effects on endothelial cells, which are unresponsive under normal circumstances. This study examined the hypothesis that sIL-6R released by surgical stress increases tumor cell adherence to the endothelium. Neutrophils (PMN) were stimulated with lipopolysaccharide, C-reactive protein (CRP), and tumor necrosis factor-alpha. Soluble IL-6R release was measured by enzyme-linked immunosorbent assay. Colonic tumor cells transfected with green fluorescent protein and endothelial cells were exposed to sIL-6R, and tumor cell adherence and transmigration were measured by fluorescence microscopy. Basal release of sIL-6R from PMN was 44.7 +\\/- 8.2 pg\\/ml at 60 min. This was significantly increased by endotoxin and CRP (131 +\\/- 16.8 and 84.1 +\\/- 5.3, respectively; both P < 0.05). However, tumor necrosis factor-alpha did not significantly alter sIL-6R release. Endothelial and tumor cell exposure to sIL-6R increased tumor cell adherence by 71.3% within 2 h but did not significantly increase transmigration, even at 6 h. Mediators of surgical stress induce neutrophil release of a soluble receptor for IL-6 that enhances colon cancer cell endothelial adherence. Since adherence to the endothelium is now considered to be a key event in metastatic genesis, these findings have important implications for colon cancer treatment strategies.

  20. Função endotelial vascular em pacientes com fluxo coronário lento e os efeitos do nebivolol Vascular endothelial function in patients with coronary slow flow and the effects of nebivolol

    Directory of Open Access Journals (Sweden)

    Yilmaz Gunes

    2011-10-01

    Full Text Available FUNDAMENTO: A função endotelial braquial tem sido associada ao fluxo lento coronário (FLC. O aumento do fluxo sanguíneo para a artéria braquial faz com que o endotélio libere óxido nítrico (ON, com subsequente vasodilatação. Além de sua atividade com betabloqueador, o nebivolol provoca vasodilatação, aumentando a liberação endotelial de ON. OBJETIVO: Avaliar os efeitos do nebivolol na função endotelial vascular em pacientes com FLC. MÉTODOS: 46 pacientes com FLC e 23 indivíduos com artérias coronárias epicárdicas normais foram examinados com ecocardiografia transtorácica e ultrassonografia da artéria braquial. Os pacientes foram reavaliados dois meses após o tratamento com aspirina ou aspirina e nebivolol. RESULTADOS: Os pacientes com FLC apresentaram maior índice de massa corporal (26,5 ± 3,3 vs. 23,8 ± 2,8, p BACKGROUND: Brachial endothelial function has been associated with coronary slow flow (CSF. Increasing blood flow to brachial artery provokes endothelium to release nitric oxide (NO with subsequent vasodilatation. Besides its β1-blocker activity, nebivolol causes vasodilatation by increasing endothelial NO release. OBJECTIVE: To assess the effects of nebivolol on vascular endothelial function in patients with CSF. METHODS: Forty-six patients with CSF and 23 individuals with normal epicardial coronary arteries were examined with transthoracic echocardiography and brachial artery ultrasonography. The patients were reevaluated two months after treatment with aspirin or aspirin plus nebivolol. RESULTS: Patients with CSF had higher body mass index (26.5 ± 3.3 vs. 23.8 ± 2.8, p < 0.001, mitral inflow isovolumetric relaxation time (IVRT (114.9 ± 18.0 vs. 95.0 ± 22.0 msec, p < 0.001 and lower left ventricular ejection fraction (LVEF (63.5 ± 3.1% vs. 65.4 ± 2.2, p = 0.009, HDL-cholesterol (39.4 ± 8.5 vs. 45.8 ± 7.7 mg/dL, p = 0.003 and brachial flow-mediated dilatation (FMD (6.1 ± 3.9% vs. 17.6 ± 4.5%, p < 0

  1. Bepridil blockade of Ca2+-dependent action potentials in vascular smooth muscle of dog coronary artery.

    Science.gov (United States)

    Harder, D R; Sperelakis, N

    1981-01-01

    The effect of the new vasodilatory and antianginal compound, bepridil (CERM-1978), was examined on the electrical activity of the vascular smooth muscle of isolated dog coronary arteries. Tetraethylammonium (10 mM) was used to induce excitability in the muscle in the form of Ca2+-dependent overshooting action potentials, whose inward current is carried almost exclusively by Ca2+ ion through voltage-dependent slow channels. Bepridil (5 X 10(-7)--1 X 10(--5) M) produced a dose-dependent depression of the rate of rise and amplitude of these Ca2+ spikes. Complete blockade of the action potentials occurred at 1 X 10(-5) M bepridil. These effects of bepridil were antagonized by elevation of external Ca2+ concentration ([CA]o). The effects of bepridil were substantially reversed by washout after about 30 min. Bepridil (10(-5) M) also produced a small but significant (p less than 0.05) increase in resting membrane resistance (input resistance increased from a mean of 10.1 to 12.4 m omega), accompanied by a small but significant (p less than 0.05) depolarization of 6 mV (from a mean of --51 to --45 mV). These latter effects are consistent with a diminution of the resting K+ conductance (gK) by bepridil. It is concluded that the vasodilatory and antianginal properties of bepridil may be explained by the action of this drug in depressing and blocking the Ca2+ influx into the cells, presumably by acting directly on the voltage-dependent slow channels in the cell membrane, and thereby lowering [Ca]i and thus the degree of contraction. Bepridil has Ca2+-antagonistic (or Ca2+ entry blocking or slow channel blocking) properties much like verapamil, but it is somewhat less potent than verapamil in this action (i.e., complete blockade occurred at 10(-5) M bepridil vs. 2 X 10(-6) M verapamil).

  2. Cost-effectiveness of new cardiac and vascular rehabilitation strategies for patients with coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Sandra Spronk

    Full Text Available OBJECTIVE: Peripheral arterial disease (PAD often hinders the cardiac rehabilitation program. The aim of this study was evaluating the relative cost-effectiveness of new rehabilitation strategies which include the diagnosis and treatment of PAD in patients with coronary artery disease (CAD undergoing cardiac rehabilitation. DATA SOURCES: Best-available evidence was retrieved from literature and combined with primary data from 231 patients. METHODS: We developed a markov decision model to compare the following treatment strategies: 1. cardiac rehabilitation only; 2. ankle-brachial index (ABI if cardiac rehabilitation fails followed by diagnostic work-up and revascularization for PAD if needed; 3. ABI prior to cardiac rehabilitation followed by diagnostic work-up and revascularization for PAD if needed. Quality-adjusted-life years (QALYs, life-time costs (US $, incremental cost-effectiveness ratios (ICER, and gain in net health benefits (NHB in QALY equivalents were calculated. A threshold willingness-to-pay of $75,000 was used. RESULTS: ABI if cardiac rehabilitation fails was the most favorable strategy with an ICER of $44,251 per QALY gained and an incremental NHB compared to cardiac rehabilitation only of 0.03 QALYs (95% CI: -0.17, 0.29 at a threshold willingness-to-pay of $75,000/QALY. After sensitivity analysis, a combined cardiac and vascular rehabilitation program increased the success rate and would dominate the other two strategies with total lifetime costs of $30,246 a quality-adjusted life expectancy of 3.84 years, and an incremental NHB of 0.06 QALYs (95%CI:-0.24, 0.46 compared to current practice. The results were robust for other different input parameters. CONCLUSION: ABI measurement if cardiac rehabilitation fails followed by a diagnostic work-up and revascularization for PAD if needed are potentially cost-effective compared to cardiac rehabilitation only.

  3. Bioabsorbable drug-eluting vascular scaffold for the treatment of coronary in-stent restenosis: A two center registry

    Energy Technology Data Exchange (ETDEWEB)

    Moscarella, Elisabetta [Division of Cardiology, Seconda Università degli studi di Napoli, AO Dei cColli, PO Monaldi (Italy); Varricchio, Attilio [Division of Cardiology, Department of Advanced Biomedical Sciences, University of Napoli “Federico II”, Napoli (Italy); Stabile, Eugenio, E-mail: geko50@hotmail.com [Laboratory of Invasive Cardiology, Dipartimento di Cardiologia, Presidio Ospedaliero “Monaldi”, Azienda Ospedaliera “Dei Colli”, Napoli (Italy); Franzone, Anna [Laboratory of Invasive Cardiology, Dipartimento di Cardiologia, Presidio Ospedaliero “Monaldi”, Azienda Ospedaliera “Dei Colli”, Napoli (Italy); Granata, Francesco [Division of Cardiology, Seconda Università degli studi di Napoli, AO Dei cColli, PO Monaldi (Italy); Rapacciuolo, Antonio; Galasso, Gennaro [Laboratory of Invasive Cardiology, Dipartimento di Cardiologia, Presidio Ospedaliero “Monaldi”, Azienda Ospedaliera “Dei Colli”, Napoli (Italy); Capozzolo, Claudia [Division of Cardiology, Department of Advanced Biomedical Sciences, University of Napoli “Federico II”, Napoli (Italy); Cirillo, Plinio [Laboratory of Invasive Cardiology, Dipartimento di Cardiologia, Presidio Ospedaliero “Monaldi”, Azienda Ospedaliera “Dei Colli”, Napoli (Italy); and others

    2015-10-15

    Background/purpose: Coronary in-stent restenosis (ISR) is a clinical problem for which a satisfactory solution has not been found yet. Bioabsorbable drug eluting vascular scaffolds (BVSs) provide transient vessel scaffolding combined with prolonged drug delivery capability. The aim of this study was to investigate the safety of BVS for the treatment of coronary ISR. Methods/materials: Between January 2013 and June 2013, 27 patients (31 lesions), presenting with either stable or unstable angina due to coronary ISR, were enrolled in a single arm, prospective, open label registry. Primary end point was the occurrence of target vessel revascularization (TVR) at 12 months. Secondary end point was the composite of death, myocardial infarction and TVR at 12 months. Results: A diffuse ISR pattern was present in 70% of the lesions; mean lesion length was 34.6 ± 15. BVS was successfully implanted in all patients with no in hospital MACE. At twelve months of follow up, MACE rate was 18.5%. One patient died for non-cardiac reason, one patient died due to a possible stent thrombosis and TVR was necessary in 3 patients (11.1%). Conclusions: Our data suggest that BVS is safe and technically feasible for treatment of long and diffuse coronary ISR. These data could be considered hypothesis generator for a randomized clinical trial. - Highlights: • A safe therapeutic option for the treatment of diffuse ISR; • Technically feasible; • Associated to a low rate of restenosis recurrence at nine month.

  4. [Cardiovascular diseases in the focus of health economics. The example of drug-eluting vascular stents in coronary heart disease].

    Science.gov (United States)

    Reinhold, T; Müller-Riemenschneider, F; McBride, D; Brüggenjürgen, B; Willich, S N

    2012-05-01

    Coronary heart disease is an important disorder in Western industrialized societies, with regard to both the epidemiologic and economic burden of illness. A modern therapeutic strategy consists of coronary interventions and the implantation of drug-eluting vascular stents. The cost-effectiveness of such drug-eluting stents has been an important subject of health-economic evaluation research in recent years. This article presents two examples of such studies and deals with the question whether existing study projects are able to provide sufficient evidence for allocation decisions in health care. On this basis we discuss important challenges for future health economic analysis. A key conclusion is the need for long-term and cross-sectoral evaluation strategies that could be based on routinely collected health care data. Supplemented by health economic results from clinical trials, the use of such data would lead to a broader data basis for allocation decisions in health care.

  5. Relationship between cardio-ankle vascular index (CAVI) and coronary artery calcification (CAC) in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Mineoka, Yusuke; Fukui, Michiaki; Tanaka, Muhei; Tomiyasu, Ki-ichiro; Akabame, Satoshi; Nakano, Koji; Yamazaki, Masahiro; Hasegawa, Goji; Oda, Yohei; Nakamura, Naoto

    2012-03-01

    Early detection of atherosclerosis is important for patients with type 2 diabetes mellitus because cardiovascular disease (CVD) is a main cause of death in these people. In this study, we investigated the relationship between an arterial stiffness parameter called cardio-ankle vascular index (CAVI) and coronary artery calcification (CAC). We performed a cross-sectional study in 371 type 2 diabetic patients with clinical suspicion of coronary heart disease (CHD). We evaluated the relationships between CAVI and CAC score determined by multislice computed tomography as well as major cardiovascular risk factors, including age, body mass index, hemoglobinA1c and the Framingham CHD risk score. CAVI was correlated with age (r = 0.301, p CAC + 1) (r = 0.303, p CAC >0, CAC >100, CAC >400, or CAC >1000. CAVI is positively correlated with CAC, and is considered to be a useful method to detect CAC.

  6. Glucocorticoid receptor knockdown decreases the antioxidant protection of B16 melanoma cells: an endocrine system-related mechanism that compromises metastatic cell resistance to vascular endothelium-induced tumor cytotoxicity.

    Science.gov (United States)

    Obrador, Elena; Valles, Soraya L; Benlloch, María; Sirerol, J Antoni; Pellicer, José A; Alcácer, Javier; Coronado, Javier Alcácer-F; Estrela, José M

    2014-01-01

    We previously reported an interorgan system in which stress-related hormones (corticosterone and noradrenaline), interleukin-6, and glutathione (GSH) coordinately regulate metastatic growth of highly aggressive B16-F10 melanoma cells. Corticosterone, at levels measured in tumor-bearing mice, also induces apoptotic cell death in metastatic cells with low GSH content. In the present study we explored the potential role of glucocorticoids in the regulation of metastatic cell death/survival during the early stages of organ invasion. Glucocorticoid receptor (GCR) knockdown decreased the expression and activity of γ-glutamylcysteine synthetase (γ-GCS), the rate-limiting step in GSH synthesis, in metastatic cells in vivo independent of the tumor location (liver, lung, or subcutaneous). The decrease in γ-GCS activity was associated with lower intracellular GSH levels. Nrf2- and p53-dependent down-regulation of γ-GCS was associated with a decrease in the activities of superoxide dismutase 1 and 2, catalase, glutathione peroxidase, and glutathione reductase, but not of the O2--generating NADPH oxidase. The GCR knockdown-induced decrease in antioxidant protection caused a drastic decrease in the survival of metastatic cells during their interaction with endothelial cells, both in vitro and in vivo; only 10% of cancer cells attached to the endothelium survived compared to 90% survival observed in the controls. This very low rate of metastatic cell survival was partially increased (up to 52%) in vivo by inoculating B16-F10 cells preloaded with GSH ester, which enters the cell and delivers free GSH. Taken together, our results indicate that glucocorticoid signaling influences the survival of metastatic cells during their interaction with the vascular endothelium.

  7. Targeting of ICAM-1 on vascular endothelium under static and shear stress conditions using a liposomal Gd-based MRI contrast agent

    Directory of Open Access Journals (Sweden)

    Paulis Leonie EM

    2012-06-01

    Full Text Available Abstract Background The upregulation of intercellular adhesion molecule-1 (ICAM-1 on the endothelium of blood vessels in response to pro-inflammatory stimuli is of major importance for the regulation of local inflammation in cardiovascular diseases such as atherosclerosis, myocardial infarction and stroke. In vivo molecular imaging of ICAM-1 will improve diagnosis and follow-up of patients by non-invasive monitoring of the progression of inflammation. Results A paramagnetic liposomal contrast agent functionalized with anti-ICAM-1 antibodies for multimodal magnetic resonance imaging (MRI and fluorescence imaging of endothelial ICAM-1 expression is presented. The ICAM-1-targeted liposomes were extensively characterized in terms of size, morphology, relaxivity and the ability for binding to ICAM-1-expressing endothelial cells in vitro. ICAM-1-targeted liposomes exhibited strong binding to endothelial cells that depended on both the ICAM-1 expression level and the concentration of liposomes. The liposomes had a high longitudinal and transversal relaxivity, which enabled differentiation between basal and upregulated levels of ICAM-1 expression by MRI. The liposome affinity for ICAM-1 was preserved in the competing presence of leukocytes and under physiological flow conditions. Conclusion This liposomal contrast agent displays great potential for in vivo MRI of inflammation-related ICAM-1 expression.

  8. Vascular and cardiac contractile reserve in the dog heart with chronic multiple coronary occlusions.

    Science.gov (United States)

    Schwarz, F; Flameng, W; Mack, B; Türschmann, W; Schaper, W

    1976-11-01

    Nineteen mongrel dogs survived chronic occlusion of the left circumflex and of the right coronary artery without infarction due to the timely development of a collateral circulation. Only 38 per cent of the conductance of the arteries before occlusion was restored by collateral vessels. In these animals and in 15 control dogs with normal coronary arteries myocardial contractility, contractility reserve, and myocardial blood flow were studied. The same was done in dogs with chronic coronary artery occlusion after aortocoronary bypass. Myocardial blood flow was determined woth the tracer microsphere technique. Contractility reserve was tested and defined as isovolumetric left ventricular pressure and dp/dt max with norepinephrine infusion and cross-clamping of the aorta. Contractile reserve was not significantly different between normal dogs and dogs with chronic coronary artery occlusion before and after aortocoronary bypass. Myocardial blood flow during control conditions was homogenously distributed in all three groups studied. The ratio of blood flow to the endocardium and the epicardium was not significantly different from inity. Coronary reserve was determined at peak reactive hyperemia following a 20 second period of coronary artery occlusion, with ongoing norepinephrine infusion. Under these conditions subendocardial fow in normal dogs rose by a factor of 7.9 while subepicardial flow increased 7.4 times. In dogs with chronic occlusion of two coronary arteries the increase of myocardial flow was nonnomogenous; subendocardial flow to areas supplied by a normal coronary artery rose by a factor of 7.0 while subepicardial flow increased 5.7 times control. Subendocardial collateral flow rose by a factor of 2.4 and subepicardial collateral flow increased 3.5 times control. In normal dogs norepinephrine alone did not result in maximal coronary flow but only 57 per cent thereof. Dogs with chronic coronary occlusion, however, required the entire coronary reserve in

  9. Whole-body analysis of a viral infection: vascular endothelium is a primary target of infectious hematopoietic necrosis virus in zebrafish larvae.

    Directory of Open Access Journals (Sweden)

    Marion Ludwig

    Full Text Available The progression of viral infections is notoriously difficult to follow in whole organisms. The small, transparent zebrafish larva constitutes a valuable system to study how pathogens spread. We describe here the course of infection of zebrafish early larvae with a heat-adapted variant of the Infectious Hematopoietic Necrosis Virus (IHNV, a rhabdovirus that represents an important threat to the salmonid culture industry. When incubated at 24 °C, a permissive temperature for virus replication, larvae infected by intravenous injection died within three to four days. Macroscopic signs of infection followed a highly predictable course, with a slowdown then arrest of blood flow despite continuing heartbeat, followed by a loss of reactivity to touch and ultimately by death. Using whole-mount in situ hybridization, patterns of infection were imaged in whole larvae. The first infected cells were detectable as early as 6 hours post infection, and a steady increase in infected cell number and staining intensity occurred with time. Venous endothelium appeared as a primary target of infection, as could be confirmed in fli1:GFP transgenic larvae by live imaging and immunohistochemistry. Disruption of the first vessels took place before arrest of blood circulation, and hemorrhages could be observed in various places. Our data suggest that infection spread from the damaged vessels to underlying tissue. By shifting infected fish to a temperature of 28 °C that is non-permissive for viral propagation, it was possible to establish when virus-generated damage became irreversible. This stage was reached many hours before any detectable induction of the host response. Zebrafish larvae infected with IHNV constitute a vertebrate model of an hemorrhagic viral disease. This tractable system will allow the in vivo dissection of host-virus interactions at the whole organism scale, a feature unrivalled by other vertebrate models.

  10. A chemically defined 2,3-trans procyanidin fraction from willow bark causes redox-sensitive endothelium-dependent relaxation in porcine coronary arteries.

    Science.gov (United States)

    Kaufeld, Aurica M; Pertz, Heinz H; Kolodziej, Herbert

    2014-07-25

    Extracts of the bark of willow species (Salix spp.) are popular herbal remedies to relieve fever and inflammation. The effects are attributed to salicin and structurally related phenolic metabolites, while polyphenols including procyanidins are suggested to contribute to the overall effect of willow bark. This study aimed at investigating the relaxant response to a highly purified and chemically defined 2,3-trans procyanidin fraction in porcine coronary arteries. The procyanidin sample produced a concentration-dependent relaxation in U46619-precontracted tissues. Relaxation was predominantly mediated through the redox-sensitive activation of the endothelial phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway, leading to the subsequent activation of endothelial nitric oxide synthase (eNOS) by phosphorylation, as evidenced by Western blotting using human umbilical vein endothelial cells (HUVECs). That the relaxant response to Salix procyanidins was reactive oxygen species (ROS)-dependent with O2(-) as the key species followed from densitometric analysis using 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA assay) and employment of various ROS inhibitors, respectively. The data also suggested the modification of intracellular Ca(2+) levels and KCa channel functions. In addition, our organ bath studies showed that Salix procyanidins reversed the abrogation of the relaxant response to bradykinin by oxidized low-density lipoproteins (oxLDL) in coronary arteries, suggesting a vasoprotective effect of willow bark against detrimental oxLDL in pathological conditions. Taken together, our findings suggest for the first time that 2,3-trans procyanidins may contribute not only to the beneficial effects of willow bark but also to health-promoting benefits of diverse natural products of plant origin.

  11. Effect of atravastain on function of vascular endothelium in patients with T2DM%阿托伐他汀对2型糖尿病血管内皮功能的影响

    Institute of Scientific and Technical Information of China (English)

    吴俊兰

    2010-01-01

    Objective To study the effect of atravastain on vascular endothelium in patients with T2 DM. Methods 180 cases of T2 DM were detected in patients with blood Sugar、 Blood pressure、 Blood lipids、NO、ET、PGF1a. At the same time we used high differentiate ultrasonic to dect FMD% 、GTN%. Results Patients treated with atravastain whose NO、 PGF1a indreased obviously, ET decreased significantly, FMD% improved, GTN% no distint change. Conclusion Atravastain by reducing LDL、ET、HDL、NO 、PGF1a means to achieve the protection of vascular endothelium in patients with T2DM, reduce the incidence of diseases associate with ECD.%目的 研究阿托伐他汀对2型糖尿病血管内皮功能及血脂的影响.方法 分别检测180例2型糖尿病(T2DM)患者的血糖、血压、血脂、一氧化氮(NO)、血管内皮素(ET)、6-酮-前列腺素(PGF1a).同时采用高分辨超声检测内皮细胞依赖性舒张功能(FMD%)、内皮细胞非依赖性舒张功能(GTN%).结果 阿托伐他汀治疗后NO、PGF1a明显增加(P<0.05),ET明显降低(P<0.05);FMD%明显改善(P<0.05),GTN%无明显变化(P>0.05).结论 阿托伐他汀通过降低低密度脂蛋白、提高高密度脂蛋白、升高NO、PGF1a,降低ET水平等途径实现对T2DM患者内皮功能保护作用,减少内皮功能紊乱(ECD)相关性疾病的发生发展.

  12. Asymmetric subcellular distribution of glucose transporters in the endothelium of small contractile arteries.

    Science.gov (United States)

    Gaudreault, N; Scriven, D R L; Moore, E D W

    2006-01-01

    The authors have recently reported the presence and asymmetric distribution of the glucose transporters GLUT-1 to -5 and SGLT-1 in the endothelium of rat coronary artery (Gaudreault et al. 2004, Diabetologica, 47, 2081-2092). In the present study the authors investigate and compare the presence and subcellular distribution of the classic glucose transporter isoforms in endothelial cells of cerebral, renal, and mesenteric arteries. The GLUTs and SGLT-1 were examined with immunohistochemistry and wide-field fluorescence microscopy coupled to deconvolution in en face preparation of intact artery. We identified GLUT-1 to -5 and SGLT-1 in the endothelial cells of all three vascular beds. The relative level of expression for each isoform was found comparable amongst arteries. Clusters of the glucose transporter isoforms were found at a high density in proximity to the cell-to-cell junctions. In addition, a consistent asymmetric distribution of GLUT-1 to -5 was found, predominantly located on the abluminal side of the endothelium in all three vascular beds examined (ranging from 68% to 91%, p<.05). The authors conclude that the expression and subcellular distribution of glucose transporters are similar in endothelial cells from vascular beds of comparable diameter and suggest that their subcellular organization may facilitate transendothelial transport of glucose in small contractile arteries.

  13. Effect of Xiongshao Capsule(芎芍胶囊)on the Function of Vascular Endothelium of Patients with Cervical Atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    徐凤芹; 李立志; 徐浩; 姚立芳; 陈可冀; 邵念方

    2004-01-01

    Objective: To study the effect of Xiongshao Capsule (芎芍胶囊, XSC), a TCM herb that can promote blood circulation to remove blood stasis, on the endothelial dependent relaxation function, serum nitric oxide (NO), and plasma endothelin-1 (ET-1) of the patients with cervical atherosclerosis. Methods: Forty patients were randomly divided into two groups: XSC group and Probucol group (western medicine control).In addition, 20 healthy people were set as a normal control group. Plasma ET-1, serum NO, the internal diameter of basal brachial artery, endothelial dependent flow mediated dilation (FMD) and non-endothelial dependent nitroglycerin induced dilation (NID) to the trial group before and after therapy and to the healthy control group were determined respectively. Results: Compared to the healthy control group, FMD of patients with atherosclerosis was damaged obviously, the serum NO level decreased, plasma ET-1 increased (P<0.01), NID also decreased (P<0.05), the internal diameter of basal brachial artery has no obvious difference (P>0.05). After the patients with atherosclerosis were treated with Xiongshao Capsule for 12 weeks,FMD increased evidently, plasma ET-1 decreased, serum NO and the ratio of NO/ET-1 increased, compared with the level before therapy and Probucol group, the difference was significant (P<0.05, P<0.01), NIDdidn′t change obviously (P>0.05). Conclusion: XSC could regulate vascular activity factor and improve the function of endothelial dependent vascular dilation of patients with atherosclerosis.

  14. Effect of Xiongshao Capsule (芎芍胶囊) on the Function of Vascular Endothelium of Patients with Cervical Atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    徐凤芹; 李立志; 徐浩; 姚立芳; 陈可冀; 邵念方

    2004-01-01

    Objective: To study the effect of Xiongshao Capsule (芎芍胶囊, XSC), a TCM herb that can promote blood circulation to remove blood stasis, on the endothelial dependent relaxation function, serum nitric oxide (NO), and plasma endothelin-1(ET-1) of the patients with cervical atherosclerosis. Methods. Forty patients were randomly divided into two groups: XSC group and Probucol group (western medicine control). In addition, 20 healthy people were set as a normal control group. Plasma ET-1, serum NO, the internal diameter of basal brachial artery, endothelial dependent flow mediated dilation (FMD) and non-endothelial dependent nitroglycerin induced dilation (NID) to the trial group before and after therapy and to the healthy control group were determined respectively. Results: Compared to the healthy control group, FMD of patients with atherosclerosis was damaged obviously, the serum NO level decreased, plasma ET-1 increased (P0.05). After the patients with atherosclerosis were treated with Xiongshao Capsule for 12 weeks, FMD increased evidently, plasma ET-1 decreased, serum NO and the ratio of NO/ET-1 increased, compared with the level before therapy and Probucol group, the difference was significant (P0.05). Conclusion: XSC could regulate vascular activity factor and improve the function of endothelial dependent vascular dilation of patients with atherosclerosis.

  15. Endothelial and non-endothelial coronary blood flow reserve and left ventricular dysfunction in systemic hypertension

    Directory of Open Access Journals (Sweden)

    Aloísio Marchi Rocha

    2009-04-01

    Full Text Available OBJECTIVES: We evaluated the impairment of endothelium-dependent and endothelium-independent coronary blood flow reserve after administration of intracoronary acetylcholine and adenosine, and its association with hypertensive cardiac disease. INTRODUCTION: Coronary blood flow reserve reduction has been proposed as a mechanism for the progression of compensated left ventricular hypertrophy to ventricular dysfunction. METHODS: Eighteen hypertensive patients with normal epicardial coronary arteries on angiography were divided into two groups according to left ventricular fractional shortening (FS. Group 1 (FS >0.25: n=8, FS=0.29 ± 0.03; Group 2 (FS <0.25: n=10, FS= 0.17 ± 0.03. RESULTS: Baseline coronary blood flow was similar in both groups (Group 1: 80.15 ± 26.41 mL/min, Group 2: 100.09 ± 21.51 mL/min, p=NS. In response to adenosine, coronary blood flow increased to 265.1 ± 100.2 mL/min in Group 1 and to 300.8 ± 113.6 mL/min (p <0.05 in Group 2. Endothelium-independent coronary blood flow reserve was similar in both groups (Group 1: 3.31 ± 0.68 and Group 2: 2.97 ± 0.80, p=NS. In response to acetylcholine, coronary blood flow increased to 156.08 ± 36.79 mL/min in Group 1 and to 177.8 ± 83.6 mL/min in Group 2 (p <0.05. Endothelium-dependent coronary blood flow reserve was similar in the two groups (Group 1: 2.08 ± 0.74 and group Group 2: 1.76 ± 0.61, p=NS. Peak acetylcholine/peak adenosine coronary blood flow response (Group 1: 0.65 ± 0.27 and Group 2: 0.60 ± 0.17 and minimal coronary vascular resistance (Group 1: 0.48 ± 0.21 mmHg/mL/min and Group 2: 0.34 ± 0.12 mmHg/mL/min were similar in both groups (p= NS. Casual diastolic blood pressure and end-systolic left ventricular stress were independently associated with FS. CONCLUSIONS: In our hypertensive patients, endothelium-dependent and endothelium-independent coronary blood flow reserve vasodilator administrations had similar effects in patients with either normal or decreased left

  16. Estudos hemodinâmicos e da função endotelial em porcas saudáveis após injeção em bolus endovenoso de azul de metileno Hemodynamic and vascular endothelium function studies in healthy pigs after intravenous bolus infusion of methylene blue

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Menardi

    2006-10-01

    vasoplegia, não se esperando que a inibição da guanilatociclase tenha algum efeito. CONCLUSÃO: A infusão em bolus endovenoso in vivo na dose investigada (3 mg/kg não causou alterações hemodinâmicas e comprometimento da liberação in vitro de NO.OBJECTIVE: Clinical benefit of methylene blue (MB treating NO-induced vasoplegia has been reported in sepsis, systemic inflammatory response syndrome (SIRS in cardiac surgery and anaphylactic shock, but its safety is sometimes questioned, mainly regarding its hemodynamic effects and the possibility of causing endothelium dysfunction. To examine the nitric oxide plasma levels and cardiovascular effects of the infusion of MB in vivo and its effects on endothelium-dependent and endothelium-independent in vitro vascular relaxation. METHODS: The study protocol included two experimental groups of female pigs: Group I (Control - the animals (n=6 did not receive MB; Group II (MB - the animals received 3 mg/kg of MB intravenous bolus infusion. After fifteen minutes of hemodynamic parameter recording the animals were sacrificed by exsanguination, and in vitro studies were conducted using segments of coronary, hepatic, superior mesenteric and renal arteries, to determine the effect of MB on the arterial endothelium function with regard to NO release. Nitric oxide plasma levels (NOx were measured in each of the experimental groups. RESULTS: The results obtained in the present investigation were: 1 intravenous infusion of MB (3.0 mg/kg caused no hemodynamic changes; 2 absolute and percent plasma NOx values did not differ between the experimental groups; and 3 in vitro study of vascular relaxation showed no significant difference between groups. These results show that MB intravenous infusion seems to be safe. This finding agrees with data from clinical experiments where MB was used to treat vasoplegic syndrome after cardiopulmonary bypass, systemic inflammatory response syndrome (SIRS and anaphylaxis. These results were not unexpected

  17. Identification of schisandrin as a vascular endothelium protective component in YiQiFuMai Powder Injection using HUVECs binding and HPLC-DAD-Q-TOF-MS/MS analysis.

    Science.gov (United States)

    Li, Fang; Tan, Yi-Sha; Chen, Hong-Lin; Yan, Yan; Zhai, Ke-Feng; Li, Da-Peng; Kou, Jun-Ping; Yu, Bo-Yang

    2015-09-01

    YiQiFuMai Powder Injection (YQFM) is a re-developed preparation based on the well-known traditional Chinese medicine formula Sheng-mai-san. It has been widely used for the treatment of cardiovascular disease with definite clinical efficacy in China, but its bioactive molecules remain obscure. In this study, an effective method has been employed as a tool for screening active components in YQFM, using human umbilical vein endothelial cells (HUVECs) extraction and liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS). Nine compounds, which could interact with HUVECs, were identified as ginsenosides Rb1, Rc, Rb2, Rd, 20(S)-Rg3, 20(R)-Rg3, Rk1/Rg5 and schisandrin by comparing with reference substances or literature. In vitro assays showed that schisandrin at concentrations of 10-100 μM protected HUVECs from hypoxia/reoxygenation (H/R) injury, increased cell viability, nitric oxide (NO) content and decreased lactate dehydrogenase (LDH) leakage, malonaldehyde (MDA) content and ROS generation. Moreover, schisandrin pretreatment inhibited cell apoptosis, as evidenced by inhibiting activation of caspase-3 and increasing the Bcl-2/Bax ratio. These data indicate that HUVECs biospecific extraction coupled with HPLC-ESI-Q-TOF-MS/MS analysis is a reliable method for screening potential bioactive components from traditional Chinese medicines. Meanwhile, the vascular endothelium protective property of schisandrin might be beneficial for the treatment of cardiovascular disease.

  18. Protection of Coronary Endothelial Function during Cardiac Surgery: Potential of Targeting Endothelial Ion Channels in Cardioprotection

    Directory of Open Access Journals (Sweden)

    Qin Yang

    2014-01-01

    Full Text Available Vascular endothelium plays a critical role in the control of blood flow by producing vasoactive factors to regulate vascular tone. Ion channels, in particular, K+ channels and Ca2+-permeable channels in endothelial cells, are essential to the production and function of endothelium-derived vasoactive factors. Impairment of coronary endothelial function occurs in open heart surgery that may result in reduction of coronary blood flow and thus in an inadequate myocardial perfusion. Hyperkalemic exposure and concurrent ischemia-reperfusion during cardioplegic intervention compromise NO and EDHF-mediated function and the impairment involves alterations of K+ channels, that is, KATP and KCa, and Ca2+-permeable TRP channels in endothelial cells. Pharmacological modulation of these channels during ischemia-reperfusion and hyperkalemic exposure show promising results on the preservation of NO and EDHF-mediated endothelial function, which suggests the potential of targeting endothelial K+ and TRP channels for myocardial protection during cardiac surgery.

  19. Effects of acrylic resin monomers on porcine coronary artery reactivity.

    Science.gov (United States)

    Abebe, Worku; West, Daniel; Rueggeberg, Frederick A; Pashley, David; Mozaffari, Mahmood S

    2016-07-01

    The purpose of the present investigation was to assess the reactivity of porcine coronary arteries under in vitro conditions following their exposure to methyl methacrylate (MMA) and hydroxyethyl methacrylate (HEMA) monomers. Confirming previous studies using rat aortas, both MMA and HEMA induced acute/direct relaxation of coronary ring preparations, which was partly dependent on the endothelium. With prolonged tissue exposure, both monomers caused time- and concentration-dependent inhibition of receptor-mediated contraction of the vascular smooth muscle caused by prostaglandin F2∝ (PGF2∝), with HEMA causing more inhibition than MMA. Hydroxyethyl methacrylate, but not MMA, also produced impairment of non-receptor-mediated contraction of the coronary smooth muscle induced by KCl. On the other hand, neither HEMA nor MMA altered relaxation of the smooth muscle produced by the direct-acting pharmacological agent, sodium nitroprusside (SNP). While exposure to HEMA impaired endothelium-dependent vasorelaxation caused by bradykinin (BK), MMA markedly enhanced this endothelial-mediated response of the arteries. The enhanced endothelial response produced by MMA was linked to nitric oxide (NO) release. In conclusion, with prolonged tissue exposure, MMA causes less pronounced effects/adverse consequences on coronary smooth muscle function relative to the effect of HEMA, while enhancing vasorelaxation associated with release of NO from the endothelium. Accordingly, MMA-containing resin materials appear to be safer for human applications than materials containing HEMA.

  20. Relationship between Retinal Vascular Caliber and Coronary Artery Disease in Patients with Non-Alcoholic Fatty Liver Disease (NAFLD

    Directory of Open Access Journals (Sweden)

    Marmor Alon

    2013-08-01

    Full Text Available Objective: To evaluate the relationship between retinal vascular caliber and cardiovascular disease in non-alcoholic fatty liver disease (NAFLD patients without diabetes and hypertension. Methods: Intention to treat study of individuals who underwent cardiac computed tomography (CT during a two year period. Coronary artery disease (CAD was defined as stenosis of >50% in at least one major coronary artery. Liver and spleen density were measured by abdominal (CT; intima-media thickness (IMT by Doppler ultrasound; retinal artery and vein diameter by colored-retinal angiography; and metabolic syndrome by ATP III guidelines. Serum biomarkers of insulin resistance, inflammation, and oxidant-antioxidant status were assessed. Results: Compared with 22 gender and age matched controls, the 29 NAFLD patients showed higher prevalence of coronary plaques (70% vs. 30%, p < 0.001, higher prevalence of coronary stenosis (30% vs. 15%, p < 0.001, lower retinal arteriole-to-venule ratio (AVR (0.66 ± 0.06 vs. 0.71 ± 0.02, p < 0.01, higher IMT (0.98 ± 0.3 vs. 0.83 ± 0.1, p < 0.04, higher carotid plaques (60% vs. 40%, p < 0.001, higher homeostasis model assessment of insulin resistance (HOMA (4.0 ± 3.4 vs. 2.0 ± 1.0, p < 0.005, and higher triglyceride levels (200 ± 80 vs. 150 ± 60, p < 0.005 than controls. Multivariate analysis showed fatty liver (OR 2.5; p < 0.01, IMT (OR 2.3 p < 0.001, and retinal AVR ratio (OR 1.5, p < 0.01 to be strongly associated with CAD independent of metabolic syndrome (OR 1.2, p < 0.05. Conclusions: Patients with smaller retinal AVR (<0.7 are likely to be at increased risk for CAD and carotid atherosclerosis in patients with NAFLD even without hypertension or diabetes.

  1. Study on Effect of Zhixinkang Capsule(脂欣康胶囊)in Treating Unstable Effort Angina and Hyperlipidemia and Lts Function in Vascular Endothelium Protection

    Institute of Scientific and Technical Information of China (English)

    ZHANGWen-gao; MENG-Xian-zhongtffu

    2003-01-01

    Objective:To observe the clinical effect and protection of vascular endotelium of Zhixin-kang Capsule(ZXKC) in middle-aged and old people with unstable effort angina and hyperlipidemia.Methods:Sixty-five patients with unstable effort angina were randomly divided into ZXKC group(34 ca-ses)and control group(31 cases).Conventional western medical therapy was given to both groups,with ZXKC group receiving additional ZXKC treatment.Data of 20 healthy persons were taken as normal group.Forty-eight patients with hyperlipidemia were divided into ZXKC group treated with ZXKC (31 ca-ses) and control group treated with Yixintong(17 cases).The changes of clinical symptoms and laborato-ry indexes in all the patients were observed before and after treatment.Results:In patients with unstable effort angina,the efficacy of treatment of ZXKC,the withdrawal rate of nitroglycerin,the relieving of symptoms,the improvement of the electrocardiogram,the counts of circulating endothelial cells,the con-tent of platelet P-selectin,the content of plasma endothelin(ET),the activity of superoxide dismutase (SOD) and the activity of malonyldialdehyde(MDA) were all better than those in the control group.In patients with hyperlipidemia,there was no significant difference in lipids reduction between ZXKC group and the control group.In both groups,the total cholesterol(TC),triglyceride(TG),low density lipo-protein-cholesterol(LDL-C),lipoprotein(a)[Lp(a)],ET, oxidized low density lipoprotein,MDA,arte-riosclerotic index(AI)all lowered obviously,while the SOD,HDL-C and calcitonin gene-related peptide (CGRP) were all elevated markedly.In the ZXKC group,the nitric oxide(NO) increased significantly whereas the ET/CGRP and ET/NO decreased markedly.The total effective rate in symptom relieving,the markedly effective rate,the reduction of TC,ET and ET/CGRP,and the elevation of SOD in ZXKC group were all superior to those in the control group.Conclusion:ZXKC could effectively resist myocardial ische

  2. Role of pigment epithelium-derived factor on proliferation and migration of choroidal capillary endothelium induced by vascular endothelial growth factor in vitro

    Institute of Scientific and Technical Information of China (English)

    WANG Feng-hua; SUN Xiao-dong; ZHANG Xi; XU Xun; ZHU Qi; HUANG Jian-nan; FAN Ying; GU Qing; LIU Hai-yang

    2007-01-01

    Background Pigment epithelium-derived factor (PEDF) is expressed in several normal organs and identified as an inhibitor of neovascularization. In the present study, we investigated the effect of PEDF in an in vitro model of ocular choroidal neovascularization.Methods Microdissection was used to isolate the human choroidal endothelial cells (CECs), followed by the use of superparamagnetic beads (Dynabeads) coated with the CD31 antibody, which selectively binds to the endothelial cell surface. The mitogenic and motogenic effects of vascular endothelial growth factor (VEGF) on cultured choroidal capillary endothelial cells were examined in the presence or absence of PEDF (1, 10, 100, and 1000 ng/ml) using cell counts and migration assays.Results Cells bound to the beads were isolated using a magnetic particle concentrator and they were successfully cultured and characterized to be endothelial cells that possessed greater than 95% immunoreactivity to von Willebrand factor. PEDF suppressed the proliferation and migration of VEGF-induced choroidal capillary endothelial cells. However,the concentration of PEDF which we used has little effect on normal CECs.Conclusions PEDF played an important role on the growth and migration of VEGF-stimulated choroidal endothelial cell.These findings suggest that PEDF may be an effective approach to the treatment of choroidal neovascular disorders.

  3. Study of Traditional Chinese Medicine in Intervening Vascular Remodeling after Percutaneous Transluminal Coronary Angioplasty

    Institute of Scientific and Technical Information of China (English)

    鹿小燕; 徐浩; 史大卓; 陈可冀

    2004-01-01

    Interventional therapy of coronary heart disease (CHD) includes percutaneous transluminal coronary angioplasty (PTCA), stent implantation etc. Owing to its revascularization without cardiac surgery, it has been the main effective method in treating CHD. But at the same time, there exists the problem of restenosis (RS). After PTCA, RS rate can reach 30% to 50%, even with direct stenting into the vessels, it still reaches 20% to 35%. So this affects long-term effect of interventional therapy, which directly relates to prognosis of patients with CHD and has been a hot spot of study in the field of preventing and treating CHD.

  4. Study of Traditional Chinese Medicine in Intervening Vascular Remodeling after Percutaneous Transluminal Coronary Angioplasty

    Institute of Scientific and Technical Information of China (English)

    鹿小燕; 徐浩; 史大卓; 陈可冀

    2004-01-01

    Interventional therapy of coronary heart disease (CHD) includes percutaneous transluminal coronary angioplasty (PTCA), stent implantation etc. Owing to its revascularization without cardiac surgery, it has been the main effective method in treating CHD. But at the same time, there exists the problem of restenosis (RS). After PTCA, RS rate can reach 30% to 50%, even with directstenting into the vessels, it still reaches 20% to 35%. So this affects long-term effect of interventional therapy, which directly relates to prognosis of patients with CHD and has been a hot spot of study in the field of preventing and treating CHD.

  5. Microvascular Coronary Artery Spasm Presents Distinctive Clinical Features With Endothelial Dysfunction as Nonobstructive Coronary Artery Disease

    Science.gov (United States)

    Ohba, Keisuke; Sugiyama, Seigo; Sumida, Hitoshi; Nozaki, Toshimitsu; Matsubara, Junichi; Matsuzawa, Yasushi; Konishi, Masaaki; Akiyama, Eiichi; Kurokawa, Hirofumi; Maeda, Hirofumi; Sugamura, Koichi; Nagayoshi, Yasuhiro; Morihisa, Kenji; Sakamoto, Kenji; Tsujita, Kenichi; Yamamoto, Eiichiro; Yamamuro, Megumi; Kojima, Sunao; Kaikita, Koichi; Tayama, Shinji; Hokimoto, Seiji; Matsui, Kunihiko; Sakamoto, Tomohiro; Ogawa, Hisao

    2012-01-01

    Background Angina without significant stenosis, or nonobstructive coronary artery disease, attracts clinical attention. Microvascular coronary artery spasm (microvascular CAS) can cause nonobstructive coronary artery disease. We investigated the clinical features of microvascular CAS and the therapeutic efficacy of calcium channel blockers. Methods and Results Three hundred seventy consecutive, stable patients with suspected angina presenting nonobstructive coronary arteries (<50% diameter) in coronary angiography were investigated with the intracoronary acetylcholine provocation test, with simultaneous measurements of transcardiac lactate production and of changes in the quantitative coronary blood flow. We diagnosed microvascular CAS according to lactate production and a decrease in coronary blood flow without epicardial vasospasm during the acetylcholine provocation test. We prospectively followed up the patients with calcium channel blockers for microvascular coronary artery disease. We identified 50 patients with microvascular CAS who demonstrated significant impairment of the endothelium-dependent vascular response, which was assessed by coronary blood flow during the acetylcholine provocation test. Administration of isosorbide dinitrate normalized the abnormal coronary flow pattern in the patients with microvascular CAS. Multivariate logistic regression analysis indicated that female sex, a lower body mass index, minor–borderline ischemic electrocardiogram findings at rest, limited–baseline diastolic-to-systolic velocity ratio, and attenuated adenosine triphosphate–induced coronary flow reserve were independently correlated with the presence of microvascular CAS. Receiver-operating characteristics curve analysis revealed that the aforementioned 5-variable model showed good correlation with the presence of microvascular CAS (area under the curve: 0.820). No patients with microvascular CAS treated with calcium channel blockers developed cardiovascular

  6. A systematic review of selective and non-selective beta blockers for prevention of vascular events in patients with acute coronary syndrome or heart failure

    NARCIS (Netherlands)

    De Peuter, O.R.; Lussana, F.; Peters, R.J.G.; Büller, H.R.; Kamphuisen, P.W.

    2009-01-01

    Background: To assess the influence of β2-receptor suppression on top of selective β1-receptor blockade on the occurrence of vascular events and on all-cause mortality in patients with acute coronary syndrome (ACS) or heart failure (HF). Methods: Systematic review of studies published since 1980. Ra

  7. Cost-effectiveness of new cardiac and vascular rehabilitation strategies for patients with coronary artery disease

    NARCIS (Netherlands)

    S. Spronk (Sandra); J.L.H.R. Bosch (Ruud); C. Ryjewski (Connie); J. Rosenblum (Judy); G.C. Kaandorp (Guido); J.V. White (John); M.G.M. Hunink (Myriam)

    2008-01-01

    textabstractObjective: Peripheral arterial disease (PAD) often hinders the cardiac rehabilitation program. The aim of this study was evaluating the relative cost-effectiveness of new rehabilitation strategies which include the diagnosis and treatment of PAD in patients with coronary artery disease (

  8. Upregulation of SK3 and IK1 channels contributes to the enhanced endothelial calcium signaling and the preserved coronary relaxation in obese Zucker rats.

    Directory of Open Access Journals (Sweden)

    Belén Climent

    Full Text Available BACKGROUND AND AIMS: Endothelial small- and intermediate-conductance KCa channels, SK3 and IK1, are key mediators in the endothelium-derived hyperpolarization and relaxation of vascular smooth muscle and also in the modulation of endothelial Ca2+ signaling and nitric oxide (NO release. Obesity is associated with endothelial dysfunction and impaired relaxation, although how obesity influences endothelial SK3/IK1 function is unclear. Therefore we assessed whether the role of these channels in the coronary circulation is altered in obese animals. METHODS AND RESULTS: In coronary arteries mounted in microvascular myographs, selective blockade of SK3/IK1 channels unmasked an increased contribution of these channels to the ACh- and to the exogenous NO- induced relaxations in arteries of Obese Zucker Rats (OZR compared to Lean Zucker Rats (LZR. Relaxant responses induced by the SK3/IK1 channel activator NS309 were enhanced in OZR and NO- endothelium-dependent in LZR, whereas an additional endothelium-independent relaxant component was found in OZR. Fura2-AM fluorescence revealed a larger ACh-induced intracellular Ca2+ mobilization in the endothelium of coronary arteries from OZR, which was inhibited by blockade of SK3/IK1 channels in both LZR and OZR. Western blot analysis showed an increased expression of SK3/IK1 channels in coronary arteries of OZR and immunohistochemistry suggested that it takes place predominantly in the endothelial layer. CONCLUSIONS: Obesity may induce activation of adaptive vascular mechanisms to preserve the dilator function in coronary arteries. Increased function and expression of SK3/IK1 channels by influencing endothelial Ca2+ dynamics might contribute to the unaltered endothelium-dependent coronary relaxation in the early stages of obesity.

  9. CD43 Functions as an E-Selectin Ligand for Th17 Cells In Vitro and Is Required for Rolling on the Vascular Endothelium and Th17 Cell Recruitment during Inflammation In Vivo.

    Science.gov (United States)

    Velázquez, Francisco; Grodecki-Pena, Anna; Knapp, Andrew; Salvador, Ane M; Nevers, Tania; Croce, Kevin J; Alcaide, Pilar

    2016-02-01

    Endothelial E- and P-selectins mediate lymphocyte trafficking in inflammatory processes by interacting with lymphocyte selectin ligands. These are differentially expressed among different T cell subsets and function alone or in cooperation to mediate T cell adhesion. In this study, we characterize the expression and functionality of E-selectin ligands in Th type 17 lymphocytes (Th17 cells) and report that CD43 functions as a Th17 cell E-selectin ligand in vitro that mediates Th17 cell rolling on the vascular endothelium and recruitment in vivo. We demonstrate Th17 cells express CD44, P-selectin glycoprotein ligand (PSGL)-1, and CD43. Few PSGL-1(-/-)CD43(-/-) Th17 cells accumulated on E-selectin under shear flow conditions compared with wild-type cells. CD43(-/-) Th17 cell accumulation on E-selectin was impaired as compared with wild-type and PSGL-1(-/-), and similar to that observed for PSGL-1(-/-)CD43(-/-) Th17 cells, indicating that CD43 alone is a dominant ligand for E-selectin. Notably, this finding is Th17 cell subset specific because CD43 requires cooperation with PSGL-1 in Th1 cells for binding to E-selectin. In vivo, Th17 cell recruitment into the air pouch was reduced in CD43(-/-) mice in response to CCL20 or TNF-α, and intravital microscopy studies demonstrated that CD43(-/-) Th17 cells had impaired rolling on TNF-α-treated microvessels. Furthermore, CD43(-/-) mice were protected from experimental autoimmune encephalomyelitis and had impaired recruitment of Th17 cells in the spinal cord. Our findings demonstrate that CD43 is a major E-selectin ligand in Th17 cells that functions independent of PSGL-1, and they suggest that CD43 may hold promise as a therapeutic target to modulate Th17 cell recruitment.

  10. Effect of Circular ANRIL on the Inflammatory Response of Vascular Endothelial Cells in a Rat Model of Coronary Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Chun-Li Song

    2017-07-01

    Full Text Available Background/Aims: This study aims to investigate the role of circular antisense non-coding RNA at the INK4 locus (cANRIL in the inflammatory response of vascular endothelial cells (ECs in a rat model of coronary atherosclerosis (AS. A rat model of AS was established with rats that were injected with a large dose of vitamin D3 and fed a high-fat diet. Methods: Sixty Wistar rats were randomly assigned into control, model, empty vector, over-expressed cANRIL and low-expressed cANRIL groups (12 rats in each group. Sixteen weeks later, the ultrastructure of their coronary arteries was observed via transmission electron microscopy. Rat serum lipid levels were analyzed using an automatic biochemical analyzer, and their atherogenic index (AI values were calculated. Hematoxylin and eosin staining was used to observe the endothelial morphology of rats. Additionally, rat EC apoptosis was tested via a TUNEL assay. Enzyme-linked immunosorbent assays (ELISAs were applied to measure serum levels of interleukin-1 (IL-1, IL-6, matrix metalloproteinase-9 (MMP-9 and C-reactive protein (CRP. The cANRIL, Bax, bcl-2 and caspase-3 mRNA expression levels were measured with a quantitative real-time polymerase chain reaction (qRT-PCR. The protein expression levels of Bax, bcl-2 and caspase-3 were detected using immunohistochemistry. Results: In the control group, ECs were closely arranged with normal structures, and there was no proliferation. In the model, empty vector and over-expressed cANRIL groups, some cells were not present, and atherosclerotic plaques and thrombi appeared. However, in the under-expressed cANRIL group, the cells had a normal structure. Compared with the model and empty vector groups, the levels of total cholesterol (CHOL, triglycerides (TGs, low density lipoprotein (LDL, IL-1, IL-6, MMP-9, CRP, cANRIL, Bax, and caspase-3, AI values, and rates of EC apoptosis decreased in the low-expressed cANRIL group, while HDL (high density lipoprotein levels and

  11. Enhanced Myocardial Vascularity and Contractility by Novel FGF-1 Transgene in a Porcine Model of Chronic Coronary Occlusion

    Directory of Open Access Journals (Sweden)

    Janet L. Parker

    2008-12-01

    Full Text Available Background: Angiogenesis gene therapy has long been sought as a novel alternative treatment for restoring the blood flow and improving the contractile function of the ischemic heart in selected clinical settings. Angiogenic fibroblast growth factor-1 (FGF-1 is a promising candidate for developing a promising gene therapy protocol due to its multipotent ability to stimulate endothelial cell (EC growth, migration, and tube formation. Despite these advantages, however, FGF gene therapy has suffered setbacks mainly due to the inefficient delivery rate of the growth factor in vivo. Given the potent angiogenic effect of FGF-1, we reasoned that constitutively synthesized minute quantities of this polypeptide hormone, when empowered with the ability to escape the cellular constraint, could freely act in a paracrine/autocrine fashion on nearby existing capillary plexuses and lead to neovascularization and restoration of the blood flow to ischemic tissues for reparative purpose. Methods: We report the direct gene transfer of a retroviral-based mammalian expression vector encoding a secreted form of FGF-1 (sp-FGF-1 for the purpose of therapeutic angiogenesis into the porcine myocardium subjected to the surgical placement of an ameroid occluder to induce the chronic coronary occlusion of the left circumflex coronary artery (LCx and regional myocardial ischemia. Coronary angiography, performed 3 weeks after surgery, confirmed the interruption of the blood flow in the LCx distal to the site of ameroid placement. Results: Immunohistochemical analysis using antibody specific to von Willebrand factor (vWF, an endothelial marker, showed a significant increase (p<0.05 in myocardial vascularity in the sp-FGF-1 hearts compared to the control (vector alone. Importantly, an assessment of the cardiac function by echocardiography, performed 3 weeks after surgery, demonstrated improved cardiac contractility due to increased left ventricular free wall contraction in the

  12. Long-Term Follow-Up of Patients after Percutaneous Coronary Intervention with Everolimus-Eluting Bioresorbable Vascular Scaffold

    Science.gov (United States)

    Meneguz-Moreno, Rafael Alexandre; Costa Junior, José de Ribamar; Moscoso, Freddy Antônio Britto; Staico, Rodolfo; Tanajura, Luiz Fernando Leite; Centemero, Marinella Patrizia; Chaves, Auréa Jacob; Abizaid, Andrea Claudia Leão de Sousa; Sousa, Amanda Guerra de Moraes Rego e; Abizaid, Alexandre Antonio Cunha

    2017-01-01

    Background Bioresorbable vascular scaffolds (BVS) were developed to improve the long-term results of percutaneous coronary intervention, restoring vasomotion. Objectives To report very late follow-up of everolimus-eluting Absorb BVS (Abbott Vascular, Santa Clara, USA) in our center. Methods Observational retrospective study, in a single Brazilian center, from August 2011 to October 2013, including 49 patients submitted to Absorb BVS implantation. Safety and efficacy outcomes were analyzed in the in-hospital and very late follow-up phases (> 2 years). Results All 49 patients underwent a minimum follow-up of 2.5 years and a maximum of 4.6 years. Mean age was 56.8 ± 7.6 years, 71.4% of the patients were men, and 26.5% were diabetic. Regarding clinical presentation, the majority (94%) had stable angina or silent ischemia. Device success was achieved in 100% of cases with 96% overall procedure success rate. Major adverse cardiovascular events rate was 4% at 30 days, 8.2% at 1 year, and 12.2% at 2 years, and there were no more events until 4.6 years. There were 2 cases of thrombosis (1 subacute and 1 late). Conclusions In this preliminary analysis, Absorb BVS showed to be a safe and effective device in the very late follow-up. Establishing the efficacy and safety profiles of these devices in more complex scenarios is necessary. PMID:28076449

  13. Improved anticoagulation management after Palmaz Schatz coronary stent implantation by sealing the arterial puncture site with a vascular hemostasis device.

    Science.gov (United States)

    Kiemeneij, F; Laarman, G J

    1993-12-01

    Sealing the arterial puncture site with a vascular hemostasis device has the potential to maintain optimal anticoagulation after stent implantation. The level of heparinization during the first 3 days after successful stent implantation was retrospectively compared between 2 groups of medically treated patients with (group A; n = 18) and without (group B; n = 17) a Vasoseal after sheath removal. The number of APTTs sampled in group A and B was 233 and 168, respectively. Respective mean values of APTT (seconds) in group A and B were 180 +/- 79 and 172 +/- 91 at day 1 (p = NS), 132 +/- 43 and 125 +/- 61 at day 2 (p = NS) and 123 +/- 36 and 116 +/- 48 at day 3 (p = NS). More APTTs were suboptimal (< 80 secs) in group B (34/168; 20%) compared to group A (17/233; 7%) [p < 0.001]. More patients in group B compared to group A had 1 or more (14/17; 82% vs. 8/18; 44%; p = 0.04), 2 or more (10/17; 59% versus 3/18; 17%; p = 0.02) and 3 or more (8/17; 47% vs. 2/18; 11%; p = 0.03) suboptimal APTTs. Bleeding complications were seen in 4 patients without and in 3 patients with a Vasoseal. Thus application of a vascular hemostasis device results in a less variable anticoagulation after coronary stenting, but it does not abolish entry site-related bleeding complications.

  14. Plasma complement and vascular complement deposition in patients with coronary artery disease with and without inflammatory rheumatic diseases.

    Science.gov (United States)

    Shields, Kelly J; Mollnes, Tom Eirik; Eidet, Jon Roger; Mikkelsen, Knut; Almdahl, Sven M; Bottazzi, Barbara; Lyberg, Torstein; Manzi, Susan; Ahearn, Joseph M; Hollan, Ivana

    2017-01-01

    Inflammatory rheumatic diseases (IRD) are associated with accelerated coronary artery disease (CAD), which may result from both systemic and vascular wall inflammation. There are indications that complement may be involved in the pathogenesis of CAD in Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA). This study aimed to evaluate the associations between circulating complement and complement activation products with mononuclear cell infiltrates (MCI, surrogate marker of vascular inflammation) in the aortic media and adventitia in IRDCAD and non-IRDCAD patients undergoing coronary artery bypass grafting (CABG). Furthermore, we compared complement activation product deposition patterns in rare aorta adventitial and medial biopsies from SLE, RA and non-IRD patients. We examined plasma C3 (p-C3) and terminal complement complexes (p-TCC) in 28 IRDCAD (SLE = 3; RA = 25), 52 non-IRDCAD patients, and 32 IRDNo CAD (RA = 32) from the Feiring Heart Biopsy Study. Aortic biopsies taken from the CAD only patients during CABG were previously evaluated for adventitial MCIs. The rare aortic biopsies from 3 SLE, 3 RA and 3 non-IRDCAD were assessed for the presence of C3 and C3d using immunohistochemistry. IRDCAD patients had higher p-TCC than non-IRDCAD or IRDNo CAD patients (p<0.0001), but a similar p-C3 level (p = 0.42). Circulating C3 was associated with IRD duration (ρ, p-value: 0.46, 0.03). In multiple logistic regression analysis, IRD remained significantly related to the presence and size of MCI (p<0.05). C3 was present in all tissue samples. C3d was detected in the media of all patients and only in the adventitia of IRD patients (diffuse in all SLE and focal in one RA). The independent association of IRD status with MCI and the observed C3d deposition supports the unique relationship between rheumatic disease, and, in particular, SLE with the complement system. Exaggerated systemic and vascular complement activation may accelerate CVD, serve as a CVD

  15. Coronary vascular resistance increases under full bypass support of centrifugal pumps--relation between myocardial perfusion and ventricular workload during pump support.

    Science.gov (United States)

    Ando, Masahiko; Takewa, Yoshiaki; Nishimura, Takashi; Yamazaki, Kenji; Kyo, Shunei; Ono, Minoru; Tsukiya, Tomonori; Mizuno, Toshihide; Taenaka, Yoshiyuki; Tatsumi, Eisuke

    2012-01-01

    Coronary circulation is closely linked to myocardial oxygen consumption (MVO(2)), and previous reports have suggested decreased coronary flow (CoF) under left ventricular assist device support. Decreased CoF itself under support is not unfavorable because the native heart can be well unloaded and myocardial oxygen demand is also decreased. There should be an autoregulatory system that would maintain optimal CoF according to oxygen demand; however, the detailed mechanism is still unclear. The aim of the current study is to evaluate the effect of centrifugal pumps on CoF under varied bypass rates in relation to left ventricle workload. A centrifugal pump, EVAHEART (Sun Medical Technology Research Corporation, Nagano, Japan), was installed in an adult goat (n = 10, 61.3 ± 6.5 kg). We set up the following conditions, including Circuit-Clamp (i.e., no pump support), 50% bypass, and 100% bypass. In these settings, CoF, MVO(2), pressure-volume area (PVA), and coronary vascular resistance (CVR) were measured. In 100% bypass, CoF, MVO(2), and PVA were all decreased significantly from clamp. While in 50% bypass, CoF and MVO(2) decreased from clamp, but not PVA. There was a significant 40% increase in CVR in 100% bypass from clamp. This CVR increase in 100% bypass was possibly due to mechanical collapse of coronary vascular bed itself by pump support or increased vascular tone through autoregulatory system. In clinical settings, we should adjust optimal pump speed so as not to cause this vascular collapse. However, to clarify autoregulatory system of the coronary perfusion, further investigation is ongoing in ischemic and heart failure models.

  16. Chronic Kidney Disease and Endothelium

    Directory of Open Access Journals (Sweden)

    Damir Rebić

    2015-07-01

    Full Text Available The endothelial cell layer is responsible for molecular traffic between the blood and surrounding tissue, and endothelial integrity plays a pivotal role in many aspects of vascular function. Cardiovascular disease (CVD is the main cause of death in patients with chronic kidney disease (CKD and its incidence and severity increase in direct proportion with kidney function decline. Non-traditional risk factors for CVDs, including endothelial dysfunction (ED, are highly prevalent in this population and play an important role in cardiovascular (CV events. ED is the first step in the development of atherosclerosis and its severity has prognostic value for CV events. Several risk markers have been associated with ED. Reduced bioavailability of nitric oxide plays a central role, linking kidney disease to ED, atherosclerosis, and CV events. Inflammation, loss of residual renal function, and insulin resistance are closely related to ED in CKD. ED may be followed by structural damage and remodelling that can precipitate both bleeding and thrombotic events. The endothelium plays a main role in vascular tone and metabolic pathways. ED is the first, yet potentially reversible step in the development of atherosclerosis and its severity has prognostic value for CV events.

  17. Effects of vascular structures on the pressure drop in stenotic coronary arteries

    Science.gov (United States)

    Kim, Jaerim; Choi, Haecheon; Kweon, Jihoon; Kim, Young-Hak; Yang, Dong Hyun; Kim, Namkug

    2016-11-01

    A stenosis, which is a narrowing of a blood vessel, of the coronary arteries restricts the flow to the heart and it may lead to sudden cardiac death. Therefore, the accurate determination of the severity of a stenosis is a critical issue. Due to the convenience of visual assessments, geometric parameters such as the diameter stenosis and area stenosis have been used, but the decision based on them sometimes under- or overestimates the functional severity of a stenosis, i.e., pressure drop. In this study, patient-specific models that have similar area stenosis but different pressure drops are considered, and their geometries are reconstructed from the coronary computed tomography angiography (CCTA). Both steady and pulsatile inflows are considered for the simulations. Comparison between two models that have a bifurcation right after a stenosis shows that the parent to daughter vessel angle results in different secondary flow patterns and wall shear stress distributions which affect the pressure downstream. Thus, the structural features of the lower and upper parts of a stenosis significantly affect the pressure drop. Supported by 20152020105600.

  18. 血管平滑肌内皮依赖性超极化:非一氧化氮合成酶产物的作用%Endothelium-dependent hyperpolarization of vascular smooth muscle:role for a non-nitric oxide synthase product

    Institute of Scientific and Technical Information of China (English)

    Gareth J WALDRON; 董辉; William C COLE; Chris R TRIGGLE

    1996-01-01

    @@ The endothelium plays a fundamental role in the blood coagulation cascade and at the site of injury is important in the development, and sequela, of atheroma. It is also now firmly established that endothelial cells can produce both vasorelaxant and vasoconstrictor factors and thus directly influence vascular tone and blood flow.Prostacyclin[1] and NO[2,3] are both potent vasodilators,and endothelin is a highly potent 21 amino acid peptide vasoconstrictor[4], which have all been shown to be synthesized by endothelial cells. In some vessels, an arachidonic acid product, either cyclooxygenase or lipoxygenase derived, may also play a role in regulating vascular tone[5]. However, an increasing body of evidence indicates that another factor, or perhaps a family of factors,plays an important role as a vasodilator notably in resistanoe arteries where vascular relaxation is accompanied by hyperpolarization of the VSM[6,7].

  19. Vascular Effects of Histamine

    African Journals Online (AJOL)

    olayemitoyin

    effects of histamine are mediated via H1 and H2 receptors and the actions are modulated by H3 receptor subtype ... Keywords: Histamine, Vascular smooth muscle, Endothelium .... responses to histamine, but not those to acetylcholine, were.

  20. MicroRNA-145 restores contractile vascular smooth muscle phenotype and coronary collateral growth in the metabolic syndrome.

    Science.gov (United States)

    Hutcheson, Rebecca; Terry, Russell; Chaplin, Jennifer; Smith, Erika; Musiyenko, Alla; Russell, James C; Lincoln, Thomas; Rocic, Petra

    2013-04-01

    Transient, repetitive occlusion stimulates coronary collateral growth (CCG) in normal animals. Vascular smooth muscle cells (VSMCs) switch to synthetic phenotype early in CCG, then return to contractile phenotype. CCG is impaired in the metabolic syndrome. We determined whether impaired CCG was attributable to aberrant VSMC phenotypic modulation by miR-145-mediated mechanisms, and whether restoration of physiological miR-145 levels in metabolic syndrome (JCR rat) improved CCG. CCG was stimulated by transient, repetitive left anterior descending artery occlusion and evaluated after 9 days by coronary blood flow measurements (microspheres). miR-145 was delivered to JCR VSMCs via adenoviral vector (miR-145-Adv). In JCR rats, miR-145 was decreased late in CCG (≈ 2-fold day 6; ≈ 4-fold day 9 versus SD), which correlated with decreased expression of smooth muscle-specific contractile proteins (≈ 5-fold day 6; ≈ 10-fold day 9 versus SD), indicative of VSMCs' failure to return to the contractile phenotype late in CCG. miR-145 expression in JCR rats (miR-145-Adv) on days 6 to 9 of CCG completely restored VSMCs contractile phenotype and CCG (collateral/normal zone flow ratio was 0.93 ± 0.09 JCR+miR-145-Adv versus 0.12 ± 0.02 JCR versus 0.87 ± 0.02 SD). Restoration of VSMC contractile phenotype through miR-145 delivery is a highly promising intervention for restoration of CCG in the metabolic syndrome.

  1. PR interval prolongation in coronary patients or risk equivalent: excess risk of ischemic stroke and vascular pathophysiological insights.

    Science.gov (United States)

    Chan, Yap-Hang; Hai, Jo Jo; Lau, Kui-Kai; Li, Sheung-Wai; Lau, Chu-Pak; Siu, Chung-Wah; Yiu, Kai-Hang; Tse, Hung-Fat

    2017-08-24

    Whether PR prolongation independently predicts new-onset ischemic events of myocardial infarction and stroke was unclear. Underlying pathophysiological mechanisms of PR prolongation leading to adverse cardiovascular events were poorly understood. We investigated the role of PR prolongation in pathophysiologically-related adverse cardiovascular events and underlying mechanisms. We prospectively investigated 597 high-risk cardiovascular outpatients (mean age 66 ± 11 yrs.; male 67%; coronary disease 55%, stroke 22%, diabetes 52%) for new-onset ischemic stroke, myocardial infarction (MI), congestive heart failure (CHF), and cardiovascular death. Vascular phenotype was determined by carotid intima-media thickness (IMT). PR prolongation >200 ms was present in 79 patients (13%) at baseline. PR prolongation >200 ms was associated with significantly higher mean carotid IMT (1.05 ± 0.37 mm vs 0.94 ± 0.28 mm, P = 0.010). After mean study period of 63 ± 11 months, increased PR interval significantly predicted new-onset ischemic stroke (P = 0.006), CHF (P = 0.040), cardiovascular death (P 200 ms. Using multivariable Cox regression, PR prolongation >200 ms independently predicted new-onset ischemic stroke (HR 8.6, 95% CI: 1.9-37.8, P = 0.005), cardiovascular death (HR 14.1, 95% CI: 3.8-51.4, P PR interval predicts new-onset MI at the exploratory cut-off >162 ms (C-statistic 0.70, P = 0.001; HR: 8.0, 95% CI: 1.65-38.85, P = 0.010). PR prolongation strongly predicts new-onset ischemic stroke, MI, cardiovascular death, and combined cardiovascular endpoint including CHF in coronary patients or risk equivalent. Adverse vascular function may implicate an intermediate pathophysiological phenotype or mediating mechanism.

  2. Incidence and Potential Mechanism(s) of Post-Procedural Rise of Cardiac Biomarker in Patients With Coronary Artery Narrowing After Implantation of an Everolimus-Eluting Bioresorbable Vascular Scaffold or Everolimus-Eluting Metallic Stent

    DEFF Research Database (Denmark)

    Ishibashi, Yuki; Muramatsu, Takashi; Nakatani, Shimpei;

    2015-01-01

    to Compare the Safety, Efficacy, and Performance of Absorb Everolimus Eluting Bioresorbable Vascular Scaffold System Against Xience Everolimus Eluting Coronary Stent System in the Treatment of Subjects With Ischemic Heart Disease Caused by De Novo Native Coronary Artery Lesions [ABSORB II]; NCT01425281)....

  3. Role of the endothelium in inflammatory bowel diseases

    Institute of Scientific and Technical Information of China (English)

    Walter E Cromer; J Michael Mathis; Daniel N Granger; Ganta V Chaitanya; J Steven Alexander

    2011-01-01

    Inflammatory bowel diseases (IBD) are a complex group of diseases involving alterations in mucosal immunity and gastrointestinal physiology during both initiation and progressive phases of the disease. At the core of these alterations are endothelial cells, whose continual adjustments in structure and function coordinate vascular supply, immune cell emigration, and regulation of the tissue environment. Expansion of the endothelium in IBD (angiogenesis), mediated by inflammatory growth factors, cytokines and chemokines, is a hallmark of active gut disease and is closely related to disease severity. The endothelium in newly formed or inflamed vessels differs from that in normal vessels in the production of and response to inflammatory cytokines,growth factors, and adhesion molecules, altering coagulant capacity, barrier function and blood cell recruitment in injury. This review examines the roles of the endothelium in the initiation and propagation of IBD pathology and distinctive features of the intestinal endothelium contributing to these conditions.

  4. VASCULAR ENDOTHELIAL FUNCTION CHANGE IN ELDERLY CHINESE PATINENTS WITH OBSTRUCTIVE SLEEP APNEA AND ITS ASSOCIATION WITH CORONARY HEART DISEASE

    Institute of Scientific and Technical Information of China (English)

    王虹; 张希龙; 殷凯生; 贾恩志; 苏梅

    2004-01-01

    Objective To investigate the function change index of vascular endothelial cells (EC), plasma levelsof nitricoxide (NO) and endothelin (ET) in elderly Chinese patients with obstructive sleepapnea hypopnea syndrome(OSAHS) and its associat ion with coronary heart disease (CHD). Methods 31 elderly simple snorers with neitherOSAHSnor CHD were randomly selected as control group. 45 elderly patients with moderate or severe degree of OSAHS wererecruited as OSAHS group, which were further divided into two subgroups, CHD subgroup (16 pat ients) and non CHDsubgroup (29 pa tients). The changes of plasma concentrations of NO and ET were tested and compared from group togroup. Results Compared with control group, in OSAHS group there was a significant lower NO level (27.69±9. 17mmol/Lvs 61.90± 13.47, P<0. 01), higher ET level (58.08±14.21pg/ml vs 34. 77±8.23pg/ml, P<0. 01), and lower rate of NO/ET(0. 47±0. 18 vs 1. 72±0. 97mmol/L, P<0. 01). The incidence of CHD in OSAS group was 35.6%. Comparison between controlgroup and non-CHD OSAHS subgroup showed that the decreased NO level (35.53±9.39), increased ET level(47.78±11.13pg/ml) and declined NO/ET (0.75±0.13) in non CHD subgroup were statistically significant (P<0.05).Such a difference was more significant between conrol group and CHD OSAS subgroup (P<0. 01). Comparison between thetwo subgroups in OSAHS group indicated that there was a significantly lower NO level, higher ET level and more declinedNO/ET in OSAHS with CHD subgroup than in OSAHS without CHD subgroup (all P<0.05). Conclusion Vascular endothelialfunction was significantly impaired in elderly Chinese patients with OSAHS, especially in those with both OSAHSand CHD. Dysfunction of vascular EC may be one of the causes of complicated CHD in OSAHS patients.

  5. Severe familial hypercholesterolemia impairs the regulation of coronary blood flow and oxygen supply during exercise.

    Science.gov (United States)

    Bender, Shawn B; de Beer, Vincent J; Tharp, Darla L; Bowles, Douglas K; Laughlin, M Harold; Merkus, Daphne; Duncker, Dirk J

    2016-11-01

    Accelerated development of coronary atherosclerosis is a defining characteristic of familial hypercholesterolemia (FH). However, the recent data highlight a significant cardiovascular risk prior to the development of critical coronary stenosis. We, therefore, examined the hypothesis that FH produces coronary microvascular dysfunction and impairs coronary vascular control at rest and during exercise in a swine model of FH. Coronary vascular responses to drug infusions and exercise were examined in chronically instrumented control and FH swine. FH swine exhibited ~tenfold elevation of plasma cholesterol and diffuse coronary atherosclerosis (20-60 % plaque burden). Similar to our recent findings in the systemic vasculature in FH swine, coronary smooth muscle nitric oxide sensitivity was increased in vivo and in vitro with maintained endothelium-dependent vasodilation in vivo in FH. At rest and during exercise, FH swine exhibited increased myocardial O2 extraction resulting in reduced coronary venous SO2 and PO2 versus control. During exercise in FH swine, the transmural distribution of coronary blood flow was unchanged; however, a shift toward anaerobic cardiac metabolism was revealed by increased coronary arteriovenous H(+) concentration gradient. This shift was associated with a worsening of cardiac efficiency (relationship between cardiac work and O2 consumption) in FH during exercise owing, in part, to a generalized reduction in stroke volume which was associated with increased left atrial pressure in FH. Our data highlight a critical role for coronary microvascular dysfunction as a contributor to impaired myocardial O2 balance, cardiac ischemia, and impaired cardiac function prior to the development of critical coronary stenosis in FH.

  6. Coronary Artery Stent Evaluation Using a Vascular Model at 64-Detector Row CT: Comparison between Prospective and Retrospective ECG-Gated Axial Scans

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Shigeru; Furui, Shigeru; Kaminaga, Tatsuro; Miyazawa, Akiyoshi; Ueno, Yasunari; Konno, Kumiko [Teikyo University School of Medicine, Tokyo (Japan); Kuwahara, Sadatoshi; Mehta, Dhruv [Philips Electronics Japan, Ltd. Medical Systems, Tokyo (Japan)

    2009-06-15

    We wanted to evaluate the performance of prospective electrocardiogram (ECG)-gated axial scans for assessing coronary stents as compared with retrospective ECG-gated helical scans. As for a vascular model of the coronary artery, a tube of approximately 2.5-mm inner diameter was adopted and as for stents, three (Bx-Velocity, Express2, and Micro Driver) different kinds of stents were inserted into the tube. Both patent and stenotic models of coronary artery were made by instillating different attenuation (396 vs. 79 Hounsfield unit [HU]) of contrast medium within the tube in tube model. The models were scanned with two types of scan methods with a simulated ECG of 60 beats per minute and using display field of views (FOVs) of 9 and 18 cm. We evaluated the in-stent stenosis visually, and we measured the attenuation values and the diameter of the patent stent lumen. The visualization of the stent lumen of the vascular models was improved with using the prospective ECG-gated axial scans and a 9-cm FOV. The inner diameters of the vascular models were underestimated with mean measurement errors of -1.10 to -1.36 mm. The measurement errors were smaller with using the prospective ECG-gated axial scans (Bx-Velocity and Express2, p < 0.0001; Micro Driver, p = 0.0004) and a 9-cm FOV (all stents: p < 0.0001), as compared with the other conditions, respectively. The luminal attenuation value was overestimated in each condition. For the luminal attenuation measurement, the use of prospective ECG-gated axial scans provided less measurement error compared with the retrospective ECG-gated helical scans (all stents: p < 0.0001), and the use of a 9-cm FOV tended to decrease the measurement error. The visualization of coronary stents is improved by the use of prospective ECG-gated axial scans and using a small FOV with reduced blooming artifacts and increased spatial resolution.

  7. 2014 Williams Harvey Lecture: importance of coronary vasomotion abnormalities-from bench to bedside.

    Science.gov (United States)

    Shimokawa, Hiroaki

    2014-12-01

    Coronary vasomotion abnormalities play important roles in the pathogenesis of ischaemic heart disease, in which endothelial dysfunction and coronary artery spasm are substantially involved. Endothelial vasodilator functions are heterogeneous depending on the vessel size, with relatively greater role of nitric oxide (NO) in conduit arteries and predominant role of endothelium-derived hyperpolarizing factor (EDHF) in resistance arteries, where endothelium-derived hydrogen peroxide serves as an important EDHF. The functions of NO synthases in the endothelium are also heterogeneous with multiple mechanisms involved, accounting for the diverse functions of the endothelium in vasomotor as well as metabolic modulations. Cardiovascular abnormalities and metabolic phenotypes become evident when all three NO synthases are deleted, suggesting the importance of both NO and EDHF. Coronary artery spasm plays important roles in the pathogenesis of a wide range of ischaemic heart disease. The central mechanism of the spasm is hypercontraction of vascular smooth muscle cells (VSMCs), but not endothelial dysfunction, where activation of Rho-kinase, a molecular switch of VSMC contraction, plays a major role through inhibition of myosin light-chain phosphatase. The Rho-kinase pathway is also involved in the pathogenesis of a wide range of cardiovascular diseases and new Rho-kinase inhibitors are under development for various indications. The registry study by the Japanese Coronary Spasm Association has demonstrated many important aspects of vasospastic angina. The ongoing international registry study of vasospastic angina in six nations should elucidate the unknown aspects of the disorder. Coronary vasomotion abnormalities appear to be an important therapeutic target in cardiovascular medicine.

  8. Long-Term Follow-Up of Patients after Percutaneous Coronary Intervention with Everolimus-Eluting Bioresorbable Vascular Scaffold.

    Science.gov (United States)

    Meneguz-Moreno, Rafael Alexandre; Costa, José de Ribamar; Moscoso, Freddy Antônio Britto; Staico, Rodolfo; Tanajura, Luiz Fernando Leite; Centemero, Marinella Patrizia; Chaves, Auréa Jacob; Abizaid, Andrea Claudia Leão de Sousa; Sousa, Amanda Guerra de Moraes Rego E; Abizaid, Alexandre Antonio Cunha

    2017-02-01

    Bioresorbable vascular scaffolds (BVS) were developed to improve the long-term results of percutaneous coronary intervention, restoring vasomotion. To report very late follow-up of everolimus-eluting Absorb BVS (Abbott Vascular, Santa Clara, USA) in our center. Observational retrospective study, in a single Brazilian center, from August 2011 to October 2013, including 49 patients submitted to Absorb BVS implantation. Safety and efficacy outcomes were analyzed in the in-hospital and very late follow-up phases (> 2 years). All 49 patients underwent a minimum follow-up of 2.5 years and a maximum of 4.6 years. Mean age was 56.8 ± 7.6 years, 71.4% of the patients were men, and 26.5% were diabetic. Regarding clinical presentation, the majority (94%) had stable angina or silent ischemia. Device success was achieved in 100% of cases with 96% overall procedure success rate. Major adverse cardiovascular events rate was 4% at 30 days, 8.2% at 1 year, and 12.2% at 2 years, and there were no more events until 4.6 years. There were 2 cases of thrombosis (1 subacute and 1 late). In this preliminary analysis, Absorb BVS showed to be a safe and effective device in the very late follow-up. Establishing the efficacy and safety profiles of these devices in more complex scenarios is necessary. Os suportes vasculares bioabsorvíveis (SVB) foram desenvolvidos com o intuito de melhorar os resultados da intervenção coronária percutânea a longo prazo, restabelecendo-se a vasomotricidade. Reportar o seguimento muito tardio do implante do SVB eluidor de everolimus Absorb® (Abbot Vascular, Santa Clara, EUA) em nosso centro. Estudo observacional, retrospectivo, em um único centro brasileiro, que incluiu 49 pacientes submetidos ao implante do SVB Absorb® entre agosto/2011 e outubro/2013. Foram analisados os desfechos de segurança e eficácia na fase hospitalar e bastante tardia (> 2 anos). Todos os 49 pacientes completaram um seguimento mínimo de 2,5 anos, sendo o máximo de 4,6 anos

  9. Cocaine toxic effect on endothelium-dependent vasorelaxation: an in vitro study on rabbit aorta.

    Science.gov (United States)

    Togna, G I; Graziani, M; Russo, P; Caprino, L

    2001-08-06

    Effects of cocaine on vascular endothelium relaxing properties and the related mechanism were investigated in vitro in rabbit aorta. Several vasorelaxing agents with different mechanisms, i.e. acetylcholine, substance P, calcium ionophore A23187, 2,5-di-tert-butylhydroquinone, or sodium nitroprusside, were employed. Cocaine effects on the vascular response to relaxing agents in cumulative (acetylcholine, substance P, or A23187) or single dose (2,5-di-tert-butyl-hydroquinone) were performed in endothelium-intact aortic rings precontracted with phenylephrine. Relaxing activity of cumulative doses of sodium nitroprusside was evaluated in endothelium-denuded aortic rings, in the presence of cocaine. Cocaine significantly reduced endothelium-dependent relaxations induced by acetylcholine, or substance P. By contrast A23187 endothelium-mediated relaxation as well as endothelium-independent relaxation by sodium nitroprusside were unaffected by cocaine. Furthermore, cocaine significantly increased endothelium-dependent relaxation response to 2,5-di-tert-butylhydroquinone, a sarcoplasmic Ca2+-ATPase pump inhibitor, in the aortic rings. These findings indicate that cocaine reduces nitric oxide release from vascular endothelium apparently through the inhibiting action of Ca2+-ATPase pump.

  10. Deficiency of sex hormones does not affect 17-ß-estradiol-induced coronary vasodilation in the isolated rat heart

    Directory of Open Access Journals (Sweden)

    R.L. Santos

    2016-01-01

    Full Text Available The relaxation of coronary arteries by estrogens in the coronary vascular beds of naive and hypertensive rats has been well described. However, little is known about this action in gonadectomized rats. We investigated the effect of 17-ß-estradiol (E2 in coronary arteries from gonadectomized rats, as well as the contributions of endothelium-derived factors and potassium channels. Eight-week-old female and male Wistar rats weighing 220-300 g were divided into sham-operated and gonadectomized groups (n=9−12 animals per group. The baseline coronary perfusion pressure (CPP was determined, and the vasoactive effects of 10 μM E2 were assessed by bolus administration before and after endothelium denudation or by perfusion with NG-nitro-L-arginine methyl ester (L-NAME, indomethacin, clotrimazole, L-NAME plus indomethacin, L-NAME plus clotrimazole or tetraethylammonium (TEA. The CPP differed significantly between the female and sham-operated male animals. Gonadectomy reduced the CPP only in female rats. Differences in E2-induced relaxation were observed between the female and male animals, but male castration did not alter this response. For both sexes, the relaxation response to E2 was, at least partly, endothelium-dependent. The response to E2 was reduced only in the sham-operated female rats treated with L-NAME. However, in the presence of indomethacin, clotrimazole, L-NAME plus indomethacin or L-NAME plus clotrimazole, or TEA, the E2 response was significantly reduced in all groups. These results highlight the importance of prostacyclin, endothelium-derived hyperpolarizing factor, and potassium channels in the relaxation response of coronary arteries to E2 in all groups, whereas nitric oxide may have had an important role only in the sham-operated female group.

  11. Vascular hyperpolarization in human physiology and cardiovascular risk conditions and disease.

    Science.gov (United States)

    Schinzari, F; Tesauro, M; Cardillo, C

    2017-01-01

    Hyperpolarization causing smooth muscle relaxation contributes to the maintenance of vascular homeostasis, particularly in small-calibre arteries and arterioles. It may also become a compensatory vasodilator mechanism upregulated in states with impaired nitric oxide (NO) availability. Bioassay of vascular hyperpolarization in the human circulation has been hampered by the complexity of mechanisms involved and the limited availability of investigational tools. Firm evidence, however, supports the notion that hyperpolarization participates in the regulation of resting vasodilator tone and vascular reactivity in healthy subjects. In addition, an enhanced endothelium-derived hyperpolarization contributes to both resting and agonist-stimulated vasodilation in a variety of cardiovascular risk conditions and disease. Thus, hyperpolarization mediated by epoxyeicosatrienoic acids (EETs) and H2 O2 has been observed in coronary arterioles of patients with coronary artery disease. Similarly, ouabain-sensitive and EETs-mediated hyperpolarization has been observed to compensate for NO deficiency in patients with essential hypertension. Moreover, in non-hypertensive patients with multiple cardiovascular risk factors and in hypercholesterolaemia, KCa channel-mediated vasodilation appears to be activated. A novel paradigm establishes that perivascular adipose tissue (PVAT) is an additional regulator of vascular tone/function and endothelium is not the only agent in vascular hyperpolarization. Indeed, some PVAT-derived relaxing substances, such as adiponectin and angiotensin 1-7, may exert anticontractile and vasodilator actions by the opening of KCa channels in smooth muscle cells. Conversely, PVAT-derived factors impair coronary vasodilation via differential inhibition of some K(+) channels. In view of adipose tissue abnormalities occurring in human obesity, changes in PVAT-dependent hyperpolarization may be relevant for vascular dysfunction also in this condition.

  12. NT-proBNP levels, atherosclerosis and vascular function in asymptomatic type 2 diabetic patients with microalbuminuria: peripheral reactive hyperaemia index but not NT-proBNP is an independent predictor of coronary atherosclerosis

    DEFF Research Database (Denmark)

    Reinhard, Henrik; Wiinberg, Niels; Hansen, Peter R

    2011-01-01

    for atherosclerosis is unclear. We examined the interrelationship between P-NT-proBNP, presence of atherosclerosis and/or vascular dysfunction in the coronary, carotid and peripheral arteries in asymptomatic type 2 diabetic patients with microalbuminuria that received intensive multifactorial treatment. METHODS...... AND RESULTS: P-NT-proBNP was measured in 200 asymptomatic type 2 patients without known cardiac disease that received intensive multifactorial treatment for CV risk reduction. Patients were examined for coronary, carotid and peripheral atherosclerosis, as defined by coronary calcium score=400, carotid intima...

  13. NT-proBNP levels, atherosclerosis and vascular function in asymptomatic type 2 diabetic patients with microalbuminuria: peripheral reactive hyperaemia index but not NT-proBNP is an independent predictor of coronary atherosclerosis

    DEFF Research Database (Denmark)

    Reinhard, Henrik; Wiinberg, Niels; Hansen, Peter R

    2011-01-01

    for atherosclerosis is unclear. We examined the interrelationship between P-NT-proBNP, presence of atherosclerosis and/or vascular dysfunction in the coronary, carotid and peripheral arteries in asymptomatic type 2 diabetic patients with microalbuminuria that received intensive multifactorial treatment. METHODS...... AND RESULTS: P-NT-proBNP was measured in 200 asymptomatic type 2 patients without known cardiac disease that received intensive multifactorial treatment for CV risk reduction. Patients were examined for coronary, carotid and peripheral atherosclerosis, as defined by coronary calcium score≥400, carotid intima...

  14. Pyocyanin inhibits both nitric oxide-dependent and -independent relaxation in porcine coronary arteries.

    Science.gov (United States)

    Hempenstall, Allison; Grant, Gary D; Anoopkumar-Dukie, Shailendra; Johnson, Peter J

    2015-02-01

    The effects of the Pseudomonas aeruginosa virulence factor pyocyanin (PCN) on the contractile function of porcine coronary arteries was investigated in vitro. Artery rings (5 mm) were suspended in organ baths containing Krebs' solution for the measurement of isometric tension. The effect of PCN on resting and precontracted coronary arteries was initially investigated with various agents. Arteries were precontracted with prostaglandin (PG) F2α or potassium chloride and endothelium-dependent relaxations were induced by various agents in the presence of PCN. Pyocyanin (0.1-10 μmol/L) evoked small-amplitude, dose-dependent contractions in resting porcine coronary arteries. In addition, PCN amplified the contractile response to PGF2α , but did not alter responses to carbachol. Pyocyanin (0.1-10 μmol/L) significantly inhibited endothelium-dependent relaxations evoked by neurokinin A. Pyocyanin also inhibited relaxations evoked by diethylamine nitric oxide (a nitric oxide donor), forskolin (an adenylate cyclase activator), dibuytyryl-cAMP (a cAMP analogue), 8-bromo-cGMP (a cGMP analogue) and P1075 (a KATP channel activator), but not isoprenaline (β-adrenoceceptor agonist). These results indicate that physiological concentrations of PCN interfere with multiple intracellular processes involved in vascular smooth muscle relaxation, in particular pathways downstream of nitric oxide release. Thus, PCN may alter normal vascular function in patients infected with P. aeruginosa.

  15. Different patterns of H2S/NO activity and cross-talk in the control of the coronary vascular bed under normotensive or hypertensive conditions.

    Science.gov (United States)

    Testai, L; D'Antongiovanni, V; Piano, I; Martelli, A; Citi, V; Duranti, E; Virdis, A; Blandizzi, C; Gargini, C; Breschi, M C; Calderone, V

    2015-05-01

    Hydrogen sulfide (H2S) and nitric oxide (NO) play pivotal roles in the cardiovascular system. Conflicting results have been reported about their cross-talk. This study investigated their interplays in coronary bed of normotensive (NTRs) and spontaneously hypertensive rats (SHRs). The effects of H2S- (NaHS) and NO-donors (sodium nitroprusside, SNP) on coronary flow (CF) were measured in Langendorff-perfused hearts of NTRs and SHRs, in the absence or in the presence of propargylglycine (PAG, inhibitor of H2S biosynthesis), L-NAME (inhibitor of NO biosynthesis), ODQ (inhibitor of guanylate cyclase), L-Cysteine (substrate for H2S biosynthesis) or L-Arginine (substrate for NO biosynthesis). In NTRs, NaHS and SNP increased CF; their effects were particularly evident in Angiotensin II (AngII)-contracted coronary arteries. The dilatory effects of NaHS were abolished by L-NAME and ODQ; conversely, PAG abolished the effects of SNP. In SHRs, high levels of myocardial ROS production were observed. NaHS and SNP did not reduce the oxidative stress, but produced clear increases of the basal CF. In contrast, in AngII-contracted coronary arteries of SHRs, significant hyporeactivity to NaHS and SNP was observed. In SHRs, the vasodilatory effects of NaHS were only modestly affected by L-NAME and ODQ; PAG poorly influenced the effects of SNP. Then, in NTRs, the vascular actions of H2S required NO and vice versa. By contrast, in SHRs, the H2S-induced actions scarcely depend on NO release; as well, the NO effects are largely H2S-independent. These results represent the first step for understanding pathophysiological mechanisms of NO/H2S interplays under both normotensive and hypertensive conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Endothelium attenuates ethanol induced vasoconstriction of arteries

    Energy Technology Data Exchange (ETDEWEB)

    Morley, D.; Bove, A.A.; Walter, J. (Temple School of Medicine, Philadelphia, PA (United States))

    1990-02-26

    The authors have previously demonstrated that clinically relevant doses of ethanol (ETH) caused significant vasoconstriction of rabbit thoracic aorta. This study examined the role of endothelium in ethanol vasoconstriction. Thoracic aorta was harvested from 3 New Zealand White rabbits after anesthetization with sodium pentobarbital. Twelve aortic 3 mm rings were mounted in organ baths attached to force transducers and recording apparatus. Six of the twelve rings were denuded. Denudation was confirmed by challenge with acetylcholine (10-4 M). Resting tension was set at 10 grams and the rings equilibrated in 37 C Krebs-Heinsleit solution for 2 hours. Then, the response to norepinephrine (NE) was established (10-8 to 10-5 M). After reattaining resting tension, the response to ETH (500-2,500 ug/ml) was recorded. ETH produced significant vasoconstriction in both non-denuded (48{plus minus}7% of NE max) and denuded (58{plus minus}2% of NE max) arteries. Vasoconstriction was significantly higher in the denuded condition. The authors conclude that the predominant ETH action on arteries is based in vascular smooth muscle although endothelium acts to attenuate the ETH induced vasoconstrictor response.

  17. Endothelial progenitor cells (CD34+KDR+) and monocytes may provide the development of good coronary collaterals despite the vascular risk factors and extensive atherosclerosis.

    Science.gov (United States)

    Kocaman, Sinan Altan; Yalçın, Mehmet Rıdvan; Yağcı, Münci; Sahinarslan, Asife; Türkoğlu, Sedat; Arslan, Uğur; Kurşunluoğlu, Nevruz; Ozdemir, Murat; Timurkaynak, Timur; Cemri, Mustafa; Abacı, Adnan; Boyacı, Bülent; Cengel, Atiye

    2011-06-01

    Endothelial progenitor cells (EPC) have a regenerative role in the vascular system. In this study, we aimed to evaluate simultaneously the effects of EPC and inflammatory cells on the presence and the extent of coronary artery disease (CAD) and the grade of coronary collateral growth in patients with clinical suspicion of CAD. This study has a cross-sectional and observational design. We enrolled 112 eligible patients who underwent coronary angiography consecutively (mean age: 59±9 years). The association of circulating inflammatory cells and EPC (defined by CD34+KDR+ in the lymphocyte and monocyte gate) with the presence, severity and extent of CAD and the degree of collateral growth were investigated. Logistic regression analysis was used to define the predictors of collateral flow. Of 112 patients 30 had normal coronary arteries (NCA, 27%, 55±9 years) and 82 had CAD (73%, 61±8 years). Among the patients with CAD, the percent degree of luminal stenosis was <50% in 12 patients; 50-90% in 35 patients; and ≥90% in the other 35 patients. Circulating inflammatory cells were higher (leukocytes, 7150±1599 vs 8163±1588 mm(-3), p=0.001; neutrophils, 4239±1280 vs 4827±1273 mm(-3), p=0.021; monocytes, 512±111 vs 636±192 mm(-3), p=0.001) and EPCs were lower (0.27±0.15% vs 0.17±0.14%, p<0.001; 21±15 vs 13±12 mm(-3), p=0.004) in CAD group than NCA group. When we investigated the collateral growth in patients having ≥90% stenosis in at least one major coronary artery, we found that the patients with good collateral growth had significantly higher EPC (0.22±0.17% vs 0.10±0.05%, p=0.009; 18±15 vs 7±3 mm(-3), p=0.003) in comparison to patients with poor collateral growth. Presence of EPC was associated with reduced risk for coronary artery disease (OR: 0.934, 95%CI: 0.883-0.998, p=0.018) and was an independent predictor for good collateral growth (OR: 1.295, 95%CI: 1.039-1.615, p=0.022). A sum of CD34+KDR-, CD34+KDR+ and CD34-KDR+ cells (192±98 mm(-3)), and a

  18. Bidirectional Regulatory Effects of Dexmedetomidine on Porcine Coronary Tone In Vitro

    Science.gov (United States)

    Zhou, Shu-Zhi; Li, Zhi-Ming; Liu, Xue-Ru; Zhou, Jun; Tan, Xiao-Qiu; Yang, Yan; Wei, Ji-Cheng

    2017-01-01

    Background Studies in vivo have shown that dexmedetomidine (DEX) could protect the myocardium and modulate the coronary blood flow. This study aimed to investigate the direct and concentration-dependent effects of DEX on the tone of porcine coronary artery in vitro and the underlying mechanisms. Material/Methods Distal branches of the porcine anterior descending coronary arteries were dissected and cut into 3–5 mm rings. The tones of coronary rings in response to cumulative DEX were measured using the PowerLab system. Coronary rings were divided into three groups: 1) endothelium-intact coronary rings without drug pretreatment (control); 2) endothelium-intact coronary rings pretreated with either yohimbine, tetraethylamine (TEA) or NG-nitro-L-arginine methyl ester (L-NAME); and 3) endothelium-denuded coronary rings pretreated with either yohimbine or TEA. Results DEX induced coronary ring relaxation at lower concentrations (10−9 to 10−7 M) followed by constriction at higher concentrations (10−6 to 10−5 M). The coronary constrictive effect of higher DEX (10−5 M) was greater in the endothelium-denuded rings than in the endothelium-intact rings. Yohimbine reduced the coronary constrictive effect of DEX at higher concentrations (10−6 to 10−5 M). TEA and L-NAME significantly reduced the coronary relaxing effect of DEX at lower concentrations (10−9 to 10−7 M) in endothelium-intact rings. TEA attenuated the coronary relaxation induced by DEX in endothelium-denuded rings. Conclusions DEX exerts bidirectional effects on porcine coronary tone. The coronary relaxing effect of DEX at lower concentrations is likely associated with endothelium integrity, NO synthesis and BKCa channel activation, while the coronary constrictive effect of DEX at higher concentrations is mediated by α2 adrenoceptors in the coronary smooth muscle cells. PMID:28369032

  19. VEGF Deficit is Involved in Endothelium Dysfunction in Preeclampsia

    Institute of Scientific and Technical Information of China (English)

    周琼; 刘海意; 乔福元; 吴媛媛; 徐京晶

    2010-01-01

    This study examined the association of expression of vascular endothelial growth factor(VEGF),a promoter of angiogenesis,with endothelium dysfunction in preeclampsia.The level of VEGF protein and mRNA in the placenta and peripheral blood samples of 30 preeclampsia patients and 30 normotensive pregnant women was measured by immunohistochemistry,real-time reverse transcriptase-polymerase chain reaction(RT-PCR) and enzyme-linked immunosorbent assay(ELISA),respectively.VEGF expression in the human umbilical vei...

  20. Scutellarin Reduces Endothelium Dysfunction through the PKG-I Pathway

    Directory of Open Access Journals (Sweden)

    Xiaohua Du

    2015-01-01

    Full Text Available Purpose. In this report, we investigated the protective mechanism of scutellarin (SCU in vitro and in vivo which could be involved in endothelial cGMP-dependent protein kinase (PKG, vasodilator stimulated phosphoprotein (VASP pathway, and vascular endothelium dysfunction (EtD. Method. Human brain microvascular endothelial cells (HBMECs with hypoxia reoxygenation (HR treatment and rats with cerebral ischemia reperfusion (CIR treatment were applied. Protein and mRNA expression of PKG, VASP, and p-VASP were evaluated by Western blot and RT-PCR methods. Vascular EtD was assessed by using wire myography to determine endothelium-dependent vasorelaxation in isolated rat basilar artery (BA. Result. In cultured HBMECs, SCU (0.1, 1, and 10 μM increased cell viability, mRNA, protein level, and phosphorylative activity of PKG and VASP against HR injury. In HR model of BA, SCU increased protein level of P-VASP. In rat CIR model, wire myography demonstrated that SCU (45 and 90 mg/kg, i.v. significantly reduced ischemic size by partially restoring the endothelium dependent vasodilation of BA; PKG inhibitor Rp-8-Br-cGMPS (50 μg/kg, i.v. reversed this protection of SCU in CIR rats. Conclusion. SCU protects against cerebral vascular EtD through endothelial PKG pathway activation.

  1. Smooth muscle cells largely develop independently of functional hemogenic endothelium

    Directory of Open Access Journals (Sweden)

    Monika Stefanska

    2014-01-01

    Full Text Available Vascular smooth muscle cells represent a major component of the cardiovascular system. In vitro studies have shown that FLK1+ cells derived from embryonic stem (ES cells can differentiate into both endothelial and smooth muscle cells. These FLK1+ cells also contain a mesodermal precursor, the hemangioblast, able to produce endothelial, blood and smooth muscle cells. The generation of blood precursors from the hemangioblast was recently shown to occur through a transient cell population of specialised endothelium, a hemogenic endothelium. To date, the lineage relationship between this cell population and smooth muscle cell progenitors has not been investigated. In this study, we generated a reporter ES cell line in which expression of the fluorescent protein H2B-VENUS is driven by the α-smooth muscle actin (α-SMA regulatory sequences. We demonstrated that this reporter cell line efficiently trace smooth muscle development during ES cell differentiation. Although some smooth muscle cells are associated with broad endothelial development, we established that smooth muscle cells are mostly generated independently from a specialised functional hemogenic endothelium. This study provides new and important insights into hematopoietic and vascular development, which may help in driving further progress towards the development of bioengineered vascular grafts for regenerative medicine.

  2. Menaquinone-7 Supplementation to Reduce Vascular Calcification in Patients with Coronary Artery Disease: Rationale and Study Protocol (VitaK-CAC Trial).

    Science.gov (United States)

    Vossen, Liv M; Schurgers, Leon J; van Varik, Bernard J; Kietselaer, Bas L J H; Vermeer, Cees; Meeder, Johannes G; Rahel, Braim M; van Cauteren, Yvonne J M; Hoffland, Ge A; Rennenberg, Roger J M W; Reesink, Koen D; de Leeuw, Peter W; Kroon, Abraham A

    2015-10-28

    Coronary artery calcification (CAC) develops early in the pathogenesis of atherosclerosis and is a strong and independent predictor of cardiovascular disease (CVD). Arterial calcification is caused by an imbalance in calcification regulatory mechanisms. An important inhibitor of calcification is vitamin K-dependent matrix Gla protein (MGP). Both preclinical and clinical studies have shown that inhibition of the vitamin K-cycle by vitamin K antagonists (VKA) results in elevated uncarboxylated MGP (ucMGP) and subsequently in extensive arterial calcification. This led us to hypothesize that vitamin K supplementation may slow down the progression of calcification. To test this, we designed the VitaK-CAC trial which analyses effects of menaquinone-7 (MK-7) supplementation on progression of CAC. The trial is a double-blind, randomized, placebo-controlled trial including patients with coronary artery disease (CAD). Patients with a baseline Agatston CAC-score between 50 and 400 will be randomized to an intervention-group (360 microgram MK-7) or a placebo group. Treatment duration will be 24 months. The primary endpoint is the difference in CAC-score progression between both groups. Secondary endpoints include changes in arterial structure and function, and associations with biomarkers. We hypothesize that treatment with MK-7 will slow down or arrest the progression of CAC and that this trial may lead to a treatment option for vascular calcification and subsequent CVD.

  3. Endothelial Nlrp3 inflammasome activation associated with lysosomal destabilization during coronary arteritis.

    Science.gov (United States)

    Chen, Yang; Li, Xiang; Boini, Krishna M; Pitzer, Ashley L; Gulbins, Erich; Zhang, Yang; Li, Pin-Lan

    2015-02-01

    Inflammasomes play a critical role in the development of vascular diseases. However, the molecular mechanisms activating the inflammasome in endothelial cells and the relevance of this inflammasome activation is far from clear. Here, we investigated the mechanisms by which an Nlrp3 inflammasome is activated to result in endothelial dysfunction during coronary arteritis by Lactobacillus casei (L. casei) cell wall fragments (LCWE) in a mouse model for Kawasaki disease. Endothelial dysfunction associated with increased vascular cell adhesion protein 1 (VCAM-1) expression and endothelial-leukocyte adhesion was observed during coronary arteritis in mice treated with LCWE. Accompanied with these changes, the inflammasome activation was also shown in coronary arterial endothelium, which was characterized by a marked increase in caspase-1 activity and IL-1β production. In cultured endothelial cells, LCWE induced Nlrp3 inflammasome formation, caspase-1 activation and IL-1β production, which were blocked by Nlrp3 gene silencing or lysosome membrane stabilizing agents such as colchicine, dexamethasone, and ceramide. However, a potassium channel blocker glibenclamide or an oxygen free radical scavenger N-acetyl-l-cysteine had no effects on LCWE-induced inflammasome activation. LCWE also increased endothelial cell lysosomal membrane permeability and triggered lysosomal cathepsin B release into cytosol. Silencing cathepsin B blocked LCWE-induced Nlrp3 inflammasome formation and activation in endothelial cells. In vivo, treatment of mice with cathepsin B inhibitor also abolished LCWE-induced inflammasome activation in coronary arterial endothelium. It is concluded that LCWE enhanced lysosomal membrane permeabilization and consequent release of lysosomal cathepsin B, resulting in activation of the endothelial Nlrp3 inflammasome, which may contribute to the development of coronary arteritis.

  4. Impacto dos stents e do sirolimus por via oral na vasomotilidade coronariana dependente e independente do endotelio Impact of stenting and oral sirolimus on endothelium-dependent and independent coronary vasomotion

    Directory of Open Access Journals (Sweden)

    Rósley Weber Alvarenga Fernandes

    2012-04-01

    compared to bare metal stenting (BMS. OBJECTIVE: This study aims to assess the impact of BMS and the effect of oral sirolimus on endothelial function. METHODS: Forty-five patients were randomized into three groups: BMS + high-dose oral sirolimus (initial dose of 15 mg, followed by 6 mg/day for four weeks; BMS + low-dose sirolimus (6 mg followed by 2 mg daily for four weeks; and BMS without sirolimus. Changes in vasoconstriction or vasodilation in a 15 mm segment starting at the distal stent end in response to acetylcholine and nitroglycerin were assessed by quantitative angiography. RESULTS: The groups had similar angiographic characteristics. The percent variation in diameter in response to acetylcholine was similar in all groups at the two time points (p = 0.469. Four hours after stenting, the target segment presented an endothelial dysfunction that was maintained after eight months in all groups. In all groups, endothelium-independent vasomotion in response to nitroglycerin was similar at four hours and eight months, with increased target segment diameter after nitroglycerin infusion (p = 0.001. CONCLUSION: The endothelial dysfunction was similarly present at the 15 mm segment distal to the treated segment, at 4 hours and 8 months after stenting. Sirolimus administered orally during 4 weeks to prevent restenosis did not affect the status of endothelium-dependent and independent vasomotion.

  5. Mild coronary artery stenosis has no impact on cardiac and vascular parameters in miniature swine exposed to positive acceleration stress.

    Science.gov (United States)

    Zhang, Haitao; Luo, Huilan; Sun, Jinjin; Liu, Chaozhong; Tian, Yi; Chen, Hao; Zhang, Chao

    2016-10-01

    Exposure of pilots' heart to acceleration-associated stress (+Gz stress) is an adverse effect of high-performance aviation. The occurrence of coronary heart diseases is one of the most frequent medical causes leading to cessation of flying. To assess the effects of +Gz stress on coronary artery stenosis (CAS) in a minimally invasive miniature swine model with a fast recovery. The proximal left anterior descending branch was ligated in 20 swine using silk suture. CAS degree (mild, moderate, severe) was analyzed by quantitative computerized angiography. Five swine underwent a sham operation. +Gz stress exposure was performed and venous blood was collected before/after exposure. Plasma C-reactive protein (CRP), endothelin (ET)-1, angiotensin (Ang) II and urotensin 2 (U2) levels were measured. CAS models were successful in 18 animals. Two swine exhibited ventricular fibrillation during the procedure and died. Plasma CRP, ET-1, Ang II and U2 changed significantly after maximal tolerated +Gz stress exposure (all P stenosis groups, compared with the sham group (all P stenosis group and the sham group (all P > 0.05). The fully endoscopic operation method successfully generated animal models of different degrees of CAS. Plasma CRP, ET-1, Ang II and U2 levels increased after +Gz stress exposure with increasing CAS severity. Animals with mild stenosis showed no ill effect under +Gz stress, suggesting that pilots with mild stenosis might be allowed to continue flying, but it must be confirmed in humans.

  6. The Role of the Endothelium in HPS Pathogenesis and Potential Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Irina Gavrilovskaya

    2012-01-01

    Full Text Available American hantaviruses cause a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS. Hantaviruses nonlytically infect endothelial cells and cause dramatic changes in barrier functions of the endothelium without disrupting the endothelium. Instead hantaviruses cause changes in the function of infected endothelial cells that normally regulate fluid barrier functions of capillaries. The endothelium of arteries, veins, and lymphatic vessels is unique and central to the function of vast pulmonary capillary beds, which regulate pulmonary fluid accumulation. The endothelium maintains vascular barrier functions through a complex series of redundant receptors and signaling pathways that serve to both permit fluid and immune cell efflux into tissues and restrict tissue edema. Infection of the endothelium provides several mechanisms for hantaviruses to alter capillary permeability but also defines potential therapeutic targets for regulating acute pulmonary edema and HPS disease. Here we discuss interactions of HPS causing hantaviruses with the endothelium, potential endothelial cell-directed permeability mechanisms, and therapeutic targeting of the endothelium as a means of reducing the severity of HPS disease.

  7. Prominin 1/CD133 endothelium sustains growth of proneural glioma.

    Directory of Open Access Journals (Sweden)

    Bi-Sen Ding

    Full Text Available In glioblastoma high expression of the CD133 gene, also called Prominin1, is associated with poor prognosis. The PDGF-driven proneural group represents a subset of glioblastoma in which CD133 is not overexpressed. Interestingly, this particular subset shows a relatively good prognosis. As with many other tumors, gliobastoma is believed to arise and be maintained by a restricted population of stem-like cancer cells that express the CD133 transmembrane protein. The significance of CD133(+ cells for gliomagenesis is controversial because of conflicting supporting evidence. Contributing to this inconsistency is the fact that the isolation of CD133(+ cells has largely relied on the use of antibodies against ill-defined glycosylated epitopes of CD133. To overcome this problem, we used a knock-in lacZ reporter mouse, Prom1(lacZ/+ , to track Prom1(+ cells in the brain. We found that Prom1 (prominin1, murine CD133 homologue is expressed by cells that express markers characteristic of the neuronal, glial or vascular lineages. In proneural tumors derived from injection of RCAS-PDGF into the brains of tv-a;Ink4a-Arf(-/- Prom1(lacZ/+ mice, Prom1(+ cells expressed markers for astrocytes or endothelial cells. Mice co-transplanted with proneural tumor sphere cells and Prom1(+ endothelium had a significantly increased tumor burden and more vascular proliferation (angiogenesis than those co-transplanted with Prom1(- endothelium. We also identified specific genes in Prom1(+ endothelium that code for endothelial signaling modulators that were not overexpressed in Prom1(- endothelium. These factors may support proneural tumor progression and could be potential targets for anti-angiogenic therapy.

  8. Vascular dysfunction and myocardial contractility in the JCR:LA-corpulent rat.

    Science.gov (United States)

    Brunner, F; Wölkart, G; Pfeiffer, S; Russell, J C; Wascher, T C

    2000-07-01

    The JCR:LA-corpulent rat is a unique animal model of human vascular disease that exhibits a profound insulin resistance, vasculopathy, and cardiovascular dysfunction. We tested the hypothesis that the defects affect endothelial and smooth muscle function of the coronary microvasculature as well as cardiac contractility. Coronary, myocardial and aortic function were assessed in obese (homozygous for the cp gene, cp/cp) and lean (heterozygous or homozygous normal, +/?) littermates aged 7 and 18 weeks. Coronary endothelial relaxation was examined in isolated perfused hearts by determining the effect of bradykinin (0. 1-1000 nmol l(-1)) on coronary perfusion pressure (CPP), myocardial mechanical function was evaluated in terms of left-ventricular developed pressure (LVDevP), and aortic relaxation with the endothelium-dependent agonist, A 23187 (1-1000 nmol l(-1)). In rats aged 7 weeks, bradykinin reduced CPP from 133+/-1 mmHg to 43+/-1 mmHg (-67%) in lean rats, but only to 64+/-3 mmHg (-52%) in corpulent rats (n=6, PJCR:LA-corpulent rat that is not associated with impaired baseline myocardial contractility, and (ii) exogenous tetrahydrobiopterin reversed the relaxation defects that are part of the vascular complications typical for the insulin resistance syndrome.

  9. Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD-Galerkin method and a vascular shape parametrization

    Science.gov (United States)

    Ballarin, Francesco; Faggiano, Elena; Ippolito, Sonia; Manzoni, Andrea; Quarteroni, Alfio; Rozza, Gianluigi; Scrofani, Roberto

    2016-06-01

    In this work a reduced-order computational framework for the study of haemodynamics in three-dimensional patient-specific configurations of coronary artery bypass grafts dealing with a wide range of scenarios is proposed. We combine several efficient algorithms to face at the same time both the geometrical complexity involved in the description of the vascular network and the huge computational cost entailed by time dependent patient-specific flow simulations. Medical imaging procedures allow to reconstruct patient-specific configurations from clinical data. A centerlines-based parametrization is proposed to efficiently handle geometrical variations. POD-Galerkin reduced-order models are employed to cut down large computational costs. This computational framework allows to characterize blood flows for different physical and geometrical variations relevant in the clinical practice, such as stenosis factors and anastomosis variations, in a rapid and reliable way. Several numerical results are discussed, highlighting the computational performance of the proposed framework, as well as its capability to carry out sensitivity analysis studies, so far out of reach. In particular, a reduced-order simulation takes only a few minutes to run, resulting in computational savings of 99% of CPU time with respect to the full-order discretization. Moreover, the error between full-order and reduced-order solutions is also studied, and it is numerically found to be less than 1% for reduced-order solutions obtained with just O(100) online degrees of freedom.

  10. Effect of continuous positive airway pressure treatment on vascular endothelial function in patients with obstructive sleep apnea hypopnea syndrome and coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    张希龙; 殷凯生; 毛辉; 王虹; 杨玉

    2004-01-01

    Background Continuous positive airway pressure (CPAP) treatment has been proven to be effective in improving the symptoms of coexisting coronary heart disease (CHD) in patients with obstructive sleep apnea hypopnea syndrome (OSAHS). However, it is still unclear whether such improvements are linked to changes in vascular endothelial function. This research was carried out to investigate the effects of CPAP treatment on vascular endothelial function in patients with OSAHS and CHD.Methods Thirty-six patients with moderate or severe OSAHS and CHD undergoing three months of CPAP treatment were recruited for this study. The changes in their morning plasma nitric oxide (NO) and endothelin (ET) levels, NO/ET ratio, total ischemic burden (TIB) of the myocardium, apnea hypopnea index (AHI), and minimal and mean pulse oxygen saturation (SpO2) were compared and analyzed before and during CPAP treatment. Results Compared with the plasma levels of ET [(51.39±11.69) ng/L] and NO [(36.67±11.86) μmol/L], NO/ET (0.71±0.14), AHI (32.4±7.9), minimal SpO2 [(68.9±11.4)%], and myocardial TIB [(66.29±16.37) mm*min] before treatment, there were significant decreases in ET [(33.41±10.03) ng/L] (P<0.05), increases in NO [(59.89±10.26) μmol/L] and NO/ET (1.79±0.38) (P<0.01), decreases in AHI (1.9±0.5), and increases in minimal SpO2 [(90.6±1.8) %] (all P<0.01) and myocardial TIB [(36.42±10.87) mm*min] (P<0.05) after three months of CPAP treatment.Conclusion CPAP treatment may play an important role in the improvement and protection of vascular endothelial dysfunction and myocardial ischemia in OSAHS patients with CHD.

  11. Response of the xenograft endothelium in the concordant xenotransplantation

    Institute of Scientific and Technical Information of China (English)

    Bo Wang; Yi Lu; Cheng'en Pan; Xiaogang Zhang; Hui Li; Kewei Meng; Zheng Wu

    2007-01-01

    Objective: To investigate the response of the xenograft endothelium in the concordant hamster to rat cardiac xenotransplantation and the mechanism of acute vascular rejection. Methods: The animals were divided into 5 groups randomly: control group,CsA group, splenectomy group, D0 splenectomy+CsA group and D3 splenectomy+CsA group. Hamster heart was heterotopicaly transplanted to rat abdominal cavity. The graft survival was monitored by palpation of the rat abdominal wall. The histological and ultrastructural changes of the xenogafts were investigated. NF-κB and P-selectin expression in the xenograft were detected. Hene Oxigenase-1 and Bcl-2 expression were also detected in the xenografts of different groups. Results: The mean survival time of the xenografts in control group, CsA group, splenectomy group, D0 splenectomy+CsA group and D3 splenectomy+CsA group was 3.4±0.55, 3.8±0.45, 6.4±1.52, 30 and 7.4±1.14 days. The rejected graft showed typical acute vascular rejection in control group, CsA group,splenectomy group and D3 splenectomy+CsA group. Endothelial cells of the rejected xenograft showed dramatic assembly of ribosomes and expansion of the rough endoplasmic reticulum. However, the endothelium of the long-term survived grafts in D0 splenectomy+CsA group showed normal architecture. NF-κB and P-selectin expression were detected in the rejected xenografts. HO-1 expression was observed in the long-term survived xenografts in D0 splenectomy+CsA group. Conclusion: The endothelial cells of the xenograft might be activated during the acute vascular rejection. Expression of HO-1 might inhibit the upregulation of NF-κB and adhesion molecular which decreases the activation of the endothelium of the graft.

  12. Protective effects of polysaccharides from Armillaria mellea on vascular endothelium in rats%榛蘑多糖对大鼠血管内皮细胞的保护作用

    Institute of Scientific and Technical Information of China (English)

    丛贺; 周广亮; 金梅花; 沈明花

    2015-01-01

    To study the effect of polysaccharides from Armillaria mellea on endothelial cell injury in rats.Methods:Animal model was established by giving rats an injection of adrenaline and making it swim in ice-cold water.The number of circulating endothelial cells was measured with the immunofluorescence method,The levels of t-PA,AT-Ⅲ,6-keto-PGE1 α and TXB2 in plasma was measured by ELISA method.Results:Armillaria mellea polysaccharides decreased the number of circulating endothelial cells,increased the levels of t-PA and AT-Ⅲ,reduced TXB2 content as compared with the model group.However,there was no significant difference in the 6-keto-PGE1o level.Conclusion:Polysaccharides from Armillaria mellea present the protective effect on vascular endothelial cells.%采用肾上腺素结合冰浴的方法制备血管内皮细胞损伤的动物模型,并用免疫荧光法观察循环内皮细胞数,用酶联法测定血浆组织纤溶酶原激活物(t-PA)、抗凝酶Ⅲ(AT-Ⅲ)、6-酮-前列腺素E1α(6-keto-PGE1α)和血栓素B2(TXB2)的含量.结果表明:与模型组相比,榛蘑多糖可减少循环内皮细胞数,不同程度地提高t-PA和AT-Ⅲ,同时减少TXB2的含量,对6-keto-PGE1α的影响不明显.说明榛蘑多糖具有一定的血管内皮细胞保护作用.

  13. Assessment of whole blood thrombosis in a microfluidic device lined by fixed human endothelium

    NARCIS (Netherlands)

    Jain, Abhishek; Meer, van der Andries D.; Papa, Anne-Laure; Barrile, Riccardo; Lai, Angela; Schlechter, Benjamin L.; Otieno, Monicah A.; Louden, Calvert S.; Hamilton, Geraldine A.; Michelson, Alan D.; Frelinger, Andrew L.; Ingber, Donald E.

    2016-01-01

    The vascular endothelium and shear stress are critical determinants of physiological hemostasis and platelet function in vivo, yet current diagnostic and monitoring devices do not fully incorporate endothelial function under flow in their assessment and, therefore, they can be unreliable and inaccur

  14. Insulin transcriptionally regulates argininosuccinate synthase to maintain vascular endothelial function.

    Science.gov (United States)

    Haines, Ricci J; Corbin, Karen D; Pendleton, Laura C; Meininger, Cynthia J; Eichler, Duane C

    2012-04-27

    Diminished vascular endothelial cell nitric oxide (NO) production is a major factor in the complex pathogenesis of diabetes mellitus. In this report, we demonstrate that insulin not only maintains endothelial NO production through regulation of endothelial nitric oxide synthase (eNOS), but also via the regulation of argininosuccinate synthase (AS), which is the rate-limiting step of the citrulline-NO cycle. Using serum starved, cultured vascular endothelial cells, we show that insulin up-regulates AS and eNOS transcription to support NO production. Moreover, we show that insulin enhances NO production in response to physiological cues such as bradykinin. To translate these results to an in vivo model, we show that AS transcription is diminished in coronary endothelial cells isolated from rats with streptozotocin (STZ)-induced diabetes. Importantly, we demonstrate restoration of AS and eNOS transcription by insulin treatment in STZ-diabetic rats, and show that this restoration was accompanied by improved endothelial function as measured by endothelium-dependent vasorelaxation. Overall, this report demonstrates, both in cell culture and whole animal studies, that insulin maintains vascular function, in part, through the maintenance of AS transcription, thus ensuring an adequate supply of arginine to maintain vascular endothelial response to physiological cues. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Coronary artery aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Koischwitz, D.; Harder, T.; Schuppan, U.; Thurn, P.

    1982-04-01

    Seven saccular coronary artery aneurysms have been demonstrated in the course of 1452 selective coronary artery angiograms. In six patients they were arterio-sclerotic; in one patient the aneurysm must have been congenital or of mycotic-embolic origin. The differential diagnosis between true aneurysms and other causes of vascular dilatation is discussed. Coronary artery aneurysms have a poor prognosis because of the possibility of rupture with resultant cardiac tamponade, or the development of thrombo-embolic myocardial infarction. These aneurysms can only be diagnosed by means of coronary angiography and require appropriate treatment.

  16. Influence of Jianpi Yiqi Huoxue Decoction on Vasomotor Factors Expression in Vascular Endothelium of Spontaneously Hypertensive Rats%健脾益气活血汤对自发性高血压大鼠血管内皮舒缩因子表达的影响

    Institute of Scientific and Technical Information of China (English)

    曲怡; 张立德; 陈志娟; 王珊珊; 谷丽艳; 林庶茹

    2013-01-01

    目的:观察健脾益气活血汤对自发性高血压大鼠(SHR)收缩压及血管内皮舒缩因子表达的影响.方法:采用随机对照方法,将60只24周龄SHR分为SHR组(给予蒸馏水)、培哚普利组(培哚普利,0.4 mg·kg-1·d-1)、培哚普利联合中药组(培哚普利0.4 mg·kg-1·d-1+中药健脾益气活血汤20 g·kg-1·d-1,ig,中加西组)、健脾益气活血汤高、中、低剂量组(40,20,10 g·kg-1 ·d-1,ig),每组10只,以同龄同种系正常血压的京都种大鼠(WKY)10只作为WKY组(给予蒸馏水).BP-98A型智能无创血压计监测大鼠尾动脉收缩压变化;治疗6周后腹主动脉取血测定血浆一氧化氮(NO)、前列环素(PGI2)、内皮源性超极化因子(EDHF)、血管紧张素Ⅱ(AngⅡ)、内皮素l(ET-1)浓度.结果:与SHR组收缩压(207.5±16.7) mmHg相比,培哚普利组(165.8±10.2)mmHg,中加西组(160.4 ±16.5) mmHg明显降低(P<0.01).SHR组血浆NO(5.3±.1.6) μmol·L-1,PGI2(27.2±6.3) ng·L-1、EDHF(106.7±3.2) ng·L-1浓度低于WKY组(33.8 ±7.5) μmol·L-1,(842.9 ±218.6),(347.0±44.4) ng·L-1,(P<0.01);培哚普利组、中加西组、中药高、中剂量组血浆NO,PGI2,EDHF浓度高于SHR组;SHR组大鼠血浆ET-1 (77.1±13.9) ng·L-1,AngⅡ(21.0±2.6)μg·L-1浓度高于WKY组(20.8±1.9) ng·L-1,(1.1±0.3) ng·L-1,(P<0.05);培哚普利组、中加西组、中药高、中、低剂量各组大鼠血浆ET-1,AngⅡ浓度明显低于SHR组,(P<0.01).结论:健脾益气活血汤可调控血管内皮舒缩因子的分泌与释放平衡,改善血管内皮功能,降低收缩压,减轻血压增高引起的血管内皮功能障碍.%Objective: To study the influence of Jianpi Yiqi Huoxue decoction on systolic pressure and vascular endothelium vasomotor factors of spontaneously hypertensive rats ( SHR). Method: Sixty 24-week-old SHRs were randomly divided into six groups; SHR group (distilled water), perindopril group ( perindopril 0.4 mg·kg-1·d-1 ) , perindopril plus herb group

  17. Endothelium-dependent contraction of rat thoracic aorta induced by gallic acid.

    Science.gov (United States)

    Sanae, Fujiko; Miyaichi, Yukinori; Hayashi, Hisao

    2003-02-01

    The vascular effect of a component of hydrolysable tannins, gallic acid, was examined in isolated rat thoracic aorta. Gallic acid exerted a contractile effect on the phenylephrine- or prostaglandin F(2/alpha)-precontracted endothelium-intact arteries. In endothelium-denuded arteries, the contractile response to-gallic acid was absent. Pretreatment with N(G)-nitro-L-arginine methyl ester (30 microM) abolished the gallic acid-induced contraction. Pretreatment with indomethacin (10 microM) or BQ610 (100 nM) had no observed effect. Pretreatment with gallic acid (1-10 microM) significantly attenuated the relaxation induced by acetylcholine, and that with 10 microM gallic acid also reduced the potency of sodium nitroprusside in the relaxation, without a reduction in efficacy, in endothelium-denuded arteries. These findings indicate that gallic acid induced endothelium-dependent contraction and strongly inhibited the endothelium-dependent relaxation rather than the endothelium-independent relaxation, probably through inhibition of endothelial nitric oxide (NO) production. Since NO plays an important role in vasodilative regulation and inflammatory disorders, these findings may also indicate that gallic acid interferes with the inflammatory responses.

  18. Oscular system changes and functional state of endothelium in systemic vasculitides

    Directory of Open Access Journals (Sweden)

    N P Shilkina

    2007-01-01

    Full Text Available Objective. To assess by noninvasive methods degree, character and relationship of structural and functional endothelium state disturbances in different regions of vascular bed in systemic vasculitides. Material and methods. 65 pts with systemic vasculitides were examined: 20 with hemorrhagic vasculitis (HV, 20 — with thromboangitis obliterans (TO, 10 — with polyarteritis nodosa (PN, 15 — with Takayasu arteritis (ТА. 30 conditionally healthy persons were included in the control group. Carotid angioscanning with intima-media complex thickness (IMT measurement and functional tests on brachial artery under sonographic control using SONOS-1500 apparatus with assessment of endothelium-dependent and endothelium- independent vasodilatation were performed. Intracutaneous blood flow was examined by laser Doppler flowmetry with functional tests using LAKK-01 apparatus. Results. Examination of common carotid arteries showed significant increase of IMP in pts with PN and ТА. Pts with HV and TO did not differ from control. Endothelium-dependent vasodilatation was decreased in all groups of pts. The most prominent changes were revealed in ТА and TO. Response to nitroglycerine was normal only in pts with TO. In other groups it was decreased. Endothelium sensitivity to reactive hyperemia was decreased. Hyperemic type of microcirculation prevailed in groups with systemic vasculitides but in HV group microcirculation was mainly normal. Capillary blood flow reserve was significantly lower in PN and TO. Correlation relationship was revealed between main IMP, brachial artery reactivity measures and skin microcirculation. Conclusion. Structural and functional endothelium state disturbances of different regions of vascular bed revealed in systemic vasculitides are interconnected what proves their participation in endothelium damage in these diseases.

  19. Role of the endothelium in placental dysfunction after fetal cardiac bypass.

    Science.gov (United States)

    Reddy, V M; McElhinney, D B; Rajasinghe, H A; Liddicoat, J R; Hendricks-Munoz, K; Fineman, J R; Hanley, F L

    1999-02-01

    Fetal cardiac bypass causes placental dysfunction, characterized by increased placental vascular resistance, decreased placental blood flow, hypoxia, and acidosis. Vasoactive factors produced by the vascular endothelium, such as nitric oxide and endothelin 1, are important regulators of placental vascular tone and may contribute to this placental dysfunction. To investigate the role of the vascular endothelium in placental dysfunction related to fetal cardiac bypass, we studied 3 groups of fetal sheep. In the first group (n = 7) we determined placental hemodynamic responses before and after bypass to an endothelium-dependent vasodilator (acetylcholine), an endothelium-independent vasodilator (nitroprusside), and endothelin 1. In the second group (n = 8) a nonspecific endothelin receptor blocker (PD 145065) was administered and placental hemodynamic values were measured before and after bypass. In the third group (n = 5) endothelin 1 levels were measured before and after bypass. Before fetal cardiac bypass exogenous endothelin 1 decreased placental blood flow by 9% and increased placental resistance by 9%. After bypass endothelin 1 decreased placental flow by 47% and increased resistance by 106%. There was also a significant attenuation of the placental vascular relaxation response to acetylcholine after bypass, whereas the response to nitroprusside was not significantly altered. In fetuses that received the PD 145065, placental vascular resistance increased significantly less than in control fetuses (28% versus 62%). Similarly, placental blood flow decreased significantly more (from 6. 3 +/- 3.1 to 28.3 +/- 10.4 pg/mL; P =.01) in control fetuses than in fetuses receiving PD 145065 (33% versus 20%). Umbilical venous endothelin 1 levels increased significantly in fetuses exposed to fetal bypass but did not change in control fetuses. The basal endothelial regulatory mechanisms of placental vascular tone were deranged after fetal cardiac bypass. Endothelin receptor

  20. Inflammatory response and the endothelium.

    Science.gov (United States)

    Meroni, P L; Borghi, M O; Raschi, E; Ventura, D; Sarzi Puttini, P C; Atzeni, F; Lonati, L; Parati, G; Tincani, A; Mari, D; Tedesco, F

    2004-01-01

    Antiphospholipid-mediated endothelium perturbation plays a role in antiphospholipid syndrome (APS)-associated vasculopathy. Antiphospholipid antibodies activate endothelium both in vitro and in vivo experimental models by inducing a pro-inflammatory/-coagulant phenotype; the antibodies recognize beta2 glycoprotein I (beta2GPI) on human endothelial cells (EC) from different parts of the vasculature. In spite of such large in vitro evidence, few studies have addressed the issue whether or not a comparable endothelial perturbation might be detectable in vivo. We investigated several indirect ex vivo parameters of endothelial dysfunction: plasma levels of soluble adhesion molecules (sADM), soluble thrombomodulin (sTM), von Willebrand factor (vWF) and tissue plasminogen activator (t-PA) by solid-phase assays. The study included: patients with primary antiphospholipid syndrome (n=32), with the syndrome secondary to non-active systemic lupus erythematosus (SLE, n=10), six patients with persistent antiphospholipid positivity at medium/high titre without any clinical manifestation of the syndrome. Fifty-two age and sex matched healthy subjects have been enrolled as controls. In addition, circulating endothelial cells identified by flow cytometry and the brachial artery flow-mediated vasodilation (FMV) were evaluated in 26 patients (20 primary and 6 lupus syndromes) and 30 healthy controls. Plasma levels of soluble adhesion molecules did not differ from controls, while a significant increase in von Willebrand factor titres (P<0.05) was found. No significant difference was found regarding the number of circulating endothelial cells and flow-mediated vasodilation. As a whole, these findings do suggest that antiphospholipid antibodies per se are not able to support a full-blown endothelial perturbation in vivo. As shown in antiphospholipid syndrome experimental animal models, a two-hit hypothesis is suggested.

  1. Impaired vascular responses to relaxin in diet-induced overweight female rats.

    NARCIS (Netherlands)

    Drongelen, J. van; Koppen, A. van; Pertijs, J.C.L.M.; Gooi, J.H.; Parry, L.J.; Sweep, F.C.; Lotgering, F.K.; Smits, P.; Spaanderman, M.E.A.

    2012-01-01

    Relaxin mediates renal and mesenteric vascular adaptations to pregnancy by increasing endothelium-dependent vasodilation and compliance and decreasing myogenic reactivity. Diet-induced overweight and obesity are associated with impaired endothelial dysfunction and vascular remodeling leading to a re

  2. Obesidade e doença arterial coronariana: papel da inflamação vascular Obesidad y enfermedad arterial coronaria: papel de la inflamación vascular Obesity and coronary artery disease: role of vascular inflammation

    Directory of Open Access Journals (Sweden)

    Fernando Gomes

    2010-02-01

    correlacionar el proceso inflamatorio exacerbado en los individuos obesos con la mayor incidencia de EAC en esta población.Obesity is becoming a global epidemic. Around 1.1 billion adults and 10% of the world's children are currently overweight or considered obese. Generally associated with risk factors for cardiovascular disease, such as Diabetes Mellitus and systemic arterial high blood pressure, the obesity has been more and more seen as an independent risk factor for Coronary Artery Disease (CAD. Coronary arteriosclerosis comprises a series of inflammatory responses at cellular and molecular level, whose reactions are stronger in obese patients. In the past, the adipose tissue was regarded as a mere fat deposition. Now it is seen from a totally different standpoint, as an active endocrine and paracrine organ that produces several inflammatory cytokines, such as the adipokines. This article aims to raise awareness about obesity as an increasingly significant public health issue over the past decades, as well as to relate the intense inflammatory process in obese individuals with an increased tendency for this group of individuals to develop CAD.

  3. Reduced endothelium-dependent relaxation to anandamide in mesenteric arteries from young obese Zucker rats.

    Directory of Open Access Journals (Sweden)

    Nubia S Lobato

    Full Text Available Impaired vascular function, manifested by an altered ability of the endothelium to release endothelium-derived relaxing factors and endothelium-derived contracting factors, is consistently reported in obesity. Considering that the endothelium plays a major role in the relaxant response to the cannabinoid agonist anandamide, the present study tested the hypothesis that vascular relaxation to anandamide is decreased in obese rats. Mechanisms contributing to decreased anandamide-induced vasodilation were determined. Resistance mesenteric arteries from young obese Zucker rats (OZRs and their lean counterparts (LZRs were used. Vascular reactivity was evaluated in a myograph for isometric tension recording. Protein expression and localization were analyzed by Western blotting and immunofluorescence, respectively. Vasorelaxation to anandamide, acetylcholine, and sodium nitroprusside, as well as to CB1, CB2, and TRPV1 agonists was decreased in endothelium-intact mesenteric arteries from OZRs. Incubation with an AMP-dependent protein kinase (AMPK activator or a fatty acid amide hydrolase inhibitor restored anandamide-induced vascular relaxation in OZRs. CB1 and CB2 receptors protein expression was decreased in arteries from OZRs. Incubation of mesenteric arteries with anandamide evoked endothelial nitric oxide synthase (eNOS, AMPK and acetyl CoA carboxylase phosphorylation in LZRs, whereas it decreased phosphorylation of these proteins in OZRs. In conclusion, obesity decreases anandamide-induced relaxation in resistance arteries. Decreased cannabinoid receptors expression, increased anandamide degradation, decreased AMPK/eNOS activity as well as impairment of the response mediated by TRPV1 activation seem to contribute to reduce responses to cannabinoid agonists in obesity.

  4. Potassium softens vascular endothelium and increases nitric oxide release

    OpenAIRE

    2009-01-01

    In the presence of aldosterone, plasma sodium in the high physiological range stiffens endothelial cells and reduces the release of nitric oxide. We now demonstrate effects of extracellular potassium on stiffness of individual cultured bovine aortic endothelial cells by using the tip of an atomic force microscope as a mechanical nanosensor. An acute increase of potassium in the physiological range swells and softens the endothelial cell and increases the release of nitric oxide. A high physio...

  5. Transport of nitrated albumin across continuous vascular endothelium

    OpenAIRE

    Predescu, Dan; Predescu, Sanda; Malik, Asrar B.

    2002-01-01

    Because modification of plasma albumin on tyrosine residues generates nitrated albumin (NOA) that may function as a mechanism of nitrogen monoxide clearance from microcirculation, we investigated biochemicaly and morphologically the cell surface binding and the transendothelial transport of NOA. An electron microscopic study was carried out with mouse lungs and hearts perfused in situ with NOA and NOA-Au complexes. The results indicate that NOA-Au can bind to the endothelial cell surface, and...

  6. Left Circumflex Coronary Artery Fistula Connected to the Right Bronchial Artery Associated with Bronchiectasis: Multidetector CT and Coronary Angiography Findings

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Kyung Jin; Choo, Ki Seok [Dept. of Radiology, Medical Research Institute, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan (Korea, Republic of)

    2013-04-15

    Coronary to bronchial artery fistula is a rare vascular anomaly secondary to enlargement of pre-existing vascular anastomosis between the coronary and bronchial arteries. This occurs when there is a constant disturbance of the pressure equilibrium involving either coronary or broncho-pulmonary disorder. Localized bronchiectasis is the most common related condition in patients with a coronary to bronchial artery fistula. Herein, we report on a case of a large left circumflex coronary artery to right bronchial artery fistula associated with bronchiectasis.

  7. Relaxin as a natural agent for vascular health

    Directory of Open Access Journals (Sweden)

    Daniele Bani

    2008-06-01

    Full Text Available Daniele BaniDepartment of Anatomy, Histology and Forensic Medicine, Sect. Histology, University of Florence, ItalyAbstract: Hypertension, atherothrombosis, myocardial infarction, stroke, peripheral vascular disease, and renal failure are the main manifestations of cardiovascular disease (CVD, the leading cause of death and disability in developed countries. Continuing insight into the pathophysiology of CVD can allow identification of effective therapeutic strategies to reduce the occurrence of death and/or severe disabilities. In this context, a healthy endothelium is deemed crucial to proper functioning and maintenance of anatomical integrity of the vascular system in many organs. Of note, epidemiologic studies indicate that the incidence of CVD in women is very low until menopause and increases sharply thereafter. The loss of protection against CVD in post-menopausal women has been chiefly attributed to ovarian steroid deficiency. However, besides steroids, the ovary also produces the peptide hormone relaxin (RLX, which provides potent vasoactive effects which render it the most likely candidate as the elusive physiological shield against CVD in fertile women. In particular, RLX has a specific relaxant effect on peripheral and coronary vasculature, exerted by the stimulation of endogenous nitric oxide (NO generation by cells of the vascular wall, and can induce angiogenesis. Moreover, RLX inhibits the activation of inflammatory leukocytes and platelets, which play a key role in CVD. Experimental studies performed in vascular and blood cell in vitro and in animal models of vascular dysfunction, as well as pioneer clinical observations, have provided evidence that RLX can prevent and/or improve CVD, thus offering background to clinical trials aimed at exploring the broad therapeutic potential of human recombinant RLX as a new cardiovascular drug.Keywords: relaxin, blood vessels, endothelial cells, vascular smooth muscle, nitric oxide

  8. Coronary Artery Disease - Coronary Heart Disease

    Science.gov (United States)

    ... result of coronary artery disease, or CAD, said Edward A. Fisher, M.D., Ph.D., M.P. ... Problems and Disease • High Blood Pressure (HBP) • Metabolic Syndrome • Pericarditis • Peripheral Artery Disease (PAD) • Stroke • Vascular Health • ...

  9. Vascular endothelial dysfunction: a tug of war in diabetic nephropathy?

    Science.gov (United States)

    Balakumar, Pitchai; Chakkarwar, Vishal Arvind; Krishan, Pawan; Singh, Manjeet

    2009-03-01

    Vascular endothelium regulates vascular tone and maintains free flow of blood in vessels. Vascular endothelial dysfunction (VED) results in reduced activation of endothelial nitric oxide synthase (eNOS), reduced generation and bioavailability of nitric oxide (NO) and increased production of reactive oxygen species (ROS). The eNOS uncoupling in VED leads to eNOS mediated production of ROS that further damage the endothelial cells by upregulating the proinflammatory mediators and adhesion molecules. VED has been associated in the pathogenesis of hypertension, atherosclerosis, coronary artery diseases, diabetes mellitus and nephropathy. Diabetes is a chronic metabolic disorder characterized by hyperglycemia followed by micro and macrovascular complications. A correlation between diabetes and VED has been demonstrated in various studies. The downregulation of eNOS in diabetes has been noted to accelerate diabetic nephropathy. Moreover, various endogenous vasoconstrictors are also upregulated in diabetic nephropathy. VED has been shown to be involved in diabetic nephropathy by inducing nodular glomerulosclerosis followed by glomerular basement membrane thickness and mesangial expansion, which ultimately decline glomerular filtration rate (GFR). Thus it is suggested that diabetes-induced VED could be one of the culprits involved in the pathogenesis of diabetic nephropathy.

  10. Effect of basic fibroblast growth factor on the migration of human adipose-derived stem cells toward vascular endothelium%碱性成纤维细胞生长因子影响脂肪干细胞的血管内皮迁移

    Institute of Scientific and Technical Information of China (English)

    朱梦琳; 姜南; 徐扬阳; 曹菁; 杨柳

    2014-01-01

    labeled by cm-dil was prepared. The working solution containing 2 mg/L basic fibroblast growth factor was prepared. Composite tissue al-lografts which were the mixtures of 0.25 mL sodium hyaluronate, 0.2 mL cellsuspension and 0.05 mL working solution or DMEM were implanted into the subcutaneous site of both sides of the mouse back. Specimens were taken at 6 weeks after operation and were evaluated histological y after hematoxylin-eosin and vascular immunofluorescent staining. RESULTS AND CONCLUSION:No necrosis, liquefaction, nodular tissue or gel remained in operated position. The hematoxylin-eosin staining showed the main components of the specimens were the adipose tissue and the loose connective tissue. The immunofluorescence staining showed the overlaps between the cm-dil fluorescence from human adipose-derived stem cells and the FITC fluorescence from the vascular endothelium in the experimental group were more than those in the control group (P<0.05). Basic fibroblast growth factor promotes the migration and the differentiation of human adipose-derived stem cells in the sodium hyaluronate scaffold into vascular endothelium.

  11. S1P(1) Receptor Modulation Preserves Vascular Function in Mesenteric and Coronary Arteries after CPB in the Rat Independent of Depletion of Lymphocytes

    NARCIS (Netherlands)

    Samarska, Iryna V.; Bouma, Hjalmar R.; Buikema, Hendrik; Mungroop, Hubert E.; Houwertjes, Martin C.; Absalom, Anthony R.; Epema, Anne H.; Henning, Robert H.

    2014-01-01

    Background: Cardiopulmonary bypass (CPB) may induce systemic inflammation and vascular dysfunction. Sphingosine 1-phosphate (S1P) modulates various vascular and immune responses. Here we explored whether agonists of the S1P receptors, FTY720 and SEW2871 improve vascular reactivity after CPB in the r

  12. Cytoskeleton, cytoskeletal interactions, and vascular endothelial function

    Directory of Open Access Journals (Sweden)

    Wang J

    2012-12-01

    Full Text Available Jingli Wang,1 Michael E Widlansky1,21Department of Medicine, Cardiovascular Medicine Division, 2Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, USAAbstract: Far from being inert, the vascular endothelium is a critical regulator of vascular function. While the endothelium participates in autocrine, paracrine, and endocrine signaling, it also transduces mechanical signals from the cell surface involving key cell structural elements. In this review, we discuss the structure of the vascular endothelium and its relationship to traditional cardiovascular risk factors and clinical cardiovascular events. Further, we review the emerging evidence that cell structural elements, including the glycocalyx, intercellular junctions, and cytoskeleton elements, help the endothelium to communicate with its environment to regulate vascular function, including vessel permeability and signal transduction via nitric oxide bioavailability. Further work is necessary to better delineate the regulatory relationships between known key regulators of vascular function and endothelial cell structural elements.Keywords: endothelium, shear stress, eNOS, cardiovascular risk factors, glycocalyx

  13. NF1 Signal Transduction and Vascular Dysfunction

    Science.gov (United States)

    2014-05-01

    the effects of losing a second allele of NF1 in the vascular endothelium of the adult mouse. This will be the first model of NF1 loss in the... adult endothelium and can serve as a model system for investigation of both cardiovascular effects and the tumor microenvironment. Body: Aim 1...would be to try and determine if there were defects in TGF-b signaling (Smad activation/EndMT) prior to doing a wholesale catalog of all the

  14. Beneficial effects of atorvastatin on myocardial regions with initially low vasodilatory capacity at various stages of coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Wielepp, Peter [Ruhr-University Bochum, Institute of Molecular Biophysics, Radiopharmacy and Nuclear Medicinea, Bad Oeynhausen (Germany); Heart and Diabetes Center North Rhine-Westphalia, Bad Oeynhausen (Germany); Baller, Detlev [Ruhr-University Bochum, Department of Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Bad Oeynhausen (Germany); Heart and Diabetes Center North Rhine-Westphalia, Bad Oeynhausen (Germany); Gleichmann, Ulrich; Pulawski, Ewa; Horstkotte, Dieter [Ruhr-University Bochum, Department of Cardiology, Heart and Diabetes Center North Rhine-Westphalia, Bad Oeynhausen (Germany); Burchert, Wolfgang [Ruhr-University Bochum, Institute of Molecular Biophysics, Radiopharmacy and Nuclear Medicinea, Bad Oeynhausen (Germany)

    2005-12-01

    The aim of this study was to analyse non-invasively the regional effect of therapy with an HMG-CoA reductase inhibitor on myocardial blood flow in patients with coronary artery disease (CAD) with special reference to segments with initially substantially impaired vasodilation. The study included 26 patients with untreated hypercholesterolaemia. Coronary angiography revealed CAD in nine patients with stenosis >50% and wall irregularities or minimal stenosis <30% in 17 patients. Before and 4.6{+-}1.8 months after atorvastatin therapy,{sup 13}N-ammonia positron emission tomography (PET) studies were performed at rest and under pharmacological stress. Minimum coronary vascular resistance (MCR) and coronary flow reserve (CFR) were determined. Segments were divided into those with normal or near-normal (MBF during adenosine {>=}2.0 ml/min/g) and those with abnormal (MBF<2.0 ml/min/g) vasodilator flow response. In CAD patients, 156 segments were analysed, 85 of which had abnormal MBF; in the non-obstructive group, 59 of 297 segments had abnormal MBF. LDL cholesterol decreased after atorvastatin therapy from 186{+-}43 mg/dl to 101{+-}26 mg/dl (p<0.001). In normal segments no significant changes in MBF, CFR and MCR were found. However, initially abnormal segments showed significant improvements in MCR (15%, p<0.0001) and MBF during adenosine (30%, p<0.0001) after therapy. The improvement in regional coronary vasodilator function after atorvastatin in patients with coronary atherosclerosis may be caused, at least in part, by increased flow-mediated (endothelium-dependent) dilation of the total arteriolar and arterial vascular system. These data further support the concept of non-invasive management of stable CAD by statin therapy and life-style modification guided by PET. (orig.)

  15. Influence of habitual high dietary fat intake on endothelium-dependent vasodilation.

    Science.gov (United States)

    Dow, Caitlin A; Stauffer, Brian L; Greiner, Jared J; DeSouza, Christopher A

    2015-07-01

    High-fat diets are associated with an increased risk of cardiovascular disease. A potential underlying mechanism for the increased cardiovascular risk is endothelial dysfunction. Nitric oxide (NO)-mediated endothelium-dependent vasodilation is critical in the regulation of vascular tone and overall vascular health. The aim of this study was to determine the influence of dietary fat intake on endothelium-dependent vasodilation. Forty-four middle-aged and older sedentary, healthy adults were studied: 24 consumed a lower fat diet (LFD; 29% ± 1% calories from fat) and 20 consumed a high-fat diet (HFD; 41% ± 1% calories from fat). Four-day diet records were used to assess fat intake, and classifications were based on American Heart Association guidelines (vasodilator response to sodium nitroprusside. These data indicate that a high-fat diet is associated with endothelium-dependent vasodilator dysfunction due, in part, to diminished NO bioavailability. Impaired NO-mediated endothelium-dependent vasodilation may contribute to the increased cardiovascular risk with high dietary fat intake.

  16. Angioscopic observation of coronary lesions in Kawasaki disease

    Science.gov (United States)

    Ishikawa, Hiromi

    1993-05-01

    Kawasaki disease is an acute systematic angiitis, specifically affecting the coronary arteries in young children. Coronary aneurysms develop in 10 to 15% of patients with Kawasaki disease. The coronary aneurysm frequently changes into coronary stenosis and obstruction. Hitherto, we could observe and access the severity of these coronary lesions with the use of two dimensional echocardiography and selective coronary angiography. Angiography is the most sensitive means available for diagnosing significant coronary lesions and their severity. However, it is insensitive for detecting intraluminal minute and pathologic changes such as intimal thickening, regeneration of endothelium and thrombus. Recent advance in fiberscopie technology, enabled us to observe the inside of coronary artery percutaneously. We tried to use this angioscopic technique for the observation of coronary lesions in eight patients with Kawasaki disease at chronic stage.

  17. Two isoforms of cyclooxygenase contribute to augmented endothelium-dependent contractions in femoral arteries of 1-year-old rats

    Institute of Scientific and Technical Information of China (English)

    Yi SHI; Ricky YK MAN; Paul M VANHOUTTE

    2008-01-01

    Aim: The present experiments were designed to study the changes in endothe-lium-dependent contractions with aging. Methods: The rat femoral arteries of 20-week and 1-year-old rats with and without endothelium were suspended in organ chambers to record isometric tension. The production of oxygen-derived free radicals in the endothelium was measured with 2',7'-dichiorodihydrofluorescein diacetate (DCF) using confocal microscopy. Protein presences were determined by Western blotting. Results: In the arteries from the 1-year-old rats, endothe-lium-dependent relaxations to A23187 were reduced, but the endothelium-depen-dent contractions to A23187 (in the presence of Nω-nitro-L-arginine methyl ester hydrochloride [L-NAME; an inhibitor of nitric oxide synthase]) were augmented, demonstrating endothelial dysfunction with aging. Indomethacin normalized the responses, suggesting that a cyclooxygenase (COX)-dependent contraction is prominent in aging. The endothelium-dependent contractions were also prevented by terntroban (a blocker of thromboxane-prostanoid receptors), confirming the activation of thromboxane-prostanoid receptors on vascular smooth muscle. Valeryl salicylate and NS-398 (preferential inhibitors of COX-1 and COX-2, respectively) partially reduced the response, indicating that both COX-1 and COX-2 are involved. Western blotting confirmed the upregulation of both isoforms in the arteries of the 1-year-old rats. In the presence of L-NAME, A23187 increased the DCF fluores-cence in the endothelium, demonstrating that the production of oxygen-derived free radicals contributes to endothelium-dependent contractions. The activity of catalase was reduced in the arteries with endothelium of 1-year-old rats, indicating that hydrogen peroxide is the likely mediator of increased oxidative stress in the aging endothelium. Conclusion: Endothelium-dependent contractions are aug-mented with aging. Oxidative stress potentiates the response, and both COX-1 and COX-2 are

  18. 探讨血管内皮损伤致冠心病心绞痛的发生机理%Studying the Mechanism of Damage of Vascular Endotheliocyte Result in Angina Pectoris of Coronary Heart Disease

    Institute of Scientific and Technical Information of China (English)

    韩学杰; 沈绍功

    2001-01-01

    Hyperlipidemia syndrome (Phlegm accumulates with stagnant blood syndrome) is easily to cause disorder or damage of vascular endotheliocyte,which in turn induce angina pectoris of coronary heart disease under stimulation of many kinds of pathogenic factors. According to the theory of Traditional Chinese Medicine,the occurrence of “Xiong Bi” is due to the phlegm and blood stasis which blocks heart meridian. One hypothesis of the mechanisms of phlegm accumulates with stagnant blood are increase of lipoid peroxide,oxygen free radical,attachment of lipoid to vascular endothelia cell,and injury of vascular system. which provides theory basis for study the pathogenesis of angina pectoris of coronary heart disease.%高脂血症(痰瘀互结证)易致血管内皮功能紊乱或损伤,在各种致病因素的刺激下诱发冠心病心绞痛的发作。中医认为“胸痹”的发生是由于“痰瘀互结,阻塞心脉”。痰瘀互结证的物质基础可能是脂质过氧化、氧自由基增多,脂性物质附着在血管内皮上,逐渐损伤血管内皮的病理过程。此假设为研究冠心病心绞痛的发病机制提供理论基础。

  19. The feto-placental endothelium in pregnancy pathologies.

    Science.gov (United States)

    Wadsack, Christian; Desoye, Gernot; Hiden, Ursula

    2012-05-01

    This review aims to provide a comprehensive summary of the aspects of endothelial and vascular dysfunction in the feto-placental vasculature occurring in pregnancy pathologies. This endothelium is continuous with the fetal circulation. Its function and potential dysfunction in pathologies will have a profound impact on fetal development. Gestational diabetes mellitus represents one of these pathologies, in which its associated metabolic derangements will alter feto-placental endothelial functions. These, in turn, may result in functional changes of the placenta, which may entail impaired fetal development. By contrast, changes in the feto-placental vasculature observed in cases of fetal growth restriction and preeclampsia may be causative (fetal growth restriction) or secondary (preeclampsia) for the pathology.

  20. [Molecular basis of red blood cell adhesion to endothelium].

    Science.gov (United States)

    Wautier, J-L; Wautier, M-P

    2011-01-01

    The extent of red blood cell adhesion is correlated with the incidence of vascular complications and the severity of the disease. Patients with sickle cell anemia (HbSS) experience vasoocclusive episodes. The adhesion of RBCs from HbSS patients is increased and related to VLA-4 exposure, which binds to vascular cell adhesion molecule (VCAM-1). Inter Cellular Adhesion Molecule (ICAM-1), CD31, CD36 and glycans are potential receptors for PfEMP1 of RBCs parasited by plasmodium falciparum. The incidence of vascular complications is very high in patients with diabetes mellitus. RBC adhesion is increased and statistically correlated with the severity of the angiopathy. Glycation of RBC membrane proteins is responsible for binding to the receptor for advanced glycation end products (RAGE). Polycythemia Vera (PV) is the most frequent myeloproliferative disorder and characterized by a high occurrence of thrombosis of mesenteric and cerebral vessels. PV is due to a mutation of the Janus kinase 2 (JAK2 V617F). This mutation stimulates erythropoiesis and is the cause of Lu/BCAM (CD239) phosphorylation, which potentiated the interaction with laminin alpha 5. The couple laminin alpha 5 endothelial and phosphorylated Lu/BCAM explained the increased adhesion of RBCs from patients PV to endothelium.

  1. Coronary artery anatomy and variants

    Energy Technology Data Exchange (ETDEWEB)

    Malago, Roberto; Pezzato, Andrea; Barbiani, Camilla; Alfonsi, Ugolino; Nicoli, Lisa; Caliari, Giuliana; Pozzi Mucelli, Roberto [Policlinico G.B. Rossi, University of Verona, Department of Radiology, Verona (Italy)

    2011-12-15

    Variants and congenital anomalies of the coronary arteries are usually asymptomatic, but may present with severe chest pain or cardiac arrest. The introduction of multidetector CT coronary angiography (MDCT-CA) allows the detection of significant coronary artery stenosis. Improved performance with isotropic spatial resolution and higher temporal resolution provides a valid alternative to conventional coronary angiography (CCA) in many patients. MDCT-CA is now considered the ideal tool for three-dimensional visualization of the complex and tortuous anatomy of the coronary arteries. With multiplanar and volume-rendered reconstructions, MDCT-CA may even outperform CCA in determining the relative position of vessels, thus providing a better view of the coronary vascular anatomy. The purpose of this review is to describe the normal anatomy of the coronary arteries and their main variants based on MDCT-CA with appropriate reconstructions. (orig.)

  2. ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leucocyte trans-endothelial migration.

    Science.gov (United States)

    Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso

    2010-05-01

    The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.

  3. Structure of the Proboscis Endothelium in Nemertea.

    Science.gov (United States)

    Magarlamov, Timur Yu; Chernyshev, Alexei V

    2015-12-01

    We studied the ultrastructure of the proboscis endothelium of 14 nemertean species. In all nemerteans examined, the endothelium is organized as a pseudostratified myoepithelium consisting of two types of cells resting on the basal extracellular matrix: apically situated supportive cells and subapical myocytes covered by cytoplasmic sheets of the supportive cells. Myocytes form the inner circular musculature of the proboscis; the endothelium in the bulb of monostiliferous nemerteans lacks myocytes. The endothelium of the studied species differs in the number of rows of muscle fibres (one vs. several rows), the number of myofibrils in myocytes (one vs. two to five), the number of processes of myocytes covered by one supportive cell (one vs. two to 23), and in the number of processes in supportive cells (one vs. two to five). In some of the species, rudimentary cilia of supportive cells were revealed by using cLSM and an antibody against tubulin. The data obtained indicate that the proboscis endothelium in nemerteans is in fact a coelothelium, but recognition of the ancestral state of the coelomic lining in Nemertea is problematic, as the rhynchocoel peritoneum lacks myocytes.

  4. Coronary physiology assessment in the catheterization laboratory

    Institute of Scientific and Technical Information of China (English)

    Felipe; Díez-delhoyo; Enrique; Gutiérrez-Iba?es; Gerard; Loughlin; Ricardo; Sanz-Ruiz; María; Eugenia; Vázquez-álvarez; Fernando; Sarnago-Cebada; Rocío; Angulo-Llanos; Ana; Casado-Plasencia; Jaime; Elízaga; Francisco; Fernández; Avilés; Diáz

    2015-01-01

    Physicians cannot rely solely on the angiographic appearance of epicardial coronary artery stenosis when evaluating patients with myocardial ischemia. Instead, sound knowledge of coronary vascular physiology and of the methods currently available for its characterization can improve the diagnostic and prognostic accuracy of invasive assessment of the coronary circulation, and help improve clinical decision-making. In this article we summarize the current methods available for a thorough assessment of coronary physiology.

  5. Genes Expressed in Human Tumor Endothelium

    Science.gov (United States)

    St. Croix, Brad; Rago, Carlo; Velculescu, Victor; Traverso, Giovanni; Romans, Katharine E.; Montgomery, Elizabeth; Lal, Anita; Riggins, Gregory J.; Lengauer, Christoph; Vogelstein, Bert; Kinzler, Kenneth W.

    2000-08-01

    To gain a molecular understanding of tumor angiogenesis, we compared gene expression patterns of endothelial cells derived from blood vessels of normal and malignant colorectal tissues. Of over 170 transcripts predominantly expressed in the endothelium, 79 were differentially expressed, including 46 that were specifically elevated in tumor-associated endothelium. Several of these genes encode extracellular matrix proteins, but most are of unknown function. Most of these tumor endothelial markers were expressed in a wide range of tumor types, as well as in normal vessels associated with wound healing and corpus luteum formation. These studies demonstrate that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.

  6. The endothelium - the cardiovascular health barometer.

    Science.gov (United States)

    Herrmann, Joerg; Lerman, Amir

    2008-07-01

    Once considered to fulfill no other purpose than that of a physical barrier between blood and tissue, the multifunctional nature of the endothelium was discovered in the later half of the 20th century. In cardiology, the dysfunctional nature of the endothelium has received even more attention, initially mainly within the research community but later also in the clinical community, serving as a prime example for the translation of bench research to patient care. In this review, the entity of endothelial dysfunction, its modes of diagnosis in clinical practice, its prognostic implications, and its treatment options will be defined. From past conceptual ideas to current practical applications to the road ahead, the endothelium is to be viewed as the cardiovascular health barometer.

  7. Early Diagnosis and Treatment of Coronary Heart Disease in Symptomatic Subjects With Advanced Vascular Atherosclerosis of the Carotid Artery (Type III and IV b Findings Using Ultrasound)

    Science.gov (United States)

    Adams, Ansgar; Bojara, Waldemar; Schunk, Klaus

    2017-01-01

    Background A study was conducted as to whether the early diagnosis of coronary heart disease (CHD) in symptomatic patients with advanced atherosclerosis of the carotid artery was more successful using ultrasound technology than exercise electrocardiography (ECG). Methods Within the scope of an occupational screening program using subjects from diverse employment sectors, people were given the opportunity to determine their risk of heart attack. During the study, the total plaque area (TPA), the maximum plaque thickness in the carotid artery and the PROCAM scores of 3,513 healthy men and 2,088 healthy women between the ages of 20 and 65 were determined. During the subsequent follow-up study, 36 subjects developed symptoms such as exertional dyspnea, atypical angina pectoris (AP) or typical AP. Four patients displayed no symptoms. The initial cardiac diagnostic testing was conducted on 31 patients using an exercise ECG, four patients were assessed using a coronary angiogram, and five further patients were assessed using a computed tomography (CT) coronary angiogram. An ultrasound examination of the carotid artery of 39 patients revealed a type IV b finding and in one patient, the examination revealed a type III finding. Results In 17 patients, the PROCAM score was 20%. In the final analysis, only two patients had entirely smooth coronary arteries, seven had coronary sclerosis, seven had a 30% stenosis, one had a 30-40% stenosis, one had a 40% stenosis, and 22 patients had a stenosis ≥ 50%, and in extreme cases, a left main coronary artery stenosis with three-vessel disease was shown. The exercise ECG only achieved a true positive result in four patients, and in 21 patients, the result was false negative. Conclusions Symptomatic patients with advanced atherosclerosis of the carotid artery (type III and type IV b findings) had a high risk for CHD. The diagnosis of CHD is better achieved by using carotid duplex than with an exercise ECG. Early treatment of the disease

  8. Effects of chromium picolinate on vascular reactivity and cardiac ischemia-reperfusion injury in spontaneously hypertensive rats.

    Science.gov (United States)

    Abebe, Worku; Liu, Jun Yao; Wimborne, Hereward; Mozaffari, Mahmood S

    2010-01-01

    Chromium picolinate [Cr(pic)(3)] is a nutritional supplement widely promoted to exert beneficial metabolic effects in patients with type 2 diabetes/impaired glucose tolerance. Frequent comorbidities in these individuals include systemic hypertension, abnormal vascular function and ischemic heart disease, but information on the effects of the supplement on these aspects is sparse. Utilizing male spontaneously hypertensive rats (SHR), we examined the potential impact of Cr(pic)(3) on blood pressure, vascular reactivity and myocardial ischemia-reperfusion injury (IRI). Dietary Cr(pic)(3) supplementation (as 10 mg chromium/kg diet for six weeks) did not affect blood pressure of the SHR. Also, neither norepinephrine (NE) and potassium chloride (KCl)-induced contractility nor sodium nitroprusside (SNP)-induced relaxation of aortic smooth muscle from the SHR was altered by Cr(pic)(3) treatment. However, Cr(pic)(3) augmented endothelium-dependent relaxation of aortas, produced by acetylcholine (ACh), and this effect was abolished by N-nitro-L-arginine methyl ester (L-NAME), suggesting induction of nitric oxide (NO) production/release. Treatment with Cr(pic)(3) did not affect baseline coronary flow rate and rate-pressure-product (RPP) or infarct size following regional IRI. Nonetheless, Cr(pic)(3) treatment was associated with improved coronary flow and recovery of myocardial contractility and relaxation following ischemia-reperfusion insult. In conclusion, dietary Cr(pic)(3) treatment of SHR alters neither blood pressure nor vascular smooth muscle reactivity but causes enhancement of endothelium-dependent vasorelaxation associated with NO production/release. Additionally, while the treatment does not affect infarct size, it improves functional recovery of the viable portion of the myocardium following IRI.

  9. Protective effects of Rho kinase inhibitor on rats' vascular endothelium and its effects on the expression of eNOS%Rho激酶抑制剂对大鼠血管内皮的保护作用及eNOS表达的影响

    Institute of Scientific and Technical Information of China (English)

    吴巧; 马康华; 张晓刚; 董倩; 赖晓峰

    2012-01-01

    Objective To explore the protective effects of Rho kinase inhibitor (fasudil) on rats1 vascular endothelial cells and the effects on the expression of endothelial nitric oxide synthase (eNOS), Methods Thirty male SD rats were randomly divided into S groups (6 each): control group (intraperitoneal injection with 0.9% normal saline), hyperhomocysteinemia (HHcy) group; low-dose fasudil group [L-treatment group, intraperitoneal injection with lmg/(kg.d) fasudil], middle-dose fasudil group [M-treatment group, intraperitoneal injection with 5mg/(kg.d) fasudil], and high-dose fasudil group [H-treatment group, intraperitoneal injection with 15mg/(kg-d) fasudil]. Animals in HHcy group and fasudil groups were administered continuously with water containing 1.5% methionine for 4 weeks to establish HHcy damaged vascular endothelium model, and those in control group were only fed drinking water. After successful reproduction of model, the enzymatic method was applied to measure the serum level of nitric oxide (NO). The expressions of eNOS, Rho-associated coiled-coil protein kinase 2 (ROCK2) and RhoA protein tn aorta were assessed by immunohistochemistry and Western blotting. Results Compared with control group; the serum NO level and expression of eNOS protein in aorta decreased significantly in HHcy group (P0.05). The aortic endothelial eNOS positive cells increased significantly in H-treatment group compared with that in HHcy group and L-treatment group (P0.05). Compared with HHcy group, the expressions of RhoA and ROCK2 decreased significantly in H-treatment group (P0.05). Conclusions High-dose fasudil can protect vascular endothelia by inhibiting Rho/ROCK pathway to increase the expression of eNOS and NO.%目的 探讨Rho激酶抑制剂法舒地尔对大鼠血管内皮的保护作用及内皮型一氧化氮合酶(eNOS)表达的影响.方法 30只雄性SD大鼠随机分为5组(每组6只),即空白对照组(Control组,腹腔注射0.9%生理盐水),高同型半胱氨酸血

  10. Ambulatory blood pressure monitoring and endothelium-dependent vasodilation in the elderly athletes.

    Science.gov (United States)

    Galetta, F; Franzoni, F; Plantinga, Y; Ghiadoni, L; Rossi, M; Prattichizzo, F; Carpi, A; Taddei, S; Santoro, G

    2006-09-01

    Regular exercise is a key component of cardiovascular risk prevention strategies, because it is associated with a variety of beneficial metabolic and vascular effects that reduce mortality and the incidence of cardiovascular adverse events. Endothelium plays an important role in the local regulation of vascular tone and structure, mainly by nitric oxide (NO) synthesis and action. Aim of the present study was to evaluate in elderly athletes the effect of regular aerobic exercise on arterial blood pressure (BP) and on endothelium-dependent flow-mediated dilation (FMD) of the brachial artery. The study population included 30 male subjects (mean age 65.6+/-5.6 years), who had practiced endurance running at a competitive level for at least 40 years, and 28 age- and sex-matched subjects (mean age 64.5+/-4.5 years) with sedentary lifestyle and free of cardiovascular disease. Athletes and control subjects underwent standard 12-lead ECG, clinic BP, 24-h ambulatory BP monitoring and endothelium-dependent FMD and endothelium-independent response to glyceryl trinitrate (GTN), 400 microg, in the brachial artery by high-resolution ultrasonography. Systolic clinic and ambulatory 24-h BP were significantly lower in the athletes, than in the controls (Pathletes (Pathletes also had a lower 24-h, day-time and night-time heart rate (HR) (Pathletes (Pathletes showed higher FMD than elderly sedentary subjects (Pphysical activity can counteract the age-related endothelial dysfunction that characterizes sedentary aging, preserving the capacity of the endothelium-dependent vasodilation and reduces BP values improving arterial pressure control.

  11. Large common left and right coronary artery to coronary sinus fistula

    NARCIS (Netherlands)

    Hoendermis, E.S.; Waterbolk, Tjalling W.; Willems, Els; Zijlstra, F.

    2006-01-01

    Coronary fistulas are vascular anomalies which in rare cases can cause hemodynamic problems with indication for intervention. We report about a 47-year-old man with a large coronary fistula arising from both, the left and right coronary artery. To our knowledge this is the first case described with

  12. The development of 3-D, in vitro, endothelial culture models for the study of coronary artery disease

    Directory of Open Access Journals (Sweden)

    Fraser Richard

    2009-10-01

    Full Text Available Abstract The response of the vascular endothelium to wall shear stress plays a central role in the development and progression of atherosclerosis. Current studies have investigated endothelial response using idealized in vitro flow chambers. Such cell culture models are unable to accurately replicate the complex in vivo wall shear stress patterns arising from anatomical geometries. To better understand this implication, we have created both simplified/tubular and anatomically realistic in vitro endothelial flow models of the human right coronary artery. A post-mortem vascular cast of the human left ventricular outflow tract was used to create geometrically accurate silicone elastomer models. Straight, tubular models were created using a custom made mold. Following the culture of human abdominal aortic endothelial cells within the inner lumen, cells were exposed to steady flow (Re = 233 for varying time periods. The resulting cell morphology was analyzed in terms of shape index and angle of orientation relative to the flow direction. In both models a progressive elongation and alignment of the endothelium in the flow direction was observed following 8, 12, and 24 hours. This change, however, was significantly less pronounced in the anatomical model (as observed from morphological variations indicative of localized flow features. Differences were also observed between the inner and outer walls at the disease-prone proximal region. Since morphological adaptation is a visual indication of endothelial shear stress activation, the use of anatomical models in endothelial genetic and biochemical studies may offer better insight into the disease process.

  13. Regulation of the renin–angiotensin system in coronary atherosclerosis: A review of the literature

    Directory of Open Access Journals (Sweden)

    Ramadan A Hammoud

    2008-01-01

    Full Text Available Ramadan A Hammoud, Christopher S Vaccari, Sameer H Nagamia, Bobby V KhanEmory University School of Medicine, Division of Cardiology, Grady Memorial Hospital Vascular Research Laboratory, Atlanta, Georgia, USAAbstract: Activation of the renin–angiotensin system (RAS is significant in the pathogenesis of cardiovascular disease and specifically coronary atherosclerosis. There is strong evidence that the RAS has effects on the mechanisms of action of atherosclerosis, including fibrinolytic balance, endothelial function, and plaque stability. Pharmacological inhibition of the renin angiotensin system includes angiotensin converting enzyme (ACE inhibitors, angiotensin receptor blockers (ARBs, and renin inhibitors. These agents have clinical benefits in reducing morbidity and mortality in the management of hypertension. In addition, ACE inhibitors and ARBs have shown to be effective in the management of congestive heart failure and acute myocardial infarction. This review article discusses the biochemical and molecular mechanisms involving the RAS in coronary atherosclerosis as well as the effects of RAS inhibition in clinical studies involving coronary atherosclerosis.Keywords: angiotensin II, atherosclerosis, endothelium, inflammation, vasculature

  14. Increased benefit of interleukin-1 inhibition on vascular function, myocardial deformation, and twisting in patients with coronary artery disease and coexisting rheumatoid arthritis.

    Science.gov (United States)

    Ikonomidis, Ignatios; Tzortzis, Stavros; Andreadou, Ioanna; Paraskevaidis, Ioannis; Katseli, Chrysoula; Katsimbri, Pelagia; Pavlidis, George; Parissis, John; Kremastinos, Dimitrios; Anastasiou-Nana, Maria; Lekakis, John

    2014-07-01

    We investigated the effects of anakinra, an interleukin-1 receptor antagonist, on coronary and left ventricular function in coronary artery disease (CAD) patients with rheumatoid arthritis. In a double-blind crossover trial, 80 patients with rheumatoid arthritis (60 with CAD and 20 without) were randomized to a single injection of anakinra or placebo and after 48 hours to the alternative treatment. At baseline and 3 hours after treatment, we assessed (1) flow-mediated dilation of brachial artery; (2) coronary flow reserve, ejection fraction, systemic arterial compliance, and resistance by echocardiography; (3) left ventricular global longitudinal and circumferential strain, peak twisting, untwisting velocity by speckle tracking; and (4) interleukin-1β, nitrotyrosine, malondialdehyde, protein carbonyl, and Fas/Fas ligand levels. At baseline, patients with CAD had 3-fold higher interleukin-1β, protein carbonyl, higher nitrotyrosine, malondialdehyde, and Fas/Fas ligand than non-CAD (PInterleukin-1 inhibition causes a greater improvement in endothelial, coronary aortic function in addition to left ventricular myocardial deformation and twisting in rheumatoid arthritis patients with CAD than in those without. http://www.clinicaltrials.gov. Unique identifier: NCT01566201. © 2014 American Heart Association, Inc.

  15. Auxetic coronary stent endoprosthesis

    DEFF Research Database (Denmark)

    Amin, Faisal; Ali, Murtaza Najabat; Ansari, Umar;

    2014-01-01

    BACKGROUND: Cardiovascular heart disease is one of the leading health issues in the present era and requires considerable health care resources to prevent it. The present study was focused on the development of a new coronary stent based on novel auxetic geometry which enables the stent to exhibit...... a negative Poisson's ratio. Commercially available coronary stents have isotropic properties, whereas the vascular system of the body shows anisotropic characteristics. This results in a mismatch between anisotropic-isotropic properties of the stent and arterial wall, and this in turn is not favorable...... for mechanical adhesion of the commercially available coronary stents with the arterial wall. It is believed that an auxetic coronary stent with inherent anisotropic mechanical properties and negative Poisson's ratio will have good mechanical adhesion with the arterial wall. METHODS: The auxetic design...

  16. Endothelium-dependent and -independent vasorelaxant actions and mechanisms induced by total flavonoids of Elsholtzia splendens in rat aortas.

    Science.gov (United States)

    Wang, Hui-Ping; Lu, Jian-Feng; Zhang, Guo-Lin; Li, Xu-Yun; Peng, Hong-Yun; Lu, Yuan; Zhao, Liang; Ye, Zhi-Guo; Bruce, Iain C; Xia, Qiang; Qian, Ling-Bo

    2014-09-01

    Elsholtzia splendens (ES) is, rich in flavonoids, used to repair copper contaminated soil in China, which has been reported to benefit cardiovascular systems as folk medicine. However, few direct evidences have been found to clarify the vasorelaxation effect of total flavonoids of ES (TFES). The vasoactive effect of TFES and its underlying mechanisms in rat thoracic aortas were investigated using the organ bath system. TFES (5-200mg/L) caused a concentration-dependent vasorelaxation in endothelium-intact rings, which was not abolished but significantly reduced by the removal of endothelium. The nitric oxide synthase (NOS) inhibitor N(ω)-nitro-l-arginine methyl ester (100μM) and the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,2-α]quinoxalin-1-one (30μM) significantly blocked the endothelium-dependent vasorelaxation of TFES. Meanwhile, NOS activity in endothelium-intact aortas was concentration-dependently elevated by TFES. However, indomethacin (10μM) did not affect TFES-induced vasorelaxation. Endothelium-independent vasorelaxation of TFES was significantly attenuated by KATP channel blocker glibenclamide. The accumulative Ca(2+)-induced contraction in endothelium-denuded aortic rings primed with KCl or phenylephrine was markedly weakened by TFES. These results revealed that the NOS/NO/cGMP pathway is likely involved in the endothelium-dependent vasorelaxation induced by TFES, while activating KATP channel, inhibiting intracellular Ca(2+) release, blocking Ca(2+) channels and decreasing Ca(2+) influx into vascular smooth muscle cells might contribute to the endothelium-independent vasorelaxation conferred by TFES.

  17. Hypoadiponectinemia predicts impaired endothelium-independent vasodilation in newly diagnosed type 2 diabetic patients: an 8-year prospective study

    Institute of Scientific and Technical Information of China (English)

    LI Hui; XIAO Yang; LIU Hui; CHEN Xiao-yan; LI Xin-ying; TANG Wei-li; LIU Shi-ping; XU Ai-min; ZHOU Zhi-guang

    2011-01-01

    Background Adiponectin is an adipokine with insulin-sensitising and anti-atherogenic properties.The aim of this study was to investigate whether low adiponectin levels predict the impairment of endothelial function in newly diagnosed type 2 diabetic patients in an 8-year prospective study.Methods In the prospective study,we enrolled 133 newly diagnosed type 2 diabetic patients without subclinical atherosclerosis and gave them intensive therapy; the mean treatment period was 8 years.Intensive treatment was a stepwise implementation of behavior modification and pharmacological therapy targeting hyperglycaemia,hypertension,dyslipidaemia and obesity.We measured baseline circulating adiponectin with an enzyme-linked immunosorbent assay,endothelium-dependent and -independent vasodilation by high-resolution vascular ultrasound.At year 8,102 patients were reexamined for endothelium-dependent and -independent vasodilation.Results Sex-adjusted adiponectin level was positively correlated with endothelium-independent vasodilation both at baseline (r=0.150,P=0.043) and at year 8 (r=0.339,P=0.001),whereas no association was found between adiponectin and endothelium-dependent vasodilation.In a stepwise multivariate linear regression model,adiponectin was an independent predictor for impaired endothelium-independent vasodilation at year 8 (P=0.001).Conclusions Plasma adiponectin concentration was associated with endothelium-independent vasodilation and hypoadiponectinemia predicted the impairment of endothelium-independent vasodilation in newly diagnosed type 2 diabetic patients under multifactorial intervention.These data support the causative link of impairment of endothelium-independent vasodilation with hypoadiponectinemia.

  18. Testosterone-derived estradiol production by male endothelium is robust and dependent on p450 aromatase via estrogen receptor alpha.

    Science.gov (United States)

    Villablanca, Amparo C; Tetali, Sarada; Altman, Robin; Ng, Kenneth F; Rutledge, John C

    2013-12-01

    Vascular endothelium expresses both the estrogen receptors (ERs) α and β, and ERα mediates development of early atherosclerosis in male mice. This process is thought to be testosterone-dependent. We hypothesized that male murine aortic endothelium produces robust levels of estradiol by aromatase conversion of testosterone, and that regulation of this process is mediated by the presence of ERs, primarily ERα. Aortic endothelium was isolated from ERα knockout (ERα -/-) and wild-type (ERα +/+) male mice and treated with testosterone or the 5α reduction product dihydrotestosterone (DHT), with or without the P450 aromatase inhibitor anastrazole, or a non-specific estrogen receptor antagonist. Aromatase gene expression and estradiol production were assayed. Treatment with testosterone, but not DHT, caused increased aromatase expression and estradiol production in ERα +/+ endothelium that was attenuated by disruption of ERα in the ERα -/- group. Anastrazole inhibition of aromatase reduced testosterone-induced aromatase expression and estradiol levels in both ERα -/- and ERα +/+ endothelium. Antagonism of both ERs decreased testosterone-induced aromatase expression in both wild-type and knockout groups. The effects of the receptor antagonist on estradiol production differed between the two groups, however, with a reduction in estradiol release from the ERα +/+ cells and complete abolition of estradiol release from the ERα -/- cells. Thus, estradiol production in vascular endothelium from male mice is robust, depends on the aromatic conversion of testosterone and requires functional ERα to achieve maximal levels of estradiol generation. Local vascular production of aromatase-mediated estradiol in response to circulating testosterone may affect ERα-dependent mechanisms to increase susceptibility to early atheroma formation in male mice. This pathway may have important therapeutic relevance for reducing the risk of atherosclerotic cardiovascular disease in

  19. Increase of ADAM10 level in coronary artery in-stent restenosis segments in diabetic minipigs: high ADAM10 expression promoting growth and migration in human vascular smooth muscle cells via Notch 1 and 3.

    Directory of Open Access Journals (Sweden)

    Ke Yang

    Full Text Available BACKGROUND: This study aimed to identify major proteins in the pathogenesis of coronary artery in-stent restenosis (ISR in diabetic minipigs with sirolimus-eluting stenting, and to investigate the roles of key candidate molecules, particularly ADAM10, in human arterial smooth muscle cells (HASMCs. METHODS AND RESULTS: The stents were implanted in the coronary arteries of 15 diabetic and 26 non-diabetic minipigs, and angiography was repeated at six months. The intima of one vascular segment with significant ISR and one with non-ISR in diabetic minipigs were isolated and cultured in conditioned medium (CM. The CM was analyzed by LC-MS/MS to uncover proteins whose levels were significantly increased (≥ 1.5-fold in ISR than in non-ISR tissues. After literature searching, we focused on the identified proteins, whose biological functions were most potentially related to ISR pathophysiology. Among them, ADAM10 was significantly increased in diabetic and non-diabetic ISR tissues as compared with non-ISR controls. In cell experiments, retrovirus-mediated overexpression of ADAM10 promoted growth and migration of HASMCs. The effects of ADAM10 were more remarkable in high-glucose culture than in low-glucose culture. Using shRNA and an inhibitor of γ-secretase (GSI, we found that the influences of ADAM10 were in part mediated by Notch1 and notch 3 pathway, which up-regulated Notch downstream genes and enhanced nuclear translocation of the small intracellular component of Notch1 and Notch3. CONCLUSIONS: This study has identified significantly increased expression of ADAM10 in the ISR versus non-ISR segment in diabetic minipigs and implicates ADAM10 in the enhanced neointimal formation observed in diabetes after vascular injury.

  20. Key role of endothelium in the eNOS-dependent cardioprotection with exercise training.

    Science.gov (United States)

    Farah, C; Nascimento, A; Bolea, G; Meyer, G; Gayrard, S; Lacampagne, A; Cazorla, O; Reboul, C

    2017-01-01

    Modulation of endothelial nitric oxide synthase (eNOS) activation is recognized as a main trigger of the cardioprotective effects of exercise training on heart vulnerability to ischemia-reperfusion (IR). However, this enzyme is expressed both in coronary endothelial cells and cardiomyocytes and the contribution of each one to such cardioprotection has never been challenged. The aim of this study was to investigate the role of eNOS from the cardiomyocytes vs. the endothelium in the exercise cardioprotection. Male Wistar rats were assigned to a chronic aerobic training (Ex) (vs. sedentary group; Sed) and we investigated the role of eNOS in the effects of exercise on sensitivity to IR or anoxia-reoxygenation (A/R) at whole heart, isolated cardiomyocytes and left coronary artery (LCA) levels. We observed that exercise increased eNOS activation (Ser1177 phosphorylation) and protein S-nitrosylation in whole heart but not at cardiomyocyte level, suggesting the specific target of endothelial cells by exercise. Consistently, in isolated cardiomyocytes submitted to the A/R procedure, exercise reduced cell death and improved cells contractility, but independently of the eNOS pathway. Next, to evaluate the contribution of endothelial cells in exercise cardioprotection, LCA were isolated before and after an IR procedure performed on Langendorff hearts. Exercise improved basal relaxation sensitivity to acetylcholine and markedly reduced the alteration of endothelium-dependent coronary relaxation induced by IR. Furthermore, inactivation of coronary endothelial cells activity just before IR, obtained with a bolus of Triton X-100, totally suppressed cardioprotective effects of exercise on both left ventricular functional recovery after IR and infarct size, whereas no effect of Triton X-100 was observed in Sed group. In conclusion, these results show that coronary endothelial cells rather than cardiomyocytes play a key role in the eNOS-dependent cardioprotection of exercise.

  1. Lipid-soluble smoke particles damage endothelial cells and reduce endothelium-dependent dilatation in rat and man

    DEFF Research Database (Denmark)

    Zhang, Jin-Yan; Cao, Yong-Xiao; Xu, Cang-Bao;

    2006-01-01

    BACKGROUND: Cigarette smoking is a strong risk factor for vascular disease and known to cause dysfunction of the endothelium. However, the molecular mechanisms involved are still not fully understood. METHODS: In order to reveal the direct effects of lipid-soluble smoke particles on the endothelium......, ring segments isolated from rat mesenteric arteries and human middle cerebral arteries (MCA) obtained at autopsy were incubated for 6 to 48 hrs in the presence of dimethylsulphoxide (DMSO)-soluble particles from cigarette smoke (DSP), i.e. lipid-soluble smoke particles. The endothelial microstructure...

  2. Association and cosegregation of stroke with impaired endothelium-dependent vasorelaxation in stroke prone, spontaneously hypertensive rats.

    Science.gov (United States)

    Volpe, M; Iaccarino, G; Vecchione, C; Rizzoni, D; Russo, R; Rubattu, S; Condorelli, G; Ganten, U; Ganten, D; Trimarco, B; Lindpaintner, K

    1996-01-01

    While hypertension is a major risk factor for stroke, it is not its sole determinant. Despite similar blood pressures, spontaneously hypertensive rats (SHR) do not share the predisposition to cerebrovascular disease typical of stroke-prone spontaneously hypertensive rats (SHRSP). We investigated vascular function in male SHR and SHRSP as well as in SHRSP/SHR-F2 hybrid animals. Animals were maintained on the appropriate dietary regimen necessary for the manifestation of stroke. Among the hybrid animals, a group of stroke-prone and a group of stroke-resistant rats were selected. Blood pressure was similar in all groups. Endothelium-independent vascular reactivity tested on isolated rings of thoracic aorta and basilar artery after death showed similar contractile and dilatory responses to serotonin and nitroglycerin, respectively, in all groups. In contrast, endothelium-dependent relaxation, in response to acetylcholine or substance P, was markedly reduced in SHRSP compared with SHR. Similarly, reduced vasodilatory responses were present in aortae of F2 rats that had suffered a stroke when compared with SHR or F2 rats resistant to stroke. The observed association and cosegregation of stroke with significant and specific impairment of endothelium-dependent vasorelaxation among SHRSP and stroke-prone F2 hybrids, respectively, suggest a potential causal role of altered endothelium-dependent vascular relaxation in the pathogenesis of stroke. PMID:8755632

  3. Swimming training prevents coronary endothelial dysfunction in ovariectomized spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    E.R.G. Claudio

    Full Text Available Estrogen deficiency and hypertension are considered major risk factors for the development of coronary heart disease. On the other hand, exercise training is considered an effective form to prevent and treat cardiovascular diseases. However, the effects of swimming training (SW on coronary vascular reactivity in female ovariectomized hypertensive rats are not known. We aimed to evaluate the effects of SW on endothelium-dependent coronary vasodilation in ovariectomized hypertensive rats. Three-month old spontaneously hypertensive rats (SHR, n=50 were divided into four groups: sham (SH, sham plus swimming training (SSW, ovariectomized (OVX, and ovariectomized plus swimming training (OSW. The SW protocol (5 times/week, 60 min/day was conducted for 8 weeks. The vasodilatory response was measured in isolated hearts in the absence and presence of a nitric oxide synthase inhibitor (L-NAME, 100 µM. Cardiac oxidative stress was evaluated in situ by dihydroethidium fluorescence, while the expression of antioxidant enzymes (SOD-2 and catalase and their activities were assessed by western blotting and spectrophotometry, respectively. Vasodilation in SHR was significantly reduced by OVX, even in the presence of L-NAME, in conjunction with an increased oxidative stress. These effects were prevented by SW, and were associated with a decrease in oxidative stress. Superoxide dismutase 2 (SOD-2 and catalase expression increased only in the OSW group. However, no significant difference was found in the activity of these enzymes. In conclusion, SW prevented the endothelial dysfunction in the coronary bed of ovariectomized SHR associated with an increase in the expression of antioxidant enzymes, and therefore may prevent coronary heart disease in hypertensive postmenopausal women.

  4. Identification of a potent endothelium-derived angiogenic factor.

    Directory of Open Access Journals (Sweden)

    Vera Jankowski

    Full Text Available The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U from the secretome of human endothelial cells. The angiogenic effect of the endothelial secretome was partially reduced after incubation with alkaline phosphatase and abolished in the presence of suramin. In one fraction, purified to homogeneity by reversed phase and affinity chromatography, Up4U was identified by MALDI-LIFT-fragment-mass-spectrometry, enzymatic cleavage analysis and retention-time comparison. Beside a strong angiogenic effect on the yolk sac membrane and the developing rat embryo itself, Up4U increased the proliferation rate of endothelial cells and, in the presence of PDGF, of vascular smooth muscle cells. Up4U stimulated the migration rate of endothelial cells via P2Y2-receptors, increased the ability of endothelial cells to form capillary-like tubes and acts as a potent inducer of sprouting angiogenesis originating from gel-embedded EC spheroids. Endothelial cells released Up4U after stimulation with shear stress. Mean total plasma Up4U concentrations of healthy subjects (N=6 were sufficient to induce angiogenic and proliferative effects (1.34 ± 0.26 nmol L(-1. In conclusion, Up4U is a novel strong human endothelium-derived angiogenic factor.

  5. NADH/NADPH Oxidase and Vascular Function.

    Science.gov (United States)

    Griendling, K K; Ushio-Fukai, M

    1997-11-01

    The vascular NADH/NADPH oxidase has been shown to be the major source of superoxide in the vessel wall. Recent work has provided insight into its structure and activity in vascular cells. This enzyme is involved in both vascular smooth muscle hypertrophy and in some forms of impaired endothelium-dependent relaxation. Because oxidative stress in general participates in the pathogenesis of hypertension and atherosclerosis, the enzymes that produce reactive oxygen species may be important determinants of the course of vascular disease. (Trends Cardiovasc Med 1997;7:301-307). © 1997, Elsevier Science Inc.

  6. Altered purinergic signaling in uridine adenosine tetraphosphate-induced coronary relaxation in swine with metabolic derangement

    NARCIS (Netherlands)

    Z. Zhou (Zhichao); O. Sorop (Oana); V.J. de Beer (Vincent Jacob); I. Heinonen (Ilkka); C. Cheng (Caroline); A.H.J. Danser (Jan); D.J.G.M. Duncker (Dirk); D. Merkus (Daphne)

    2017-01-01

    textabstractWe previously demonstrated that uridine adenosine tetraphosphate (Up4A) induces potent and partially endothelium-dependent relaxation in the healthy porcine coronary microvasculature. We subsequently showed that Up4A-induced porcine coronary relaxation was impaired via downregulation of

  7. Four-year clinical follow-up of the ABSORB everolimus-eluting bioresorbable vascular scaffold in patients with de novo coronary artery disease: The ABSORB trial

    NARCIS (Netherlands)

    D. Dudek (Dariusz); Y. Onuma (Yoshinobu); J.A. Ormiston (John); L. Thuesen (Leif); K. Miquel-Hébert (Karine); P.W.J.C. Serruys (Patrick)

    2012-01-01

    textabstractAims: The first-in-man ABSORB Cohort A trial demonstrated the bioresorption of the ABSORB BVS (Abbott Vascular, Santa Clara, CA, USA) at two years. This report describes the 4-year clinical outcomes. Methods and results: The ABSORB Cohort A trial enrolled 30 patients with a single de nov

  8. Mathematical model for blood flow autoregulation by endothelium-derived relaxing factor

    CERN Document Server

    Chernyavsky, I L; Chernyavsky, Igor L.; Kudryashov, Nikolai A.

    2006-01-01

    The fluid shear stress is an important regulator of the cardiovascular system via the endothelium-derived relaxing factor (EDRF) that is Nitric Oxide. This mechanism involves biochemical reactions in an arterial wall. The autoregulation process is managed by the vascular tonus and gives the negative feedback for the shear stress changing. A new mathematical model for the autoregulation of a blood flow through arteria under the constant transmural pressure is presented. Endothelium-derived relaxing factor Nitric Oxide, the multi-layer structure of an arterial wall, and kinetic-diffusion processes are taken into consideration. The limit case of the thin-wall artery is analytically studied. The stability condition for a stationary point of the linearized system is given. The exact stationary solutions of the origin system are found. The numerical simulation for the autoregulation system is presented. It is shown the arteria adaptation to an initial radial perturbation and the transition of the system to new equi...

  9. microRNAs in the Lymphatic Endothelium: Master Regulators of Lineage Plasticity and Inflammation

    Science.gov (United States)

    Yee, Daniel; Coles, Mark C.; Lagos, Dimitris

    2017-01-01

    microRNAs (miRNAs) are highly conserved, small non-coding RNAs that regulate gene expression at the posttranscriptional level. They have crucial roles in organismal development, homeostasis, and cellular responses to pathological stress. The lymphatic system is a large vascular network that actively regulates the immune response through antigen trafficking, cytokine secretion, and inducing peripheral tolerance. Here, we review the role of miRNAs in the lymphatic endothelium with a particular focus on their role in lymphatic endothelial cell (LEC) plasticity, inflammation, and regulatory function. We highlight the lineage plasticity of LECs during inflammation and the importance of understanding the regulatory role of miRNAs in these processes. We propose that targeting miRNA expression in lymphatic endothelium can be a novel strategy in treating human pathologies associated with lymphatic dysfunction.

  10. Role of endothelium in angiotensin II formation by the rat aorta and mesenteric arterial bed

    Directory of Open Access Journals (Sweden)

    R. Leite

    1997-05-01

    Full Text Available We investigated the angiotensin II (Ang II-generating system by analyzing the vasoconstrictor effect of Ang II, angiotensin I (Ang I, and tetradecapeptide (TDP renin substrate in the absence and presence of inhibitors of the renin-angiotensin system in isolated rat aortic rings and mesenteric arterial beds with and without functional endothelium. Ang II, Ang I, and TDP elicited a dose-dependent vasoconstrictor effect in both vascular preparations that was completely blocked by the Ang II receptor antagonist saralasin (50 nM. The angiotensin converting enzyme (ACE inhibitor captopril (36 µM completely inhibited the vasoconstrictor effect elicited by Ang I and TDP in aortic rings without affecting that of Ang II. In contrast, captopril (36 µM significantly reduced (80-90% the response to bolus injection of Ang I, without affecting those to Ang II and TDP in mesenteric arteries. Mechanical removal of the endothelium greatly potentiated (70-95% the vasoconstrictor response to Ang II, Ang I, and TDP in aortic rings while these responses were unaffected by the removal of the endothelium of mesenteric arteries with sodium deoxycholate infusion. In addition, endothelium disruption did not change the pattern of response elicited by these peptides in the presence of captopril. These findings indicate that the endothelium may not be essential for Ang II formation in rat mesenteric arteries and aorta, but it may modulate the response to Ang II. Although Ang II formation from Ang I is essentially dependent on ACE in both vessels, our results suggest the existence of an alternative pathway in the mesenteric arterial bed that may play an important role in Ang II generation from TDP in resistance but not in large vessels during ACE inhibition

  11. The role of oxidative stress in acetylcholine-induced relaxation of endothelium-denuded arteries.

    Science.gov (United States)

    Cacanyiova, S; Dovinova, I; Kristek, F

    2013-04-01

    Nitric oxide (NO) is produced in the endothelium in response to vasorelaxants, such as acetylcholine, and acts on vascular smooth muscle cells to induce vasorelaxation. Previously, we found that the smooth muscle of endothelium-denuded arteries expresses functional NO synthase. We hypothesized that the destruction of arterial anatomical integrity induced by denuding arteries of their endothelial layers causes the vessels to become insensitive to vasodilators as a consequence of oxidative stress. In this study, we examined whether the acetylcholine-induced vasorelaxation observed in deendothelialized arteries is mediated by NO and/or affected by oxidative stress. For functional relaxation studies, the isolated thoracic aorta and pulmonary artery of male Wistar rats were used. Vessel superoxide production was assessed in preserved and endothelium-denuded arteries by the lucigenin chemiluminescence method. In all arteries with intact endothelia, acetylcholine evoked vasorelaxation; this effect was inhibited in endothelium-denuded rings. Pretreatment of denuded rings with the free-radical scavenger tempol improved acetylcholine-induced relaxation. This effect was inhibited by the coadministration of 1H-[1,2,4]oxadiazolo[4,3-α]quinoxalin-1-one (ODQ), an inhibitor of guanylate cyclase, or N(G)-nitro-L-arginine methylester (L-NAME), an inhibitor of NO synthase. The chemiluminescent assay revealed that endothelial denudation of both vessel types increased the production of superoxide radicals which has been decreased after tempol administration. Our results show that non-endothelial NO could represent an additional source of physiologically active NO and that the insensitivity of endothelium-denuded vessels to vasodilators could be a consequence of oxidative stress. These findings question the concept that endothelial cells play an obligatory role in vasorelaxation.

  12. Non-endothelial endothelin counteracts hypoxic vasodilation in porcine large coronary arteries

    Directory of Open Access Journals (Sweden)

    Fröbert Ole

    2011-05-01

    Full Text Available Abstract Background The systemic vascular response to hypoxia is vasodilation. However, reports suggest that the potent vasoconstrictor endothelin-1 (ET-1 is released from the vasculature during hypoxia. ET-1 is reported to augment superoxide anion generation and may counteract nitric oxide (NO vasodilation. Moreover, ET-1 was proposed to contribute to increased vascular resistance in heart failure by increasing the production of asymmetric dimethylarginine (ADMA. We investigated the role of ET-1, the NO pathway, the potassium channels and radical oxygen species in hypoxia-induced vasodilation of large coronary arteries. Results In prostaglandin F2α (PGF2α, 10 μM-contracted segments with endothelium, gradual lowering of oxygen tension from 95 to 1% O2 resulted in vasodilation. The vasodilation to O2 lowering was rightward shifted in segments without endothelium at all O2 concentrations except at 1% O2. The endothelin receptor antagonist SB217242 (10 μM markedly increased hypoxic dilation despite the free tissue ET-1 concentration in the arterial wall was unchanged in 1% O2 versus 95% O2. Exogenous ET-1 reversed hypoxic dilation in segments with and without endothelium, and the hypoxic arteries showed an increased sensitivity towards ET-1 compared to the normoxic controls. Without affecting basal NO, hypoxia increased NO concentration in PGF2α-contracted arteries, and an NO synthase inhibitor, L-NOARG,(300 μM, NG-nitro-L-Arginine reduced hypoxic vasodilation. NO-induced vasodilation was reduced in endothelin-contracted preparations. Arterial wall ADMA concentrations were unchanged by hypoxia. Blocking of potassium channels with TEA (tetraethylammounium chloride(10 μM inhibited vasodilation to O2 lowering as well as to NO. The superoxide scavenger tiron (10 μM and the putative NADPH oxidase inhibitor apocynin (10 μM leftward shifted concentration-response curves for O2 lowering without changing vasodilation to 1% O2. PEG (polyethylene

  13. Prospectively electrocardiogram-triggered high-pitch spiral acquisition coronary computed tomography angiography for assessment of biodegradable vascular scaffold expansion: Comparison with optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    D’Alfonso, Maria Grazia [Interventional Cardiology Unit University Of Florence, Heart and Vessels department, AOU Careggi, Florence (Italy); Mattesini, Alessio, E-mail: amattesini@gmail.com [Interventional Cardiology Unit University Of Florence, Heart and Vessels department, AOU Careggi, Florence (Italy); Meucci, Francesco [Interventional Cardiology Unit University Of Florence, Heart and Vessels department, AOU Careggi, Florence (Italy); Acquafresca, Manlio [Radiology Unit 4, Radiology Department, AOU Careggi, Florence (Italy); Gensini, Gian Franco; Valente, Serafina [Interventional Cardiology Unit University Of Florence, Heart and Vessels department, AOU Careggi, Florence (Italy)

    2014-11-15

    BVS polymeric struts are transparent to the light so that the vessel wall contour can be easily visualized using optical coherence tomography (OCT). Therefore OCT represents a unique tool for both the evaluation of the resorption process and for the assessment of acute BVS mechanical failure. Similarly, the metal-free struts allow unrestricted coronary computed tomography angiography (CCTA), thus this non invasive method might become the gold standard for a non invasive assessment of BVS. In this case we show the ability of CCTA, performed with a low X-Ray dose, to provide a good evaluation of scaffold expansion. The quantitative measurements were in agreement with those obtained with OCT.

  14. UTP induces vascular responses in the isolated and perfused canine epicardial coronary artery via UTP-preferring P2Y receptors

    OpenAIRE

    Matsumoto, Takako; Nakane, Tokio; Chiba, Shigetoshi

    1997-01-01

    Vasoconstrictor responses of the isolated and perfused canine epicardial coronary artery to uridine 5′-triphosphate (UTP) were analysed pharmacologically.At basal perfusion pressure, UTP induced vasoconstriction in a dose-related manner and the vasoconstriction was sometimes followed by a slight vasodilatation at large doses (more than 10 nmol). The rank order of potency for vasoconstriction was UTP=UDP>ATP>TTP⩾ITP>> UMP. At raised perfusion pressure by 20 mM KCl, the vasoconstriction was not...

  15. [Experiments on the mechanism of action of vascular spasmolytic agents. II. Action of nitroprusside sodium, nitroglycerin, prenylamine and verapamil on the lanthanum contracture of isolated coronary arteries].

    Science.gov (United States)

    Fermum, R; Klinner, U; Meisel, P

    1976-01-01

    On isolated coronary arteries of cattle, lanthanum causes after preceding calcium depletion by EGTA a contracture which is independent of the presence of extracellular calcium. Nitroprusside sodium and nitroglycerol act on this contracture strongly relaxing in the same concentrations that were active on the potassium contracture. In contrast, a very low spasmolytic effect is demonstrable for verapamil on the lanthanum contracture, and prenylamine is without any statistically significant influence. Nitroprusside sodium and nitroglycerol and act by a mechanism entirely different from that of verapamil and prenylamine.

  16. Vascular Cures

    Science.gov (United States)

    ... Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic Dissection Arteriovenous Malformation Atherosclerosis Buerger's Disease Carotid Artery Disease ...

  17. [Vascular endothelial Barrier Function].

    Science.gov (United States)

    Ivanov, A N; Puchinyan, D M; Norkin, I A

    2015-01-01

    Endothelium is an important regulator of selective permeability of the vascular wall for different molecules and cells. This review summarizes current data on endothelial barrier function. Endothelial glycocalyx structure, its function and role in the molecular transport and leukocytes migration across the endothelial barrier are discussed. The mechanisms of transcellular transport of macromolecules and cell migration through endothelial cells are reviewed. Special section of this article addresses the structure and function of tight and adherens endothelial junction, as well as their importance for the regulation of paracellular transport across the endothelial barrier. Particular attention is paid to the signaling mechanism of endothelial barrier function regulation and the factors that influence on the vascular permeability.

  18. Reduced coronary flow reserve in patients with primary hyperparathyroidism: a study by G-SPECT myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marini, Cecilia [CNR Institute of Bioimages and Molecular Physiology Milan, Genoa (Italy); Giusti, Massimo; Vera, Lara; Minuto, Francesco [University of Genoa, Department of Endocrinological and Metabolic Sciences, Genoa (Italy); Armonino, Riccardo; Ghigliotti, Giorgio; Bezante, Gian Paolo; Morbelli, Silvia; Pomposelli, Elena; Massollo, Michela; Gandolfo, Patrizia; Sambuceti, Gianmario [University of Genoa, Department of Internal Medicine, Genoa (Italy)

    2010-12-15

    The mechanisms underlying increased cardiovascular risk in primary hyperparathyroidism (pHPT) have not been fully defined. Recently, this issue has become the subject of renewed interest due to the increasing evidence that the endothelium and vascular wall are targets for parathyroid hormone (PTH). The aim of this study was to measure regional coronary flow reserve (CFR) to determine whether the vascular damage induced by pHPT extends to affect the coronary microvascular function. A total of 22 pHPT patients without a history of coronary artery disease and 7 age-matched control subjects were recruited. Dipyridamole myocardial blood flow (MBF) was assessed using {sup 99m}Tc-sestamibi by measuring first-transit counts in the pulmonary artery and myocardial count rate from G-SPECT images. Baseline MBF was estimated 2 h later according to the same procedure. Regional CFR was defined as the ratio between dipyridamole and baseline MBF using a 17-segment left ventricular model. Three pHPT patients showed reversible perfusion defects and were excluded from the analysis. In the remaining 19, CFR was significantly lower with respect to the control subjects (1.88 {+-} 0.64 vs. 3.36 {+-} 0.66, respectively; p < 0.01). Moreover, patients studied for more than 28 months from pHPT diagnosis showed lower CFR values than the others (1.42 {+-} 0.18 vs. 2.25 {+-} 0.64, respectively; p < 0.01). Consequently, the time from diagnosis to the nuclear study showed a reasonable correlation with the degree of CFR impairment (Spearman's rho -0.667, p < 0.02). pHPT is associated with a significant dysfunction of the coronary microcirculation. This disorder might contribute to the high cardiovascular risk of conditions characterized by chronic elevations in serum PTH levels. (orig.)

  19. An essential role of endothelium-derived nitric oxide in vasorelaxations induced by black tea polyphenols

    Institute of Scientific and Technical Information of China (English)

    HUANG Yu

    2008-01-01

    Green tea has received much attention as protective agent against cardiovascular disease and cancer, the two primary targets of preventive medicine. Since our first demonstration in 1999 of the involvement of endothelium-derived nitric oxide in the acute vasodilator effect of green tea polyphenols, several new vascular protective effects of green tea catechins have been identified. Theaflavins are another class of polyphenol pigments found in black tea, however, little is known about their bioactivity in the vascular system. We have recently demonstrated that black tea and its theaflavins cause relaxations of rat aortas via endothelial nitric oxide-dependent mechanisms and the tea polyphenols are very effective in protecting endothelial function agonist oxidative stress. The present results support the vascular benefit of consumption of black tea, which is equal to that of drinking green tea in terms of their endothelial cell protection and antioxidant capacity.

  20. Vascular effects of ultrafine particles in persons with type 2 diabetes

    Science.gov (United States)

    BACKGROUND: Diabetes confers an increased risk for cardiovascular effects of airborne particles. OBJECTIVE: We hypothesized that inhalation of elemental carbon ultrafine particles (UFP) would activate blood platelets and vascular endothelium in people with type 2 diabetes. ...

  1. Involvement of endothelium-dependent and -independent mechanisms in midazolam-induced vasodilation.

    Science.gov (United States)

    Colussi, Gian Luca; Di Fabio, Alessandro; Catena, Cristiana; Chiuch, Alessandra; Sechi, Leonardo A

    2011-08-01

    Benzodiazepine (BDZ) infusion has been shown to reduce blood pressure in both humans and animals. Although the inhibitory effects of BDZ on the central nervous system have been well documented, less is known about the direct effects of BDZ on the vascular bed. The aims of this study were to assess the effects of the BDZ midazolam on the vascular system in C57/BL6 mouse aortic rings and to investigate the mechanisms of its direct vascular action. We found that midazolam induced reversible, dose-dependent vasodilation in potassium- and phenylephrine-precontracted rings. In rings that were precontracted with potassium or phenylephrine, treatment with 10 μmol l(-1) midazolam increased vasodilation by 15 and 60%, respectively, compared with baseline. Vasodilation increased by 80 and 87%, respectively, after treatment with 50 μmol l(-1) midazolam. Only the low concentration of midazolam (10 μmol l(-1)) induced endothelium-dependent vasodilation in phenylephrine-precontracted rings. Vasodilation increased by 60% in rings with endothelium and by 20% in rings without endothelium. Conversely, only the high concentration of midazolam (50 μmol l(-1)) reduced the CaCl(2)-induced vasoconstriction of aortic rings with EC(50) (the concentration giving 50% of the maximal effect) values of 1 and 6 mmol l(-1) for vehicle- and midazolam-treated rings, respectively. Furthermore, the incubation of phenylephrine-precontracted rings with an inhibitor of the nitric oxide synthase (NOS) NG-nitro-L-arginine methyl ester or the inhibitors of central or peripheral type BDZ receptors (flumazenil or PK 11195, respectively) produced no change in midazolam-induced vasodilation. Thus, low concentrations of midazolam induce vasodilation via an endothelium-dependent mechanism that does not involve NO production. In contrast, high concentrations of midazolam induce vasodilation via an endothelium-independent mechanism that implies reduced sensitivity of aortic rings to calcium ions. Additionally

  2. Ultrasound -- Vascular

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Vascular Vascular ultrasound uses sound waves to evaluate ... the limitations of Vascular Ultrasound? What is Vascular Ultrasound? Ultrasound is safe and painless, and produces pictures ...

  3. Ultrasound -- Vascular

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Ultrasound - Vascular Vascular ultrasound uses sound waves to evaluate the ... are the limitations of Vascular Ultrasound? What is Vascular Ultrasound? Ultrasound is safe and painless, and produces ...

  4. Coronary microembolization.

    Science.gov (United States)

    Skyschally, Andreas; Leineweber, Kkirsten; Gres, Petra; Haude, Michael; Erbel, Raimund; Heusch, Gerd

    2006-09-01

    Atherosclerotic plaque rupture is the key event in the pathogenesis of acute coronary syndromes and it also occurs during coronary interventions. Atherosclerotic plaque rupture does not always result in complete thrombotic occlusion of the epicardial coronary artery with subsequent impending myocardial infarction, but may in milder forms result in the embolization of atherosclerotic and thrombotic debris into the coronary microcirculation. This review summarizes the present experimental pathophysiology of coronary microembolization in animal models of acute coronary syndromes and highlights the main consequences of coronary microembolization--reduced coronary reserve, microinfarction, inflammation and oxidative modification of contractile proteins, contractile dysfunction and perfusion-contraction mismatch.Furthermore, the review presents the available clinical evidence for coronary microembolization in patients and compares the clinical observations with observations in the experimental model.

  5. Síndrome metabólica na doença arterial coronariana e vascular oclusiva: uma revisão sistemática Metabolic syndrome in coronary artery and occlusive vascular diseases: a systematic review

    Directory of Open Access Journals (Sweden)

    Daniela Reis Elbert Farias

    2010-06-01

    Full Text Available Atualmente, a síndrome metabólica (SM se mostra altamente prevalente, sendo associada a fatores de risco para doenças crônicas não transmissíveis, tais como diabetes mellitus tipo 2, doenças ateroscleróticas e coronarianas. O objetivo desta revisão sistemática foi descrever os resultados de estudos que investigaram a associação da SM com a doença arterial coronariana e doenças vasculares oclusivas. Foi realizada a revisão sistemática com dados de estudos originais publicados entre 1999 e 2008, escritos em inglês ou português, utilizando-se as bases de dados Medline, Pubmed, Highwire Press e Science Direct. Foram incluídos artigos que fizeram o diagnóstico da SM através do critério do National Cholesterol Education Program - Adult Treatment Panel III (NCEP ATP III, 2001. Foram excluídos estudos realizados com animais, de suplementação e que realizaram administração oral ou endovenosa de qualquer substância, assim como aqueles de baixa qualidade metodológica e com amostra inicialmente heterogênea. Apesar da heterogeneidade entre os estudos, observou-se que indivíduos com SM apresentam maior probabilidade (risco = 2,13 de desenvolverem as doenças vasculares oclusivas, doença coronariana, diabetes mellitus e acidente vascular encefálico. Mudanças no estilo de vida, como práticas alimentares saudáveis, atividade física regular e a cessação do tabagismo devem ser incentivadas pelos profissionais da saúde a fim de minimizar as complicações e a morbimortalidade associada à SM.

  6. 64-MDCT imaging of the coronary arteries and systemic arterial vascular tree in a single examination: optimisation of the scan protocol and contrast-agent administration.

    Science.gov (United States)

    Napoli, A; Anzidei, M; Francone, M; Cavallo Marincola, B; Carbone, I; Geiger, D; Zaccagna, F; Di Paolo, P L; Zini, C; Catalano, C; Passariello, R

    2008-09-01

    The aim of this study was to validate a 64-row multidetector computed tomography (64-MDCT) acquisition protocol with biphasic administration of contrast medium for comprehensive assessment of the coronary and systemic arterial tree in a single examination. The scanning protocol comprised two acquisitions: an electrocardiograph (ECG)-gated scan at the level of the heart, followed by a total-body, low-dose scan of the systemic arterial circulation. Twenty patients were evaluated using two different strategies for contrast administration. In ten patients, the delay between the two acquisitions was set at 40 s, whereas in the remaining patients, it varied between 45 s and 65 s. For both strategies, the degree of systemic arterial opacification and the attenuation gradient between arterial and venous structures were quantitatively assessed at six extracoronary locations. Two observers evaluated in consensus the presence or absence of atherosclerosis and the degree of stenosis of arterial segments. Three hundred coronary segments were analysed. Arterial-wall changes were depicted in 155 (51%) segments, and in 35 (23%), the degree of stenosis was > 50%. Of the 640 extracoronary arterial segments, 250 (39%) presented atherosclerotic wall alterations, in 50 (20%), the degree of stenosis was > 50% and five were affected by aneurysmal dilatation. The magnitude of arterial opacification values and attenuation gradients between arterial and venous structures were significantly higher in patients scanned with the 40-s fixed-delay strategy. Whole-body CT angiography with biphasic administration of contrast agent and fixed scan delay has been shown to be a feasible and reproducible technique. Comprehensive data on the global atherosclerotic burden potentially offer important therapeutic options for subclinical, high-risk segments.

  7. A tale of two ligands: angiopoietins, the endothelium, and outcomes.

    Science.gov (United States)

    Siner, Jonathan M

    2013-10-16

    Angiopoietins signal via the Tie-2 receptor and are essential molecules for vasculogenesis during development and in the adult state play roles in vascular stability as well as inflammation and appear to be involved in the dysregulation of the endothelium in illness. Angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) are, respectively, agonists and competitive partial agonists, which have been found to undergo alterations in individuals with sepsis. In sepsis, Ang-2 levels are elevated and Ang-1 is decreased. In the previous issue of Critical Care, Fiusa and colleagues measure circulating Ang-1 and Ang-2 along with other growth factors in humans with febrile neutropenia. The authors found that an increased Ang-2/Ang-1 ratio, or an elevated Ang-2 level, at the time of an initial fever, is associated with subsequent development of septic shock and death. These findings validate that the Ang-2/Ang-1 balance, which is thought to reflect overall signaling via the Tie-2 receptor, is relevant to outcomes in patients with sepsis. Importantly, the specimens were obtained far in advance of the development of septic shock, suggesting that detectable alterations in this pathway may provide early clues regarding outcomes. This study adds to the evidence that angiopoietins are early markers of endothelial dysfunction in sepsis and provide prognostic information regarding outcomes.

  8. Novel approaches to improving endothelium-dependent nitric oxide-mediated vasodilatation

    DEFF Research Database (Denmark)

    Simonsen, Ulf; Rodriguez-Rodriguez, Rosalia; Dalsgaard, Thomas

    2009-01-01

    reacting with NO. Endothelial dysfunction is therapeutically reversible and physical exercise, calcium channel blockers, angiotensin converting enzyme inhibitors, and angiotensin receptor antagonists improve flow-evoked endothelium-dependent vasodilation in patients with hypertension and diabetes. We have...... channels and an influx of calcium play an important role in G-protein coupled receptor-evoked release of NO. Thus, all three approaches increase bioavailability of NO in the vascular wall, but it remains to be addressed whether these actions have any direct benefit at a clinical level....

  9. Circulating microRNA-126 in patients with coronary artery disease: correlation with LDL cholesterol

    Directory of Open Access Journals (Sweden)

    Sun Xiao

    2012-08-01

    Full Text Available Abstract Background Coronary artery disease (CAD is a major problem worldwide. Atherosclerosis and thrombosis underlying CAD involve multiple cell types. New and useful diagnostic markers are required. MicroRNAs (miRNAs are a class of noncoding RNAs that posttranscriptionally regulate the gene expressions involved in various cellular processes. Endothelial dysfunction is implicated in early processes of athero-thrombosis. Thus, it was hypothesized that the level of vascular endothelium-enriched miRNAs would be altered in plasma samples of CAD patients. Methods Vascular endothelium-enriched miRNA (miR-126 level was analyzed in plasma from 31 patients with CAD and 36 patients without CAD (qRT-PCR analysis. Results MiR-126 was not significantly down-regulated or up-regulated in CAD patients. Interestingly, the level of miR-126 was significantly decreased in patients with CAD and high low-density lipoprotein (LDL cholesterol level. In contrast, the level of miR-126 was significantly increased when LDL cholesterol was high in patients who had risk factors for CAD but did not have angiographically significant CAD. Conclusion MiR-126 was not significantly down-regulated or up-regulated in CAD patients and was not suitable for discriminating CAD patients from patients without CAD. The oppositely-directed relationship between miR-126 and LDL cholesterol in patients with or without CAD may have significant implications for identifying a potential role of miR-126 in cholesterol metabolism.

  10. Presence of Periodontopathic Bacteria DNA in Atheromatous Plaques from Coronary and Carotid Arteries

    Directory of Open Access Journals (Sweden)

    Malgorzata Szulc

    2015-01-01

    Full Text Available Objectives. Interest in periodontitis as a potential risk factor for atherosclerosis and its complications resulted from the fact that the global prevalence of periodontal diseases is significant and periodontitis may induce a chronic inflammatory response. Many studies have analyzed the potential impact of the Porphyromonas gingivalis, major pathogen of periodontitis, on general health. The purpose of this study was to find the presence of the Porphyromonas gingivalis DNA in the atherosclerotic plaques of coronary and carotid arteries and in the periodontal pockets in patients with chronic periodontitis, who underwent surgery because of vascular diseases. Methods and Results. The study population consisted of 91 patients with coronary artery disease or scheduled for carotid endarterectomy. The presence of Porphyromonas gingivalis DNA in atheromatous plaques and in subgingival samples was determined by PCR. Bacterial DNA was found in 21 of 91 (23% samples taken from vessels and in 47 of 63 (74.6% samples from periodontal pockets. Conclusions. Porphyromonas gingivalis DNA is frequently found in atheromatous plaques of patients with periodontitis. That is why more research should be conducted to prove if this periopathogen may have an impact on endothelium of patients at risk of atherosclerosis.

  11. Mathematical modelling of atheroma plaque formation and development in coronary arteries

    Science.gov (United States)

    Cilla, Myriam; Peña, Estefanía; Martínez, Miguel A.

    2014-01-01

    Atherosclerosis is a vascular disease caused by inflammation of the arterial wall, which results in the accumulation of low-density lipoprotein (LDL) cholesterol, monocytes, macrophages and fat-laden foam cells at the place of the inflammation. This process is commonly referred to as plaque formation. The evolution of the atherosclerosis disease, and in particular the influence of wall shear stress on the growth of atherosclerotic plaques, is still a poorly understood phenomenon. This work presents a mathematical model to reproduce atheroma plaque growth in coronary arteries. This model uses the Navier–Stokes equations and Darcy's law for fluid dynamics, convection–diffusion–reaction equations for modelling the mass balance in the lumen and intima, and the Kedem–Katchalsky equations for the interfacial coupling at membranes, i.e. endothelium. The volume flux and the solute flux across the interface between the fluid and the porous domains are governed by a three-pore model. The main species and substances which play a role in early atherosclerosis development have been considered in the model, i.e. LDL, oxidized LDL, monocytes, macrophages, foam cells, smooth muscle cells, cytokines and collagen. Furthermore, experimental data taken from the literature have been used in order to physiologically determine model parameters. The mathematical model has been implemented in a representative axisymmetric geometrical coronary artery model. The results show that the mathematical model is able to qualitatively capture the atheroma plaque development observed in the intima layer. PMID:24196695

  12. Mathematical modelling of atheroma plaque formation and development in coronary arteries.

    Science.gov (United States)

    Cilla, Myriam; Peña, Estefanía; Martínez, Miguel A

    2014-01-06

    Atherosclerosis is a vascular disease caused by inflammation of the arterial wall, which results in the accumulation of low-density lipoprotein (LDL) cholesterol, monocytes, macrophages and fat-laden foam cells at the place of the inflammation. This process is commonly referred to as plaque formation. The evolution of the atherosclerosis disease, and in particular the influence of wall shear stress on the growth of atherosclerotic plaques, is still a poorly understood phenomenon. This work presents a mathematical model to reproduce atheroma plaque growth in coronary arteries. This model uses the Navier-Stokes equations and Darcy's law for fluid dynamics, convection-diffusion-reaction equations for modelling the mass balance in the lumen and intima, and the Kedem-Katchalsky equations for the interfacial coupling at membranes, i.e. endothelium. The volume flux and the solute flux across the interface between the fluid and the porous domains are governed by a three-pore model. The main species and substances which play a role in early atherosclerosis development have been considered in the model, i.e. LDL, oxidized LDL, monocytes, macrophages, foam cells, smooth muscle cells, cytokines and collagen. Furthermore, experimental data taken from the literature have been used in order to physiologically determine model parameters. The mathematical model has been implemented in a representative axisymmetric geometrical coronary artery model. The results show that the mathematical model is able to qualitatively capture the atheroma plaque development observed in the intima layer.

  13. 磁共振弥散成像评价血管内皮生长因子质粒治疗犬脑梗死的有效性%Evaluating the therapeutic efficacy of vascular endothelium growth factor plasmid in treating dog cerebral infarction with diffusion-weighted magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    刘怀军; 武柏林; 汪国石; 王藏海; 王立新; 玉鉴; 屈长强; 池琛; 黄渤源

    2005-01-01

    进入结果分析.①术后1 h磁共振弥散加权成像扫描可见到梗死区明显高信号,且随时间的延长强度逐渐增高.②表观分布系数值术后三四个小时下降到(5.611.39)mm2/s,相对于对侧半球(9.85±2.04)mm2/s下降了约43%,2周时达(9.83±1.11)mm2/s,仍然略低于正常.③后续磁共振扫描显示表观分布系数比率由超急性期的下降开始呈上升趋势,对照组升高更显著,2周时组间出现显著差异(P=0.032,0.006).④2周时实验组患侧微血管计数免疫阳性细胞显著高于对照组[(28.80±3.29)个/视野,(20.70±4.47)个/视野,(P<0.01)].⑤实验组患侧1,2周时血管内皮生长因子免疫阳性细胞数显著高于对照组[(64.20±9.40)个/视野,(51.90±5.74)个/视野;(72.70±6.98)个/视野,(58.40±6.35)个/视野,(P<0.01)].⑥将磁共振检查结果同免疫组化结果对照进行相关分析,发现表观分布系数比率变化与微血管计数之间存在显著的相关关系,Pearson相关系数为0.679,P<0.01.微血管计数和血管内皮生长因子阳性细胞数之间有显著相关关系(r=0.668,P<0.01).结论:形态学观察和免疫组织化学证实采用血管内皮细胞生长因子质粒基因治疗后,随时间进展局部微血管明显增多,血管内皮细胞生长因子蛋白含量上升.同时表观分布系数的变化与血管内皮细胞生长因子免疫阳性细胞计数及微血管计数的变化呈显著的正相关关系.%BACKGROUND: Vascular endothelium growth factor (VEGF) is an endothelium mitogen and angiogenic factor with strong potential during recovery from cerebral infarction (CI). Can such therapeutic effect be detected with magnetic resonance diffusion imaging?OBJECTIVE: To study the therapeutic efficacy of VEGF plasmid in treating focal cerebral infarction in a dog experimental model with the aid of diffusion- and hemodynamic-weighted magnetic resonance imaging (MRI),with the morphological results compared with those of immunohistochemical examination

  14. Everolimus-eluting bioresorbable vascular scaffolds versus second generation drug-eluting stents for percutaneous treatment of chronic total coronary occlusions: Technical and procedural outcomes from the GHOST-CTO registry.

    Science.gov (United States)

    La Manna, Alessio; Chisari, Alberto; Giacchi, Giuseppe; Capodanno, Davide; Longo, Giovanni; Di Silvestro, Michele; Capranzano, Piera; Tamburino, Corrado

    2016-11-15

    We aimed at comparing the acute performance of bioresorbable scaffolds (BRS) and second-generation drug-eluting stents (DES) for the treatment of chronic total occlusions (CTO). There is a lack of knowledge regarding the use of BRS in CTO. Key outcomes of interest were technical and procedural success. Technical success was defined as successful stent delivery and implantation, postprocedural residual diameter stenosis CTO percutaneous coronary intervention (PCI) with the Absorb BRS (Abbott Vascular, Santa Clara, CA) and were compared with a historical control group of 54 patients who had undergone CTO PCI with second-generation DES. Baseline characteristics were similar between the BRS and DES groups, with the exception of a larger mean reference vessel diameter in the BRS group (2.92 ± 0.34 vs 2.50 ± 0.68; P CTO lesions, BRS were associated with lower rates of technical and procedural success. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Electrical resistance of a capillary endothelium

    Science.gov (United States)

    1981-01-01

    The electrical resistance of consecutive segments of capillaries has been determined by a method in which the microvessels were treated as a leaky, infinite cable. A two-dimensional analytical model to describe the potential field in response to intracapillary current injection was formulated. The model allowed determination of the electrical resistance from four sets of data: the capillary radius, the capillary length constant, the length constant in the mesentery perpendicular to the capillary, and the relative potential drop across the capillary wall. Of particular importance were the mesothelial membranes covering the mesenteric capillaries with resistances several times higher than that of the capillary endothelium. 27 frog mesenteric capillaries were characterized. The average resistance of the endothelium was 1.85 omega cm2, which compares well with earlier determinations of the ionic permeability of such capillaries. However, heterogeneity with respect to resistance was observed, that of 10 arterial capillaries being 3.0 omega cm2 as compared with 0.95 omega cm2 for 17 mid- and venous capillaries. The average in situ length constant was 99 micrometers for the arterial capillaries and 57 micrometers for the mid- and venous capillaries. It is likely that the ions that carry the current must move paracellularly, through junctions that are leaky to small solutes. PMID:7241087

  16. Impaired endothelium independent vasodilation in the cutaneous microvasculature of young obese adults.

    Science.gov (United States)

    Patik, Jordan C; Christmas, Kevin M; Hurr, Chansol; Brothers, R Matthew

    2016-03-01

    Microvascular dysfunction contributes to the development of cardiovascular and metabolic disease. This study tested the hypothesis that young obese (BMI>30 kg m(-2)), otherwise healthy, adults (N=15) have impaired microvascular function relative to age and sex matched, lean (BMIvasodilator methacholine (MCh) and the other for the endothelium-independent vasodilator sodium nitroprusside (SNP). Local temperature at each site was clamped at 33 °C and cutaneous blood flow was indexed by laser Doppler flowmetry (LDF). LDF was recorded while 7 doses of each drug (MCh: 10(-6)-1M; SNP: 5 × 10(-8)-5 × 10(-2)M) were infused at a rate of 2 μl/min for 8 min per dose. Both sites finished with heating to 43 °C and 5 × 10(-2)M SNP to achieve site specific maximal vasodilation. Mean arterial blood pressure (MAP) was assessed in the last minute of each dose and was used for subsequent calculation of cutaneous vascular conductance (CVC; LDF/MAP) and responses were normalized to each individual site's maximal response (%CVCmax). Group four-parameter dose response curves were compared with an extra sum of squares F-test. SNP EC50 was greater in obese relative to lean (-2.931 ± 0.10 vs -3.746 ± 0.18 Log[SNP]M, P0.05). These results suggest attenuated endothelium-independent response to nitric oxide while endothelium-dependent vasodilation function is maintained.

  17. Detrimental effects of chemotherapeutics and other drugs on the endothelium: A call for endothelial toxicity profiling.

    Science.gov (United States)

    Wojcik, Tomasz; Szczesny, Ewa; Chlopicki, Stefan

    2015-08-01

    The vascular endothelium is a real "maestro of circulation", and endothelial dysfunction leads to atherothrombosis, its cardiovascular complications, as well as to many other diseases. It is surprising that quite a large number of drugs seem to hamper the vasoprotective mechanisms of the endothelium, possibly promoting the development of cardiovascular diseases in patients initially treated for non-cardiological conditions. Toxicity profiling (including cardiac and liver toxicity assessment) is a routine procedure performed during pre-clinical drug development. Unfortunately, endothelium-dependent side effects are not taken into account in standard toxicity profiling protocols, as the "endothelial safety" of drugs is not required in order to enter the clinical phase of drug development. Presumably, this might be one of the reasons why several efficient therapeutics, including rofecoxib (COX-2 inhibitor), torcetrapib (CETP-inhibitor), and bardoxolone (Nrf2 activator), have unexpectedly displayed clinically significant cardiovascular hazard, resulting in their withdrawal from the market or alarming comments, respectively. In this review, we will briefly characterize the endothelial activity profiles of chemotherapeutics, antidepressants and antipsychotics-all drugs prescribed for severe, life-threatening and/or life-long diseases-and will show that at least some of them may display clinically relevant detrimental effects on endothelial function.

  18. Endothelial Function in Adolescents with a History of Premature Coronary Artery Disease in One Parent

    Directory of Open Access Journals (Sweden)

    M Hashemi

    2006-01-01

    Full Text Available Background: In young adults, a family history of premature coronary artery disease (CAD, as well as genetic and environmental factors are independent risk factors for coronary artery disease. Methods: Endothelial function was studied in 30 children (21 boys and 9 girls with mean age of 14.9 +/- 2.3 years old of patients with documented CAD (men 45 and women 50 years old. Chidren did not have any history of diabetes mellitus, dyslipidemia, hypertension, and smoking (active/passive. Using vascular ultrasound, we measured resting Basal Brachial artery Diameter (BBD and Endothelium-Dependent Dilatation (EDD in response to increased flow and sublingual glyceryltrinitrate (GTN, an Endothelium-Independent Dilation (EID. These parameters were also measured in 30 control subjects with normal parents (18 boys and 12 girls with mean age of 14.2 +/- 2/5years old and results were compared with each other. Results: Adolescents in CAD group had abnormal Endothelial Dependent Dilatation or EDD/BBD (8.5 +/- 3.4% vs 11.8 +/- 4.5% in control subjects; P= 0.003.Endothelial Independent Dilatation (EID/BBD in the positive fimily history group was significantly more than control subjects (18.5 +/- 6.7% vs 11.9 +/- 5.2%; P <0.001. EDD/EID or the index of endothelial function was significantly lower in the positive family history group (0.92 +/- 0.05 vs 1+/- 0.03; P<0.001. There was no difference in EDD/EID index between those with history of premature CAD in mother (7 cases and those with history of premature CAD in father (23 cases (0.92 +/- 0.04 vs 0.91+/- 0.05. Conclusion: Normal adolescents without any cardiovascular risk factors but a history of premature coronary artery disease in one parent may have endothelial dysfunction, and there is no difference whether the CAD is in mother or father. Keywords: Endothelial dependent dilation, family history, CAD risk factors, premature coronary artery disease

  19. [THE NEW APPROACH TO EVALUATION OF ENDOTHELIUM DYSFUNCTION: DETECTION OF NUMBER OF CIRCULATING ENDOTHELIUM CELLS USING FLOW CYTOMETRY TECHNIQUE].

    Science.gov (United States)

    Feoktistova, V S; Vavilkova, T V; Sirotkina, O V; Boldueva, S A; Gaikovaia, L B; Leonova, I A; Laskovets, A B; Ermakov, A I

    2015-04-01

    The endothelium dysfunction takes leading place in pathogenesis of development of cardiovascular diseases. The circulating endothelium cells of peripheral blood can act as a direct cell marker of damage and remodeling of endothelium. The study was carried out to develop a new approach to diagnose of endothelium dysfunction by force of determination of number of circulating endothelium cells using flow cytometry technique and to apply determination of circulating endothelium cells for evaluation of risk of development of ischemic heart disease in women of young and middle age. The study embraced 62 female patients with angiography confirmed ischemic heart disease, exertional angina pectoris at the level of functional class I-II (mean age 51 ± 6 years) and 49 women without anamnesis of ischemic heart disease (mean age 52 ± 9 years). The occurrence of more than three circulating endothelium cells by 3 x 105 leukocytes in peripheral blood increases relative risk of development of ischemic heart disease up to 4 times in women of young and middle age and risk of development of acute myocardial infarction up to 8 times in women with ischemic heart disease. The study demonstrated possibility to apply flow cytometry technique to quantitatively specify circulating endothelium cells in peripheral blood and forecast risk of development of ischemic heart disease in women of young and middle age depending on level of circulating endothelium cells.

  20. Calycosin and Formononetin Induce Endothelium-Dependent Vasodilation by the Activation of Large-Conductance Ca2+-Activated K+ Channels (BKCa

    Directory of Open Access Journals (Sweden)

    Hisa Hui Ling Tseng

    2016-01-01

    Full Text Available Calycosin and formononetin are two structurally similar isoflavonoids that have been shown to induce vasodilation in aorta and conduit arteries, but study of their actions on endothelial functions is lacking. Here, we demonstrated that both isoflavonoids relaxed rat mesenteric resistance arteries in a concentration-dependent manner, which was reduced by endothelial disruption and nitric oxide synthase (NOS inhibition, indicating the involvement of both endothelium and vascular smooth muscle. In addition, the endothelium-dependent vasodilation, but not the endothelium-independent vasodilation, was blocked by BKCa inhibitor iberiotoxin (IbTX. Using human umbilical vein endothelial cells (HUVECs as a model, we showed calycosin and formononetin induced dose-dependent outwardly rectifying K+ currents using whole cell patch clamp. These currents were blocked by tetraethylammonium chloride (TEACl, charybdotoxin (ChTX, or IbTX, but not apamin. We further demonstrated that both isoflavonoids significantly increased nitric oxide (NO production and upregulated the activities and expressions of endothelial NOS (eNOS and neuronal NOS (nNOS. These results suggested that calycosin and formononetin act as endothelial BKCa activators for mediating endothelium-dependent vasodilation through enhancing endothelium hyperpolarization and NO production. Since activation of BKCa plays a role in improving behavioral and cognitive disorders, we suggested that these two isoflavonoids could provide beneficial effects to cognitive disorders through vascular regulation.

  1. Muscarinic acetylcholine receptor M1 and M3 subtypes mediate acetylcholine-induced endothelium-independent vasodilatation in rat mesenteric arteries.

    Science.gov (United States)

    Tangsucharit, Panot; Takatori, Shingo; Zamami, Yoshito; Goda, Mitsuhiro; Pakdeechote, Poungrat; Kawasaki, Hiromu; Takayama, Fusako

    2016-01-01

    The present study investigated pharmacological characterizations of muscarinic acetylcholine receptor (AChR) subtypes involving ACh-induced endothelium-independent vasodilatation in rat mesenteric arteries. Changes in perfusion pressure to periarterial nerve stimulation and ACh were measured before and after the perfusion of Krebs solution containing muscarinic receptor antagonists. Distributions of muscarinic AChR subtypes in mesenteric arteries with an intact endothelium were studied using Western blotting. The expression level of M1 and M3 was significantly greater than that of M2. Endothelium removal significantly decreased expression levels of M2 and M3, but not M1. In perfused mesenteric vascular beds with intact endothelium and active tone, exogenous ACh (1, 10, and 100 nmol) produced concentration-dependent and long-lasting vasodilatations. In endothelium-denuded preparations, relaxation to ACh (1 nmol) disappeared, but ACh at 10 and 100 nmol caused long-lasting vasodilatations, which were markedly blocked by the treatment of pirenzepine (M1 antagonist) or 4-DAMP (M1 and M3 antagonist) plus hexamethonium (nicotinic AChR antagonist), but not methoctramine (M2 and M4 antagonist). These results suggest that muscarinic AChR subtypes, mainly M1, distribute throughout the rat mesenteric arteries, and that activation of M1 and/or M3 which may be located on CGRPergic nerves releases CGRP, causing an endothelium-independent vasodilatation. Copyright © 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  2. Muscarinic acetylcholine receptor M1 and M3 subtypes mediate acetylcholine-induced endothelium-independent vasodilatation in rat mesenteric arteries

    Directory of Open Access Journals (Sweden)

    Panot Tangsucharit

    2016-01-01

    Full Text Available The present study investigated pharmacological characterizations of muscarinic acetylcholine receptor (AChR subtypes involving ACh-induced endothelium-independent vasodilatation in rat mesenteric arteries. Changes in perfusion pressure to periarterial nerve stimulation and ACh were measured before and after the perfusion of Krebs solution containing muscarinic receptor antagonists. Distributions of muscarinic AChR subtypes in mesenteric arteries with an intact endothelium were studied using Western blotting. The expression level of M1 and M3 was significantly greater than that of M2. Endothelium removal significantly decreased expression levels of M2 and M3, but not M1. In perfused mesenteric vascular beds with intact endothelium and active tone, exogenous ACh (1, 10, and 100 nmol produced concentration-dependent and long-lasting vasodilatations. In endothelium-denuded preparations, relaxation to ACh (1 nmol disappeared, but ACh at 10 and 100 nmol caused long-lasting vasodilatations, which were markedly blocked by the treatment of pirenzepine (M1 antagonist or 4-DAMP (M1 and M3 antagonist plus hexamethonium (nicotinic AChR antagonist, but not methoctramine (M2 and M4 antagonist. These results suggest that muscarinic AChR subtypes, mainly M1, distribute throughout the rat mesenteric arteries, and that activation of M1 and/or M3 which may be located on CGRPergic nerves releases CGRP, causing an endothelium-independent vasodilatation.

  3. Microcirculatory disorders in scleroderma systematica: an association with vascular wall stiffness

    Directory of Open Access Journals (Sweden)

    Ulyana Yuryevna Ruzhentsova

    2013-01-01

    Full Text Available Objective: to study the specific features of regulation of peripheral vascular tone and their association with the endothelial structure and function of large vessels in patients with scleroderma systematica (SDS. Subjects and methods. The investigation enrolled 25 patients with SDS (mean age, 47±2.6 years; mean disease duration, 8.3+1.7 years and 15 apparently healthy individuals matched for age and gender. Comprehensive examination involved laboratory and instrumental studies, laser Doppler study to evaluate endothelium-dependent and endothelium-independent vasodilation, as well as applanation tonometry calculating the pulse wave velocity and augmentation index. Results. All the patients were found to have impaired peripheral vascular responsiveness as compared to the controls. The examination established a relationship between the magnitude of endothelium-dependent vasodilation and the stiffness index of large vessels. There was no association between endothelium-independent vasodilation and vascular elasticity parameters.

  4. Vascular Cures

    Science.gov (United States)

    ... is Possible EVERY DOLLAR SAVES LIVES. Donate Now Vascular Cures innovates patient-centered research, catalyzes breakthrough collaborations and empowers people in their vascular health journey. what is vascular disease PATIENTS see ...

  5. Vascular ring

    Science.gov (United States)

    ... subclavian and left ligamentum ateriosus; Congenital heart defect - vascular ring; Birth defect heart - vascular ring ... Vascular ring is rare. It accounts for less than 1% of all congenital heart problems. The condition ...

  6. Evaluation of myocardial blood flow and coronary flow reserve after implantation of a bioresorbable vascular scaffold versus metal drug-eluting stent: an interim one-month analysis of the VANISH trial.

    Science.gov (United States)

    Stuijfzand, Wijnand J; Raijmakers, Pieter G; Driessen, Roel S; Lammertsma, Adriaan A; van Rossum, Albert C; Nap, Alexander; Appelman, Yolande; Lemkes, Jorrit S; van Leeuwen, Maarten A; van Royen, Niels; Knaapen, Paul

    2016-08-05

    A randomised clinical trial of bioresorbable vascular scaffold (BVS) vs. metal drug-eluting stent (DES) was initiated, using positron emission tomography (PET) perfusion imaging to assess the effects of both treatments on (hyperaemic) myocardial blood flow (MBF) and coronary flow reserve (CFR) over a three-year period (VANISH trial). In the present study, early, i.e., after one month, MBF and CFR are reported. Sixty patients (45 men [75%], 55±7 years) with a documented single-vessel type A or B1 lesion were included in this single-blind randomised clinical trial. Patients were randomised to implantation of a BVS or DES in a one-to-one fashion. Approximately one month after percutaneous coronary intervention, patients underwent [15O]H2O PET to assess (hyperaemic) MBF, cold pressor test MBF, and CFR. One patient refused PET perfusion at one-month follow-up (in the DES arm). MBF of the treated myocardial territory during rest, CPT, and hyperaemia were not different in BVS-treated patients as compared to DES-treated patients (1.02±0.28 vs. 0.96±0.24 mL·min-1·g-1, p=0.38, 1.20±0.38 vs. 1.08±0.23 mL·min-1·g-1, p=0.16, and 3.04±0.80 vs. 3.33±0.77 mL·min-1·g-1, p=0.16, respectively). CFR of the treated myocardial territory was significantly lower in the BVS-treated patients (3.09±0.94 vs. 3.57±0.85, p<0.05). No differences in PET-derived absolute myocardial perfusion were observed between BVS-treated patients as compared to DES-treated patients at one-month follow-up. CFR was attenuated in BVS-treated patients, although still within the normal range.

  7. The Control of Drug Release and Vascular Endothelialization after Hyaluronic Acid-Coated Paclitaxel Multi-Layer Coating Stent Implantation in Porcine Coronary Restenosis Model

    Science.gov (United States)

    Bae, In-Ho; Jeong, Myung Ho; Park, Yong Hwan; Lim, Kyung Seob; Park, Dae Sung; Shim, Jae Won; Kim, Jung Ha; Ahn, Youngkeun; Hong, Young Joon; Sim, Doo Sun

    2017-01-01

    Background and Objectives Hyaluronic acid (HA) is highly biocompatible with cells and the extracellular matrix. In contrast to degradation products of a synthetic polymer, degradation products of HA do not acidify the local environment. The aim of this study was to fabricate an HA-coated paclitaxel (PTX)-eluting stent via simple ionic interactions and to evaluate its effects in vitro and in vivo. Materials and Methods HA and catechol were conjugated by means of an activation agent, and then the stent was immersed in this solution (resulting in a HA-coated stent). After that, PTX was immobilized on the HA-coated stent (resulting in a hyaluronic acid-coated paclitaxel-eluting stent [H-PTX stent]). Study groups were divided into 4 groups: bare metal stent (BMS), HA, H-PTX, and poly (L-lactide)-coated paclitaxel-eluting stent (P-PTX). Stents were randomly implanted in a porcine coronary artery. After 4 weeks, vessels surrounding the stents were isolated and subjected to various analyses. Results Smoothness of the surface was maintained after expansion of the stent. In contrast to a previous study on a PTX-eluting stent, in this study, the PTX was effectively released up to 14 days (a half amount of PTX in 4 days). The proliferation of smooth muscle cells was successfully inhibited (by 80.5±12.11% at 7 days of culture as compared to the control) by PTX released from the stent. Animal experiments showed that the H-PTX stent does not induce an obvious inflammatory response. Nevertheless, restenosis was clearly decreased in the H-PTX stent group (9.8±3.25%) compared to the bare-metal stent group (29.7±8.11%). Conclusion A stent was stably coated with PTX via simple ionic interactions with HA. Restenosis was decreased in the H-PTX group. These results suggest that HA, a natural polymer, is suitable for fabrication of drug-eluting stents (without inflammation) as an alternative to a synthetic polymer.

  8. Modulation of ADPase and t-PA release by radiographic contrast media in bovine aortic endothelium.

    Science.gov (United States)

    Caprino, L; Togna, A R; Zappacosta, B; Giardina, B; Togna, G

    1997-05-01

    Vascular endothelial injuries induced by intravascular administration of radiographic contrast agents may be clinically relevant to the development of thrombosis and platelet activation. In this connection, we investigated the in vitro effects induced by iodamide, iopamidol, and ioxaglate on vascular endothelial ADPase activity and tissue plasminogen activator (t-PA) release in bovine aortic endothelium, in order to extend knowledge required to evaluate endothelial compatibility of radiographic contrast media. Undiluted and Tris-diluted contrast agent formulations were employed, and mannitol and sucrose hyperosmolar solutions were used as comparison. Results demonstrated that the high-osmolar ionic contrast agent iodamide, and to a lesser extent, the low-osmolar nonionic agent iopamidol, stimulated endothelial ADPase activity of the aortic endothelium; the low-osmolar ionic agent ioxaglate left endothelial ADPase activity unchanged. Furthermore, the diluted formulations of iodamide and iopamidol, as well as high-osmolar mannitol and sucrose solutions, were devoid of activity in ADPase. This suggests that the endothelial ADPase stimulation induced by both radiographic contrast media was a hyperosmolar-independent pharmacodynamic activity. Iopamidol and ioxaglate reduced endogenous t-PA release from bovine aortic endothelium only in undiluted formulation, while iodamide showed this inhibiting action in both diluted and undiluted formulations. No effect was observed when using mannitol solutions at different osmolarity values. Our in vitro findings agree with published data on the different thrombotic tendency attributed to the contrast agents used, suggesting endothelial enzymatic activities (ADPase and t-PA release) as suitable tools for evaluating endothelial vessel wall compatibility with radiographic contrast media.

  9. Effect of folic acid adjuvant therapy on Hcy as well as lipid metabolism and endothelial injury in coronary heart disease patients with stable angina pectoris

    Institute of Scientific and Technical Information of China (English)

    Liang Wen; Yi Xie; Xian-Jun Wu; Rui-Feng Wang; Jian Cao

    2016-01-01

    Objective:To analyze the effect of folic acid adjuvant therapy on Hcy as well as lipid metabolism and endothelial injury in coronary heart disease patients with stable angina pectoris. Methods:A total of 98 cases of coronary heart disease patients with stable angina pectoris who received treatment in our hospital from March 2014 to August 2015 were selected as research subjects and randomly divided into observation group 49 cases and control group 49 cases. Control group received conventional clinical treatment, observation group received folic acid adjuvant therapy, and then differences in levels of Hcy, lipid metabolism, endothelial injury and adhesion molecules were compared between two groups after treatment. Results:Hcy, TC, LDL-C and ApoB values of observation group were lower than those of control group while HDL-C and ApoA1/ApoB values were higher than those of control group;Flow-vel and FMD values of observation group after treatment were higher than those of control group;serum E-selectin, ICAM-1, VCAM-1 and sICAM-1 values of observation group after treatment were lower than those of control group. Conclusion:Folic acid adjuvant therapy for coronary heart disease patients with stable angina pectoris can reduce plasma Hcy level and optimize lipid metabolism, further protects vascular endothelium, and has positive clinical significance.

  10. Accumulation of the Vitamin D Precursor Cholecalciferol Antagonizes Hedgehog Signaling to Impair Hemogenic Endothelium Formation

    Directory of Open Access Journals (Sweden)

    Mauricio Cortes

    2015-10-01

    Full Text Available Hematopoietic stem and progenitor cells (HSPCs are born from hemogenic endothelium in the dorsal aorta. Specification of this hematopoietic niche is regulated by a signaling axis using Hedgehog (Hh and Notch, which culminates in expression of Runx1 in the ventral wall of the artery. Here, we demonstrate that the vitamin D precursor cholecalciferol (D3 modulates HSPC production by impairing hemogenic vascular niche formation. Accumulation of D3 through exogenous treatment or inhibition of Cyp2r1, the enzyme required for D3 25-hydroxylation, results in Hh pathway antagonism marked by loss of Gli-reporter activation, defects in vascular niche identity, and reduced HSPCs. Mechanistic studies indicated the effect was specific to D3, and not active 1,25-dihydroxy vitamin D3, acting on the extracellular sterol-binding domain of Smoothened. These findings highlight a direct impact of inefficient vitamin D synthesis on cell fate commitment and maturation in Hh-regulated tissues, which may have implications beyond hemogenic endothelium specification.

  11. Accumulation of the Vitamin D Precursor Cholecalciferol Antagonizes Hedgehog Signaling to Impair Hemogenic Endothelium Formation.

    Science.gov (United States)

    Cortes, Mauricio; Liu, Sarah Y; Kwan, Wanda; Alexa, Kristen; Goessling, Wolfram; North, Trista E

    2015-10-13

    Hematopoietic stem and progenitor cells (HSPCs) are born from hemogenic endothelium in the dorsal aorta. Specification of this hematopoietic niche is regulated by a signaling axis using Hedgehog (Hh) and Notch, which culminates in expression of Runx1 in the ventral wall of the artery. Here, we demonstrate that the vitamin D precursor cholecalciferol (D3) modulates HSPC production by impairing hemogenic vascular niche formation. Accumulation of D3 through exogenous treatment or inhibition of Cyp2r1, the enzyme required for D3 25-hydroxylation, results in Hh pathway antagonism marked by loss of Gli-reporter activation, defects in vascular niche identity, and reduced HSPCs. Mechanistic studies indicated the effect was specific to D3, and not active 1,25-dihydroxy vitamin D3, acting on the extracellular sterol-binding domain of Smoothened. These findings highlight a direct impact of inefficient vitamin D synthesis on cell fate commitment and maturation in Hh-regulated tissues, which may have implications beyond hemogenic endothelium specification.

  12. Functional integration of acute myeloid leukemia into the vascular niche.

    Science.gov (United States)

    Cogle, Christopher R; Goldman, Devorah C; Madlambayan, Gerard J; Leon, Ronald P; Masri, Azzah Al; Clark, Hilary A; Asbaghi, Steven A; Tyner, Jeffrey W; Dunlap, Jennifer; Fan, Guang; Kovacsovics, Tibor; Liu, Qiuying; Meacham, Amy; Hamlin, Kimberly L; Hromas, Robert A; Scott, Edward W; Fleming, William H

    2014-10-01

    Vascular endothelial cells are a critical component of the hematopoietic microenvironment that regulates blood cell production. Recent studies suggest the existence of functional cross-talk between hematologic malignancies and vascular endothelium. Here we show that human acute myeloid leukemia (AML) localizes to the vasculature in both patients and in a xenograft model. A significant number of vascular tissue-associated AML cells (V-AML) integrate into vasculature in vivo and can fuse with endothelial cells. V-AML cells acquire several endothelial cell-like characteristics, including the upregulation of CD105, a receptor associated with activated endothelium. Remarkably, endothelial-integrated V-AML shows an almost fourfold reduction in proliferative activity compared with non-vascular-associated AML. Primary AML cells can be induced to downregulate the expression of their hematopoietic markers in vitro and differentiate into phenotypically and functionally defined endothelial-like cells. After transplantation, these leukemia-derived endothelial cells are capable of giving rise to AML. These novel functional interactions between AML cells and normal endothelium along with the reversible endothelial cell potential of AML suggest that vascular endothelium may serve as a previously unrecognized reservoir for AML.

  13. Vascular relaxation induced by Eucommiae Ulmoides Oliv. and its compounds Oroxylin A and wogonin: implications on their cytoprotection action.

    Science.gov (United States)

    Akinyi, Mary; Gao, Xiu Mei; Li, Yu Hong; Wang, Bing Yao; Liu, Er Wei; Chai, Li Juan; JawoBah, Abdulai; Fan, Guan Wei

    2014-01-01

    The vascular relaxation action of Eucommiae Ulmoides Oliv. also known as Duzhong has been seen on arteries of the heart such as the aorta and the coronary artery which are elastic in nature. Duzhong is historically an active ingredient commonly used in hypertensive herbal prescriptions in China. This work investigated the vasodilating effect of Duzhong and its compounds (wogonin 10 μM and oroxylin-A) in the isolated intact rat heart, perfused retrograde according the method of Langendorff and the cytoprotective effect in EA.hy926 cell lines Coronary perfusion pressure was monitored with a pressure transducer connected to a side-arm of the aortic perfusion cannula. Duzhong induced vasorelaxation in a dose dependent manner, on precontracting the vessels with endothelin-1, Duzhong 10 mg/ml, wogonin 10 μM and oroxylin-A 10 μM could significantly lower the perfusion pressure in reference to positive control SNP, Duzhong induced vasodilation was not inhibited by L-NAME (nitric oxide inhibitor), but was significantly inhibited by Tetraethyl ammonium (TEA, a K(+) channel blocker and almost abolished by potassium chloride. The underlying mechanism was carried out in EA.hy926 cell lines. When these cells were treated with H2O2, there was higher expression of NOX-4, TNF-α and COX-2 mRNA. However, wogonin treatment attenuated the mRNA of NOX-4, TNF-α and COX-2. Wogonin also upregulated the mRNA expression of CAT, SOD-1 and GSR in oxidative stress induced by H2O2 EA.hy926 cells. Duzhong and compounds can exert an in vitro relaxation effect of the coronary artery and improve the heart function in Langendorff apparatus. This action appears to be endothelium dependent but not NO mediated. Cell culture findings indicated that wogonin can exert vascular and cellular protection by scavenging Reactive Oxygen Species.

  14. Transradial artery coronary angioplasty.

    Science.gov (United States)

    Kiemeneij, F; Laarman, G J; de Melker, E

    1995-01-01

    This study explored the feasibility and safety of percutaneous coronary balloon angioplasty (PTCA) with miniaturized PTCA equipment via the radial artery. Coronary angioplasty (PTCA) via the femoral or brachial arteries may be associated with rare vascular complications such as bleeding and damage to the artery and adjacent structures. It was postulated that PTCA via the radial artery with miniaturized angioplasty equipment is feasible and that no major puncture site-related complications occur because hemostasis is obtained easily and because no major structures are near the radial artery. With double blood supply to the hand, radial artery occlusion is well tolerated. In 100 patients with collateral blood supply to the right hand, PTCA was attempted with 6F guiding catheters and rapid-exchange balloon catheters for exertional angina (87 patients) or nonexertional angina (13 patients). Angioplasty was attempted in 122 lesions (type A n = 67 [55%], Type B n = 37 [30%], and type C n = 18 [15%]). Pre- and post-PTCA computerized quantitative coronary analysis was performed. Radial artery function and structure were assessed clinically and with Doppler and two-dimensional ultrasound on the day of discharge. Coronary catheterization via the radial artery was successful in 94 patients (94%). The 6 remaining patients had successful PTCA via the femoral artery (n = 5) or the brachial artery (n = 1). Procedural success (120 of 122 lesions) was achieved in 92 patients (98%) via the radial artery and in 98 patients of the total study population.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Incidence of vascular complications in patients submitted to percutaneous transluminal coronary angioplasty by transradial and transfemoral arterial approach Incidencia de complicaciones vasculares en pacientes sometidos a angioplastía coronaria transluminal percutánea por vía arterial transradial y transfemoral Incidência de complicações vasculares em pacientes submetidos a angioplastia coronariana transluminal percutânea por via arterial transradial e transfemoral

    Directory of Open Access Journals (Sweden)

    Marinez Kellermann Armendaris

    2008-03-01

    Full Text Available OBJECTIVE: To describe the vascular complications of transradial and transfemoral artery punctures in patients submitted to percutaneous transluminal coronary angioplasty (PTCA. METHODS: Prospective cohort study including patients submitted to PTCA. An interview was performed and an instrument applied to collect risk factors/predictors of complications. After the procedure, a physical examination was performed, vital signs were measured and the puncture site was assessed. RESULTS: 199 patients were included, age 64±10 years. Complications found for the radial and femoral approach were respectively: ecchymosis (18.29%, (17.14%; bruising (17.66%, (14.27%; urinary retention (2.43%, (25.71%; loss of vessel permeability (8.53%, (0%. CONCLUSION: The complications found were considered minor or secondary, depending on the classification found in literature. A higher rate of vascular complications related to transradial artery punctures compared to the interventions performed by transfemoral approach.OBJETIVO: Describir complicaciones vasculares relacionadas a punciones arteriales transradial y transfemoral en pacientes sometidos a angioplastía coronaria transluminal percutánea (ACTP. MÉTODOS: Se trata de un estudio de cohorte prospectivo realizado con pacientes sometidos a ACTP. Se llevó a cabo una entrevista y aplicó un instrumento para obtener factores de riesgo/predictores. Fue realizado un examen físico, medición de signos vitales y se evaluó el lugar de punción. RESULTADOS: Fueron incluidos 199 pacientes, edad 64±10 años. Las complicaciones encontradas para vía radial y femoral respectivamente, fueron: esquimosis (18,29%, (17,14%; hematoma (17,66%, (14,27%; retención urinaria (2,43%, (25,71%; pérdida de permeabilidad de vaso (8,53%, (0%. CONCLUSIÓN: Las complicaciones fueron consideradas menores o secundarias conforme clasificación literaria. Existe una mayor incidencia de complicaciones vasculares relacionadas a punciones

  16. Fenofibrate attenuates nicotine-induced vascular endothelial dysfunction in the rat.

    Science.gov (United States)

    Chakkarwar, Vishal Arvind

    2011-01-01

    The study has been designed to investigate the effect of fenofibrate on nicotine-induced vascular endothelial dysfunction (VED) in rats. Nicotine (2 mg/kg/day, i.p., 4 weeks) was administered to produce VED in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum and aortic concentration of nitrite/nitrate. Further, the integrity of vascular endothelium was assessed using the scanning electron microscopy of thoracic aorta. The expression of mRNA for p22phox and eNOS was assessed by using reverse transcriptase-polymerase chain reaction. Serum thiobarbituric acid reactive substances concentration (TBARS) and aortic superoxide anion concentration were estimated to assess oxidative stress. Moreover, the serum lipid profile was assessed by estimating serum cholesterol, triglycerides and high density lipoprotein. The administration of nicotine induces VED by increased oxidative stress, altered lipid profile and impaired the integrity of vascular endothelium as assessed in terms of decrease in expression of mRNA for endothelial nitric oxide synthase (eNOS), impairing the integrity of vascular endothelium and subsequently decreasing serum and aortic nitrite/nitrate and attenuating acetylcholine-induced endothelium dependent relaxation. Further, nicotine produced oxidative stress, assessed in terms of increase in serum TBARS and aortic superoxide anion generation and increase in expression of mRNA for p22phox. Nicotine altered the lipid profile by increasing the serum cholesterol, triglycerides and decreasing the high density lipoprotein. However, treatment with fenofibrate (32 mg/kg, p.o.) markedly prevented nicotine-induced VED by decreasing oxidative stress and improving integrity of vascular endothelium, normalising the altered lipid profile, increasing the concentration of serum and aortic nitrite/nitrate, enhancing the acetylcholine-induced endothelium dependent relaxation and decreasing serum TBARS and aortic

  17. LDL and HDL transfer rates across peripheral microvascular endothelium agree with those predicted for passive ultrafiltration in humans.

    Science.gov (United States)

    Michel, C Charles; Nanjee, M Nazeem; Olszewski, Waldemar L; Miller, Norman E

    2015-01-01

    The mechanisms by which LDLs and HDLs cross the vascular endothelium from plasma into interstitial fluid are not understood, and have never been studied in humans in vivo. We determined whether the plasma-to-lymph clearance rates of LDL and HDL conform with those predicted by passive ultrafiltration through intercellular pores, or if it is necessary to invoke an active process such as receptor-mediated transcytosis. Plasma and afferent peripheral lymph were collected under steady-state conditions from 30 healthy men, and assayed for seven globular proteins of molecular radii 2.89-8.95 nm, complement C3, and apo AI, apo AII, and apo B. Plasma-to-lymph clearance rates of the seven proteins fitted the relation expected for molecules of their size when transported through two populations of pores of radius 4.95 and 20.1 nm. The same model parameters were then found to accurately predict the clearance rates of both HDL and LDL. The apparent clearance of complement C3, previously shown to be secreted by cultured endothelium, exceeded that predicted by the model. We conclude that the transport of HDL and LDL from plasma into interstitial fluid across the peripheral vascular endothelium in healthy humans can be explained by ultrafiltration without invoking an additional active process such as transcytosis.

  18. 3D flow study in a mildly stenotic coronary artery phantom using a whole volume PIV method.

    Science.gov (United States)

    Brunette, J; Mongrain, R; Laurier, J; Galaz, R; Tardif, J C

    2008-11-01

    Blood flow dynamics has an important role in atherosclerosis initiation, progression, plaque rupture and thrombosis eventually causing myocardial infarction. In particular, shear stress is involved in platelet activation, endothelium function and secondary flows have been proposed as possible variables in plaque erosion. In order to investigate these three-dimensional flow characteristics in the context of a mild stenotic coronary artery, a whole volume PIV method has been developed and applied to a scaled-up transparent phantom. Experimental three-dimensional velocity data was processed to estimate the 3D shear stress distributions and secondary flows within the flow volume. The results show that shear stress reaches values out of the normal and atheroprotective range at an early stage of the obstructive pathology and that important secondary flows are also initiated at an early stage of the disease. The results also support the concept of a vena contracta associated with the jet in the context of a coronary artery stenosis with the consequence of higher shear stresses in the post-stenotic region in the blood domain than at the vascular wall.

  19. Multimodality Imaging of the Long-term Vascular Responses Following Implantation of Metallic and Bioresorbable Devices

    NARCIS (Netherlands)

    V.D. Gkogkas (Vasileios)

    2014-01-01

    markdownabstract__Abstract__ The pattern of vascular responses following stent/scaffold implantation in conventional interventional practice has been assessed by coronary angiography, intravascular ultrasound or optical coherence tomography and manifests as in-stent vascular response (focal or dif

  20. [Neurogenic contractions of the rat tail artery under isobaric conditions: effect of transmural pressure and function of the endothelium].

    Science.gov (United States)

    Tarasova, O S; Zotov, A V; Rodionov, I M; Golubinskaia, V O; Borovik, A S

    2001-05-01

    In stimulation of the rat nerve with a modulated sine pattern, an increase in the modulating frequency from 0.03 to 0.15 Hz diminished the latency between the stimulating signals and changes in the vessel resistance as well as the amplitude of the flow oscillations, but did not affect tonic contractions of the vessel. A reduction of transmural pressure from 80 to 40 mm Hg increased both the tonic and the phasic components of the vessel contraction. Following the endothelium removal no change in the response latency occurred. The data obtained suggest that, during a rhythmic neurogenic influence, the vascular endothelium may work as an "amplifier" of the vessel's phasic contractions.

  1. Toxicity of methods of implant material sterilization on corneal endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Singh, G.; Boehnke, Mv.; von Domarus, D.; Draeger, J.

    1985-11-01

    The toxicity of different procedures utilized for the sterilization of intraocular implant material was assessed on the endothelium of organ-cultured porcine corneas. Polymethylmethacrylate lenses sterilized by treatment with sodium hydroxide (NaOH), ethylene oxide, formaldehyde, and gamma radiation were added to a culture medium containing normal porcine corneas. Considering the viability of endothelial cells, appearance of intracellular degenerative vacuoles, and denudation of corneal Descemet's membrane as criterion for the evaluation of toxicity of different methods of sterilization, the NaOH-treated lenses were found to be the least toxic to porcine corneal endothelium. Phase-contrast microscopy and vital staining of the endothelium permitted direct viewing of the endothelium aiding in the assessment of toxicity.

  2. Estrogen receptor alpha as a key target of red wine polyphenols action on the endothelium.

    Directory of Open Access Journals (Sweden)

    Matthieu Chalopin

    Full Text Available BACKGROUND: A greater reduction in cardiovascular risk and vascular protection associated with diet rich in polyphenols are generally accepted; however, the molecular targets for polyphenols effects remain unknown. Meanwhile evidences in the literature have enlightened, not only structural similarities between estrogens and polyphenols known as phytoestrogens, but also in their vascular effects. We hypothesized that alpha isoform of estrogen receptor (ERalpha could be involved in the transduction of the vascular benefits of polyphenols. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used ERalpha deficient mice to show that endothelium-dependent vasorelaxation induced either by red wine polyphenol extract, Provinols, or delphinidin, an anthocyanin that possesses similar pharmacological profile, is mediated by ERalpha. Indeed, Provinols, delphinidin and ERalpha agonists, 17-beta-estradiol and PPT, are able to induce endothelial vasodilatation in aorta from ERalpha Wild-Type but not from Knock-Out mice, by activation of nitric oxide (NO pathway in endothelial cells. Besides, silencing the effects of ERalpha completely prevented the effects of Provinols and delphinidin to activate NO pathway (Src, ERK 1/2, eNOS, caveolin-1 leading to NO production. Furthermore, direct interaction between delphinidin and ERalpha activator site is demonstrated using both binding assay and docking. Most interestingly, the ability of short term oral administration of Provinols to decrease response to serotonin and to enhance sensitivity of the endothelium-dependent relaxation to acetylcholine, associated with concomitant increased NO production and decreased superoxide anions, was completely blunted in ERalpha deficient mice. CONCLUSIONS/SIGNIFICANCE: This study provides evidence that red wine polyphenols, especially delphinidin, exert their endothelial benefits via ERalpha activation. It is a major breakthrough bringing new insights of the potential therapeutic of

  3. Involvement of ET-1 in diabetic cardiomyopathy, vascular abnormality and nepropathy which are regressed by a novel endothelin receptor antagonist Dajisentan.

    Institute of Scientific and Technical Information of China (English)

    De-zaiDAI; MinJI

    2004-01-01

    AIM: An impaired endothelium contributes to diabetic cardiomyopathy (CMP), vascular pathy (VSP) and nephropathy (NPP) in diabetes. It is hypothesized that these disorders which are the consequence to damaged endothelium could be recovered by Dajisentan, a novel dual endothelin receptor antagonist, developed by us as an investigated new drug. METHODS: Rat diabetes model was developed by ip streptozotocin and the

  4. Abacavir induces platelet-endothelium interactions by interfering with purinergic signalling: A step from inflammation to thrombosis.

    Science.gov (United States)

    Alvarez, Angeles; Rios-Navarro, Cesar; Blanch-Ruiz, Maria Amparo; Collado-Diaz, Victor; Andujar, Isabel; Martinez-Cuesta, Maria Angeles; Orden, Samuel; Esplugues, Juan V

    2017-03-02

    The controversy connecting Abacavir (ABC) with cardiovascular disease has been fuelled by the lack of a credible mechanism of action. ABC shares structural similarities with endogenous purines, signalling molecules capable of triggering prothrombotic/proinflammatory programmes. Platelets are leading actors in the process of thrombosis. Our study addresses the effects of ABC on interactions between platelets and other vascular cells, while exploring the adhesion molecules implicated and the potential interference with the purinergic signalling pathway. The effects of ABC on platelet aggregation and platelet-endothelium interactions were evaluated, respectively, with an aggregometer and a flow chamber system that reproduced conditions in vivo. The role of adhesion molecules and purinergic receptors in endothelial and platelet populations was assessed by selective pre-incubation with specific antagonists and antibodies. ABC and carbovir triphosphate (CBT) levels were evaluated by HPLC. The results showed that ABC promoted the adherence of platelets to endothelial cells, a crucial step for the formation of thrombi. This was not a consequence of a direct effect of ABC on platelets, but resulted from activation of the endothelium via purinergic ATP-P2X7 receptors, which subsequently triggered an interplay between P-selectin and ICAM-1 on endothelial cells with constitutively expressed GPIIb/IIIa and GPIbα on platelets. ABC did not induce platelet activation (P-selectin expression or Ca(2+) mobilization) or aggregation, even at high concentrations. CBT levels in endothelial cells were lower than those required to induce platelet-endothelium interactions. Thus, ABC interference with endothelial purinergic signalling leads to platelet recruitment. This highlights the endothelium as the main cell target of ABC, which is in line with previous experimental evidence that ABC induces manifestations of vascular inflammation.

  5. Coronary arterial complications after percutaneous coronary intervention in Behçet’s disease

    Directory of Open Access Journals (Sweden)

    Kinoshita T

    2013-02-01

    Full Text Available Toshio Kinoshita,1 Shinichiro Fujimoto,1 Yukio Ishikawa,2 Hitomi Yuzawa,1 Shunji Fukunaga,1 Mikihito Toda,3 Kenji Wagatsuma,3 Yoshikiyo Akasaka,2 Toshiharu Ishii,2 Takanori Ikeda11Department of Cardiovascular Medicine, 2Department of Pathology, 3Division of Interventional Cardiology, Toho University Faculty of Medicine, Ohta City, Tokyo, JapanAbstract: Behçet’s disease is a multisystemic vascular inflammatory disease, but concurrent cardiac diseases, such as acute myocardial infarction, are rare. Several complications may arise after coronary intervention for coronary lesions that interfere with treatment, and the incidence of coronary arterial complications due to invasive therapy remains unclear. Further, the long-term outcomes in patients with Behçet’s disease after stenting for acute myocardial infarction have not been described. The present report describes a 35-year-old Japanese man with Behçet’s disease who developed acute myocardial infarction. A coronary aneurysm developed at the stenting site of the left anterior descending coronary artery, along with stenosis in the left anterior descending segment proximal to the site. Although invasive therapy was considered, medication including immunosuppressants was selected because of the high risk of vascular complications after invasive therapy. The coronary artery disease has remained asymptomatic for the 4 years since the patient started medication. This case underscores the importance of considering the incidence of coronary arterial complications and of conservative treatment when possible.Keywords: Behçet’s disease, myocardial infarction, coronary arterial complications, percutaneous coronary intervention, immunosuppressants

  6. Asymmetrical dimethylarginine plasma concentrations are related to basal nitric oxide release but not endothelium-dependent vasodilation of resistance arteries in peritoneal dialysis patients.

    Science.gov (United States)

    Mittermayer, Friedrich; Schaller, Georg; Pleiner, Johannes; Vychytil, Andreas; Sunder-Plassmann, Gere; Hörl, Walter H; Wolzt, Michael

    2005-06-01

    Vascular dysfunction in chronic renal failure may be linked to reduced nitric oxide (NO) bioactivity and increased circulating concentrations of the endogenous NO synthase inhibitor asymmetrical dimethyl L-arginine (ADMA). The association between ADMA and basal endothelial NO release and endothelium-dependent vasodilation in resistance arteries of chronic renal failure patients is unknown. Forearm blood flow responses to the endothelium-dependent vasodilator acetylcholine, the endothelium-independent vasodilator nitroglycerine, and the endothelium-dependent vasoconstrictor N(G)-monomethyl-L-arginine (L-NMMA) were assessed in 37 peritoneal dialysis patients. L-arginine and ADMA plasma concentrations were measured by HPLC. ADMA (mean +/- SEM: 0.68 +/- 0.02 micromol/L) was associated with basal forearm blood flow (r = -0.33; P < 0.05) and L-NMMA induced vasoconstriction (r = -0.55; P < 0.0005), but not with dilator effects of acetylcholine or nitroglycerine. L-arginine (68 +/- 3 micromol/L) tended to correlate with acetylcholine-induced vasodilation (r = 0.32; P = 0.05) but was not associated with other parameters. ADMA is related to basal but not to acetylcholine-stimulated NO bioactivity in patients on peritoneal dialysis. Impaired endothelium-dependent vasodilation found in chronic renal failure is not explained by elevated circulating NO synthase inhibitors in renal failure.

  7. Role of nitric oxide in coronary vasomotion during handgrip exercise.

    Science.gov (United States)

    Nishikawa, Y; Kanki, H; Ogawa, S

    1997-11-01

    Endothelium-dependent modulation of coronary vasomotion during increased sympathetic tone remains unclear in normal and atherosclerotic human coronory arteries. We evaluated the role of endothelium-derived nitric oxide in vasomotion during isometric exercise in normal subjects (n = 7) and in patients with coronary artery disease (CAD) (n = 10). Coronary blood flow and epicardial coronary artery diameter to the handgrip test were measured before and after intracoronary administration of 100 micromol/min of N(G)-monomethyl L-arginine (L-NMMA). Heart rate and aortic blood pressure increased during handgrip test. Handgrip test caused a significant dilation in the diameter of the epicardial coronary artery in normal subjects (9.9% +/- 3.9%, mean +/- SD) and in the diameter of smooth segments of patients with CAD (5% +/- 3.7%, p < 0.05 vs normal subjects). In contrast, the diameter of irregular segments in patients with CAD decreased during handgrip test (-9.8 +/- 3.9%). After L-NMMA, the epicardial coronary artery significantly increased during handgrip test compared with before L-NMMA in normal subjects. L-NMMA did not have any effect on handgrip test induced vasodilation in the smooth segments and vasoconstriction in the irregular segments in the patients with CAD. Handgrip test-induced increases in coronary blood flow did not change after L-NMMA in both groups. Nitric oxide does not play a major role in HNG-induced vasodilation in epicardial and microcirculatory vessels in normal human coronary circulation. Although the decreased release in nitric oxide may modulate the abnormal response of the epicardial coronary artery to handgrip test, this does not explain the paradoxic constrictive response from the depressed but still dilatory response in the patients with CAD.

  8. 大电导钙离子激活钾通道对糖尿病大鼠冠状动脉血管张力的调节%Regulation of vascular tension in diabetic coronary artery by large conductance Ca2+ -activated K+ channel in rats

    Institute of Scientific and Technical Information of China (English)

    王如兴; 李肖蓉; 羊镇宇; 李库林; 郑杰; 张常莹; 郭素峡; 孙莉萍; 陆彤

    2010-01-01

    Objective To investigate the regulation in vascular tension of diabetic coronary artery by large conductance Ca2+ -activated K + channel ( BK channel) and to elucidate the mechanisms of coronary dysfunctions due to diabetes. Methods Regulation of vascular tension in normal coronary artery was evaluated by videomicroscopy system. Streptozotocin-induced rat diabetic animal model was established successfully by intraperitoneal injection. Coronary smooth muscle cells were isolated by enzyme digestion.The BK currents in control and diabetic groups were recorded by patch clamp technique in whole cell configuration. Changes of vascular tension in normal and diabetic coronary arteries were assayed by multiwire myograph system. Results More than 50% was contracted in inner diameters of coronary arteries when 100 nmol/L IBTX, a specific BK channel blocker, was applied. In comparison with normal group, the BK current densities in diabetic group significantly decreased when test potentials were more than 60 mV (P <0.05). The BK current densities at 150 mV in normal group and diabetic group were (275 ±40) pA/pF and (70 ± 10) pA/pF respectively. When 100 mmol/L KCI was washed out, vascular tensions of normal and diabetic coronary artery were (398 ± 38 ) mg and ( 390 ± 35 ) mg respectively ( P > 0. 05 ); however,when 100 nmol/L IBTX was added, the vascular tensions of normal and diabetic coronary artery were (395 ± 40 )mg and (50 ± 7) mg( P < 0. 05 ). Conclusion BK channels play an important role in the regulation of coronary vascular tension, whereas BK channels in diabetic coronary artery are dysfunction, BK currents decrease and vascular tensions increase.%目的 探讨大电导钙离子激活钾通道(BK通道)对糖尿病冠状动脉血管张力调节作用,阐明糖尿病冠状动脉血管损伤的机制.方法 采用电视显微系统测定BK通道对正常冠状动脉血管调节作用;采用链脲霉素腹腔内注射建立大鼠糖尿病动物模型,酶消

  9. Vascular Diseases

    Science.gov (United States)

    The vascular system is the body's network of blood vessels. It includes the arteries, veins and capillaries that carry ... to and from the heart. Problems of the vascular system are common and can be serious. Arteries ...

  10. Integrins mediate mechanical compression-induced endothelium-dependent vasodilation through endothelial nitric oxide pathway.

    Science.gov (United States)

    Lu, Xiao; Kassab, Ghassan S

    2015-09-01

    Cardiac and skeletal muscle contraction lead to compression of intramuscular arterioles, which, in turn, leads to their vasodilation (a process that may enhance blood flow during muscle activity). Although endothelium-derived nitric oxide (NO) has been implicated in compression-induced vasodilation, the mechanism whereby arterial compression elicits NO production is unclear. We cannulated isolated swine (n = 39) myocardial (n = 69) and skeletal muscle (n = 60) arteriole segments and exposed them to cyclic transmural pressure generated by either intraluminal or extraluminal pressure pulses to simulate compression in contracting muscle. We found that the vasodilation elicited by internal or external pressure pulses was equivalent; moreover, vasodilation in response to pressure depended on changes in arteriole diameter. Agonist-induced endothelium-dependent and -independent vasodilation was used to verify endothelial and vascular smooth muscle cell viability. Vasodilation in response to cyclic changes in transmural pressure was smaller than that elicited by pharmacological activation of the NO signaling pathway. It was attenuated by inhibition of NO synthase and by mechanical removal of the endothelium. Stemming from previous observations that endothelial integrin is implicated in vasodilation in response to shear stress, we found that function-blocking integrin α5β1 or αvβ3 antibodies attenuated cyclic compression-induced vasodilation and NOx (NO(-)2 and NO(-)3) production, as did an RGD peptide that competitively inhibits ligand binding to some integrins. We therefore conclude that integrin plays a role in cyclic compression-induced endothelial NO production and thereby in the vasodilation of small arteries during cyclic transmural pressure loading.

  11. Effect of simvastatin on endothelium-dependent vasorelaxation and endogenous nitric oxide synthase inhibitor

    Institute of Scientific and Technical Information of China (English)

    Jun-lin JIANG; De-jian JIANG; Yu-hai TANG; Nian-sheng LI; Han-wu DENG; Yuan-jian LI

    2004-01-01

    AIM: To investigate the effect of simvastatin on endothelium-dependent vasorelaxation and endogenous nitric oxide synthesis inhibitor asymmetric dimethylarginine (ADMA) in rats and cultured ECV304 cells. METHODS: Endothelial injury was induced by a single injection of low density lipoprotein (LDL) (4 mg/kg, 48 h) in rats or incubation with LDL (300 mg/L) or oxidative-modified LDL (100 mg/L) in cultured ECV304 cells, and vasodilator responses to acetylcholine (ACh) in the aortic rings and the level of ADMA, nitrite/nitrate (NO) and tumor necrosis factoralpha (TNF-α) in the serum or cultured medium were determined. And the adhesion of the monocytes to endothelial cells and the activity of dimethylarginine dimethylaminohydrolase (DDAH) in the cultured ECV304 cells were measured. RESULTS: A single injection of LDL decreased endothelium-dependent relaxation to ACh, markedly increased the serum level of endogenous ADMA and TNF-α, and reduced serum level of NO. Pretreatment with simvastatin (30 or 60 mg/kg) markedly attenuated inhibition of vasodilator responses to ACh, the increased level of TNF-α and the decreased level of NO by LDL, but no effect on serum concentration of endogenous ADMA. In cultured ECV304 cells, LDL or ox-LDL markedly increased the level of ADMA and TNF-α and potentiated the adhesion of monocytes to endothelial cells, concomitantly with a significantly decrease in the activity of DDAH and serum level of NO. Pretreatment with simvastatin (0.1, 0.5, or 2.5 μmol/L) markedly decreased the level of TNFo and the adhesion of monocytes to endothelial cells, but did not affect the concentration of endogenous ADMA and the activity of DDAH. CONCLUSION: Simvastatin protect the vascular endothelium against the damages induced by LDL or ox-LDL in rats or cultured ECV304 cells, and the beneficial effects of simvastatin may be related to the reduction of inflammatory cytokine TNF-o level.

  12. Endothelium-Dependent Contractions: Prostacyclin and Endothelin-1, Partners in Crime?

    Science.gov (United States)

    Baretella, O; Vanhoutte, P M

    2016-01-01

    Both the lipid prostacyclin and the peptide endothelin-1 are endothelium-derived substances. Endothelin-1 is one of the most powerful endogenous vasoconstrictors, while prostacyclin is a potent antiaggregatory and vasodilator mediator upon activation of prostaglandin I2 (IP) receptors. During endothelium-dependent, prostanoid-mediated contractions/constrictions, however, prostacyclin appears to be a major endothelium-derived contracting factor (EDCF). Such cyclooxygenase-dependent responses, whether measured ex vivo or in vivo, are exacerbated by aging, obesity, diabetes, or hypertension. On the background of such cardiovascular risk factors, endothelin-1 may potentiate these contractions by promoting prostacyclin production. The latter is reduced by endothelin-A (ETA) receptor antagonists. This receptor subtype is recognized for mediating contractions of smooth muscle cells to endothelin-1. However, it is present also on endothelial cells, where its activation increases intracellular calcium concentration with subsequent initiation of phospholipase A2 that provides arachidonic acid for metabolism by cyclooxygenases. Thus, endothelin-1 favors cyclooxygenase-dependent vasoconstrictor prostanoid formation, including prostacyclin. Activation of endothelial endothelin-B (ETB) receptors promotes the release of nitric oxide, which opposes both EDCF and endothelin-1. This is less pronounced in disease promoting ETA- and smooth muscle ETB receptor-dependent as well as prostanoid-mediated contractions. In addition, the thromboxane prostanoid (TP) receptors on vascular smooth muscle cells become hyperresponsive to EDCF under pathophysiological conditions, while IP receptor responsiveness diminishes. A better understanding of the interaction between prostacyclin and endothelin-1 and the determination of the roles of the TP and IP receptors involved in prostanoid-mediated contractions in health and during disease will help to define advanced pharmacological strategies for the

  13. The effect of mepivacaine on swine lingual, pulmonary and coronary arteries

    OpenAIRE

    Satoh, Kenichi; Chikuda, Mami; Ohashi, Ayako; Kumagai, Miho; Sato, Masahito; Joh, Shigeharu

    2015-01-01

    Background Although mepivacaine has a known biphasic action on the aortic and coronary artery in several animal species, its effects on the lingual and pulmonary artery are not well understood and it is not yet known whether mepivacaine produces vasoconstriction in these vessels. The present study aims to investigate the direct effects of mepivacaine on swine lingual, pulmonary and coronary arterial endothelium-denuded rings. Methods Artery rings were perfused with isotonic 40 mM KCl until a ...

  14. Vascular Vertigo

    OpenAIRE

    Mazyar Hashemilar; Masoud Nikanfar; Dariush Savadi Oskoui

    2017-01-01

    Vertigo is a common complaint in neurology and medicine. The most common causes of vertigo are benign paroxysmal positional vertigo, vestibular neuritis, Meniere’s disease, and vascular disorders. Vertigo of vascular origin is usually limited to migraine, transient ischemic attacks, and ischemic or hemorrhagic stroke. Vascular causes lead to various central or peripheral vestibular syndromes with vertigo. This review provides an overview of epidemiology and clinical syndromes of vascular vert...

  15. Vascular dysfunction in preeclampsia.

    Science.gov (United States)

    Brennan, Lesley J; Morton, Jude S; Davidge, Sandra T

    2014-01-01

    Preeclampsia is a complex disorder which affects an estimated 5% of all pregnancies worldwide. It is diagnosed by hypertension in the presence of proteinuria after the 20th week of pregnancy and is a prominent cause of maternal morbidity and mortality. As delivery is currently the only known treatment, preeclampsia is also a leading cause of preterm delivery. Preeclampsia is associated with maternal vascular dysfunction, leading to serious cardiovascular risk both during and following pregnancy. Endothelial dysfunction, resulting in increased peripheral resistance, is an integral part of the maternal syndrome. While the cause of preeclampsia remains unknown, placental ischemia resulting from aberrant placentation is a fundamental characteristic of the disorder. Poor placentation is believed to stimulate the release of a number of factors including pro- and antiangiogenic factors and inflammatory activators into the maternal systemic circulation. These factors are critical mediators of vascular function and impact the endothelium in distinctive ways, including enhanced endothelial oxidative stress. The mechanisms of action and the consequences on the maternal vasculature will be discussed in this review.

  16. Partial deletion of eNOS gene causes hyperinsulinemic state, unbalance of cardiac insulin signaling pathways and coronary dysfunction independently of high fat diet.

    Directory of Open Access Journals (Sweden)

    Cecilia Vecoli

    Full Text Available Abnormalities in eNOS gene, possibly interacting with high fat diet (HFD, affect peripheral vascular function and glucose metabolism. The relative role of eNOS gene, HFD and metabolic derangement on coronary function has not been fully elucidated. We test whether eNOS gene deficiency per se or in association with HFD modulates coronary function through mechanisms involving molecular pathways related to insulin signaling. Wild type (WT, eNOS-/- and eNOS+/- mice were studied. WT and eNOS+/- mice were fed with either standard or HF diet for 16 weeks and compared with standard diet fed eNOS-/-. Glucose and insulin tolerance tests were performed during the last week of diet. Coronary resistance (CR was measured at baseline and during infusions of acetylcholine (Ach or sodium-nitroprusside (SNP to evaluate endothelium-dependent or independent vasodilation, in the Langendorff isolated hearts. Cardiac expression of Akt and ERK genes as evaluation of two major insulin-regulated signaling pathways involved in the control of vascular tone were assessed by western blot. HFD-fed mice developed an overt diabetic state. Conversely, chow-fed genetically modified mice (in particular eNOS-/- showed a metabolic pattern characterized by normoglycemia and hyperinsulinemia with a limited degree of insulin resistance. CR was significantly higher in animals with eNOS gene deletions than in WT, independently of diet. Percent decrease in CR, during Ach infusion, was significantly lower in both eNOS-/- and eNOS+/- mice than in WT, independently of diet. SNP reduced CR in all groups except eNOS-/-. The cardiac ERK1-2/Akt ratio, increased in animals with eNOS gene deletions compared with WT, independently of diet. These results suggest that the eNOS genetic deficiency, associated or not with HFD, has a relevant effect on coronary vascular function, possibly mediated by increase in blood insulin levels and unbalance in insulin-dependent signaling in coronary vessels

  17. Identification of gene variants related to the nitric oxide pathway in patients with acute coronary syndrome.

    Science.gov (United States)

    Umman, B; Cakmakoglu, B; Cincin, Z B; Kocaaga, M; Emet, S; Tamer, S; Gokkusu, C

    2015-12-10

    Dysfunction of vascular endothelium is known to have an essential role in the atherosclerotic process by releasing mediators including nitric oxide (NO). Nitric oxide maintains endothelial balance by controlling cellular processes of vascular smooth muscle cells. Evidence suggests that variations in the NO pathway could include atherosclerotic events. The objective of this study was to determine the possible effects of genes on the nitric oxide pathway in the development of acute coronary syndrome (ACS). The blood samples of 100 patients with ACS and 100 controls were collected at Istanbul University, Department of Cardiology. DNA samples were genotyped by using Illumina Cyto-SNP-12 BeadChip. The additive model and Correlation/Trend Test were selected for association analysis. Afterwards, a Q-Q graphic was drawn to compare expected and obtained values. A Manhattan plot was produced to display p-values that were generated by -log10(P) function for each SNP. The p-values under 1×10(-4) were selected as statistically significant SNPs while p-values under 5×10(-2) were considered as suspicious biomarker candidates. Nitric oxide pathway analysis was then used to find the single nucleotide polymorphisms (SNPs) related to ACS. As a result, death-associated protein kinase 3 (DAPK) (rs10426955) was found to be most statistically significant SNP. The most suspicious biomarker candidates associated with the nitric oxide pathway analysis were vascular endothelial growth factor A (VEGFA), methionine sulfoxide reductase A (MSRA), nitric oxide synthase 1 (NOS1), and GTP cyclohydrolase I (GCH-1). Further studies with large sample groups are necessary to clarify the exact role of nitric oxide in the development of disease.

  18. Cardioplegia cristalóide, barotrauma e função endotelial: considerações experimentais Crystalloid cardioplegia, barotrauma and endothelium function: experimental considerations

    Directory of Open Access Journals (Sweden)

    Paulo Roberto B Évora

    1996-06-01

    effect the endothelium function of epicardic canine coronary arteries. These experiments did not show any alterations at level of receptors (dose-response curves to ACH and ADP; signal transduction/G-proteins (dose-response curve to sodium fluoride; intracellular mechanisms of the EDRF/NO release (dose-response curves to phospholipase C and calcium ionophores A23187. The smooth muscular relaxant function (dose-response curves to sodium nitroprusside and isoproterenol and contarctions (doseresponse curves to KCI and PGF2alpha were also preserved. These experimental observations allow the following speculative considerations: a Should barotrauma be a phenomenon present only in damaged coronary circulation? b All infusion were performed in no more than two or three minutes. Is cardioplegia barotrauma a phenomenon time-dependente? c High levels of potassium could be associated with barotrauma, d Cardioplegia barotrauma is a fancy, at least in our experimental conditions? e Experiments in "organ chambers" study only epicardic arteries. Could barotrauma damage the microcirculation? f The canine coronary circulation is less affeccted by high pressure than human coronaries? These data are suggestive that crystalloid moderately hyperkalemic infusions at high pressures for two or three minutes, do not impair the endothelium release of EDRF/NO of canine epicardic coronary arteries.

  19. Circulating and Vascular Bioactive Factors during Hypertension in Pregnancy.

    Science.gov (United States)

    Tanbe, Alain F; Khalil, Raouf A

    2010-03-01

    Normal pregnancy is associated with significant vascular remodeling in the uterine and systemic circulation in order to meet the metabolic demands of the mother and developing fetus. The pregnancy-associated vascular changes are largely due to alterations in the amount/activity of vascular mediators released from the endothelium, vascular smooth muscle and extracellular matrix. The endothelium releases vasodilator substances such as nitric oxide, prostacyclin and hyperpolarizing factor as well as vasoconstrictor factors such as endothelin, angiotensin II and thromboxane A(2). Vascular smooth muscle contraction is mediated by intracellular free Ca(2+) concentration ([Ca(2+)](i)), and [Ca(2+)](i) sensitization pathways such as protein kinase C, Rho-kinase and mitogen-activated protein kinase. Extracellular matrix and vascular remodeling are regulated by matrix metalloproteases. Hypertension in pregnancy and preeclampsia are major complications and life threatening conditions to both the mother and fetus, precipitated by various genetic, dietary and environmental factors. The initiating mechanism of preeclampsia and hypertension in pregnancy is unclear; however, most studies have implicated inadequate invasion of cytotrophoblasts into the uterine artery, leading to reduction in the uteroplacental perfusion pressure and placental ischemia/hypoxia. This placental hypoxic state is thought to induce the release of several circulating bioactive factors such as growth factor inhibitors, anti-angiogenic proteins, inflammatory cytokines, reactive oxygen species, hypoxia-inducible factors, and vascular receptor antibodies. Increases in the plasma levels and vascular content of these factors during pregnancy could cause an imbalance in the vascular mediators released from the endothelium, smooth muscle and extracellular matrix, and lead to severe vasoconstriction and hypertension. This review will discuss the interactions between the various circulating bioactive factors and

  20. Endothelium in the pharyngeal arches 3, 4 and 6 is derived from the second heart field.

    Science.gov (United States)

    Wang, Xia; Chen, Dongying; Chen, Kelley; Jubran, Ali; Ramirez, AnnJosette; Astrof, Sophie

    2017-01-15

    Oxygenated blood from the heart is directed into the systemic circulation through the aortic arch arteries (AAAs). The AAAs arise by remodeling of three symmetrical pairs of pharyngeal arch arteries (PAAs), which connect the heart with the paired dorsal aortae at mid-gestation. Aberrant PAA formation results in defects frequently observed in patients with lethal congenital heart disease. How the PAAs form in mammals is not understood. The work presented in this manuscript shows that the second heart field (SHF) is the major source of progenitors giving rise to the endothelium of the pharyngeal arches 3 - 6, while the endothelium in the pharyngeal arches 1 and 2 is derived from a different source. During the formation of the PAAs 3 - 6, endothelial progenitors in the SHF extend cellular processes toward the pharyngeal endoderm, migrate from the SHF and assemble into a uniform vascular plexus. This plexus then undergoes remodeling, whereby plexus endothelial cells coalesce into a large PAA in each pharyngeal arch. Taken together, our studies establish a platform for investigating cellular and molecular mechanisms regulating PAA formation and alterations that lead to disease.

  1. Vitamin D and the endothelium: basic, translational and clinical research updates

    Directory of Open Access Journals (Sweden)

    Rinkoo Dalan

    2014-09-01

    Results and conclusion: Vitamin D deficiency is associated with endothelial dysfunction and cardiovascular diseases. Vitamin D stabilizes the quiescent endothelium, modulates certain stages of endothelial activation, and is involved in the repair of the damaged endothelium in vitro and in vivo. Twelve recent cross sectional studies, including 2086 subjects of varying ethnic groups, show an association between endothelial dysfunction and vitamin D deficiency. Yet 10 recent RCTs of vitamin D supplementation involving 824 subjects have failed to show significant improvements in endothelial function in the short term. So far, RCTs have not been able to confirm or refute the benefit of vitamin D supplementation on vascular mortality. Longer term randomized controlled trials using doses of vitamin D to optimize serum 25(OHD concentrations to 20.0–40.0 ng/mL (50.0–100.0 nmol/L or using vitamin D analogues with no calciotropic effects are needed to assess endothelial function and cardiovascular outcomes.

  2. Jabuticaba-Induced Endothelium-Independent Vasodilating Effect on Isolated Arteries

    Directory of Open Access Journals (Sweden)

    Daniela Medeiros Lobo de Andrade

    2016-01-01

    Full Text Available Abstract Background: Despite the important biological effects of jabuticaba, its actions on the cardiovascular system have not been clarified. Objectives: To determine the effects of jabuticaba hydroalcoholic extract (JHE on vascular smooth muscle (VSM of isolated arteries. Methods: Endothelium-denuded aortic rings of rats were mounted in isolated organ bath to record isometric tension. The relaxant effect of JHE and the influence of K+ channels and Ca2+ intra- and extracellular sources on JHE-stimulated response were assessed. Results: Arteries pre-contracted with phenylephrine showed concentration-dependent relaxation (0.380 to 1.92 mg/mL. Treatment with K+ channel blockers (tetraethyl-ammonium, glibenclamide, 4-aminopyridine hindered relaxation due to JHE. In addition, phenylephrine-stimulated contraction was hindered by previous treatment with JHE. Inhibition of sarcoplasmic reticulum Ca2+ ATPase did not change relaxation due to JHE. In addition, JHE inhibited the contraction caused by Ca2+ influx stimulated by phenylephrine and KCl (75 mM. Conclusion: JHE induces endothelium-independent vasodilation. Activation of K+ channels and inhibition of Ca2+ influx through the membrane are involved in the JHE relaxant effect.

  3. Jabuticaba-Induced Endothelium-Independent Vasodilating Effect on Isolated Arteries

    Science.gov (United States)

    de Andrade, Daniela Medeiros Lobo; Borges, Leonardo Luis; Torres, Ieda Maria Sapateiro; da Conceição, Edemilson Cardoso; Rocha, Matheus Lavorenti

    2016-01-01

    Background: Despite the important biological effects of jabuticaba, its actions on the cardiovascular system have not been clarified. Objectives: To determine the effects of jabuticaba hydroalcoholic extract (JHE) on vascular smooth muscle (VSM) of isolated arteries. Methods: Endothelium-denuded aortic rings of rats were mounted in isolated organ bath to record isometric tension. The relaxant effect of JHE and the influence of K+ channels and Ca2+ intra- and extracellular sources on JHE-stimulated response were assessed. Results: Arteries pre-contracted with phenylephrine showed concentration-dependent relaxation (0.380 to 1.92 mg/mL). Treatment with K+ channel blockers (tetraethyl-ammonium, glibenclamide, 4-aminopyridine) hindered relaxation due to JHE. In addition, phenylephrine-stimulated contraction was hindered by previous treatment with JHE. Inhibition of sarcoplasmic reticulum Ca2+ ATPase did not change relaxation due to JHE. In addition, JHE inhibited the contraction caused by Ca2+ influx stimulated by phenylephrine and KCl (75 mM). Conclusion: JHE induces endothelium-independent vasodilation. Activation of K+ channels and inhibition of Ca2+ influx through the membrane are involved in the JHE relaxant effect. PMID:27533258

  4. Endothelium-dependent and -independent relaxation of rat aorta induced by extract of Schizophyllum commune.

    Science.gov (United States)

    Chen, Haiyun; Li, Sujuan; Wang, Peng; Yan, Saimei; Hu, Lin; Pan, Xiaoxia; Yang, Cui; Leung, George Pakheng

    2014-09-25

    Schizophyllum commune (SC) is widely consumed by Chinese, especially in southern part of China. The aim of the present study was to assess the extract of SC on vascular tone and the mechanisms involved. Experiments were performed on aorta of 18-week-old male Sprague-Dawley rats. Dried SC was extracted with 50% ethanol, 90% ethanol and deionized water, respectively. The effects of SC on the isometric tension of rat aortic rings were measured. Protein expression for the endothelial nitric oxide synthase (eNOS) was also determined in the primarily cultured rat aortic arterial endothelial cells (RAECs). The results showed that the water extract of SC induced a marked relaxation in aortic rings with or without endothelium. After the pretreatments of N(ω)-nitro-l-arginine methyl ester, indomethacin, RP-cAMP, and methylene blue, the SC-induced relaxation was significantly decreased. In addition, the contraction due to Ca(2+) influx and intracellular Ca(2+) release was also inhibited by SC. Furthermore, expression of the eNOS protein was significantly elevated in RAECs after treatment of SC. In conclusion, the water extract of SC induces an endothelium-dependent and -independent relaxation in rat aorta. The relaxing effect of SC involves the modulation of NO-cGMP-dependent pathways, PGI2-cAMP-depedent pathways, Ca(2+) influx though calcium channels and intracellular Ca(2+) release. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Mouse models and techniques for the isolation of the diabetic endothelium.

    Science.gov (United States)

    Darrow, April L; Maresh, J Gregory; Shohet, Ralph V

    2013-01-01

    Understanding the molecular mechanisms underlying diabetic endothelial dysfunction is necessary in order to improve the cardiovascular health of diabetic patients. Previously, we described an in vivo, murine model of insulin resistance induced by feeding a high-fat diet (HFD) whereby the endothelium may be isolated by fluorescence-activated cell sorting (FACS) based on Tie2-GFP expression and cell-surface staining. Here, we apply this model to two new strains of mice, ScN/Tie2-GFP and ApoE(-/-)/Tie2-GFP, and describe their metabolic responses and endothelial isolation. ScN/Tie2-GFP mice, which lack a functional toll-like receptor 4 (TLR4), display lower fasting glucose and insulin levels and improved glucose tolerance compared to Tie2-GFP mice, suggesting that TLR4 deficiency decreases susceptibility to the development of insulin resistance. ApoE(-/-)/Tie2-GFP mice display elevated glucose and cholesterol levels versus Tie2-GFP mice. Endothelial isolation by FACS achieves a pure population of endothelial cells that retain GFP fluorescence and endothelial functions. Transcriptional analysis of the aortic and muscle endothelium isolated from ApoE(-/-)/Tie2-GFP mice reveals a reduced endothelial response to HFD compared to Tie2-GFP mice, perhaps resulting from preexisting endothelial dysfunction in the hypercholesterolemic state. These mouse models and endothelial isolation techniques are valuable for assessing diabetic endothelial dysfunction and vascular responses in vivo.

  6. Experimental Benefits of Sex Hormones on Vascular Function and the Outcome of Hormone Therapy in Cardiovascular Disease

    OpenAIRE

    Ross, Reagan L.; Serock, Michelle R; Khalil, Raouf A.

    2008-01-01

    Cardiovascular disease (CVD) is more common in men and postmenopausal women than premenopausal women, suggesting vascular benefits of female sex hormones. Experimental data have shown beneficial vascular effects of estrogen including stimulation of endothelium-dependent nitric oxide, prostacyclin and hyperpolarizing factor-mediated vascular relaxation. However, the experimental evidence did not translate into vascular benefits of hormone replacement therapy (HRT) in postmenopausal women, and ...

  7. The Development of Robotic Technology in Cardiac and Vascular Interventions

    National Research Council Canada - National Science Library

    Ali Pourdjabbar; Lawrence Ang; Ryan R. Reeves; Mitul P. Patel; Ehtisham Mahmud

    2017-01-01

    Robotic technology has been used in cardiovascular medicine for over a decade, and over that period its use has been expanded to interventional cardiology and percutaneous coronary and peripheral vascular interventions...

  8. [Morphofunctional correlation in congenital anomalies of the coronary arteries. I. Coronary artery fistulas].

    Science.gov (United States)

    Rangel-Abundis, A; Muñoz-Castellanos, L; Marín, G; Chávez Pérez, E; Badui, E

    1994-01-01

    In order to explain the congenital coronary arteries malformations, the authors review the recent concepts on the coronary artery morphogenesis, based in the findings that in the human embryo, these arteries evolve from three sources: 1) endothelial aortic buds, 2) cavitary cellular groups from pericardial origin and with angiogenic character, which migrate to the cardiac zones where the coronary arteries will be distributed, and 3) the intramyocardial sinusoids. The anatomic and histologic cardiac alterations will be reflected in modifications of the coronary artery pattern. The coronary artery fistulae are formed by the persistence of the sponge structure of the myocardial wall, present in the early ontogenic steps of the cardiac development; such fistulae alter the normal functions of the coronary vascular tree and are capable to cause angina pectoris to the patient through diverse mechanisms: absence of capillarization, steal phenomenon aggravated by the altered coronary arteries properties when aneurysm or vascular channels are developed. The authors suggest a classification of the congenital coronary arteries anomalies: I. Anomalous origin in the sinus of Valsalva (anomalous and ectopic origin), II. Malformations of the coronary branches (in number, distribution and wall anomalies) and III. Anomalous connection of the coronary arteries: fistulae and persistence of the intramyocardial sinusoids isolated or communicated to left and right ventricles. The latter are frequently associated with aortic or pulmonary valve atresia. They do not cause myocardial ischemia and are formed secondary to the intracavitary elevated pressure which maintained the persistence, dilatation and communication of the ventricular chambers with such sinusoids and coronary arteries in the case of pulmonary valve atresia and with coronary veins in the case of aortic valve atresia.

  9. Effects of a Single Bout of Resistance Exercise in Different Volumes on Endothelium Adaptations in Healthy Animals

    Directory of Open Access Journals (Sweden)

    Marcelo Mendonça Mota

    Full Text Available Abstract Background: Resistance exercise (RE has been recommended for patients with cardiovascular diseases. Recently, a few studies have demonstrated that the intensity of a single bout of RE has an effect on endothelial adaptations to exercise. However, there is no data about the effects of different volumes of RE on endothelium function. Objective: The aim of the study was to evaluate the effects of different volumes of RE in a single bout on endothelium-dependent vasodilatation and nitric oxide (NO synthesis in the mesenteric artery of healthy animals. Methods: Male Wistar rats were divided into three groups: Control (Ct; low-volume RE (LV, 5 sets x 10 repetitions and high-volume RE (HV, 15 sets x 10 repetitions. The established intensity was 70% of the maximal repetition test. After the exercise protocol, rings of mesenteric artery were used for assessment of vascular reactivity, and other mesenteric arteries were prepared for detection of measure NO production by DAF-FM fluorescence. Insulin responsiveness on NO synthesis was evaluated by stimulating the vascular rings with insulin (10 nM. Results: The maximal relaxation response to insulin increased in the HV group only as compared with the Ct group. Moreover, the inhibition of nitric oxide synthesis (L-NAME completely abolished the insulin-induced vasorelaxation in exercised rats. NO production showed a volume-dependent increase in the endothelial and smooth muscle layer. In endothelial layer, only Ct and LV groups showed a significant increase in NO synthesis when compared to their respective group under basal condition. On the other hand, in smooth muscle layer, NO fluorescence increased in all groups when compared to their respective group under basal condition. Conclusions: Our results suggest that a single bout of RE promotes vascular endothelium changes in a volume-dependent manner. The 15 sets x 10 repetitions exercise plan induced the greatest levels of NO synthesis.

  10. Changes of junctions of endothelial cells in coronary sclerosis:A review

    Institute of Scientific and Technical Information of China (English)

    Li-Zi Zhang; Sun Lei

    2016-01-01

    Atherosclerosis, the major cause of cardiovascular diseases, has been a leading contributor to morbidity and mortality in the United States and it has been on the rise globally. Endothelial cellecell junctions are critical for vascular integrity and maintenance of vascular function. Endothelial cell junctions dysfunction is the onset step of future coronary events and coronary artery dis-ease.

  11. Coronary artery fistula

    Science.gov (United States)

    Congenital heart defect - coronary artery fistula; Birth defect heart - coronary artery fistula ... A coronary artery fistula is often congenital, meaning that it is present at birth. It generally occurs when one of the coronary arteries ...

  12. Coronary-subclavian steal: presentation and management: two case reports.

    Science.gov (United States)

    Fergus, Todd; Pacanowski, John P; Fasseas, Panayotis; Nanjundappa, A; Habeeb Ahmed, M; Dieter, Robert S

    2007-01-01

    Subclavian stenosis is a highly prevalent and underrecognized clinical entity. In patients with a history of coronary artery bypass grafting utilizing a left internal mammary artery, subclavian artery stenosis can cause coronary-subclavian steal, leading to myocardial ischemia. Traditionally, this has been treated surgically with a vascular bypass operation. Two cases of coronary-subclavian steal syndrome are presented, 1 treated percutaneously with angioplasty and stent, and 1 treated with a combined endovascular-surgical procedure.

  13. Evaluation of circulating microRNA-92a for endothelial damage induced by percuatenous coronary intervention

    Institute of Scientific and Technical Information of China (English)

    王虹

    2013-01-01

    Objective To explore the role of microRNA-92a(miR-92a) in evaluating endothelium damage induced by percutaneous coronary intervention(PCI). Methods A case control study was prospectively conducted. Fifty-eight patients with ST-segment elevation acute myocardial

  14. Giant aneurysm of the left anterior descending coronary artery in a pediatric patient with Behcet's disease.

    Science.gov (United States)

    Cook, Amanda L; Rouster-Stevens, Kelly; Williams, Derek A; Hines, Michael H

    2010-07-01

    Behcet's disease is a rare autoimmune vasculitis characterized by oral aphthosis, genital ulcers, and ocular and cutaneous lesions. Vascular involvement usually affects the veins more commonly than the arteries, and coronary arterial involvement is extremely rare. We report an adolescent with Behcet's disease who developed a large pseudoaneurysm of the left anterior descending coronary artery requiring a coronary arterial bypass graft.

  15. Activation of TRPV1 by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension

    DEFF Research Database (Denmark)

    Yang, Dachun; Luo, Zhidan; Ma, Shuangtao

    2010-01-01

    enhances endothelium-dependent relaxation in wild-type mice, an effect absent in TRPV1-deficient mice. Long-term stimulation of TRPV1 can activate PKA, which contributes to increased eNOS phosphorylation, improves vasorelaxation, and lowers blood pressure in genetically hypertensive rats. We conclude......Some plant-based diets lower the cardiometabolic risks and prevalence of hypertension. New evidence implies a role for the transient receptor potential vanilloid 1 (TRPV1) cation channel in the pathogenesis of cardiometabolic diseases. Little is known about impact of chronic TRPV1 activation...... on the regulation of vascular function and blood pressure. Here we report that chronic TRPV1 activation by dietary capsaicin increases the phosphorylation of protein kinase A (PKA) and eNOS and thus production of nitric oxide (NO) in endothelial cells, which is calcium dependent. TRPV1 activation by capsaicin...

  16. Di-peptidyl peptidase-4 inhibitor sitagliptin protects vascular function in metabolic syndrome: possible role of epigenetic regulation.

    Science.gov (United States)

    Cicek, Figen Amber; Amber, Cicek Figen; Tokcaer-Keskin, Zeynep; Zeynep, Tokcaer-Keskin; Ozcinar, Evren; Evren, Ozcinar; Bozkus, Yosuf; Yusuf, Bozkus; Akcali, Kamil Can; Can, Akcali Kamil; Turan, Belma; Belma, Turan

    2014-08-01

    Metabolic syndrome (MetS) is a complex medical disorder characterized by insulin resistance, hypertension, and high risk of coronary disease and stroke. Microvascular rarefaction and endothelial dysfunction have also been linked with MetS, and recent evidence from clinical studies supports the efficacy of incretin-based antidiabetic therapies for vascular protection in diabetes. Previous studies pointed out the importance of dipeptidyl peptidase-4 (DPP-4) inhibition in endothelial cells due to getting protection against metabolic pathologies. We therefore aimed to investigate the acute effects of a DPP-4 inhibitor, sitagliptin, on vascular function in rats with high-sucrose diet-induced MetS. In order to elucidate the mechanisms implicated in the effects of DPP-4 inhibition, we tested the involvement of NO pathway and epigenetic regulation in the MetS. Acute use of sitagliptin protects the vascular function in the rats with MetS in part due to NO pathway via restoring the depressed aortic relaxation responses mediated by receptors. Application of sitagliptin enhanced the depressed phosphorylation levels of both the endothelial NO synthase and the apoptotic status of protein kinase B, known as Akt, in endothelium-intact thoracic aorta from rats with MetS. One-hour application of sitagliptin on aortic rings from rats with MetS also induced remarkable histon posttranslational modifications such as increased expression of H3K27Me3, but not of H3K27Me2, resulting in an accumulation of the H3K27Me3. Our findings suggest that, in addition to its well-known hypoglycemic action, sitagliptin may also have beneficial effects on hyperglycemia-induced vascular changes in an endotheium-dependent manner. These present results with sitagliptin aside from the glycaemic control, may demonstrate its important role in the treatment of patients with MetS.

  17. Gomisin A from Schisandra chinensis induces endothelium-dependent and direct relaxation in rat thoracic aorta.

    Science.gov (United States)

    Park, Ji Young; Lee, Seung Jin; Yun, Mi Ran; Seo, Kyo Won; Bae, Sun Sik; Park, June Woo; Lee, You Jin; Shin, Woo Jung; Choi, Young Whan; Kim, Chi Dae

    2007-12-01

    Schisandra chinensis (SC), a member of the Magnoliaceae family, has been used to improve the vascular health for postmenopausal women in Korea. In order to provide some scientific rationales for such effectiveness, this study investigated the vascular effects of gomisin A (GA) from SC. In the endothelium (ED)-intact rings of rat thoracic aorta, GA (1 x 10 (-6) to 3 x 10 (-4) M) caused a concentration-dependent relaxation which was markedly attenuated not only by removal of ED but also by pretreatment with N(G)-nitro- L-arginine (10 (-4) M) or 1 H-[1,2,4]oxadiazol[4,3- a]quinoxalin-1-one (3 x 10 (-5) M). Direct measurement of nitrite, a metabolite of nitric oxide (NO), confirmed that NO production in isolated aorta was increased by GA. In the ED-denuded specimens, the relaxation by GA was not abolished but reduced significantly. The relaxation by GA in ED-denuded aortic rings were clearly inhibited by calyculin A (3 x 10 (-8) M), an inhibitor of MLC phosphatase. Furthermore, the phenylephrine-enhanced phosphorylation ratio of MLC was significantly attenuated by GA. Based on these results, it is suggested that GA induced vascular relaxation by partially activating ED-dependent NO pathway, and partially dephosphorylation of MLC.

  18. Concentration is more important than dose when using intralesional Pingyangmycin injection for treatment of vascular malformations

    Institute of Scientific and Technical Information of China (English)

    周琴; 郑家伟; 杨秀娟; 王延安

    2010-01-01

    @@ Vascular anomalies represent a wide spectrum of pathology with different clinico-pathological characteristics.Approximately 60% of them occur in the head and neck region.A variety of therapeutic modalities have been reported to manage vascular anomalies over the years,including surgical resection,laser therapy and sclerotherapy,etc.Bleomycin has been successfully used in intralesional injection treatment of cystic hydromas and haemangiomas,based specifically on a high sclerosing effect on vascular endothelium[1].

  19. Placental growth factor and vascular endothelial growth factor receptor-2 in human lung development.

    Science.gov (United States)

    Janér, Joakim; Andersson, Sture; Haglund, Caj; Karikoski, Riitta; Lassus, Patrik

    2008-08-01

    We examined the pulmonary expression of 2 proangiogenic factors, namely, placental growth factor and vascular endothelial growth factor receptor-2, during lung development and acute and chronic lung injury in newborn infants. Six groups were included in an immunohistochemical study of placental growth factor and vascular endothelial growth factor receptor-2, that is, 9 fetuses, 4 preterm and 8 term infants without lung injury who died soon after birth, 5 preterm infants with respiratory distress syndrome of 10 days, and 6 with bronchopulmonary dysplasia. Placental growth factor concentrations in tracheal aspirate fluid were measured in 70 samples from 20 preterm infants during the first postnatal week. In immunohistochemical analyses, placental growth factor staining was seen in bronchial epithelium and macrophages in all groups. Distal airway epithelium positivity was observed mostly in fetuses and in preterm infants who died soon after birth. Vascular endothelial growth factor receptor-2 staining was seen in vascular endothelium in all groups and also in lymphatic endothelium in fetuses. Vascular endothelial growth factor receptor-2 staining in arterial endothelium was associated with higher and staining in venous endothelium with lower gestational age. In capillaries, less vascular endothelial growth factor receptor-2 staining was seen in bronchopulmonary dysplasia. The mean placental growth factor protein concentration in tracheal aspirate fluid during the first postnatal week was 0.64 +/- 0.42 pg/mL per IgA-secretory component unit. Concentrations during the first postnatal week were stable. Lower placental growth factor concentrations correlated with chorioamnionitis and lactosyl ceramide positivity. The vascular endothelial growth factor receptor-2 staining pattern seems to reflect ongoing differentiation and activity of different endothelia. Lower vascular endothelial growth factor receptor-2 expression in capillary endothelium in bronchopulmonary dysplasia

  20. Regulation Effect of Vascular Endothelial Growth Factor on Human Fetal Choroid Vascularization

    Institute of Scientific and Technical Information of China (English)

    JinsongZhao; YiWang; 等

    2002-01-01

    Purpose:To investigate the spatial and temporal regulation effect of vascular endothelial growth factor(VEGF) on human fetal choroids vascularization.Methods:The eyeballs of 54 human fetuses from the 9th week to the 40th week due to accidental abortion were studied by immunohistochemically stainin for the expression of VEGF and proliferation cell nuclear antigen (PCNA).Results: (1)The distribution of VEGF expression in the retinal pigment epithelium (RPE) decreased with the incrase of age,the peak of which was between the 9th and 14th week.(2)PCNA immunoreactivity was localized within choriocapillaris endothelium .The expression level decreased alone with fetus age.In this period the choriocapillaris endothelium kept proliferation,differentiation,canalization and remodeled to form the choroids vessels(3)Statistically significant correlations were shown between the expression of VEGF in the PRE and that of PCNA in choriocapillaris endothelium(r=0.933,P<0.01).Couclusin:VEGF expression in PRE was positively involved in modulating human fetal choroids vascularization .Eye Science 2000;16:11-14.

  1. Regulation Effect of Vascular Endothelial Growth Factor on Human Fetal Choroid Vascularization

    Institute of Scientific and Technical Information of China (English)

    Jinsong Zhao; Yue Song; Yi Wang; Xiaoguang Zhang

    2000-01-01

    Purpose: To investigate the spatial and temporal regulation effect of vascular endothelial growth factor(VEGF) on human fetal choroid vascularization. Methods: The eyeballs of 54 human fetuses from the 9th week to the 40th week due to accidental abortion were studied by immunohistochemically staining for the expression of VEGF and proliferation cell nuclear antigen (PCNA). Results: (1) The distribution of VEGF expression in the retinal pigment epithelium (RPE) decreased with the increase of age, the peak of which was between the 9th and 14th week. (2) PCNA immunoreactivity was localized within choriocapillaris endothelium. The expression level decreased alone with fetus age. In this period the choriocapillaris endothelium kept proliferation, differentiation, canalization and remodelled to form the choroid vessels. (3)Statistically significant correlations were shown between the expression of VEGF in the PRE and that of PCNA in choriocapillaris endothelium(r =0. 933, P < 0. 01). Conclusion: VEGF expression in RPE was positively involved in modulating human fetal choroid vascularization. Eye Science 2000; 16:11 ~ 14.

  2. 冠心病患者血浆循环miR-126的表达及其对血管内皮细胞的影响%Plasma circulating miR-126 in patients with coronary artery heart disease and its effect on vascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    郑志伟; 劳海燕; 余细勇; 陈纪言; 林秋雄; 麦丽萍; 钟诗龙

    2011-01-01

    AIM: To investigate the role of plasma circulating miR - 126 and miR - 16 in the patients with coronary artery heart disease and to explore the influence of miR - 126 on vascular endothelial cells. METHODS: Plasma total RNA was isolated from 52 patients with stable coronary artery disease and 52 healthy volunteers. The circulating miR -126 and miR -16 in those people were detected using specific primers. Endothelial cell line EA. Hy926 was transfected with a miR - 126 inhibitor, and total RNA of the cells was isolated 30 h after transfection to detect the expression level of vascular endothelial growth factor ( VEGF ). RESULTS: The expression of plasma circulating miR - 126 was significantly decreased in the patients with coronary artery heart disease compared with healthy controls ( P 0. 05 ). The expression of VEGF in the endothelial cell line EA. Hy926 transfected with miR - 126 inhibitor was 2.08 times higher than that in negative control cells 30 h after transfection ( P 0.05);(2)内皮细胞株EA.hy926中miR-126被抑制后,血管内皮生长因子的表达为对照组的2.08倍(P<0.05).结论:血浆循环miR-126在冠心病患者表达下降,血浆循环miR-16在人群中的表达较稳定;miR-126通过负性调节血管内皮生长因子的表达,对血管内皮细胞产生调节作用.

  3. The Angio-Seal™ femoral closure device allows immediate ambulation after coronary angiography and percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Hvelplund, Anders; Jeger, Raban; Osterwalder, Remo;

    2011-01-01

    Aims: To test the safety of immediate mobilisation of patients undergoing coronary angiography and percutaneous coronary intervention (PCI) closed with Angio-Seal™ -a femoral vascular closure device. Methods and results: First, a randomised controlled trial of immediate mobilisation vs. delayed a...

  4. Cannabidiol causes endothelium-dependent vasorelaxation of human mesenteric arteries via CB1 activation.

    Science.gov (United States)

    Stanley, Christopher P; Hind, William H; Tufarelli, Cristina; O'Sullivan, Saoirse E

    2015-09-01

    The protective effects of cannabidiol (CBD) have been widely shown in preclinical models and have translated into medicines for the treatment of multiple sclerosis and epilepsy. However, the direct vascular effects of CBD in humans are unknown. Using wire myography, the vascular effects of CBD were assessed in human mesenteric arteries, and the mechanisms of action probed pharmacologically. CBD-induced intracellular signalling was characterized using human aortic endothelial cells (HAECs). CBD caused acute, non-recoverable vasorelaxation of human mesenteric arteries with an Rmax of ∼ 40%. This was inhibited by cannabinoid receptor 1 (CB1) receptor antagonists, desensitization of transient receptor potential channels using capsaicin, removal of the endothelium, and inhibition of potassium efflux. There was no role for cannabinoid receptor-2 (CB2) receptor, peroxisome proliferator activated receptor (PPAR)γ, the novel endothelial cannabinoid receptor (CBe), or cyclooxygenase. CBD-induced vasorelaxation was blunted in males, and in patients with type 2 diabetes or hypercholesterolemia. In HAECs, CBD significantly reduced phosphorylated JNK, NFκB, p70s6 K and STAT5, and significantly increased phosphorylated CREB, ERK1/2, and Akt levels. CBD also increased phosphorylated eNOS (ser1177), which was correlated with increased levels of ERK1/2 and Akt levels. CB1 receptor antagonism prevented the increase in eNOS phosphorylation. This study shows, for the first time, that CBD causes vasorelaxation of human mesenteric arteries via activation of CB1 and TRP channels, and is endothelium- and nitric oxide-dependent. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

  5. An in vitro method for evaluating vascular endothelial ADPase activity.

    Science.gov (United States)

    Caprino, L; Togna, A R; Stella, C; Togna, G

    1996-06-01

    Some xenobiotics, known to promote the development of thrombotic phenomena, affect vascular endothelium ADPase, a regulatory enzyme that inactivates vaso- and platelet-active adenine nucleotides. This proposed new experimental approach represents an improved method of evaluation of vascular endothelial ADPase activity which is assessed by measuring, at pre-established times, the degradation rate of exogenous ADP incubated with aortic bovine patches. The ADP dosage was performed by using a spectrophotometric enzymatic assay. Statistical analyses showed that the method is capable of highlighting the linearity of the ADPase activity time-course, thus indicating that the slopes of time-degradation curves of ADP are a valid index for this endothelial ectoenzyme activity. Results obtained with ADPase inhibiting or stimulating agent confirm that this in vitro method is an efficient tool for estimating the ability of xenobiotics or drugs to modify the nonthrombogenic properties of vascular endothelium.

  6. Vascular plugs - A key companion to Interventionists - 'Just Plug it'.

    Science.gov (United States)

    Ramakrishnan, Sivasubramanian

    2015-01-01

    Vascular plugs are ideally suited to close extra-cardiac, high flowing vascular communications. The family of vascular plugs has expanded. Vascular plugs in general have a lower profile and the newer variants can be delivered even through a diagnostic catheter. These features make them versatile and easy to use. The Amplatzer vascular plugs are also used for closing intracardiac defects including coronary arterio-venous fistula and paravalvular leakage in an off-label fashion. In this review, the features of currently available vascular plugs are reviewed along with tips and tricks of using them in the cardiac catheterization laboratory.

  7. Calcification of multipotent prostate tumor endothelium.

    Science.gov (United States)

    Dudley, Andrew C; Khan, Zia A; Shih, Shou-Ching; Kang, Soo-Young; Zwaans, Bernadette M M; Bischoff, Joyce; Klagsbrun, Michael

    2008-09-01

    Solid tumors require new blood vessels for growth and metastasis, yet the biology of tumor-specific endothelial cells is poorly understood. We have isolated tumor endothelial cells from mice that spontaneously develop prostate tumors. Clonal populations of tumor endothelial cells expressed hematopoietic and mesenchymal stem cell markers and differentiated to form cartilage- and bone-like tissues. Chondrogenic differentiation was accompanied by an upregulation of cartilage-specific col2a1 and sox9, whereas osteocalcin and the metastasis marker osteopontin were upregulated during osteogenic differentiation. In human and mouse prostate tumors, ectopic vascular calcification was predominately luminal and colocalized with the endothelial marker CD31. Thus, prostate tumor endothelial cells are atypically multipotent and can undergo a mesenchymal-like transition.

  8. Endothelium-Dependent Vasorelaxant Effect of Butanolic Fraction from Caryocar brasiliense Camb. Leaves in Rat Thoracic Aorta

    Directory of Open Access Journals (Sweden)

    Lais Moraes de Oliveira

    2012-01-01

    Full Text Available Caryocar brasiliense Camb. “pequi” is a native plant from the Cerrado region of Brazil that contains bioactive components reported to be antioxidant agents. Previous work has demonstrated that dietary supplementation with pequi decreased the arterial pressure of volunteer athletes. We found that the crude hydroalcoholic extract (CHE of C. brasiliense leaves relaxed, in a concentration-dependent manner, rat aortic rings precontracted with phenylephrine, and that the butanolic fraction (BF produced an effect similar to that of the CHE. Aortic relaxation induced by BF was abolished by endothelium removal, by incubation of the nitric oxide synthase inhibitor L-NAME, or the soluble guanylatecyclase inhibitor ODQ. However, incubation with atropine and pyrilamine had no effect on the BF-induced vasorelaxation. Moreover, this effect was not inhibited by indomethacin and tetraethylammonium. The concentration-response curve to calcium in denuded-endothelium rings was not modified after incubation with BF, and the vasorelaxation by BF in endothelium-intact rings precontracted with KCl was abolished after incubation with L-NAME. In addition, administration of BF in anesthetized rats resulted in a reversible hypotension. The results reveal that C. brasiliense possesses both in vivo and in vitro activities and that the vascular effect of BF involves stimulation of the nitric oxide/cyclic GMP pathway.

  9. Vascular endothelial dysfunction and pharmacological treatment

    Institute of Scientific and Technical Information of China (English)

    Jin; Bo; Su

    2015-01-01

    The endothelium exerts multiple actions involving regulation of vascular permeability and tone, coagulation and fibrinolysis, inflammatory and immunological reactions and cell growth. Alterations of one or more such actions may cause vascular endothelial dysfunction. Different risk factors such as hypercholesterolemia, homocystinemia, hyperglycemia, hypertension, smo-king, inflammation, and aging contribute to the development of endothelial dysfunction. Mechanisms underlying endothelial dysfunction are multiple, including impaired endothelium-derived vasodilators, enhanced endothelium-derived vasoconstrictors, over production of reactive oxygen species and reactive nitrogen species, activation of inflammatory and immune reactions, and imbalance of coagulation and fibrinolysis. Endothelial dysfunction occurs in many cardiovascular diseases, which involves different mechanisms, depending on specific risk factors affecting the disease. Among these mechanisms, a reduction in nitric oxide(NO) bioavailability plays a central role in the development of endothelial dysfunction because NO exerts diverse physiological actions, including vasodilation, anti-inflammation, antiplatelet, antiproliferation and antimigration. Experimental and clinical studies have demonstrated that a variety of currently used or investigational drugs, such as angiotensin-converting enzyme inhibitors, angiotensin AT1 receptors blockers, angiotensin-(1-7), antioxidants, beta-blockers, calcium channel blockers, endothelial NO synthase enhancers, phosphodiesterase 5 inhibitors, sphingosine-1-phosphate and statins, exert endothelial protective effects. Due to the difference in mechanisms of action, these drugs need to be used according to specific mechanisms underlying endothelial dysfunction of the disease.

  10. Inflammation in coronary artery diseases

    Institute of Scientific and Technical Information of China (English)

    LI Jian-jun

    2011-01-01

    The concept that atherosclerosis is an inflammation has been increasingly recognized,and subsequently resulted in great interest in revealing the inflammatory nature of the atherosclerotic process.More recently,a large body of evidence has supported the idea that inflammatory mechanisms play a pivotal role throughout all phases of atherogenesis,from endothelial dysfunction and the formation of fatty streaks to plaque destabilization and the acute coronary events due to vulnerable plaque rupture.Indeed,although triggers and pathways of inflammation are probably multiple and vary in different clinical entities of atherosclerotic disorders,an imbalance between anti-inflammatory mechanisms and pro-inflammatory factors will result in an atherosclerotic progression.Vascular endothelial dysfunction and lipoprotein retention into the arterial intima have been reported as the earliest events in atherogenesis with which inflammation is linked.Inflammatory has also been extended to the disorders of coronary microvasculature,and associated with special subsets of coronary artery disease such as silent myocardial ischemia,myocardial ischemia-reperfusion,cardiac syndrome X,variant angina,coronary artery ectasia,coronary calcification and in-stent restenosis.Inflammatory biomarkers,originally studied to better understand the pathophysiology of atherosclerosis,have generated increasing interest among researches and clinicians.The identification of inflammatory biomarkers and cellular/molecular pathways in atherosclerotic disease represent important goals in cardiovascular disease research,in particular with respect of the development of therapeutic strategies to prevent or reverse atherosclerotic diseases.

  11. Imbalance of Angiopoietin-1 and Angiopoetin-2 in Severe Dengue and Relationship with Thrombocytopenia, Endothelial Activation, and Vascular Stability

    NARCIS (Netherlands)

    Michels, M.; Ven, A.J.A.M. van der; Djamiatun, K.; Fijnheer, R.; Groot, P.G. de; Griffioen, A.W.; Sebastian, S.; Faradz, S.M.H.; Mast, Q. de

    2012-01-01

    Abstract. The pathogenesis of plasma leakage during dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) is largely unknown. Angiopoietins are key regulators of vascular integrity: Angiopoietin-1 is stored in platelets and maintains vascular integrity, and endothelium-derived angiopoietin-2 prom

  12. What Is Vascular Disease?

    Science.gov (United States)

    ... Donors Corporate Sponsors Donor Privacy Policy What Is Vascular Disease? What Is Vascular Disease? Vascular disease is any abnormal condition of ... steps to prevent vascular disease here. Understanding the Vascular System Your vascular system – the highways of the ...

  13. Effect of subchronic exposure to mainstream cigarette smoke on endothelium-dependent vasodilation in rat arteries

    Directory of Open Access Journals (Sweden)

    Helena Lenasi

    2005-07-01

    Full Text Available Background: Cigarette smoking is reported to impair endothelium-dependent vasodilation. The aim of the present study was to assess the effect of 30-day exposure to mainstream cigarette smoke on vascular reactivity of rat abdominal aorta, carotid, renal and mesenteric artery. Separately, the NO-mediated and the EDHF-mediated, endothelium-dependent vascular relaxations were determined.Methods: Two groups of »Whistar Kyoto« rats were exposed to mainstream cigarette smoke (2 hours/day, 5 days/week for 30 days and to fresh conditioned air, respectively. Rats were sacrificed on the second day after the last exposition to cigarette smoke. Vascular reactivity studies were performed on isolated, endothelium-intact, phenylephrine-preconstricted rat artery rings. Cumulative concentration-relaxation curves to acetylcholine (ACh were obtained in the absence and presence of the endothelial NO synthase (eNOS inhibitor N ω nitro L-arginine (L-NA and the cyclo-oxygenase (COX inhibitor diclofenac, respectively. After washing period of 1 hour, vessels were exposed either to the intracellular superoxide scavenger tiron, to the cytochrome P450 (CYP inhibitor miconazole or the Na-K-ATPase inhibitor ouabain before being preconstricted with phenylephrine and determining the concentration-response curve to ACh.Results: ACh induced concentration-dependent relaxations. In none of the vessels investigated did we observe a significant difference in the relaxations obtained in arteries from control rats and rats exposed to cigarettee smoke. Although smoking is known to cause an increase in oxidative stress, treatment of the vessels with tiron did not affect the NOmediated relaxations. To evaluate the contribution of EDHF to endothelium-dependent vasodilation rings were preincubated with L-NA. The EDHF-mediated relaxations were significantly attenuated compared to the NO-mediated relaxations in renal and mesenteric artery and almost completely abolished in aorta and

  14. Family with sequence similarity 5, member C (FAM5C increases leukocyte adhesion molecules in vascular endothelial cells: implication in vascular inflammation.

    Directory of Open Access Journals (Sweden)

    Junya Sato

    Full Text Available Identification of the regulators of vascular inflammation is important if we are to understand the molecular mechanisms leading to atherosclerosis and consequent ischemic heart disease, including acute myocardial infarction. Gene polymorphisms in family with sequence similarity 5, member C (FAM5C are associated with an increased risk of acute myocardial infarction, but little is known about the function of this gene product in blood vessels. Here, we report that the regulation of the expression and function of FAM5C in endothelial cells. We show here that FAM5C is expressed in endothelial cells in vitro and in vivo. Immunofluorescence microscopy showed localization of FAM5C in the Golgi in cultured human endothelial cells. Immunohistochemistry on serial sections of human coronary artery showed that FAM5C-positive endothelium expressed intercellular adhesion molecule-1 (ICAM-1 or vascular cell adhesion molecule-1 (VCAM-1. In cultured human endothelial cells, the overexpression of FAM5C increased the reactive oxygen species (ROS production, nuclear factor-κB (NF-κB activity and the expression of ICAM-1, VCAM-1 and E-selectin mRNAs, resulting in enhanced monocyte adhesion. FAM5C was upregulated in response to inflammatory stimuli, such as TNF-α, in an NF-κB- and JNK-dependent manner. Knockdown of FAM5C by small interfering RNA inhibited the increase in the TNF-α-induced production of ROS, NF-κB activity and expression of these leukocyte adhesion molecule mRNAs, resulting in reduced monocyte adhesion. These results suggest that in endothelial cells, when FAM5C is upregulated in response to inflammatory stimuli, it increases the expression of leukocyte adhesion molecules by increasing ROS production and NF-κB activity.

  15. 高浓度曲马朵通过内皮依赖与非依赖机制诱导家兔主动脉舒张%High-concentration tramadol-induced vasodilation in rabbit aorta is mediated by both endothelium-dependent and-independent mechanisms

    Institute of Scientific and Technical Information of China (English)

    Tijen KAYA; Sinan GURSOY; Batis KARADAS; Bulent SARAC; Haluk KAFALI; Ahmet Serdar SOYDAN

    2003-01-01

    AIM: The mechanism of tramadol-induced vasodilation was investigated using isolated rabbit thoracic aortic tings. METHODS: Aortic rings from 8 rabbits were placed in organ bath and precontracted with phenylephrine (10-5 mol/L) before addition of tramadol. Relaxation responses by tramadol were evaluated in the presence and absence of endothelium, indomethacin (an inhibitor of cyclooxygenase), NG-nitro-L-arginine methyl ester (L-NAME, a specific inhibitor of nitric oxide synthase), glibenclamide (an inhibitor of ATP-sensitive potassium channels), tetraethylammonium chloride (TEA, an inhibitor of calcium-sensitive potassium channels), and naloxone (an antagonist of opioid receptors). RESULTS: Tramadol (10-4 mol/L and 3×10-4 mol/L) caused significant vasodilation in endothelium-intact and endothelium-denuded aortic rings (P<0.05). The relaxation response to tramadol was significantly greater in endothelium-intact rings than in endothelium-denuded rings. Pretreatment of aortic rings with indomethacin (10-5 mol/L), glibenclamide (10-5 mol/L), TEA (10-3 mol/L), and naloxone (10-4 mol/L) had no effect on the tramadol-induced relaxation. In endothelium-intact rings, L-NAME (10-4 mol/L) pretreatment caused marked inhibition of the relaxation induced by tramadol, but not endothelium-denuded rings. CONCLUSION: In the rabbit aorta, vascular relaxation induced by tramadol is due to both nitric oxide production from endothelium and a direct effect on smooth muscle.

  16. [Morphofunctional correlation in congenital anomalies of the coronary arteries. II. The ectopic origin of the coronary arteries].

    Science.gov (United States)

    Rangel-Abundis, A; Muñoz-Castellanos, L; Chávez-Pérez, E; Sánchez-Moreira, L M; Marín, G; Badui, E; Solorio, S

    1994-01-01

    The authors describe the morphogenesis and functional alterations of the coronary arterial net in the ectopic coronary arteries: a) with origin in the aorta or its branches and b) with origin in the pulmonary artery. The coronary arteries are developed from: 1) endothelial sprouts localized in the great arteries walls at the level of the sigmoidal values, 2) right and left subepicardial vascular network and 3) the intramyocardial sinusoids. Most of the ectopic coronary arteries result from alterations in the connection between these three embryonic elements. The deviation of one of the subepicardial vascular network in a wrong way (in direction of pulmonary artery or the opposite Valsalva sinus) will stimulate the development of endothelial sprouts which will connect such network originating abnormal connections and anomalous origin of the coronary arteries. The origin of both coronary arteries from the pulmonary artery is in compatible with life. Myocardial ischemia is absent in patients with type I (infant) or type II (adult) anomalous origin of one coronary artery from the pulmonary artery, only in the transitional phase between both types (I and II) there is myocardial ischemia previous to the formation of the collateral coronary circulation. The ectopic origin of the coronary artery from the aortic Valsalva sinus have very little hemodynamic repercussion in the patient. Although there are cases with postexercise sudden dead. These anomalies associated to atherosclerotic coronary stenosis have an impact on the evolution and prognosis of ischemic heart disease.

  17. [Vascular dementia

    NARCIS (Netherlands)

    Leeuw, H.F. de; Gijn, J. van

    2004-01-01

    Vascular dementia is one of the most frequently occurring dementia syndromes. Its prevalence is about 5% among subjects above 85 years of age. Elevated blood pressure and atherosclerosis are the most important risk factors. According to international criteria, vascular dementia usually occurs within

  18. Oscillation of Angiogenesis and Vascular Dropout in Progressive Human Vascular Disease. [Vascular Pattern as Useful Read-Out of Complex Molecular Signaling

    Science.gov (United States)

    Parsons-Wingerter, Patricia

    2010-01-01

    When analyzed by VESsel GENeration Analysis (VESGEN) software, vascular patterns provide useful integrative read-outs of complex, interacting molecular signaling pathways. Using VESGEN, we recently discovered and published our innovative, surprising findings that angiogenesis oscillated with vascular dropout throughout progression of diabetic retinopathy, a blinding vascular disease. Our findings provide a potential paradigm shift in the current prevailing view on progression and treatment of this disease, and a new early-stage window of regenerative therapeutic opportunities. The findings also suggest that angiogenesis may oscillate with vascular disease in a homeostatic-like manner during early stages of other inflammatory progressive diseases such as cancer and coronary vascular disease.

  19. Role of Mitochondria in Cerebral Vascular Function: Energy Production, Cellular Protection, and Regulation of Vascular Tone.

    Science.gov (United States)

    Busija, David W; Rutkai, Ibolya; Dutta, Somhrita; Katakam, Prasad V

    2016-06-13

    Mitochondria not only produce energy in the form of ATP to support the activities of cells comprising the neurovascular unit, but mitochondrial events, such as depolarization and/or ROS release, also initiate signaling events which protect the endothelium and neurons against lethal stresses via pre-/postconditioning as well as promote changes in cerebral vascular tone. Mitochondrial depolarization in vascular smooth muscle (VSM), via pharmacological activation of the ATP-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels), leads to vasorelaxation through generation of calcium sparks by the sarcoplasmic reticulum and subsequent downstream signaling mechanisms. Increased release of ROS by mitochondria has similar effects. Relaxation of VSM can also be indirectly achieved via actions of nitric oxide (NO) and other vasoactive agents produced by endothelium, perivascular and parenchymal nerves, and astroglia following mitochondrial activation. Additionally, NO production following mitochondrial activation is involved in neuronal preconditioning. Cerebral arteries from female rats have greater mitochondrial mass and respiration and enhanced cerebral arterial dilation to mitochondrial activators. Preexisting chronic conditions such as insulin resistance and/or diabetes impair mitoKATP channel relaxation of cerebral arteries and preconditioning. Surprisingly, mitoKATP channel function after transient ischemia appears to be retained in the endothelium of large cerebral arteries despite generalized cerebral vascular dysfunction. Thus, mitochondrial mechanisms may represent the elusive signaling link between metabolic rate and blood flow as well as mediators of vascular change according to physiological status. Mitochondrial mechanisms are an important, but underutilized target for improving vascular function and decreasing brain injury in stroke patients. © 2016 American Physiological Society. Compr Physiol 6:1529-1548, 2016.

  20. Coronary anomaly: the single coronary artery

    Institute of Scientific and Technical Information of China (English)

    QIN Xu-guang; XIONG Wei-guo; LU Chun-peng; GONG Cheng-jie; SHANG Li-hua

    2010-01-01

    @@ Single coronary artery (SCA), defined as an artery that arises from the arterial trunk and nourishes the entire myocardium, is rare. We report two cases of SCA, one is the right coronary artery (RCA) originating from the middle of left descending artery (LAD), and the other is the left main coronary artery (LMCA) arising from the proximal right coronary artery.

  1. Crosstalk between medulloblastoma cells and endothelium triggers a strong chemotactic signal recruiting T lymphocytes to the tumor microenvironment.

    Directory of Open Access Journals (Sweden)

    Vita S Salsman

    Full Text Available Cancer cells can live and grow if they succeed in creating a favorable niche that often includes elements from the immune system. While T lymphocytes play an important role in the host response to tumor growth, the mechanism of their trafficking to the tumor remains poorly understood. We show here that T lymphocytes consistently infiltrate the primary brain cancer, medulloblastoma. We demonstrate, both in vitro and in vivo, that these T lymphocytes are attracted to tumor deposits only after the tumor cells have interacted with tumor vascular endothelium. Macrophage Migration Inhibitory Factor (MIF" is the key chemokine molecule secreted by tumor cells which induces the tumor vascular endothelial cells to secrete the potent T lymphocyte attractant "Regulated upon Activation, Normal T-cell Expressed, and Secreted (RANTES." This in turn creates a chemotactic gradient for RANTES-receptor bearing T lymphocytes. Manipulation of this pathway could have important therapeutic implications.

  2. Effect of hepatoma H22 on lymphatic endothelium in vitro

    Institute of Scientific and Technical Information of China (English)

    Hua Yu; Hong-Zhi Zhou; Chun-Mei Wang; Xiao-Ming Gu; Bo-Rong Pan

    2004-01-01

    AIM: To determine the effect of metastatic hepatoma cells on lymphangioma-derived endothelium, and to establish in vitro model systems for assessing metastasis-related response of lymphatic endothelium.METHODS: Benign lymphangioma, induced by intraperitonea linjection of the incomplete Freund's adjuvant in BALB/c mice, was embedded in fibrin gel or digested and then cultured in the conditioned medium derived from hepatoma H22. Light and electron microscopy, and the transwell migration assay were used to determine the effect of H22 on tissue or cell culture. Expressions of Flt-4, c-Fos, proliferating cell nuclear antigen (PCNA), and inducible nitric oxide synthase (iNOS) in cultured cells, and content of nitric oxide in culture medium were also examined.RESULTS: The embedded lymphangioma pieces gave rise to array of capillaries, while separated cells from lymphangioma grew to a cobblestone-like monolayer. H22 activated growth and migration of the capillaries and cells, induced expressions of Flt-4, c-Fos, PCNA and iNOS in cultured cells, and significantly increased the content of NO in the culture medium.CONCLUSION: Lymphangioma-derived cells keep the differentiated phenotypes of lymphatic endothelium, and the models established in this study are feasible for in vitro study of metastasis-related response of lymphatic endothelium.

  3. The fine structure of endothelium of large arteries.

    Science.gov (United States)

    BUCK, R C

    1958-03-25

    Endothelium of large arteries from several species was studied in thin sections with the electron microscope. Before sacrifice, some animals received an intravenous injection of colloidal thorium dioxide which was visualized in the sections. Surface replicas were prepared by carbon evaporation on either frozen-dried endothelium or on endothelium dried by sublimation of naphthalene with which the tissue had been impregnated. Cell boundaries, stained with silver, were observed in sections and also from the surface by stripping off the inner part of the endothelium. In addition to the usual cytoplasmic organelles, the endothelial cells showed certain characteristic features, namely, large invaginated pockets communicating with the arterial lumen, numerous much smaller vesicular structures immediately under the plasma membrane and apparently also communicating with the lumen, and inclusions, into which injected thorium particles were incorporated. Intercellular boundaries appeared as regular double membranes in thin sections, and they were outlined by a double row of silver granules after silver staining. No evidence was obtained of permeation of intracellular spaces by colloidal thorium.

  4. Renal and cardiac microvascular endothelium: injury and repair

    NARCIS (Netherlands)

    Oosterhuis, NR

    2016-01-01

    Injury to the capillary endothelium can be devastating for renal and cardiac function. To halt the progression of chronic kidney disease (CKD) and heart failure (HF) preservation of the microvascular endothelial cell (EC) function and structure is of great importance.1 Increasing knowledge about

  5. Renal and cardiac microvascular endothelium: injury and repair

    NARCIS (Netherlands)

    Oosterhuis, N.R.

    2016-01-01

    Injury to the capillary endothelium can be devastating for renal and cardiac function. To halt the progression of chronic kidney disease (CKD) and heart failure (HF) preservation of the microvascular endothelial cell (EC) function and structure is of great importance.1 Increasing knowledge about mic

  6. AUTOMATED VIDEO IMAGE MORPHOMETRY OF THE CORNEAL ENDOTHELIUM

    NARCIS (Netherlands)

    SIERTSEMA, JV; LANDESZ, M; VANDENBROM, H; VANRIJ, G

    1993-01-01

    The central corneal endothelium of 13 eyes in 13 subjects was visualized with a non-contact specular microscope. This report describes the computer-assisted morphometric analysis of enhanced digitized images, using a direct input by means of a frame grabber. The output consisted of mean cell area, c

  7. In vivo serial MR imaging of magnetically labeled endothelial progenitor cells homing to the endothelium injured artery in mice.

    Directory of Open Access Journals (Sweden)

    Jun Chen

    Full Text Available BACKGROUND: Emerging evidence of histopathological analyses suggests that endothelial progenitor cells (EPCs play an important role in vascular diseases. Neointimal hyperplasia can be reduced by intravenous transfusion of EPCs after vascular injury in mice. Therefore, it would be advantageous to develop an in vivo technique that can explore the temporal and spatial migration of EPCs homing to the damaged endothelium noninvasively. METHODOLOGY/PRINCIPAL FINDINGS: The left carotid common artery (LCCA was injured by removal of endothelium with a flexible wire in Kunming mice. EPCs were collected by in vitro culture of spleen-derived mouse mononuclear cells (MNCs. EPCs labeling was carried out in vitro using Fe₂O₃-poly-L-lysine (Fe₂O₃-PLL. In vivo serial MR imaging was performed to follow-up the injured artery at different time points after intravenous transfusion of EPCs. Vessel wall areas of injured artery were computed on T₂WI. Larger MR signal voids of vessel wall on T₂WI was revealed in all 6 mice of the labeled EPC transfusion group 15 days after LCCA injury, and it was found only in 1 mouse in the unlabeled EPC transfusion group (p = 0.015. Quantitative analyses of vessel wall areas on T₂WI showed that the vessel wall areas of labeled EPC transfusion group were less than those of unlabeled EPC transfusion group and control group fifteen days after artery injury (p<0.05. Histopathological analyses confirmed accumulation and distribution of transfused EPCs at the injury site of LCCA. CONCLUSIONS/SIGNIFICANCE: These data indicate that MR imaging might be used as an in vivo method for the tracking of EPCs homing to the endothelium injured artery.

  8. Palm oil tocotrienol fractions restore endothelium dependent relaxation in aortic rings of streptozotocin-induced diabetic and spontaneously hypertensive rats.

    Science.gov (United States)

    Muharis, Syed Putra; Top, Abdul Gapor Md; Murugan, Dharmani; Mustafa, Mohd Rais

    2010-03-01

    Diabetes and hypertension are closely associated with impaired endothelial function. Studies have demonstrated that regular consumption of edible palm oil may reverse endothelial dysfunction. The present study investigates the effect of palm oil fractions: tocotrienol rich fraction (TRF), alpha-tocopherol and refined palm olein (vitamin E-free fraction) on the vascular relaxation responses in the aortic rings of streptozotocin-induced diabetic and spontaneously hypertensive rats (SHR). We hypothesize that the TRF and alpha-tocopherol fractions are able to improve endothelial function in both diabetic and hypertensive rat aortic tissue. A 1,1-diphenyl picryl hydrazyl assay was performed on the various palm oil fractions to evaluate their antioxidant activities. Endothelium-dependent (acetylcholine) and endothelium-independent (sodium nitroprusside) relaxations were examined on streptozotocin-induced diabetic and SHR rat aorta following preincubation with the different fractions. In 1-diphenyl picryl hydrazyl antioxidant assay, TRF and alpha-tocopherol fractions exhibited a similar degree of activity while palm olein exhibited poor activity. TRF and alpha-tocopherol significantly improved acetylcholine-induced relaxations in both diabetic (TRF, 88.5% +/- 4.5%; alpha-tocopherol, 87.4% +/- 3.4%; vehicle, 65.0 +/- 1.6%) and SHR aorta (TRF, 72.1% +/- 7.9%; alpha-tocopherol, 69.8% +/- 4.0%, vehicle, 51.1% +/- 4.7%), while palm olein exhibited no observable effect. These results suggest that TRF and alpha-tocopherol fractions possess potent antioxidant activities and provide further support to the cardiovascular protective effects of palm oil vitamin E. TRF and alpha-tocopherol may potentially improve vascular endothelial function in diabetes and hypertension by their sparing effect on endothelium derived nitric oxide bioavailability.

  9. Modulation of hydrogen sulfide by vascular hypoxia

    Directory of Open Access Journals (Sweden)

    Osmond JM

    2014-08-01

    Full Text Available Jessica M Osmond, Nancy L KanagyVascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USAAbstract: Hydrogen sulfide (H2S has emerged as a key regulator of cardiovascular function. This gasotransmitter is produced in the vasculature and is involved in numerous processes that promote vascular homeostasis, including vasodilation and endothelial cell proliferation. Although H2S plays a role under physiological conditions, it has become clear in recent years that hypoxia modulates the production and action of H2S. Furthermore, there is growing evidence that H2S is cytoprotective in the face of hypoxic insults. This review focuses on the synthesis and signaling of H2S in hypoxic conditions in the vasculature, and highlights recent studies providing evidence that H2S is a potential therapy for preventing tissue damage in hypoxic conditions.Keywords: H2S, cystathionine γ-lyase, vascular smooth muscle, endothelium

  10. Physical (in)activity and endothelium-derived constricting factors: overlooked adaptations

    National Research Council Canada - National Science Library

    D. H. J. Thijssen; G. A. Rongen; P. Smits; M. T. E. Hopman

    2008-01-01

    .... In response to physical stimuli, the endothelium varies its release of circulating vasoactive substances and serves as a source of local and systemic endothelium-derived dilator and vasoconstrictor factors...

  11. Multimodality Imaging of the Long-term Vascular Responses Following Implantation of Metallic and Bioresorbable Devices

    OpenAIRE

    Gkogkas, Vasileios

    2014-01-01

    markdownabstract__Abstract__ The pattern of vascular responses following stent/scaffold implantation in conventional interventional practice has been assessed by coronary angiography, intravascular ultrasound or optical coherence tomography and manifests as in-stent vascular response (focal or diffuse) or as edge vascular response (EVR) at the transition zones (focal). The utilization of bioresorbable scaffolds made of biodegradable polymers or biocorrodible metals for coronary revacularizati...

  12. Early results of coronary artery bypass grafting with coronary endarterectomy for severe coronary artery disease

    Directory of Open Access Journals (Sweden)

    Toischer Karl

    2009-09-01

    Full Text Available Abstract Background Despite the existence of controversial debates on the efficiency of coronary endarterectomy (CE, it is still used as an adjunct to coronary artery bypass grafting (CABG. This is particularly true in patients with endstage coronary artery disease. Given the improvements in cardiac surgery and postoperative care, as well as the rising number of elderly patient with numerous co-morbidities, re-evaluating the pros and cons of this technique is needed. Methods Patient demographic information, operative details and outcome data of 104 patients with diffuse calcified coronary artery disease were retrospectively analyzed with respect to functional capacity (NYHA, angina pectoris (CCS and mortality. Actuarial survival was reported using a Kaplan-Meyer analysis. Results Between August 2001 and March 2005, 104 patients underwent coronary artery bypass grafting (CABG with adjunctive coronary endarterectomy (CE in the Department of Thoracic-, Cardiac- and Vascular Surgery, University of Goettingen. Four patients were lost during follow-up. Data were gained from 88 male and 12 female patients; mean age was 65.5 ± 9 years. A total of 396 vessels were bypassed (4 ± 0.9 vessels per patient. In 98% left internal thoracic artery (LITA was used as arterial bypass graft and a total of 114 vessels were endarterectomized. CE was performed on right coronary artery (RCA (n = 55, on left anterior descending artery (LAD (n = 52 and circumflex artery (RCX (n = 7. Ninety-five patients suffered from 3-vessel-disease, 3 from 2-vessel- and 2 from 1-vessel-disease. Closed technique was used in 18%, open technique in 79% and in 3% a combination of both. The most frequent endarterectomized localization was right coronary artery (RCA = 55%. Despite the severity of endstage atherosclerosis, hospital mortality was only 5% (n = 5. During follow-up (24.5 ± 13.4 months, which is 96% complete (4 patients were lost caused by unknown address 8 patients died (cardiac

  13. Early results of coronary artery bypass grafting with coronary endarterectomy for severe coronary artery disease

    Science.gov (United States)

    Schmitto, Jan D; Kolat, Philipp; Ortmann, Philipp; Popov, Aron F; Coskun, Kasim O; Friedrich, Martin; Sossalla, Samuel; Toischer, Karl; Mokashi, Suyog A; Tirilomis, Theodor; Baryalei, Mersa M; Schoendube, Friedrich A

    2009-01-01

    Background Despite the existence of controversial debates on the efficiency of coronary endarterectomy (CE), it is still used as an adjunct to coronary artery bypass grafting (CABG). This is particularly true in patients with endstage coronary artery disease. Given the improvements in cardiac surgery and postoperative care, as well as the rising number of elderly patient with numerous co-morbidities, re-evaluating the pros and cons of this technique is needed. Methods Patient demographic information, operative details and outcome data of 104 patients with diffuse calcified coronary artery disease were retrospectively analyzed with respect to functional capacity (NYHA), angina pectoris (CCS) and mortality. Actuarial survival was reported using a Kaplan-Meyer analysis. Results Between August 2001 and March 2005, 104 patients underwent coronary artery bypass grafting (CABG) with adjunctive coronary endarterectomy (CE) in the Department of Thoracic-, Cardiac- and Vascular Surgery, University of Goettingen. Four patients were lost during follow-up. Data were gained from 88 male and 12 female patients; mean age was 65.5 ± 9 years. A total of 396 vessels were bypassed (4 ± 0.9 vessels per patient). In 98% left internal thoracic artery (LITA) was used as arterial bypass graft and a total of 114 vessels were endarterectomized. CE was performed on right coronary artery (RCA) (n = 55), on left anterior descending artery (LAD) (n = 52) and circumflex artery (RCX) (n = 7). Ninety-five patients suffered from 3-vessel-disease, 3 from 2-vessel- and 2 from 1-vessel-disease. Closed technique was used in 18%, open technique in 79% and in 3% a combination of both. The most frequent endarterectomized localization was right coronary artery (RCA = 55%). Despite the severity of endstage atherosclerosis, hospital mortality was only 5% (n = 5). During follow-up (24.5 ± 13.4 months), which is 96% complete (4 patients were lost caused by unknown address) 8 patients died (cardiac failure: 3

  14. Coronary collaterals

    NARCIS (Netherlands)

    Koerselman, Jeroen

    2004-01-01

    Cardiovascular diseases, in particular coronary artery disease, are the leading cause of death and disease in industrialized countries. Atherosclerotic changes of the arterial vessel wall constitute one of the major causes for the occurrence of cardiovascular disease. Important risk factors for

  15. Coronary collaterals

    NARCIS (Netherlands)

    Koerselman, Jeroen

    2004-01-01

    Cardiovascular diseases, in particular coronary artery disease, are the leading cause of death and disease in industrialized countries. Atherosclerotic changes of the arterial vessel wall constitute one of the major causes for the occurrence of cardiovascular disease. Important risk factors for card

  16. Remote clinical prognosis in patients with coronary X syndrome

    Directory of Open Access Journals (Sweden)

    Sebov D.M.

    2015-09-01

    Full Text Available The article analyzes data of 3234 coronary angiographies with established coronary X syndrome (CXS in 217 cases, herewith expressed tortuosity of coronary arteries (ETCA was found out in 148 (more than 2/3 of cases. A 5-years’ analysis of cardio-vascular events (CVE in patients with CXS in comparison with the group of IHD patients and initial atherosclerosis of coronary arteries was made. Absence of reliable difference of developing severe cardio-vascular events (SCVE bet¬ween patients with initial atherosclerosis and CXS was proved. Risk of CVE development was significantey higher in patients with ETCA, OR=4,93; 95% (0,62; 3929. Patients with CXS had higher risk of severe arrhythmias development as compared with IHD patients with initial atherosclerosis: OR=2,36 (1,01; 5,56. There was no reliable difference between lethality of any causes and number of coronary interventions in all groups.

  17. Plasma myeloperoxidase is inversely associated with endothelium-dependent vasodilation in elderly subjects with abnormal glucose metabolism.

    Science.gov (United States)

    van der Zwan, Leonard P; Teerlink, Tom; Dekker, Jacqueline M; Henry, Ronald M A; Stehouwer, Coen D A; Jakobs, Cornelis; Heine, Robert J; Scheffer, Peter G

    2010-12-01

    Myeloperoxidase (MPO), a biomarker related to inflammation, oxidative stress, and nitric oxide scavenging, has been shown to impair endothelium-dependent vasodilation. Because elevated hydrogen peroxide concentrations in diabetic vessels may enhance MPO activity, we hypothesized that a stronger association of MPO with flow-mediated dilation (FMD) may be found in subjects with abnormal glucose metabolism. Myeloperoxidase concentrations were measured in EDTA plasma samples from participants of a population-based cohort study, including 230 subjects with normal glucose metabolism and 386 with abnormal glucose metabolism. Vascular function was expressed as FMD and nitroglycerin-mediated dilation of the brachial artery. In subjects with abnormal glucose metabolism, MPO was negatively associated with FMD (-20.9 [95% confidence interval {CI}, -41.7 to -0.2] -μm change in FMD per SD increment of MPO). This association remained significant after adjustment for nitroglycerin-mediated dilation (-31.1 [95% CI, -50.0 to -12.3]) and was not attenuated after further adjustment for established risk factors. In subjects with normal glucose metabolism, MPO was not significantly associated with FMD (2.0 [95% CI, -16.0 to 20.0]). In conclusion, in subjects with abnormal glucose metabolism, plasma levels of MPO are inversely associated with endothelium-dependent vasodilation, possibly reflecting enhancement of MPO activity by vascular oxidative stress.

  18. Tocotrienol rich tocomin attenuates oxidative stress and improves endothelium-dependent relaxation in aortae from rats fed a high-fat western diet

    Directory of Open Access Journals (Sweden)

    Saher F Ali

    2016-10-01

    Full Text Available We have previously reported that tocomin, a mixture high in tocotrienol content and also containing tocopherol, acutely preserves endothelial function in the presence of oxidative stress. In this study we investigated whether tocomin treatment would preserve endothelial function in aortae isolated from rats fed a high fat diet known to cause oxidative stress. Wistar hooded rats were fed a western diet (WD, 21% fat or control rat chow (SD, 6% fat for 12 weeks. Tocomin (40 mg/kg/day sc or its vehicle (peanut oil was administered for the last 4 weeks of the feeding regime. Aortae from WD rats showed an impairment of endothelium-dependent relaxation that was associated with an increased expression of the NADPH oxidase Nox2 subunit and an increase in the vascular generation of superoxide measured using L-012 chemiluminescence. The increase in vascular oxidative stress was accompanied by a decrease in basal NO release and impairment of the contribution of NO to ACh-induced relaxation. The impaired relaxation is likely contributed to by a decreased expression of eNOS, calmodulin and phosphorylated Akt and an increase in caveolin-Tocotrienol rich tocomin, which prevented the diet-induced changes in vascular function, reduced vascular superoxide production and abolished the diet-induced changes in eNOS and other protein expression. Using selective inhibitors of nitric oxide synthase (NOS, soluble guanylate cyclase (sGC and calcium activated potassium (KCa channels we demonstrated that tocomin increased NO mediated relaxation, without affecting the contribution of endothelium-dependent hyperpolarization type relaxation to the endothelium-dependent relaxation. The beneficial actions of tocomin in this diet-induced model of obesity suggests that it may have potential to be used as a therapeutic agent to prevent vascular disease in obesity.

  19. Telmisartan enhances mitochondrial activity and alters cellular functions in human coronary artery endothelial cells via AMP-activated protein kinase pathway.

    Science.gov (United States)

    Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao

    2015-04-01

    Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Fetal origin of vascular aging

    Directory of Open Access Journals (Sweden)

    Shailesh Pitale

    2011-01-01

    Full Text Available Aging is increasingly regarded as an independent risk factor for development of cardiovascular diseases such as atherosclerosis and hypertension and their complications (e.g. MI and Stroke. It is well known that vascular disease evolve over decades with progressive accumulation of cellular and extracellular materials and many inflammatory processes. Metabolic syndrome, obesity and diabetes are conventionally recognized as risk factors for development of coronary vascular disease (CVD. These conditions are known to accelerate ageing process in general and vascular ageing in particular. Adverse events during intrauterine life may programme organ growth and favour disease later in life, popularly known as, ′Barker′s Hypothesis′. The notion of fetal programming implies that during critical periods of prenatal growth, changes in the hormonal and nutritional milieu of the conceptus may alter the full expression of the fetal genome, leading to permanent effects on a range of physiological.

  1. 胶原性关节炎大鼠血浆肿瘤坏死因子α和滑膜血管内皮生长因子表达的相关性%Correlation between plasma contents of tumor necrosis factor-alpha and expressions of vascular endothelium growth factor of synovium in collagen-induced arthritis rats

    Institute of Scientific and Technical Information of China (English)

    熊新贵; 梁清华; 陈疆; 李春燕; 何金华; 李霞玲; 张花先; 刘小春

    2006-01-01

    积分的关系,与血浆肿瘤坏死因子α含量及滑膜血管内皮生长因子表达的关系,胶原性关节炎大鼠血浆肿瘤坏死因子α与滑膜血管内皮生长因子表达相关分析.结果:纳入动物40只,均进入结果分析.随着胶原性关节炎发病时间的延长,滑膜新生血管逐渐增多、滑膜增厚、关节炎指数积分逐渐增加、肿瘤坏死因子α含量和血管内皮生长因子水平也随之升高;其关节炎指数积分与血管内皮生长因子表达水平呈正相关(r=0.535,P<0.05),与肿瘤坏死因子α含量虽有相关增高趋势,但差异无显著性(r=0.371,P>0.05).血浆肿瘤坏死因子α含量与血管内皮生长因子表达水平呈显著正相关(r=0.893,P<0.01).结论:肿瘤坏死因子α与血管内皮生长因子在类风湿关节炎炎症反应,滑膜新生血管形成的细胞因子网络中起重要作用,二者相互可能具有影响,相互促进,充当恶性网络循环的调控作用;是介导类风湿关节炎发生和发展以及骨质侵蚀、致残的众多因子中的关键因子.%BACKGROUND: Pathological change of synovium in rheumatoid arthritis (RA) has the characteristic of tumor-like growth, it appears thickening of the synovium tissue and the formatiom of pannus, which generate periarticular erosion and destruction. Multiplicate cell factors and growth factors participate in the development course of tumor-like lesion of synovium, and the tumor necrosis factor-α(TNF-α) and vascular endothelial growth factor(VEGF)play important roles in the development of RA and the formation of pannus.OBJECTIVE: To observe the contents of plasma TNF-α of collagen-induced arthritis and the expression change of VEGF of synovium at different time point, and investigate the effect and correlation of TNF-α and VEGF in the pathogenesis of RA.DESIGN: Randomized grouping experiment taking animals as subjects.SETTING: Institute integrated traditional and western medicine of Xiangya

  2. Polymorphism K469E of intercellular adhesion molecule-1 gene and restenosis after coronary stenting in Chinese patients

    Institute of Scientific and Technical Information of China (English)

    刘兆平; 霍勇; 李建平; 张岩; 薛琳; 赵春玉; 洪秀梅; 黄爱群; 高炜

    2004-01-01

    Background Inflammation is a major cause of restenosis after coronary stenting. Intercellular adhesion molecule-1 ( ICAM-1 ) is an important adhesion molecule that plays a key role in the tight adhesion between leukocytes and vascular endothelium. The object of this study was to investigate the association between the K469E polymorphism of the ICAM-1 gene and restenosis after coronary stenting in North Chinese population.Methods The ICAM-1 K469E polymorphism was genotyped using polymerase chain reaction- restriction fragment length polymorphism method in 124 patients who had undergone coronary stenting and coronary angiography at least 3 months earlier. Information on clinical risk factors and procedure- related data were also collected. Results Of 124 enrolled patients in total, there were 72 cases of in-stent restenosis. The restenosis rate in this population was 58. 1%. The frequencies of the three possible genotypes of the ICAM-1 K469E polymorphism were: KK genotype 50.8%, EE genotype 41.9%, and EK genotype 41.9%.Among restenosis patients, the frequency of the KK genotype was 58. 3% and the frequency of E allele carriers was 41.7%. Among non-restenosis patients, the frequency of the KK genotype was 40.4%, and the frequency of E allele carriers was 59. 6%. The distribution of these two genotype groups between restenosis and non-restenosis patients was significantly different (P=0.049). Using multivariate logistic regression, the difference between the two groups was more apparent. The odds ratio of KK homozygotes vs E allele carriers was 2.6, with 95% confidence interval 1.2 -5.8 (P =0. 018). After grading of risk factors, we found that the KK genotype was a stronger predictor of in- stent restenosis in obesity or hyperlipemia patients, with an odds ratio of 9.3 and 3.7, respectively (P<0.05).Conclusion In our study population, KK homozygotes of the ICAM-1 codon 469 mutation had a higher risk of restenosis after coronary stenting, especially in the case of obese

  3. Vascular rings.

    Science.gov (United States)

    Backer, Carl L; Mongé, Michael C; Popescu, Andrada R; Eltayeb, Osama M; Rastatter, Jeffrey C; Rigsby, Cynthia K

    2016-06-01

    The term vascular ring refers to congenital vascular anomalies of the aortic arch system that compress the esophagus and trachea, causing symptoms related to those two structures. The most common vascular rings are double aortic arch and right aortic arch with left ligamentum. Pulmonary artery sling is rare and these patients need to be carefully evaluated for frequently associated tracheal stenosis. Another cause of tracheal compression occurring only in infants is the innominate artery compression syndrome. In the current era, the diagnosis of a vascular ring is best established by CT imaging that can accurately delineate the anatomy of the vascular ring and associated tracheal pathology. For patients with a right aortic arch there recently has been an increased recognition of a structure called a Kommerell diverticulum which may require resection and transfer of the left subclavian artery to the left carotid artery. A very rare vascular ring is the circumflex aorta that is now treated with the aortic uncrossing operation. Patients with vascular rings should all have an echocardiogram because of the incidence of associated congenital heart disease. We also recommend bronchoscopy to assess for additional tracheal pathology and provide an assessment of the degree of tracheomalacia and bronchomalacia. The outcomes of surgical intervention are excellent and most patients have complete resolution of symptoms over a period of time. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Study design and rationale of 'Influence of Cilostazol-based triple anti-platelet therapy on ischemic complication after drug-eluting stent implantation (CILON-T' study: A multicenter randomized trial evaluating the efficacy of Cilostazol on ischemic vascular complications after drug-eluting stent implantation for coronary heart disease

    Directory of Open Access Journals (Sweden)

    Lee Seung-Pyo

    2010-08-01

    Full Text Available Abstract Background Current guidelines recommend dual anti-platelet therapy, aspirin and clopidogrel, for patients treated with drug-eluting stent for coronary heart disease. In a few small trials, addition of cilostazol on dual anti-platelet therapy (triple anti-platelet therapy showed better late luminal loss. In the real-world unselected patients with coronary heart disease, however, the effect of cilostazol on platelet reactivity and ischemic vascular events after drug-eluting stent implantation has not been tested. It is also controversial whether there is a significant interaction between lipophilic statin and clopidogrel. Methods/Design CILON-T trial was a prospective, randomized, open-label, multi-center, near-all-comer trial to demonstrate the superiority of triple anti-platelet therapy to dual anti-platelet therapy in reducing 6 months' major adverse cardiovascular/cerebrovascular events, composite of cardiac death, nonfatal myocardial infarction, target lesion revascularization and ischemic stroke. It also tested whether triple anti-platelet therapy is superior to dual anti-platelet therapy in inhibiting platelet reactivity in patients receiving percutaneous coronary intervention with drug-eluting stent. Total 960 patients were randomized to receive either dual anti-platelet therapy or triple anti-platelet therapy for 6 months and also, randomly stratified to either lipophilic statin (atorvastatin or non-lipophilic statin (rosuvastatin indefinitely. Secondary endpoints included all components of major adverse cardiovascular/cerebrovascular events, platelet reactivity as assessed by VerifyNow P2Y12 assay, effect of statin on major adverse cardiovascular/cerebrovascular events, bleeding complications, and albumin-to-creatinine ratio to test the nephroprotective effect of cilostazol. Major adverse cardiovascular/cerebrovascular events will also be checked at 1, 2, and 3 years to test the 'legacy' effect of triple anti-platelet therapy

  5. Benfotiamine attenuates nicotine and uric acid-induced vascular endothelial dysfunction in the rat.

    Science.gov (United States)

    Balakumar, Pitchai; Sharma, Ramica; Singh, Manjeet

    2008-01-01

    The study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in nicotine and uric acid-induced vascular endothelial dysfunction (VED) in rats. Nicotine (2 mg kg(-1)day(-1), i.p., 4 weeks) and uric acid (150 mg kg(-1)day(-1), i.p., 3 weeks) were administered to produce VED in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum and aortic concentration of nitrite/nitrate. Further, the integrity of vascular endothelium was assessed using the scanning electron microscopy (SEM) of thoracic aorta. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of nicotine and uric acid produced VED by impairing the integrity of vascular endothelium and subsequently decreasing serum and aortic concentration of nitrite/nitrate and attenuating acetylcholine-induced endothelium dependent relaxation. Further, nicotine and uric acid produced oxidative stress, which was assessed in terms of increase in serum TBARS and aortic superoxide generation. However, treatment with benfotiamine (70 mg kg(-1)day(-1), p.o.) or atorvastatin (30 mg kg(-1)day(-1) p.o., a standard agent) markedly prevented nicotine and uric acid-induced VED and oxidative stress by improving the integrity of vascular endothelium, increasing the concentration of serum and aortic nitrite/nitrate, enhancing the acetylcholine-induced endothelium dependent relaxation and decreasing serum TBARS and aortic superoxide anion generation. Thus, it may be concluded that benfotiamine reduces the oxidative stress and consequently improves the integrity of vascular endothelium and enhances the generation of nitric oxide to prevent nicotine and uric acid-induced experimental VED.

  6. Arterial structure and function in vascular ageing: are you as old as your arteries?

    Science.gov (United States)

    Thijssen, Dick H J; Carter, Sophie E; Green, Daniel J

    2016-04-15

    Advancing age may be the most potent independent predictor of future cardiovascular events, a relationship that is not fully explained by time-related changes in traditional cardiovascular risk factors. Since some arteries exhibit differential susceptibility to atherosclerosis, generalisations regarding the impact of ageing in humans may be overly simplistic, whereas in vivo assessment of arterial function and health provide direct insight. Coronary and peripheral (conduit, resistance and skin) arteries demonstrate a gradual, age-related impairment in vascular function that is likely to be related to a reduction in endothelium-derived nitric oxide bioavailability and/or increased production of vasoconstrictors (e.g. endothelin-1). Increased exposure and impaired ability for defence mechanisms to resist oxidative stress and inflammation, but also cellular senescence processes, may contribute to age-related changes in vascular function and health. Arteries also undergo structural changes as they age. Gradual thickening of the arterial wall, changes in wall content (i.e. less elastin, advanced glycation end-products) and increase in conduit artery diameter are observed with older age and occur similarly in central and peripheral arteries. These changes in structure have important interactive effects on artery function, with increases in small and large arterial stiffness representing a characteristic change with older age. Importantly, direct measures of arterial function and structure predict future cardiovascular events, independent of age or other cardiovascular risk factors. Taken together, and given the differential susceptibility of arteries to atherosclerosis in humans, direct measurement of arterial function and health may help to distinguish between biological and chronological age-related change in arterial health in humans.

  7. Role of endothelium in radiation-induced normal tissue damages; Role de l'endothelium dans les dommages radio-induits aux tissus sains

    Energy Technology Data Exchange (ETDEWEB)

    Milliat, F

    2007-05-15

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  8. A novel mechanism of vascular relaxation induced by sodium nitroprusside in the isolated rat aorta.

    Science.gov (United States)

    Bonaventura, Daniella; Lunardi, Claure N; Rodrigues, Gerson J; Neto, Mário A; Bendhack, Lusiane M

    2008-06-01

    Sodium nitroprusside (SNP) is an endothelium-independent relaxant agent and its effect is attributed to its direct action on the vascular smooth muscle (VSM). Endothelium modulates the vascular tone through the release of vasoactive agents, such as NO. The aim of this study was to investigate the contribution of the endothelium on SNP vasorelaxation, NO release and Ca2+ mobilization. Vascular reactivity experiments showed that endothelium potentiates the SNP-relaxation in rat aortic rings and this effect was abolished by l-NAME. SNP-relaxation in intact endothelium aorta was inhibited by NOS inhibitors for the constitutive isoforms (cNOS). Furthermore, endogenous NO is involved on the SNP-effect and this endogenous NO is released by cNOS. Moreover, Ca2+ mobilization study shows that l-NAME inhibited the reduction of Ca2+-concentration in VSM cells and reduced the increase in Ca2+-concentration in endothelial cells induced by SNP. This enhancement in Ca2+-concentration in the endothelial cells is due to a voltage-dependent Ca2+ channels activation. The present findings indicate that the relaxation and [Ca2+]i decrease induced by SNP in VSM cells is potentiated by endothelial production of NO by cNOS-activation in rat aorta.

  9. VASCULAR SURGERY

    African Journals Online (AJOL)

    Thromboses can result from venous stasis, vascular injury or hypercoagulability, and those involving the deep veins proximal to the knee are linked to an increased risk of PE.2 .... tool for DVT in hospitalised patients, where higher scores.

  10. Vascular Dementia

    Science.gov (United States)

    ... that includes enjoyable activities well within the comfort zone of the person with vascular dementia. New situations, ... your cholesterol in check. A healthy, low-fat diet and cholesterol-lowering medications if you need them ...

  11. Arginase 1 mediates increased blood pressure and contributes to vascular endothelial dysfunction in deoxycorticosterone acetate (DOCA-salt hypertension

    Directory of Open Access Journals (Sweden)

    Haroldo A. Toque

    2013-07-01

    Full Text Available Enhanced arginase (ARG activity has been identified as a factor that reduces nitric oxide (NO production and impairs endothelial function in vascular pathologies. Using a gene deletion model, we investigated involvement of arginase isoforms (1 and 2 in hypertension and endothelial dysfunction in a mineralocorticoid-salt mouse model. Hypertension was induced in wild type (WT, partial ARG1+/- knockout (KO and complete ARG2-/- KO mice by uninephrectomy and DOCA-salt treatment for 6-weeks. (Control uninephrectomized mice drank tap water. After 2 wks of DOCA-salt treatment, systolic blood pressure (SBP was increased by ~15 mmHg in all mouse genotypes. SBP continued to rise in DOCA-salt WT and ARG2-/- mice to ~130 mmHg at 5-6 wks, whereas in ARG1+/- mice SBP waned toward control levels by 6 wks (109±4 vs 101±3 mmHg, respectively. DOCA-salt treatment in WT mice increased vascular ARG activity (aorta by 1.5-fold; mesenteric artery (MA by 2.6-fold and protein levels of ARG1 (aorta: 1.49-fold and MA: 1.73-fold versus WT Sham tissues. ARG2 protein increased in WT DOCA MA (by 2.15-fold but not in aorta compared to those of WT Sham tissues. Maximum endothelium-dependent vasorelaxation to acetylcholine was significantly reduced in DOCA-salt WT mice and largely or partially maintained in DOCA ARG1+/- and ARG2-/- mice vs their Sham controls. DOCA-salt augmented contractile responses to phenylephrine in aorta of all mouse genotypes. Additionally, treatment of aorta or MA from WT DOCA mice with arginase inhibitor ABH (100 µM improved endothelium-mediated vasorelaxation. DOCA-salt induced coronary perivascular fibrosis (increased by 2.1-fold in WT was prevented in ARG1+/- and reduced in ARG2-/- mice. In summary, arginase is involved in murine DOCA-salt induced impairment of vascular function and hypertension and may represent a novel target for antihypertensive therapy.

  12. vascular hemiplegia

    OpenAIRE

    Voto Bernales, Jorge; Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú

    2014-01-01

    The vascular hemiplegia is the functional disorder of a lateral half of the body produced by alterations of cerebral vessels. Should review the concepts of this common condition, with the dual aim of expanding its nosographic value and considering the hemiplegic patient as worthy of the highest professional care La hemiplejia vascular, es el trastorno funcional de una mitad lateral del cuerpo producido por alteraciones de los vasos cerebrales. Conviene revisar los conceptos sobre esta frec...

  13. vascular hemiplegia

    OpenAIRE

    Voto Bernales, Jorge; Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú

    2014-01-01

    The vascular hemiplegia is the functional disorder of a lateral half of the body produced by alterations of cerebral vessels. Should review the concepts of this common condition, with the dual aim of expanding its nosographic value and considering the hemiplegic patient as worthy of the highest professional care La hemiplejia vascular, es el trastorno funcional de una mitad lateral del cuerpo producido por alteraciones de los vasos cerebrales. Conviene revisar los conceptos sobre esta frec...

  14. Protein Kinase C Inhibitors as Modulators of Vascular Function and Their Application in Vascular Disease

    Directory of Open Access Journals (Sweden)

    Raouf A. Khalil

    2013-03-01

    Full Text Available Blood pressure (BP is regulated by multiple neuronal, hormonal, renal and vascular control mechanisms. Changes in signaling mechanisms in the endothelium, vascular smooth muscle (VSM and extracellular matrix cause alterations in vascular tone and blood vessel remodeling and may lead to persistent increases in vascular resistance and hypertension (HTN. In VSM, activation of surface receptors by vasoconstrictor stimuli causes an increase in intracellular free Ca2+ concentration ([Ca2+]i, which forms a complex with calmodulin, activates myosin light chain (MLC kinase and leads to MLC phosphorylation, actin-myosin interaction and VSM contraction. Vasoconstrictor agonists could also increase the production of diacylglycerol which activates protein kinase C (PKC. PKC is a family of Ca2+-dependent and Ca2+-independent isozymes that have different distributions in various blood vessels, and undergo translocation from the cytosol to the plasma membrane, cytoskeleton or the nucleus during cell activation. In VSM, PKC translocation to the cell surface may trigger a cascade of biochemical events leading to activation of mitogen-activated protein kinase (MAPK and MAPK kinase (MEK, a pathway that ultimately increases the myofilament force sensitivity to [Ca2+]i, and enhances actin-myosin interaction and VSM contraction. PKC translocation to the nucleus may induce transactivation of various genes and promote VSM growth and proliferation. PKC could also affect endothelium-derived relaxing and contracting factors as well as matrix metalloproteinases (MMPs in the extracellular matrix further affecting vascular reactivity and remodeling. In addition to vasoactive factors, reactive oxygen species, inflammatory cytokines and other metabolic factors could affect PKC activity. Increased PKC expression and activity have been observed in vascular disease and in certain forms of experimental and human HTN. Targeting of vascular PKC using PKC inhibitors may function in

  15. Modified arteriolar responses to ATP after impairment of endothelium by light-dye techniques in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Koller, A.; Rodenburg, J.M.; Wolin, M.S.; Messina, E.J.; Kaley, G. (Department of Physiology, New York Medical College, Valhalla (USA))

    1991-01-01

    In this study we investigated whether endothelial cells are involved in the dilation of third-order arterioles (14 to 22 microns) in response to adenosine triphosphate (ATP) in cremaster muscle of pentobarbital-anesthetized rats. Two light/dye (L/D) techniques were employed to achieve selective, local endothelial impairment. One of these techniques utilizes a mercury lamp and sodium fluorescein, the other a Helium-Neon laser and Evans blue dye. L/D treatment (illumination with the appropriate wavelengths of light in the presence of an intravascular dye) of a 20-to 100-microns segment of an arteriole resulted in a complete loss of arteriolar dilation in response to topical administration of acetylcholine (10(-6) M) and arachidonic acid (AA, 10(-5) M). These agents were applied in 100-microl aliquots without interrupting the continuous suffusion with Ringer-gelatin solution and caused a {approximately} 70% increase in vascular diameter before the L/D intervention. Selectivity of the impairment was assessed by arteriolar responses to the nonendothelium-dependent dilator agents adenosine (10(-5) M) and sodium nitroprusside (2 {times} 10(-7) M), which elicited the same degree of dilation before and after L/D treatment. Under control conditions ATP (10(-6), 10(-5), and 10(-4) M) elicited dose-dependent increases in arteriolar diameter (from 38 to 74%). After impairment of arteriolar endothelium, dilation in response to all doses of ATP was significantly reduced. Theophylline (30 microM) significantly inhibited arteriolar dilation in response to adenosine (10(-6), 10(-5), and 10(-4) M) but did not affect the responses to various doses of ATP. Moreover, impairment of endothelium enhanced constrictor responses of arterioles to norepinephrine (0.6 {times} 10(-8) M).

  16. Characterization of VCAM-1-binding peptide-functionalized quantum dots for molecular imaging of inflamed endothelium.

    Directory of Open Access Journals (Sweden)

    Yun Chen

    Full Text Available Inflammation-induced activation of endothelium constitutes one of the earliest changes during atherogenesis. New imaging techniques that allow detecting activated endothelial cells can improve the identification of persons at high cardiovascular risk in early stages. Quantum dots (QDs have attractive optical properties such as bright fluorescence and high photostability, and have been increasingly studied and developed for bio-imaging and bio-targeting applications. We report here the development of vascular cell adhesion molecule-1 binding peptide (VCAM-1 binding peptide functionalized QDs (VQDs from amino QDs. It was found that the QD fluorescence signal in tumor necrosis factor [Formula: see text] (TNF-[Formula: see text] treated endothelial cells in vitro was significantly higher when these cells were labeled with VQDs than amino QDs. The VQD labeling of TNF-[Formula: see text]-treated endothelial cells was VCAM-1 specific since pre-incubation with recombinant VCAM-1 blocked cells' uptake of VQDs. Our ex vivo and in vivo experiments showed that in the inflamed endothelium, QD fluorescence signal from VQDs was also much stronger than that of amino QDs. Moreover, we observed that the QD fluorescence peak was significantly blue-shifted after VQDs interacted with aortic endothelial cells in vivo and in vitro. A similar blue-shift was observed after VQDs were incubated with recombinant VCAM-1 in tube. We anticipate that the specific interaction between VQDs and VCAM-1 and the blue-shift of the QD fluorescence peak can be very useful for VCAM-1 detection in vivo.

  17. Antihypertensive and endothelium-dependent vasodilator effects of aqueous extract of Cistus ladaniferus.

    Science.gov (United States)

    Belmokhtar, Mounia; Bouanani, Nour Elhouda; Ziyyat, Abderrahim; Mekhfi, Hassane; Bnouham, Mohamed; Aziz, Mohamed; Matéo, Philippe; Fischmeister, Rodolphe; Legssyer, Abdelkhaleq

    2009-11-06

    Cistus ladaniferus L. (Cistaceae) is a medicinal plant originated from the Mediterranean region which exerts different pharmacological effects. In the present study, our goal was to examine whether the plant possessed antihypertensive properties. Aqueous extract of Cistus leaves (AEC, 500mg/kg/day) reduced systemic blood pressure (SBP) in two animal models of hypertension, the l-NAME and renovascular two kidney-one clip (2K-1C) hypertensive rats. In the former, AEC prevented the increase in SBP when co-administered with l-NAME during four weeks (164+/-3mm Hg in l-NAME vs. 146+/-1mm Hg in l-NAME+AEC, p<0.001). In the latter, AEC reversed the increase in SBP when administered during four weeks after installation of the hypertension (146+/-5mm Hg with AEC vs. 179+/-6mm Hg without, p<0.05). AEC treatment also reversed the endothelial dysfunction observed in both animal models of hypertension. A direct effect on cardiac and vascular tissue was also tested by examining the contractile effects of AEC in rat isolated aortic rings and Langendorff perfused hearts. AEC (10mg/L) had no effect on left ventricular developed pressure and heart rate in isolated perfused heart. However, AEC produced a strong relaxation of pre-contracted rat aortic rings (80+/-2% relaxation, n=25). When the rings were denuded from endothelium or were incubated with 1mM Nomega-nitro-l-arginine (l-NNA), the relaxant effect of AEC was lost. We conclude that C. ladaniferus possesses antihypertensive properties which are mainly due to an endothelium-dependent vasodilatory action.

  18. The breakup of intravascular microbubbles and its impact on the endothelium.

    Science.gov (United States)

    Wiedemair, Wolfgang; Tukovic, Zeljko; Jasak, Hrvoje; Poulikakos, Dimos; Kurtcuoglu, Vartan

    2016-10-12

    Encapsulated microbubbles (MBs) serve as endovascular agents in a wide range of medical ultrasound applications. The oscillatory response of these agents to ultrasonic excitation is determined by MB size, gas content, viscoelastic shell properties and geometrical constraints. The viscoelastic parameters of the MB capsule vary during an oscillation cycle and change irreversibly upon shell rupture. The latter results in marked stress changes on the endothelium of capillary blood vessels due to altered MB dynamics. Mechanical effects on microvessels are crucial for safety and efficacy in applications such as focused ultrasound-mediated blood-brain barrier (BBB) opening. Since direct in vivo quantification of vascular stresses is currently not achievable, computational modelling has established itself as an alternative. We have developed a novel computational framework combining fluid-structure coupling and interface tracking to model the nonlinear dynamics of an encapsulated MB in constrained environments. This framework is used to investigate the mechanical stresses at the endothelium resulting from MB shell rupture in three microvessel setups of increasing levels of geometric detail. All configurations predict substantial elevation of up to 150 % for peak wall shear stress upon MB breakup, whereas global peak transmural pressure levels remain unaltered. The presence of red blood cells causes confinement of pressure and shear gradients to the proximity of the MB, and the introduction of endothelial texture creates local modulations of shear stress levels. With regard to safety assessments, the mechanical impact of MB breakup is shown to be more important than taking into account individual red blood cells and endothelial texture. The latter two may prove to be relevant to the actual, complex process of BBB opening induced by MB oscillations.

  19. Diet-induced obesity impairs endothelium-derived hyperpolarization via altered potassium channel signaling mechanisms.

    Directory of Open Access Journals (Sweden)

    Rebecca E Haddock

    Full Text Available BACKGROUND: The vascular endothelium plays a critical role in the control of blood flow. Altered endothelium-mediated vasodilator and vasoconstrictor mechanisms underlie key aspects of cardiovascular disease, including those in obesity. Whilst the mechanism of nitric oxide (NO-mediated vasodilation has been extensively studied in obesity, little is known about the impact of obesity on vasodilation to the endothelium-derived hyperpolarization (EDH mechanism; which predominates in smaller resistance vessels and is characterized in this study. METHODOLOGY/PRINCIPAL FINDINGS: Membrane potential, vessel diameter and luminal pressure were recorded in 4(th order mesenteric arteries with pressure-induced myogenic tone, in control and diet-induced obese rats. Obesity, reflecting that of human dietary etiology, was induced with a cafeteria-style diet (∼30 kJ, fat over 16-20 weeks. Age and sexed matched controls received standard chow (∼12 kJ, fat. Channel protein distribution, expression and vessel morphology were determined using immunohistochemistry, Western blotting and ultrastructural techniques. In control and obese rat vessels, acetylcholine-mediated EDH was abolished by small and intermediate conductance calcium-activated potassium channel (SK(Ca/IK(Ca inhibition; with such activity being impaired in obesity. SK(Ca-IK(Ca activation with cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl-6-methyl-pyrimidin-4-yl]-amine (CyPPA and 1-ethyl-2-benzimidazolinone (1-EBIO, respectively, hyperpolarized and relaxed vessels from control and obese rats. IK(Ca-mediated EDH contribution was increased in obesity, and associated with altered IK(Ca distribution and elevated expression. In contrast, the SK(Ca-dependent-EDH component was reduced in obesity. Inward-rectifying potassium channel (K(ir and Na(+/K(+-ATPase inhibition by barium/ouabain, respectively, attenuated and abolished EDH in arteries from control and obese rats, respectively; reflecting differential K

  20. The Changes of Vasoactive Substances Originated Endothelium in Patients with Unstable Angina Pectoris Treated by Improved Thrombolytic Therapy

    Institute of Scientific and Technical Information of China (English)

    Wang Congxia; Niu Xiaolin; Li Yongqin; Zhang MingJuan; Ding Kangning

    2004-01-01

    Objectives To analyze the changes of vasoactive substances originated from endothelium in patients with unstable angina pectoris treated by modified thrombolytic therapy and explore the mechanisms of the drug to treat unstable angina pectoris.Methods 120 patients with unstable angina pectoris who were not well responsed to common medication were studied. Their ECG stress tests were abnormal and there were ischemic changes in Holter. Urokinase 300,000 U was added in 100 ml normal saline and injected within 30 min once a day for 3 days. 300 mg aspirin was administrated a day before and during urokinase applications. Before and after urokinase treatments, endothelin-1, plasma tissue plasminogen activator and its inhibitor-1were determined. Results Compared with pretreatments, after treatments, the activities of tissue plasminogen activator increased, endothelin-1 and the inhibitor-1 decreased. The changes were significant. Conclusions Modified thrombolytic therapy can regulate the vasoactive substances originated endothelium in patients with unstable angina pectoris . The major substances include endothelin-1 ,plasma tissue plasminogen activator and inhibitor-1. This mechanism may suggest that urokinase can treat coronary heart disease effectively.

  1. Spontaneous healing of spontaneous coronary artery dissection.

    Science.gov (United States)

    Almafragi, Amar; Convens, Carl; Heuvel, Paul Van Den

    2010-01-01

    Spontaneous coronary artery dissection (SCAD) is a rare cause of acute coronary syndrome and sudden cardiac death. It should be suspected in every healthy young woman without cardiac risk factors, especially during the peripartum or postpartum periods. It is important to check for a history of drug abuse, collagen vascular disease or blunt trauma of the chest. Coronary angiography is essential for diagnosis and early management. We wonder whether thrombolysis might aggravate coronary dissection. All types of treatment (medical therapy, percutaneous intervention or surgery) improve the prognosis without affecting survival times if used appropriately according to the clinical stability and the angiographic features of the involved coronary arteries. Prompt recognition and targeted treatment improve outcomes. We report a case of SCAD in a young female free of traditional cardiovascular risk factors, who presented six hours after thrombolysis for ST elevation myocardial infarction. Coronary angiography showed a dissection of the left anterior descending and immediate branch. She had successful coronary artery bypass grafting, with complete healing of left anterior descending dissection.

  2. ADVANCE: Study to Evaluate Cinacalcet Plus Low Dose Vitamin D on Vascular Calcification in Subjects With Chronic Kidney Disease Receiving Hemodialysis

    Science.gov (United States)

    2014-07-14

    Chronic Kidney Disease; End Stage Renal Disease; Coronary Artery Calcification; Vascular Calcification; Calcification; Cardiovascular Disease; Chronic Renal Failure; Hyperparathyroidism; Kidney Disease; Nephrology; Secondary Hyperparathyroidism

  3. Subcellular characterization of glucose uptake in coronary endothelial cells.

    Science.gov (United States)

    Gaudreault, N; Scriven, D R L; Laher, I; Moore, E D W

    2008-01-01

    Despite all the evidence linking glucose toxicity to an increased risk of cardiovascular diseases, very little is known about the regulation of glucose uptake in endothelial cells. We have previously reported an asymmetric distribution of the GLUTs (1-5) and SGLT-1 in en face preparations of rat coronary artery endothelia [Gaudreault N., Scriven D.R., Moore E.D., 2004. Characterisation of glucose transporters in the intact coronary artery endothelium in rats: GLUT-2 upregulated by long-term hyperglycaemia. Diabetologia 47(12),2081-2092]. We assessed this time, through immunocytochemistry and wide field fluorescence microscopy coupled to deconvolution, the presence and subcellular distribution of glucose transporters in cultures of human coronary artery endothelial cells (HCAECs). HCAECs express GLUT-1 to 5 and SGLT-1, but their subcellular distribution lacks the luminal/abluminal asymmetry and the proximity to cell-to-cell junctions observed in intact endothelium. To determine the impact of the transporters' distribution on intracellular glucose accumulation, a fluorescent glucose analog (2-NBDG) was used in conjunction with confocal microscopy to monitor uptake in individual cells; the arteries were mounted in an arteriograph chamber with physiological flow rates. The uptake in both preparations was inhibited by cytochalasin-B and d-glucose and stimulated by insulin, but the distribution of the incorporated 2-NBDG mirrored that of the transporters. In HCAEC it was distributed throughout the cell and in the intact arterial endothelium it was restricted to the narrow cytosolic volume adjacent to the cell-to-cell junctions. We suggest that the latter subcellular organization and compartmentalization may facilitate transendothelial transport of glucose in intact coronary artery.

  4. Interleukin-6 impairs endothelium-dependent NO-cGMP-mediated relaxation and enhances contraction in systemic vessels of pregnant rats.

    Science.gov (United States)

    Orshal, Julia M; Khalil, Raouf A

    2004-06-01

    IL-6 is elevated in plasma of preeclamptic women, and twofold elevation of plasma IL-6 increases vascular resistance and arterial pressure in pregnant rats, suggesting a role of the cytokine in hypertension of pregnancy. However, whether the hemodynamic effects of IL-6 reflect direct effects of the cytokine on the mechanisms of vascular contraction/relaxation is unclear. The purpose of this study was to test the hypothesis that IL-6 directly impairs endothelium-dependent relaxation and enhances vascular contraction in systemic vessels of pregnant rats. Active stress was measured in aortic strips isolated from virgin and late pregnant Sprague-Dawley rats and then nontreated or treated for 1 h with IL-6 (10 pg/ml to 10 ng/ml). In endothelium-intact vascular strips, phenylephrine (Phe, 10(-5) M) caused an increase in active stress that was smaller in pregnant (4.2 +/- 0.3) than virgin rats (5.1 +/- 0.3 x 10(4) N/m(2)). IL-6 (1,000 pg/ml) caused enhancement of Phe contraction that was greater in pregnant (10.6 +/- 0.7) than virgin rats (7.5 +/- 0.4 x 10(4) N/m(2)). ACh and bradykinin caused relaxation of Phe contraction and increases in vascular nitrite production that were greater in pregnant than virgin rats. IL-6 caused reductions in ACh- and bradykinin-induced vascular relaxation and nitrite production that were more prominent in pregnant than virgin rats. Incubation of endothelium-intact strips in the presence of N(omega)-nitro-L-arginine methyl ester (10(-4) M) to inhibit nitric oxide (NO) synthase, or 1H-[1,2,4]oxadiazolo[4,3]-quinoxalin-1-one (ODQ, 10(-5) M) to inhibit cGMP production in smooth muscle, inhibited ACh-induced relaxation and enhanced Phe-induced stress in nontreated but to a lesser extent in IL-6-treated vessels, particularly those of pregnant rats. Removal of the endothelium enhanced Phe-induced stress in nontreated but not IL-6-treated vessels, particularly those of pregnant rats. In endothelium-denuded strips, relaxation of Phe contraction with

  5. Fatores de risco para acidente vascular encefálico após cirurgia de revascularização do miocárdio Risk factors for stroke after coronary artery bypass grafting

    Directory of Open Access Journals (Sweden)

    Dinaldo Cavalcanti de Oliveira

    2008-10-01

    Full Text Available FUNDAMENTO: O acidente vascular encefálico (AVE é uma temida complicação após cirurgia de revascularização do miocárdio (CRM, com incidência entre 1,3% e 4,3%. OBJETIVO: Identificar fatores preditores de AVE após CRM, na era moderna da cirurgia cardíaca. MÉTODOS: Este é um estudo caso-controle de 65 pares de pacientes, no qual o pareamento foi realizado por sexo, idade (+ 3 anos e data da CRM (+ 3 meses. Os casos são pacientes submetidos à CRM eletiva com circulação extracorpórea (CEC, que apresentaram AVE (definido como déficit clínico neurológico até 24 horas de pós-operatório e confirmado por exame de imagem, e os controles aqueles submetidos à CRM eletiva com CEC sem AVE. RESULTADOS: A análise univariada revelou que o número de vasos revascularizados foi associado com a ocorrência de AVE após a CRM (3 ± 0,8 vs. 2,76 ± 0,8, p = 0,01. Na análise multivariada por regressão logística condicional, a hipertensão arterial sistêmica [OR: 6,1 (1,5 - 24, p = 0,009] e o diabete melito [OR: 3,1 (1,09 - 11, p= 0,03] foram determinantes de maior chance de AVE após CRM, e o infarto agudo do miocárdio > 1 mês determinante de menor chance [OR: 0,1 (0,03 - 0,36, p = 0,003]. CONCLUSÃO: Hipertensão e diabete melito foram identificados como preditores independentes de AVE nas primeiras 24 horas de pós-operatório de CRM. Em pacientes com tais fatores de risco, é possível que o conhecimento dos mecanismos causadores da injúria cerebral represente uma estratégia capaz de diminuir a incidência de AVE após CRM.BACKGROUND: Stroke is a feared complication after coronary artery bypass grafting surgery (CABG, with an incidence between 1.3 and 4.3%. OBJECTIVE: To identify predictive factors for stroke after CABG in the modern era of cardiac surgery. METHODS: This is a case-control study of 65 pairs of patients, paired by sex, age (+ 3 years and date of CABG (+ 3 months. The cases were patients submitted to elective CABG

  6. SELECTINS IN CORONARY ATHEROSCLEROTIC DISEASE:A REVIEW

    Institute of Scientific and Technical Information of China (English)

    李远方; 胡健

    2001-01-01

    The development of atherosclerotic lesions appears to be inflammatory in nature. It involves the recruitment of blood monocytes to the vascular endothelium, followed by intimal infiltration. Monocytes differentiate to macrophages, then internalize lipids to form foam cells, thus develop fatty streak lesion. A wide range of adhesion molecules governs these interactions between cells, among these molecules are selectins. Selectins mediate the first step in leukocyte adhesion at sites of inflammation or injury, characterized by rolling and tethering

  7. COX-2-derived prostanoids and oxidative stress additionally reduce endothelium-mediated relaxation in old type 2 diabetic rats.

    Directory of Open Access Journals (Sweden)

    Emilie Vessières

    Full Text Available Endothelial dysfunction in resistance arteries alters end organ perfusion in type 2 diabetes. Superoxides and cyclooxygenase-2 (COX-2 derivatives have been shown separately to alter endothelium-mediated relaxation in aging and diabetes but their role in the alteration of vascular tone in old diabetic subjects is not clear, especially in resistance arteries. Consequently, we investigated the role of superoxide and COX-2-derivatives on endothelium-dependent relaxation in 3 and 12 month-old Zucker diabetic fatty (ZDF and lean (LZ rats. Mesenteric resistance arteries were isolated and vascular tone was investigated using wire-myography. Endothelium (acetylcholine-dependent relaxation was lower in ZDF than in LZ rats (60 versus 84% maximal relaxation in young rats and 41 versus 69% in old rats. Blocking NO production with L-NAME was less efficient in old than in young rats. L-NAME had no effect in old ZDF rats although eNOS expression level in old ZDF rats was similar to that in old LZ rats. Superoxide level and NADPH-oxidase subunits (p67phox and gp91phox expression level were greater in ZDF than in LZ rats and were further increased by aging in ZDF rats. In young ZDF rats reducing superoxide level with tempol restored acetylcholine-dependent relaxation to the level of LZ rats. In old ZDF rats tempol improved acetylcholine-dependent relaxation without increasing it to the level of LZ rats. COX-2 (immunolabelling and Western-blot was present in arteries of ZDF rats and absent in LZ rats. In old ZDF rats arterial COX-2 level was higher than in young ZDF rats. COX-2 blockade with NS398 restored in part acetylcholine-dependent relaxation in arteries of old ZDF rats and the combination of tempol and NS398 fully restored relaxation in control (LZ rats level. Accordingly, superoxide production and COX-2 derivatives together reduced endothelium-dependent relaxation in old ZDF rats whereas superoxides alone attenuated relaxation in young ZDF or old LZ rats.

  8. Cardiovascular and autoimmune diseases in females: The role of microvasculature and dysfunctional endothelium.

    Science.gov (United States)

    Gianturco, L; Bodini, B D; Atzeni, F; Colombo, C; Stella, D; Sarzi-Puttini, P; Drago, L; Galaverna, S; Turiel, M

    2015-07-01

    Cardiovascular (CV) diseases are becoming increasingly frequent and associated with a high incidence of CV events, disability and death. It is known that there is a relationship between CV burden and systemic autoimmune diseases (SADs) that is mainly due to inflammation and autoimmunity, but the other mechanisms underlying the high CV risk of SAD patients have not yet been fully clarified. The aim of this review article is to discuss some of the specific factors associated with the accelerated atherosclerosis (ATS) characterising SADs (female sex, the microcirculation and the endothelium) in order to highlight the importance of an early diagnosis and the prompt implementation of preventive measures, as well as the possible role of new therapeutic strategies such as vaccine immunomodulation. Finally, as the natural history of ATS begins with endothelial injury (a potentially reversible process that is influenced by various factors) and microvascular damage plays a central role in the etiopathogenesis of SADs, it underlines the crucial need for the development of reliable means of detecting sub-clinical abnormalities in the microcirculation, particularly coronary microcirculation dysfunction.

  9. Tumor vascular endothelium : Barrier or target in tumor directed drug delivery and immunotherapy

    NARCIS (Netherlands)

    Molema, Ingrid; de Leij, Lou; Meijer, D.K F

    The therapy of solid tumors with conventional chemotherapeutics, drug delivery preparations and immunomodulatory agents directed against the tumor cells is corrupted by a major barrier presented by the tumor vasculature. Permeability of the tumor blood vessels for transport of small molecules and

  10. Tumor vascular endothelium : Barrier or target in tumor directed drug delivery and immunotherapy

    NARCIS (Netherlands)

    Molema, Ingrid; de Leij, Lou; Meijer, D.K F

    1997-01-01

    The therapy of solid tumors with conventional chemotherapeutics, drug delivery preparations and immunomodulatory agents directed against the tumor cells is corrupted by a major barrier presented by the tumor vasculature. Permeability of the tumor blood vessels for transport of small molecules and ma

  11. A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium.

    Science.gov (United States)

    Santel, A; Aleku, M; Keil, O; Endruschat, J; Esche, V; Fisch, G; Dames, S; Löffler, K; Fechtner, M; Arnold, W; Giese, K; Klippel, A; Kaufmann, J

    2006-08-01

    For the application of RNA interference (RNAi) in vivo the functional delivery of short interfering RNAs (siRNAs) is still the major obstacle. Therefore, delivery technologies need to be established for the systemic application of RNAi in vivo. Here we report uptake, biodistribution and in vivo efficacy of siRNA molecules formulated into siRNA-lipoplexes. The applied formulation is based on complex formation of positively charged liposomes, a mixture of cationic and fusogenic lipids complexed with the negatively charged siRNA. We determined by fluorescence microscopy the temporal and spatial distribution of fluorescently labeled siRNA-lipoplexes, the body clearance and endothelial cell type specific uptake after single intravenous injection. Furthermore, by using siRNA molecules for targeting endothelia-specifically expressed genes, such as CD31 and Tie2, we were able to demonstrate downregulation of the corresponding mRNA and protein in vivo. Taken together, we show the applicability of this non-viral delivery technology for inducing RNAi in the vasculature of mice after systemic application.

  12. Electrospun aligned nanofibrous composite of MWCNT/polyurethane to enhance vascular endothelium cells proliferation and function.

    Science.gov (United States)

    Meng, Jie; Han, Zhaozhao; Kong, Hua; Qi, Xiaojin; Wang, Chaoying; Xie, Sishen; Xu, Haiyan

    2010-10-01

    Aligned or random nanofibrous meshes of multiwalled carbon nanotubes/polyurethane composite (MWCNT/PU) were fabricated by electrospinning and characterized by scanning electron microscopy (SEM). The regulatory effects of nanofibrous structure and MWCNT on the growth and anticoagulant function of human umbilical vein endothelial cells (HUVECs) were investigated by examining proliferation, type IV collagen secretion, tissue factor and plasminogen activator inhibitor-1 (PAI-1) release, and cytoskeleton arrangement, as well as via pull-down analysis. We show that aligned nanofibrous structure and MWCNT can function as extracellular signals to stimulate cell growth, proliferation, and extracellular collagen secretion, in addition to preserving anticoagulant function. The nanofibrous structures played important roles in the activation of Rac and Cdc42, while CNT regulated the activation of Rho. These two features synergistically activated Rho GTPases that transmitted cell-substrate signals to the cytoplasm. These signals were then relayed to the nucleus by the MAP kinase pathway to direct cytoskeletal arrangement and cell orientation.

  13. A myocardial infarction-associated SNP at 6p24 interferes with MEF2 binding and associates with PHACTR1 expression levels in human coronary arteries

    Science.gov (United States)

    Won, Hong-Hee; Lo, Ken Sin; Do, Ron; Henderson, Christopher A.; Lavoie-St-Amour, Claire; Langlois, Simon; Rivas, Daniel; Lehoux, Stephanie; Kathiresan, Sekar; Tardif, Jean-Claude; Musunuru, Kiran; Lettre, Guillaume

    2015-01-01

    Objective Coronary artery disease (CAD), including myocardial infarction (MI), is the main cause of death in the world. Genome-wide association studies (GWAS) have identified dozens of single nucleotide polymorphisms (SNPs) associated with CAD/MI. One of the most robust CAD/MI genetic associations is with intronic SNPs in the gene PHACTR1 on chromosome 6p24. How these PHACTR1 SNPs influence CAD/MI risk, and whether PHACTR1 itself is the causal gene at the locus, is currently unknown. Approach and results Using genetic fine-mapping and DNA re-sequencing experiments, we prioritized an intronic SNP (rs9349379) in PHACTR1 as causal variant.We showed that this variant is an expression quantitative trait locus (eQTL) for PHACTR1 expression in human coronary arteries. Experiments in endothelial cell extracts confirmed that alleles at rs9349379 are differentially bound by the transcription factors MEF2. We engineered a deletion of this MEF2 binding site using CRISPR/Cas9 genome-editing methodology. Heterozygous endothelial cells carrying this deletion express 35% less PHACTR1. Finally, we found no evidence that PHACTR1 expression levels are induced when stimulating human endothelial cells with VEGF, TNFα or shear stress. Conclusions Our results establish a link between intronic SNPs in PHACTR1, MEF2 binding and transcriptional functions at the locus, PHACTR1 expression levels in coronary arteries and CAD/MI risk. Because PHACTR1 SNPs are not associated with the traditional risk factors for CAD/MI (e.g. blood lipids or pressure, diabetes), our results suggest that PHACTR1 may influence CAD/MI risk through as yet unknown mechanisms in the vascular endothelium. PMID:25838425

  14. The human corneal endothelium in keratoconus: A specular microscopic study.

    Science.gov (United States)

    Laing, R A; Sandstrom, M M; Berrospi, A R; Leibowitz, H M

    1979-10-01

    The corneal endothelium in 12 cases of keratoconus was examined with the clinical specular microscope. There appeared to be an increase in cellular pleomorphism with many cells considerably smaller than normal distributed throughout the endothelial cell population. There were also many large, elongated cells whose long axis showed a definite tendency to assume a similar directional orientation. The long axis of these cells seemed oriented toward the apex of the cone, and the cells appeared to have been stretched by the ectatic process. Many endothelial cells contained dark intracellular structures. Their significance is unknown. The single cornea in this series with a history of acute hydrops contained a localized area in which the endothelial cells were seven to ten times larger than normal. This suggests that rupture of the endothelium and Descemet's membrane, responsible for the acute edematous process, occurs at this site, and that the adjacent cells enlarged to fill the defect.

  15. EXPERIMENTAL STUDY ON THE CORNEAL ENDOTHELIUM OF TRAUMATIC CATARACT

    Institute of Scientific and Technical Information of China (English)

    1991-01-01

    The cell morphology of corneal endothelium in 84 mice with experimental traumatic cataract was investigated with stained corneal buttons. In the experimental group, the boundaries between adjacent corneal endothelial cells were significantly distorted, some cell boundaries manifested degenerative changes that led to coalescence of the cells. The mean density and mean area of endothelial cells of the controls showed significant difference from those of the experimental group during the 12 weeks of observ...

  16. The role of the graft endothelium in transplant rejection: evidence that endothelial activation may serve as a clinical marker for the development of chronic rejection.

    Science.gov (United States)

    Denton, M D; Davis, S F; Baum, M A; Melter, M; Reinders, M E; Exeni, A; Samsonov, D V; Fang, J; Ganz, P; Briscoe, D M

    2000-11-01

    In this review, we discuss the role of the allograft endothelium in the recruitment and activation of leukocytes during acute and chronic rejection. We discuss associations among endothelial activation responses, the expression of adhesion molecules, chemokines and chemokine receptors, and rejection; and we propose that endothelial vascular cellular adhesion molecule-1 (VCAM-1) may be used as a surrogate marker of acute rejection and allograft vasculopathy. In addition, we describe potential mechanistic interpretations of persistent endothelial cell (EC) expression of major histocompatibility complex (MHC) class II molecules in allorecognition. The graft endothelium may provide an antigen-specific signal to transmigrating, previously activated, T cells and may induce B7 expression on locally transmigrating leukocytes to promote costimulation. Taken together, these functions of the EC provide it with a potent regulatory role in rejection and in the maintenance of T-cell activation via the direct and/or the indirect pathways of allorecognition.

  17. Chronic treatment with Vitamin D lowers arterial blood pressure and reduces endothelium-dependent contractions in the aorta of the SHR

    DEFF Research Database (Denmark)

    Wong, Michael S K; Delansorne, Remi; Svenningsen, Per

    2010-01-01

    Vitamin D has cardiovascular protective effects besides regulating calcium homeostasis. To examine the chronic in vivo effect of a physiological dose 1,25-dihydroxyvitamin D3 on the occurrence of endothelium-dependent contractions, spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY......) were treated with the vitamin D derivative for six weeks. The serum 1,25-dihydroxyvitamin D3 level of both treated WKY and SHR was significantly higher than in untreated rats while the mean arterial blood pressure of the treated SHR was significantly lower than that of control SHR. Aortic rings...... that chronic treatment with 1,25-dihydroxyvitamin D3 modulates vascular tone and this modulation is accompanied by a lowered blood pressure, reduced expression of COX-1 mRNA and protein and reduced ROS level in SHR. The reduction in endothelium-dependent contractions does not involve the surge in endothelial...

  18. Mesoglycan: Clinical Evidences for Use in Vascular Diseases

    OpenAIRE

    Antonella Tufano; Claudia Arturo; Ernesto Cimino; Matteo Nicola Dario Di Minno; Mirko Di Capua; Anna Maria Cerbone; Giovanni Di Minno

    2010-01-01

    Vascular glycosaminoglycans (GAG) are essential components of the endothelium and vessel wall and have been shown to be involved in several biologic functions. Mesoglycan, a natural GAG preparation, is a polysaccharide complex rich in sulphur radicals with strong negative electric charge. It is extracted from porcine intestinal mucosa and is composed of heparan sulfate, dermatan sulfate, electrophoretically slow-moving heparin, and variable and minimal quantities of chondroitin sulfate. Data ...