WorldWideScience

Sample records for coronary endothelial dysfunction

  1. Oxidative Stress-Dependent Coronary Endothelial Dysfunction in Obese Mice.

    Science.gov (United States)

    Gamez-Mendez, Ana María; Vargas-Robles, Hilda; Ríos, Amelia; Escalante, Bruno

    2015-01-01

    Obesity is involved in several cardiovascular diseases including coronary artery disease and endothelial dysfunction. Endothelial Endothelium vasodilator and vasoconstrictor agonists play a key role in regulation of vascular tone. In this study, we evaluated coronary vascular response in an 8 weeks diet-induced obese C57BL/6 mice model. Coronary perfusion pressure in response to acetylcholine in isolated hearts from obese mice showed increased vasoconstriction and reduced vasodilation responses compared with control mice. Vascular nitric oxide assessed in situ with DAF-2 DA showed diminished levels in coronary arteries from obese mice in both basal and acetylcholine-stimulated conditions. Also, released prostacyclin was decreased in heart perfusates from obese mice, along with plasma tetrahydrobiopterin level and endothelium nitric oxide synthase dimer/monomer ratio. Obesity increased thromboxane A2 synthesis and oxidative stress evaluated by superoxide and peroxynitrite levels, compared with control mice. Obese mice treated with apocynin, a NADPH oxidase inhibitor, reversed all parameters to normal levels. These results suggest that after 8 weeks on a high-fat diet, the increase in oxidative stress lead to imbalance in vasoactive substances and consequently to endothelial dysfunction in coronary arteries.

  2. Microvascular Coronary Artery Spasm Presents Distinctive Clinical Features With Endothelial Dysfunction as Nonobstructive Coronary Artery Disease

    Science.gov (United States)

    Ohba, Keisuke; Sugiyama, Seigo; Sumida, Hitoshi; Nozaki, Toshimitsu; Matsubara, Junichi; Matsuzawa, Yasushi; Konishi, Masaaki; Akiyama, Eiichi; Kurokawa, Hirofumi; Maeda, Hirofumi; Sugamura, Koichi; Nagayoshi, Yasuhiro; Morihisa, Kenji; Sakamoto, Kenji; Tsujita, Kenichi; Yamamoto, Eiichiro; Yamamuro, Megumi; Kojima, Sunao; Kaikita, Koichi; Tayama, Shinji; Hokimoto, Seiji; Matsui, Kunihiko; Sakamoto, Tomohiro; Ogawa, Hisao

    2012-01-01

    events over 47.8±27.5 months. Conclusions Microvascular CAS causes distinctive clinical features and endothelial dysfunction that are important to recognize as nonobstructive coronary artery disease so that optimal care with calcium channel blockers can be provided. Clinical Trial Registration URL: www.umin.ac.jp/ctr. Unique identifier: UMIN000003839. PMID:23316292

  3. Endothelial dysfunction in patients with coronary artery disease: a comparison of three frequently reported tests.

    Science.gov (United States)

    Monnink, Stefan H J; van Haelst, Paul L; van Boven, Ad J; Stroes, Erik S G; Tio, René A; Plokker, Thijs W M; Smit, Andries J; Veeger, Nic J G M; Crijns, Harry J G M; van Gilst, Wiek H

    2002-01-01

    Endothelial dysfunction is useful in predicting future cardiovascular disease. At present several tests are available to test endothelial function: coronary diameter response to acetylcholine, forearm bloodflow (FBF) response to acetylcholine, and brachial artery flow-mediated dilative (FMD) response to postischemic hyperemia. This study aimed to compare the three most frequently reported endothelial function tests. Twenty-eight patients (19 males and nine females, mean age 57 years) referred for diagnostic coronary angiography were considered for endothelial function measurement in the coronary artery as well as in the forearm by FBF and FMD. Acetylcholine decreased the mean coronary diameter by 7.4% (SD 6.3%) and increased the mean FBF by 230% (SD 152%). Hyperemia increased the mean brachial diameter by 6.7% (SD 4.8%). The effect of acetylcholine on forearm resistance vessels was significantly related to the effect of acetylcholine on the coronary conduit vessels (P=0.039). Nonetheless, FMD was not related to FBF nor to the coronary response. In patients with mild coronary endothelial dysfunction, forearm vasoreactivity is related to the coronary response, provided that the same stimulus is used.

  4. Cardiogenic shock and coronary endothelial dysfunction predict cardiac allograft vasculopathy after heart transplantation.

    Science.gov (United States)

    Lopez-Fernandez, Silvia; Manito-Lorite, Nicolas; Gómez-Hospital, Joan Antoni; Roca, Josep; Fontanillas, Carles; Melgares-Moreno, Rafael; Azpitarte-Almagro, José; Cequier-Fillat, Angel

    2014-12-01

    Cardiac allograft vasculopathy remains one of the major causes of death post-heart transplantation. Its etiology is multifactorial and prevention is challenging. The aim of this study was to prospectively determine factors related to cardiac allograft vasculopathy after heart transplantation. This research was planned on 179 patients submitted to heart transplant. Performance of an early coronary angiography with endothelial function evaluation was scheduled at three-month post-transplant. Patients underwent a second coronary angiography after five-yr follow-up. At the 5- ± 2-yr follow-up, 43% of the patients had developed cardiac allograft vasculopathy (severe in 26% of them). Three independent predictors of cardiac allograft vasculopathy were identified: cardiogenic shock at the time of the transplant operation (OR: 6.49; 95% CI: 1.86-22.7, p = 0.003); early coronary endothelial dysfunction (OR: 3.9; 95% CI: 1.49-10.2, p = 0.006), and older donor age (OR: 1.05; 95% CI: 1.00-1.10, p = 0.044). Besides early endothelial coronary dysfunction and older donor age, a new predictor for development of cardiac allograft vasculopathy was identified: cardiogenic shock at the time of transplantation. In these high-risk patient subgroups, preventive measures (treatment of cardiovascular risk factors, use of novel immunosuppressive agents such as mTOR inhibitors) should be earlier and much more aggressive.

  5. Lack of association between Chlamydia Pneumoniae serology and endothelial dysfunction of coronary arteries

    Directory of Open Access Journals (Sweden)

    Oehme Albrecht

    2005-04-01

    Full Text Available Abstract Background Recent publications brought up the hypothesis that an infection with Chlamydia Pneumoniae (CP might be a major cause of coronary artery disease (CAD. Therefore, we investigated whether endothelial dysfunction (ED as a precursor of atherosclerosis might be detectable in patients with previous infection with CP but without angiographic evidence of CAD. Methods We included 16 patients (6 male / 10 female of 52 consecutive patients with normal coronary angiography who had typical angina pectoris and pathologic findings in the stress test. Exclusion criteria were: active smoker, elevated cholesterol, hypertension, age > 65 years, diabetes mellitus, treatment with ACE-inhibitors, or known CAD. Blood sample analysis for serum titer against CP (aCP-IgG was performed after coronary angiography. We looked for endothelial dysfunction analyzing the diameter of the left anterior descending coronary artery (LAD before and after acetylcholine (ACh i. c. Quantitative analysis of luminal diameter (LD was performed in at least two planes during baseline conditions and after ACh for 2 minutes in dosages of 7.2 μg/min and 36 μg/min with an infusion speed of 2 ml/min. Using Doppler guide wire, the coronary flow velocity was measured continuously in the LAD. The coronary flow velocity reserve (CFVR was measured after 20 μg adenosine i. c. Results 10 patients had an elevated aCP-IgG (> 1:8. 6 patients with negative titers (aCP-IgG ≤ 1:8 served as control (CTRL. Both groups were comparable in age, gender, angina class, results of non-invasive stress-test and the baseline values of LD and flow. In the CP positive group 3 patients (30% did not show an increase of LD after ACh as evidence of ED. In the CTRL group 4 patients (67 % had ED. There was no association between aCP-IgG and changes of coronary blood flow after ACh. All patients showed normal CFVR (3.0 ± 0.27 irrespective of their aCP-IgG values. Conclusion In patients with typical

  6. RELATIONSHIP BETWEEN ENDOTHELIAL DYSFUNCTION AND SERUM HOMOCYSTEINE IN PATIENTS WITH CORONARY LESIONS

    Institute of Scientific and Technical Information of China (English)

    Zhe Chen; Chun-sheng Li; Jian Zhang; Bao-sen Pang; Cheng-qing Xia; Xi-feng Liu

    2005-01-01

    Objective To investigate the relationship between vascular endothelial dysfunction and serum homocysteine (HCY)level in patients with coronary lesions.Methods Serum HCY, serum nitric oxide (NO), plasma endothelin-1 (ET-l), and circulation endothelial cell (CEC) were measured in 76 patients who received coronary angiography. Fifty-four patients with a stenosis of 50% or more at least in one coronary atery were as coronary artery disease (CAD) group. Other 22 cases with no recognizable plaque and/or stenosis were as control group. HCY level was detected using an enzyme immunoassay kit. NO concentration was measured using a nitrate reductase kit. Radio-immunoassay was applied to analyse the ET-1 level, and CEC was measured by flow cytometry.Results The levels of HCY, ET-l, and CEC in patients with coronary lesions were significantly increased in comparison with control group (P < 0.01), while NO level in CAD group was significantly lower compared with that in control (P <0.01). Using a multivariate stepwise regression analysis, HCY level had a positive correlation with ET-1 level (r = 0.420, P <0.05) and CECs number (r = 0.423, P < 0.05); and had a negative correlation with NO/ET-1 (r = -0.403, P < 0.05). But there was no significant correlation between HCY and NO levels.C, onclusions HCY might lead to endothelial cell injury, which would provide a plausible mechanism for the relationship between hyperhomocysteinemia and development of coronary artery disease. HCY can be considered as a predictor for preliminary or active coronary lesion.

  7. Endothelial dysfunction and the occurrence of radial artery spasm during transradial coronary procedures: The ACRA-Spasm study

    NARCIS (Netherlands)

    Van Der Heijden, D.J. (Dirk J.); M.A.H. van Leeuwen (Maarten); G.N. Janssens (Gladys N.); Hermie, J. (Jailen); M.J. Lenzen (Mattie); M.J.P.F. Ritt; P.M. van de Ven (Peter); F. Kiemeneij (Ferdinand); N. van Royen (Niels)

    2016-01-01

    textabstractAims: The aim of this study was to analyse the relation between endothelial dysfunction (ED) and the occurrence of radial artery spasm (RAS) during transradial coronary procedures. Methods and results: From May 2014 to June 2015, endothelial function was assessed by EndoPAT and FMD befor

  8. Endothelial and non-endothelial coronary blood flow reserve and left ventricular dysfunction in systemic hypertension

    Directory of Open Access Journals (Sweden)

    Aloísio Marchi Rocha

    2009-04-01

    Full Text Available OBJECTIVES: We evaluated the impairment of endothelium-dependent and endothelium-independent coronary blood flow reserve after administration of intracoronary acetylcholine and adenosine, and its association with hypertensive cardiac disease. INTRODUCTION: Coronary blood flow reserve reduction has been proposed as a mechanism for the progression of compensated left ventricular hypertrophy to ventricular dysfunction. METHODS: Eighteen hypertensive patients with normal epicardial coronary arteries on angiography were divided into two groups according to left ventricular fractional shortening (FS. Group 1 (FS >0.25: n=8, FS=0.29 ± 0.03; Group 2 (FS <0.25: n=10, FS= 0.17 ± 0.03. RESULTS: Baseline coronary blood flow was similar in both groups (Group 1: 80.15 ± 26.41 mL/min, Group 2: 100.09 ± 21.51 mL/min, p=NS. In response to adenosine, coronary blood flow increased to 265.1 ± 100.2 mL/min in Group 1 and to 300.8 ± 113.6 mL/min (p <0.05 in Group 2. Endothelium-independent coronary blood flow reserve was similar in both groups (Group 1: 3.31 ± 0.68 and Group 2: 2.97 ± 0.80, p=NS. In response to acetylcholine, coronary blood flow increased to 156.08 ± 36.79 mL/min in Group 1 and to 177.8 ± 83.6 mL/min in Group 2 (p <0.05. Endothelium-dependent coronary blood flow reserve was similar in the two groups (Group 1: 2.08 ± 0.74 and group Group 2: 1.76 ± 0.61, p=NS. Peak acetylcholine/peak adenosine coronary blood flow response (Group 1: 0.65 ± 0.27 and Group 2: 0.60 ± 0.17 and minimal coronary vascular resistance (Group 1: 0.48 ± 0.21 mmHg/mL/min and Group 2: 0.34 ± 0.12 mmHg/mL/min were similar in both groups (p= NS. Casual diastolic blood pressure and end-systolic left ventricular stress were independently associated with FS. CONCLUSIONS: In our hypertensive patients, endothelium-dependent and endothelium-independent coronary blood flow reserve vasodilator administrations had similar effects in patients with either normal or decreased left

  9. Elevated 20-HETE Impairs Coronary Collateral Growth in Metabolic Syndrome Via Endothelial Dysfunction.

    Science.gov (United States)

    Joseph, Gregory; Soler, Amanda; Hutcheson, Rebecca; Hunter, Ian; Bradford, Chastity; Hutcheson, Brenda; Gotlinger, Katherine H; Jiang, Houli; Falck, John R; Proctor, Spencer; Laniado Schwartzman, Michal; Rocic, Petra

    2016-12-23

    Coronary collateral growth (CCG) is impaired in metabolic syndrome (MetS). microRNA-145 (miR-145-Adv) delivery to our rat model of metabolic syndrome (JCR) completely restored and neutrophil depletion significantly improved CCG. We determined whether low endogenous levels of miR-145 in MetS allowed for elevated production of 20-hydroxyeicosatetraenoic acid (20-HETE), which in turn, resulted in excessive neutrophil accumulation and endothelial dysfunction leading to impaired CCG. Rats underwent 0-9 days of repetitive ischemia (RI). RI-induced cardiac CYP4F (neutrophil-specific 20-HETE synthase) expression and 20-HETE levels were increased (4-fold) in JCR vs. normal rats. miR-145-Adv and 20-HETE antagonists abolished, and neutrophil depletion (blocking antibodies) reduced (~60%) RI-induced increases in CYP4F expression and 20-HETE production in JCR rats. Impaired CCG in JCR rats (collateral-dependent blood flow using microspheres) was completely restored by 20-HETE antagonists ((collateral-dependent zone)CZ/(normal zone)NZ flow ratio was 0.76±0.07 in JCR+20-SOLA, 0.84±0.05 in JCR+20-HEDGE vs. 0.11±0.02 in JCR vs. 0.84±0.03 in normal rats). In JCR rats, elevated 20-HETE was associated with excessive expression of endothelial adhesion molecules and neutrophil infiltration which were reversed by miR-145-Adv. Endothelium-dependent vasodilation of coronary arteries, eNOS Ser1179 phosphorylation, eNOS-dependent NO.- production and endothelial cell survival were compromised in JCR rats. These parameters of endothelial dysfunction were completely reversed by 20-HETE antagonism or miR-145-Adv delivery, whereas neutrophil depletion resulted in partial reversal (~70%). We conclude that low miR-145 in MetS allows for increased 20-HETE, mainly from neutrophils, which compromises endothelial cell survival and function leading to impaired CCG. 20-HETE antagonists could provide viable therapy for restoration of CCG in MetS.

  10. Swimming training prevents coronary endothelial dysfunction in ovariectomized spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    E.R.G. Claudio

    Full Text Available Estrogen deficiency and hypertension are considered major risk factors for the development of coronary heart disease. On the other hand, exercise training is considered an effective form to prevent and treat cardiovascular diseases. However, the effects of swimming training (SW on coronary vascular reactivity in female ovariectomized hypertensive rats are not known. We aimed to evaluate the effects of SW on endothelium-dependent coronary vasodilation in ovariectomized hypertensive rats. Three-month old spontaneously hypertensive rats (SHR, n=50 were divided into four groups: sham (SH, sham plus swimming training (SSW, ovariectomized (OVX, and ovariectomized plus swimming training (OSW. The SW protocol (5 times/week, 60 min/day was conducted for 8 weeks. The vasodilatory response was measured in isolated hearts in the absence and presence of a nitric oxide synthase inhibitor (L-NAME, 100 µM. Cardiac oxidative stress was evaluated in situ by dihydroethidium fluorescence, while the expression of antioxidant enzymes (SOD-2 and catalase and their activities were assessed by western blotting and spectrophotometry, respectively. Vasodilation in SHR was significantly reduced by OVX, even in the presence of L-NAME, in conjunction with an increased oxidative stress. These effects were prevented by SW, and were associated with a decrease in oxidative stress. Superoxide dismutase 2 (SOD-2 and catalase expression increased only in the OSW group. However, no significant difference was found in the activity of these enzymes. In conclusion, SW prevented the endothelial dysfunction in the coronary bed of ovariectomized SHR associated with an increase in the expression of antioxidant enzymes, and therefore may prevent coronary heart disease in hypertensive postmenopausal women.

  11. Effect of pravastatin on endothelial dysfunction in children with medium to giant coronary aneurysms due to Kawasaki disease

    Institute of Scientific and Technical Information of China (English)

    Chao Duan; Zhong-Dong Du; Yu Wang; Li-Qun Jia

    2014-01-01

    Background: Ongoing low-grade inflammation and endothelial dysfunction persist in children with coronary lesions diagnosed with Kawasaki disease (KD). Statins, frequently used in the management of high cholesterol, have also shown to improve surrogate markers of infl ammation and endothelial dysfunction. This study was undertaken to investigate the effi cacy and safety of pravastatin in children with coronary artery aneurysms due to KD. Methods: The study enrolled 14 healthy children and 13 male children, aged 2-10 years, with medium-to-giant coronary aneurysms for at least 12 months after the onset of KD. Pravastatin was given orally to the KD group at a dose of 5 mg/day for children under 5 and 10 mg/day for children older than 5 years. To determine the effects of pravastatin on endothelial function, high-frequency ultrasound was performed before the start of the study and 6 months after pravastatin therapy. The parameters measured were brachial artery flow-mediated dilation (FMD), non-flow mediated dilation (NMD), and carotid artery stiffness index (SI). High sensitive C-reactive protein (hs-CRP) levels, the circulating endothelial progenitor cells (EPCs) number, and serum lipid profiles were also determined at baseline and after 6 months of pravastatin treatment. Results: Before treatment, the KD group had significantly decreased FMD (P0.05). No signifi cant complications were noted with paravastatin therapy. Conclusions: Pravastatin improves endothelial function and reduces low-grade chronic infl ammation in patients with coronary aneurysms due to KD. Children with coronary aneurysms due to KD may benefit from statin therapy.

  12. Impaired blood rheology is associated with endothelial dysfunction in patients with coronary risk factors.

    Science.gov (United States)

    Yagi, Hideki; Sumino, Hiroyuki; Aoki, Tomoyuki; Tsunekawa, Katsuhiko; Araki, Osamu; Kimura, Takao; Nara, Makoto; Ogiwara, Takayuki; Murakami, Masami

    2016-01-01

    To investigate the relationship between blood rheology and endothelial function in patients with coronary risk factors, brachial arterial flow-mediated vasodilatation (FMD), an index of endothelial function and blood passage time (BPT), an index of blood rheology, and fasting blood cell count, glucose metabolism, and plasma fibrinogen, lipid, C-reactive protein, and whole blood viscosity levels were measured in 95 patients with coronary risk factors and 37 healthy controls. Brachial arterial FMD after reactive hyperemia was assessed by ultrasonography. BPT was assessed using the microchannel method. In healthy controls, BPT significantly correlated with FMD (r = - 0.325, p rheology using the microchannel method may be useful in evaluating brachial arterial endothelial function as a marker of atherosclerosis in these patients.

  13. Long-term smoking causes more advanced coronary endothelial dysfunction in middle-aged smokers compared to young smokers

    Energy Technology Data Exchange (ETDEWEB)

    Naya, Masanao; Goto, Daisuke; Tsutsui, Hiroyuki [Hokkaido University Graduate School of Medicine, Department of Cardiovascular Medicine, Sapporo (Japan); Morita, Koichi; Manabe, Osamu; Hirata, Kenji; Tamaki, Nagara [Hokkaido University Graduate School of Medicine, Department of Nuclear Medicine, Sapporo (Japan); Yoshinaga, Keiichiro [Hokkaido University Graduate School of Medicine, Department of Molecular Imaging, Sapporo (Japan); Katoh, Chietsugu [Hokkaido University Graduate School of Medicine, Department of Health Science, Sapporo (Japan)

    2011-03-15

    Smoking cessation has been shown to normalize the coronary endothelial dysfunction in healthy young smokers. However, its effect has not been explored in middle-aged smokers with a longer history of smoking. Therefore, we compared the effects of smoking cessation on coronary vasomotor response between both young and middle-aged smokers and identified the predictor for its improvement. This study investigated 14 young healthy smokers (age 25.2 {+-} 2.3 years), 13 middle-aged smokers (age 42.0 {+-} 6.5 years) and 10 non-smokers. Myocardial blood flow (MBF) was measured by using {sup 15}O-water positron emission tomography (PET). At baseline, the ratio of MBF during the cold pressor test (CPT) to that at rest (MBF{sub CPT/rest}), the index of coronary endothelial function, was significantly decreased in both young and middle-aged smokers compared to non-smokers (1.24 {+-} 0.20 and 1.10 {+-} 0.39 vs 1.53 {+-} 0.18, p < 0.05 and p < 0.001, respectively). The ratio of MBF during adenosine triphosphate infusion to that at rest was significantly decreased in middle-aged smokers compared to young smokers and non-smokers (3.34 {+-} 1.52 vs 4.43 {+-} 0.92 and 4.69 {+-} 1.25, p < 0.05, respectively). MBF{sub CPT/rest} at 1 month after smoking cessation significantly increased in young smokers, but not in middle-aged smokers. By multivariate analysis, baseline serum malondialdehyde-modified low-density lipoprotein (MDA-LDL) was an independent predictor for the changes in MBF{sub CPT/rest} after smoking cessation ({beta} = -0.45, p < 0.05). Coronary endothelial dysfunction was reversible by short-term smoking cessation in young smokers, but not in middle-aged smokers, which was associated with serum MDA-LDL levels. Long-term smoking exposure could lead to more advanced coronary endothelial dysfunction and atherosclerosis possibly via oxidative stress. (orig.)

  14. Endothelial dysfunction in morbid obesity.

    Science.gov (United States)

    Mauricio, Maria Dolores; Aldasoro, Martin; Ortega, Joaquin; Vila, José María

    2013-01-01

    Morbid obesity is a chronic multifunctional disease characterized by an accumulation of fat. Epidemiological studies have shown that obesity is associated with cardiovascular and metabolic disorders. Endothelial dysfunction, as defined by an imbalance between relaxing and contractile endothelial factors, plays a central role in the pathogenesis of these cardiometabolic diseases. Diminished bioavailability of nitric oxide (NO) contributes to endothelial dysfunction and impairs endothelium- dependent vasodilatation. But this is not the only mechanism that drives to endothelial dysfunction. Obesity has been associated with a chronic inflammatory process, atherosclerosis, and oxidative stress. Moreover levels of asymmetrical dimethyl-L-arginine (ADMA), an endogenous inhibitor of endothelial nitric oxide synthase (eNOS), are elevated in obesity. On the other hand, increasing prostanoid-dependent vasoconstriction and decreasing vasodilator prostanoids also lead to endothelial dysfunction in obesity. Other mechanisms related to endothelin-1 (ET-1) or endothelium derived hyperpolarizing factor (EDHF) have been proposed. Bariatric surgery (BS) is a safe and effective means to achieve significant weight loss, but its use is limited only to patients with severe obesity including morbid obesity. BS also proved efficient in endothelial dysfunction reduction improving cardiovascular and metabolic comorbidities associated with morbid obesity such as diabetes, coronary artery disease, nonalcoholic fatty liver disease and cancer. This review will provide a brief overview of the mechanisms that link obesity with endothelial dysfunction, and how weight loss is a cornerstone treatment for cardiovascular comorbidities obesity-related. A better understanding of the mechanisms of obesity-induced endothelial dysfunction may help develop new therapeutic strategies to reduce cardiovascular morbidity and mortality.

  15. Endothelial dysfunction correlates with plasma fibrinogen and HDL cholesterol in type 2 diabetic patients with coronary artery disease.

    Science.gov (United States)

    Bosevski, M; Borozanov, V; Peovska, I; Georgievska-Ismail, L

    2007-01-01

    Assessment of endothelial dysfunction (ED) in type 2 diabetic patients with coronary artery disease (CAD) and estimation of correlation of ED with metabolic parameters: low HDL, hypertriglyceridemia, obesity, systolic blood pressure and with inflammatory-hemostatic parameters: CRP and fibrinogen. 42 patients (age 60.0 +/- 8.5 years) with diagnosed type 2 diabetes and CAD were randomly included in a cross sectional study. B-mode ultrasound system with a linear transducer 7.5 MHz was used for evaluation of flow mediated vasodilation in brachial artery (FMV). FMV was presented as the percentage increase in brachial artery diameter, within 30 s after limb ischemia, previously provoked by cuff inflation. Percentage value up to 10% was defined as ED. Bivariate linear correlation model presented significant correlation between plasma fibrinogen and FMV percentage, with r -0.47, p HDL HDL (OR 5.16, 95% CI 0.53-60.39) as factors correlated with the presence of endothelial dysfunction. These results presented plasma fibrinogen level and low HDL diabetic patients with coronary artery disease (Tab. 8, Fig. 1, Ref. 25). Full Text (Free, PDF) www.bmj.sk.

  16. Markers of inflammation and endothelial dysfunction are associated with incident cardiovascular disease, all-cause mortality, and progression of coronary calcification in type 2 diabetic patients with microalbuminuria

    DEFF Research Database (Denmark)

    von Scholten, Bernt Johan; Reinhard, Henrik; Hansen, Tine Willum

    2016-01-01

    BACKGROUND: We evaluated markers of inflammation and endothelial dysfunction and their associations with incident cardiovascular disease (CVD), all-cause mortality and progression of coronary artery calcium (CAC) in patients with type 2 diabetes (T2D) and microalbuminuria but without known coronary...... artery disease (CAD). METHODS: Prospective study including 200 patients receiving multifactorial treatment. Markers of inflammation (TNF-ɑ, sICAM-1, sICAM-3, hsCRP, SAA, IL-1β, IL-6, IL-8) and endothelial dysfunction (thrombomodulin, sVCAM-1, sICAM-1, sICAM-3, sE-selectin, sP-selectin) were measured...... with T2D and microalbuminuria without known CAD and receiving multifactorial treatment, biomarkers of inflammation and endothelial dysfunction were independently associated with CVD, all-cause mortality and CAC progression. Especially TNF-ɑ was a robust determinant, even after adjusting for NT...

  17. Cardiac Ischemia and Ischemia/Reperfusion Cause Wide Proteolysis of the Coronary Endothelial Luminal Membrane: Possible Dysfunctions

    Science.gov (United States)

    Arroyo-Flores, Blanca; Chi-Ahumada, Erika; Briones-Cerecero, Erika; Barajas-Espinosa, Alma; Perez-Aguilar, Sandra; de la Rosa, Ana Barba; Knabb, Maureen; Rubio, Rafael

    2011-01-01

    Background: Ischemia and ischemia-reperfusion (I/R) are common clinical insults that disrupt the molecular structure of coronary vascular endothelial luminal membrane (VELM) that result in diverse microvasculature dysfunctions. However, the knowledge of the associated biochemical changes is meager. We hypothesized that ischemia and I/R-induced structural and functional VELM alterations result from biochemical changes. First, these changes need to be described and later the mechanisms behind be identified. Methods: During control conditions, in isolated perfused rat hearts VELM proteins were labeled with biotin. The groups of hearts were: control (C), no flow ischemia (I; 25 min), and I/R (I; 25 min, reperfusion 30 min). The biotinylated luminal endothelial membrane proteins in these three different groups were examined by 2-D electrophoresis and identified. But, it must be kept in mind the proteins were biotin-labeled during control. Results: A comparative analysis of the protein profiles under the 3 conditions following 2D gel electrophoresis showed differences in the molecular weight distribution such that MWC > MWI > MWI/R. Similar analysis for isoelectric points (pHi) showed a shift toward more acidic pHi under ischemic conditions. Of 100 % proteins identified during control 66% and 88% changed their MW-pHi during ischemia and I/R respectively. Among these lost proteins there were 9 proteins identified as adhesins and G-protein coupled receptors. General significance: I and I/R insults alter MW-pHi of most luminal glycocalyx proteins due to the activation of nonspecific hydrolizing mechanisms; suspect metalloproteases and glycanases. This makes necessary the identification of hydrolyzing enzymes reponsible of multiple microvascular dysfunctions in order to maintain the integrity of vascular endothelial membrane. VELM must become a target of future therapeutics. PMID:22262983

  18. Endothelial dysfunction: EDCF revisited

    Institute of Scientific and Technical Information of China (English)

    PAUL M Vanhoutte

    2008-01-01

    Endothelial cells can initiate contraction (constriction) of the vascular smooth muscle cells that surround them. Such endothelium-dependent, acute increases in contractile tone can be due to the withdrawal of the production of nitric oxide, to the production of vasoconstrictor peptides (angiotensin Ⅱ, endothelin-1), to the formation of oxygen-derived free radicals(superoxide anions) and/or the release of vasoconstrictor metabolites of arachidonic acid. The latter have been termed endothelium-derived contracting factor (EDCF) as they can contribute to moment-to-moment changes in contractile activity of the underlying vascular smooth muscle cells. To judge from animal experiments, EDCF-mediated responses are exacerbated when the production of nitric oxide is impaired as well as by aging, spontaneous hypertension and diabetes. To judge from human studies, they contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive patients. Since EDCF causes vasoconstriction by activation of the TP-receptors on the vascular smooth muscle cells, selective antagonists at these receptors prevent endothelium-dependent contractions, and curtail the endothelial dysfunction in hypertension and diabetes.

  19. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation.

    Science.gov (United States)

    Paulus, Walter J; Tschöpe, Carsten

    2013-07-23

    Over the past decade, myocardial structure, cardiomyocyte function, and intramyocardial signaling were shown to be specifically altered in heart failure with preserved ejection fraction (HFPEF). A new paradigm for HFPEF development is therefore proposed, which identifies a systemic proinflammatory state induced by comorbidities as the cause of myocardial structural and functional alterations. The new paradigm presumes the following sequence of events in HFPEF: 1) a high prevalence of comorbidities such as overweight/obesity, diabetes mellitus, chronic obstructive pulmonary disease, and salt-sensitive hypertension induce a systemic proinflammatory state; 2) a systemic proinflammatory state causes coronary microvascular endothelial inflammation; 3) coronary microvascular endothelial inflammation reduces nitric oxide bioavailability, cyclic guanosine monophosphate content, and protein kinase G (PKG) activity in adjacent cardiomyocytes; 4) low PKG activity favors hypertrophy development and increases resting tension because of hypophosphorylation of titin; and 5) both stiff cardiomyocytes and interstitial fibrosis contribute to high diastolic left ventricular (LV) stiffness and heart failure development. The new HFPEF paradigm shifts emphasis from LV afterload excess to coronary microvascular inflammation. This shift is supported by a favorable Laplace relationship in concentric LV hypertrophy and by all cardiac chambers showing similar remodeling and dysfunction. Myocardial remodeling in HFPEF differs from heart failure with reduced ejection fraction, in which remodeling is driven by loss of cardiomyocytes. The new HFPEF paradigm proposes comorbidities, plasma markers of inflammation, or vascular hyperemic responses to be included in diagnostic algorithms and aims at restoring myocardial PKG activity.

  20. Endothelial dysfunction, carotid artery plaque burden, and conventional exercise-induced myocardial ischemia as predictors of coronary artery disease prognosis

    Directory of Open Access Journals (Sweden)

    Ishihara Masayuki

    2008-12-01

    Full Text Available Abstract Background While both flow-mediated vasodilation (FMD in the brachial artery (BA, which measures endothelium-dependent vasodilatation, and intima-media thickness (IMT in the carotid artery are correlated with the prognosis of coronary artery disease (CAD, it is not clear which modality is a better predictor of CAD. Furthermore, it has not been fully determined whether either of these modalities is superior to conventional ST-segment depression on exercise stress electrocardiogram (ECG as a predictor. Thus, the goal of the present study was to compare the predictive value of FMD, IMT, and stress ECG for CAD prognosis. Methods and Results A total of 103 consecutive patients (62 ± 9 years old, 79 men with clinically suspected CAD had FMD and nitroglycerin-induced dilation (NTG-D in the BA, carotid artery IMT measurement using high-resolution ultrasound, and exercise treadmill testing. The 73 CAD patients and 30 normal coronary patients were followed for 50 ± 15 months. Fifteen patients had coronary events during this period (1 cardiac death, 2 non-fatal myocardial infarctions, 3 acute heart failures, and 9 unstable anginas. On Kaplan-Meier analysis, only FMD and stress ECG were significant predictors for cardiac events. Conclusion Brachial endothelial function as reflected by FMD and conventional exercise stress testing has comparable prognostic value, whereas carotid artery plaque burden appears to be less powerful for predicting future cardiac events.

  1. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome

    Directory of Open Access Journals (Sweden)

    Hadi AR Hadi

    2005-10-01

    Full Text Available Hadi AR Hadi, Cornelia S Carr, Jassim Al SuwaidiDepartment of Cardiology and Cardiovascular Surgery, Hamad General Hospital – Hamad Medical Corporation, Doha, State of QatarAbstract: Endothelial dysfunction is a well established response to cardiovascular risk factors and precedes the development of atherosclerosis. Endothelial dysfunction is involved in lesion formation by the promotion of both the early and late mechanisms of atherosclerosis including up-regulation of adhesion molecules, increased chemokine secretion and leukocyte adherence, increased cell permeability, enhanced low-density lipoprotein oxidation, platelet activation, cytokine elaboration, and vascular smooth muscle cell proliferation and migration. Endothelial dysfunction is a term that covers diminished production/availability of nitric oxide and/or an imbalance in the relative contribution of endothelium-derived relaxing and contracting factors. Also, when cardiovascular risk factors are treated the endothelial dysfunction is reversed and it is an independent predictor of cardiac events. We review the literature concerning endothelial dysfunction in regard to its pathogenesis, treatment, and outcome.Keywords: endothelial dysfunction, coronary atherosclerosis, coronary artery disease

  2. Endothelial dysfunction in diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Hadi AR Hadi

    2008-01-01

    Full Text Available Hadi AR Hadi, Jassim Al SuwaidiDepartment of Cardiology and Cardiovascular Surgery, Hamad General Hospital – Hamad Medical Corporation, Doha, State of Qatar; Department of Cardioscience, Sheikh Khalifa Medical City, Abu Dhabi, UAEAbstract: Diabetes mellitus is associated with an increased risk of cardiovascular disease, even in the presence of intensive glycemic control. Substantial clinical and experimental evidence suggest that both diabetes and insulin resistance cause a combination of endothelial dysfunctions, which may diminish the anti-atherogenic role of the vascular endothelium. Both insulin resistance and endothelial dysfunction appear to precede the development of overt hyperglycemia in patients with type 2 diabetes. Therefore, in patients with diabetes or insulin resistance, endothelial dysfunction may be a critical early target for preventing atherosclerosis and cardiovascular disease. Microalbuminuria is now considered to be an atherosclerotic risk factor and predicts future cardiovascular disease risk in diabetic patients, in elderly patients, as well as in the general population. It has been implicated as an independent risk factor for cardiovascular disease and premature cardiovascular mortality for patients with type 1 and type 2 diabetes mellitus, as well as for patients with essential hypertension. A complete biochemical understanding of the mechanisms by which hyperglycemia causes vascular functional and structural changes associated with the diabetic milieu still eludes us. In recent years, the numerous biochemical and metabolic pathways postulated to have a causal role in the pathogenesis of diabetic vascular disease have been distilled into several unifying hypotheses. The role of chronic hyperglycemia in the development of diabetic microvascular complications and in neuropathy has been clearly established. However, the biochemical or cellular links between elevated blood glucose levels, and the vascular lesions remain

  3. Endothelial dysfunction: a comprehensive appraisal

    Directory of Open Access Journals (Sweden)

    Vilariño Jorge O

    2006-02-01

    Full Text Available Abstract The endothelium is a thin monocelular layer that covers all the inner surface of the blood vessels, separating the circulating blood from the tissues. It is not an inactive organ, quite the opposite. It works as a receptor-efector organ and responds to each physical or chemical stimulus with the release of the correct substance with which it may maintain vasomotor balance and vascular-tissue homeostasis. It has the property of producing, independently, both agonistic and antagonistic substances that help to keep homeostasis and its function is not only autocrine, but also paracrine and endocrine. In this way it modulates the vascular smooth muscle cells producing relaxation or contraction, and therefore vasodilatation or vasoconstriction. The endothelium regulating homeostasis by controlling the production of prothrombotic and antithrombotic components, and fibrynolitics and antifibrynolitics. Also intervenes in cell proliferation and migration, in leukocyte adhesion and activation and in immunological and inflammatory processes. Cardiovascular risk factors cause oxidative stress that alters the endothelial cells capacity and leads to the so called endothelial "dysfunction" reducing its capacity to maintain homeostasis and leads to the development of pathological inflammatory processes and vascular disease. There are different techniques to evaluate the endothelium functional capacity, that depend on the amount of NO produced and the vasodilatation effect. The percentage of vasodilatation with respect to the basal value represents the endothelial functional capacity. Taking into account that shear stress is one of the most important stimulants for the synthesis and release of NO, the non-invasive technique most often used is the transient flow-modulate "endothelium-dependent" post-ischemic vasodilatation, performed on conductance arteries such as the brachial, radial or femoral arteries. This vasodilatation is compared with the

  4. Coronary microvascular dysfunction: an update

    Science.gov (United States)

    Crea, Filippo; Camici, Paolo G.; Bairey Merz, Cathleen Noel

    2014-01-01

    Many patients undergoing coronary angiography because of chest pain syndromes, believed to be indicative of obstructive atherosclerosis of the epicardial coronary arteries, are found to have normal angiograms. In the past two decades, a number of studies have reported that abnormalities in the function and structure of the coronary microcirculation may occur in patients without obstructive atherosclerosis, but with risk factors or with myocardial diseases as well as in patients with obstructive atherosclerosis; furthermore, coronary microvascular dysfunction (CMD) can be iatrogenic. In some instances, CMD represents an epiphenomenon, whereas in others it is an important marker of risk or may even contribute to the pathogenesis of cardiovascular and myocardial diseases, thus becoming a therapeutic target. This review article provides an update on the clinical relevance of CMD in different clinical settings and also the implications for therapy. PMID:24366916

  5. Polyphenols in preventing endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Sylwia Biegańska-Hensoldt

    2017-03-01

    Full Text Available One of the main causes of mortality in developed countries is atherosclerosis. The pathogenesis of atherosclerosis is associated with endothelial dysfunction. Consumption of food rich in natural antioxidants including polyphenols significantly improves endothelial cells functions.Polyphenols have a beneficial effect on the human body and play an important part in protecting the cardiovascular system. Polyphenols present in food have antioxidant, anti-inflammatory, antihypertensive, antithrombotic and antiproliferative properties. Catechins cause an increase in the activity of endothelial nitric oxide synthase (eNOS and increased production of nitric oxide (NO and decrease in blood pressure. Catechins also reduce platelet adhesion, lower the concentration of C-reactive protein and tumor necrosis factor alpha and interleukin-6. Resveratrol inhibits NADPH oxidase expression, increases the expression of eNOS and NO production as well as decreases the expression of proinflammatory cytokines, and also lowers the concentration of the soluble forms of adhesion molecules – sICAM-1 and sVCAM-1 in blood. Quercetin reduces the blood level of low density lipoprotein cholesterol, lowers blood pressure, reduces the concentration of C-reactive protein and F2-isoprostane level. Curcumin has antagonistic activity to homocysteine. Curcumin increases the expression of eNOS and reduces oxidative DNA damage in rat cardiomyocytes. Numerous attempts are taken for improving the bioavailability of polyphenols in order to increase their use in the body.

  6. Changes of junctions of endothelial cells in coronary sclerosis:A review

    Institute of Scientific and Technical Information of China (English)

    Li-Zi Zhang; Sun Lei

    2016-01-01

    Atherosclerosis, the major cause of cardiovascular diseases, has been a leading contributor to morbidity and mortality in the United States and it has been on the rise globally. Endothelial cellecell junctions are critical for vascular integrity and maintenance of vascular function. Endothelial cell junctions dysfunction is the onset step of future coronary events and coronary artery dis-ease.

  7. Endothelial Dysfunction in Renal Failure: Current Update.

    Science.gov (United States)

    Radenkovic, Miroslav; Stojanovic, Marko; Prostran, Milica

    2016-01-01

    Endothelial dysfunction is principally characterized by impaired endothelium- dependent transduction mechanisms related to vascular relaxation, as an outcome of decreased release of endothelium-derived relaxing factors, mainly nitric oxide, as well as augmented oxidative stress, increased inflammation and predominance of vascular action produced by endothelium-derived contracting factors. Current data strongly suggest that pathological development of different types of kidney impairment with further progression to renal failure includes notable vascular changes associated with endothelial dysfunction. In accordance, this scientific field represents an advancing area of investigation, involving different biomarkers of endothelial dysfunction linked to renal impairment, as well as clinical findings with new information that can provide a more comprehensive understanding of the role of endothelial dysfunction in kidney disease. With regards to quoted facts, the aim of this article was to review the latest data related to endothelial dysfunction and renal failure by selection of relevant articles released from 2010 to 2015.

  8. Renal dysfunction and coronary disease: a high-risk combination.

    Science.gov (United States)

    Schiele, Francois

    2009-01-01

    Chronic kidney dysfunction is recognized as a risk factor for atherosclerosis and complicates strategies and treatment. Therefore, it is important for cardiologists not only to detect and measure potential kidney dysfunction, but also to know the mechanisms by which the heart and kidney interact, and recognize that in cases of acute coronary syndrome, the presence of renal dysfunction increases the risk of death. The detection and classification of kidney dysfunction into 5 stages is based on the estimated glomerular filtration rate (GFR). The presence of hypertension, endothelial dysfunction, dyslipidemia, inflammation, activation of the renin-angiotensin system and specific calcifications are the main mechanisms by which renal dysfunction can induce or compound cardiovascular disease. The magnitude of renal dysfunction is related to the cardiovascular risk; a linear relation links the extent of GFR decrease and the risk of cardiovascular events. Renal dysfunction and acute coronary syndromes are a dangerous combination: more common comorbidities, more frequent contraindications for effective drugs and higher numbers of drug-related adverse events such as bleeding partially explain the higher mortality in patients with renal dysfunction. In addition, despite higher risk, patients with renal dysfunction often receive fewer guideline-recommended treatments even in the absence of contraindications. Renal dysfunction induces and promotes atherosclerosis by various pathophysiologic pathways and is associated with other cardiovascular risk factors and underuse of appropriate therapy. Therefore, the assessment of renal function is an important step in the risk evaluation of patients with coronary artery disease.

  9. Vascular endothelial dysfunction and pharmacological treatment

    Institute of Scientific and Technical Information of China (English)

    Jin; Bo; Su

    2015-01-01

    The endothelium exerts multiple actions involving regulation of vascular permeability and tone, coagulation and fibrinolysis, inflammatory and immunological reactions and cell growth. Alterations of one or more such actions may cause vascular endothelial dysfunction. Different risk factors such as hypercholesterolemia, homocystinemia, hyperglycemia, hypertension, smo-king, inflammation, and aging contribute to the development of endothelial dysfunction. Mechanisms underlying endothelial dysfunction are multiple, including impaired endothelium-derived vasodilators, enhanced endothelium-derived vasoconstrictors, over production of reactive oxygen species and reactive nitrogen species, activation of inflammatory and immune reactions, and imbalance of coagulation and fibrinolysis. Endothelial dysfunction occurs in many cardiovascular diseases, which involves different mechanisms, depending on specific risk factors affecting the disease. Among these mechanisms, a reduction in nitric oxide(NO) bioavailability plays a central role in the development of endothelial dysfunction because NO exerts diverse physiological actions, including vasodilation, anti-inflammation, antiplatelet, antiproliferation and antimigration. Experimental and clinical studies have demonstrated that a variety of currently used or investigational drugs, such as angiotensin-converting enzyme inhibitors, angiotensin AT1 receptors blockers, angiotensin-(1-7), antioxidants, beta-blockers, calcium channel blockers, endothelial NO synthase enhancers, phosphodiesterase 5 inhibitors, sphingosine-1-phosphate and statins, exert endothelial protective effects. Due to the difference in mechanisms of action, these drugs need to be used according to specific mechanisms underlying endothelial dysfunction of the disease.

  10. Prognostic value of endothelial dysfunction in type 1 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Ana; Marice; Ladeia; Raphael; Ribeiro; Sampaio; Maiara; CostaHita; Luis; F; Adan

    2014-01-01

    Patients with diabetes mellitus are at high risk of developing atherosclerosis, associated with higher rates of micro and macro vascular involvement such as coronary artery disease and renal disease. The role of hyperglycemia to induce synthesis of reactive oxygen species by the oxidation of glucose, leading to an increased production of advanced glycosylation end products, as well as inflammation and oxidative stress has been proposed as a possible mechanism in the pathogenesis of endothelial dysfunction(ED). The interaction between C-peptide- the connecting segment of pro-insulin-and nitric oxide in vasodilation is also discussed. Therefore, endothelial dysfunction has been identified as an early marker of vascular disorder in type 1 and type 2 diabetes mellitus. In some other diseases, ED has been considered an independent predictor of vascular disease, regardless of the method used. Studies have demonstrated the importance of endothelial dysfunction as an useful tool for identifying the risk of vascular complications in patients with type 1 diabetes mellitus, particularly as regards to renal impairment. The aim of this review is to clarify the prognostic value of endothelial dysfunction as a marker of vascular disease in these subjects.

  11. [Endothelial dysfunction in hypertension--clinical implications].

    Science.gov (United States)

    Kosmala, Wojciech

    2002-04-01

    Endothelial cells produce both vasodilatating compounds as nitric oxide, prostacycline, endothelial derived hyperpolarising factor and counteracting substances known as endothelial derived contracting factors: endothelin, tromboxan A2, prostaglandin H2, free oxygen radicals. Natural balance between both groups affects blood perfusion of various tissues and constitutes important element in blood pressure control. More and more attention is paid to endothelial dysfunction in patogenesis of hypertension. In a number of studies endothelial dysfunction in hypertensive patients was found out as decreased release of nitric oxide or increased production of endothelin. Principle mechanism of impaired function of endothelium in hypertension seems to be decreased production and increased degradation of nitric oxide mainly due to free oxygen radicals. Favorable effects in improvement of endothelial function were achieved by using ACE inhibitors, AT1 receptor blockers and calcium channel antagonists.

  12. [Endothelial dysfunction in pathogenesis of duodenal ulcer].

    Science.gov (United States)

    Oparin, A G; Oparin, A A

    2002-01-01

    It is shown that in patients with ulcer associated with Helicobacter pylori (HP) there is a close correlation between the severity of the lesion of gastroduodenal protective mucous barrier and that of endothelial dysfunction manifesting in elevated level of endothelin-1, serum levels of TBK-active products, inhibition of blood flow and narrowing of the celiac trunk. The correlation becomes stronger with expanding contamination of gastroduodenal mucosa with HP. Thus, HP may participate in breaking the protective mucous barrier in endothelial dysfunction.

  13. Endothelial dysfunction and inflammation in asymptomatic proteinuria

    OpenAIRE

    Paisley, K.E.; Beaman, M; Tooke, J. E.; Mohamed-Ali, V; Lowe, G. D. O.; Shore, A C

    2003-01-01

    Background. Proteinuria is associated with vascular risk and a systemic increase in vascular permeability. Endothelial dysfunction occurs early in atherosclerosis and modulates vascular permeability. Vascular risk and chronic inflammation are associated. This study investigates whether the increased vascular permeability in proteinuria reflects systemic endothelial dysfunction and chronic inflammation. Methods. Twenty-one patients with asymptomatic proteinuria (1.29 g/24 h; range 0.18 to 3.17...

  14. Low zinc levels is associated with increased inflammatory activity but not with atherosclerosis, arteriosclerosis or endothelial dysfunction among the very elderly

    Directory of Open Access Journals (Sweden)

    Rafaela C.S. De Paula

    2014-12-01

    General significance: In the very elderly plasma concentrations or daily intake of zinc is not related to endothelial dysfunction, arteriosclerosis or atherosclerotic burden at coronary or carotid arteries.

  15. Endothelial dysfunction after non-cardiac surgery

    DEFF Research Database (Denmark)

    Søndergaard, E S; Fonnes, S; Gögenur, I

    2015-01-01

    BACKGROUND: More than 50% of patients with increased troponin levels after non-cardiac surgery have an impaired endothelial function pre-operatively. Non-invasive markers of endothelial function have been developed for the assessment of endothelial dysfunction. The aim of this paper was to system......BACKGROUND: More than 50% of patients with increased troponin levels after non-cardiac surgery have an impaired endothelial function pre-operatively. Non-invasive markers of endothelial function have been developed for the assessment of endothelial dysfunction. The aim of this paper...... was to systematically review the literature to evaluate the association between non-cardiac surgery and non-invasive markers of endothelial function. METHODS: A systematic search was conducted in MEDLINE, EMBASE and Cochrane Library Database according to the PRISMA guidelines. Endothelial dysfunction was described only...... with non-invasive measurements done both pre- and post-operatively and published in English. All types of non-cardiac surgery and both men and women of all ages were included. RESULTS: We found 1722 eligible studies in our search, and of these, five studies fulfilled our inclusion and exclusion criteria...

  16. Endothelial Dysfunction in Chronic Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Curtis M. Steyers

    2014-06-01

    Full Text Available Chronic inflammatory diseases are associated with accelerated atherosclerosis and increased risk of cardiovascular diseases (CVD. As the pathogenesis of atherosclerosis is increasingly recognized as an inflammatory process, similarities between atherosclerosis and systemic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel diseases, lupus, psoriasis, spondyloarthritis and others have become a topic of interest. Endothelial dysfunction represents a key step in the initiation and maintenance of atherosclerosis and may serve as a marker for future risk of cardiovascular events. Patients with chronic inflammatory diseases manifest endothelial dysfunction, often early in the course of the disease. Therefore, mechanisms linking systemic inflammatory diseases and atherosclerosis may be best understood at the level of the endothelium. Multiple factors, including circulating inflammatory cytokines, TNF-α (tumor necrosis factor-α, reactive oxygen species, oxidized LDL (low density lipoprotein, autoantibodies and traditional risk factors directly and indirectly activate endothelial cells, leading to impaired vascular relaxation, increased leukocyte adhesion, increased endothelial permeability and generation of a pro-thrombotic state. Pharmacologic agents directed against TNF-α-mediated inflammation may decrease the risk of endothelial dysfunction and cardiovascular disease in these patients. Understanding the precise mechanisms driving endothelial dysfunction in patients with systemic inflammatory diseases may help elucidate the pathogenesis of atherosclerosis in the general population.

  17. Direct relationship between levels of TNF-α expression and endothelial dysfunction in reperfusion injury

    OpenAIRE

    Zhang, Cuihua; Wu, Junxi; Xu, Xiangbin; Potter, Barry J.; Gao, Xue

    2010-01-01

    We previously found that myocardial ischemia/reperfusion (I/R) initiates expression of tumor necrosis factor-α (TNF) leading to coronary endothelial dysfunction. However, it is not clear whether there is a direct relationship between levels of TNF expression and endothelial dysfunction in reperfusion injury. We studied levels of TNF expression by using different transgenic animals expressing varying amounts of TNF in I/R. We crossed TNF overexpression (TNF++/++) with TNF knockout (TNF−/−) mic...

  18. Dipyridamole, cold pressor test, and demonstration of endothelial dysfunction: a PET study of myocardial perfusion in diabetes

    DEFF Research Database (Denmark)

    Kjaer, Andreas; Meyer, Christian; Nielsen, Flemming S;

    2003-01-01

    Much evidence suggests endothelial dysfunction to be present in non-insulin-dependent diabetes mellitus (NIDDM) and to be important for the development of myocardial ischemia. Endothelial function in the coronary vessels may be studied in various ways. We compared the effect of cold pressor testing...... coronary disease, endothelial dysfunction is strongly suggested by an impaired increase in CBF both to dipyridamole and to CPT. This dysfunction was reversed by infusion of an ACE inhibitor. Although ACE inhibition during CPT did induce significant increases in CBF in the patients, the changes during ACE...

  19. Methylglyoxal promotes oxidative stress and endothelial dysfunction.

    Science.gov (United States)

    Sena, Cristina M; Matafome, Paulo; Crisóstomo, Joana; Rodrigues, Lisa; Fernandes, Rosa; Pereira, Paulo; Seiça, Raquel M

    2012-05-01

    Modern diets can cause modern diseases. Research has linked a metabolite of sugar, methylglyoxal (MG), to the development of diabetic complications, but the exact mechanism has not been fully elucidated. The present study was designed to investigate whether MG could directly influence endothelial function, oxidative stress and inflammation in Wistar and Goto-Kakizaki (GK) rats, an animal model of type 2 diabetes. Wistar and GK rats treated with MG in the drinking water for 3 months were compared with the respective control rats. The effects of MG were investigated on NO-dependent vasorelaxation in isolated rat aortic arteries from the different groups. Insulin resistance, NO bioavailability, glycation, a pro-inflammatory biomarker monocyte chemoattractant protein-1 (MCP-1) and vascular oxidative stress were also evaluated. Methylglyoxal treated Wistar rats significantly reduced the efficacy of NO-dependent vasorelaxation (pMethylglyoxal treated GK rats significantly aggravated endothelial dysfunction, oxidative stress, AGEs accumulation and diminished NO bioavailability when compared with control GK rats. These results indicate that methylglyoxal induced endothelial dysfunction in normal Wistar rats and aggravated the endothelial dysfunction present in GK rats. The mechanism is at least in part by increasing oxidative stress and/or AGEs formation with a concomitant increment of inflammation and a decrement in NO bioavailability. The present study provides further evidence for methylglyoxal as one of the causative factors in the pathogenesis of atherosclerosis and development of macrovascular diabetic complication.

  20. The female athlete triad and endothelial dysfunction.

    Science.gov (United States)

    Lanser, Erica M; Zach, Karie N; Hoch, Anne Z

    2011-05-01

    A tremendous increase in the number of female athletes of all ages and abilities has occurred in the past 35 years. In general, sports and athletic competition produce healthier and happier women. However, explosion in participation has revealed clear gender-specific injuries and medical conditions unique to the female athlete. This article focuses on the latest advances in our knowledge of the female athlete triad and the relationship between athletic-associated amenorrhea and endothelial dysfunction. Treatment of vascular dysfunction with folic acid is also discussed.

  1. SECONDARY MITOCHONDRIAL DYSFUNCTION IN ACUTE CORONARY SYNDROME

    Directory of Open Access Journals (Sweden)

    Y. A. Vasyuk

    2015-12-01

    Full Text Available So-called “metabolic” direction has been developing intensively during last decades. Its aim is the theoretical and practical analysis of the role of metabolic disorders in initiation and progression of many diseases. The pathogenic peculiarities of acute coronary syndrome (ACS which result in developing of secondary mitochondrial dysfunction are considered as a subject of this review. The methods of laboratory diagnosis of mitochondrial dysfunction and possibilities of its pharmaceutical correction in patients with ACS are reviewed.

  2. Role of toll-like receptor 2 and toll-like receptor 4 in post-ischemic coronary endothelial dysfunction in mice

    Institute of Scientific and Technical Information of China (English)

    J.FAVRE; P.MUSETTE; JPHENRY; C.THUILLEZ; V.RICHARD

    2004-01-01

    AIM: A growing body of evidence suggests a role of the toll-like receptors (TLR) in inflammatory processes. In addition to LPS,TLR are activated by many endogenous ligands such as heat shock proteins and oxygeil-derived free radicals which are both produced during cardiac ischemia-reperfusion (I/R). Among TLR,TLR-2 and TLR-4 are expressed in endothelial and myocardial cells and appear to regulate neutrophil-endothelial interactions.Since neutrophil adhesion is a critical event in endothelial injury

  3. Endothelial dysfunction: the early predictor of atherosclerosis.

    Science.gov (United States)

    Mudau, Mashudu; Genis, Amanda; Lochner, Amanda; Strijdom, Hans

    2012-05-01

    Since the discovery in the 1980s that nitric oxide (NO) is in fact the elusive endothelium-derived relaxing factor, it has become evident that NO is not only a major cardiovascular signalling molecule, but that changes in its bioavailability are crucial in determining whether atherosclerosis will develop or not. Sustained high levels of harmful circulating stimuli associated with cardiovascular risk factors such as diabetes mellitus elicit responses in endothelial cells that appear sequentially, namely endothelial cell activation and endothelial dysfunction (ED). ED, characterised by reduced NO bioavailability, is now recognised by many as an early, reversible precursor of atherosclerosis. The pathogenesis of ED is multifactorial; however, oxidative stress appears to be the common underlying cellular mechanism in the ensuing loss of vaso-active, inflammatory, haemostatic and redox homeostasis in the body's vascular system. The role of ED as a pathophysiological link between early endothelial cell changes associated with cardiovascular risk factors and the development of ischaemic heart disease is of importance to basic scientists and clinicians alike.

  4. Brain endothelial dysfunction in cerebral adrenoleukodystrophy.

    Science.gov (United States)

    Musolino, Patricia L; Gong, Yi; Snyder, Juliet M T; Jimenez, Sandra; Lok, Josephine; Lo, Eng H; Moser, Ann B; Grabowski, Eric F; Frosch, Matthew P; Eichler, Florian S

    2015-11-01

    See Aubourg (doi:10.1093/awv271) for a scientific commentary on this article.X-linked adrenoleukodystrophy is caused by mutations in the ABCD1 gene leading to accumulation of very long chain fatty acids. Its most severe neurological manifestation is cerebral adrenoleukodystrophy. Here we demonstrate that progressive inflammatory demyelination in cerebral adrenoleukodystrophy coincides with blood-brain barrier dysfunction, increased MMP9 expression, and changes in endothelial tight junction proteins as well as adhesion molecules. ABCD1, but not its closest homologue ABCD2, is highly expressed in human brain microvascular endothelial cells, far exceeding its expression in the systemic vasculature. Silencing of ABCD1 in human brain microvascular endothelial cells causes accumulation of very long chain fatty acids, but much later than the immediate upregulation of adhesion molecules and decrease in tight junction proteins. This results in greater adhesion and transmigration of monocytes across the endothelium. PCR-array screening of human brain microvascular endothelial cells after ABCD1 silencing revealed downregulation of both mRNA and protein levels of the transcription factor c-MYC (encoded by MYC). Interestingly, MYC silencing mimicked the effects of ABCD1 silencing on CLDN5 and ICAM1 without decreasing the levels of ABCD1 protein itself. Together, these data demonstrate that ABCD1 deficiency induces significant alterations in brain endothelium via c-MYC and may thereby contribute to the increased trafficking of leucocytes across the blood-brain barrier as seen in cerebral adrenouleukodystrophy.

  5. [The impact of detecting endothelial dysfunction in atherosclerosis: Role of positron emission tomography (PET)].

    Science.gov (United States)

    Alexánderson-Rosas, Erick; Calleja-Torres, Rodrigo; Martínez-García, Alfonso; Lamothe-Molina, Pedro Alberto; Ochoa-López, Juan Manuel; Meléndez, Gabriela; Kimura-Hayama, Eric; Meave-González, Aloha

    2010-01-01

    The endothelium plays an important role in the regulation of the intracellular fluid, vascular permeability, and modulation of vascular focal tone and angiogenesis. Endothelial dysfunction is manifested by the loss of the endothelium ability to modulate physiology changes in its vascular bed, and actually it is considered a prognostic marker of coronary artery disease. The relevance of assessing endothelial dysfunction relies in that it has been observed in different pathologies like DM, dyslipidemia, hypertension, tabaquism and in immunologic diseases like antiphospholipid syndrome and systemic lupus. PET is a non invasive method that allows the absolute quantification of myocardial blood flow during rest, stress and adrenergic stimulation, which allows to asses endothelial function. Therefore PET is a useful diagnostic technique to identify patients with endothelial dysfunction, and in the assessment of its response to administered therapy, allowing an optimal control and prevention of secondary adverse events of these diseases.

  6. Microalbuminuria, endothelial dysfunction and cardiovascular risk

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B

    2000-01-01

    Microalbuminuria was originally considered to be an important new risk factor for diabetic nephropathy. More recently, it has been convincingly shown that microalbuminuria is also an independent risk factor for cardiovascular morbidity and mortality in Type 1 and Type 2 diabetic patients. Even...... in the non-diabetic background population, microalbuminuria is a risk factor for cardiovascular mortality. What is the link between increased loss of albumin in urine and cardiovascular disease and mortality? As microalbuminuria is apparently associated with increased universal vascular sieving of albumin...... of functional in vivo tests of endothelial dysfunction have been performed in Type 1 and Type 2 diabetic patients as well as in normal controls. Overall, these studies indicate the existence of a functional vascular dysfunction in Type 1 diabetic patients and normal controls with microalbuminuria, which may...

  7. The role of H2S bioavailability in endothelial dysfunction

    Science.gov (United States)

    Wang, Rui; Szabo, Csaba; Ichinose, Fumito; Ahmed, Asif; Whiteman, Matthew; Papapetropoulos, Andreas

    2015-01-01

    Endothelial dysfunction reflects pathophysiological changes in the phenotype and functions of endothelial cells that result from and/or contribute to a plethora of cardiovascular diseases. Here we review the role of hydrogen sulfide (H2S) in the pathogenesis of endothelial dysfunction, one of the fastest advanced and hottest research topics. Conventionally treated as an environment pollutant, H2S is also produced in endothelial cells and participates in the fine regulation of endothelial integrity and functions. Disturbed H2S bioavailability has been suggested to be a novel indicator of the progress and prognosis of endothelial dysfunction. Endothelial dysfunction appears to exhibit in different forms in different pathologies but therapeutics aimed at remedying the altered H2S bioavailability may benefit all. PMID:26071118

  8. Vascular endothelial dysfunction: a tug of war in diabetic nephropathy?

    Science.gov (United States)

    Balakumar, Pitchai; Chakkarwar, Vishal Arvind; Krishan, Pawan; Singh, Manjeet

    2009-03-01

    Vascular endothelium regulates vascular tone and maintains free flow of blood in vessels. Vascular endothelial dysfunction (VED) results in reduced activation of endothelial nitric oxide synthase (eNOS), reduced generation and bioavailability of nitric oxide (NO) and increased production of reactive oxygen species (ROS). The eNOS uncoupling in VED leads to eNOS mediated production of ROS that further damage the endothelial cells by upregulating the proinflammatory mediators and adhesion molecules. VED has been associated in the pathogenesis of hypertension, atherosclerosis, coronary artery diseases, diabetes mellitus and nephropathy. Diabetes is a chronic metabolic disorder characterized by hyperglycemia followed by micro and macrovascular complications. A correlation between diabetes and VED has been demonstrated in various studies. The downregulation of eNOS in diabetes has been noted to accelerate diabetic nephropathy. Moreover, various endogenous vasoconstrictors are also upregulated in diabetic nephropathy. VED has been shown to be involved in diabetic nephropathy by inducing nodular glomerulosclerosis followed by glomerular basement membrane thickness and mesangial expansion, which ultimately decline glomerular filtration rate (GFR). Thus it is suggested that diabetes-induced VED could be one of the culprits involved in the pathogenesis of diabetic nephropathy.

  9. Endothelial Nlrp3 inflammasome activation associated with lysosomal destabilization during coronary arteritis.

    Science.gov (United States)

    Chen, Yang; Li, Xiang; Boini, Krishna M; Pitzer, Ashley L; Gulbins, Erich; Zhang, Yang; Li, Pin-Lan

    2015-02-01

    Inflammasomes play a critical role in the development of vascular diseases. However, the molecular mechanisms activating the inflammasome in endothelial cells and the relevance of this inflammasome activation is far from clear. Here, we investigated the mechanisms by which an Nlrp3 inflammasome is activated to result in endothelial dysfunction during coronary arteritis by Lactobacillus casei (L. casei) cell wall fragments (LCWE) in a mouse model for Kawasaki disease. Endothelial dysfunction associated with increased vascular cell adhesion protein 1 (VCAM-1) expression and endothelial-leukocyte adhesion was observed during coronary arteritis in mice treated with LCWE. Accompanied with these changes, the inflammasome activation was also shown in coronary arterial endothelium, which was characterized by a marked increase in caspase-1 activity and IL-1β production. In cultured endothelial cells, LCWE induced Nlrp3 inflammasome formation, caspase-1 activation and IL-1β production, which were blocked by Nlrp3 gene silencing or lysosome membrane stabilizing agents such as colchicine, dexamethasone, and ceramide. However, a potassium channel blocker glibenclamide or an oxygen free radical scavenger N-acetyl-l-cysteine had no effects on LCWE-induced inflammasome activation. LCWE also increased endothelial cell lysosomal membrane permeability and triggered lysosomal cathepsin B release into cytosol. Silencing cathepsin B blocked LCWE-induced Nlrp3 inflammasome formation and activation in endothelial cells. In vivo, treatment of mice with cathepsin B inhibitor also abolished LCWE-induced inflammasome activation in coronary arterial endothelium. It is concluded that LCWE enhanced lysosomal membrane permeabilization and consequent release of lysosomal cathepsin B, resulting in activation of the endothelial Nlrp3 inflammasome, which may contribute to the development of coronary arteritis.

  10. Endothelial dysfunction and periodontitis: The role of inflammatory serum biomarkers

    Directory of Open Access Journals (Sweden)

    Reila Tainá Mendes

    2016-01-01

    Full Text Available Introduction: Periodontitis is a local chronic inflammation with systemic consequences. Many disorders are associated with periodontitis such as diabetes, high-serum low-density lipoprotein (LDL, and premature birth. Cardiovascular disease does not correspond to a classic risk factor for periodontitis but evidence suggests that endothelial dysfunction due to systemic inflammation may be the link between both pathologies. The aim of this study was to review the literature regarding endothelial dysfunction and periodontitis and to establish a possible link through systemic inflammatory biomarkers. Methods: We searched the terms "periodontitis and endothelial dysfunction" and "periodontal disease and endothelial dysfunction" in the following four databases: PubMed, Cochrane, Bibliografia Brasileira de Odontologia-Brazilian Bibliography in Dentistry (BBO, and Embase. Results: Both diseases share same systemic biomarkers. Conclusion: Endothelial dysfunction may be the link between periodontitis and other diseases such as cardiovascular ones.

  11. CURRENT METHODS OF ENDOTHELIAL DYSFUNCTION ASSESSMENT AND THEIR POSSIBLE USE IN THE PRACTICAL MEDICINE

    Directory of Open Access Journals (Sweden)

    A. V. Shabrov

    2016-01-01

    Full Text Available A review contains a description of the most common methods of evaluation and monitoring of "endothelial dysfunction" that are assessed in terms of their information content and applicability in the practice of medicine. The term "endothelial function" is interpreted primarily as a function of the regulation of capillary blood flow, carried out by the expense of the dynamic change of the phase of vasoconstriction and vasodilatation in vessels of resistive type (in accordance with the changing needs of cellular metabolism. Assessment of endothelial dysfunction is understood as a generalized indicator of the extent and nature of violations of the regulation of peripheral circulation. It includes an assessment of imbalances between endotheliumdependent vasoconstrictor and vasodilating factors or mismatch of the local and central regulation of capillary blood flow in response to various functional tests or other effects (eg, cold test, or test with local ischemia. All methods of endothelial dysfunction assessment in the survey are divided into invasive and non-invasive. The main feature of invasive methods lies in the direct effect on the endothelium of the coronary or other vessels by introducing into these vessels vasoactive substances such as acetylcholine. Response to the test (vasoconstriction or vasodilation is evaluated by coronary angiography or by ultrasound. Non-invasive methods of the assessment of endothelial dysfunction or functions of regulation of the peripheral circulation are regarded as the most promising for widespread use. There are two basic methods that underlie functional tests: methods PAT (peripheral arterial tone and PHG (polyhepatography. Assessment of endothelial dysfunction in many modern scientific researches is important. They are regarded as the causative factors of many different diseases. Such assessments can be useful in everyday medical practice. Assessment of endothelial function provides the clinician with

  12. ACE INHIBITORS ARE RATIONAL PHARMACOTHERAPY OF ENDOTHELIAL DYSFUNCTION

    Directory of Open Access Journals (Sweden)

    M. P. Metrova

    2008-01-01

    Full Text Available Aim. To study effects of ACE inhibitor perindopril on markers of endothelial dysfunction in therapy of patients with arterial hypertension (HT.Material and methods. 82 patients with HT, complicated by ischemic stroke were involved in the study. 30 patients with uncomplicated HT were included into control group. Antihypertensive therapy with perindopril (52 patients or amlodipine (30 patients was conducted additionally to standard neurotropic therapy in hypertensive patients with ischemic stroke. Phase-contrast microscopy and enzyme immunoassay were used for screening of endothelial dysfunction markers (blebbing, desquamated endothelial cells, membrane-liberated parts, sPECAM-1.Results. Reduction in levels of markers of endothelial dysfunction was observed among patients treated with perindopril in comparison with patients who did not receive ACE inhibitor or patients of control group. Target levels of blood pressure were reached in 96% of patients treated with perindopril. Сonclusion. ACE inhibitors in therapy patients with HT reduce endothelial dysfunction additionally to antihypertensive effect.

  13. Chronic rhinosinusitis, endothelial dysfunction, and atherosclerosis.

    Science.gov (United States)

    Elcioglu, Omer Celal; Afsar, Baris; Bakan, Ali; Takir, Mumtaz; Ozkok, Abdullah; Oral, Alihan; Kostek, Osman; Basci, Semih; Kanbay, Asiye; Toprak, Aybala Erek; Bahat, Kubra Aydin; Kalcioglu, M Tayyar; Kanbay, Mehmet

    2016-05-01

    Chronic inflammation is associated with accelerated atherosclerosis, endothelial dysfunction (ED), and cardiovascular diseases. Because chronic rhinosinusitis (CRS) is an inflammatory disease, it may be associated with the development of ED and accelerated atherosclerosis. To investigate the relationship between CRS and carotid intima-media thickness (CIMT), flow-mediated dilation (FMD) of the brachial artery, and microalbuminuria. This cross-sectional study included 38 patients with CRS and 29 healthy controls. In addition to measuring spot urine albumin-creatinine ratios, FMD of the brachial artery and CIMT were assessed noninvasively. Patients with CRS had lower FMD scores (p = 0.031), higher CIMT scores (p = 0.005), and a higher urinary albumin-creatinine ratio (p = 0.036) compared with healthy controls. In a multivariate analysis, CIMT and FMD were independently associated with the presence of CRS. However, the relationship between urinary albumin and creatinine, and the presence of CRS was no longer observed. CRS is associated with ED and atherosclerosis, as indicated by decreased FMD and increased CIMT in patients with CRS. Further studies are necessary to identify the exact pathophysiologic mechanisms responsible for our findings.

  14. Assessment of endothelial dysfunction in idiopathic pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    M. Elshazly

    2013-10-01

    Conclusion: This work concluded that BADFMD and ERD more affected in IPF patients regardless of presence or absence of PH than normal population. So, endothelial dysfunction is a possible link between IPF and cardiovascular disease.

  15. Complement activation, endothelial dysfunction, insulin resistance and chronic heart failure

    DEFF Research Database (Denmark)

    Bjerre, M.; Kistorp, C.; Hansen, T.K.

    2010-01-01

    CRP), endothelial activation (soluble E-selectin, sEsel)), endothelial damage/dysfunction (von Willebrand factor, vWf) and insulin resistance (IR) and prognosis in CHF remains unknown. Design. We investigated the association(s) between plasma sMAC, hsCRP, sEsel, vWf and IR (assessed by homeostatic model assessment...

  16. Noninvasive quantification of coronary endothelial function by SPECT imaging in children with a history of Kawasaki disease

    Energy Technology Data Exchange (ETDEWEB)

    Cicala, Silvana; Paladini, Rodolfo; Leva, Francesco de [Santobono-Pausilipon Children Medical Hospital, Division of Cardiology, Department of Paediatrics, Naples (Italy); Pellegrino, Teresa; Caprio, Maria Grazia [Institute of Diagnostic and Nuclear Development, SDN Foundation, Naples (Italy); Storto, Giovanni [IRCCS, CROB, Rionero in Vulture (Italy); Mainolfi, Ciro; Cuocolo, Alberto [Federico II University, Department of Biomorphological and Functional Sciences, Naples (Italy); National Council of Research, Institute of Biostructures and Bioimages, Naples (Italy)

    2010-12-15

    The feasibility of coronary function estimation by single photon emission computed tomography (SPECT) has been recently demonstrated. The aim of this study was to apply SPECT imaging in patients with previous Kawasaki disease (KD) to assess the coronary functional status at long-term follow-up of the acute phase of the disease. Sixteen children with a history of KD underwent {sup 99m}Tc-sestamibi imaging at rest and during the cold pressor test (CPT). Myocardial blood flow (MBF) was estimated by measuring first transit counts in the pulmonary artery and myocardial counts from SPECT images. Coronary endothelial function was expressed as the ratio of the CPT to rest MBF. Six KD patients without coronary artery lesions served as controls and ten with coronary artery aneurysms during the acute phase of the disease were separated into two groups: group 1 (n = 4) with regressed and group 2 (n = 6) with persistent aneurysm at follow-up. The estimated coronary endothelial function was higher in controls compared to patients with coronary artery aneurysms (2.5 {+-} 0.3 vs 1.7 {+-} 0.7, p < 0.05). A significant difference in coronary endothelial function among groups was found (F = 5.21, p < 0.02). Coronary endothelial function was higher in patients of group 1 than in those of group 2 (1.9 {+-} 0.6 vs 1.4 {+-} 0.7, p < 0.02). SPECT may be applied as a noninvasive method for assessing coronary vascular function in children with a history of KD, demonstrating an impaired response to the CPT, an endothelial-dependent vasodilator stimulus. These findings reinforce the concept that coronary endothelial dysfunction may represent a long-term sequela of KD. (orig.)

  17. Persistent high fever for more than 10 days during acute phase is a risk factor for endothelial dysfunction in children with a history of Kawasaki disease.

    Science.gov (United States)

    Mori, Yasuhiko; Katayama, Hiroshi; Kishi, Kanta; Ozaki, Noriyasu; Shimizu, Tatsuo; Tamai, Hiroshi

    2016-07-01

    Endothelial dysfunction has previously been reported in children with a history of Kawasaki disease, but the determinants of endothelial function in Kawasaki disease patients are still unknown. In this study, we investigated endothelial function in Kawasaki disease patients and attempted to identify risk factors for persistent endothelial dysfunction. Using high-resolution ultrasound, we measured the percent flow-mediated dilatation, an arterial response to reactive hyperemia, to evaluate endothelial function in 67 patients with a history of Kawasaki disease and 28 age- and sex-matched control subjects. We divided the Kawasaki disease patients into a group with impaired endothelial function (the percent flow-mediated dilatation below -2 standard deviations of the control group) and a group with normal endothelial function (the percent flow-mediated dilatation more than -2 standard deviations of control). Logistic multiple regression analysis was performed to identify independent predictors of impaired endothelial function. In Kawasaki disease patients, the percent flow-mediated dilatation was significantly lower than in the control subjects (9.8±3.6%, compared with 13.1±3.4%, pKawasaki disease patients (3 patients with coronary artery lesions and 10 patients without coronary artery lesions), the percent flow-mediated dilatation was below -2 standard deviations of control. Logistic multiple regression analysis showed that a febrile period of longer than 10 days during the acute phase was the significant risk factor for endothelial dysfunction (odds ratio: 8.562; 95% confidence interval: 1.366-53.68). Presence of coronary artery lesions was not a determinant of endothelial dysfunction. Systemic endothelial dysfunction exists in children with a history of Kawasaki disease, and a febrile period of longer than 10 days during the acute phase is an independent predictor of endothelial dysfunction irrespective of coronary artery involvement. Copyright © 2015 Japanese

  18. Endothelial Dysfunction in Idiopathic Sudden Sensorineural Hearing Loss: A Review

    Science.gov (United States)

    Quaranta, Nicola; De Ceglie, Vincenzo; D’Elia, Alessandra

    2016-01-01

    An endothelial dysfunction has been described in idiopathic sudden sensorineural hearing loss (ISSHL) patients. The purpose of our review was to: i) identify, evaluate and review recent research about cardiovascular risk factors involvement and signs of endothelial dysfunction in ISSHL; ii) implication of these discovering in clinical practice and future research. A Medline literature search was conducted to identify any study on the involvement of endothelial dysfunction in ISSHL, published in the English language in the last decade. The following MEDLINE search terms were used: sudden sensorineural hearing loss (SSHL) and endothelial dysfunction (text words). Additional studies were identified by hand searching the references of original articles and review articles. Studies were not excluded on the basis of the qualitative or quantitative definitions of SSHL, treatment regimens, or outcome measures. Data were extracted from included papers by a reviewer. Information on the patients, investigations, methods, interventions, and outcomes were systematically analyzed. Characteristics and results of all included studies were reviewed systematically. High levels of adhesion molecules, hyperhomocysteinemia and lower folate levels, unbalanced oxidative status, a lower value of flow-mediated dilatation of brachial artery and a reduced percentage of circulating endothelial progenitor cells in patients affected by ISSHL support the hypothesis that this syndrome should be considered as a microcirculation disorder based on endothelial dysfunction and drive clinicians to implement all the traditional strategies used for preventing cardiovascular events, to also reduce the likelihood of ISSHL occurrence. PMID:27588164

  19. Endothelial dysfunction in idiopathic sudden sensorineural hearing loss: a review

    Directory of Open Access Journals (Sweden)

    Nicola Quaranta

    2016-07-01

    Full Text Available An endothelial dysfunction has been described in idiopathic sudden sensorineural hearing loss (ISSHL patients. The purpose of our review was to: i identify, evaluate and review recent research about cardiovascular risk factors involvement and signs of endothelial dysfunction in ISSHL; ii implication of these discovering in clinical practice and future research. A Medline literature search was conducted to identify any study on the involvement of endothelial dysfunction in ISSHL, published in the English language in the last decade. The following MEDLINE search terms were used: sudden sensorineural hearing loss (SSHL and endothelial dysfunction (text words. Additional studies were identified by hand searching the references of original articles and review articles. Studies were not excluded on the basis of the qualitative or quantitative definitions of SSHL, treatment regimens, or outcome measures. Data were extracted from included papers by a reviewer. Information on the patients, investigations, methods, interventions, and outcomes were systematically analyzed. Characteristics and results of all included studies were reviewed systematically. High levels of adhesion molecules, hyperhomocysteinemia and lower folate levels, unbalanced oxidative status, a lower value of flow-mediated dilatation of brachial artery and a reduced percentage of circulating endothelial progenitor cells in patients affected by ISSHL support the hypothesis that this syndrome should be considered as a microcirculation disorder based on endothelial dysfunction and drive clinicians to implement all the traditional strategies used for preventing cardiovascular events, to also reduce the likelihood of ISSHL occurrence.

  20. Endothelial Dysfunction in Idiopathic Sudden Sensorineural Hearing Loss: A Review.

    Science.gov (United States)

    Quaranta, Nicola; De Ceglie, Vincenzo; D'Elia, Alessandra

    2016-04-20

    An endothelial dysfunction has been described in idiopathic sudden sensorineural hearing loss (ISSHL) patients. The purpose of our review was to: i) identify, evaluate and review recent research about cardiovascular risk factors involvement and signs of endothelial dysfunction in ISSHL; ii) implication of these discovering in clinical practice and future research. A Medline literature search was conducted to identify any study on the involvement of endothelial dysfunction in ISSHL, published in the English language in the last decade. The following MEDLINE search terms were used: sudden sensorineural hearing loss (SSHL) and endothelial dysfunction (text words). Additional studies were identified by hand searching the references of original articles and review articles. Studies were not excluded on the basis of the qualitative or quantitative definitions of SSHL, treatment regimens, or outcome measures. Data were extracted from included papers by a reviewer. Information on the patients, investigations, methods, interventions, and outcomes were systematically analyzed. Characteristics and results of all included studies were reviewed systematically. High levels of adhesion molecules, hyperhomocysteinemia and lower folate levels, unbalanced oxidative status, a lower value of flow-mediated dilatation of brachial artery and a reduced percentage of circulating endothelial progenitor cells in patients affected by ISSHL support the hypothesis that this syndrome should be considered as a microcirculation disorder based on endothelial dysfunction and drive clinicians to implement all the traditional strategies used for preventing cardiovascular events, to also reduce the likelihood of ISSHL occurrence.

  1. Inhibition of cortisol production with metyrapone prevents mental stress-induced endothelial dysfunction and baroreflex impairment.

    Science.gov (United States)

    Broadley, Andrew J M; Korszun, Ania; Abdelaal, Eltigani; Moskvina, Valentina; Jones, Christopher J H; Nash, Gerard B; Ray, Clare; Deanfield, John; Frenneaux, Michael P

    2005-07-19

    This study was designed to investigate the role of cortisol in stress-induced endothelial dysfunction and impaired baroreflex sensitivity (BRS) by blocking cortisol production with metyrapone before subjecting healthy volunteers to mental stress. Mental stress raises cortisol levels and is associated with increased coronary heart disease (CHD) morbidity and mortality, especially from sudden cardiac death. It also causes endothelial dysfunction and impaired BRS. We measured brachial artery flow-mediated dilation (FMD), a measure of endothelial function, and BRS in 36 subjects without CHD risk factors who were then randomized in a double-blind fashion to oral metyrapone 750 mg x 2 or placebo. Five hours later we subjected subjects to mental stress and then remeasured endothelial function and BRS. Prestress cortisol levels were significantly higher in the placebo group at 270.5 (30.9) nmol/l versus 89.1 (11.8) nmol/l (p = 0.01), and the increase with stress was higher at 57.9 (17.9) nmol/l versus 11.2 (2.2) nmol/l (p Analysis of covariation showed a significant effect of metyrapone on change in both FMD (p = 0.009) and BRS (p = 0.024). Stress-related endothelial dysfunction and BRS impairment can be prevented by blocking cortisol production with metyrapone, demonstrating a direct or facilitative role for cortisol in these phenomena and suggesting mechanisms by which stress contributes to CHD and sudden cardiac death.

  2. Mechanisms of endothelial dysfunction in obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Amy Atkeson

    2008-12-01

    Full Text Available Amy Atkeson, Sanja JelicDivision of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NYAbstract: Endothelial activation and inflammation are important mediators of accelerated atherogenesis and consequent increased cardiovascular morbidity in obstructive sleep apnea (OSA. Repetitive episodes of hypoxia/reoxygenation associated with transient cessation of breathing during sleep in OSA resemble ischemia/reperfusion injury and may be the main culprit underlying endothelial dysfunction in OSA. Additional factors such as repetitive arousals resulting in sleep fragmentation and deprivation and individual genetic suseptibility to vascular manifestations of OSA contribute to impaired endothelial function in OSA. The present review focuses on possible mechanisms that underlie endothelial activation and inflammation in OSA.Keywords: endothelial, obstructive sleep apnea, inflammation, dysfunction

  3. Arterial ageing: from endothelial dysfunction to vascular calcification.

    Science.gov (United States)

    Tesauro, M; Mauriello, A; Rovella, V; Annicchiarico-Petruzzelli, M; Cardillo, C; Melino, G; Di Daniele, N

    2017-05-01

    Complex structural and functional changes occur in the arterial system with advancing age. The aged artery is characterized by changes in microRNA expression patterns, autophagy, smooth muscle cell migration and proliferation, and arterial calcification with progressively increased mechanical vessel rigidity and stiffness. With age the vascular smooth muscle cells modify their phenotype from contractile to 'synthetic' determining the development of intimal thickening as early as the second decade of life as an adaptive response to forces acting on the arterial wall. The increased permeability observed in intimal thickening could represent the substrate on which low-level atherosclerotic stimuli can promote the development of advanced atherosclerotic lesions. In elderly patients the atherosclerotic plaques tend to be larger with increased vascular stenosis. In these plaques there is a progressive accumulation of both lipids and collagen and a decrease of inflammation. Similarly the plaques from elderly patients show more calcification as compared with those from younger patients. The coronary artery calcium score is a well-established marker of adverse cardiovascular outcomes. The presence of diffuse calcification in a severely stenotic segment probably induces changes in mechanical properties and shear stress of the arterial wall favouring the rupture of a vulnerable lesion in a less stenotic adjacent segment. Oxidative stress and inflammation appear to be the two primary pathological mechanisms of ageing-related endothelial dysfunction even in the absence of clinical disease. Arterial ageing is no longer considered an inexorable process. Only a better understanding of the link between ageing and vascular dysfunction can lead to significant advances in both preventative and therapeutic treatments with the aim that in the future vascular ageing may be halted or even reversed. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  4. Eldecalcitol prevents endothelial dysfunction in postmenopausal osteoporosis model rats.

    Science.gov (United States)

    Serizawa, Kenichi; Yogo, Kenji; Tashiro, Yoshihito; Takeda, Satoshi; Kawasaki, Ryohei; Aizawa, Ken; Endo, Koichi

    2016-02-01

    Postmenopausal women have high incidence of cardiovascular events as estrogen deficiency can cause endothelial dysfunction. Vitamin D is reported to be beneficial on endothelial function, but it remains controversial whether vitamin D is effective for endothelial dysfunction under the treatment for osteoporosis in postmenopausal women. The aim of this study was to evaluate the endothelial protective effect of eldecalcitol (ELD) in ovariectomized (OVX) rats. ELD (20  ng/kg) was orally administrated five times a week for 4 weeks from 1 day after surgery. After that, flow-mediated dilation (FMD) as an indicator of endothelial function was measured by high-resolution ultrasound in the femoral artery of living rats. ELD ameliorated the reduction of FMD in OVX rats. ELD inhibited the increase in NOX4, nitrotyrosine, and p65 and the decrease in dimer/monomer ratio of nitric oxide synthase in OVX rat femoral arteries. ELD also prevented the decrease in peroxisome proliferator-activated receptor gamma (PPARγ) in femoral arteries and cultured endothelial cells. Although PPARγ is known to inhibit osteoblastogenesis, ELD understandably increased bone mineral density of OVX rats without increase in PPARγ in bone marrow. These results suggest that ELD prevented the deterioration of endothelial function under condition of preventing bone loss in OVX rats. This endothelial protective effect of ELD might be exerted through improvement of endothelial nitric oxide synthase uncoupling, which is mediated by an antioxidative effect through normalization of vascular PPARγ/NF-κB signaling.

  5. Circulating endothelial cells in coronary artery disease and acute coronary syndrome

    NARCIS (Netherlands)

    Schmidt, David E; Manca, Marco; Höfer, Imo E

    2015-01-01

    Circulating endothelial cells (CECs) have been put forward as a promising biomarker for diagnosis and prognosis of coronary artery disease and acute coronary syndromes. This review entails current insights into the physiology and pathobiology of CECs, including their relationship with circulating en

  6. Improvement in endothelial dysfunction in patients with systemic lupus erythematosus with N-acetylcysteine and atorvastatin

    Directory of Open Access Journals (Sweden)

    Jyothsna Kudaravalli

    2011-01-01

    Conclusion: The presence of arterial stiffness indicated endothelial dysfunction. There was reduction in RI and SI with treatment of N-acetylcysteine and atorvastatin suggesting improvement in endothelial dysfunction. There was decrease in CRP (a marker of inflammation and MDA after treatment with N-acetylcysteine suggesting improvement in endothelial dysfunction. There was reduction in CRP after treatment with atorvastatin, suggesting improvement in endothelial function. Improvement in endothelial dysfunction is associated with decreased incidence of cardiovascular and cerebrovascular accidents.

  7. Protection of Coronary Endothelial Function during Cardiac Surgery: Potential of Targeting Endothelial Ion Channels in Cardioprotection

    Directory of Open Access Journals (Sweden)

    Qin Yang

    2014-01-01

    Full Text Available Vascular endothelium plays a critical role in the control of blood flow by producing vasoactive factors to regulate vascular tone. Ion channels, in particular, K+ channels and Ca2+-permeable channels in endothelial cells, are essential to the production and function of endothelium-derived vasoactive factors. Impairment of coronary endothelial function occurs in open heart surgery that may result in reduction of coronary blood flow and thus in an inadequate myocardial perfusion. Hyperkalemic exposure and concurrent ischemia-reperfusion during cardioplegic intervention compromise NO and EDHF-mediated function and the impairment involves alterations of K+ channels, that is, KATP and KCa, and Ca2+-permeable TRP channels in endothelial cells. Pharmacological modulation of these channels during ischemia-reperfusion and hyperkalemic exposure show promising results on the preservation of NO and EDHF-mediated endothelial function, which suggests the potential of targeting endothelial K+ and TRP channels for myocardial protection during cardiac surgery.

  8. Lack of prognostic role of endothelial dysfunction in subcutaneous small resistance arteries of hypertensive patients.

    Science.gov (United States)

    Rizzoni, Damiano; Porteri, Enzo; De Ciuceis, Carolina; Boari, Gianluca E M; Zani, Francesca; Miclini, Marco; Paiardi, Silvia; Tiberio, Guido A M; Giulini, Stefano M; Muiesan, Maria Lorenza; Castellano, Maurizio; Rosei, Enrico Agabiti

    2006-05-01

    The presence of endothelial dysfunction in the coronary circulation or in the brachial artery has been found to be associated with a greater incidence of cardiovascular events. However, no data are presently available about the prognostic role of endothelial dysfunction in human small resistance arteries. Ninety subjects were included in the present study. They were: 10 normotensive subjects, 36 patients with essential hypertension, 10 patients with phaeochromocytoma, 11 patients with primary aldosteronism, 10 patients with renovascular hypertension, and 13 normotensive patients with non-insulin-dependent diabetes mellitus (NIDDM). All subjects were submitted to a biopsy of subcutaneous fat from the gluteal or the anterior abdominal region. Small resistance arteries were dissected and mounted on an isometric myograph, and the concentration-response curves to acetylcholine (from 10 to 10 mol/l) (endothelium-dependent vasodilatation) and sodium nitroprusside (from 10 to 10 mol/l) (endothelium-independent vasodilatation) after precontraction of the vessels with norepinephrine were evaluated. The subjects were re-evaluated (by clinical visits or telephone interviews) after an average follow-up time of 5.5 years. Twenty-nine subjects had a documented fatal or non-fatal cardiovascular event (5.87%/year). The endothelium-dependent vasodilatation in the subcutaneous small arteries was similar in subjects with or without cardiovascular events. Also, endothelium-independent vasodilatation to sodium nitroprusside was similar in the two groups. Similar results were obtained by subdividing patients in the different subgroups (essential hypertension, secondary hypertension, etc.). Our results indicate that endothelial dysfunction in the microcirculation does not predict cardiovascular events. It is possible that a prognostic role of endothelial dysfunction may be observed when other vascular districts prone to atherosclerosis are evaluated, or it might be detected only in

  9. Reactive oxygen species' role in endothelial dysfunction by electron paramagnetic resonance

    Science.gov (United States)

    Wassall, Cynthia D.

    % increase in ROS generation; this implies that higher ROS concentrations in sliced tissue indicate extraneous ROS generation not associated with the ROS stimulus of interest. We also investigated the role of ROS in chronic flow overload (CFO). Elevation of shear stress that increases production of vascular ROS has not been well investigated. We hypothesize that CFO increases ROS production mediated in part by NADPH oxidase, which leads to endothelial dysfunction. ROS production increased threefold in response to CFO. The endothelium dependent vasorelaxation was compromised in the CFO group. Treatment with apocynin significantly reduced ROS production in the vessel wall, preserved endothelial function, and inhibited expressions of p22/p47phox and NOX2/NOX4. The present data implicate NADPH oxidase produced ROS and eNOS uncoupling in endothelial dysfunction at 1 wk of CFO. In further work, a swine right ventricular hypertrophy (RVH) model induced by pulmonary artery (PA) banding was used to study right coronary artery (RCA) endothelial function and ROS level. Endothelial function was compromised in RCA of RVH as attributed to insufficient endothelial nitric oxide synthase cofactor tetrahydrobiopterin. In conclusion, stretch due to outward remodeling of RCA during RVH (at constant wall shear stress), similar to vessel stretch in hypertension, appears to induce ROS elevation, endothelial dysfunction, and an increase in basal tone. Finally, although hypertension-induced vascular stiffness and dysfunction are well established in patients and animal models, we hypothesize that stretch or distension due to hypertension and outward expansion is the cause of endothelial dysfunction mediated by angiotensin II type 1 (AT1) receptor in coronary arteries. The expression and activation of AT1 receptor and the production of ROS were up regulated and endothelial function deteriorated in the RCA. The acute inhibition of AT1 receptor and NADPH oxidase partially restored the endothelial

  10. Effect of anxiety and depression on endothelial function and inflammation degree of coronary heart disease patients with angina pectoris

    Institute of Scientific and Technical Information of China (English)

    Lin Ni; Xiang-Yang Xia; Ka Han; Yong-Xin Wu

    2016-01-01

    Objective:To study the effect of anxiety and depression on endothelial function and inflammation degree of coronary heart disease patients with angina pectoris.Methods: 80 cases of patients diagnosed with angina pectoris of coronary heart disease in our hospital from May 2012 to August 2014 were enrolled for study; anxiety and depression were judged by anxiety subscale (HADS-a) and depression subscale (HADS-d). Endothelial progenitor cell and endothelial microparticle contents in peripheral blood as well as serum ET-1, CGRP, IL-6, IL-6R, IL-18, ADAMTS-1 and NO contents were detected.Results:EPC, NO and CGRP contents of angina pectoris patients with anxiety were lower than those of angina pectoris patients without anxiety, and EMP, ET-1, IL-6, IL-6R, IL-18 and ADAMTS-1 contents were higher than those of angina pectoris patients without anxiety; EPC, NO and CGRP contents of angina pectoris patients with depression were lower than those of angina pectoris patients without depression, and EMP, ET-1, IL-6, IL-6R, IL-18 and ADAMTS-1 contents were higher than those of angina pectoris patients without depression.Conclusions:Angina pectoris of coronary heart disease patients complicated with anxiety and depression have endothelial dysfunction and inflammatory reaction activation; endothelial dysfunction and inflammatory reaction activation are possible pathways that anxiety and depression cause the progression of coronary heart disease.

  11. Modulation of endothelial cell phenotype by physical activity: impact on obesity-related endothelial dysfunction.

    Science.gov (United States)

    Bender, Shawn B; Laughlin, M Harold

    2015-07-01

    Increased levels of physical activity are associated with reduced cardiovascular disease (CVD) risk and mortality in obesity and diabetes. Available evidence suggests that local factors, including local hemodynamics, account for a significant portion of this CVD protection, and numerous studies have interrogated the therapeutic benefit of physical activity/exercise training in CVD. Less well established is whether basal differences in endothelial cell phenotype between/among vasculatures related to muscle recruitment patterns during activity may account for reports of nonuniform development of endothelial dysfunction in obesity. This is the focus of this review. We highlight recent work exploring the vulnerability of two distinct vasculatures with established differences in endothelial cell phenotype. Specifically, based largely on dramatic differences in underlying hemodynamics, arteries perfusing soleus muscle (slow-twitch muscle fibers) and those perfusing gastrocnemius muscle (fast-twitch muscle fibers) in the rat exhibit an exercise training-like versus an untrained endothelial cell phenotype, respectively. In the context of obesity, therefore, arteries to soleus muscle exhibit protection from endothelial dysfunction compared with vulnerable arteries to gastrocnemius muscle. This disparate vulnerability is consistent with numerous animal and human studies, demonstrating increased skeletal muscle blood flow heterogeneity in obesity coincident with reduced muscle function and exercise intolerance. Mechanistically, we highlight emerging areas of inquiry exploring novel aspects of hemodynamic-sensitive signaling in endothelial cells and the time course of physical activity-associated endothelial adaptations. Lastly, further exploration needs to consider the impact of endothelial heterogeneity on the development of endothelial dysfunction because endothelial dysfunction independently predicts CVD events. Copyright © 2015 the American Physiological Society.

  12. Is reversal of endothelial dysfunction still an attractive target in modern cardiology?

    Institute of Scientific and Technical Information of China (English)

    Ify; Mordi; Nikolaos; Tzemos

    2014-01-01

    Although the endothelium has a number of important functions, the term endothelial dysfunction is commonly used to describe impairment in its vasodilatory capacity. There have been numerous studies evaluating the relationship between endothelial dysfunction and cardiovascular disease, however assessment of endothelial function is perhaps still primarily thought of as a research tool and has not reached widespread clinical acceptance. In this review we explore the relationship between endothelial dysfunction and cardiovascular disease, its prognostic significance, methods of pharmacological reversal of endothelial dysfunction, and ask the question, is reversal of endothelial dysfunction still an attractive target in modern cardiology?

  13. Loss of the endothelial glycocalyx links albuminuria and vascular dysfunction.

    Science.gov (United States)

    Salmon, Andrew H J; Ferguson, Joanne K; Burford, James L; Gevorgyan, Haykanush; Nakano, Daisuke; Harper, Steven J; Bates, David O; Peti-Peterdi, Janos

    2012-08-01

    Patients with albuminuria and CKD frequently have vascular dysfunction but the underlying mechanisms remain unclear. Because the endothelial surface layer, a meshwork of surface-bound and loosely adherent glycosaminoglycans and proteoglycans, modulates vascular function, its loss could contribute to both renal and systemic vascular dysfunction in proteinuric CKD. Using Munich-Wistar-Fromter (MWF) rats as a model of spontaneous albuminuric CKD, multiphoton fluorescence imaging and single-vessel physiology measurements revealed that old MWF rats exhibited widespread loss of the endothelial surface layer in parallel with defects in microvascular permeability to both water and albumin, in both continuous mesenteric microvessels and fenestrated glomerular microvessels. In contrast to young MWF rats, enzymatic disruption of the endothelial surface layer in old MWF rats resulted in neither additional loss of the layer nor additional changes in permeability. Intravenous injection of wheat germ agglutinin lectin and its adsorption onto the endothelial surface layer significantly improved glomerular albumin permeability. Taken together, these results suggest that widespread loss of the endothelial surface layer links albuminuric kidney disease with systemic vascular dysfunction, providing a potential therapeutic target for proteinuric kidney disease.

  14. Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation

    Directory of Open Access Journals (Sweden)

    Ken Aizawa

    2015-03-01

    Full Text Available Sirolimus (SRL is widely used to prevent restenosis after percutaneous coronary intervention. However, its beneficial effect is hampered by complications of thrombosis. Several studies imply that reactive oxygen species (ROS play a critical role in endothelial dysfunction and thrombus formation. The present study investigated the protective effect of nicorandil (NIC, an anti-angina agent, on SRL-associated thrombosis. In human coronary artery endothelial cells (HCAECs, SRL stimulated ROS production, which was prevented by co-treatment with NIC. The preventive effect of NIC on ROS was abolished by 5-hydroxydecanoate but not by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. NIC also inhibited SRL-induced up-regulation of NADPH oxidase subunit p22phox mRNA. Co-treatment with NIC and SRL significantly up-regulated superoxide dismutase 2. NIC treatment significantly improved SRL-induced decrease in viability of HCAECs. The functional relevance of the preventive effects of NIC on SRL-induced ROS production and impairment of endothelial viability was investigated in a mouse model of thrombosis. Pretreatment with NIC inhibited the SRL-induced acceleration of FeCl3-initiated thrombus formation and ROS production in the testicular arteries of mice. In conclusion, NIC prevented SRL-induced thrombus formation, presumably due to the reduction of ROS and to endothelial protection. The therapeutic efficacy of NIC could represent an additional option in the prevention of SRL-related thrombosis.

  15. Peroxynitrite Mediates Diabetes-Induced Endothelial Dysfunction: Possible Role of Rho Kinase Activation

    Directory of Open Access Journals (Sweden)

    Azza B. El-Remessy

    2010-01-01

    Full Text Available Endothelial dysfunction is characterized by reduced bioavailability of NO due to its inactivation to form peroxynitrite or reduced expression of eNOS. Here, we examine the causal role of peroxynitrite in mediating diabetes-induced endothelial dysfunction. Diabetes was induced by STZ-injection, and rats received the peroxynitrite decomposition catalyst (FeTTPs, 15 mg/Kg/day for 4 weeks. Vasorelaxation to acetylcholine, oxidative-stress markers, RhoA activity, and eNOS expression were determined. Diabetic coronary arteries showed significant reduction in ACh-mediated maximal relaxation compared to controls. Diabetic vessels showed also significant increases in lipid-peroxides, nitrotyrosine, and active RhoA and 50% reduction in eNOS mRNA expression. Treatment of diabetic animals with FeTTPS blocked these effects. Studies in aortic endothelial cells show that high glucose or peroxynitrite increases the active RhoA kinase levels and decreases eNOS expression and NO levels, which were reversed with blocking peroxynitrite or Rho kinase. Together, peroxynitrite can suppress eNOS expression via activation of RhoA and hence cause vascular dysfunction.

  16. Modest Visceral Fat Gain Causes Endothelial Dysfunction In Healthy Humans

    Science.gov (United States)

    Romero-Corral, Abel; Sert-Kuniyoshi, Fatima H.; Sierra-Johnson, Justo; Orban, Marek; Gami, Apoor; Davison, Diane; Singh, Prachi; Pusalavidyasagar, Snigdha; Huyber, Christine; Votruba, Susanne; Lopez-Jimenez, Francisco; Jensen, Michael D.; Somers, Virend K.

    2014-01-01

    Objective This study sought to determine the impact of fat gain and its distribution on endothelial function in lean healthy humans. Background Endothelial dysfunction has been identified as an independent predictor of cardiovascular events. Whether fat gain impairs endothelial function is unknown. Methods A randomized controlled study to assess the effects of fat gain on endothelial function. We recruited 43 normal weight healthy volunteers (mean age 29 years; 18 women). Subjects were assigned to gain weight (approximately 4 kg) (n=35) or to maintain weight (n=8). Endothelial function (brachial artery flow mediated dilation -FMD) was measured at baseline, after fat gain (8 weeks) and after weight loss (16 weeks) for fat-gainers and at baseline and follow-up (8 weeks) for weight-maintainers. Body composition was measured by DXA and abdominal CT scans. Results After an average weight gain of 4.1 kg, fat-gainers significantly increased their total, visceral and subcutaneous fat. Blood pressure and overnight polysomnography did not change after fat gain or loss. FMD remained unchanged in weight-maintainers. FMD decreased in fat-gainers (9.1 ± 3% vs. 7.8 ± 3.2%, p =0.003), but recovered to baseline when subjects shed the gained weight. There was a significant correlation between the decrease in FMD and the increase in visceral fat gain (rho = −0.42, p=0.004), but not with subcutaneous fat gain (rho = −0.22, p=0.15). Conclusions In normal weight healthy young subjects, modest fat gain results in impaired endothelial function, even in the absence of changes in blood pressure. Endothelial function recovers after weight loss. Increased visceral rather than subcutaneous fat predicts endothelial dysfunction. PMID:20705223

  17. Molecular mechanisms of diabetic coronary dysfunction due to large conductance Ca2+-activated K+ channel impairment

    Institute of Scientific and Technical Information of China (English)

    WANG Ru-xing; ZHENG Jie; GUO Su-xia; LI Xiao-rong; LU Tong; SHI Hai-feng; CHAI Qiang; WU Ying; SUN Wei; JI Yuan; YAO Yong; LI Ku-lin; ZHANG Chang-ying

    2012-01-01

    Background Diabetes mellitus is associated with coronary dysfunction,contributing to a 2- to 4-fold increase in the risk of coronary heart diseases.The mechanisms by which diabetes induces vasculopathy involve endothelial-dependent and -independent vascular dysfunction in both type 1 and type 2 diabetes mellitus.The purpose of this study is to determine the role of vascular large conductance Ca2+-activated K+ (BK) channel activities in coronary dysfunction in streptozotocin-induced diabetic rats.Methods Using videomicroscopy,immunoblotting,fluorescent assay and patch clamp techniques,we investigated the coronary BK channel activities and BK channel-mediated coronary vasoreactivity in streptozotocin-induced diabetic rats.Results BK currents (defined as the iberiotoxin-sensitive K+ component) contribute (65±4)% of the total K+ currents in freshly isolated coronary smooth muscle cells and >50% of the contraction of the inner diameter of coronary arteries from normal rats.However,BK current density is remarkably reduced in coronary smooth muscle cells of streptozotocin-induced diabetic rats,leading to an increase in coronary artery tension.BK channel activity in response to free Ca2+ is impaired in diabetic rats.Moreover,cytoplasmic application of DHS-1 (a specific BK channel β1 subunit activator) robustly enhanced the open probability of BK channels in coronary smooth muscle cells of normal rats.In diabetic rats,the DHS-1 effect was diminished in the presence of 200 nmol/L Ca2+ and was significantly attenuated in the presence of high free calcium concentration,i.e.,1 μmol/L Ca2+.Immunoblotting experiments confirmed that there was a 2-fold decrease in BK-β1 protein expression in diabetic vessels,without altering the BK channel α-subunit expression.Although the cytosolic Ca2+ concentration of coronary arterial smooth muscle cells was increased from (103±23)nmol/L (n=5) of control rats to (193±22) nmol/L (n=6,P<0.05) of STZ-induced diabetic rats,reduced BK

  18. Microvesicles: potential markers and mediators of endothelial dysfunction.

    Science.gov (United States)

    Liu, Ming-Lin; Williams, Kevin Jon

    2012-04-01

    Microvesicles (also known as microparticles) are small membranous structures that are released from platelets and cells upon activation or during apoptosis. Microvesicles have been found in blood, urine, synovial fluid, extracellular spaces of solid organs, atherosclerotic plaques, tumors, and elsewhere. Here, we focus on new clinical and basic work that implicates microvesicles as markers and mediators of endothelial dysfunction and hence novel contributors to cardiovascular and other diseases. Advances in the detection of microvesicles and the use of cell type-specific markers to determine their origin have allowed studies that associated plasma concentrations of specific microvesicles with major types of endothelial dysfunction - namely, inappropriate or maladaptive vascular tone, leukocyte recruitment, and thrombosis. Recent investigations have highlighted microvesicular transport of key biologically active molecules besides tissue factor, such as ligands for pattern-recognition receptors, elements of the inflammasome, and morphogens. Microvesicles generated from human cells under different pathologic circumstances, for example, during cholesterol loading or exposure to endotoxin, carry different subsets of these molecules and thereby alter endothelial function through several distinct, well characterized molecular pathways. Clinical and basic studies indicate that microvesicles may be novel markers and mediators of endothelial dysfunction. This work has advanced our understanding of the development of cardiovascular and other diseases. Opportunities and obstacles to clinical applications are discussed.

  19. Vascular endothelial cells and dysfunctions: role of melatonin.

    Science.gov (United States)

    Rodella, Luigi Fabrizio; Favero, Gaia; Foglio, Eleonora; Rossini, Claudia; Castrezzati, Stefania; Lonati, Claudio; Rezzani, Rita

    2013-01-01

    Several pathological conditions, including hypertension, atherosclerosis, diabetes, ischemia/reperfusion injury and nicotine-induced vasculopathy, are associated with vascular endothelial dysfunction characterized by altered secretory output of endothelial cells. Therefore there is a search for molecules and interventions that could restore endothelial function, in particular augmenting NO production, reducing the generation of free radicals and vasoconstrictors and preventing undesired inflammation. The pineal hormone melatonin exhibits several endothelium protective properties: it scavenges free radicals, activates antioxidant defence enzymes, normalizes lipid and blood pressure profile and increases NO bioavailability. Melatonin improved vascular function in experimental hypertension, reducing intimal infiltration and restoring NO production. Melatonin improved the NO pathway also in animal models for the study of diabetes and prevented NO down-regulation and adhesive molecules up-regulation in nicotine-induced vasculopathy. The protection against endothelial damage, vasoconstriction, platelet aggregation and leukocyte infiltration might contribute to the beneficial effects against ischemia-reperfusion injury by melatonin. Therefore, melatonin administration has endothelium-protective potential in several pathological conditions. Nevertheless, it still needs to be established, whether melatonin is able to revert already established endothelial dysfunction in these conditions.

  20. Denture-Related Stomatitis Is Associated with Endothelial Dysfunction

    Directory of Open Access Journals (Sweden)

    Joanna Maciąg

    2014-01-01

    Full Text Available Oral inflammation, such as periodontitis, can lead to endothelial dysfunction, accelerated atherosclerosis, and vascular dysfunction. The relationship between vascular dysfunction and other common forms of oral infections such as denture-related stomatitis (DRS is unknown. Similar risk factors predispose to both conditions including smoking, diabetes, age, and obesity. Accordingly, we aimed to investigate endothelial function and major vascular disease risk factors in 44 consecutive patients with dentures with clinical and microbiological features of DRS (n=20 and without DRS (n=24. While there was a tendency for higher occurrence of diabetes and smoking, groups did not differ significantly in respect to major vascular disease risk factors. Groups did not differ in main ambulatory blood pressure, total cholesterol, or even CRP. Importantly, flow mediated dilatation (FMD was significantly lower in DRS than in non-DRS subjects, while nitroglycerin induced vasorelaxation (NMD or intima-media thickness (IMT was similar. Interestingly, while triglyceride levels were normal in both groups, they were higher in DRS subjects, although they did not correlate with either FMD or NMD. Conclusions. Denture related stomatitis is associated with endothelial dysfunction in elderly patients with dentures. This is in part related to the fact that diabetes and smoking increase risk of both DRS and cardiovascular disease.

  1. NON-PHARMACOLOGICAL CONCEPTS OF ENDOTHELIAL DYSFUNCTION IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    Mirjana Bakic

    2007-04-01

    Full Text Available Endothelium plays an important role in maintaining normal vascular tonus and blood fluidity reducing thrombocyte activity and adhesion of leukocytes as well as limiting response of vascular inflammation. However, in certain pathological conditions such as hypercholesterolemia, hypertension, and diabetes, endothelium improves vasoconstriction, inflammation and thrombocytic events.Non-pharmacological concept is based on recognition of genetic factors, environmental factors, or combination of risk factors for the occurrence of endothelial dysfunction, general and individual education of the significance of adequate nutrition, physical activity and regulation of body weight, regular check-ups and the application of antioxidants which can regulate and protect several aspects of endothelial functions.

  2. Globotriaosylsphingosine accumulation and not alpha-galactosidase-A deficiency causes endothelial dysfunction in Fabry disease.

    Directory of Open Access Journals (Sweden)

    Mehdi Namdar

    Full Text Available BACKGROUND: Fabry disease (FD is caused by a deficiency of the lysosomal enzyme alpha-galactosidase A (GLA resulting in the accumulation of globotriaosylsphingosine (Gb3 in a variety of tissues. While GLA deficiency was always considered as the fulcrum of the disease, recent attention shifted towards studying the mechanisms through which Gb3 accumulation in vascular cells leads to endothelial dysfunction and eventually multiorgan failure. In addition to the well-described macrovascular disease, FD is also characterized by abnormalities of microvascular function, which have been demonstrated by measurements of myocardial blood flow and coronary flow reserve. To date, the relative importance of Gb3 accumulation versus GLA deficiency in causing endothelial dysfunction is not fully understood; furthermore, its differential effects on cardiac micro- and macrovascular endothelial cells are not known. METHODS AND RESULTS: In order to assess the effects of Gb3 accumulation versus GLA deficiency, human macro- and microvascular cardiac endothelial cells (ECs were incubated with Gb3 or silenced by siRNA to GLA. Gb3 loading caused deregulation of several key endothelial pathways such as eNOS, iNOS, COX-1 and COX-2, while GLA silencing showed no effects. Cardiac microvascular ECs showed a greater susceptibility to Gb3 loading as compared to macrovascular ECs. CONCLUSIONS: Deregulation of key endothelial pathways as observed in FD vasculopathy is likely caused by intracellular Gb3 accumulation rather than deficiency of GLA. Human microvascular ECs, as opposed to macrovascular ECs, seem to be affected earlier and more severely by Gb3 accumulation and this notion may prove fundamental for future progresses in early diagnosis and management of FD patients.

  3. Sensor to detect endothelialization on an active coronary stent

    Directory of Open Access Journals (Sweden)

    Coffey Arthur C

    2010-11-01

    Full Text Available Abstract Background A serious complication with drug-eluting coronary stents is late thrombosis, caused by exposed stent struts not covered by endothelial cells in the healing process. Real-time detection of this healing process could guide physicians for more individualized anti-platelet therapy. Here we present work towards developing a sensor to detect this healing process. Sensors on several stent struts could give information about the heterogeneity of healing across the stent. Methods A piezoelectric microcantilever was insulated with parylene and demonstrated as an endothelialization detector for incorporation within an active coronary stent. After initial characterization, endothelial cells were plated onto the cantilever surface. After they attached to the surface, they caused an increase in mass, and thus a decrease in the resonant frequencies of the cantilever. This shift was then detected electrically with an LCR meter. The self-sensing, self-actuating cantilever does not require an external, optical detection system, thus allowing for implanted applications. Results A cell density of 1300 cells/mm2 on the cantilever surface is detected. Conclusions We have developed a self-actuating, self-sensing device for detecting the presence of endothelial cells on a surface. The device is biocompatible and functions reliably in ionic liquids, making it appropriate for implantable applications. This sensor can be placed along the struts of a coronary stent to detect when the struts have been covered with a layer of endothelial cells and are no longer available surfaces for clot formation. Anti-platelet therapy can be adjusted in real-time with respect to a patient's level of healing and hemorrhaging risks.

  4. Measurement of endothelial dysfunction via peripheral arterial tonometry predicts vasculogenic erectile dysfunction

    Science.gov (United States)

    Kovac, Jason R.; Gomez, Lissette; Smith, Ryan P.; Coward, Robert M.; Gonzales, Marshall A.; Khera, Mohit; Lamb, Dolores J.; Lipshultz, Larry I.

    2014-01-01

    Introduction Endothelial cell dysfunction is associated with cardiovascular disease and vasculogenic erectile dysfunction (ED). Measured via Peripheral Artery Tonometry (PAT), endothelial dysfunction in the penis is an independent predictor of future cardiovascular events. Aim Determine whether measurement of endothelial dysfunction differentiates men with vasculogenic ED identified by duplex ultrasound from those without. Methods A total of 142 men were retrospectively assessed using patient history, penile duplex ultrasonography (US) and PAT (EndoPAT 2000). ED was self reported and identified on history. Vasculogenic ED was identified in men who exhibited a peak systolic velocity (PSV) of ≤25 cm/s obtained 15 minutes following vasodilator injection. The reactive hyperemia index (RHI), a measurement of endothelial dysfunction in medium/small arteries and the Augmentation Index (AI), a measurement of arterial stiffness, were recorded via PAT. Results Penile duplex US separated men into those with ED (n=111) and without (n=31). The cohort with ED had a PSV of 21±1 cm/s (left cavernous artery) and 22±1 cm/s (Right). The control group without ED had values of 39±2 cm/s (Left) and 39±2 (Right). Given the potential for altered endothelial function in diabetes mellitus, we confirmed that hemoglobin A1c, urinary microalbumin, and vibration pulse threshold were not different in men with vasculogenic ED and those without. RHI in patients with ED (1.85±0.06) was significantly decreased compared to controls (2.15±0.2) (p<0.05). The AI was unchanged when examined in isolation, and when standardized to heart rate. Conclusions Measurement of endothelial function with EndoPAT differentiates men with vasculogenic ED from those without. RHI could be used as a non-invasive surrogate in the assessment of vasculogenic ED and to identify those patients with higher cardiovascular risk. PMID:24784889

  5. Mechanisms of endothelial dysfunction in obesity-associated hypertension

    Directory of Open Access Journals (Sweden)

    N.S. Lobato

    2012-05-01

    Full Text Available Obesity is strongly associated with high blood pressure, dyslipidemia, and type 2 diabetes. These conditions synergistically increase the risk of cardiovascular events. A number of central and peripheral abnormalities can explain the development or maintenance of high blood pressure in obesity. Of great interest is endothelial dysfunction, considered to be a primary risk factor in the development of hypertension. Additional mechanisms also related to endothelial dysfunction have been proposed to mediate the development of hypertension in obese individuals. These include: increase in both peripheral vasoconstriction and renal tubular sodium reabsorption, increased sympathetic activity and overactivation of both the renin-angiotensin system and the endocannabinoid system and insulin resistance. The discovery of new mechanisms regulating metabolic and vascular function and a better understanding of how vascular function can be influenced by these systems would facilitate the development of new therapies for treatment of obesity-associated hypertension.

  6. Mechanisms of endothelial dysfunction in obesity-associated hypertension

    Directory of Open Access Journals (Sweden)

    N.S. Lobato

    2012-05-01

    Full Text Available Obesity is strongly associated with high blood pressure, dyslipidemia, and type 2 diabetes. These conditions synergistically increase the risk of cardiovascular events. A number of central and peripheral abnormalities can explain the development or maintenance of high blood pressure in obesity. Of great interest is endothelial dysfunction, considered to be a primary risk factor in the development of hypertension. Additional mechanisms also related to endothelial dysfunction have been proposed to mediate the development of hypertension in obese individuals. These include: increase in both peripheral vasoconstriction and renal tubular sodium reabsorption, increased sympathetic activity and overactivation of both the renin-angiotensin system and the endocannabinoid system and insulin resistance. The discovery of new mechanisms regulating metabolic and vascular function and a better understanding of how vascular function can be influenced by these systems would facilitate the development of new therapies for treatment of obesity-associated hypertension.

  7. CARDIOVASCULAR RISK IN PATIENTS WITH ANKYLOSING SPONDYLITIS: THE ROLE OF SYSTEMIC INFLAMMATION AND ENDOTHELIAL DYSFUNCTION

    Directory of Open Access Journals (Sweden)

    D. A. Poddubnyy

    2008-01-01

    Full Text Available Aim. To investigate the role of systemic inflammation and endothelial dysfunction as factors of cardiovascular risk in patients with ankylosing spondylitis.Material andMethods. 100 patients with ankylosing spondylitis were included into the study. Screening for arterial hypertension (HT and conventional cardiovascular risk factors (smoking, hyper- and dislipoproteinemia, body overweight, heredity and diabetes mellitus was performed in all patients. 10-year coronary disease risk (Framingham scale and 10-year risk of fatal cardiovascular event (SCORE scale was calculated. Additionally the follows cardiovascular risk factors were assessed: C-reactive protein level (CRP, fibrinogen level, platelet count, antithrombin III activity, plasma fibrinolytic activity, vonWillebrand factor (vWF activity, circulating endothelial cells (CEC count. Besides, endothelial functionwas evaluated by Doppler-ultrasonography of brachial artery in testswith reactive (endothelium-dependent or flow-mediated dilation and nitroglycerine (endotheliumindependent dilation hyperemia. 30 healthy patients were included into control group and were comparable with patients of studied group on sex and age.Results. 10-year coronary disease risk in patients with ankylosing spondylitis was significantly lower than this in patients of control group 4.0%(3,0; 7,5 vs 5.0%(3,0; 11,0, respectively (p<0,05. 10-year risk of fatal cardiovascular event in studied group was relatively low 1.0% (1.0; 2.0. However, analysis of the additional risk factors shown increased thrombogenic potential of blood, which was related to systemic inflammation activity: high platelets count, high fibrinogen activity, increased vWF activity, and decreased fibrinolytic activity. Moreover, signs of endothelial injury (increased level of CEC and vWF activity and endothelial dysfunction were found in patients with ankylosing spondylitis.Conclusion. Cardiovascular risk in patientswith ankylosing spondylitis estimated

  8. Maternal biomarkers of endothelial dysfunction and preterm delivery.

    Directory of Open Access Journals (Sweden)

    Xinhua Chen

    Full Text Available Endothelial dysfunction is key to the development of atherosclerosis. Preterm delivery foreshadows later maternal cardiovascular disease (CVD, but it is not known if endothelial dysfunction also occurs. We prospectively measured circulating biomarkers of endothelial dysfunction in pregnant women with preterm or term delivery.We conducted a case-control study nested within a large prospective epidemiological study of young, generally healthy pregnant women. Women who delivered preterm (<37 completed weeks gestation, n = 240 and controls who delivered at term (n = 439 were included. Pregnancies complicated by preeclampsia were analyzed separately. Circulating endothelial dysfunction biomarkers included soluble intercellular adhesion molecule-1 (sICAM-1, vascular cell adhesion molecule-1 (sVCAM-1 and soluble E-selectin (sE-selectin.Elevated levels of sICAM-1 and sVCAM-1 were positively associated with preterm delivery independent of usual risk factors. At entry (∼16 wks, the adjusted odds ratio (AOR was 1.73 (95% confidence interval (CI 1.09-2.74 for the highest quartile of sICAM-1 versus the lowest quartile and for sVCAM-1 the AOR was 2.17 (95% CI 1.36-3.46. When analysis was limited to cases with a spontaneous preterm delivery, the results were unchanged. Similar results were obtained for the 3rd trimester (∼30 wks. Elevated sE-selectin was increased only in preterm delivery complicated by preeclampsia; risk was increased at entry (AOR 2.32, 95% CI 1.22-4.40 and in the 3rd trimester (AOR 3.37, 95% CI 1.78-6.39.Impaired endothelial function as indicated by increased levels of soluble molecules commonly secreted by endothelial cells is a pathogenic precursor to CVD that is also present in women with preterm delivery. Our findings underscore the need for follow-up studies to determine if improving endothelial function prevents later CVD risk in women.

  9. Microvesicles Derived from Indoxyl Sulfate Treated Endothelial Cells Induce Endothelial Progenitor Cells Dysfunction.

    Science.gov (United States)

    Carmona, Andres; Guerrero, Fatima; Buendia, Paula; Obrero, Teresa; Aljama, Pedro; Carracedo, Julia

    2017-01-01

    Cardiovascular disease is a major cause of mortality in chronic kidney disease patients. Indoxyl sulfate (IS) is a typical protein-bound uremic toxin that cannot be effectively cleared by conventional dialysis. Increased IS is associated with the progression of chronic kidney disease and development of cardiovascular disease. After endothelial activation by IS, cells release endothelial microvesicles (EMV) that can induce endothelial dysfunction. We developed an in vitro model of endothelial damage mediated by IS to evaluate the functional effect of EMV on the endothelial repair process developed by endothelial progenitor cells (EPCs). EMV derived from IS-treated endothelial cells were isolated by ultracentrifugation and characterized for miRNAs content. The effects of EMV on healthy EPCs in culture were studied. We observed that IS activates endothelial cells and the generated microvesicles (IsEMV) can modulate the classic endothelial roles of progenitor cells as colony forming units and form new vessels in vitro. Moreover, 23 miRNAs were contained in IsEMV including four (miR-181a-5p, miR-4454, miR-150-5p, and hsa-let-7i-5p) that were upregulated in IsEMV compared with control endothelial microvesicles. Other authors have found that miR-181a-5p, miR-4454, and miR-150-5p are involved in promoting inflammation, apoptosis, and cellular senescence. Interestingly, we observed an increase in NFκB and p53, and a decrease in IκBα in EPCs treated with IsEMV. Our data suggest that IS is capable of inducing endothelial vesiculation with different membrane characteristics, miRNAs and other molecules, which makes maintaining of vascular homeostasis of EPCs not fully functional. These specific characteristics of EMV could be used as novel biomarkers for diagnosis and prognosis of vascular disease.

  10. Marker of endothelial dysfunction asymmetric dimethylarginine is elevated in HIV infection but not associated with sub-clinical atherosclerosis

    DEFF Research Database (Denmark)

    Haissman, Judith M; Haugaard, Anna K; Knudsen, Andreas;

    2016-01-01

    -sectional cohorts: Cohort A including 50 untreated and 50 anti-retroviral therapy (ART) treated HIV-infected individuals with previously assessed coagulation and platelet function, and Cohort B including 105 HIV-infected individuals on ART and 105 uninfected controls with previously assessed coronary artery calcium......BACKGROUND: Cardiovascular disease (CVD) contributes to excess morbidity and mortality in HIV infection, and endothelial dysfunction may contribute to this pattern. We aimed to determine endothelial function in treated and untreated HIV-infected individuals and investigate potential associations...... with viral replication, immune activation, coagulation, platelet function, and subclinical atherosclerosis. METHODS: Asymmetric dimethylarginine (ADMA, marker of endothelial dysfunction) and soluble CD14 (sCD14, marker of monocyte activation) were measured in plasma from two previously established cross...

  11. Selective endothelial overexpression of arginase II induces endothelial dysfunction and hypertension and enhances atherosclerosis in mice.

    Directory of Open Access Journals (Sweden)

    Boris L Vaisman

    Full Text Available Cardiovascular disorders associated with endothelial dysfunction, such as atherosclerosis, have decreased nitric oxide (NO bioavailability. Arginase in the vasculature can compete with eNOS for L-arginine and has been implicated in atherosclerosis. The aim of this study was to evaluate the effect of endothelial-specific elevation of arginase II expression on endothelial function and the development of atherosclerosis.Transgenic mice on a C57BL/6 background with endothelial-specific overexpression of human arginase II (hArgII gene under the control of the Tie2 promoter were produced. The hArgII mice had elevated tissue arginase activity except in liver and in resident peritoneal macrophages, confirming endothelial specificity of the transgene. Using small-vessel myography, aorta from these mice exhibited endothelial dysfunction when compared to their non-transgenic littermate controls. The blood pressure of the hArgII mice was 17% higher than their littermate controls and, when crossed with apoE -/- mice, hArgII mice had increased aortic atherosclerotic lesions.We conclude that overexpression of arginase II in the endothelium is detrimental to the cardiovascular system.

  12. Endothelial dysfunction and periodontitis: The role of inflammatory serum biomarkers

    OpenAIRE

    Reila Tainá Mendes; Daniel Fernandes

    2016-01-01

    Introduction: Periodontitis is a local chronic inflammation with systemic consequences. Many disorders are associated with periodontitis such as diabetes, high-serum low-density lipoprotein (LDL), and premature birth. Cardiovascular disease does not correspond to a classic risk factor for periodontitis but evidence suggests that endothelial dysfunction due to systemic inflammation may be the link between both pathologies. The aim of this study was to review the literature regarding endothelia...

  13. Endothelial Dysfunction and Vitamin D Levels in Kidney Allograft Recipients

    Directory of Open Access Journals (Sweden)

    Mehmet ALTAN

    2012-01-01

    Full Text Available There have been several studies demonstrating a relationship between vitamin D and cardiovascular disease. Vitamin D Deficiency/Insufficiency (D/I is a common problem in chronic renal disease and also renal transplant recipients, however, there is a variation between the summer and winter periods.We investigated whether there is a relationship between vitamin D D/I and endothelial dysfunction in renal transplant recipients (RTR. We also evaluated vitamin D levels in summer and winter. Flowmediated dilatation (FMD, soluble endothelial protein receptor C (sEPRC and soluble thrombomodulin (sTM were chosen for markers of endothelial function.Firty-five patients were recruited to the study. Winter measurements were performed on March, summer measurements were performed in September.In the winter, methe an vitamin D level was 18.8±7.5, compared with 34.3±13.0 ng/ml in the summer period (p<0.0001. There were 38 (84% and 20 (44% patients in the winter and summer periods with vitamin D D/I, respectively. We did not find any significant association between vitamin D D/I and FMD, sTM or sEPCR in either period.While vitamin D D/I is a common finding during winter in RTR, it recovers in the summer. Moreover, vitamin D D/I seems not to be associated with endothelial dysfunction.

  14. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    Science.gov (United States)

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.

  15. Arginine methylation dysfunction increased risk of acute coronary syndrome in coronary artery disease population

    Science.gov (United States)

    Zhang, Shengyu; Zhang, Shuyang; Wang, Hongyun; Wu, Wei; Ye, Yicong

    2017-01-01

    Abstract The plasma levels of asymmetric dimethylarginine (ADMA) had been proved to be an independent cardiovascular risk factor. Few studies involved the entire arginine methylation dysfunction. This study was designed to investigate whether arginine methylation dysfunction is associated with acute coronary syndrome risk in coronary artery disease population. In total 298 patients undergoing coronary angiography because of chest pain with the diagnosis of stable angina pectoris or acute coronary syndrome from February 2013 to June 2014 were included. Plasma levels of free arginine, citrulline, ornithine, and the methylated form of arginine, ADMA, and symmetric dimethylarginine (SDMA) were measured with high-performance liquid chromatography coupled with tandem mass spectrometry. We examined the relationship between arginine metabolism-related amino acids or arginine methylation index (AMI, defined as ratio of [arginine + citrulline + ornithine]/[ADMA + SDMA]) and acute coronary events. We found that plasma ADMA levels were similar in the stable angina pectoris group and the acute coronary syndrome group (P = 0.88); the AMI differed significantly between 2 groups (P angina and acute coronary syndrome patients; AMI might be an independent risk factor of acute coronary events in coronary artery disease population. PMID:28207514

  16. Therapeutic effect of nicorandil on coronary slow flow intervention and endothelial function in elderly patients

    Institute of Scientific and Technical Information of China (English)

    王涛

    2013-01-01

    Objective To observe the effects of nicorandil on coronary slow flow phenomenon (CSFP) and endothelial function in elderly patients.Methods Totally 76 elderly patients diagnosed angiographically as coronary slow flow phenomenon were enrolled.All patients were randomly

  17. Relationship between dyslipidemia and vascular endothelial function in patients with coronary artery spasm

    Institute of Scientific and Technical Information of China (English)

    向定成

    2006-01-01

    Objectives To investigate the effects of dyslipidemia on vascular endothelial function in patients with coronary artery spasm. Methods Sixty-four patients with chest pain but without significant angiographic stenosis were divided into coronary spasm group (n=46 with coronary spasm) and control group (n=18 without coronary spasm) according to acetylcholine provoking test. Endothelin-1 (ET-1), nitric oxide (NO) and lipids were

  18. Treatment of Angina Pectoris Associated with Coronary Microvascular Dysfunction.

    Science.gov (United States)

    Ong, Peter; Athanasiadis, Anastasios; Sechtem, Udo

    2016-08-01

    Treatment of angina pectoris associated with coronary microvascular dysfunction is challenging as the underlying mechanisms are often diverse and overlapping. Patients with type 1 coronary microvascular dysfunction (i.e. absence of epicardial coronary artery disease and myocardial disease) should receive strict control of their cardiovascular risk factors and thus receive statins and ACE-inhibitors in most cases. Antianginal medication consists of ß-blockers and/or calcium channel blockers. Second line drugs are ranolazine and nicorandil with limited evidence. Despite individually titrated combinations of these drugs up to 30 % of patients have refractory angina. Rho-kinase inhibitors and endothelin-receptor antagonists represent potential drugs that may prove useful in these patients in the future.

  19. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ming-Chung [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan (China); Chen, Chia-Ling [Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Yang, Tsan-Tzu; Choi, Pui-Ching [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Hsing, Chung-Hsi [Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan (China); Department of Anesthesiology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Lin, Chiou-Feng, E-mail: cflin@mail.ncku.edu.tw [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-01

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  20. Association analysis between endothelial function related factors and coronary artery stenosis degree in coronary heart disease patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Li, Quanmin; Zhang, Zhifang; Du, Ruiqin; Hu, Xiaoqiang; Yan, Yan; Gao, Qing; Fan, Yanting

    2012-01-01

    To investigate the relationship between soluble intercellular adhesion molecule (sICAM-1), vascular endothelial cell adhesion molecule (VCAM-1), monocytes chemotactic protein (MCP-1), von Willebrand factor (vWF), and coronary artery stenoses degree in coronary heart disease (CHD) within type 2 diabetes mellitus (T2DM) patients. A total of 92 subjects were treated with coronary angiography (CAG), including 62 subjects with CHD. The individuals were divided into three groups, group A (32 patients with CHD and T2DM), group B (30 patients with CHD but no T2DM) and group C (30 patients with no CHD and T2DM). All patients were treated with a Gensini coronary angiography check. The correlations between sICAM-1, VCAM-1, MCP-1 and vWF in peripheral blood and coronary artery stenosis degree were analyzed. The average score of coronary artery stenosis degree was 30.75 +/-12.67 in group A, which was significantly higher than group B (11.20 +/-7.51) and group C (2.40 +/- 1.23) (p coronary artery stenosis and the mean level of sICAM-1, VCAM-1, MCP-1, vWF in group A (p 0.05). Association analysis shown that the level of sICAM-1, VCAM-1, MCP-1 and vWF elevated in CHD with T2DM patients. Vascular endothelial dysfunction could be caused to the coronary artery stenosis pathophysiological process. Results from this study suggested that sICAM-1, VCAM-1, MCP-1 and vWF may contribute to the occurrence and development of vascular lesions in T2DM. These endothelial function related factors could be acceptable as a prediction and testing index of vascular complications in T2DM.

  1. Endothelial Function in Adolescents with a History of Premature Coronary Artery Disease in One Parent

    Directory of Open Access Journals (Sweden)

    M Hashemi

    2006-01-01

    Full Text Available Background: In young adults, a family history of premature coronary artery disease (CAD, as well as genetic and environmental factors are independent risk factors for coronary artery disease. Methods: Endothelial function was studied in 30 children (21 boys and 9 girls with mean age of 14.9 +/- 2.3 years old of patients with documented CAD (men 45 and women 50 years old. Chidren did not have any history of diabetes mellitus, dyslipidemia, hypertension, and smoking (active/passive. Using vascular ultrasound, we measured resting Basal Brachial artery Diameter (BBD and Endothelium-Dependent Dilatation (EDD in response to increased flow and sublingual glyceryltrinitrate (GTN, an Endothelium-Independent Dilation (EID. These parameters were also measured in 30 control subjects with normal parents (18 boys and 12 girls with mean age of 14.2 +/- 2/5years old and results were compared with each other. Results: Adolescents in CAD group had abnormal Endothelial Dependent Dilatation or EDD/BBD (8.5 +/- 3.4% vs 11.8 +/- 4.5% in control subjects; P= 0.003.Endothelial Independent Dilatation (EID/BBD in the positive fimily history group was significantly more than control subjects (18.5 +/- 6.7% vs 11.9 +/- 5.2%; P <0.001. EDD/EID or the index of endothelial function was significantly lower in the positive family history group (0.92 +/- 0.05 vs 1+/- 0.03; P<0.001. There was no difference in EDD/EID index between those with history of premature CAD in mother (7 cases and those with history of premature CAD in father (23 cases (0.92 +/- 0.04 vs 0.91+/- 0.05. Conclusion: Normal adolescents without any cardiovascular risk factors but a history of premature coronary artery disease in one parent may have endothelial dysfunction, and there is no difference whether the CAD is in mother or father. Keywords: Endothelial dependent dilation, family history, CAD risk factors, premature coronary artery disease

  2. Endothelial dysfunction in patients with sudden sensorineural hearing loss

    Directory of Open Access Journals (Sweden)

    Nezamoddin Berjis

    2016-01-01

    Full Text Available Background: Endothelial dysfunction probably has a role in the etiology of sudden sensorineural hearing loss (SSNHL. The aim of this study was determining of the relationship between endothelial dysfunction and SSNHL. Materials and Methods: In a case-control study, 30 patients with SSNHL and 30 otherwise healthy age and sex-matched controls were studied. Demographic data gathered included age, gender, family history of SSNHL, and history of smoking, cardiovascular disease, hypertension, diabetes, and dyslipidemia. Laboratory data included measurement of hemoglobin, fasting blood sugar (FBS and lipid profile. Endothelial function was assessed by measuring flow-mediated dilation (FMD. Results: The two groups were the same in age (47.9 ± 9.3 and 48.1 ± 9.6 years, P = 0.946 with female/male ratio of 1:1 in both groups. Diabetes and dyslipidemia were more frequent in patients than controls (20% vs. 0%, P = 0.024. Brachial artery diameter was greater in patients than controls before (4.24 ± 0.39 vs. 3.84 ± 0.23 mm, P < 0.001 and after ischemia (4.51 ± 0.43 vs. 4.28 ± 0.27 mm, P = 0.020, but FMD was lower in patients than controls (6.21 ± 3.0 vs. 11.52 ± 2.30%, P < 0.001. Binary logistic regression analysis showed that FMD was associated with SSNHL independent from FBS and lipid profile (odds ratio [95% confidence interval] =0.439 [0.260-0.740], P = 0.002. Conclusion: Endothelial dysfunction, among other cardiovascular risk factors, is associated with SSNHL. This association is independent from other cardiovascular risk factors including diabetes and dyslipidemia.

  3. Mst1 inhibits CMECs autophagy and participates in the development of diabetic coronary microvascular dysfunction

    Science.gov (United States)

    Lin, Jie; Zhang, Lei; Zhang, Mingming; Hu, Jianqiang; Wang, Tingting; Duan, Yu; Man, Wanrong; Wu, Bin; Feng, Jiaxu; Sun, Lei; Li, Congye; Zhang, Rongqing; Wang, Haichang; Sun, Dongdong

    2016-01-01

    Cardiovascular complications account for a substantial proportion of morbidity and mortality in diabetic patients. Abnormalities of cardiac microvascular endothelial cells (CMECs) lead to impaired cardiac microvascular vessel integrity and subsequent cardiac dysfunction, underlining the importance of coronary microvascular dysfunction. In this study, experimental diabetes models were constructed using Mst1 transgenic, Mst1 knockout and sirt1 knockout mice. Diabetic Mst1 transgenic mice exhibited impaired cardiac microvessel integrity and decreased cardiac function. Mst1 overexpression deceased CMECs autophagy as evidenced by decreased LC3 expression and enhanced protein aggregation when subjected to high glucose culture. Mst1 knockout improved cardiac microvessel integrity and enhanced cardiac functions in diabetic mice. Mst1 knockdown up-regulated autophagy as indicated by more typical autophagosomes and increased LC3 expression in CMECs subjected to high glucose cultures. Mst1 knockdown also promoted autophagic flux in the presence of bafilomycin A1. Mst1 overexpression increased CMECs apoptosis, whereas Mst1 knockout decreased CMECs apoptosis. Sirt1 knockout abolished the effects of Mst1 overexpression in cardiac microvascular injury and cardiac dysfunction. In conclusion, Mst1 knockout preserved cardiac microvessel integrity and improved cardiac functions in diabetic mice. Mst1 decreased sirt1 activity, inhibited autophagy and enhanced apoptosis in CMECs, thus participating in the pathogenesis of diabetic coronary microvascular dysfunction. PMID:27680548

  4. Effect of Carvedilol on the Coronary Vascular Endothelial Function after Percutaneous Transluminal Coronary Angioplasty

    Institute of Scientific and Technical Information of China (English)

    苏显明; 马奕; 崔长琮

    2003-01-01

    Objectives To understand the effect of carvedilol on the coronary vascular endothelial function of the patients with coronary heart disease after percutaneous transluminal coronary angioplasty (PTCA). Methods 51cases, having one or more than two branches narrow ( ≥ 70% ) , were diagnosed by coronary angiography. These patients were divided randomly into carvedilol group (n = 28 ) and control group (n = 23) who did not take carvedilol.Endothelin (ET) and nitro dioxide (NO) levels of peripheral blood were measured before and after PTCA,before and after two weeks by taking carvedilol. Results Compared with the ET and NO levels before PTCA, ET were markedly increased and NO were decreased after PTCA (p < 0.05); compared with the ET and NO levels before taking carvedilol, ET were decreased and NO were increased after two week (p <0.05) , but the ET and NO levels of the control group did not change in the period of two weeks observation (p > 0.05). Conclusions Carvedilol may improve the coronary vascular endothelial function after PTCA.

  5. Analysis of vascular endothelial dysfunction genes and related pathways in obesity through systematic bioinformatics.

    Science.gov (United States)

    Zhang, Hui; Wang, Jing; Sun, Ling; Xu, Qiuqin; Hou, Miao; Ding, Yueyue; Huang, Jie; Chen, Ye; Cao, Lei; Zhang, Jianmin; Qian, Weiguo; Lv, Haitao

    2015-01-01

    Obesity has become an increasingly serious health problem and popular research topic. It is associated with many diseases, especially cardiovascular disease (CVD)-related endothelial dysfunction. This study analyzed genes related to endothelial dysfunction and obesity and then summarized their most significant signaling pathways. Genes related to vascular endothelial dysfunction and obesity were extracted from a PubMed database, and analyzed by STRING, DAVID, and Gene-Go Meta-Core software. 142 genes associated with obesity were found to play a role in endothelial dysfunction in PubMed. A significant pathway (Angiotensin system maturation in protein folding and maturation) associated with obesity and endothelial dysfunction was explored. The genes and the pathway explored may play an important role in obesity. Further studies about preventing vascular endothelial dysfunction obesity should be conducted through targeting these loci and pathways.

  6. Role of microparticles in endothelial dysfunction and arterial hypertension

    Institute of Scientific and Technical Information of China (English)

    Thomas; Helbing; Christoph; Olivier; Christoph; Bode; Martin; Moser; Philipp; Diehl

    2014-01-01

    Microparticles are small cell vesicles that can be released by almost all eukaryotic cells during cellular stress and cell activation. Within the last 1-2 decades it has been shown that microparticles are useful blood surrogate markers for different pathological conditions, such as vascular inflammation, coagulation and tumour diseases. Several studies have investigated the abundance of microparticles of different cellular origins in multiple cardiovascular diseases. It thereby has been shown that microparticles released by platelets, leukocytes and endothelial cells can be found in conditions of endothelial dysfunction, acute and chronic vascular inflammation and hypercoagulation. In addition to their function as surrogate markers, several studies indicate that circulating microparticles can fuse with distinct target cells, such as endothelial cells or leukocyte, and thereby deliver cellular components of their parental cells to the target cells. Hence, microparticles are a novel entity of circulating, paracrine, biological vectors which can influence the phenotype, the function and presumably even the transcriptome of their target cells.This review article aims to give a brief overview about the microparticle biology with a focus on endothelial activation and arterial hypertension. More detailed information about the role of microparticles in pathophysiology and disease can be found in already published work.

  7. Features of endothelial dysfunction in early diabetic nephropathy

    DEFF Research Database (Denmark)

    Jensen, T; Bjerre-Knudsen, J; Feldt-Rasmussen, B

    1989-01-01

    The release of tissue plasminogen activator (tPA) by vascular endothelial cells during exercise was studied in forty men with insulin-dependent diabetes. Three groups, matched for age and diabetes duration, were defined as: group I (n = 19), normal urinary albumin excretion (less than 30 mg/24 h.......01) and II (difference not significant, p = 0.06) than in group I and normal controls. These findings suggest that insulin-dependent diabetic patients with only slightly raised urinary albumin excretion have general endothelial cell dysfunction or damage. It is not yet clear whether these changes...... and group I but significantly smaller in groups II and III (p less than 0.01). The albumin transcapillary escape rate was significantly higher in groups II and III than in group I and normal controls (p less than 0.01). The basal plasma level of von Willebrand factor was higher in groups III (p less than 0...

  8. Autonomic Blockade Reverses Endothelial Dysfunction in Obesity-Associated Hypertension.

    Science.gov (United States)

    Gamboa, Alfredo; Figueroa, Rocío; Paranjape, Sachin Y; Farley, Ginnie; Diedrich, Andre; Biaggioni, Italo

    2016-10-01

    Impaired nitric oxide (NO) vasodilation (endothelial dysfunction) is associated with obesity and thought to be a factor in the development of hypertension. We previously found that NO synthesis inhibition had similar pressor effects in obese hypertensives compared with healthy control during autonomic blockade, suggesting that impaired NO vasodilation is secondary to sympathetic activation. We tested this hypothesis by determining the effect of autonomic blockade (trimethaphan 4 mg/min IV) on NO-mediated vasodilation (increase in forearm blood flow to intrabrachial acetylcholine) compared with endothelial-independent vasodilation (intrabrachial sodium nitroprusside) in obese hypertensive subjects (30hypertension and provides further rationale to explore it as a therapeutic target. © 2016 American Heart Association, Inc.

  9. Subcellular characterization of glucose uptake in coronary endothelial cells.

    Science.gov (United States)

    Gaudreault, N; Scriven, D R L; Laher, I; Moore, E D W

    2008-01-01

    Despite all the evidence linking glucose toxicity to an increased risk of cardiovascular diseases, very little is known about the regulation of glucose uptake in endothelial cells. We have previously reported an asymmetric distribution of the GLUTs (1-5) and SGLT-1 in en face preparations of rat coronary artery endothelia [Gaudreault N., Scriven D.R., Moore E.D., 2004. Characterisation of glucose transporters in the intact coronary artery endothelium in rats: GLUT-2 upregulated by long-term hyperglycaemia. Diabetologia 47(12),2081-2092]. We assessed this time, through immunocytochemistry and wide field fluorescence microscopy coupled to deconvolution, the presence and subcellular distribution of glucose transporters in cultures of human coronary artery endothelial cells (HCAECs). HCAECs express GLUT-1 to 5 and SGLT-1, but their subcellular distribution lacks the luminal/abluminal asymmetry and the proximity to cell-to-cell junctions observed in intact endothelium. To determine the impact of the transporters' distribution on intracellular glucose accumulation, a fluorescent glucose analog (2-NBDG) was used in conjunction with confocal microscopy to monitor uptake in individual cells; the arteries were mounted in an arteriograph chamber with physiological flow rates. The uptake in both preparations was inhibited by cytochalasin-B and d-glucose and stimulated by insulin, but the distribution of the incorporated 2-NBDG mirrored that of the transporters. In HCAEC it was distributed throughout the cell and in the intact arterial endothelium it was restricted to the narrow cytosolic volume adjacent to the cell-to-cell junctions. We suggest that the latter subcellular organization and compartmentalization may facilitate transendothelial transport of glucose in intact coronary artery.

  10. Circuit resistance training improved endothelial dysfunction in obese aged women

    Directory of Open Access Journals (Sweden)

    Ignacio Rosety

    Full Text Available Introduction: It is widely accepted that obesity is associated with endothelial dysfunction. In a recent paper, we have also found circuit resistance training may reduce visceral fat in obese aged women. Accordingly, the current study was conducted to ascertain the effects of circuit resistance training on markers of endothelial dysfunction in this population group. Methods: In the present interventional study, a total of 48 obese aged women were recruited from the community. Twenty-four of them were randomly assigned to perform a 12-week resistance circuit training programme, 3-days per week. This training was circularly performed in 6 stations: arm curl, leg extension, seated row, leg curl, triceps extension and leg press. The Jamar handgrip electronic dynamometer was used to assess maximal handgrip strength of the dominant hand. Lastly, serum samples were analysed using an immunoassay (ELISA for endothelin-1, intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1. Results: When compared to baseline, resistance training significantly reduced serum levels of endothelin-1 (2.28 ± 0.7 vs. 1.98 ± 1.1 pg/ml; p = 0.019; d = 0.67 and ICAM-1 (290 ± 69 vs. 255 ± 76 ng/ml; p = 0.004; d = 0.92 in the experimental group. No significant changes in any of the tested outcomes were found in the control group. Conclusion: A short-term circuit resistance program improved endothelial dysfunction in aged obese women. Further studies on this topic are still required to consolidate this approach in clinical application.

  11. ENDOTHELIAL DYSFUNCTION IN STABLE ANGINA AND MYOCARDIAL INFARCTION COMBINED WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE

    Directory of Open Access Journals (Sweden)

    M. A. Popova

    2015-01-01

    Full Text Available The research objective is to determine the state of endothelium-dependent and endothelium-independent vasodilatation in patients with coronary heart disease (CHD associated with chronic obstructive pulmonary disease (COPD.Material and methods. In the cross-sectional study included 122 patients with CHD associated with COPD: 68 people of them are patients with stable angina without acute coronary events in history and 54 patients with acute ST segment elevation myocardial infarction (STEMI. Comparison group comprised 53 patients with stable angina and 51 patients after STEMI without concomitant COPD. Patients were included if they met the following inclusion criteria: male, age <60 years, verified forms of CHD (stable angina, STEMI, documented with COPD without exacerbation and forced expiratory volume in 1 second > 30% in the groups with CHD and COPD. Arterial endothelial function was tested with high-resolution ultrasonography: brachial artery diameter was measured at rest, after flow increase (which causes endothelium-dependent dilatation, and after administration of sublingual nitroglycerin (an endothelium-independent dilator.Results. We found that endothelial dysfunction in patients with acute and chronic forms of CHD in combination with COPD are more pronounced than in isolated CHD.Conclusion. Expressed depression functional vascular reserve in patients with CHD associated with COPD, should be taken into account when conducting individualized therapy of these patients.

  12. File list: Oth.CDV.05.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.AllAg.Coronary_artery_endothelial_cells hg19 TFs and others Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.05.AllAg.Coronary_artery_endothelial_cells.bed ...

  13. File list: DNS.CDV.20.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.20.AllAg.Coronary_artery_endothelial_cells hg19 DNase-seq Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.20.AllAg.Coronary_artery_endothelial_cells.bed ...

  14. File list: Pol.CDV.50.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.AllAg.Coronary_artery_endothelial_cells hg19 RNA polymerase Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.50.AllAg.Coronary_artery_endothelial_cells.bed ...

  15. File list: InP.CDV.20.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.20.AllAg.Coronary_artery_endothelial_cells hg19 Input control Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.CDV.20.AllAg.Coronary_artery_endothelial_cells.bed ...

  16. File list: Unc.CDV.10.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.10.AllAg.Coronary_artery_endothelial_cells hg19 Unclassified Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.10.AllAg.Coronary_artery_endothelial_cells.bed ...

  17. File list: His.CDV.20.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Coronary_artery_endothelial_cells hg19 Histone Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.20.AllAg.Coronary_artery_endothelial_cells.bed ...

  18. File list: His.CDV.10.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Coronary_artery_endothelial_cells hg19 Histone Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.10.AllAg.Coronary_artery_endothelial_cells.bed ...

  19. File list: InP.CDV.50.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.50.AllAg.Coronary_artery_endothelial_cells hg19 Input control Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.CDV.50.AllAg.Coronary_artery_endothelial_cells.bed ...

  20. File list: Pol.CDV.20.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.AllAg.Coronary_artery_endothelial_cells hg19 RNA polymerase Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.20.AllAg.Coronary_artery_endothelial_cells.bed ...

  1. File list: Unc.CDV.20.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.20.AllAg.Coronary_artery_endothelial_cells hg19 Unclassified Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.20.AllAg.Coronary_artery_endothelial_cells.bed ...

  2. File list: Unc.CDV.50.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.50.AllAg.Coronary_artery_endothelial_cells hg19 Unclassified Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.50.AllAg.Coronary_artery_endothelial_cells.bed ...

  3. File list: Oth.CDV.20.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.AllAg.Coronary_artery_endothelial_cells hg19 TFs and others Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.20.AllAg.Coronary_artery_endothelial_cells.bed ...

  4. File list: DNS.CDV.05.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Coronary_artery_endothelial_cells hg19 DNase-seq Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Coronary_artery_endothelial_cells.bed ...

  5. File list: InP.CDV.10.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.10.AllAg.Coronary_artery_endothelial_cells hg19 Input control Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.CDV.10.AllAg.Coronary_artery_endothelial_cells.bed ...

  6. File list: DNS.CDV.10.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.10.AllAg.Coronary_artery_endothelial_cells hg19 DNase-seq Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.10.AllAg.Coronary_artery_endothelial_cells.bed ...

  7. File list: Oth.CDV.10.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.AllAg.Coronary_artery_endothelial_cells hg19 TFs and others Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.10.AllAg.Coronary_artery_endothelial_cells.bed ...

  8. File list: His.CDV.50.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Coronary_artery_endothelial_cells hg19 Histone Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.50.AllAg.Coronary_artery_endothelial_cells.bed ...

  9. File list: Unc.CDV.05.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.05.AllAg.Coronary_artery_endothelial_cells hg19 Unclassified Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.05.AllAg.Coronary_artery_endothelial_cells.bed ...

  10. File list: Pol.CDV.05.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.AllAg.Coronary_artery_endothelial_cells hg19 RNA polymerase Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.05.AllAg.Coronary_artery_endothelial_cells.bed ...

  11. File list: DNS.CDV.50.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Coronary_artery_endothelial_cells hg19 DNase-seq Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Coronary_artery_endothelial_cells.bed ...

  12. File list: InP.CDV.05.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.05.AllAg.Coronary_artery_endothelial_cells hg19 Input control Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.CDV.05.AllAg.Coronary_artery_endothelial_cells.bed ...

  13. File list: Pol.CDV.10.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.AllAg.Coronary_artery_endothelial_cells hg19 RNA polymerase Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.10.AllAg.Coronary_artery_endothelial_cells.bed ...

  14. File list: Oth.CDV.50.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.AllAg.Coronary_artery_endothelial_cells hg19 TFs and others Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.50.AllAg.Coronary_artery_endothelial_cells.bed ...

  15. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhao [Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007 (United States); Jin, Zhu-Qiu, E-mail: zhu-qiu.jin@sdstate.edu [Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007 (United States)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Cardiac tight junctions are present between coronary endothelial cells. Black-Right-Pointing-Pointer Ischemic preconditioning preserves the structural and functional integrity of tight junctions. Black-Right-Pointing-Pointer Myocardial edema is prevented in hearts subjected to ischemic preconditioning. Black-Right-Pointing-Pointer Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiac TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood-heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs-Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC hearts. IPC

  16. Nitrones reverse hyperglycemia-induced endothelial dysfunction in bovine aortic endothelial cells.

    Science.gov (United States)

    Headley, Colwyn A; DiSilvestro, David; Bryant, Kelsey E; Hemann, Craig; Chen, Chun-An; Das, Amlan; Ziouzenkova, Ouliana; Durand, Grégory; Villamena, Frederick A

    2016-03-15

    Hyperglycemia has been implicated in the development of endothelial dysfunction through heightened ROS production. Since nitrones reverse endothelial nitric oxide synthase (eNOS) dysfunction, increase antioxidant enzyme activity, and suppress pro-apoptotic signaling pathway and mitochondrial dysfunction from ROS-induced toxicity, the objective of this study was to determine whether nitrone spin traps DMPO, PBN and PBN-LA were effective at duplicating these effects and improving glucose uptake in an in vitro model of hyperglycemia-induced dysfunction using bovine aortic endothelial cells (BAEC). BAEC were cultured in DMEM medium with low (5.5mM glucose, LG) or high glucose (50mM, HG) for 14 days to model in vivo hyperglycemia as experienced in humans with metabolic disease. Improvements in cell viability, intracellular oxidative stress, NO and tetrahydrobiopterin (BH4)​ levels, mitochondrial membrane potential, glucose transport, and activity of antioxidant enzymes were measured from single treatment of BAEC with nitrones for 24h after hyperglycemia. Chronic hyperglycemia significantly increased intracellular ROS by 50%, decreased cell viability by 25%, reduced NO bioavailability by 50%, and decreased (BH4) levels by 15% thereby decreasing NO production. Intracellular glucose transport and superoxide dismutase (SOD) activity were also decreased by 50% and 25% respectively. Nitrone (PBN and DMPO, 50 μM) treatment of BAEC grown in hyperglycemic conditions resulted in the normalization of outcome measures except for SOD and catalase activities. Our findings demonstrate that the nitrones reverse the deleterious effects of hyperglycemia in BAEC. We believe that in vivo testing of these nitrone compounds in models of cardiometabolic disease is warranted.

  17. Development of novel arginase inhibitors for therapy of endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Jochen eSteppan

    2013-09-01

    Full Text Available Endothelial dysfunction and resulting vascular pathology have been identified as an early hallmark of multiple diseases, including diabetes mellitus. One of the major contributors to endothelial dysfunction is a decrease in nitric oxide (NO bioavailability, impaired NO signaling and an increase in the amount of reactive oxygen species (ROS. In the endothelium NO is produced by eNOS (endothelial nitric oxide synthase, for which L-arginine is a substrate. Arginase, an enzyme critical in the urea cycle also metabolizes L-arginine, thereby directly competing with eNOS for their common substrate and constraining its bioavailability for eNOS, thereby compromising NO production. Arginase expression and activity is upregulated in many cardiovascular diseases including ischemia reperfusion injury, hypertension, atherosclerosis, and diabetes mellitus. More importantly, since the 1990s, specific arginase inhibitors such as N-hydroxy-guanidinium or N-hydroxy-nor-L-arginine, and boronic acid derivatives, such as, 2(S-amino-6-boronohexanoic acid, and S-(2-boronoethyl-L-cysteine (BEC, that can bridge the binuclear manganese cluster of arginase have been developed. These highly potent and specific inhibitors can now be used to probe arginase function and thereby modulate the redox milieu of the cell by changing the balance between NO and ROS. Inspired by this success, drug discovery programs have recently led to the identification of α-α-disubstituted amino acid based arginase inhibitors (such as (R-2-amino-6-borono-2-(2-(piperidin-1-ylethylhexanoic acid, that are currently under early investigation as therapeutics. Finally, some investigators concentrate on identification of plant derived compounds with arginase inhibitory capability, such as piceatannol-3'-O-β-D-glucopyranoside (PG. All of these synthesized or naturally derived small molecules may represent novel therapeutics for vascular disease particularly that associated with diabetes.

  18. Involvement of Rho-kinase in experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Shah, Dhvanit I; Singh, Manjeet

    2006-02-01

    The present study has been designed to investigate the effect of fasudil (Rho-kinase inhibitor) in diabetes mellitus (DM) and hyperhomocyteinemia (HHcy) induced vascular endothelial dysfunction (VED). Streptozotocin (55 mg kg(-1), i.v., once only) and methionine (1.7% w/w, p.o., daily for 4 weeks) were administered to rats to produce DM (serum glucose >140 mg dl(-1)) and HHcy (serum homocysteine >10 microM) respectively. VED was assessed using isolated aortic ring, electron microscopy of thoracic aorta, and serum concentration of nitrite/nitrate. Serum thiobarbituric acid reactive substances (TBARS) concentration was estimated to assess oxidative stress. Atorvastatin has been employed in the present study as standard agent to improve vascular endothelial dysfunction. Fasudil (15 mg kg(-1) and 30 mg kg(-1), p.o., daily) and atorvastatin (30 mg kg(-1), p.o., daily) treatments significantly attenuated increase in serum glucose and homocysteine but their concentrations remained markedly higher than sham control value. Fasudil and atorvastatin treatments markedly prevented DM and HHcy-induced (i) attenuation of acetylcholine induced endothelium-dependent relaxation, (ii) impairment of vascular endothelial lining, (iii) decrease in serum nitrite/nitrate concentration, and (iv) increase in serum TBARS. It may be concluded that fasudil prevented DM and HHcy-induced VED partially by decreasing serum glucose and homocysteine concentration due to inhibition of Rho-kinase. Moreover, inhibition of Rho-kinase by fasudil and consequent prevention of oxidative stress may have directly improved VED in diabetic and hyperhomocysteinemic rats. The Rho-kinase appears to be a pivotal target site involved in DM and HHcy-induced VED.

  19. Tetrahydrobiopterin corrects Escherichia coli endotoxin-induced endothelial dysfunction.

    Science.gov (United States)

    Mittermayer, Friedrich; Pleiner, Johannes; Schaller, Georg; Zorn, Stefan; Namiranian, Khodadad; Kapiotis, Stylianos; Bartel, Gregor; Wolfrum, Mathias; Brügel, Mathias; Thiery, Joachim; Macallister, Raymond J; Wolzt, Michael

    2005-10-01

    Acute inflammation causes endothelial dysfunction, which is partly mediated by oxidant stress and inactivation of nitric oxide. The contribution of depletion of tetrahydrobiopterin (BH(4)), the cofactor required for nitric oxide generation, is unclear. In this randomized, double-blind, three-way crossover study, forearm blood flow (FBF) responses to ACh and glyceryltrinitrate (GTN) were measured before and 3.5 h after infusion of Escherichia coli endotoxin (LPS, 20 IU/kg iv) in eight healthy men. The effect of intra-arterial BH(4) (500 microg/min), placebo, or vitamin C (24 mg/min) was studied on separate days 3.5 h after LPS infusion. In addition, human umbilical vein endothelial cells were incubated for 24 h with vitamin C and LPS. ACh and GTN caused dose-dependent forearm vasodilation. The FBF response to ACh, which was decreased by 23 +/- 17% (P < 0.05) by LPS infusion, was restored to baseline reactivity by BH(4) and vitamin C. FBF responses to GTN were not affected by BH(4) or vitamin C. LPS increased leukocyte count, high-sensitivity C-reactive protein, IL-6, IL-1beta, IFN-gamma, monocyte chemoattractant protein-1, pulse rate, and body temperature and decreased platelet count and vitamin C concentration. Vitamin C increased forearm plasma concentration of BH(4) by 32% (P < 0.02). Incubation with LPS and vitamin C, but not LPS alone, increased intracellular BH(4) concentration in human umbilical vein endothelial cells. Impaired endothelial function during acute inflammation can be restored by BH(4) or vitamin C. Vitamin C may exert some of its salutary effects by increasing BH(4) concentration.

  20. Effects of Dietary Decosahexaenoic Acid (Dha) on eNOS in Human Coronary Artery Endothelial Cells

    Science.gov (United States)

    Stebbins, Charles L.; Stice, James P.; Hart, C. Michael; Mbai, Fiona N.; Knowlton, Anne A.

    2015-01-01

    Endothelial dysfunction occurs in heart disease, and may reduce functional capacity via attenuations in peripheral blood flow. Dietary DHA may improve this dysfunction, but the mechanism is unknown. We determined if DHA enhances expression and activity of eNOS in cultured human coronary artery endothelial cells (HCAEC). HCAEC from 4 donors were treated with 5 nM, 50 nM, or 1 μM DHA for 7 days to model chronic DHA exposure. A trend for increased expression of eNOS and phospho-eNOS was observed with 5 and 50 nM DHA. DHA also enhanced expression of two proteins instrumental in activation of eNOS; phospho-Akt (5 and 50 nM) and HSP90 (50 nM and 1 μM). VEGF-induced activation of Akt increased NOx in treated (50 nM DHA) vs. untreated HCAEC (9.2±1.0 vs. 3.3±1.1 μmols/μg protein/μl). Findings suggest that DHA enhances eNOS and Akt activity, augments HSP90 expression, and increases NO bioavailability in response to Akt kinase activation PMID:18682551

  1. PECULIARITIES OF ENDOTHELIAL DYSFUNCTION IN PATIENTS WITH GOUT AND ITS CHANGES DURING THE TREATMENT

    Directory of Open Access Journals (Sweden)

    N.A. Magdeeva

    2008-09-01

    Full Text Available The purpose of the present work was to study questions connected with peculiarities of endothelial dysfunction in patients with gout Anticoagulant and fibrinolytic activities and activityofVillebrand factor were investigated. We have revealled endothelial dysfunction, which expressiveness decreased after 3-months treatmentin patients with gout

  2. NON INVASIVE ASSESSMENT OF ENDOTHELIAL DYSFUNCTION IN ESSENTIAL HYPERTENTION WITH OR WITHOUT MICROALBUMINURIA

    Directory of Open Access Journals (Sweden)

    Arvind

    2013-12-01

    Full Text Available ABSTRACT: BACKGROUND : Endothelial dysfunction is an early event in atherosclerosis and is known to app ear long before the formati on of structural atherosclerotic changes. Assessment of endothelial function , thus , can provide valuable insight into pre - intrusive phase of atherosclerosis and can be used as an early marker of future atherosclerotic disease. Fl ow mediated dilation (FMD is known to depend on ability of the endothelium to release NO in response to shear stress and can be used reliably as an estimate of endothelial function in various disease states. AIMS OF THE STUDY : To study endothelial dysfunct ion in patients with hypertension and compare with non - hypertensive subjects.To correlate the duration of hypertension with prevalence of endothelial dysfunction.To correlate microalbuminuria with endothelial dysfunction in essential hypertension.To correl ate risk factors of atherosclerosis in essential hypertension with endothelial dysfunction. METHODS : Endothelial function was assessed non - invasively by high resolution Duplex Doppler Ultrasound of Brachial Artery in fifty cases of hypertensives with or wit hout microalbuminuria and twenty controls who were healthy subjects. Brachial artery assessment was performed in both cases and control. RESULTS : In this study , it is observed that among 50 hypertensives , endothelial dysfunction was seen in 15 (30% , wherea s none of control had endothelial dysfunction. The mean age for hypertensives who had endothelial dysfunction was (50.56 in males and ( 48.83 in females. Among the cases 9 (60% of males and 6 (40% of females had FMD < 4.5%. Among hypertensives 12 (24% had microalbuminuria. Hypertensives with microalbuminuria having endothelial dysfunction were 4 (33.3% and hypertensives without microalbuminuria and havingendothelial dysfunction were 8 (66.7%. CONCLUSION : In this study , of 50 hypertensives , endothelial dysfunction was present in 15 (30% cases. Endothelial

  3. Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization.

    Science.gov (United States)

    Canton, Marcella; Skyschally, Andreas; Menabò, Roberta; Boengler, Kerstin; Gres, Petra; Schulz, Rainer; Haude, Michael; Erbel, Raimund; Di Lisa, Fabio; Heusch, Gerd

    2006-04-01

    We addressed a potential mechanism of myocardial dysfunction following coronary microembolization at the level of myofibrillar proteins. Anaesthetized pigs underwent intracoronary infusion of microspheres. After 6 h, the microembolized areas (MEA) had decreased systolic wall thickening to 38 +/- 7% of baseline and a 2.62 +/- 0.40-fold increase in the formation of disulphide cross-bridges (DCB) in tropomyosin relative to that in remote areas. The impairment in contractile function correlated inversely with DCB formation (r = -0.68; P = 0.015) and was associated with increased TNF-alpha content. DCB formation was reflected by increased tropomyosin immunoreactivity and abolished in vitro by dithiothreitol. Ascorbic acid prevented contractile dysfunction as well as increased DCB and TNF-alpha. In anaesthetized dogs, 8 h after intracoronary microspheres infusion, contractile function was reduced to 8+/-10% of baseline and DCB in MEA was 1.48+/-0.12 higher than that in remote areas. In conscious dogs, 6 days after intracoronary microspheres infusion, myocardial function had returned to baseline and DCB was no longer different between remote and MEA. Again contractile function correlated inversely with DCB formation (r = -0.83; P = 0.005). Myofibrillar protein oxidation may represent a mechanistic link between inflammation and contractile dysfunction following coronary microembolization.

  4. Perturbation of human coronary artery endothelial cell redox state and NADPH generation by methylglyoxal.

    Directory of Open Access Journals (Sweden)

    Philip E Morgan

    Full Text Available Diabetes is associated with elevated plasma glucose, increased reactive aldehyde formation, oxidative damage, and glycation/glycoxidation of biomolecules. Cellular detoxification of, or protection against, such modifications commonly requires NADPH-dependent reducing equivalents (e.g. GSH. We hypothesised that reactive aldehydes may modulate cellular redox status via the inhibition of NADPH-generating enzymes, resulting in decreased thiol and NADPH levels. Primary human coronary artery endothelial cells (HCAEC were incubated with high glucose (25 mM, 24 h, 37°C, or methylglyoxal (MGO, glyoxal, or glycolaldehyde (100-500 µM, 1 h, 37°C, before quantification of intracellular thiols and NADPH-generating enzyme activities. Exposure to MGO, but not the other species examined, significantly (P<0.05 decreased total thiols (∼35%, further experiments with MGO showed significant losses of GSH (∼40% and NADPH (∼10%; these changes did not result in an immediate loss of cell viability. Significantly decreased (∼10% NADPH-producing enzyme activity was observed for HCAEC when glucose-6-phosphate or 2-deoxyglucose-6-phosphate were used as substrates. Cell lysate experiments showed significant MGO-dose dependent inhibition of glucose-6-phosphate-dependent enzymes and isocitrate dehydrogenase, but not malic enzyme. Analysis of intact cell or lysate proteins showed that arginine-derived hydroimidazolones were the predominant advanced glycation end-product (AGE formed; lower levels of N(ε-(carboxyethyllysine (CEL and N(ε-(carboxymethyllysine (CML were also detected. These data support a novel mechanism by which MGO exposure results in changes in redox status in human coronary artery endothelial cells, via inhibition of NADPH-generating enzymes, with resultant changes in reduced protein thiol and GSH levels. These changes may contribute to the endothelial cell dysfunction observed in diabetes-associated atherosclerosis.

  5. Effect of agmatine on experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Nader, M A; Gamiel, N M; El-Kashef, H; Zaghloul, M S

    2016-05-01

    This study was designed to investigate the effect of agmatine sulfate (AG, CAS2482-00-0) in nicotine (NIC)-induced vascular endothelial dysfunction (VED) in rabbits. NIC was administered to produce VED in rabbits with or without AG for 6 weeks. Serum lipid profile, serum thiobarbituric acid reactive substances, reduced glutathione, superoxide dismutase generation, serum nitrite/nitrate, serum vascular cellular adhesion molecule-1 (VCAM-1), and aortic nuclear factor κB (NF-κB) levels were analyzed.Treatment with AG markedly improves lipid profile and prevented NIC-induced VED and oxidative stress. The mechanism of AG in improving NIC-induced VED may be due to the significant reduction in serum VCAM-1 levels and aortic NF-κB. Thus, it may be concluded that AG reduces the oxidative stress, nitric oxide production, VCAM-1 levels, and aortic NF-κB expression, thereby consequently improving the integrity of vascular endothelium.

  6. Endothelial Dysfunction and Preeclampsia: Role of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Lissette Carolina eSánchez-Aranguren

    2014-10-01

    Full Text Available Preeclampsia (PE is an often fatal pathology characterized by hypertension and proteinuria at the 20th week of gestation that affects 5-10% of the pregnancies. The problem is particularly important in developing countries in where the incidence of hypertensive disorders of pregnancy is higher and maternal mortality rates are twenty times higher than those reported in developed countries. Risk factors for the development of PE includes obesity, insulin resistance and hyperlipidemia that stimulate inflammatory cytokine release and oxidative stress leading to endothelial dysfunction (ED. However, how all these clinical manifestations concur to develop PE is still not very well understood. The related poor trophoblast invasion and uteroplacental artery remodeling described in PE, increases reactive oxygen species (ROS, hypoxia and ED. Here we aim to review current literature from research showing the interplay between oxidative stress, ED and PE to the outcomes of current clinical trials aiming to prevent PE with antioxidant supplementation.

  7. Association between periodontal disease and endothelial dysfunction in smoking patients.

    Science.gov (United States)

    Velosa-Porras, Juliana; Escobar-Arregoces, Francina; Latorre-Uriza, Catalina; Ferro-Camargo, María B; Ruiz, Álvaro J; Uriza-Carrasco, Luis F

    2016-04-01

    Over the past two decades, there has been increasing interest in the impact of oral health on cardiovascular disease, particularly regarding the effects of chronic infections such as periodontitis on the endothelium. The aim of this study was to evaluate in healthy smokers whether there are any significant differences in the frequency of endothelial dysfunction between subjects with chronic moderate to severe periodontal disease and periodontally healthy subjects. An observational cross-sectional study was conducted. The target population was adults older than 40 years of age. Blood tests were performed to determine values of CBC, glycaemia, total cholesterol, HDL-C, and LDLC. Periodontal examinations and probing were conducted with a Florida Probe®, and standardized procedures were used to measure flow-mediated dilation. Out of 150 subjects [69 male (46%) and 81 female (54%)], 75 (50%) had chronic periodontitis. The mean value for baseline flow-mediated dilation was 4.04% and the mean value for final flow-mediated dilation was 4.66%, with a 0.62% mean difference showing a statistically significant increase (pperiodontally healthy subjects and those with periodontitis, in contrast to the literature, which suggests a negative impact of periodontal disease on endothelial function.

  8. Angiotensin receptor blockers & endothelial dysfunction: Possible correlation & therapeutic implications

    Directory of Open Access Journals (Sweden)

    Miroslav Radenkovic

    2016-01-01

    Full Text Available The endothelium is one of the most important constituents of vascular homeostasis, which is achieved through continual and balanced production of different relaxing and contractile factors. When there is a pathological disturbance in release of these products, endothelial dysfunction (ED will probably occur. ED is considered to be the initial step in the development of atherosclerosis. This pathological activation and inadequate functioning of endothelial cells was shown to be to some extent a reversible process, which all together resulted in increased interest in investigation of different beneficial treatment options. To this point, the pharmacological approach, including for example, the use of angiotensin-converting enzyme inhibitors or statins, was clearly shown to be effective in the improvement of ED. One of many critical issues underlying ED represents instability in the balance between nitric oxide and angiotensin II (Ang II production. Considering that Ang II was confirmed to be important for the development of ED, the aim of this review article was to summarize the findings of up to date clinical studies associated with therapeutic application of angiotensin receptor blockers and improvement in ED. In addition, it was of interest to review the pleiotropic actions of angiotensin receptor blockers linked to the improvement of ED. The prospective, randomized, double-blind, placebo or active-controlled clinical trials were identified and selected for the final evaluation.

  9. Noninvasive Detection of Endothelial Function in Normal Subjects,Asymptomatic Patients at Risk of Atherosclerosis and Patients with Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    F. Rajabzadeh

    2005-06-01

    Full Text Available Background/Objective: The endothelial dysfunction is associated with atherosclerosis. The dilatory reaction of atherosclerotic vessels in response to occlusion is reduced. This reduction could be of value in atherosclerosis determination. This study aimed at comparing brachial artery response to occlusion and administration of nitroglycerine in three groups: coronary artery disease patients, individuals with corona ry disease risk factors but no coronary disease,and normal subjects. Patients and Methods: The participants included 23 healthy individuals, 22 subjects with cardiovascular risk factors (diabetes mellitus, smoking, hyperte nsion or hypercholesterolemia ,and 57 angiographically proven coronary pati ents. The brachial artery diameter was measured by color Doppler ultrasound at rest, 5 min utes after inflation of the cuff, and 5 minutes after sublingual administration of nitroglycerine pearl. Results: The vessel’s diameter increased the least in the coronary artery disease and coronary risk factor groups in comparison to nor mal subjects (p=0.003 and 0.048, respectively. Vessel dilatation in response to nitroglycerine did not differ in healthy individuals from the coronary patients or the risk factor group (p=0.96 and 0.77, respectively. Conclusion: Doppler ultrasound may be used as a noninvasive method to identify subjects with endothelial dysfunction at high risk of coronary artery disease who need intervention or more invasive procedures.

  10. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes.

    Science.gov (United States)

    Prattichizzo, Francesco; Giuliani, Angelica; Ceka, Artan; Rippo, Maria Rita; Bonfigli, Anna Rita; Testa, Roberto; Procopio, Antonio Domenico; Olivieri, Fabiola

    2015-01-01

    The development of type-2 diabetes mellitus (T2DM) and its complications is largely due to the complex interaction between genetic factors and environmental influences, mainly dietary habits and lifestyle, which can either accelerate or slow down disease progression. Recent findings suggest the potential involvement of epigenetic mechanisms as a crucial interface between the effects of genetic predisposition and environmental factors. The common denominator of environmental factors promoting T2DM development and progression is that they trigger an inflammatory response, promoting inflammation-mediated insulin resistance and endothelial dysfunction. Proinflammatory stimuli, including hyperglycemia, oxidative stress, and other inflammatory mediators, can affect epigenetic mechanisms, altering the expression of specific genes in target cells without changes in underlying DNA sequences. DNA methylation and post-translational histone modifications (PTHMs) are the most extensively investigated epigenetic mechanisms. Over the past few years, non-coding RNA, including microRNAs (miRNAs), have also emerged as key players in gene expression modulation. MiRNAs can be actively released or shed by cells in the bloodstream and taken up in active form by receiving cells, acting as efficient systemic communication tools. The miRNAs involved in modulation of inflammatory pathways (inflammamiRs), such as miR-146a, and those highly expressed in endothelial lineages and hematopoietic progenitor cells (angiomiRs), such as miR-126, are the most extensively studied circulating miRNAs in T2DM. However, data on circulating miRNA signatures associated with specific diabetic complications are still lacking. Since immune cells and endothelial cells are primarily involved in the vascular complications of T2DM, their relative contribution to circulating miRNA signatures needs to be elucidated. An integrated approach encompassing different epigenetic mechanisms would have the potential to

  11. Role of genetic polymorphisms of ion channels in the pathophysiology of coronary microvascular dysfunction and ischemic heart disease.

    Science.gov (United States)

    Fedele, Francesco; Mancone, Massimo; Chilian, William M; Severino, Paolo; Canali, Emanuele; Logan, Suzanna; De Marchis, Maria Laura; Volterrani, Maurizio; Palmirotta, Raffaele; Guadagni, Fiorella

    2013-11-01

    Conventionally, ischemic heart disease (IHD) is equated with large vessel coronary disease. However, recent evidence has suggested a role of compromised microvascular regulation in the etiology of IHD. Because regulation of coronary blood flow likely involves activity of specific ion channels, and key factors involved in endothelium-dependent dilation, we proposed that genetic anomalies of ion channels or specific endothelial regulators may underlie coronary microvascular disease. We aimed to evaluate the clinical impact of single-nucleotide polymorphisms in genes encoding for ion channels expressed in the coronary vasculature and the possible correlation with IHD resulting from microvascular dysfunction. 242 consecutive patients who were candidates for coronary angiography were enrolled. A prospective, observational, single-center study was conducted, analyzing genetic polymorphisms relative to (1) NOS3 encoding for endothelial nitric oxide synthase (eNOS); (2) ATP2A2 encoding for the Ca²⁺/H⁺-ATPase pump (SERCA); (3) SCN5A encoding for the voltage-dependent Na⁺ channel (Nav1.5); (4) KCNJ8 and KCNJ11 encoding for the Kir6.1 and Kir6.2 subunits of K-ATP channels, respectively; and (5) KCN5A encoding for the voltage-gated K⁺ channel (Kv1.5). No significant associations between clinical IHD manifestations and polymorphisms for SERCA, Kir6.1, and Kv1.5 were observed (p > 0.05), whereas specific polymorphisms detected in eNOS, as well as in Kir6.2 and Nav1.5 were found to be correlated with IHD and microvascular dysfunction. Interestingly, genetic polymorphisms for ion channels seem to have an important clinical impact influencing the susceptibility for microvascular dysfunction and IHD, independent of the presence of classic cardiovascular risk factors.

  12. Myocardial steatosis as a possible mechanistic link between diastolic dysfunction and coronary microvascular dysfunction in women.

    Science.gov (United States)

    Wei, Janet; Nelson, Michael D; Szczepaniak, Edward W; Smith, Laura; Mehta, Puja K; Thomson, Louise E J; Berman, Daniel S; Li, Debiao; Bairey Merz, C Noel; Szczepaniak, Lidia S

    2016-01-01

    Women with coronary microvascular dysfunction (CMD) and no obstructive coronary artery disease (CAD) have increased rates of heart failure with preserved ejection fraction (HFpEF). The mechanisms of HFpEF are not well understood. Ectopic fat deposition in the myocardium, termed myocardial steatosis, is frequently associated with diastolic dysfunction in other metabolic diseases. We investigated the prevalence of myocardial steatosis and diastolic dysfunction in women with CMD and subclinical HFpEF. In 13 women, including eight reference controls and five women with CMD and evidence of subclinical HFpEF (left ventricular end-diastolic pressure >12 mmHg), we measured myocardial triglyceride content (TG) and diastolic function, by proton magnetic resonance spectroscopy and magnetic resonance tissue tagging, respectively. When compared with reference controls, women with CMD had higher myocardial TG content (0.83 ± 0.12% vs. 0.43 ± 0.06%; P = 0.025) and lower diastolic circumferential strain rate (168 ± 12 vs. 217 ± 15%/s; P = 0.012), with myocardial TG content correlating inversely with diastolic circumferential strain rate (r = -0.779; P = 0.002). This study provides proof-of-concept that myocardial steatosis may play an important mechanistic role in the development of diastolic dysfunction in women with CMD and no obstructive CAD. Detailed longitudinal studies are warranted to explore specific treatment strategies targeting myocardial steatosis and its effect on diastolic function.

  13. Endothelial dysfunction in the early postoperative period after major colon cancer surgery

    DEFF Research Database (Denmark)

    Ekeløf, Sara; Larsen, Mikkel Hjordt; Schou-Pedersen, Anne Marie Voigt

    2017-01-01

    Background. Evidence suggests that endothelial dysfunction in the early postoperative period promotes myocardial injury after non-cardiac surgery. The aim of this study was to investigate the impact of colon cancer surgery on endothelial function and the association with the l-arginine-nitric oxide...... pathway postoperatively. Methods. Patients undergoing elective colon cancer surgery (n = 31) were included in this prospective observational cohort study. Endothelial function, as measured using the reactive hyperaemia index (RHI), was assessed non-invasively using digital pulse tonometry. RHI and plasma...... was attenuated in the first days after colon cancer surgery indicating acute endothelial dysfunction. Endothelial dysfunction correlated with disturbances in the L-arginine – nitric oxide pathway. Our findings provide a rationale for investigating the hypothesized association between acute endothelial...

  14. File list: ALL.CDV.20.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.20.AllAg.Coronary_artery_endothelial_cells hg19 All antigens Cardiovascular Coronary arte...RX014587,DRX014639,DRX014600,DRX014602 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.20.AllAg.Coronary_artery_endothelial_cells.bed ...

  15. File list: NoD.CDV.05.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.05.AllAg.Coronary_artery_endothelial_cells hg19 No description Cardiovascular Coronary arte...,DRX014636,DRX014602,DRX014641,DRX014600 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.CDV.05.AllAg.Coronary_artery_endothelial_cells.bed ...

  16. File list: ALL.CDV.10.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.10.AllAg.Coronary_artery_endothelial_cells hg19 All antigens Cardiovascular Coronary arte...RX014602,DRX014587,DRX014600,DRX014639 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.10.AllAg.Coronary_artery_endothelial_cells.bed ...

  17. File list: ALL.CDV.05.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.05.AllAg.Coronary_artery_endothelial_cells hg19 All antigens Cardiovascular Coronary arte...RX014636,DRX014602,DRX014641,DRX014600 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.05.AllAg.Coronary_artery_endothelial_cells.bed ...

  18. File list: NoD.CDV.10.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.10.AllAg.Coronary_artery_endothelial_cells hg19 No description Cardiovascular Coronary arte...,DRX014602,DRX014587,DRX014600,DRX014639 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.CDV.10.AllAg.Coronary_artery_endothelial_cells.bed ...

  19. File list: ALL.CDV.50.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.50.AllAg.Coronary_artery_endothelial_cells hg19 All antigens Cardiovascular Coronary arte...RX014592,DRX014602,DRX014641,DRX014600 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.50.AllAg.Coronary_artery_endothelial_cells.bed ...

  20. File list: NoD.CDV.50.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.50.AllAg.Coronary_artery_endothelial_cells hg19 No description Cardiovascular Coronary arte...,DRX014592,DRX014602,DRX014641,DRX014600 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.CDV.50.AllAg.Coronary_artery_endothelial_cells.bed ...

  1. File list: NoD.CDV.20.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.20.AllAg.Coronary_artery_endothelial_cells hg19 No description Cardiovascular Coronary arte...,DRX014587,DRX014639,DRX014600,DRX014602 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.CDV.20.AllAg.Coronary_artery_endothelial_cells.bed ...

  2. The relation between endothelial dependent flow mediated dilation of the brachial artery and coronary collateral development – a cross sectional study

    Directory of Open Access Journals (Sweden)

    Ozdemir Aydan

    2009-06-01

    Full Text Available Abstract Background Endothelial dysfunction is thought to be a potential mechanism for the decreased presence of coronary collaterals. The aim of the study was to investigate the association between systemic endothelial function and the extent of coronary collaterals. Methods We investigated the association between endothelial function assessed via flow mediated dilation (FMD of the brachial artery following reactive hyperemia and the extent of coronary collaterals graded from 0 to 3 according to Rentrop classification in a cohort of 171 consecutive patients who had high grade coronary stenosis or occlusion on their angiograms. Results Mean age was 61 years and 75% were males. Of the 171 patients 88 (51% had well developed collaterals (grades of 2 or 3 whereas 83 (49% had impaired collateral development (grades of 0 or 1. Patients with poor collaterals were significantly more likely to have diabetes (p = 0.001, but less likely to have used statins (p = 0.083. FMD measurements were not significantly different among good and poor collateral groups (11.5 ± 5.6 vs. 10.4 ± 6.2% respectively, p = 0.214. Nitroglycerin mediated dilation was also similar (13.4 ± 5.9 vs. 12.8 ± 6.5%, p = 0.521. Conclusion No significant association was found between the extent of angiographically visible coronary collaterals and systemic endothelial function assessed by FMD of the brachial artery.

  3. Endothelial dysfunction and atherosclerosis in children with irreversible pulmonary hypertension due to congenital heart disease

    Directory of Open Access Journals (Sweden)

    Murat Çiftel

    2012-01-01

    Full Text Available Objective: To assess endothelial dysfunction and the risk for coronary atherosclerosis in children with irreversible pulmonary hypertension due to congenital heart disease (CHD. Methods: The study included 18 cyanotic patients (the mean age was 12.28 ± 3.26 years who developed irreversible pulmonary hypertension due to cyanotic and acyanotic CHDs, and 18 control patients (the mean age was 11.78 ± 3.00 years. Study groups were compared for flow-mediated dilatation (FMD, carotid intima media thickness (CIMT and atherosclerotic risk factors. Results: Compared to the control group, the mean FMD was significantly reduced in the cyanotic group (5.26 ± 2.42% and 9.48 ± 2.60%, respectively; P-value < 0.001. No significant difference was observed between the groups in CIMT (0.41 ± 0.08 mm and 0.39 ± 0.06 mm, respectively; P-value = 0.299. The levels of total cholesterol, low-density lipoprotein-cholesterol and very low-density lipoprotein-cholesterol were statistically significantly lower compared tothe control group (P-value = 0.001, 0.006 and 0.014, respectively, whereas no statistically significant difference was found in the levels of high-density lipoprotein-cholesterol and triglycerides (P-value = 0.113 and 0.975, respectively. Conclusions: Systemic endothelial dysfunction in children with irreversible pulmonary hypertension due to CHD was noted but there was no increased risk for atherosclerosis.

  4. Assessment of vascular and endothelial dysfunction in nutritional studies.

    Science.gov (United States)

    Ray, S; Miglio, C; Eden, T; Del Rio, D

    2014-09-01

    Vascular and endothelial dysfunction (VED) is emerging as a potential set of early markers of cardiovascular disease risk and tests for its measurement have been widely used in clinical research. The aim of this viewpoint is to describe and discuss the current usage of these measures in well-designed nutritional trials, using the potential relationship between fruit juice intake and VED as example. A search was conducted using the NHS evidence portal including studies published in English between January 1980 and October 2013. Only 10 suitable studies were selected, which investigated the effect of fruit juice intake on VED, among which 4 interventions used flow-mediated dilatation, 2 arterial stiffness, 2 a combination of arterial stiffness and flow-mediated dilatation, 2 carotid intimal media thickness and 1 iontophoresis with laser Doppler. Despite minimal effects reported on classical CVD markers, such as lipids, 8 out of the 10 identified studies reported an effect on endothelial function following juice consumption, indicating that VED tests can be effectively used in human dietary interventions to identify relationships between bioactive compounds from fruit and CVD risk. However, paucity of available data, scarcity of compound bioavailability and metabolism information, strong heterogeneity among experimental methodologies and a number of limitations to study designs, still limit the interpretation of the results obtained through these measures. Future, well-designed studies with greater attention to consider use of VED measures are needed to strengthen the utility of VED tests in nutrition research such as those investigating the impact of polyphenol-rich juices and CVD risk.

  5. Upregulation of SK3 and IK1 channels contributes to the enhanced endothelial calcium signaling and the preserved coronary relaxation in obese Zucker rats.

    Directory of Open Access Journals (Sweden)

    Belén Climent

    Full Text Available BACKGROUND AND AIMS: Endothelial small- and intermediate-conductance KCa channels, SK3 and IK1, are key mediators in the endothelium-derived hyperpolarization and relaxation of vascular smooth muscle and also in the modulation of endothelial Ca2+ signaling and nitric oxide (NO release. Obesity is associated with endothelial dysfunction and impaired relaxation, although how obesity influences endothelial SK3/IK1 function is unclear. Therefore we assessed whether the role of these channels in the coronary circulation is altered in obese animals. METHODS AND RESULTS: In coronary arteries mounted in microvascular myographs, selective blockade of SK3/IK1 channels unmasked an increased contribution of these channels to the ACh- and to the exogenous NO- induced relaxations in arteries of Obese Zucker Rats (OZR compared to Lean Zucker Rats (LZR. Relaxant responses induced by the SK3/IK1 channel activator NS309 were enhanced in OZR and NO- endothelium-dependent in LZR, whereas an additional endothelium-independent relaxant component was found in OZR. Fura2-AM fluorescence revealed a larger ACh-induced intracellular Ca2+ mobilization in the endothelium of coronary arteries from OZR, which was inhibited by blockade of SK3/IK1 channels in both LZR and OZR. Western blot analysis showed an increased expression of SK3/IK1 channels in coronary arteries of OZR and immunohistochemistry suggested that it takes place predominantly in the endothelial layer. CONCLUSIONS: Obesity may induce activation of adaptive vascular mechanisms to preserve the dilator function in coronary arteries. Increased function and expression of SK3/IK1 channels by influencing endothelial Ca2+ dynamics might contribute to the unaltered endothelium-dependent coronary relaxation in the early stages of obesity.

  6. Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation.

    Science.gov (United States)

    Ter Maaten, Jozine M; Damman, Kevin; Verhaar, Marianne C; Paulus, Walter J; Duncker, Dirk J; Cheng, Caroline; van Heerebeek, Loek; Hillege, Hans L; Lam, Carolyn S P; Navis, Gerjan; Voors, Adriaan A

    2016-06-01

    Renal dysfunction in heart failure with preserved ejection fraction (HFpEF) is common and is associated with increased mortality. Impaired renal function is also a risk factor for developing HFpEF. A new paradigm for HFpEF, proposing a sequence of events leading to myocardial remodelling and dysfunction in HFpEF, was recently introduced, involving inflammatory, microvascular, and cardiac components. The kidney might play a key role in this systemic process. Renal impairment causes metabolic and systemic derangements in circulating factors, causing an activated systemic inflammatory state and endothelial dysfunction, which may lead to cardiomyocyte stiffening, hypertrophy, and interstitial fibrosis via cross-talk between the endothelium and cardiomyocyte compartments. Here, we review the role of endothelial dysfunction and inflammation to explain the link between renal dysfunction and HFpEF, which allows for identification of new early risk markers, prognostic factors, and unique targets for intervention.

  7. Phenotype commitment in vascular smooth muscle cells derived from coronary atherosclerotic plaques: differential gene expression of endothelial Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    ML Rossi

    2009-06-01

    Full Text Available Unstable angina and myocardial infarction are the clinical manifestations of the abrupt thrombotic occlusion of an epicardial coronary artery as a result of spontaneous atherosclerotic plaque rupture or fissuring, and the exposure of highly thrombogenic material to blood. It has been demonstrated that the proliferation of vascular smooth muscle cells (VSMCs and impaired bioavailabilty of nitric oxide (NO are among the most important mechanisms involved in the progression of atherosclerosis. It has also been suggested that a NO imbalance in coronary arteries may be involved in myocardial ischemia as a result of vasomotor dysfunction triggering plaque rupture and the thrombotic response. We used 5’ nuclease assays (TaqMan™ PCRs to study gene expression in coronary plaques collected by means of therapeutic directional coronary atherectomy from 15 patients with stable angina (SA and 15 with acute coronary syndromes (ACS without ST elevation. Total RNA was extracted from the 30 plaques and the cDNA was amplified in order to determine endothelial nitric oxide synthase (eNOS gene expression. Analysis of the results showed that the expression of eNOS was significantly higher (p<0.001 in the plaques from the ACS patients. Furthermore, isolated VSMCs from ACS and SA plaques confirmed the above pattern even after 25 plating passages. In situ RT-PCR was also carried out to co-localize the eNOS messengers and the VSMC phenotype.

  8. Shock associated with endothelial dysfunction in omental microvessels.

    Science.gov (United States)

    Somberg, Lewis B; Gutterman, David D; Miura, Hiroto; Nirula, Raminder; Hatoum, Ossama A

    2017-01-01

    Impaired microvascular function leads to a poor outcome in a variety of medical conditions. Our aim was to determine whether vasodilator responses to acetylcholine (Ach) are impaired in human omental arterioles from patients with severe trauma. Patients with massive blood loss and severe shock requiring damage control procedures were included. Tissues were collected at the first (FEL) and the second explorative laparotomy (SEL). Control tissues were collected from nontrauma patients. Freshly isolated 50-200-μm-diameter omental arterioles were analysed using videomicroscopy. Dihydroethidine and DCF-DA fluorescence were used to assess reactive oxygen species (ROS) production. MnTBAP was used to determine the contribution of excess vascular superoxide contribution to endothelial dysfunction. After constriction (30-50%) with endothelin-1, dilation to graded doses of Ach (10(-9) -10(-4) M) was greater in control vessels compared to FEL and SEL (max dilation at 10(-4) M (MD) = 25 ± 3%, n = 8; and 59 ± 8%, n = 8, respectively, and controls MD = 93 ± 10%, n = 6, P mismatch between local blood supply and demand, exacerbating abnormal tissue perfusion and function. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.

  9. Plasma lactoferrin level as a predictor to endothelial dysfunction in patients with obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Abir Zakaria

    2013-01-01

    Conclusion The present study showed that low circulating plasma lactoferrin levels in OSA patients independently predict endothelial dysfunction as assessed by FMD%. High BMI in OSA patients negatively influences plasma lactoferrin levels unrelated to other OSA severity predictors.

  10. Effects of Ivabradine and Metoprolol on Cardiac Angiogenesis and Endothelial Dysfunction in Rats With Heart Failure

    NARCIS (Netherlands)

    Ulu, Nadir; Henning, Rob H.; Goris, Maaike; Schoeinaker, Regien G.; van Gilst, Wiek H.

    2009-01-01

    Myocardial infarction (MI)-induced remodeling is associated with disturbed myocardial perfusion through vascular changes, such as reduced capillary density and endothelial dysfunction. Heart rate reduction (HRR) initiated immediately after MI stimulates angiogenesis and attenuates left ventricular d

  11. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Scioli

    Full Text Available Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery.We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS reduction, inducible nitric oxide synthase (iNOS and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF, placental growth factor (PlGF and reduction of NADPH-oxidase 4 (Nox4 expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction.PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and

  12. Therapeutic Approach in the Improvement of Endothelial Dysfunction: The Current State of the Art

    Directory of Open Access Journals (Sweden)

    Miroslav Radenković

    2013-01-01

    Full Text Available The endothelium has a central role in the regulation of blood flow through continuous modulation of vascular tone. This is primarily accomplished by balanced release of endothelial relaxing and contractile factors. The healthy endothelial cells are essential for maintenance of vascular homeostasis involving antioxidant, anti-inflammatory, pro-fibrinolytic, anti-adhesive, or anticoagulant effects. Oppositely, endothelial dysfunction is primarily characterized by impaired regulation of vascular tone as a result of reduced endothelial nitric oxide (NO synthase activity, lack of cofactors for NO synthesis, attenuated NO release, or increased NO degradation. So far, the pharmacological approach in improving/reversal of endothelial dysfunction was shown to be beneficial in clinical trials that have investigated actions of different cardiovascular drugs. The aim of this paper was to summarize some of the latest clinical findings related to therapeutic possibilities for improving endothelial dysfunction in different pathological conditions. In the majority of presented clinical investigations, the assessment of improvement or reversal of endothelial dysfunction was performed through the flow-mediated dilatation measurement, and in some of those endothelial progenitor cells’ count was used for the same purpose. Still, given the fast and continuous development of this field, the evidence acquisition included the MEDLINE data base screening and the selection of articles published between 2010 and 2012.

  13. Association between endothelial dysfunction and arterial stiffness in continuous ambulatory peritoneal dialysis patients

    Institute of Scientific and Technical Information of China (English)

    顾玥

    2014-01-01

    Objective To investigate the association between endothelial dysfunction and arterial stiffness in continuous ambulatory peritoneal dialysis(CAPD)patients.Methods Ninety-four stable CAPD patients from a single center were enrolled in this cross-sectional study.Ultrasound evaluation was conducted on brachial artery to estimate endothelial-dependent

  14. Salidroside Improves Homocysteine-Induced Endothelial Dysfunction by Reducing Oxidative Stress

    OpenAIRE

    Sin Bond Leung; Huina Zhang; Chi Wai Lau; Yu Huang; Zhixiu Lin

    2013-01-01

    Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunc...

  15. Reduced calcium responsiveness characterizes contractile dysfunction following coronary microembolization.

    Science.gov (United States)

    Skyschally, Andreas; Gres, Petra; van Caster, Patrick; van de Sand, Anita; Boengler, Kerstin; Schulz, Rainer; Heusch, Gerd

    2008-11-01

    We addressed calcium responsiveness in microembolized myocardium at 6 h after coronary microembolization (ME). In anesthetized pigs calcium responsiveness was determined as the increase of a myocardial work index (WI; LV pressure development vs. wall thickening) in response to a graded intracoronary infusion of CaCl(2) at baseline and at 6 h after ME or placebo, respectively. At baseline, CaCl(2 )infusion increased WI in both groups (ME: 296 +/- 22 to 468 +/- 47 mmHg*mm; placebo: 324 +/- 24 to 485 +/- 38 mmHg*mm; mean +/- SEM). At 6 h after ME, WI was decreased by 159 +/- 16 mmHg*mm (P < 0.05 vs. baseline) and remained reduced at any calcium concentration, whereas it was unchanged with placebo. The calcium concentration in coronary blood necessary to achieve the half maximal increase in WI remained unchanged from baseline to 6 h and did not differ between placebo and ME. The ME-induced myocardial dysfunction is not related to an altered calcium sensitivity, but is characterized by a reduced maximal contractile force.

  16. Tetrahydrobiopterin restores impaired coronary microvascular dysfunction in hypercholesterolaemia

    Energy Technology Data Exchange (ETDEWEB)

    Wyss, Christophe A.; Koepfli, Pascal; Namdar, Mehdi; Siegrist, Patrick T.; Kaufmann, Philipp A. [University Hospital, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Luscher, Thomas F. [University Hospital, Division of Cardiology, Cardiovascular Center, Zurich (Switzerland); Camici, Paolo G. [Hammersmith Hospital, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London (United Kingdom)

    2005-01-01

    Tetrahydrobiopterin (BH{sub 4}) is an essential co-factor for the synthesis of nitric oxide (NO), and BH{sub 4} deficiency may cause impaired NO synthase (NOS) activity. We studied whether BH{sub 4} deficiency contributes to the coronary microcirculatory dysfunction observed in patients with hypercholesterolaemia. Myocardial blood flow (MBF; ml min{sup -1} g{sup -1}) was measured at rest, during adenosine-induced (140 {mu}g kg{sup -1} min{sup -1} over 7 min) hyperaemia (mainly non-endothelium dependent) and immediately after supine bicycle exercise (endothelium-dependent) stress in ten healthy volunteers and in nine hypercholesterolaemic subjects using {sup 15}O-labelled water and positron emission tomography. Measurements were repeated 60 min later, after intravenous infusion of BH{sub 4} (10 mg kg{sup -1} body weight over 30 min). Adenosine-induced hyperaemic MBF is considered to represent (near) maximal flow. Flow reserve utilisation was calculated as the ratio of exercise-induced to adenosine-induced hyperaemic MBF and expressed as percent to indicate how much of the maximal (adenosine-induced) hyperaemia can be achieved by bicycle stress. BH{sub 4} increased exercise-induced hyperaemia in controls (2.96{+-}0.58 vs 3.41{+-}0.73 ml min{sup -1} g{sup -1}, p<0.05) and hypercholesterolaemic subjects (2.47{+-}0.78 vs 2.70{+-}0.72 ml min{sup -1} g{sup -1}, p<0.01) but had no influence on MBF at rest or during adenosine-induced hyperaemia in controls (4.52{+-}1.10 vs 4.85{+-}0.45 ml min{sup -1} g{sup -1}, p=NS) or hypercholesterolaemic subjects (4.86{+-}1.18 vs 4.53{+-}0.93 ml min{sup -1} g{sup -1}, p=NS). Flow reserve utilisation remained unchanged in controls (70{+-}17% vs 71{+-}19%, p=NS) but increased significantly in hypercholesterolaemic subjects (53{+-}15% vs 66{+-}14%, p<0.05). BH{sub 4} restores flow reserve utilisation of the coronary microcirculation in hypercholesterolaemic subjects, suggesting that BH{sub 4} deficiency may contribute to coronary

  17. Imbalanced low-grade inflammation and endothelial activation in patients with type 2 diabetes mellitus and erectile dysfunction.

    Science.gov (United States)

    Araña Rosaínz, Manuel de J; Ojeda, Miriam Ojeda; Acosta, Janet Rodriguez; Elías-Calles, Lizet Castelo; González, Neraldo Orlandi; Herrera, Omaida Torres; García Álvarez, Caridad T; Rodríguez, Elvira Maciquez; Báez, Mario Estevez; Seijas, Eduardo Álvarez; Valdés, Ramiro Fragas

    2011-07-01

    Erectile dysfunction (ED) is highly prevalent among type 2 diabetes mellitus patients (T2DM). Although a link among systemic inflammation, endothelial dysfunction, and ED is described in clinical situations mainly related with coronary heart disease (CHD) risk, evidences of this link in T2DM patients are rather limited. To evaluate the association between endothelial dysfunction and balance of pro-/anti-inflammatory mediators with ED presence and severity in T2DM. We conducted a cross-sectional study of 190 T2DM patients without symptomatic CHD, 150 out of them with ED and 40 without ED. Serum levels of E-selectin, intercellular adhesion molecule-1, tumor necrosis factor-α (TNF-α), and interleukin (IL)-10 were measured using specific enzyme-linked immunosorbent assays (ELISAs). ED presence and severity were tested by the five-item version of the International Index of Erectile Function questionnaire. Differences in circulating levels of endothelial dysfunction (ICAM-1, E-selectin) and inflammatory/anti-inflammatory (TNF-α, IL-10, TNF-α : IL-10 ratio) markers between T2DM patients with and without ED, and assessment of biomarkers ED predictive value while adjusting for other known ED risk factors. Patients with ED were older and had longer duration of diabetes than patients without ED. E-selectin serum levels were significantly increased, while IL-10 were lower in patients with ED; because TNF-α levels tend to be higher, TNF-α : IL-10 ratio was more elevated in ED patients. No significant differences of ICAM-1 levels were observed between study groups. Endothelial activation markers and TNF-α, as well as diabetes duration, were negatively correlated with erectile function. On multivariate analysis including age, duration of diabetes, insulin treatment, hypertension, insulin resistance, fair-to-poor glycemic control, and metabolic syndrome, increments in E-selectin levels and TNF-α : IL-10 ratio predicted independently ED presence, while IL-10 increases

  18. Obesity-Induced Endoplasmic Reticulum Stress Causes Lung Endothelial Dysfunction and Promotes Acute Lung Injury.

    Science.gov (United States)

    Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross

    2017-08-01

    Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese

  19. Endothelial dysfunction in cardiovascular and endocrine-metabolic diseases: an update

    Directory of Open Access Journals (Sweden)

    A.P. Davel

    2011-09-01

    Full Text Available The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation ofβ-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.

  20. Olive Oil Supplements Ameliorate Endothelial Dysfunction Caused by Concentrated Ambient Particulate Matter Exposure in Healthy Human Volunteers

    Science.gov (United States)

    Context: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for clinical cardiovascular events and progression of atherosclerosis. Dietary supplements such as olive oil and fish oil have beneficial effects on endothelial function, and ther...

  1. Olive Oil Supplements Ameliorate Endothelial Dysfunction Caused by Concentrated Ambient Particulate Matter Exposure in Healthy Human Volunteers

    Science.gov (United States)

    Context: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for clinical cardiovascular events and progression of atherosclerosis. Dietary supplements such as olive oil and fish oil have beneficial effects on endothelial function, and ther...

  2. Hyperactive S6K1 mediates oxidative stress and endothelial dysfunction in aging: inhibition by resveratrol.

    Science.gov (United States)

    Rajapakse, Angana G; Yepuri, Gautham; Carvas, João M; Stein, Sokrates; Matter, Christian M; Scerri, Isabelle; Ruffieux, Jean; Montani, Jean-Pierre; Ming, Xiu-Fen; Yang, Zhihong

    2011-04-22

    Mammalian target of rapamycin (mTOR)/S6K1 signalling emerges as a critical regulator of aging. Yet, a role of mTOR/S6K1 in aging-associated vascular endothelial dysfunction remains unknown. In this study, we investigated the role of S6K1 in aging-associated endothelial dysfunction and effects of the polyphenol resveratrol on S6K1 in aging endothelial cells. We show here that senescent endothelial cells displayed higher S6K1 activity, increased superoxide production and decreased bioactive nitric oxide (NO) levels than young endothelial cells, which is contributed by eNOS uncoupling. Silencing S6K1 in senescent cells reduced superoxide generation and enhanced NO production. Conversely, over-expression of a constitutively active S6K1 mutant in young endothelial cells mimicked endothelial dysfunction of the senescent cells through eNOS uncoupling and induced premature cellular senescence. Like the mTOR/S6K1 inhibitor rapamycin, resveratrol inhibited S6K1 signalling, resulting in decreased superoxide generation and enhanced NO levels in the senescent cells. Consistent with the data from cultured cells, an enhanced S6K1 activity, increased superoxide generation, and decreased bioactive NO levels associated with eNOS uncoupling were also detected in aortas of old WKY rats (aged 20-24 months) as compared to the young animals (1-3 months). Treatment of aortas of old rats with resveratrol or rapamycin inhibited S6K1 activity, oxidative stress, and improved endothelial NO production. Our data demonstrate a causal role of the hyperactive S6K1 in eNOS uncoupling leading to endothelial dysfunction and vascular aging. Resveratrol improves endothelial function in aging, at least in part, through inhibition of S6K1. Targeting S6K1 may thus represent a novel therapeutic approach for aging-associated vascular disease.

  3. The Influence of Endothelial Function and Myocardial Ischemia on Peak Oxygen Consumption in Patients with Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Simon L. Bacon

    2012-01-01

    Full Text Available Impaired endothelial function has been shown to limit exercise in coronary artery disease (CAD patients and has been implicated in myocardial ischemia. However, the association of endothelial function and ischemia on peak exercise oxygen consumption (VO2 has not been previously reported. A total of 116 CAD patients underwent standard exercise stress testing, during which VO2 was measured. On a separate day, endothelial-dependent and -independent function were assessed by ultrasound using flow-mediated arterial vasodilation (FMD and sublingual glyceryl trinitrate administration (GTNMD of the brachial artery. Patients with exercise-induced myocardial ischemia had lower FMD than nonischemic patients (3.64±0.57 versus 4.98±0.36, P=.050, but there was no difference in GTNMD (14.11±0.99 versus 15.47±0.63, P=.249. Analyses revealed that both FMD (P=.006 and GTNMD (P=.019 were related to peak VO2. However, neither the presence of ischemia (P=.860 nor the interaction of ischemia with FMD (P=.382 and GTNMD (P=.151 was related to peak VO2. These data suggest that poor endothelial function, potentially via impaired NO production and smooth muscle dysfunction, may be an important determinant of exercise capacity in patients with CAD, independent of myocardial ischemia.

  4. Endothelial cells overexpressing IL-8 receptor reduce cardiac remodeling and dysfunction following myocardial infarction.

    Science.gov (United States)

    Zhao, Xiangmin; Zhang, Wei; Xing, Dongqi; Li, Peng; Fu, Jinyan; Gong, Kaizheng; Hage, Fadi G; Oparil, Suzanne; Chen, Yiu-Fai

    2013-08-15

    The endothelium is a dynamic component of the cardiovascular system that plays an important role in health and disease. This study tested the hypothesis that targeted delivery of endothelial cells (ECs) overexpressing neutrophil membrane IL-8 receptors IL8RA and IL8RB reduces acute myocardial infarction (MI)-induced left ventricular (LV) remodeling and dysfunction and increases neovascularization in the area at risk surrounding the infarcted tissue. MI was created by ligating the left anterior descending coronary artery in 12-wk-old male Sprague-Dawley rats. Four groups of rats were studied: group 1: sham-operated rats without MI or EC transfusion; group 2: MI rats with intravenous vehicle; group 3: MI rats with transfused ECs transduced with empty adenoviral vector (Null-EC); and group 4: MI rats with transfused ECs overexpressing IL8RA/RB (1.5 × 10⁶ cells post-MI). Two weeks after MI, LV function was assessed by echocardiography; infarct size was assessed by triphenyltetrazolium chloride (live tissue) and picrosirus red (collagen) staining, and capillary density and neutrophil infiltration in the area at risk were measured by CD31 and MPO immunohistochemical staining, respectively. When compared with the MI + vehicle and MI-Null-EC groups, transfusion of IL8RA/RB-ECs decreased neutrophil infiltration and pro-inflammatory cytokine expression and increased capillary density in the area at risk, decreased infarct size, and reduced MI-induced LV dysfunction. These findings provide proof of principle that targeted delivery of ECs is effective in repairing injured cardiac tissue. Targeted delivery of ECs to infarcted hearts provides a potential novel strategy for the treatment of acute MI in humans.

  5. Association between chronic kidney dysfunction and the complexity of coronary artery disease in elderly patients

    Institute of Scientific and Technical Information of China (English)

    颜利求

    2013-01-01

    Objective To investigate the association between chronic kidney dysfunction and the complexity of coronary artery disease in elderly patients.Methods A prospective study was conducted on 1380 consecutive patients

  6. Dietary phosphate restriction ameliorates endothelial dysfunction in adenine-induced kidney disease rats

    Science.gov (United States)

    Van, Tan Vu; Watari, Eriko; Taketani, Yutaka; Kitamura, Tomoyo; Shiota, Asuka; Tanaka, Terumi; Tanimura, Ayako; Harada, Nagakatsu; Nakaya, Yutaka; Yamamoto, Hironori; Miyamoto, Ken-ichi; Takeda, Eiji

    2012-01-01

    Hyperphosphatemia causes endothelial dysfunction as well as vascular calcification. Management of serum phosphate level by dietary phosphate restriction or phosphate binders is considered to be beneficial to prevent chronic kidney disease patients from cardiovascular disease, but it has been unclear whether keeping lower serum phosphate level can ameliorate endothelial dysfunction. In this study we investigated whether low-phosphate diet can ameliorate endothelial dysfunction in adenine-induced kidney disease rats, one of useful animal model of chronic kidney disease. Administration of 0.75% adenine-containing diet for 21 days induced renal failure with hyperphosphatemia, and impaired acetylcholine-dependent vasodilation of thoracic aortic ring in rats. Then adenine-induced kidney disease rats were treated with either control diet (1% phosphate) or low-phosphate diet (0.2% phosphate) for 16 days. Low-phosphate diet ameliorated not only hyperphosphatemia but also the impaired vasodilation of aorta. In addition, the activatory phosphorylation of endothelial nitric oxide synthase at serine 1177 and Akt at serine 473 in the aorta were inhibited by in adenine-induced kidney disease rats. The inhibited phosphorylations were improved by the low-phosphate diet treatment. Thus, dietary phosphate restriction can improve aortic endothelial dysfunction in chronic kidney disease with hyperphosphatemia by increase in the activatory phosphorylations of endothelial nitric oxide synthase and Akt. PMID:22798709

  7. RELATIONS OF ENDOTHELIAL FUNCTION AND BLOOD FLOW IN BRACHIAL ARTERY AND CORONARY ARTERY

    Institute of Scientific and Technical Information of China (English)

    孙寅光; 沈卫峰; 施仲伟; 张大东

    2003-01-01

    Objective To determine the relations between endothelium dependent vasodilator function and blood flow in the brachial and coronary arteries in patients with suspected coronary artery disease.MethodsTwenty eight patients with suspected coronary artery disease underwent brachial artery endothelial function test by using high resolution B mode ultrasound before coronary angiography (CAG) and coronary flow reserve (CFR) test by using intracoronary Doppler technique. The correlation of coronary artery dilatation induced by an increase in blood flow after intracoronary adenosine infusion and brachial artery flow mediated dilatation (FMD) following reactive hyperemia was evaluated. The relation between the change of brachial artery blood flow and CFR was also studied.ResultsThere was a positive correlation between brachial FMD and percent change of coronary diameter after adenosine infusion (12.50%±9.35% vs 11.38%±7.55%, r=0.425,P=0.02). There was also a weak negative relation between brachial flow change following reactive hyperemia and CFR (r=0.397, P=0.04).ConclusionThere is a correlation between the coronary endothelial function and the CFR by ultrasonic determination of brachial flow changes following reactive hyperemia.

  8. A novel mechanism of diabetic vascular endothelial dysfunction: Hypoadiponectinemia-induced NLRP3 inflammasome activation.

    Science.gov (United States)

    Zhang, Jinglong; Xia, Linying; Zhang, Fen; Zhu, Di; Xin, Chao; Wang, Helin; Zhang, Fuyang; Guo, Xian; Lee, Yan; Zhang, Ling; Wang, Shan; Guo, Xiong; Huang, Chong; Gao, Feng; Liu, Yi; Tao, Ling

    2017-02-12

    It has been well documented that hypoadiponectinemia is associated with impaired endothelium-dependent vasodilation. However, the exact molecular mechanism which mediates this process has not been fully described. The current study aimed to investigate the role of hypoadiponectinemia-induced NLRP3 inflammasome activation in diabetic vascular endothelial dysfunction and its molecular mechanism. Male adult adiponectin knockout mice and wild type mice were fed with a high fat diet to establish a type 2 diabetic mellitus model. In addition, human umbilical vein endothelial cells (HUVECs) were cultured and subjected to high glucose/high fat (HG/HF). The NLRP3 inflammasome activation was increased in type 2 diabetic mice and treatment of diabetic aortic segments with MCC950, a potent selective inhibitor of NLRP3 inflammasome ex vivo improved endothelial-dependent vasorelaxation. NLRP3 inflammasome activation and vascular endothelial injury were significantly increased in APN-KO mice compared with WT mice in diabetes and MCC950 decreased diabetic vascular endothelial dysfunction to comparable levels in APN-KO mice and WT mice. Adiponectin could decrease NLRP3 inflammasome activation and attenuate endothelial cell injury, which was abolished by NLRP3 inflammasome overexpression. Inhibition of peroxynitrite formation preferentially attenuated NLRP3 inflammasome activation in APN-KO diabetic mice. The current study demonstrated for the first time that hypoadiponectinemia-induced NLRP3 inflammasome activation was a novel mechanism of diabetic vascular endothelial dysfunction.

  9. Overexpression of Hypoxia-Inducible Factor-1α Exacerbates Endothelial Barrier Dysfunction Induced by Hypoxia

    Directory of Open Access Journals (Sweden)

    Pei Wang

    2013-09-01

    Full Text Available Background/Aims: The mechanisms involved in endothelial barrier dysfunction induced by hypoxia are incompletely understood. There is debate about the role of hypoxia-inducible factor-1α (HIF-1α in endothelial barrier disruption. The aim of this study was to investigate the effect of genetic overexpression of HIF-1α on barrier function and the underlying mechanisms in hypoxic endothelial cells. Methods: The plasmid pcDNA3.1/V5-His-HIF-1α was stably transfected into human endothelial cells. The cells were exposed to normoxia or hypoxia. The mRNA and protein expressions of HIF-1α were detected by RT-PCR and Western blot respectively. The barrier function was assessed by measuring the transendothelial electrical resistance (TER. The Western blot analysis was used to determine the protein expression of glucose transporter-1 (GLUT-1, zonular occludens-1 (ZO-1, occludin, and myosin light chain kinase (MLCK in endothelial cells. The mRNA expression of proinflammatory cytokines was detected by qRT-PCR. Results: Genetic overexpression of HIF-1α significantly increased the mRNA and protein expression of HIF-1α in endothelial cells. The overexpression of HIF-1α enhanced the hypoxia-induced increase of HIF-1α and GLUT-1 protein expression. HIF-1α overexpression not only exacerbated hypoxia-induced endothelial barrier dysfunction but also augmented hypoxia-induced up-regulation of MLCK protein expression. HIF-1α overexpression also enhanced IL-1β, IL-6 and TNF-α mRNA expression. Conclusion: We provide evidence that genetic overexpression of HIF-1α aggravates the hypoxia-induced endothelial barrier dysfunction via enhancing the up-regulation of MLCK protein expression caused by hypoxia, suggesting a potential role for HIF-1α in the pathogenesis of endothelial barrier dysfunction in hypoxia.

  10. Relationship between asymmetric dimethylarginine and endothelial dysfunction in patients with rheumatoid arthritis

    Science.gov (United States)

    Şentürk, Taşkın; Yılmaz, Nergiz; Sargın, Gökhan; Köseoğlu, Kutsi; Yenisey, Çiğdem

    2016-01-01

    Objective In rheumatoid arthritis (RA), endothelial dysfunction caused by the inflammatory process increases the risk of cardiovascular disease. Asymmetric Dimethylarginine (ADMA) leads to vascular dysfunction, whereas atherosclerosis and increased ADMA is associated with cardiovascular disease risk factors. Flow-mediated Dilation (FMD) is a radiological method to demonstrate endothelial dysfunction. In the present study, we assessed the availability of ADMA as a marker for endothelial dysfunction in RA patients. ADMA can be used as a simple and cheaper method for the determination of endothelial dysfunction. Material and Methods Forty patients (1 male, 39 female) diagnosed with RA according to the classification criteria and 29 healthy volunteers (2 males, 27 females) were included in this study. ADMA was studied by enzyme-linked immunosorbent assay (ELISA). Chi-square, Fisher’s exact test, Mann–Whitney U test, and Spearman’s correlation tests were used for analytical analysis, and p<0.05 was considered as the level of statistical significance. Results In our study, ADMA levels were significantly higher in RA patients. The ADMA level was inversely correlated with FMD. Although high levels of both C-reactive protein and ADMA were detected in patients with high disease activity, there was no statistically significant difference between these parameters (p=0.18). There were statistically significant negative correlations between FMD and age and disease duration (p=0.01, p=0.01). However, there were no statistically significant correlations with erythrocyte sedimentation rate, rheumatoid factor, and disease activity score (p=0.68). In RA patients, there was a statistically significant positive correlation between disease duration and ADMA, whereas a negative correlation was found between FMD and ADMA (p<0.05). Conclusion Our results support the hypothesis that ADMA may be used in the assessment of endothelial dysfunction in patients with RA. It will be cost

  11. Insulin Resistance and Endothelial Dysfunction Constitute a Common Therapeutic Target in Cardiometabolic Disorders.

    Science.gov (United States)

    Janus, A; Szahidewicz-Krupska, E; Mazur, G; Doroszko, A

    2016-01-01

    Insulin resistance and other risk factors for atherosclerosis, such as hypertension and hypercholesterolemia, promote endothelial dysfunction and lead to development of metabolic syndrome which constitutes an introduction to cardiovascular disease. The insulin resistance and endothelial dysfunction cross talk between each other by numerous metabolic pathways. Hence, targeting one of these pathologies with pleiotropic treatment exerts beneficial effect on another one. Combined and expletive treatment of hypertension, lipid disorders, and insulin resistance with nonpharmacological interventions and conventional pharmacotherapy may inhibit the transformation of metabolic disturbances to fully developed cardiovascular disease. This paper summarises the common therapeutic targets for insulin resistance, endothelial dysfunction, and vascular inflammatory reaction at molecular level and analyses the potential pleiotropic effects of drugs used currently in management of cardiovascular disease, metabolic syndrome, and diabetes.

  12. Associations of low grade inflammation and endothelial dysfunction with depression - The Maastricht Study

    DEFF Research Database (Denmark)

    van Dooren, Fleur E P; Schram, Miranda T; Schalkwijk, Casper G

    2016-01-01

    in this association. METHODS: In The Maastricht Study, a population-based cohort study (n=852, 55% men, m=59.8±8.5years), depressive symptoms were assessed with the Patient Health Questionnaire-9 and (major and minor) depressive disorder with the Mini-International Neuropsychiatric Interview. Plasma biomarkers......BACKGROUND: The pathogenesis of depression may involve low-grade inflammation and endothelial dysfunction. We aimed to evaluate the independent associations of inflammation and endothelial dysfunction with depressive symptoms and depressive disorder, and the role of lifestyle factors......E-Selectin) were univariately associated with depressive symptoms and depressive disorder. The sum scores of inflammation and endothelial dysfunction were associated with depressive disorder after adjustment for age, sex, type 2 diabetes, kidney function and prior cardiovascular disease (OR 1.54, p=0.001 and 1...

  13. Insulin Resistance and Endothelial Dysfunction Constitute a Common Therapeutic Target in Cardiometabolic Disorders

    Directory of Open Access Journals (Sweden)

    A. Janus

    2016-01-01

    Full Text Available Insulin resistance and other risk factors for atherosclerosis, such as hypertension and hypercholesterolemia, promote endothelial dysfunction and lead to development of metabolic syndrome which constitutes an introduction to cardiovascular disease. The insulin resistance and endothelial dysfunction cross talk between each other by numerous metabolic pathways. Hence, targeting one of these pathologies with pleiotropic treatment exerts beneficial effect on another one. Combined and expletive treatment of hypertension, lipid disorders, and insulin resistance with nonpharmacological interventions and conventional pharmacotherapy may inhibit the transformation of metabolic disturbances to fully developed cardiovascular disease. This paper summarises the common therapeutic targets for insulin resistance, endothelial dysfunction, and vascular inflammatory reaction at molecular level and analyses the potential pleiotropic effects of drugs used currently in management of cardiovascular disease, metabolic syndrome, and diabetes.

  14. INSTRUMENTAL AND DIAGNOSTIC CRITERIA OF HEMODYNAMIC DISORDERS AND ENDOTHELIAL DYSFUNCTION CORRECTION IN PREGNANTS WITH ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    S. M. Heryak

    2014-12-01

    Conclusions. It was found that the brachial artery ultrasound measuring and occlusive plethysmography procedure by Dietz is an early and safe method of endothelial dysfunction diagnostic in pregnants with hypertension. Doppler ultrasound of blood flow in uterine, umbilical arteries, and middle cerebral arteries of the fetus allows timely diagnosis of the side effect of antihypertensive drugs on the fetus. The therapy of choice for pregnants with Stage II Arterial Hypertension should be based on methyldopa and calcium channel antagonists or selective beta-blockers combination. Highly selective beta-blockers with vasodilative effect (nebivolol hydrochloride and L-arginine (Tivortin allow to prevent perinatal adverse effects of antihypertensive therapy, to correct hemodynamic disorders and endothelial dysfunction in pregnants with arterial hypertension. KEY WORDS: arterial hypertension, uterine-placental hemodynamics, endothelial dysfunction

  15. Endothelial Progenitor Cell Dysfunction in Polycystic Ovary Syndrome: Implications for The Genesis of Cardiovascular Diseases

    OpenAIRE

    Yu-Hsun Kao; Wan-Chun Chiu; Ming-I Hsu; Yi-Jen Chen

    2013-01-01

    Polycystic ovary syndrome (PCOS), the most common endocrine disorder affecting women of reproductive age, is characterized by hyperandrogenism and insulin resistance. Women with PCOS have a higher risk for cardiovascular diseases (CVDs) and endothelial dysfunction. The mechanisms underlying these risks are unclear. Human peripheral blood contains circulating endothelial progenitor cells (EPCs) derived from bone marrow that have the ability to proliferate and differentiate into mature endothel...

  16. Fluctuating plasma phosphorus level by changes in dietary phosphorus intake induces endothelial dysfunction

    OpenAIRE

    Watari, Eriko; Taketani, Yutaka; Kitamura, Tomoyo; Tanaka, Terumi; Ohminami, Hirokazu; Abuduli, Maerjianghan; Harada, Nagakatsu; Yamanaka-Okumura, Hisami; Yamamoto, Hironori; Takeda, Eiji

    2014-01-01

    High serum phosphorus (P) impairs endothelial function by increasing oxidative stress and decreasing nitric oxide production. Serum P levels fluctuate due to circadian rhythms or dietary P intake in healthy people and due to dialysis in end-stage chronic kidney disease patients. Here we examined whether fluctuating plasma P caused by changes in dietary P intake may be involved in endothelial dysfunction, resulting in increased cardiovascular risk. Rats were fed a diet containing 0.6% P for 16...

  17. Mild preoperative renal dysfunction as a predictor of longterm clinical outcome after coronary bypass surgery

    NARCIS (Netherlands)

    van de Wal, RMA; van Brussel, BL; Voors, AA; Smilde, TDJ; van Swieten, HA; van Gilst, WH; van Veldhuisen, DJ; Plokker, HWT

    2005-01-01

    Renal dysfunction is a prognostic marker in patients with cardiovascular disease. However, no long-term follow-up studies on the influence of mild renal dysfunction on mortality in patients undergoing coronary bypass grafting have been reported. Therefore, we aimed to identify the significance of pr

  18. Role for Tetrahydrobiopterin in the Fetoplacental Endothelial Dysfunction in Maternal Supraphysiological Hypercholesterolemia

    Science.gov (United States)

    Leiva, Andrea; Fuenzalida, Bárbara; Toledo, Fernando; Salomón, Carlos; Gutiérrez, Jaime; Sanhueza, Carlos; Pardo, Fabián

    2016-01-01

    Maternal physiological hypercholesterolemia occurs during pregnancy, ensuring normal fetal development. In some cases, the maternal plasma cholesterol level increases to above this physiological range, leading to maternal supraphysiological hypercholesterolemia (MSPH). This condition results in endothelial dysfunction and atherosclerosis in the fetal and placental vasculature. The fetal and placental endothelial dysfunction is related to alterations in the L-arginine/nitric oxide (NO) pathway and the arginase/urea pathway and results in reduced NO production. The level of tetrahydrobiopterin (BH4), a cofactor for endothelial NO synthase (eNOS), is reduced in nonpregnant women who have hypercholesterolemia, which favors the generation of the superoxide anion rather than NO (from eNOS), causing endothelial dysfunction. However, it is unknown whether MSPH is associated with changes in the level or metabolism of BH4; as a result, eNOS function is not well understood. This review summarizes the available information on the potential link between MSPH and BH4 in causing human fetoplacental vascular endothelial dysfunction, which may be crucial for understanding the deleterious effects of MSPH on fetal growth and development. PMID:26697136

  19. Post-transcriptional gene regulation by RNA-binding proteins in vascular endothelial dysfunction.

    Science.gov (United States)

    Xin, HongBo; Deng, KeYu; Fu, MinGui

    2014-08-01

    Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative and migratory capacity of endothelial cells, as well as control of leukocyte trafficking. Endothelial dysfunction is an early step in vascular inflammatory diseases such as atherosclerosis, diabetic vascular complications, sepsis-induced or severe virus infection-induced organ injuries. The expressions of inflammatory cytokines and vascular adhesion molecules induced by various stimuli, such as modified lipids, smoking, advanced glycation end products and bacteria toxin, significantly contribute to the development of endothelial dysfunction. The transcriptional regulation of inflammatory cytokines and vascular adhesion molecules has been well-studied. However, the regulation of those gene expressions at post-transcriptional level is emerging. RNA-binding proteins have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level in microRNA-dependent or independent manners. This review summarizes the latest insights into the roles of RNA-binding proteins in controlling vascular endothelial cell functions and their contribution to the pathogenesis of vascular inflammatory diseases.

  20. Endothelial cell death and intimal foam cell accumulation in the coronary artery of infected hypercholesterolemic minipigs

    DEFF Research Database (Denmark)

    Birck, Malene Muusfeldt; Saraste, Antti; Hyttel, Poul

    2013-01-01

    Apoptosis of endothelial cells (ECs) has been suggested to play a role in atherosclerosis. We studied the synergism of hypercholesterolemia with Chlamydia pneumoniae and influenza virus infections on EC morphology and intimal changes in a minipig model. The coronary artery was excised at euthanasia...

  1. Activated platelets from diabetic rats cause endothelial dysfunction by decreasing Akt/endothelial NO synthase signaling pathway.

    Directory of Open Access Journals (Sweden)

    Keiko Ishida

    Full Text Available Diabetes is associated with endothelial dysfunction and platelet activation, both of which may contribute to increased cardiovascular risk. The purpose of this study was to characterize circulating platelets in diabetes and clarify their effects on endothelial function. Male Wistar rats were injected with streptozotocin (STZ to induce diabetes. Each experiment was performed by incubating carotid arterial rings with platelets (1.65×10(7 cells/mL; 30 min isolated from STZ or control rats. Thereafter, the vascular function was characterized in isolated carotid arterial rings in organ bath chambers, and each expression and activation of enzymes involved in nitric oxide and oxidative stress levels were analyzed. Endothelium-dependent relaxation induced by acetylcholine was significantly attenuated in carotid arteries treated with platelets isolated from STZ rats. Similarly, treatment with platelets isolated from STZ rats significantly reduced ACh-induced Akt/endothelial NO synthase signaling/NO production and enhanced TXB2 (metabolite of TXA2, while CD61 (platelet marker and CD62P (activated platelet marker were increased in carotid arteries treated with platelets isolated from STZ rats. Furthermore, the platelets isolated from STZ rats decreased total eNOS protein and eNOS dimerization, and increased oxidative stress. These data provide direct evidence that circulating platelets isolated from diabetic rats cause dysfunction of the endothelium by decreasing NO production (via Akt/endothelial NO synthase signaling pathway and increasing TXA2. Moreover, activated platelets disrupt the carotid artery by increasing oxidative stress.

  2. Glucose and angiotensin II-derived endothelial extracellular vesicles regulate endothelial dysfunction via ERK1/2 activation.

    Science.gov (United States)

    Taguchi, Kumiko; Hida, Mari; Narimatsu, Haruka; Matsumoto, Takayuki; Kobayashi, Tsuneo

    2017-02-01

    In various diseases, including diabetes, extracellular vesicles (EVs) have been detected in circulation and tissues. EVs are small membrane vesicles released from various cell types under varying conditions. Recently, endothelial cell-derived EVs (EEVs) were identified as a marker of endothelial dysfunction in diabetes, but the ensuing mechanisms remain poorly understood. In this study, we dissected the ensuing pathways with respect to nitric oxide (NO) production under the condition of type 2 diabetes. Human umbilical vein endothelial cells (HUVECs) were stimulated with glucose alone and with glucose in combination with angiotensin II (Ang II) for 48 h. In supernatants from glucose + Ang II-stimulated HUVECs, release of EEVs was assessed using Western blotting with an anti-CD144 antibody. EEV release was significantly increased after stimulation of HUVECs, and high glucose + Ang II-derived EEVs impaired ACh-induced vascular relaxation responses and NO production in mice aortic rings. Furthermore, high glucose + Ang II-derived EEVs induced ERK1/2 signalling and decreased endothelial NO synthase (eNOS) protein expression in mice aortas. Furthermore, in the presence of the MEK/ERK1/2 inhibitor PD98059, high glucose plus Ang II treatment stimulated EEVs in HUVECs and those EEVs prevented the impairments of ACh-induced relaxation and NO production in mice aortas. These data strongly indicate that high glucose and Ang II directly affect endothelial cells and the production of EEVs; the resultant EEVs aggravate endothelial dysfunction by regulating eNOS protein levels and ERK1/2 signalling in mice aortas.

  3. Increased brachial-ankle pulse wave velocity is associated with impaired endothelial function in patients with coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    LIU Dong-hong; TAO Jun; WANG Yan; LIAO Xin-xue; XU Ming-guo; WANG Jie-mei; YANG Zhen; CHEN Long; L(U) Ming-de; LU Kun

    2006-01-01

    Background Pulse wave velocity and flow-mediated vasodilation (FMD) are widely used as noninvasive modalities for evaluating atherosclerosis. However, it is not known whether pulse wave velocity is related to FMD in patients with coronary artery disease (CAD). Therefore, the present study was designed to investigate the alteration in brachial-ankle pulse wave velocity (baPWV) and endothelial function in CAD patients.Methods Thirty-three patients with CAD and thirty control subjects were recruited for this study. baPWV was measured non-invasively using a VP 1000 automated PWV/ABI analyzer (PWV/ABI, Colin Co. Ltd., Komaki,Japan). Endothelial function as reflected by FMD in the brachial artery was assessed with a high-resolution ultrasound device.Results baPWV was increased in CAD patients compared with control subjects [(1756.1±253.1) cm/s vs(1495.3 ± 202.3) cm/s, P<0.01]. FMD was significantly reduced in CAD patients compared with control subjects[(5.2±2.1) % vs (11.1 ±4.4) %, P<0.01]. baPWV correlated with FMD (r =-0.68, P<0.001). The endothelium-independent vasodilation induced by sublingual nitroglycerin in the brachial artery was similar in the CAD group compared with the control group.Conclusions CAD is associated with increased baPWV and endothelial dysfunction. Increased baPWV parallels diminished endothelial function. Our data therefore suggest that baPWV can be used as a noninvasive surrogate index in clinical evaluation of endothelial function.

  4. HIV replication, inflammation, and the effect of starting antiretroviral therapy on plasma asymmetric dimethylarginine, a novel marker of endothelial dysfunction

    DEFF Research Database (Denmark)

    Baker, Jason V; Neuhaus, Jacqueline; Duprez, Daniel;

    2012-01-01

    HIV infection is associated with premature development of cardiovascular disease. Understanding the effects of HIV replication on endothelial dysfunction and platelet activation may identify treatment targets to reduce cardiovascular disease risk.......HIV infection is associated with premature development of cardiovascular disease. Understanding the effects of HIV replication on endothelial dysfunction and platelet activation may identify treatment targets to reduce cardiovascular disease risk....

  5. TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice.

    Science.gov (United States)

    Li, Xiang; Han, Wei-Qing; Boini, Krishna M; Xia, Min; Zhang, Yang; Li, Pin-Lan

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 4 (DR4), have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MR) clustering and the formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and co-localized with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1 (+/+)) mice. Furthermore, TRAIL triggered ASM translocation, ceramide production, and NADPH oxidase aggregation in MR clusters in Smpd1 ( +/+ ) CAECs, whereas these observations were not found in Smpd1 (-/-) CAECs. Moreover, ASM deficiency reduced TRAIL-induced O(2) (-[Symbol: see text]) production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer, we found that Lamp-1 (lysosome membrane marker protein) and ganglioside G(M1) (MR marker) were trafficking together in Smpd1 (+/+) CAECs, which was absent in Smpd1 (-/-) CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1 (-/-) CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking, membrane fusion and formation of MR redox signaling platforms

  6. Chronic Inhibition of PPAR-γ Signaling Induces Endothelial Dysfunction In The Juvenile Lamb

    Science.gov (United States)

    Sharma, Shruti; Barton, Jubilee; Rafikov, Ruslan; Aggarwal, Saurabh; Kuo, Hsuan-Chang; Oishi, Peter E.; Datar, Sanjeev A.; Fineman, Jeffrey R; Black, Stephen M.

    2013-01-01

    We have recently shown that the development of endothelial dysfunction in lambs with increased pulmonary blood flow (PBF) correlates with a decrease in peroxisome proliferator activated receptor-γ (PPAR-γ) signaling. Thus, in this study we determined if the loss of PPAR-γ signaling is necessary and sufficient to induce endothelial dysfunction by exposing lambs with normal PBF to the PPAR-γ antagonist, GW9662. Two-weeks of exposure to GW9662 significantly decreased both PPAR-γ protein and activity. In addition, although eNOS protein and nitric oxide metabolites (NOx) were significantly increased, endothelial dependent pulmonary vasodilation in response to acetylcholine was attenuated, indicative of endothelial dysfunction. To elucidate whether downstream mediators of vasodilation were impaired we examined soluble guanylate cyclase (sGC)- α and β subunit protein, cGMP levels, and phosphodiesterase 5 (PDE5) protein and activity, but we found no significant changes. However, we found that peroxynitrite levels were significantly increased in GW9662-treated lambs and this correlated with a significant increase in protein kinase G-1α (PKG-1α) nitration and a reduction in PKG activity. Peroxynitrite is formed by the interaction of NO with superoxide and we found that there was a significant increase in superoxide generation in GW9662-treated lambs. Further, we identified dysfunctional mitochondria as the primary source of the increased superoxide. Finally, we found that the mitochondrial dysfunction was due to a disruption in carnitine metabolism. We conclude that loss of PPAR-γ signaling is sufficient to induce endothelial dysfunction confirming its important role in maintaining a healthy vasculature. PMID:23257346

  7. Associations of Macro- and Microvascular Endothelial Dysfunction With Subclinical Ventricular Dysfunction in End-Stage Renal Disease.

    Science.gov (United States)

    Dubin, Ruth F; Guajardo, Isabella; Ayer, Amrita; Mills, Claire; Donovan, Catherine; Beussink, Lauren; Scherzer, Rebecca; Ganz, Peter; Shah, Sanjiv J

    2016-10-01

    Patients with end-stage renal disease (ESRD) suffer high rates of heart failure and cardiovascular mortality, and we lack a thorough understanding of what, if any, modifiable factors contribute to cardiac dysfunction in these high-risk patients. To evaluate endothelial function as a potentially modifiable cause of cardiac dysfunction in ESRD, we investigated cross-sectional associations of macro- and microvascular dysfunction with left and right ventricular dysfunction in a well-controlled ESRD cohort. We performed comprehensive echocardiography, including tissue Doppler imaging and speckle-tracking echocardiography of the left and right ventricle, in 149 ESRD patients enrolled in an ongoing prospective, observational study. Of these participants, 123 also underwent endothelium-dependent flow-mediated dilation of the brachial artery (macrovascular function). Microvascular function was measured as the velocity time integral of hyperemic blood flow after cuff deflation. Impaired flow-mediated dilation was associated with higher left ventricular mass, independently of age and blood pressure: per 2-fold lower flow-mediated dilation, left ventricular mass was 4.1% higher (95% confidence interval, 0.49-7.7; P=0.03). After adjustment for demographics, blood pressure, comorbidities, and medications, a 2-fold lower velocity time integral was associated with 9.5% higher E/e' ratio (95% confidence interval, 1.0-16; P=0.03) and 6.7% lower absolute right ventricular longitudinal strain (95% confidence interval, 2.0-12; P=0.003). Endothelial dysfunction is a major correlate of cardiac dysfunction in ESRD, particularly diastolic and right ventricular dysfunction, in patients whose volume status is well controlled. Future investigations are needed to determine whether therapies targeting the vascular endothelium could improve cardiac outcomes in ESRD.

  8. ACE Inhibition and Endothelial Function: Main Findings of PERFECT, a Sub-Study of the EUROPA Trial

    NARCIS (Netherlands)

    Bots, M.L.; Remme, W.J.; Lüscher, T.F.; Fox, K.M.; Bertrand, M.; Ferrari, R.; Simoons, M.L.; Grobbee, D.E.; EUROPA-PERFECT Investigators

    2007-01-01

    Background: ACE inhibition results in secondary prevention of coronary artery disease (CAD) through different mechanisms including improvement of endothelial dysfunction. The Perindopril-Function of the Endothelium in Coronary artery disease Trial (PERFECT) evaluated whether long-term administratio

  9. Endothelial dysfunction in patients with metabolic syndrome: a prospective study in a rural institute in India

    Directory of Open Access Journals (Sweden)

    Khwaja Saifullah Zafar

    2014-08-01

    Conclusion: Estimation of Endothelial Dysfunction in patients at risk of developing full blown Metabolic Syndrome may predict the cardiovascular morbidity and mortality in these individuals even before fulfilling the 3/5 criteria of NCEP/ATP III Guidelines for the diagnosis of metabolic syndrome. [Int J Res Med Sci 2014; 2(4.000: 1612-1619

  10. Endothelial dysfunction and low-grade inflammation and the progression of retinopathy in Type 2 diabetes

    NARCIS (Netherlands)

    Spijkerman, A.M.W.; Gall, M.A.; Tarnow, L.; Twisk, J.W.R.; Lauritzen, E.; Lund-Andersen, H.; Emeis, J.; Parving, H.H.; Stehouwer, C.D.A.

    2007-01-01

    Aims: To study whether microalbuminuria, endothelial dysfunction and low-grade inflammation are associated with the presence and progression of diabetic retinopathy. Methods: Patients with Type 2 diabetes (n = 328) attending a diabetes clinic were followed for 10 years and examined annually during t

  11. The compounds of phenolic nature - new opportunities for pharmacological correction of endothelial dysfunction.

    Directory of Open Access Journals (Sweden)

    Mikhail V. Korokin

    2016-09-01

    Full Text Available Investigation of endotelioprotective effects of phenolic compounds containing directly related heteroatom, and heterocyclic structural fragments under laboratory code KUD259, KUD970, KUD971, KUD972, KUD973, KUD974, KUD975 and KUD976 in modeling L-NAME induced endothelial dysfunction.

  12. Endothelial dysfunction and low-grade inflammation and the progression of retinopathy in Type 2 diabetes

    DEFF Research Database (Denmark)

    Spijkerman, Annemieke M W; Gall, Mari-Anne; Tarnow, L

    2007-01-01

    AIMS: To study whether microalbuminuria, endothelial dysfunction and low-grade inflammation are associated with the presence and progression of diabetic retinopathy. METHODS: Patients with Type 2 diabetes (n = 328) attending a diabetes clinic were followed for 10 years and examined annually durin...

  13. Endothelial and Microcirculatory Function and Dysfunction in Sepsis.

    Science.gov (United States)

    Colbert, James F; Schmidt, Eric P

    2016-06-01

    The microcirculation is a series of arterioles, capillaries, and venules that performs essential functions of oxygen and nutrient delivery, customized to the unique physiologic needs of the supplied organ. The homeostatic microcirculatory response to infection can become harmful if overactive and/or dysregulated. Pathologic microcirculatory dysfunction can be directly visualized by intravital microscopy or indirectly measured via detection of circulating biomarkers. Although several treatments have been shown to protect the microcirculation during sepsis, they have not improved patient outcomes when applied indiscriminately. Future outcomes-oriented studies are needed to test sepsis therapeutics when personalized to a patient's microcirculatory dysfunction.

  14. Effect of mesenchymal precursor cells on the systemic inflammatory response and endothelial dysfunction in an ovine model of collagen-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Laura M Dooley

    Full Text Available Mesenchymal precursor cells (MPC are reported to possess immunomodulatory properties that may prove beneficial in autoimmune and other inflammatory conditions. However, their mechanism of action is poorly understood. A collagen-induced arthritis model has been previously developed which demonstrates local joint inflammation and systemic inflammatory changes. These include not only increased levels of inflammatory markers, but also vascular endothelial cell dysfunction, characterised by reduced endothelium-dependent vasodilation. This study aimed to characterise the changes in systemic inflammatory markers and endothelial function following the intravenous administration of MPC, in the ovine model.Arthritis was induced in sixteen adult sheep by administration of bovine type II collagen into the hock joint following initial sensitisation. After 24h, sheep were administered either 150 million allogeneic ovine MPCs intravenously, or saline only. Fibrinogen and serum amyloid-A were measured in plasma to assess systemic inflammation, along with pro-inflammatory and anti-inflammatory cytokines. Animals were necropsied two weeks following arthritis induction. Coronary and digital arterial segments were mounted in a Mulvaney-Halpern wire myograph. The relaxant response to endothelium-dependent and endothelium-independent vasodilators was used to assess endothelial dysfunction.Arthritic sheep treated with MPC demonstrated a marked spike in plasma IL-10, 24h following MPC administration. They also showed significantly reduced plasma levels of the inflammatory markers, fibrinogen and serum amyloid A, and increased HDL. Coronary arteries from RA sheep treated with MPCs demonstrated a significantly greater maximal relaxation to bradykinin when compared to untreated RA sheep (253.6 ± 17.1% of pre-contracted tone vs. 182.3 ± 27.3% in controls, and digital arteries also demonstrated greater endothelium-dependent vasodilation. This study demonstrated that MPCs

  15. Prior exercise and standing as strategies to circumvent sitting-induced leg endothelial dysfunction.

    Science.gov (United States)

    Morishima, Takuma; Restaino, Robert M; Walsh, Lauren K; Kanaley, Jill A; Padilla, Jaume

    2017-06-01

    We have previously shown that local heating or leg fidgeting can prevent prolonged sitting-induced leg endothelial dysfunction. However, whether physical activity prevents subsequent sitting-induced leg endothelial dysfunction remains unknown. Herein, we tested the hypothesis that sitting-induced leg endothelial dysfunction would be prevented by prior exercise. We also examined if, in the absence of exercise, standing is an effective alternative strategy to sitting for conserving leg endothelial function. Fifteen young healthy subjects completed three randomized experimental trials: (1) sitting without prior exercise; (2) sitting with prior exercise; and (3) standing without prior exercise. Following baseline popliteal artery flow-mediated dilation (FMD) measurements, subjects maintained a supine position for 45 min in the sitting and standing trials, without prior exercise, or performed 45 min of leg cycling before sitting (i.e. sitting with prior exercise trial). Thereafter, subjects were positioned into a seated or standing position, according to the trial, for 3 h. Popliteal artery FMD measures were then repeated. Three hours of sitting without prior exercise caused a significant impairment in popliteal artery FMD (baseline: 3.8±0.5%, post-sitting: 1.5±0.5%, Pexercise (baseline: 3.8±0.5%, post-sitting: 3.6±0.7%, P>0.05). Three hours of standing did not significantly alter popliteal artery FMD (baseline: 4.1±0.4%, post-standing: 4.3±0.4%, P>0.05). In conclusion, prolonged sitting-induced leg endothelial dysfunction can be prevented by prior aerobic exercise. In addition, in the absence of exercise, standing represents an effective substitute to sitting for preserving leg conduit artery endothelial function. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  16. Vascular endothelial growth factor and hypoxia-inducible factor-1α gene polymorphisms and coronary collateral formation in patients with coronary chronic total occlusions

    Directory of Open Access Journals (Sweden)

    Vincent Amoah

    2016-06-01

    Full Text Available Introduction: We evaluated the association between two single nucleotide polymorphisms of the vascular endothelial growth factor gene and one of the hypoxia-inducible factor-1α gene and the degree of coronary collateral formation in patients with a coronary chronic total occlusion. Methods: Totally, 98 patients with symptomatic coronary artery disease and a chronic total occlusion observed during coronary angiography were recruited. Genotyping of two vascular endothelial growth factor promoter single nucleotide polymorphisms (−152G>A and −165C>T and the C1772T single nucleotide polymorphism of hypoxia-inducible factor-1α were performed using polymerase chain reaction and restriction fragment length polymorphism analysis. The presence and extent of collateral vessel filling was scored by blinded observers using the Rentrop grade. Results: We found no association between the vascular endothelial growth factor −152G>A, −165C>T and hypoxia-inducible factor-1α −1772C>T with the presence and filling of coronary collateral vessels. A history of percutaneous coronary intervention and transient ischaemic attack/cerebrovascular accident were associated with the presence of enhanced collateral vessel formation following binary logistic regression analysis. Conclusion: The study findings suggest that coronary collateral formation is not associated with the tested polymorphic variants of vascular endothelial growth factor and hypoxia-inducible factor-1α in patients with symptomatic coronary artery disease and the presence of a chronic total occlusion.

  17. Endothelial dysfunction as a predictor of cardiovasculardisease in type 1 diabetes

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Macro and microvascular disease are the main causeof morbi-mortality in type 1 diabetes (T1DM). Althoughthere is a clear association between endothelialdysfunction and atherosclerosis in type 2 diabetes, acause-effect relationship is less clear in T1DM. Althoughendothelial dysfunction (ED) precedes atherosclerosis,it is not clear weather, in recent onset T1DM, it mayprogress to clinical macrovascular disease. Moreover,endothelial dysfunction may either be reversedspontaneously or in response to intensive glycemiccontrol, long-term exercise training and use of statins.Acute, long-term and post-prandial hyperglycemiaas well as duration of diabetes and microalbuminuriaare all conditions associated with ED in T1DM. Thepathogenesis of endothelial dysfunction is closelyrelated to oxidative-stress. NAD(P)H oxidase overactivity induces excessive superoxide production insidethe mitochondrial oxidative chain of endothelial cells,thus reducing nitric oxide bioavailability and resultingin peroxynitrite formation, a potent oxidant agent.Moreover, oxidative stress also uncouples endothelialnitric oxide synthase, which becomes dysfunctional,inducing formation of superoxide. Other importantmechanisms are the activation of both the polyol andprotein kinase C pathways as well as the presence ofadvanced glycation end-products. Future studies areneeded to evaluate the potential clinical applicability ofendothelial dysfunction as a marker for early vascularcomplications in T1DM.

  18. Endothelial Progenitor Cell Dysfunction in Polycystic Ovary Syndrome: Implications for The Genesis of Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Yu-Hsun Kao

    2013-01-01

    Full Text Available Polycystic ovary syndrome (PCOS, the most common endocrine disorder affecting women ofreproductive age, is characterized by hyperandrogenism and insulin resistance. Women withPCOS have a higher risk for cardiovascular diseases (CVDs and endothelial dysfunction. Themechanisms underlying these risks are unclear. Human peripheral blood contains circulatingendothelial progenitor cells (EPCs derived from bone marrow that have the ability to proliferate anddifferentiate into mature endothelial cells, which may contribute to vessel homeostasis and repair.PCOS is associated with insulin resistance, hyperinsulinemia, and dyslipidemia, which may resultin EPC dysfunction. In this review, we summarize the potential mechanisms of EPC dysfunction inPCOS, which possibly result in a higher genesis of CVDs in PCOS-affected subjects.

  19. Hypothyroidism is associated with signs of endothelial dysfunction despite 1-year replacement therapy with levothyroxine

    DEFF Research Database (Denmark)

    Clausen, P; Mersebach, H; Nielsen, B

    2009-01-01

    OBJECTIVE: Hypothyroidism is associated with elevated cardiovascular risk, not fully explained by classical risk factors. Instead, endothelial dysfunction may link hypothyroidism to atherosclerosis. The effect of levothyroxine substitution on endothelial function has been sparsely studied...... and the results are unclear. This study tested endothelial function as estimated by concomitant measurements of endothelial dependent vascular dilatory capacity and plasma concentration of von Willebrand factor antigen in patients with hypothyroidism and further examined the impact of subsequent levothyroxine...... substitution. DESIGN AND PATIENTS: Sixteen consecutive patients (13 women, 3 men, aged 46 +/- 11 years) with hypothyroidism were included and compared to 16 matched healthy controls (13 women, 3 men, aged 49 +/- 11 years). Patients with hypothyroidism were reexamined after 3, 6 and 12 months of levothyroxine...

  20. Nighttime aircraft noise impairs endothelial function and increases blood pressure in patients with or at high risk for coronary artery disease.

    Science.gov (United States)

    Schmidt, Frank; Kolle, Kristoffer; Kreuder, Katharina; Schnorbus, Boris; Wild, Philip; Hechtner, Marlene; Binder, Harald; Gori, Tommaso; Münzel, Thomas

    2015-01-01

    Epidemiological studies suggest the existence of a relationship between aircraft noise exposure and increased risk for myocardial infarction and stroke. Patients with established coronary artery disease and endothelial dysfunction are known to have more future cardiovascular events. We therefore tested the effects of nocturnal aircraft noise on endothelial function in patients with or at high risk for coronary artery disease. 60 Patients (50p 1-3 vessels disease; 10p with a high Framingham Score of 23%) were exposed in random and blinded order to aircraft noise and no noise conditions. Noise was simulated in the patients' bedroom and consisted of 60 events during one night. Polygraphy was recorded during study nights, endothelial function (flow-mediated dilation of the brachial artery), questionnaires and blood sampling were performed on the morning after each study night. The mean sound pressure levels L eq(3) measured were 46.9 ± 2.0 dB(A) in the Noise 60 nights and 39.2 ± 3.1 dB(A) in the control nights. Subjective sleep quality was markedly reduced by noise from 5.8 ± 2.0 to 3.7 ± 2.2 (p aircraft noise markedly impairs endothelial function in patients with or at risk for cardiovascular disease. These vascular effects appear to be independent from annoyance and attitude towards noise and may explain in part the cardiovascular side effects of nighttime aircraft noise.

  1. Chronic treatment with qiliqiangxin ameliorates aortic endothelial cell dysfunction in diabetic rats.

    Science.gov (United States)

    Chen, Fei; Wu, Jia-Le; Fu, Guo-Sheng; Mou, Yun; Hu, Shen-Jiang

    2015-03-01

    Qiliqiangxin (QL), a traditional Chinese medicine, has been shown to be beneficial for chronic heart failure. However, whether QL can also improve endothelial cell function in diabetic rats remains unknown. Here, we investigated the effect of QL treatment on endothelial dysfunction by comparing the effect of QL to that of benazepril (Ben) in diabetic Sprague-Dawley rats for 8 weeks. Cardiac function was evaluated by echocardiography and catheterization. Assays for acetylcholine-induced, endothelium-dependent relaxation (EDR), sodium nitroprusside-induced endothelium-independent relaxation, serum nitric oxide (NO), and nitric oxide synthase (NOS) as well as histological analyses were performed to assess endothelial function. Diabetic rats showed significantly inhibited cardiac function and EDR, decreased expression of serum NO and phosphorylation at Ser(1177) on endothelial NOS (eNOS), and impaired endothelial integrity after 8 weeks. Chronic treatment for 8 weeks with either QL or Ben prevented the inhibition of cardiac function and EDR and the decrease in serum NO and eNOS phosphorylation caused by diabetes. Moreover, either QL or Ben suppressed inducible NOS (iNOS) protein levels as well as endothelial necrosis compared with the diabetic rats. Additionally, QL prevented the increase in angiotensin-converting enzyme 1 and angiotensin II receptor type 1 in diabetes. Thus, chronic administration of QL improved serum NO production, EDR, and endothelial integrity in diabetic rat aortas, possibly through balancing eNOS and iNOS activity and decreasing renin-angiotensin system expression.

  2. Nox2-dependent glutathionylation of endothelial NOS leads to uncoupled superoxide production and endothelial barrier dysfunction in acute lung injury.

    Science.gov (United States)

    Wu, Feng; Szczepaniak, William S; Shiva, Sruti; Liu, Huanbo; Wang, Yinna; Wang, Ling; Wang, Ying; Kelley, Eric E; Chen, Alex F; Gladwin, Mark T; McVerry, Bryan J

    2014-12-15

    Microvascular barrier integrity is dependent on bioavailable nitric oxide (NO) produced locally by endothelial NO synthase (eNOS). Under conditions of limited substrate or cofactor availability or by enzymatic modification, eNOS may become uncoupled, producing superoxide in lieu of NO. This study was designed to investigate how eNOS-dependent superoxide production contributes to endothelial barrier dysfunction in inflammatory lung injury and its regulation. C57BL/6J mice were challenged with intratracheal LPS. Bronchoalveolar lavage fluid was analyzed for protein accumulation, and lung tissue homogenate was assayed for endothelial NOS content and function. Human lung microvascular endothelial cell (HLMVEC) monolayers were exposed to LPS in vitro, and barrier integrity and superoxide production were measured. Biopterin species were quantified, and coimmunoprecipitation (Co-IP) assays were performed to identify protein interactions with eNOS that putatively drive uncoupling. Mice exposed to LPS demonstrated eNOS-dependent increased alveolar permeability without evidence for altered canonical NO signaling. LPS-induced superoxide production and permeability in HLMVEC were inhibited by the NOS inhibitor nitro-l-arginine methyl ester, eNOS-targeted siRNA, the eNOS cofactor tetrahydrobiopterin, and superoxide dismutase. Co-IP indicated that LPS stimulated the association of eNOS with NADPH oxidase 2 (Nox2), which correlated with augmented eNOS S-glutathionylation both in vitro and in vivo. In vitro, Nox2-specific inhibition prevented LPS-induced eNOS modification and increases in both superoxide production and permeability. These data indicate that eNOS uncoupling contributes to superoxide production and barrier dysfunction in the lung microvasculature after exposure to LPS. Furthermore, the results implicate Nox2-mediated eNOS-S-glutathionylation as a mechanism underlying LPS-induced eNOS uncoupling in the lung microvasculature.

  3. Infliximab improves endothelial dysfunction in a mouse model of antiphospholipid syndrome: Role of reduced oxidative stress.

    Science.gov (United States)

    Benhamou, Ygal; Miranda, Sébastien; Armengol, Guillaume; Harouki, Najah; Drouot, Laurent; Zahr, Noel; Thuillez, Christian; Boyer, Olivier; Levesque, Hervé; Joannides, Robinson; Richard, Vincent

    2015-08-01

    Antiphospholipid syndrome (APS), induces endothelial dysfunction, oxidative stress and systemic inflammation that may be mediated by TNFα. Thus, we investigated the possible protective effect of the anti-TNFα antibody infliximab (5μg/g) on endothelial function in a mouse APS model (induced by injection of purified human anti-β2GP1-IgG). Seven days after anti-β2GPI-IgG injection, we observed an increase in plasma sVCAM-1 and sE-selectin levels and in aortic mRNA expression of VCAM-1 and E-selectin. This was associated with a decreased endothelium-dependent relaxation of isolated mesenteric arteries to acetylcholine, together with decreased mesenteric eNOS mRNA expression and increased eNOS uncoupling, accompanied by increased iNOS and gp91phox mRNA and increased left ventricular GSH/GSSH ratio. Infliximab significantly improved the NO-mediated relaxing responses to acetylcholine, and induced a decrease in iNOS and gp91phox mRNA expression. The õpro-adhesive and pro-coagulant phenotypes induced by the anti-β2GP1-IgG were also reversed. This study provides the first evidence that TNFα antagonism improves endothelial dysfunction in APS and suggests that endothelial dysfunction is mediated by TNFα and oxidative stress. Therefore, infliximab may be of special relevance in clinical practice.

  4. Salidroside Improves Homocysteine-Induced Endothelial Dysfunction by Reducing Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Sin Bond Leung

    2013-01-01

    Full Text Available Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction.

  5. [Reduction of exercise-mediated endothelial dysfunction markers in sedentary adults with chronic spinal cord injury].

    Science.gov (United States)

    Rosety-Rodriguez, Manuel; Camacho-Molina, Alejandra; Rosety, Ignacio; Fornieles, Gabriel; Rosety, Miguel A; Ordoñez, Francisco Javier

    2015-01-20

    Recent studies have found increased markers of endothelial activation in men with chronic spinal cord injury. This study was conducted to determine the effects of arm-cranking exercise on endothelial dysfunction in male adults with chronic SCI. A prospective randomized study of 17 sedentary adult males with chronic SCI at or under T5 level. Nine performed a supervised exercise program at a moderate intensity (arm-cranking: 12 weeks, 3 sessions/week). Plasma levels of endothelin-1, soluble intercellular adhesion molecule type 1 (sICAM-1), and soluble vascular adhesion molecule type 1 (sVCAM-1) were assessed by ELISA. Outcome measurements also included physical fitness and total body fat mass percentage. We observed both in the randomized and in the before-after studies a significant reduction of the levels of endothelin-1 and sICAM-1. Furthermore, significant improvements of both physical fitness and body composition were also found. Arm-cranking exercise improved endothelial dysfunction in adult males with chronic SCI. Long-term studies are still required to determine whether the correction of endothelial dysfunction improves the clinical outcomes of adults with chronic SCI. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  6. The effect of homocysteine reduction by B-vitamin supplementation on markers of endothelial dysfunction.

    Science.gov (United States)

    Peeters, Anita C T M; van der Molen, Els F; Blom, Henk J; den Heijer, Martin

    2004-11-01

    Hyperhomocysteinemia is a risk factor for arterial vascular disease and venous thrombosis. The pathophysiology of this relation is unclear, but several studies suggest that hyperhomocysteinemia impairs endothelial function. We examined the effect of homocysteine lowering by B-vitamin supplementation on tissue plasminogen activator (tPA), plasminogen activator inhibitor type 1 (PAI) and von Willebrand factor (vWf)--markers of endothelial dysfunction--in hyperhomocysteinemic and normohomocysteinemic volunteers. A total of 123 healthy volunteers were randomized to placebo or B-vitamins (5 mg folic acid, 0.4 mg hydroxycobalamin and 50 mg pyridoxine) daily for 8 weeks. Before and after the intervention period, blood samples were taken for measurements of homocysteine, tPA, PAI and vWf. There was no evident association between homocysteine concentration and concentrations of markers of endothelial dysfunction at baseline. The mean reduction of homocysteine concentration was 31% (95%CI 22.7 to 39.1) in the B-vitamin group compared to 3% reduction in the placebo group. Concentrations of tPA, PAI and vWf did not change after supplementation of B-vitamins. In conclusion, the results of our study show that homocysteine reduction by B-vitamin supplementation has no effect on markers of endothelial dysfunction in healthy volunteers.

  7. Invasive assessment of coronary microvascular dysfunction in hypertrophic cardiomyopathy: the index of microvascular resistance

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez-Barrios, Alejandro, E-mail: aleklos@hotmail.com [Cardiology Department, Jerez Hospital, Jerez (Spain); Camacho-Jurado, Francisco [Cardiology Department, Punta Europa Hospital, Algeciras (Spain); Díaz-Retamino, Enrique; Gamaza-Chulián, Sergio; Agarrado-Luna, Antonio; Oneto-Otero, Jesús; Del Rio-Lechuga, Ana; Benezet-Mazuecos, Javier [Cardiology Department, Jerez Hospital, Jerez (Spain)

    2015-10-15

    Summary: We present a review of microvascular dysfunction in hypertrophic cardiomyopathy (HCM) and an interesting case of a symptomatic familial HCM patient with inducible ischemia by single photon emission computed tomography. Coronary angiography revealed normal epicardial arteries. Pressure wire measurements of fractional flow reserve (FFR), coronary flow reserve (CFR) and index of microvascular resistance (IMR) demonstrated a significant microcirculatory dysfunction. This is the first such case that documents this abnormality invasively using the IMR. The measurement of IMR, a novel marker of microcirculatory dysfunction, provides novel insights into the pathophysiology of this condition. - Highlights: • Microvascular dysfunction is a common feature in hypertrophic cardiomyopathy (HCM) and represents a strong predictor of unfavorable outcome and cardiovascular mortality. • The index of microvascular resistance (IMR) is a new method for invasively assessing the state of the coronary microcirculation using a single pressure-temperature sensor-tipped coronary wire. • However assessment of IMR in HCM has not been previously reported. We report a case in which microvascular dysfunction is assessed by IMR. This index may be useful in future researches of HCM.

  8. Fluctuating plasma phosphorus level by changes in dietary phosphorus intake induces endothelial dysfunction.

    Science.gov (United States)

    Watari, Eriko; Taketani, Yutaka; Kitamura, Tomoyo; Tanaka, Terumi; Ohminami, Hirokazu; Abuduli, Maerjianghan; Harada, Nagakatsu; Yamanaka-Okumura, Hisami; Yamamoto, Hironori; Takeda, Eiji

    2015-01-01

    High serum phosphorus (P) impairs endothelial function by increasing oxidative stress and decreasing nitric oxide production. Serum P levels fluctuate due to circadian rhythms or dietary P intake in healthy people and due to dialysis in end-stage chronic kidney disease patients. Here we examined whether fluctuating plasma P caused by changes in dietary P intake may be involved in endothelial dysfunction, resulting in increased cardiovascular risk. Rats were fed a diet containing 0.6% P for 16 days (control group), or a diet alternating between 0.02% P and 1.2% P (LH group) or between 1.2% P and 0.02% P (HL group) every 2 days; the total amount of P intake among the groups during the feeding period was similar. In the LH and HL groups, endothelial-dependent vasodilation significantly decreased plasma 8-(OH)dG level significantly increased, and the expression of inflammatory factors such as MCP-1 increased in the endothelium as compared with the control group. These data indicate that repetitive fluctuations of plasma P caused by varying dietary P intake can impair endothelial function via increased oxidative stress and inflammatory response. Taken together, these results suggest that habitual fluctuation of dietary P intake might be a cause of cardiovascular disease through endothelial dysfunction, especially in chronic kidney disease patients.

  9. Fluctuating plasma phosphorus level by changes in dietary phosphorus intake induces endothelial dysfunction

    Science.gov (United States)

    Watari, Eriko; Taketani, Yutaka; Kitamura, Tomoyo; Tanaka, Terumi; Ohminami, Hirokazu; Abuduli, Maerjianghan; Harada, Nagakatsu; Yamanaka-Okumura, Hisami; Yamamoto, Hironori; Takeda, Eiji

    2015-01-01

    High serum phosphorus (P) impairs endothelial function by increasing oxidative stress and decreasing nitric oxide production. Serum P levels fluctuate due to circadian rhythms or dietary P intake in healthy people and due to dialysis in end-stage chronic kidney disease patients. Here we examined whether fluctuating plasma P caused by changes in dietary P intake may be involved in endothelial dysfunction, resulting in increased cardiovascular risk. Rats were fed a diet containing 0.6% P for 16 days (control group), or a diet alternating between 0.02% P and 1.2% P (LH group) or between 1.2% P and 0.02% P (HL group) every 2 days; the total amount of P intake among the groups during the feeding period was similar. In the LH and HL groups, endothelial-dependent vasodilation significantly decreased plasma 8-(OH)dG level significantly increased, and the expression of inflammatory factors such as MCP-1 increased in the endothelium as compared with the control group. These data indicate that repetitive fluctuations of plasma P caused by varying dietary P intake can impair endothelial function via increased oxidative stress and inflammatory response. Taken together, these results suggest that habitual fluctuation of dietary P intake might be a cause of cardiovascular disease through endothelial dysfunction, especially in chronic kidney disease patients. PMID:25678749

  10. Myocardial dysfunction in patients with type 2 diabetes mellitus: role of endothelial progenitor cells and oxidative stress

    Directory of Open Access Journals (Sweden)

    Zhao Chun

    2012-12-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPCs are responsible for angiogenesis and maintenance of microvascular integrity, the number of EPCs is correlated with oxidative stress. Their relation to myocardial dysfunction in patients with type 2 diabetes mellitus (T2DM is nonetheless unknown. Methods Eighty-seven patients with T2DM and no history of coronary artery disease were recruited. Transthoracic echocardiography and detailed evaluation of left ventricular (LV systolic function by 2-dimensional (2D speckle tracking derived strain analysis in 3 orthogonal directions was performed. Four subpopulations of EPCs, including CD34+, CD133+, CD34+/kinase insert domain-containing receptor (KDR + and CD133+/KDR + EPCs, were measured by flow cytometry. Oxidative stress was assessed by superoxide dismutase (SOD. Results The mean age of the patients was 62 ± 9 years and 39.6% were male. Those with an impaired longitudinal strain had a lower number of CD34+ EPCs (2.82 ± 1.87% vs. 3.74 ± 2.12%, P  Conclusions LV global circumferential strain was independently associated with number of CD34+ EPCs and SOD. These findings suggest that myocardial dysfunction in patients with T2DM is related to depletion of EPCs and increased oxidative stress.

  11. Effects of Fuscoporia obliqua on Postprandial Glucose Excursion and Endothelial Dysfunction in Type 2 Diabetic Patients

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Postprandial hyperglycemia has been reported to elicit endothelial dysfunction and provoke future cardiovascular complications. A reduction of postprandial blood glucose levels by the glucosidase inhibitor Fuscoporia obliqua was associated with a risk reduction of cardiovascular complications, but the effects of Fuscoporia obliqua on endothelial function have never been elucidated. This study is aimed to assess the efficacy of Fuscoporia obliqua on postprandial metabolic parameters and endothelial function in type 2 diabetic patients. Postprandial peak glucose (14.47±1.27 vs. 8.50±0.53 mmol/liter), plasma glucose excursion (PPGE), and change in the area under the curve (AUC) glucose after a single loading of test meal (total 450 kcal; protein 15.3%; fat 32.3%; carbohydrate 51.4%) were significantly higher in the diet-treated type 2 diabetic patients (n=14) than the age- and sex-matched controls (n=12). The peak forearm blood flow response and total reactive hyperemic flow (flow debt repayment) during reactive hyperemia, indices of resistance artery endothelial function on strain-gauge plethysmography, were unchanged before and after meal loading in the controls. But those of the diabetics were significantly decreased 120 and 240 min after the test meal. A prior administration of Fuscoporia obliqua decreased postprandial peak glucose, PPGE, and AUC glucose. The peak forearm blood flow and flow debt repayment were inversely well correlated with peak glucose, PPGE, and AUC glucose, but not with AUC insulin or the other lipid parameters. Even a single loading of the test meal was shown to impair the endothelial function in type 2 diabetic patients, and the postprandial endothelial dysfunction was improved by a prior use of Fuscoporia obliqua. Fuscoporia obliqua might reduce macrovascular complication by avoiding endothelial injury in postprandial hyperglycemic status.

  12. Functional characteristics of coronary vasomotor function following intramyocardial gene therapy with naked DNA encoding for vascular endothelial growth factor 165

    NARCIS (Netherlands)

    Tio, RA; Wijpkema, JS; Tan, ES; Asselbergs, FW; Hospers, GAP; Jessurun, GAJ; Zijlstra, F

    2005-01-01

    Vascular endothelial growth factor (VEGF) is a potent angiogenic factor. VEGF gene therapy improves perfusion of ischemic myocardium in experimental models and possibly in patients with end-stage coronary artery disease. In addition to its proliferative and migratory effect on endothelial cells, it

  13. Acute hyperglycemia-induced endothelial dysfunction in retinal arterioles in cats.

    Science.gov (United States)

    Sogawa, Kenji; Nagaoka, Taiji; Izumi, Naohiro; Nakabayashi, Seigo; Yoshida, Akitoshi

    2010-05-01

    To investigate the effects of acute hyperglycemia on retinal microcirculation and endothelial function in cats and removal of superoxide to prevent retinal endothelial dysfunction from hyperglycemia. Hyperglycemia was induced by intravenous injection of 25% glucose to maintain the plasma glucose concentration at 30 mM. Laser Doppler velocimetry was used to measure the vessel diameter (D) and blood velocity (V) simultaneously and calculated retinal blood flow (RBF) in second-order retinal arterioles in cats. Intravitreous, endothelial-dependent vasodilator bradykinin (BK) and endothelium-independent vasodilator sodium nitroprusside (SNP) were administered into the vitreous cavity to evaluate endothelial function in the retinal arterioles. To control osmolality, 25% mannitol was administered the same way. Systemic hyperoxia was induced to noninvasively examine endothelial function during hyperglycemia. To determine the effect of the superoxide on the hyperglycemia-induced changes in the retinal circulation, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) was administered in drinking water for 14 days before the experiment. The D, V, and RBF increased with acute hyperglycemia and mannitol compared with baseline. BK-induced increases in D, V, and RBF significantly declined, whereas SNP-induced increases were unattenuated during acute hyperglycemia. Return of the decreased RBF to baseline after cessation of systemic hyperoxia was significantly (P oxidative stress. Systemic hyperoxia can be used to noninvasively evaluate retinal endothelial function during hyperglycemia.

  14. Intermittent hypoxia-induced endothelial barrier dysfunction requires ROS-dependent MAP kinase activation.

    Science.gov (United States)

    Makarenko, Vladislav V; Usatyuk, Peter V; Yuan, Guoxiang; Lee, May M; Nanduri, Jayasri; Natarajan, Viswanathan; Kumar, Ganesh K; Prabhakar, Nanduri R

    2014-04-15

    The objective of the present study was to determine the impact of simulated apnea with intermittent hypoxia (IH) on endothelial barrier function and assess the underlying mechanism(s). Experiments were performed on human lung microvascular endothelial cells exposed to IH-consisting alternating cycles of 1.5% O2 for 30s followed by 20% O2 for 5 min. IH decreased transendothelial electrical resistance (TEER) suggesting attenuated endothelial barrier function. The effect of IH on TEER was stimulus dependent and reversible after reoxygenation. IH-exposed cells exhibited stress fiber formation and redistribution of cortactin, vascular endothelial-cadherins, and zona occludens-1 junction proteins along with increased intercellular gaps at cell-cell boundaries. Extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK) were phosphorylated in IH-exposed cells. Inhibiting either ERK or JNK prevented the IH-induced decrease in TEER and the reorganization of the cytoskeleton and junction proteins. IH increased reactive oxygen species (ROS) levels, and manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride, a membrane-permeable antioxidant, prevented ERK and JNK phosphorylation as well as IH-induced changes in endothelial barrier function. These results demonstrate that IH via ROS-dependent activation of MAP kinases leads to reorganization of cytoskeleton and junction proteins resulting in endothelial barrier dysfunction.

  15. Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice.

    Science.gov (United States)

    Lu, Tong; Jiang, Bin; Wang, Xiao-Li; Lee, Hon-Chi

    2016-09-01

    The large conductance Ca(2+)-activated K(+) (BK) channels, abundantly expressed in coronary artery smooth muscle cells (SMCs), play a pivotal role in regulating coronary circulation. A large body of evidence indicates that coronary arterial BK channel function is diminished in both type 1 and type 2 diabetes. However, the consequence of coronary BK channel dysfunction in diabetes is not clear. We hypothesized that impaired coronary BK channel function exacerbates myocardial ischemia/reperfusion (I/R) injury in streptozotocin-induced diabetic mice. Combining patch-clamp techniques and cellular biological approaches, we found that diabetes facilitated the colocalization of angiotensin II (Ang II) type 1 receptors and BK channel α-subunits (BK-α), but not BK channel β1-subunits (BK-β1), in the caveolae of coronary SMCs. This caveolar compartmentation in vascular SMCs not only enhanced Ang II-mediated inhibition of BK-α but also produced a physical disassociation between BK-α and BK-β1, leading to increased infarct size in diabetic hearts. Most importantly, genetic ablation of caveolae integrity or pharmacological activation of coronary BK channels protected the cardiac function of diabetic mice from experimental I/R injury in both in vivo and ex vivo preparations. Our results demonstrate a vascular ionic mechanism underlying the poor outcome of myocardial injury in diabetes. Hence, activation of coronary BK channels may serve as a therapeutic target for cardiovascular complications of diabetes.

  16. Long-term, regular remote ischemic preconditioning improves endothelial function in patients with coronary heart disease.

    Science.gov (United States)

    Liang, Y; Li, Y P; He, F; Liu, X Q; Zhang, J Y

    2015-06-01

    Remote ischemic preconditioning (RIPre) can prevent myocardial injury. The purpose of this study was to assess the beneficial effects of long-term regular RIPre on human arteries. Forty patients scheduled for coronary artery bypass graft (CABG) surgery were assigned randomly to a RIPre group (n=20) or coronary heart disease (CHD) group (n=20). Twenty patients scheduled for mastectomy were enrolled as a control group. RIPre was achieved by occluding arterial blood flow 5 min with a mercury sphygmomanometer followed by a 5-min reperfusion period, and this was repeated 4 times. The RIPre procedure was repeated 3 times a day for 20 days. In all patients, arterial fragments discarded during surgery were collected to evaluate endothelial function by flow-mediated dilation (FMD), CD34(+) monocyte count, and endothelial nitric oxide synthase (eNOS expression). Phosphorylation levels of STAT-3 and Akt were also assayed to explore the underlying mechanisms. Compared with the CHD group, long-term regular RIPre significantly improved FMD after 20 days (8.5±2.4 vs 4.9±4.2%, Parteries. Long-term, regular RIPre improved endothelial function in patients with CHD, possibly due to STAT-3 activation, and this may have led to an increase in endothelial progenitor cells.

  17. STAT6 mediates apoptosis of human coronary arterial endothelial cells by interleukin-13.

    Science.gov (United States)

    Nishimura, Yuki; Nitto, Takeaki; Inoue, Teruo; Node, Koichi

    2008-03-01

    Interleukin (IL)-13 is a cytokine produced by type 2 helper T cells that has pathophysiological roles in allergic inflammation and fibrosis formation. IL-13 shares many functional properties with IL-4, which promotes apoptosis of endothelial cells (ECs). We here investigated the effects of IL-13 on apoptosis using human coronary artery endothelial cells (HCAECs). Assessment by WST-1 assay demonstrated that IL-13 as well as IL-4 significantly inhibited cell growth. IL-13 significantly attenuated the cell viability and induced apoptosis of HCAECs as well. Expression of mRNA for vascular endothelial cell growth factor, which maintains survival of ECs, was significantly diminished by IL-13. The effects of IL-13 and IL-4 were abolished by depletion of STAT6 using RNA interference. These results suggest that IL-13 attenuates EC viability by inducing apoptosis, and that STAT6 plays pivotal roles on IL-13- and IL-4-induced apoptosis in ECs.

  18. Telmisartan enhances mitochondrial activity and alters cellular functions in human coronary artery endothelial cells via AMP-activated protein kinase pathway.

    Science.gov (United States)

    Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao

    2015-04-01

    Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Rosiglitazone reverses endothelial dysfunction but not remodeling of femoral artery in Zucker diabetic fatty rats

    Directory of Open Access Journals (Sweden)

    Onyia Jude E

    2010-05-01

    Full Text Available Abstract Objectives Endothelial dysfunction precedes atherogenesis and clinical complications in type 2 diabetes. The vascular dysfunction in Zucker diabetic fatty (ZDF rats was evaluated at different ages along with the effect of treatment with rosiglitazone (Rosi on endothelial function and mechanical remodeling. Methods The Rosi treatment was given to ZDF rats for 3 weeks. The endothelium-dependent vasodilation and α-adrenoceptor-dependent vasoconstriction of femoral arteries were studied using an ex-vivo isovolumic myograph. The biomechanical passive property of the arteries was studied in Ca2+-free condition. The expressions of endothelial nitric oxide synthase (eNOS, α-adrenoceptor, matrix metalloproteinase 9 (MMP9, and elastase were evaluated. Results Endothelium-dependent vasorelaxation of the femoral artery was blunted at low doses in ZDF rats at 11 weeks of age and attenuated at all doses in ZDF rats at 19 weeks of age. The expression of eNOS was consistent with the endothelium-dependent vasorelaxation. The α-adrenoceptor was activated and the mechanical elastic modulus was increased in ZDF rats at 19 weeks of age. The expressions of α-adrenoceptor, MMP9, and elastase were up regulated in ZDF rats at 19 weeks of age. Rosi treatment for 3 weeks restored endothelium-dependent vasorelaxation and the expression of eNOS and the adrenoceptor activation at the doses below 10-6 mole/L in ZDF rats at 19 weeks of age. Rosi treatment for 3 weeks did not, however, improve the mechanical properties of blood vessel, the expressions of α-adrenoceptor, MMP9, and elastase in ZDF rats. Conclusion The endothelial dysfunction and mechanical remodeling are observed as early as 19 weeks of age in ZDF rat. Rosi treatment for 3 weeks improves endothelial function but not mechanical properties.

  20. Significance of endothelial dysfunction in the pathogenesis of early and delayed radiation enteropathy

    Institute of Scientific and Technical Information of China (English)

    Junru Wang; Marjan Boerma; Qiang Fu; Martin Hauer-Jensen

    2007-01-01

    This review summarizes the current state of knowledge regarding the role of endothelial dysfunction in the pathogenesis of early and delayed intestinal radiation toxicity and discusses various endothelial-oriented interventions aimed at reducing the risk of radiation enteropathy. Studies published in the biomedical literature during the past four decades and cited in PubMed, as well as clinical and laboratory data from our own research program are reviewed. The risk of injury to normal tissues limits the cancer cure rates that can be achieved with radiation therapy. During treatment of abdominal and pelvic tumors, the intestine is frequently a major dose-limiting factor. Microvascular injury is a prominent feature of both early (inflammatory), as well as delayed (fibroproliferative) radiation injuries in the intestine and in many other normal tissues. Evidence from our and other laboratories suggests that endothelial dysfunction, notably a deficiency of endothelial thrombomodulin, plays a key role in the pathogenesis of these radiation responses. Deficient levels of thrombomodulin cause loss of vascular thromboresistance, excessive activation of cellular thrombin receptors by thrombin, and insufficient activation of protein C, a plasma protein with anticoagulant, anti-inflammatory, and cytoprotective properties. These changes are presumed to be critically involved in many aspects of early intestinal radiation toxicity and may sustain the fibroproliferative processes that lead to delayed intestinal dysfunction, fibrosis, and clinical complications. In conclusion, injury of vascular endothelium is important in the pathogenesis of the intestinal radiation response. Endothelial-oriented interventions are appealing strategies to prevent or treat normal tissue toxicity associated with radiation treatment of cancer.

  1. Imbalance of mitochondrial-nuclear cross talk in isocyanate mediated pulmonary endothelial cell dysfunction

    Directory of Open Access Journals (Sweden)

    Hariom Panwar

    2013-01-01

    Full Text Available Mechanistic investigations coupled with epidemiology, case-control, cohort and observational studies have increasingly linked isocyanate exposure (both chronic and acute with pulmonary morbidity and mortality. Though ascribed for impairment in endothelial cell function, molecular mechanisms of these significant adverse pulmonary outcomes remains poorly understood. As preliminary studies conducted in past have failed to demonstrate a cause-effect relationship between isocyanate toxicity and compromised pulmonary endothelial cell function, we hypothesized that direct exposure to isocyanate may disrupt endothelial structural lining, resulting in cellular damage. Based on this premise, we comprehensively evaluated the molecular repercussions of methyl isocyanate (MIC exposure on human pulmonary arterial endothelial cells (HPAE-26. We examined MIC-induced mitochondrial oxidative stress, pro-inflammatory cytokine response, oxidative DNA damage response and apoptotic index. Our results demonstrate that exposure to MIC, augment mitochondrial reactive oxygen species production, depletion in antioxidant defense enzymes, elevated pro-inflammatory cytokine response and induced endothelial cell apoptosis via affecting the balance of mitochondrial-nuclear cross talk. We herein delineate the first and direct molecular cascade of isocyanate-induced pulmonary endothelial cell dysfunction. The results of our study might portray a connective link between associated respiratory morbidities with isocyanate exposure, and indeed facilitate to discern the exposure-phenotype relationship in observed deficits of pulmonary endothelial cell function. Further, understanding of inter- and intra-cellular signaling pathways involved in isocyanate-induced endothelial damage would not only aid in biomarker identification but also provide potential new avenues to target specific therapeutic interventions.

  2. Fetal origins of adult vascular dysfunction in mice lacking endothelial nitric oxide synthase.

    Science.gov (United States)

    Longo, Monica; Jain, Venu; Vedernikov, Yuri P; Bukowski, Radek; Garfield, Robert E; Hankins, Gary D; Anderson, Garland D; Saade, George R

    2005-05-01

    Epidemiological studies have shown increased incidence of hypertension and coronary artery disease in growth-restricted fetuses during their adult life. A novel animal model was used to test the hypothesis regarding the role of an abnormal uterine environment in fetal programming of adult vascular dysfunction. Mice lacking a functional endothelial nitric oxide synthase (NOS3-/-KO, where KO is knockout) and wild-type (WT) mice (NOS3+/+WT) were crossbred to produce homozygous NOS3-/-KO, maternally derived heterozygous (NOS3+/-mat, mother with NOS3 deficiency), paternally derived heterozygous (NOS3+/-pat, normal mother), and NOS3+/+WT litters. Number of fetuses per litter was smaller in NOS3-/-KO and NOS3+/-mat compared with NOS3+/-pat and NOS3+/+WT mice. Adult female mice from these litters (7-8 wk old) were killed, and ring preparations of carotid and mesenteric arteries were mounted in a wire myograph to evaluate the passive and reactive vascular characteristics. Slope of the length-tension plot (a measure of vascular compliance) was increased, and optimal diameter (as calculated by Laplace equation) was decreased in NOS3-/-KO and NOS3+/-mat compared with NOS3+/-pat and NOS3+/+WT mice. Acetylcholine caused vasorelaxation in NOS3+/-pat and NOS3+/+WT and contraction in NOS3-/-KO and NOS3+/-mat mice. Responses to phenylephrine and Ca2+ were increased in NOS3-/-KO and NOS3+/-mat compared with NOS3+/-pat and NOS3+/+WT mice. Relaxation to isoproterenol was decreased in NOS3-/-KO and NOS3+/-mat vs. NOS3+/-pat and NOS3+/+WT mice. Abnormalities in the passive and reactive in vitro vascular properties seen in NOS+/-mat that developed in a NOS3-deficient maternal/uterine environment compared with the genetically identical NOS3+/-pat mice that developed in a normal environment are the first direct evidence in support of a role for uterine environment in determining vascular function in later life.

  3. The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach.

    Science.gov (United States)

    Addabbo, Francesco; Ratliff, Brian; Park, Hyeong-Cheon; Kuo, Mei-Chuan; Ungvari, Zoltan; Csiszar, Anna; Ciszar, Anna; Krasnikov, Boris; Krasnikof, Boris; Sodhi, Komal; Zhang, Fung; Nasjletti, Alberto; Goligorsky, Michael S

    2009-01-01

    Endothelial cell dysfunction is associated with bioavailable nitric oxide deficiency and an excessive generation of reactive oxygen species. We modeled this condition by chronically inhibiting nitric oxide generation with subpressor doses of N(G)-monomethyl-L-arginine (L-NMMA) in C57B6 and Tie-2/green fluorescent protein mouse strains. L-NMMA-treated mice exhibited a slight reduction in vasorelaxation ability, as well as detectable abnormalities in soluble adhesion molecules (soluble intercellular adhesion molecule-1 and vascular cellular adhesion molecule-1, and matrix metalloproteinase 9), which represent surrogate indicators of endothelial dysfunction. Proteomic analysis of the isolated microvasculature using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy revealed abnormal expression of a cluster of mitochondrial enzymes, which was confirmed using immunodetection. Aconitase-2 and enoyl-CoA-hydratase-1 expression levels were decreased in L-NMMA-treated animals; this phenotype was absent in nitric oxide synthase-1 and -3 knockout mice. Depletion of aconitase-2 and enoyl-CoA-hydratase-1 resulted in the inhibition of the Krebs cycle and enhanced pyruvate shunting toward the glycolytic pathway. To assess mitochondrial mass in vivo, co-localization of green fluorescent protein and MitoTracker fluorescence was detected by intravital microscopy. Quantitative analysis of fluorescence intensity showed that L-NMMA-treated animals exhibited lower fluorescence of MitoTracker in microvascular endothelia as a result of reduced mitochondrial mass. These findings provide conclusive and unbiased evidence that mitochondriopathy represents an early manifestation of endothelial dysfunction, shifting cell metabolism toward "metabolic hypoxia" through the selective depletion of both aconitase-2 and enoyl-CoA-hydratase-1. These findings may contribute to an early preclinical diagnosis of endothelial dysfunction.

  4. Vitamin D deficiency and its relationship with endothelial dysfunction in patients with early Parkinson's disease.

    Science.gov (United States)

    Yoon, Jung Han; Park, Dong Kyu; Yong, Seok Woo; Hong, Ji Man

    2015-12-01

    Increasing evidence has shown that individuals with Parkinson's disease (PD) have lower levels of 25-hydroxyvitamin D (25[OH]D) than healthy controls. Low vitamin D has been associated with endothelial dysfunction which may play a role in the pathogenesis and progression of PD. Flow-mediated dilation (FMD) is widely used as a clinical marker of overall endothelial function. We evaluated the relationship between serum 25(OH)D levels and FMD in PD. We enrolled 81 patients with early PD and 52 healthy controls, and we evaluate endothelial function based on vitamin D status and identify the association between FMD and vitamin D status in patients with early PD. The mean serum 25(OH)D levels were significantly lower in the PD patients than in the controls (21.8 ± 9.5 vs. 25.2 ± 9.3 ng/mL, p body mass index, motor Unified PD Rating Scale status and homocysteine levels (adjusted R (2) = 0.331, β = 0.494, p < 0.001). These findings provide evidence of a possible association between endothelial dysfunction as assessed by FMD and low vitamin D status in patients with early PD.

  5. The anti-cancer drug, doxorubicin, causes oxidant stress-induced endothelial dysfunction.

    Science.gov (United States)

    Wolf, Matthew B; Baynes, John W

    2006-02-01

    The anticancer drug doxorubicin (DOX) is toxic to target cells, but also causes endothelial dysfunction and edema, secondary to oxidative stress in the vascular wall. Thus, the mechanism of action of this drug may involve chemotoxicity to both cancer cells and to the endothelium. Indeed, we found that the permeability of monolayers of bovine pulmonary artery endothelial cells (BPAEC) to albumin was increased by approximately 10-fold above control, following 24-h exposure to clinically relevant concentrations of DOX (up to 1 microM). DOX also caused >4-fold increases in lactate dehydrogenase leakage and large decreases in ATP and reduced glutathione (GSH) in BPAECs, which paralleled the increases in endothelial permeability. A large part of the ATP loss could be attributed to DOX-induced hydrogen peroxide production which inhibited key thiol-enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glucose-6-phosphate dehydrogenase (G6PDH). Depletion of reduced nicotinamide adenine dinucleotide phosphate (NADPH) appeared to be a major factor leading to DOX-induced GSH depletion. At low concentrations, the sulfhydryl reagent, iodoacetate (IA), inhibited GAPDH, caused a decrease in ATP and increased permeability, without inhibiting G6PDH or decreasing GSH. These results, coupled with those of previous work on a related quinone, menadione, suggest that depletion of either GSH or ATP may lead independently to endothelial dysfunction during chemotherapy, contributing to the cardiotoxicity and other systemic side-effects of the drug.

  6. SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans.

    Science.gov (United States)

    Donato, Anthony J; Magerko, Katherine A; Lawson, Brooke R; Durrant, Jessica R; Lesniewski, Lisa A; Seals, Douglas R

    2011-09-15

    We tested the hypothesis that reductions in the cellular deacetylase, sirtuin-1 (SIRT-1), contribute to vascular endothelial dysfunction with ageing via modulation of endothelial nitric oxide synthase (eNOS) acetylation/activation-associated nitric oxide (NO) production. In older (30 months, n = 14) vs. young (5-7 months, n = 16) B6D2F1 mice, aortic protein expression of SIRT-1 and eNOS phosphorylated at serine 1177 were lower (both P SIRT-1 inhibitor, reduced EDD in both young and older mice, abolishing age-related differences, whereas co-administration with l-NAME, an eNOS inhibitor, further reduced EDD similarly in both groups. Endothelium-independent dilatation to sodium nitroprusside (EID), was not altered by age or sirtinol treatment. In older (64 ± 1 years, n = 22) vs. young (25 ± 1 years, n = 16) healthy humans, ACh-induced forearm EDD was impaired (P = 0.01) and SIRT-1 protein expression was 37% lower in endothelial cells obtained from the brachial artery (P SIRT-1 protein expression (r = 0.44, P SIRT-1 may play an important role in vascular endothelial dysfunction with ageing. SIRT-1 may be a key therapeutic target to treat arterial ageing.

  7. Therapeutic Approaches to Limit Hemolysis-Driven Endothelial Dysfunction: Scavenging Free Heme to Preserve Vasculature Homeostasis

    Directory of Open Access Journals (Sweden)

    Francesca Vinchi

    2013-01-01

    Full Text Available Hemolysis results in the release of hemoglobin and heme into the bloodstream and is associated with the development of several pathologic conditions of different etiology, including hemoglobinopathies, hemolytic anemias, bacterial infections, malaria, and trauma. In addition, hemolysis is associated with surgical procedures, hemodialysis, blood transfusion, and other conditions in which mechanical forces can lead to red blood cell rupture. Free plasma hemoglobin and heme are toxic for the vascular endothelium since heme iron promotes oxidative stress that causes endothelial activation responsible for vasoocclusive events and thrombus formation. Moreover, free hemoglobin scavenges nitric oxide, reducing its bioavailability, and heme favours ROS production, thus causing oxidative nitric oxide consumption. This results in the dysregulation of the endothelium vasodilator:vasoconstrictor balance, leading to severe vasoconstriction and hypertension. Thus, endothelial dysfunction and impairment of cardiovascular function represent a common feature of pathologic conditions associated with hemolysis. In this review, we discuss how hemoglobin/heme released following hemolysis may affect vascular function and summarise the therapeutic approaches available to limit hemolysis-driven endothelial dysfunction. Particular emphasis is put on recent data showing the beneficial effects obtained through the use of the plasma heme scavenger hemopexin in counteracting heme-mediated endothelial damage in mouse models of hemolytic diseases.

  8. Salidroside Stimulates Mitochondrial Biogenesis and Protects against H2O2-Induced Endothelial Dysfunction

    Science.gov (United States)

    Xing, Shasha; Yang, Xiaoyan; Li, Wenjing; Bian, Fang; Wu, Dan; Chi, Jiangyang; Xu, Gao; Zhang, Yonghui; Jin, Si

    2014-01-01

    Salidroside (SAL) is an active component of Rhodiola rosea with documented antioxidative properties. The purpose of this study is to explore the mechanism of the protective effect of SAL on hydrogen peroxide- (H2O2-) induced endothelial dysfunction. Pretreatment of the human umbilical vein endothelial cells (HUVECs) with SAL significantly reduced the cytotoxicity brought by H2O2. Functional studies on the rat aortas found that SAL rescued the endothelium-dependent relaxation and reduced superoxide anion (O2∙−) production induced by H2O2. Meanwhile, SAL pretreatment inhibited H2O2-induced nitric oxide (NO) production. The underlying mechanisms involve the inhibition of H2O2-induced activation of endothelial nitric oxide synthase (eNOS), adenosine monophosphate-activated protein kinase (AMPK), and Akt, as well as the redox sensitive transcription factor, NF-kappa B (NF-κB). SAL also increased mitochondrial mass and upregulated the mitochondrial biogenesis factors, peroxisome proliferator-activated receptor gamma-coactivator-1alpha (PGC-1α), and mitochondrial transcription factor A (TFAM) in the endothelial cells. H2O2-induced mitochondrial dysfunction, as demonstrated by reduced mitochondrial membrane potential (Δψm) and ATP production, was rescued by SAL pretreatment. Taken together, these findings implicate that SAL could protect endothelium against H2O2-induced injury via promoting mitochondrial biogenesis and function, thus preventing the overactivation of oxidative stress-related downstream signaling pathways. PMID:24868319

  9. Salidroside Stimulates Mitochondrial Biogenesis and Protects against H2O2-Induced Endothelial Dysfunction

    Directory of Open Access Journals (Sweden)

    Shasha Xing

    2014-01-01

    Full Text Available Salidroside (SAL is an active component of Rhodiola rosea with documented antioxidative properties. The purpose of this study is to explore the mechanism of the protective effect of SAL on hydrogen peroxide- (H2O2- induced endothelial dysfunction. Pretreatment of the human umbilical vein endothelial cells (HUVECs with SAL significantly reduced the cytotoxicity brought by H2O2. Functional studies on the rat aortas found that SAL rescued the endothelium-dependent relaxation and reduced superoxide anion (O2∙- production induced by H2O2. Meanwhile, SAL pretreatment inhibited H2O2-induced nitric oxide (NO production. The underlying mechanisms involve the inhibition of H2O2-induced activation of endothelial nitric oxide synthase (eNOS, adenosine monophosphate-activated protein kinase (AMPK, and Akt, as well as the redox sensitive transcription factor, NF-kappa B (NF-κB. SAL also increased mitochondrial mass and upregulated the mitochondrial biogenesis factors, peroxisome proliferator-activated receptor gamma-coactivator-1alpha (PGC-1α, and mitochondrial transcription factor A (TFAM in the endothelial cells. H2O2-induced mitochondrial dysfunction, as demonstrated by reduced mitochondrial membrane potential (Δψm and ATP production, was rescued by SAL pretreatment. Taken together, these findings implicate that SAL could protect endothelium against H2O2-induced injury via promoting mitochondrial biogenesis and function, thus preventing the overactivation of oxidative stress-related downstream signaling pathways.

  10. Endothelial dysfunction. An important mediator in the pathophysiology of hypertension during pre-eclampsia.

    Science.gov (United States)

    Lamarca, B

    2012-08-01

    Pre-eclampsia is defined as new onset hypertension with proteinuria during pregnancy. It affects approximately 5% of pregnancies in the US with a subset of those progressing into more severe forms of the disease, known as HELLP or eclampsia. Pre-eclampsia is associated with intrauterine growth restriction, chronic immune activation and multi-organ endothelial dysfunction thus contributing to the clinically visible elevation in maternal blood pressure. The end result is increased infant and maternal morbidity and mortality thereby contributing to the gross health care expenditure nationwide. Although the underlying cause of this disease is still unknown, the most well accepted hypothesis is that placental ischemia/hypoxia results from inadequate uteroplacental vascular remodeling, which leads to a decrease in placental blood flow. The ischemic placenta releases factors such as the soluble VEGF receptor-1 (sFlt-1), the angiotensin II type-1 receptor autoantibody (AT1-AA), and cytokines such as TNF-α and Interleukin 6 which cause maternal endothelial dysfunction characterized by elevated circulating endothelin (ET-1), reactive oxygen species (ROS), and enhanced vascular sensitivity to angiotensinII. These factors act in concert to decrease renal function and cause hypertension during pregnancy. Understanding the link between placental ischemia, endothelial dysfunction and hypertension during pregnancy will lend to better prediction, prevention and treatment strategies for women and children stricken by this devastating disease.

  11. Skin Autofluorescence Is Associated with Endothelial Dysfunction in Uremic Subjects on Hemodialysis.

    Directory of Open Access Journals (Sweden)

    Chun-Cheng Wang

    Full Text Available Elevated levels of advanced glycation end products (AGEs within tissues may contribute to endothelial dysfunction, an early indicator of atherosclerosis. We aimed to investigate whether levels of skin AGEs could be a useful marker to predict endothelial dysfunction in uremic subjects on hemodialysis.One hundred and nineteen uremic patients on hemodialysis and 57 control subjects with moderate-to-high cardiovascular risk factors and without chronic kidney disease (CKD were enrolled. We used ultrasound to measure flow-mediated vasodilation (FMD. An AGE reader measured skin autoflurorescence (AF. We then compared differences in FMD and skin AF values between the two groups. The uremic subjects had significantly higher levels of skin AF (3.47±0.76 AU vs. 2.21±0.45 arbitrary units; P<0.01 and significantly lower levels of FMD (4.79%±1.88% vs. 7.19%±2.17%; P<0.01 than the non-CKD subjects. After adjusting for all potential covariates, we found that skin AF level independently predicted FMD in both the hemodialysis and the non-CKD groups. In the hemodialysis group, skin AF ≥ 3.05 arbitrary units predicted abnormal FMD at a sensitivity of 87.9% and a specificity of 78.6% (P<0.01.Skin AF could be a useful marker to predict endothelial dysfunction in uremic subjects on hemodialysis.

  12. Arterial stiffness and endothelial dysfunction independently and synergistically predict cardiovascular and renal outcome in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Theilade, S; Lajer, Maria Stenkil; Jorsal, Anders;

    2012-01-01

    To evaluate whether pulse pressure alone or with placental growth factor as estimates of arterial stiffness and endothelial dysfunction, predicts mortality, cardiovascular disease and progression to end-stage renal disease in patients with Type 1 diabetes.......To evaluate whether pulse pressure alone or with placental growth factor as estimates of arterial stiffness and endothelial dysfunction, predicts mortality, cardiovascular disease and progression to end-stage renal disease in patients with Type 1 diabetes....

  13. 15-Lipoxygenase-1 Is Involved in the Effects of Atorvastatin on Endothelial Dysfunction

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2016-01-01

    Full Text Available Statins exert pleiotropic effects on endothelial cells in addition to lowering cholesterol. 15-Lipoxygenase-1 (ALOX15 has been implicated in vascular inflammation and disease. The relationship between atorvastatin and ALOX15 was investigated using a rat carotid artery balloon-injury model. Hematoxylin and eosin (HE staining showed that ALOX15 overexpression increased the thickness of the intima-media (IMT. Immunohistochemistry and western blotting showed that atorvastatin increased the expression of cellular adhesion molecules (CAMs but decreased the expression of endothelial nitric oxide synthase (eNOS; these effects of atorvastatin were blocked by ALOX15 overexpression. In human umbilical venous endothelial cells (HUVECs, silencing of ALOX15 enhanced the effects of atorvastatin on endothelial function. Expression levels of CAMs and Akt/eNOS/NO under oxidized low-density lipoprotein (ox-LDL stimulation were modulated by ALOX15 inhibitor and ALOX15 small interfering RNA (siRNA. Atorvastatin abolished the activation of nuclear factor-kappa B (NF-κB induced by ox-LDL. Exposure to ox-LDL induced upregulation of ALOX15 in HUVECs, but this effect was partially abolished by atorvastatin or the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC. These results demonstrate that regulation of ALOX15 expression might be involved in the effects of atorvastatin on endothelial dysfunction.

  14. Long-term, regular remote ischemic preconditioning improves endothelial function in patients with coronary heart disease

    Directory of Open Access Journals (Sweden)

    Y. Liang

    2015-06-01

    Full Text Available Remote ischemic preconditioning (RIPre can prevent myocardial injury. The purpose of this study was to assess the beneficial effects of long-term regular RIPre on human arteries. Forty patients scheduled for coronary artery bypass graft (CABG surgery were assigned randomly to a RIPre group (n=20 or coronary heart disease (CHD group (n=20. Twenty patients scheduled for mastectomy were enrolled as a control group. RIPre was achieved by occluding arterial blood flow 5 min with a mercury sphygmomanometer followed by a 5-min reperfusion period, and this was repeated 4 times. The RIPre procedure was repeated 3 times a day for 20 days. In all patients, arterial fragments discarded during surgery were collected to evaluate endothelial function by flow-mediated dilation (FMD, CD34+ monocyte count, and endothelial nitric oxide synthase (eNOS expression. Phosphorylation levels of STAT-3 and Akt were also assayed to explore the underlying mechanisms. Compared with the CHD group, long-term regular RIPre significantly improved FMD after 20 days (8.5±2.4 vs 4.9±4.2%, P<0.05 and significantly reduced troponin after CABG surgery (0.72±0.31 and 1.64±0.19, P<0.05. RIPre activated STAT-3 and increased CD34+ endothelial progenitor cell counts found in arteries. Long-term, regular RIPre improved endothelial function in patients with CHD, possibly due to STAT-3 activation, and this may have led to an increase in endothelial progenitor cells.

  15. Long-term, regular remote ischemic preconditioning improves endothelial function in patients with coronary heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Y.; Li, Y.P.; He, F.; Liu, X.Q.; Zhang, J.Y. [Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2015-04-28

    Remote ischemic preconditioning (RIPre) can prevent myocardial injury. The purpose of this study was to assess the beneficial effects of long-term regular RIPre on human arteries. Forty patients scheduled for coronary artery bypass graft (CABG) surgery were assigned randomly to a RIPre group (n=20) or coronary heart disease (CHD) group (n=20). Twenty patients scheduled for mastectomy were enrolled as a control group. RIPre was achieved by occluding arterial blood flow 5 min with a mercury sphygmomanometer followed by a 5-min reperfusion period, and this was repeated 4 times. The RIPre procedure was repeated 3 times a day for 20 days. In all patients, arterial fragments discarded during surgery were collected to evaluate endothelial function by flow-mediated dilation (FMD), CD34{sup +} monocyte count, and endothelial nitric oxide synthase (eNOS expression). Phosphorylation levels of STAT-3 and Akt were also assayed to explore the underlying mechanisms. Compared with the CHD group, long-term regular RIPre significantly improved FMD after 20 days (8.5±2.4 vs 4.9±4.2%, P<0.05) and significantly reduced troponin after CABG surgery (0.72±0.31 and 1.64±0.19, P<0.05). RIPre activated STAT-3 and increased CD34{sup +} endothelial progenitor cell counts found in arteries. Long-term, regular RIPre improved endothelial function in patients with CHD, possibly due to STAT-3 activation, and this may have led to an increase in endothelial progenitor cells.

  16. Angiotensin II-Induced Endothelial Dysfunction is Temporally Linked with Increases in Intereukin-6 and Vascular Macrophage Accumulation

    Directory of Open Access Journals (Sweden)

    Sean P Didion

    2014-10-01

    Full Text Available Angiotensin II (Ang II is associated with vascular hypertrophy, endothelial dysfunction and activation of a number of inflammatory molecules, however the linear events involved in the development of hypertension and endothelial dysfunction produced in response to Ang II are not well defined. The goal of this study was to examine the dose- and temporal-dependent development of endothelial dysfunction in response to Ang II. Blood pressure and responses of carotid arteries were examined in control (C57Bl/6 mice and in mice infused with 50, 100, 200, 400, or 1000 ng/kg/min Ang II for either 14 or 28 Days. Infusion of Ang II was associated with graded and marked increases in systolic blood pressure and plasma Ang II concentrations. While low doses of Ang II (ie, 50 and 100 ng/kg/min had little to no effect on blood pressure or endothelial function, high doses of Ang II (e.g., 1000 ng/kg/min were associated with large increases in arterial pressure and marked impairment of endothelial function. In contrast, intermediate doses of Ang II (200 and 400 ng/kg/min while initially having no effect on systolic blood pressure were associated with significant increases in pressure over time. Despite increasing blood pressure, 200 ng/kg/min had no effect on endothelial function, whereas 400 ng/kg/min produced modest impairment on Day 14 and marked impairment of endothelial function on Day 28. The degree of endothelial dysfunction produced by 400 and 1000 ng/kg/min Ang II was reflective of parallel increases in plasma IL-6 levels and vascular macrophage content, suggesting that increases in arterial blood pressure precede the development of endothelial dysfunction. These findings are important as they demonstrate that along with increases in arterial pressure that increases in IL-6 and vascular macrophage accumulation correlate with the impairment of endothelial function produced by Ang II.

  17. HIV-infected persons with type 2 diabetes show evidence of endothelial dysfunction and increased inflammation.

    Science.gov (United States)

    Hove-Skovsgaard, Malene; Gaardbo, Julie Christine; Kolte, Lilian; Winding, Kamilla; Seljeflot, Ingebjørg; Svardal, Asbjørn; Berge, Rolf Kristian; Gerstoft, Jan; Ullum, Henrik; Trøseid, Marius; Nielsen, Susanne Dam

    2017-03-29

    Increased incidence of cardiovascular diseases (CVD) in both HIV infection and type 2 diabetes (T2D) compared to the general population has been described. Little is known about the combined effect of HIV infection and T2D on inflammation and endothelial function, both of which may contribute to elevated risk of CVD. Cross-sectional study including 50 HIV-infected persons on combination anti-retroviral therapy (cART), with HIV RNA inflammation (cut-off 3 mg/L). The marker of endothelial dysfunction asymmetric dimethylarginine (ADMA) was measured using high performance liquid chromatography. Trimethylamine-N-oxide (TMAO), a microbiota-dependent, pro-atherogenic marker was measured using stable isotope dilution LC/MS/MS. The percentage of HIV + T2D+, HIV + T2D-, HIV-T2D+, and HIV-T2D- with hsCRP above cut-off was 50%, 19%, 47%, and 11%, respectively. HIV + T2D+ had elevated ADMA (0.67 μM (0.63-0.72) compared to HIV + T2D- (0.60 μM (0.57-0.64) p = 0.017), HIV-T2D+ (0.57 μM (0.51-63) p = 0.008), and HIV-T2D- (0.55 μM (0.52-0.58) p inflammation and evidence of endothelial dysfunction was found in HIV-infected persons with T2D. The effect on inflammation was mainly driven by T2D, while both HIV infection and T2D may contribute to endothelial dysfunction. Whether gut microbiota is a contributing factor to this remains to be determined.

  18. The role of endoplasmic reticulum stress in endothelial dysfunction induced by homocysteine thiolactone.

    Science.gov (United States)

    Wu, Shujin; Gao, Xiang; Yang, Shehua; Meng, Min; Yang, Xiaolai; Ge, Bin

    2015-06-01

    Our and other studies have reported that homocysteine thiolactone (HTL) could induce endothelial dysfunction. However, the precise mechanism was largely unknown. In this study, we tested the most possible factor-endoplasmic reticulum (ER) stress, which was demonstrated to be involved in endothelial dysfunction in cardiovascular disease. Acetylcholine (Ach)-induced endothelium-dependent relaxation (EDR) and biochemical parameters were measured in rat isolated aorta. The level of reactive oxygen species (ROS) and NO was designed by specific fluorescent probe DCFH-DA and DAF-FM DA separately. The nuclear translocation of the NF-κB was studied by immune-fluorescence. The mRNA expression and protein expression of GRP78--a key indicator for the induction of ER stress--were assessed by real-time PCR and Western blot. Two ER stress inhibitors-4-PBA (5 mm) and Tudca (500 μg/mL)--significantly prevented HTL-impaired EDR and increased NO release, endothelial nitric oxide synthase (eNOS) and SOD activity, decreased ROS production, NADPH activity, NOX-4 mRNA and MDA level. We also found that 4-PBA and Tudca blocked HTL--induced NF-κB activation thus inhibiting the downstream target gene production including TNF-α and ICAM-1. Simultaneously, HTL increased the mRNA and protein level of GRP78. HTL could induce ER stress leading to a downstream enhancement of oxidative stress and inflammation, which finally caused vascular endothelial dysfunction. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  19. Coronary and peripheral endothelial function in HIV patients studied with positron emission tomography and flow-mediated dilation: relation to hypercholesterolemia

    Energy Technology Data Exchange (ETDEWEB)

    Lebech, Anne-Mette [Copenhagen University Hospital, Department of Infectious Diseases, Hvidovre (Denmark); Hvidovre University Hospital, Department of Infectious Diseases, Hvidovre (Denmark); Kristoffersen, Ulrik Sloth; Kjaer, Andreas [Rigshospitalet University Hospital, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen (Denmark); University of Copenhagen, Cluster for Molecular Imaging, Copenhagen (Denmark); Wiinberg, Niels; Petersen, Claus Leth [Frederiksberg University Hospital, Department of Clinical Physiology and Nuclear Medicine, Frederiksberg (Denmark); Kofoed, Kristian; Andersen, Ove [Copenhagen University Hospital, Department of Infectious Diseases, Hvidovre (Denmark); Copenhagen University Hospital, Clinical Research Unit, Hvidovre (Denmark); Hesse, Birger [Rigshospitalet University Hospital, Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen (Denmark); Gerstoft, Jan [Rigshospitalet University Hospital, Department of Infectious Diseases, Copenhagen (Denmark)

    2008-11-15

    The mechanisms underlying increased cardiovascular risk in HIV patients in antiretroviral therapy (ART) are not known. Our aim was to study the endothelial function of the coronary arteries by cardiac perfusion positron emission tomography (PET), in HIV patients with normal or high cholesterol levels. Flow mediated dilation (FMD) of the brachial artery and circulating endothelial markers were also assessed. HIV patients in ART with total cholesterol {<=} 5.5 mmol/L (215 mg/dL; n = 13) or total cholesterol {>=} 6.5 mmol/L (254 mg/dL; n = 12) and healthy controls (n = 14) were included. {sup 13}NH{sub 3} perfusion PET, FMD, and measurement of plasma levels of E-Selectin, ICAM-1, VCAM-1, tPAI-1, and hs-CRP were performed. Baseline myocardial perfusion and the coronary flow reserve measured by PET (3.2 {+-} 0.3, 3.2 {+-} 0.3 and 3.0 {+-} 0.3; ns) was similar in HIV patients with normal or high total cholesterol and controls. FMD did not differ between the groups and was 4.6 {+-} 1.1%, 5.1 {+-} 1.2%, and 4.6 {+-} 0.8%, respectively. Increased levels of plasma E-Selectin, ICAM-1, tPAI-1, and hs-CRP were found in HIV patients when compared to controls (p < 0.05). E-Selectin and ICAM-1 levels were higher in HIV patients receiving protease inhibitors (PI) compared to those not receiving PI (p < 0.05). None of the measured endothelial biomarkers differed between the normal and high cholesterol HIV groups. In ART-treated HIV patients with a low overall cardiovascular risk, no sign of endothelial dysfunction was found not even in hypercholesterolemic patients. Also, the increased level of plasma endothelial markers found in HIV patients was not related to hypercholesterolemia. (orig.)

  20. High dose folic acid supplementation improves arterial endothelial function of coronary patients independent of homocysteine level

    Institute of Scientific and Technical Information of China (English)

    KS Woo; P Chook; M Qiao; AKY Chan; LLT Chan; WWM Chan; DS Celermajer

    2003-01-01

    @@ Background Hyperhomocysteinemia (prevalent in rural northern China)is an emerging risk factor for arterial endothelial dysfunction in CAD, which can be improved with folic acid supplementation. Such homocysteine-lowerying dosage of folio acid ( < 1 mg/d ) can reduce restenosis after PTCA, but not the cardiovascular events.Folic acid has additional vascular protection in antixidation, NO synthase protection, angiogenesis-promotion and cytokines reduction.

  1. Systemic inflammation, endothelial dysfunction, and activation in clinically healthy children exposed to air pollutants.

    Science.gov (United States)

    Calderón-Garcidueñas, L; Villarreal-Calderon, R; Valencia-Salazar, G; Henríquez-Roldán, C; Gutiérrez-Castrellón, P; Torres-Jardón, R; Osnaya-Brizuela, N; Romero, L; Torres-Jardón, R; Solt, A; Reed, W

    2008-03-01

    Mexico City children are chronically exposed to significant concentrations of air pollutants and exhibit chronic respiratory-tract inflammation. Epidemiological, controlled human exposures, laboratory-based animal models, and in vitro/in vivo studies have shown that inflammatory, endothelial dysfunction, and endothelial damage mediators are upregulated upon exposure to particulate matter (PM). Endothelial dysfunction is a critical event in cardiovascular disease. The focus of this work was to investigate whether exposure to ambient air pollution including PM(2.5) produces systemic inflammation and endothelial injury in healthy children. We measured markers of endothelial activation, and inflammatory mediators in 52 children age 8.6+/-0.1 yr, residents of Mexico City (n: 28) or of Polotitlán (n: 24), a city with low levels of pollutants. Mexico City children had significant increases in inflammatory mediators and vasoconstrictors, including tumor necrosis factor (TNF)alpha, prostaglandin (PG) E2, C-reactive protein, interleukin-1beta, and endothelin-1. There was a significant anti-inflammatory response, and a downregulation of vascular adhesion molecule-1, intercellular adhesion molecule-1 and -2, and selectins sE and sL. Results from linear regression found TNF a positively associated with 24- and 48-h cumulative levels of PM(2.5), while the 7-d PM(2.5) value was negatively associated with the numbers of white blood cells in peripheral blood in highly exposed children. Systemic subclinical inflammation, increased endothelin- 1, and significant downregulation of soluble adhesion molecules are seen in Mexico City children. Children chronically exposed to fine PM above the standard could be at risk of developing cardiovascular diseases, atherosclerosis, stroke, and other systemic effects later in life.

  2. Inhibitory Effect of a French Maritime Pine Bark Extract-Based Nutritional Supplement on TNF-α-Induced Inflammation and Oxidative Stress in Human Coronary Artery Endothelial Cells

    Science.gov (United States)

    McGrath, Kristine C. Y.; Li, Xiao-Hong; McRobb, Lucinda S.; Heather, Alison K.

    2015-01-01

    Oxidative stress and inflammation, leading to endothelial dysfunction, contribute to the pathogenesis of atherosclerosis. The popularity of natural product supplements has increased in recent years, especially those with purported anti-inflammatory and/or antioxidant effects. The efficacy and mechanism of many of these products are not yet well understood. In this study, we tested the antioxidant and anti-inflammatory effects of a supplement, HIPER Health Supplement (HIPER), on cytokine-induced inflammation and oxidative stress in human coronary artery endothelial cells (HCAECs). HIPER is a mixture of French maritime pine bark extract (PBE), honey, aloe vera, and papaya extract. Treatment for 24 hours with HIPER reduced TNF-α-induced reactive oxygen species (ROS) generation that was associated with decreased NADPH oxidase 4 and increased superoxide dismutase-1 expression. HIPER inhibited TNF-α induced monocyte adhesion to HCAECs that was in keeping with decreased expression of vascular cell adhesion molecule-1 and intercellular cell adhesion molecule-1 and decreased nuclear factor-kappa B (NF-κB) activation. Further investigation of mechanism showed HIPER reduced TNF-α induced IκBα and p38 and MEK1/2 MAP kinases phosphorylation. Our findings show that HIPER has potent inhibitory effects on HCAECs inflammatory and oxidative stress responses that may protect against endothelial dysfunction that underlies early atherosclerotic lesion formation. PMID:26664450

  3. Effects of endothelial nitric oxide synthase uncoupling on pulmonary endothelial dysfunction in rats with decompression sickness

    Institute of Scientific and Technical Information of China (English)

    Hai-Shan Lin; Min Ou; Yi-Qun Fang

    2015-01-01

    Background:To investigate the effects of unsafe decompression on rat pulmonary endothelial function and its relevant mechanisms. Methods: Sixty male Sprague-Dawley (SD) rats were randomly divided into a control group (n=30) and a decompression sickness (DCS) group (n=30). The DCS model was established by placing the rats in the DCS group in a pressurized cabin where they were exposed to a 600 kPa compressed air environment for 60 min, and the pressure was then reduced by 100 kPa/min until it reached atmospheric pressure. After the surviving rats in the DCS group and the rats in the control group were anesthetized, their pulmonary arteries were stripped to test the in vitro pulmonary artery endothelium-dependent vasodilation capacity. Western blotting was used to measure the expression and dissociation of endothelial nitric oxide synthase (eNOS) in pulmonary artery tissues and all protein nitration levels in pulmonary artery tissues; reactive oxygen species (ROS) formation was measured via in vitro pulmonary artery superoxide anion probe dihydroethidium (DHE) staining. Results: After experiencing unsafe decompression, 10 of the 30 rats in the DCS group died. The pulmonary artery endothelium-dependent vasodilation capacity in the surviving rats decreased significantly (P0.05), but the ratio of eNOS monomer/dimer in the DCS group was significantly higher than that in the control group (P Conclusion: Unsafe decompression during a simulated submarine escape process can lead to eNOS dimer uncoupling in the pulmonary artery endothelium. The dissociated eNOS monomer cannot synthesize nitric oxide (NO) and thus affect the endothelium-dependent vasodilation capacity. The eNOS monomer can promote peroxynitrite (ONOO–) synthesis, leading to an increase in protein tyrosine nitration levels in pulmonary artery tissues and causing disorder in cell cycle regulation. The eNOS monomer can also cause an increase in the formation of ROS and thus mediate peroxidation damage.

  4. [Endothelial dysfunction and nonspecific immune reactions in development and progression of osteoarthrosis in women engaged into manual work].

    Science.gov (United States)

    Maliutina, N N; Nevzorova, M S

    2015-01-01

    The article considers mechanisms of development and progression of osteoarthrosis as an occupationally conditioned disease in women of manual work. Women working in physical overstrain conditions are under occupational risk with dysfunction of many body systems. The authors set a hypothesis on association of endothelial dysfunction markers dysbalance and structural remodelling of cartilage matrix as a proof of degenerative changes.

  5. Prolongation of PR interval is associated with endothelial dysfunction and activation of vascular repair in high-risk cardiovascular patients.

    Science.gov (United States)

    Chan, Yap-Hang; Siu, Chung-Wah; Yiu, Kai-Hang; Yiu, Yuen-Fung; Lau, Kui-Kai; Lam, Tai-Hing; Lau, Chu-Pak; Tse, Hung-Fat

    2013-06-01

    Epidemiological studies showed that PR prolongation is associated with increased risk of adverse cardiovascular outcomes. We investigated the relations of PR interval with indices of vascular function and endothelial repair as the underlying mechanisms. The study comprised 348 high-risk patients with prior coronary artery disease, ischemic stroke, and/or diabetes mellitus recruited from medical outpatient clinics and 150 healthy subjects without such a history. PR interval was considered prolonged if >200 ms, as determined from resting 12-lead electrocardiogram. Vascular function was assessed by brachial flow-meditated dilatation (FMD) using high-resolution ultrasound. Circulating CD133(+)/KDR(+) endothelial progenitor cell (EPC) levels were measured by flow cytometry. Among healthy subjects, PR interval was inversely associated with FMD (R = -0.20, P = 0.015), but not with the level of circulating CD133(+)/KDR(+) EPC (R = 0.05, P = 0.58). Among high-risk cardiovascular patients, PR prolongation >200 ms was more common compared with healthy subjects (45/348 (13 %) versus 4/150 (3 %), P PR interval was associated inversely with FMD (R = -0.14, P = 0.01) and positively with circulating CD133(+)/KDR(+) EPC level (R = +0.14, P = 0.009). Circulating CD133(+)/KDR(+) EPC level was significantly increased in patients with PR prolongation >200 ms (0.87 ± 0.37 versus 0.68 ± 0.42 (log, ×10(-3)/ml), P = 0.005). Adjusted for potential confounders, increased PR interval remained independently associated with increased CD133(+)/KDR(+) EPC by +0.002 (95 % confidence interval (CI) 0.000 to 0.004 (log, ×10(-3)/ml), P = 0.011) and depressed FMD (B = -0.014 %, 95 % CI -0.027 to -0.002, P = 0.026). PR prolongation is associated with endothelial dysfunction and evidence of endothelial repair activation in patients with high cardiovascular risk.

  6. Left coronary artery stenosis causing left ventricular dysfunction in two children with supravalvular aortic stenosis.

    Science.gov (United States)

    Yildiz, Okan; Altin, Firat H; Kaya, Mehmet; Ozyılmaz, Isa; Guzeltas, Alper; Erek, Ersin

    2015-04-01

    Congenital supravalvar aortic stenosis (SVAS) is an arteriopathy associated with Williams-Beuren syndrome (WBS) and other isolated elastin gene deletions. Cardiovascular manifestations associated with WBS are characterized by obstructive arterial lesions such as SVAS and pulmonary artery stenosis in addition to bicuspid aortic valve and mitral valve prolapse. However, coronary artery ostial stenosis may be associated with SVAS, and it increases the risk of sudden death and may complicate surgical management. In this report, we present our experience with two patients having SVAS and left coronary artery ostial stenosis with associated left ventricular dysfunction. © The Author(s) 2014.

  7. RELATIONSHIP OF THE MARKERS OF ENDOTHELIAL DYSFUNCTION AND FIBROSIS IN CHRONIC HEPATITIS AND CIRRHOSIS

    Directory of Open Access Journals (Sweden)

    V. V. Shchekotov

    2014-07-01

    Full Text Available The aim – assessing the relationship of markers of endothelial dysfunction and fibrosis (AF in patients with chronic viral hepatitis and liver cirrhosis (LC.Materials and methods. We examined 40 patients with chronic hepatitis C in the phase of reactivation. The second group included 15 patients with viral CP in stage of decompensation. Using the method of ELISA tests was studied evaluating the functional state of endothelium in the blood serum with a level of total nitrogen oxide (OA, endothelin-1 (ET-1, vascular-endothelial growth factor (VEFR. Evaluated the functional activity of Willebrand factor (WF, calculated the number of desquamated endothelial cells (DETS in blood plasma, determined the level of hyaluronic acid (HA in serum. Established diagnostic sensitivity (Qh, specificity (DS and efficiency (DE of laboratory parameters.Results. In chronic hepatitis (CH found an inverse significant relationship of HA and OA, and direct relationship with Civil ET-1, VEFR, WF, indicating the association of fibrosis with the severity of the damage of the endothelium. Patients with CKD also had a direct correlation between HA and ET-1,VEFR, PV. Ratio of aspartate and alanine aminotransferase (AST/ALT with hCG was associated with OA, ET-1, VEFR, DETS. In patients with CKD significant coefficient de Rytis nteractions with OA, ET-1, VEFR are found. At the point of separating the concentration of SC > 120.0 ng / ml for the diagnosis of CKD has Qh 92 %, FS –76 %, DE – 82 %. In evaluating the operating characteristics of the indicators of endothelial dysfunction capacity of tests to stratify CG and CP were installed, the sensitivity was 73–92 %, specificity – 50–96 %, and efficiency – 69–86 %.Conclusion. CG and CP demonstrated the relationship of indicators of endothelial dysfunction with markers OP – HA, AST/ALT. The results suggest that indicators of endothelial damage may serve as indirect markers of AF.

  8. G-protein-coupled receptor kinase 2 and endothelial dysfunction: molecular insights and pathophysiological mechanisms.

    Science.gov (United States)

    Taguchi, Kumiko; Matsumoto, Takayuki; Kobayashi, Tsuneo

    2015-01-01

    Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood vessels. The principal function of vascular SMC in the body is to regulate blood flow and pressure through contraction and relaxation. The endothelium performs a crucial role in maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the production of factors associated with vasoconstriction or vasorelaxation. In this review, we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The extent of NO production represents a key marker in vascular health. A decrease in NO is capable of inducing pathological conditions associated with endothelial dysfunction, such as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cardiovascular disease. Vasculature which is affected by insulin resistance and type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In this review, we describe the pathophysiological mechanisms of insulin resistance and diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2, providing novel insights into the potential field of translational investigation in the treatment of diabetic complications.

  9. Evaluation the effect of low-dose aspirin on endothelial dysfunction in preeclamptic patients

    Directory of Open Access Journals (Sweden)

    Mohammad Hashemi

    2016-01-01

    Full Text Available Background: Preeclampsia complicates up to 3% of pregnancies in developing countries. Endothelial dysfunction plays an important role in pathogenesis of preeclampsia. In this study, we aim to evaluate the effect of low-dose aspirin on endothelial dysfunction in preeclamptic patients. Materials and Methods: in this triple-blind randomized clinical trial, enrolled patients were divided randomly into two groups. Acetylsalicylic acid (ASA 80 mg or placebo will be taken daily by oral administration from the initiation of diagnosis until 2 months after delivery. Every patient's flow-mediated dilation (FMD were evaluated at the beginning of study and 2 months after delivery with the same experienced operator at a same period of the time (3–5 pm by high-resolution B-mode ultrasonographic. T-test or Mann–Whitney test was used in the comparison of means between the intervention and placebo groups. To compare FMD in each group, before and after the intervention, paired t-test was used. Results: Mean value of FMD in intervention (9.61 ± 5.58 and control group (9.40 ± 4.33 have no significant differences before drug consumption (P = 0.089. FMD in intervention group significantly increased after ASA consumption ([9.61 ± 5.58 vs. 13.65 ± 7.91] [P = 0.044]. Conclusion: Increase mean of FMD in intervention group shows that this supplement can improve endothelial function.

  10. Fenofibrate Treatment Enhances Antioxidant Status and Attenuates Endothelial Dysfunction in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Murat Olukman

    2010-01-01

    Full Text Available Diabetic endothelial dysfunction is accompanied by increased oxidative stress and upregulated proinflammatory and inflammatory mediators in the vasculature. Activation of peroxisome proliferator-activated receptor-alpha (PPAR-α results in antioxidant and anti-inflammatory effects. This study was designed to investigate the effect of fenofibrate, a PPAR-α activator, on the endothelial dysfunction, oxidative stress, and inflammation in streptozotocin diabetic rats. Diabetic rats received fenofibrate (150 mg kg−1 day−1 for 4 weeks. Fenofibrate treatment restored the impaired endothelium-dependent relaxation and increased basal nitric oxide availability in diabetic aorta, enhanced erythrocyte/liver superoxide dismutase and catalase levels, ameliorated the abnormal serum/aortic thiobarbituric acid reactive substances, and prevented the increased aortic myeloperoxidase without a significant change in serum total cholesterol and triglyceride levels. It did not affect the decreased total homocysteine level and the increased tumor necrosis factor-α level in the serum of diabetic rats. Fenofibrate-induced prevention of the endothelial function seems to be related to its potential antioxidant and antiinflammatory activity.

  11. Magnetic ferroferric oxide nanoparticles induce vascular endothelial cell dysfunction and inflammation by disturbing autophagy.

    Science.gov (United States)

    Zhang, Lu; Wang, XueQin; Miao, YiMing; Chen, ZhiQiang; Qiang, PengFei; Cui, LiuQing; Jing, Hongjuan; Guo, YuQi

    2016-03-01

    Despite the considerable use of magnetic ferroferric oxide nanoparticles (Fe3O4NPs) worldwide, their safety is still an important topic of debate. In the present study, we detected the toxicity and biological behavior of bare-Fe3O4NPs (B-Fe3O4NPs) on human umbilical vascular endothelial cells (HUVECs). Our results showed that B-Fe3O4NPs did not induce cell death within 24h even at concentrations up to 400 μg/ml. The level of nitric oxide (NO) and the activity of endothelial NO synthase (eNOS) were decreased after exposure to B-Fe3O4NPs, whereas the levels of proinflammatory cytokines were elevated. Importantly, B-Fe3O4NPs increased the accumulation of autophagosomes and LC3-II in HUVECs through both autophagy induction and the blockade of autophagy flux. The levels of Beclin 1 and VPS34, but not phosphorylated mTOR, were increased in the B-Fe3O4NP-treated HUVECs. Suppression of autophagy induction or stimulation of autophagy flux, at least partially, attenuated the B-Fe3O4NP-induced HUVEC dysfunction. Additionally, enhanced autophagic activity might be linked to the B-Fe3O4NP-induced production of proinflammatory cytokines. Taken together, these results demonstrated that B-Fe3O4NPs disturb the process of autophagy in HUVECs, and eventually lead to endothelial dysfunction and inflammation.

  12. Glyoxalase-1 overexpression reduces endothelial dysfunction and attenuates early renal impairment in a rat model of diabetes

    DEFF Research Database (Denmark)

    Brouwers, Olaf; Niessen, Petra M G; Miyata, Toshio

    2014-01-01

    AIMS/HYPOTHESIS: In diabetes, advanced glycation end-products (AGEs) and the AGE precursor methylglyoxal (MGO) are associated with endothelial dysfunction and the development of microvascular complications. In this study we used a rat model of diabetes, in which rats transgenically overexpressed...... and endothelium dysfunction markers. In fully differentiated cultured podocytes incubation with MGO resulted in apoptosis. CONCLUSIONS/INTERPRETATION: This study shows that effective regulation of the GLO-I enzyme is important in the prevention of vascular intracellular glycation, endothelial dysfunction...

  13. Vascular dysfunction associated with major depression-like symptoms: monoamine homeostasis and endothelial dysfunction

    DEFF Research Database (Denmark)

    Bouzinova, Elena; Andresen, Jørgen; Wiborg, Ove

    and resilient groups. NO-dependent relaxation and endothelial NO synthase (eNOS) were increased in arteries from anhedonic rats. Inhibition of cyclooxygenase (COX) activity revealed increased COX-2-dependent relaxation in anhedonic group. In contrast, eNOS- and COX-independent relaxation to acetylcholine (EDH......Major depression and cardiovascular diseases have strong co-morbidity but the reason for this is unknown. In Chronic Mild Stress (CMS) model of depression only some rats develop depression-like symptoms (i.e. anhedonia, measured by sucrose intake) while others are resilient to 8 weeks of CMS....... Anhedonic rats have decreased cardiac output and unchanged blood pressure, suggesting increased total peripheral resistance. Small mesenteric and femoral arteries from CMS and non-stressed rats responded similarly to noradrenaline (NA) under control conditions but inhibition of neuronal reuptake...

  14. Cardiovascular risk reduction by reversing endothelial dysfunction: ARBs, ACE inhibitors,  or both? Expectations from The ONTARGET  Trial Programme

    Directory of Open Access Journals (Sweden)

    Luis Miguel  Ruilope

    2007-03-01

    Full Text Available Luis Miguel  Ruilope1, Josep Redón2, Roland Schmieder31Servicio de Nefrologia, Unidad de Hipertension Hospital, 12 de Octubre, Madrid, Spain; 2Department of Internal Medicine, Hospital Clinico University of Valencia, Valencia, Spain; 3Department of Nephrology and Hypertension, Friedrich-Alexander-Universitat, Erlangen-Nurnberg, GermanyAbstract: Endothelial dysfunction is the initial pathophysiological step in a progression of vascular damage that leads to overt cardiovascular and chronic kidney disease. Angiotensin II, the primary agent of the renin–angiotensin system (RAS, has a central role in endothelial dysfunction. Therefore, RAS blockade with an angiotensin receptor blocker (ARB and/or angiotensin-converting enzyme (ACE inhibitor provides a rational approach to reverse endothelial dysfunction, reduce microalbuminuria, and, thus, improves cardiovascular and renal prognosis. ARBs and ACE inhibitors act at different points in the RAS pathway and recent evidence suggests that there are differences regarding their effects on endothelial dysfunction. In addition to blood pressure lowering, studies have shown that ARBs reduce target-organ damage, including improvements in endothelial dysfunction, arterial stiffness, the progression of renal dysfunction in patients with type 2 diabetes, proteinuria, and left ventricular hypertrophy. The ONgoing Telmisartan Alone in combination with Ramipril Global Endpoint Trial (ONTARGET Programme is expected to provide the ultimate evidence of whether improved endothelial func tion translates into reduced cardiovascular and renal events in high-risk patients, and to assess possible differential outcomes with telmisartan, the ACE inhibitor ramipril, or a combination of both (dual RAS blockade. Completion of ONTARGET is expected in 2008. Keywords: angiotensin-converting enzyme inhibitor, angiotensin receptor blocker, endothelial dysfunction, ONTARGET, renin–angiotensin system, telmisartan

  15. Innovative Flow Cytometry Allows Accurate Identification of Rare Circulating Cells Involved in Endothelial Dysfunction

    Science.gov (United States)

    Boraldi, Federica; Bartolomeo, Angelica; De Biasi, Sara; Orlando, Stefania; Costa, Sonia; Cossarizza, Andrea; Quaglino, Daniela

    2016-01-01

    Introduction Although rare, circulating endothelial and progenitor cells could be considered as markers of endothelial damage and repair potential, possibly predicting the severity of cardiovascular manifestations. A number of studies highlighted the role of these cells in age-related diseases, including those characterized by ectopic calcification. Nevertheless, their use in clinical practice is still controversial, mainly due to difficulties in finding reproducible and accurate methods for their determination. Methods Circulating mature cells (CMC, CD45-, CD34+, CD133-) and circulating progenitor cells (CPC, CD45dim, CD34bright, CD133+) were investigated by polychromatic high-speed flow cytometry to detect the expression of endothelial (CD309+) or osteogenic (BAP+) differentiation markers in healthy subjects and in patients affected by peripheral vascular manifestations associated with ectopic calcification. Results This study shows that: 1) polychromatic flow cytometry represents a valuable tool to accurately identify rare cells; 2) the balance of CD309+ on CMC/CD309+ on CPC is altered in patients affected by peripheral vascular manifestations, suggesting the occurrence of vascular damage and low repair potential; 3) the increase of circulating cells exhibiting a shift towards an osteoblast-like phenotype (BAP+) is observed in the presence of ectopic calcification. Conclusion Differences between healthy subjects and patients with ectopic calcification indicate that this approach may be useful to better evaluate endothelial dysfunction in a clinical context. PMID:27560136

  16. Pathophysiology of hypertension: interactions between macro and microvascular alterations through endothelial dysfunction.

    Science.gov (United States)

    Yannoutsos, Alexandra; Levy, Bernard I; Safar, Michel E; Slama, Gerard; Blacher, Jacques

    2014-02-01

    Hypertension is a multifactorial systemic chronic disorder through functional and structural macrovascular and microvascular alterations. Macrovascular alterations are featured by arterial stiffening, disturbed wave reflection and altered central to peripheral pulse pressure amplification. Microvascular alterations, including altered wall-to-lumen ratio of larger arterioles, vasomotor tone abnormalities and network rarefaction, lead to disturbed tissue perfusion and susceptibility to ischemia. Central arterial stiffness and microvascular alterations are common denominators of organ damages. Vascular alterations are intercorrelated, amplifying the haemodynamic load and causing further damage in the arterial network. A plausible precursor role of vascular alterations in incident hypertension provides new insights for preventive and therapeutic strategies targeting macro and microvasculature. Cumulative metabolic burden and oxidative stress lead to chronic endothelial injury, promoting structural and functional vascular alterations, especially in the microvascular network. Pathophysiology of hypertension may then be revisited, based on both macrovascular and microvascular alterations, with a precursor role of endothelial dysfunction for the latter.

  17. Mechanisms of endothelial dysfunction in resistance arteries from patients with end-stage renal disease.

    Directory of Open Access Journals (Sweden)

    Leanid Luksha

    Full Text Available The study focuses on the mechanisms of endothelial dysfunction in the uremic milieu. Subcutaneous resistance arteries from 35 end-stage renal disease (ESRD patients and 28 matched controls were studied ex-vivo. Basal and receptor-dependent effects of endothelium-derived factors, expression of endothelial NO synthase (eNOS, prerequisites for myoendothelial gap junctions (MEGJ, and associations between endothelium-dependent responses and plasma levels of endothelial dysfunction markers were assessed. The contribution of endothelium-derived hyperpolarizing factor (EDHF to endothelium-dependent relaxation was impaired in uremic arteries after stimulation with bradykinin, but not acetylcholine, reflecting the agonist-specific differences. Diminished vasodilator influences of the endothelium on basal tone and enhanced plasma levels of asymmetrical dimethyl L-arginine (ADMA suggest impairment in NO-mediated regulation of uremic arteries. eNOS expression and contribution of MEGJs to EDHF type responses were unaltered. Plasma levels of ADMA were negatively associated with endothelium-dependent responses in uremic arteries. Preserved responses of smooth muscle to pinacidil and NO-donor indicate alterations within the endothelium and tolerance of vasodilator mechanisms to the uremic retention products at the level of smooth muscle. We conclude that both EDHF and NO pathways that control resistance artery tone are impaired in the uremic milieu. For the first time, we validate the alterations in EDHF type responses linked to kinin receptors in ESRD patients. The association between plasma ADMA concentrations and endothelial function in uremic resistance vasculature may have diagnostic and future therapeutic implications.

  18. Leptin Induces Hypertension and Endothelial Dysfunction via Aldosterone-Dependent Mechanisms in Obese Female Mice.

    Science.gov (United States)

    Huby, Anne-Cécile; Otvos, Laszlo; Belin de Chantemèle, Eric J

    2016-05-01

    Obesity is a major risk factor for cardiovascular disease in males and females. Whether obesity triggers cardiovascular disease via similar mechanisms in both the sexes is, however, unknown. In males, the adipokine leptin highly contributes to obesity-related cardiovascular disease by increasing sympathetic activity. Females secrete 3× to 4× more leptin than males, but do not exhibit high sympathetic tone with obesity. Nevertheless, females show inappropriately high aldosterone levels that positively correlate with adiposity and blood pressure (BP). We hypothesized that leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in females. Leptin control of the cardiovascular function was analyzed in female mice sensitized to leptin via the deletion of protein tyrosine phosphatase 1b (knockout) and in agouti yellow obese hyperleptinemic mice (Ay). Hypersensitivity to leptin (wild-type, 115 ± 2; protein tyrosine phosphatase 1b knockout, 124 ± 2 mm Hg; Pleptin receptor antagonism restored BP and endothelial function in protein tyrosine phosphatase 1b knockout and Ay mice. Hypersensitivity to leptin and obesity reduced BP response to ganglionic blockade in both strains and plasma catecholamine levels in protein tyrosine phosphatase 1b knockout mice. Hypersensitivity to leptin and obesity significantly increased plasma aldosterone levels and adrenal CYP11B2 expression. Chronic leptin receptor antagonism reduced aldosterone levels. Furthermore, chronic leptin and mineralocorticoid receptor blockade reduced BP and improved endothelial function in both leptin-sensitized and obese hyperleptinemic female mice. Together, these data demonstrate that leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in female mice and suggest that obesity leads to cardiovascular disease via sex-specific mechanisms.

  19. Ondas ultra-sônicas de alta freqüência causam disfunção endotelial em artérias coronárias caninas epicárdicas High-frequency ultrasonic waves cause endothelial dysfunction on canine epicardial coronary arteries

    Directory of Open Access Journals (Sweden)

    Berent Discigil

    2008-06-01

    investigations. METHODS: To determine whether ultrasound energy impairs the production of nitric oxide or damages vascular smooth muscle function, isolated canine epicardial coronary artery segments were exposed to either high (25 W or low (0-10 W ultrasonic energy outputs, for 15 seconds, using an endarterectomy device prototype. After exposure, segments of epicardial coronary artery were studied in organ chambers. The following drugs were used: adenosine diphosphate (ADP, acetylcholine (Ach and sodium fluoride (NaF to study endothelium-dependent relaxation and sodium nitroprusside (SNP and isoproterenol to evaluate endothelium-independent relaxation. RESULTS: Application of high ultrasonic energy power impaired endothelium-dependent relaxation to ADP (10-9 - 10-4 M, Ach (10-9 - 10-4 M and NaF (0.5 - 9.5 mM in epicardial coronary arteries. However, low ultrasound energy output at the tip of the probe did not alter the endothelium-dependent relaxation (either maximal relaxation or EC50 to the same agonists. Vascular smooth muscle relaxation to isoproterenol (10-9 - 10-5 M or SNP (10-9 - 10-6 M was unaltered following exposure to either low or high ultrasonic energy outputs. CONCLUSION: These experiments currently prove that ultrasonic energy changes endothelial function of epicardial coronary arteries at high power. However, ultrasound does not alter the ability of vascular smooth muscle of canine epicardial coronary arteries to relax.

  20. Prevention of endothelial dysfunction in streptozotocin-induced diabetic rats by Sargassum echinocarpum extract

    Directory of Open Access Journals (Sweden)

    Muhamad Firdaus

    2010-02-01

    Full Text Available Aim This study aimed to elicit the protective effect of Sargassum echinocarpum extract on endothelial dysfunction in thoracic aorta of streptozotocin-induced diabetic rats.Methods The animals were divided into 5 groups. The first was normal, the second was diabetic non treated animals. The third to fifth groups were the diabetic animals which given Sargassum echinocarpum extract (150; 300, and 450 mg kg-1 body weight, respectively by oral gavage and extract treatment was given for 12 weeks. Diabetes was induced by single administration of streptozotocin (45 mg kg-1, i.p., dissolved in freshly prepared 0.1 M citrate buffer, pH 4.5. Diabetes was confirmed ten days latter in streptozotocin induced animals showing blood glucose levels > 200 mg dL-1 (11.1 mmol L-1 as monitored in the blood from tail vein using glucometer. After the treatment period, the blood serum acquired was used for antioxidant enzymes assays and the thoracic aorta was used for vasorelaxation assay.Results There was a significant decrease in the activity of superoxide dismutase (SOD, catalase (CAT and glutathione peroxidase (GSH-px in diabetic rats (3.31 ± 0.12;67.17 ± 0.62;35.10 ± 0.83 comaped to control rats (9.97 ± 0.12;185.31 ± 0.23;116.38 ± 0.88. Administration of Sargassum extract increased the activity of SOD, CAT, and GSH-px. The diabetic rats exhibit endothelial dysfunction as shown by loss of vasodilatory response to acethylcholine (ACH. This was restored by administration of Sargassum extract.Conclusion Sargassum echinocarpum extract ameliorates oxidative stress and reverses the endothelial dysfunction associated with diabetes. This effect appears to be due to its antioxidant properties. (Med J Indones 2010; 19:32-5Keywords: oxidative stress, sargassum echinocarpum, endothelium dependent relaxation, thoracic aorta

  1. Effects of Phyllanthus emblica extract on endothelial dysfunction and biomarkers of oxidative stress in patients with type 2 diabetes mellitus: a randomized, double-blind, controlled study

    Directory of Open Access Journals (Sweden)

    Usharani P

    2013-07-01

    Full Text Available Pingali Usharani, Nishat Fatima, Nizampatnam Muralidhar Department of Clinical Pharmacology and Therapeutics, Nizam Institute of Medical Sciences, Panjagutta, Hyderabad, India Background: It has been reported that hyperglycemia can induce endothelial dysfunction via increased oxidative stress and that it plays a central role in the development of atherosclerosis and coronary heart disease. Phyllanthus emblica (Emblica officinalis, amla is known for its antioxidant and antihyperlipidemic activity. The present study compared the effects of an aqueous extract of P. emblica (highly standardized by high-performance liquid chromatography to contain low molecular weight hydrolyzable tannins, ie, emblicanin A, emblicanin B, pedunculagin, and punigluconin versus those of atorvastatin and placebo on endothelial dysfunction and biomarkers of oxidative stress in patients with type 2 diabetes. Methods: Eligible patients were randomized to receive either P. emblica 250 mg twice daily, P. emblica 500 mg twice daily, atorvastatin 10 mg in the evening and matching placebo in the morning, or placebo twice daily for 12 weeks. The primary efficacy parameter was the change in endothelial function identified on salbutamol challenge at baseline and after 12 weeks of treatment. Secondary efficacy parameters were changes in biomarkers of oxidative stress (malondialdehyde, nitric oxide, and glutathione, high sensitivity C-reactive protein levels, the lipid profile, and glycosylated hemoglobin (HbA1c levels. Laboratory safety parameters were measured at baseline and after 12 weeks of treatment. Results: Eighty patients completed the study. Treatment with P. emblica 250 mg, P. emblica 500 mg, or atorvastatin 10 mg produced significant reductions in the reflection index (-2.25%±1.37% to -9.13%±2.56% versus -2.11%±0.98% to -10.04%±0.92% versus -2.68%±1.13% to -11.03%±3.93%, respectively, suggesting improvement in endothelial function after 12 weeks of treatment

  2. Oxidation modifies the structure and function of the extracellular matrix generated by human coronary artery endothelial cells.

    Science.gov (United States)

    Chuang, Christine Y; Degendorfer, Georg; Hammer, Astrid; Whitelock, John M; Malle, Ernst; Davies, Michael J

    2014-04-15

    ECM (extracellular matrix) materials, such as laminin, perlecan, type IV collagen and fibronectin, play a key role in determining the structure of the arterial wall and the properties of cells that interact with the ECM. The aim of the present study was to investigate the effect of peroxynitrous acid, an oxidant generated by activated macrophages, on the structure and function of the ECM laid down by HCAECs (human coronary artery endothelial cells) in vitro and in vivo. We show that exposure of HCAEC-derived native matrix components to peroxynitrous acid (but not decomposed oxidant) at concentrations >1 μM results in a loss of antibody recognition of perlecan, collagen IV, and cell-binding sites on laminin and fibronectin. Loss of recognition was accompanied by decreased HCAEC adhesion. Real-time PCR showed up-regulation of inflammation-associated genes, including MMP7 (matrix metalloproteinase 7) and MMP13, as well as down-regulation of the laminin α2 chain, in HCAECs cultured on peroxynitrous acid-treated matrix compared with native matrix. Immunohistochemical studies provided evidence of co-localization of laminin with 3-nitrotyrosine, a biomarker of peroxynitrous acid damage, in type II-III/IV human atherosclerotic lesions, consistent with matrix damage occurring during disease development in vivo. The results of the present study suggest a mechanism through which peroxynitrous acid modifies endothelial cell-derived native ECM proteins of the arterial basement membrane in atherosclerotic lesions. These changes to ECM and particularly perlecan and laminin may be important in inducing cellular dysfunction and contribute to atherogenesis.

  3. Magnetic ferroferric oxide nanoparticles induce vascular endothelial cell dysfunction and inflammation by disturbing autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lu, E-mail: chaperones@163.com [College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001 (China); Wang, XueQin; Miao, YiMing; Chen, ZhiQiang; Qiang, PengFei; Cui, LiuQing; Jing, Hongjuan [College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001 (China); Guo, YuQi [Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China)

    2016-03-05

    Highlights: • B-Fe{sub 3}O{sub 4}NPs did not induce cell apoptosis or necrosis in HUVECs within 24 h. • B-Fe{sub 3}O{sub 4}NPs induced HUVEC dysfunction and inflammation. • B-Fe{sub 3}O{sub 4}NPs induced enhanced autophagic activity and blockade of autophagy flux. • Suppression of autophagy dysfunction attenuated B-Fe{sub 3}O{sub 4}NP-induced HUVEC dysfunction. - Abstract: Despite the considerable use of magnetic ferroferric oxide nanoparticles (Fe{sub 3}O{sub 4}NPs) worldwide, their safety is still an important topic of debate. In the present study, we detected the toxicity and biological behavior of bare-Fe{sub 3}O{sub 4}NPs (B-Fe{sub 3}O{sub 4}NPs) on human umbilical vascular endothelial cells (HUVECs). Our results showed that B-Fe{sub 3}O{sub 4}NPs did not induce cell death within 24 h even at concentrations up to 400 μg/ml. The level of nitric oxide (NO) and the activity of endothelial NO synthase (eNOS) were decreased after exposure to B-Fe{sub 3}O{sub 4}NPs, whereas the levels of proinflammatory cytokines were elevated. Importantly, B-Fe{sub 3}O{sub 4}NPs increased the accumulation of autophagosomes and LC3-II in HUVECs through both autophagy induction and the blockade of autophagy flux. The levels of Beclin 1 and VPS34, but not phosphorylated mTOR, were increased in the B-Fe{sub 3}O{sub 4}NP-treated HUVECs. Suppression of autophagy induction or stimulation of autophagy flux, at least partially, attenuated the B-Fe{sub 3}O{sub 4}NP-induced HUVEC dysfunction. Additionally, enhanced autophagic activity might be linked to the B-Fe{sub 3}O{sub 4}NP-induced production of proinflammatory cytokines. Taken together, these results demonstrated that B-Fe{sub 3}O{sub 4}NPs disturb the process of autophagy in HUVECs, and eventually lead to endothelial dysfunction and inflammation.

  4. Elevated vasoinhibins may contribute to endothelial cell dysfunction and low birth weight in preeclampsia.

    Science.gov (United States)

    González, Carmen; Parra, Adalberto; Ramírez-Peredo, Jorge; García, Celina; Rivera, José Carlos; Macotela, Yazmín; Aranda, Jorge; Lemini, Maria; Arias, José; Ibargüengoitia, Francisco; de la Escalera, Gonzalo Martínez; Clapp, Carmen

    2007-10-01

    Vasoconstriction and defective placental angiogenesis are key factors in the etiology of preeclampsia. Prolactin levels are elevated in maternal blood throughout pregnancy and the human decidua produces prolactin that is transported to the amniotic fluid. Prolactin is cleaved to yield vasoinhibins, a family of peptides that inhibit angiogenesis and nitric oxide-dependent vasodilation. Here, we conducted a case-control study to measure vasoinhibins in serum, urine, and amniotic fluid obtained from women with severe preeclampsia. We show that all three biological fluids contained significantly higher levels of vasoinhibins in preeclamptic women than in normal pregnant women. Amniotic fluid from preeclamptic women, but not from normal women, inhibited vascular endothelial growth factor-induced endothelial cell proliferation and nitric oxide synthase activity in cultured endothelial cells, and these actions were reversed by antibodies able to neutralize the effects of vasoinhibins. Furthermore, amniotic fluid does not appear to contain neutral prolactin-cleaving proteases, suggesting that vasoinhibins in amniotic fluid are derived from prolactin cleaved within the placenta. Also, cathepsin-D in placental trophoblasts cleaved prolactin to vasoinhibins, and its activity was higher in placental trophoblasts from preeclamptic women than from normal women. Importantly, birth weight of infants in preeclampsia inversely correlated with the extent to which the corresponding AF inhibited endothelial cell proliferation and with its concentration of prolactin+vasoinhibins. These data demonstrate that vasoinhibins are increased in the circulation, urine, and amniotic fluid of preeclamptic women and suggest that these peptides contribute to the endothelial cell dysfunction and compromised birth weight that characterize this disease.

  5. Effect of Nateglinide and Glibenclamide on Endothelial Cells and Smooth Muscle Cells from Human Coronary Arteries

    Directory of Open Access Journals (Sweden)

    Seeger H

    2004-01-01

    Full Text Available In the present work the effect of nateglinide and glibenclamide, two different substances used for therapy of diabetes mellitus type 2, were investigated on the synthesis of markers of endothelial function and on the proliferation of smooth muscle cells in vitro. As cell models endothelial and smooth muscle cells from human coronary arteries were used. Both substances were tested at concentrations of 0.1, 1 and 10 mmol/l. As markers of endothelial function prostacyclin, endothelin and plasminogen-activator-inhibitor-1 (PAI-1 were tested. Nateglinide and glibenclamide were similarly able to inhibit endothelial endothelin and PAI-1 synthesis, but only at the highest concentration tested. Endothelial prostacyclin synthesis and proliferation of smooth muscle cells were not significantly changed by both substances. These results indicate that both nateglinide and glibenclamide may have potential in reducing negative long-term effects of diabetes such as atherogenesis. Kurzfassung: Effekt von Nateglinid und Glibenclamid auf Endothel- und Muskelzellen humaner Koronararterien. In der vorliegenden Arbeit wurde die Wirkung von Nateglinid und Glibenclamid, zweier unterschiedlicher Substanzen zur Behandlung des Diabetes mellitus Typ 2, auf die Synthese von Markern der Endothelfunktion und auf die Proliferation glatter Muskelzellen untersucht. Als Zellmodell dienten Endothelzellen und glatte Muskelzellen menschlicher Koronararterien. Beide Substanzen wurden in den Konzentrationen 0,1, 1 und 10 mmol/l getestet. Als Marker der Endothelfunktion dienten Prostazyklin, Endothelin und Plasminogen-Aktivator-Inhibitor-1 (PAI-1. Sowohl Nateglinid als auch Glibenclamid konnten die endotheliale Endothelin- und PAI-1-Produktion in ähnlichem Ausmaß senken, allerdings nur in der höchsten Konzentration. Die Prostazyklinsynthese und die Muskelzellproliferation wurden nicht signifikant beeinflußt. Diese Ergebnisse deuten daraufhin, daß sowohl Nateglinid als auch

  6. Quantitative analysis of coronary endothelial function with generator-produced {sup 82}Rb PET: comparison with {sup 15}O-labelled water PET

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, Keiichiro [Hokkaido University Graduate School of Medicine, Department of Photobiology, Division of Molecular/Cellular Imaging, Kita-Ku, Sapporo, Hokkaido (Japan); Manabe, Osamu; Tamaki, Nagara [Hokkaido University of Graduate School of Medicine, Department of Nuclear Medicine, Sapporo (Japan); Katoh, Chietsugu [Hokkaido University of Graduate School of Medicine, Department of Health Sciences, Sapporo (Japan); Chen, Li; Kemp, Robert A. de; Williams, Kathryn; Beanlands, Rob S.B. [University of Ottawa Heart Institute, National Cardiac PET Centre, Division of Cardiology, Ottawa, Ontario (Canada); Klein, Ran [Hokkaido University of Graduate School of Medicine, Department of Nuclear Medicine, Sapporo (Japan); University of Ottawa Heart Institute, National Cardiac PET Centre, Division of Cardiology, Ottawa, Ontario (Canada); Naya, Masanao [Hokkaido University of Graduate School of Medicine, Department of Cardiology, Sapporo (Japan)

    2010-12-15

    Endothelial dysfunction is the earliest abnormality in the development of coronary atherosclerosis. {sup 82}Rb is a generator-produced positron emission tomography (PET) myocardial perfusion tracer that is becoming more widely used. We aimed to (1) develop a method for quantitative assessment of coronary endothelial function using the myocardial blood flow (MBF) response during a cold pressor test (CPT) in smokers, measured using {sup 82}Rb PET, and (2) compare the results with those measured using {sup 15}O-water PET. MBF was assessed at rest and during the CPT with {sup 82}Rb and {sup 15}O-water in nine controls and ten smokers. A one-compartment model with tracer extraction correction was used to estimate MBF with both tracers. CPT response was calculated as the ratio of MBF during the CPT to MBF at rest. At rest, measurements of MBF for smokers vs controls were not different using {sup 15}O-water (0.86 {+-} 0.18 vs 0.70 {+-} 0.13, p = 0.426) than they were using {sup 82}Rb (0.83 {+-} 0.23 vs 0.62 {+-} 0.20, p = 0.051). Both methods showed a reduced CPT response in smokers vs controls ({sup 15}O-water, 1.03 {+-} 0.21 vs 1.42 {+-} 0.29, p = 0.006; {sup 82}Rb, 1.02 {+-} 0.28 vs 1.70 {+-} 0.52, p < 0.001). There was high reliability [intraclass correlation coefficients: 0.48 (0.07, 0.75)] of MBF measurement between {sup 82}Rb and {sup 15}O-water during the CPT. Using a CPT, {sup 82}Rb MBF measurements detected coronary endothelial dysfunctions in smokers. {sup 82}Rb MBF measurements were comparable to those made using the {sup 15}O-water approach. Thus, {sup 82}Rb PET may be applicable for risk assessments or evaluation of risk factor modification in subjects with coronary risk factors. (orig.)

  7. Cigarette Smoke Extract Changes Expression of Endothelial Nitric Oxide Synthase (eNOS) and p16(INK4a) and is Related to Endothelial Progenitor Cell Dysfunction.

    Science.gov (United States)

    He, Zhihui; Chen, Yan; Hou, Can; He, Wenfang; Chen, Ping

    2017-07-02

    BACKGROUND Endothelial dysfunction is an important pathophysiologic feature in many smoke-related diseases. Endothelial progenitor cells (EPCs) are the precursors of endothelial cells and play a fundamental role in the maintenance of endothelial integrity and function. Endothelial nitric oxide synthase (eNOS) is the dominant NOS isoform in the vasculature and plays a central role in the maintenance of endothelial homeostasis. p16(INK4a) is a cyclin-dependent kinase inhibitor and could be regarded as a major dominant senescence gene. The present study aimed to determine whether the expression of eNOS and p16(INK4a) in EPCs is related to EPCs function and the possible epigenetic mechanism, if any. MATERIAL AND METHODS We investigated EPCs capacity for proliferation, adhesion, and secretion, and the expression of eNOS and p16(INK4a) in EPCs which were altered by cigarette smoke extract (CSE) in vitro. Furthermore, Decitabine (Dec), an agent of demethylation, was used to examine whether it could alter the changes induced by CSE. RESULTS The present study demonstrated that EPCs altered by CSE in vitro displayed decreased capacities of proliferation, adhesion, and secretion, which was accompanied by decreased eNOS expression and increased p16(INK4a) expression in EPCs. Furthermore, Dec could alleviate the changes in the expression of eNOS and p16(INK4a), and protect against the EPCs dysfunction caused by CSE. CONCLUSIONS The decreased eNOS expression and increased p16(INK4a) expression was associated with dysfunction of EPCs caused by CSE. The mechanism of methylation, one of the most common epigenetic mechanism, may be involved in the EPCs dysfunction caused by CSE.

  8. CORRECTION OF ENDOTHELIAL DYSFUNCTION IN PATIENTS WITH CHRONIC COR PULMONALE BY ANGIOTENSIN II RECEPTORS ANTAGONISTS

    Directory of Open Access Journals (Sweden)

    V. S. Zadionchenko

    2015-12-01

    Full Text Available Aim. To evaluate intensity of endothelial dysfunction, processes of apoptosis, state of central and peripheral hemodynamics and to evaluate how these characteristics are influenced by angiotensin II receptors antagonists (ARA II – candesartan (Atacand and losartan (Cosaar in patients with chronic cor pulmonale (CCP at different stages of disease.Material and methods. 100 patients with chronic obstructive pulmonary disease (COPD, complicated by CCP were included into the study. Caspase activity as apoptosis induction marker, von Willebrand factor, production of nitric oxide in blood plasma and condensate of breathing out air were assessed. 70 patients received ARA II (50 patients – candesartan 4-8 mg daily, 20 patients – losartan 50-100 mg daily, 30 patients received neither ARA II nor angiotensin converting enzyme inhibitors (ACEI.Results. Significant increase in intensity of endothelial dysfunction and activation of apoptosis processes were registered according to growth of CCP severity. After 6 months of therapy von Willebrand factor decreased by 25,2% and 27,7% in candesartan and losartan groups respectively (p<0.01 for both groups. In the control group only 13.2% of von Willebrand factor reduction was seen.Conclusion. ARA II added to common therapy of COPD complicated by CCP improves functional state of endothelium restricting hyperproduction of nitric oxide and its toxic effects and slowing down apoptotic cell death.

  9. CORRECTION OF ENDOTHELIAL DYSFUNCTION IN PATIENTS WITH CHRONIC COR PULMONALE BY ANGIOTENSIN II RECEPTORS ANTAGONISTS

    Directory of Open Access Journals (Sweden)

    V. S. Zadionchenko

    2007-01-01

    Full Text Available Aim. To evaluate intensity of endothelial dysfunction, processes of apoptosis, state of central and peripheral hemodynamics and to evaluate how these characteristics are influenced by angiotensin II receptors antagonists (ARA II – candesartan (Atacand and losartan (Cosaar in patients with chronic cor pulmonale (CCP at different stages of disease.Material and methods. 100 patients with chronic obstructive pulmonary disease (COPD, complicated by CCP were included into the study. Caspase activity as apoptosis induction marker, von Willebrand factor, production of nitric oxide in blood plasma and condensate of breathing out air were assessed. 70 patients received ARA II (50 patients – candesartan 4-8 mg daily, 20 patients – losartan 50-100 mg daily, 30 patients received neither ARA II nor angiotensin converting enzyme inhibitors (ACEI.Results. Significant increase in intensity of endothelial dysfunction and activation of apoptosis processes were registered according to growth of CCP severity. After 6 months of therapy von Willebrand factor decreased by 25,2% and 27,7% in candesartan and losartan groups respectively (p<0.01 for both groups. In the control group only 13.2% of von Willebrand factor reduction was seen.Conclusion. ARA II added to common therapy of COPD complicated by CCP improves functional state of endothelium restricting hyperproduction of nitric oxide and its toxic effects and slowing down apoptotic cell death.

  10. [The correction of the endothelial dysfunction by the experimental biliary peritonitis].

    Science.gov (United States)

    Sergienko, V I; Petrosian, É A; Tereshchenko, O A; Botashev, A A; Pomeshchik, Iu V; Khasaeva, M A; Gubaz, S G

    2012-01-01

    The purpose of the study is to increase the effectiveness of treatment of biliary peritonitis. The studies strongly suggest that in the early stages of the animals biliary peritonitis development against the background of endogenous intoxication in the body occur metabolic and functional disorders. The reason of this disorders is endothelial dysfunction with the violation of synthesis of such biologically active substances as endothelin-1, NO, von Willebrand factor and cytokines in the blood plasma. All of this leads to a change of the number of desquamated endotheliocytes and lymphocyte-platelet adhesion. The detected violation of the studied endothelial dysfunction markers production in choleperitonitis can be regarded as a new direction in improving the diagnosis of biliary peritonitis. The omni directional end-effects of the used methods of treatment to the endothelium functional state, which were identified in comparative analysis in the most cases, suggest that pathogenetic flow paths of biliary peritonitis in the studied groups are different and require further detailed study.

  11. Coffee bean polyphenols ameliorate postprandial endothelial dysfunction in healthy male adults.

    Science.gov (United States)

    Ochiai, Ryuji; Sugiura, Yoko; Otsuka, Kazuhiro; Katsuragi, Yoshihisa; Hashiguchi, Teruto

    2015-05-01

    To reveal the effect of coffee bean polyphenols (CBPs) on blood vessels, this study aimed to investigate the effect of CBPs on acute postprandial endothelial dysfunction. Thirteen healthy non-diabetic men (mean age, 44.9 ± 1.4 years) consumed a test beverage (active: containing CBPs, placebo: no CBPs) before a 554-kcal test meal containing 14 g of protein, 30 g of fat and 58 g of carbohydrates. Then, a crossover analysis was performed to investigate the time-dependent changes in flow-mediated dilation (FMD) in the brachial artery. In the active group, the postprandial impairment of FMD was significantly improved, the two-hour postprandial nitric oxide metabolite levels were significantly increased and the six-hour postprandial urinary 8-epi-prostaglandin F2α levels were significantly reduced compared to the placebo group. The test meal increased the levels of blood glucose, insulin and triglycerides in both groups with no significant intergroup differences. These findings indicate that CBPs intake ameliorates postprandial endothelial dysfunction in healthy men.

  12. Effect of cholesterol lowering treatment on plasma markers of endothelial dysfunction in chronic kidney disease.

    Science.gov (United States)

    Zinellu, Angelo; Sotgia, Salvatore; Mangoni, Arduino A; Sotgiu, Elisabetta; Ena, Sara; Satta, Andrea E; Carru, Ciriaco

    2016-09-10

    The elevated cardiovascular morbidity and mortality in chronic kidney disease (CKD) is linked with endothelial dysfunction secondary to the pro-inflammatory and pro-oxidative state typical of this pathology. In consideration of the well-known pleiotropic effect of statins, we investigated the effect of cholesterol lowering treatment on endothelial dysfunction markers (MED), asymmetric dimethylarginine (ADMA), vascular cell (VCAM) and intercellular (ICAM) adhesion molecule. Plasma MED concentrations, inflammation and oxidative stress indices [Kynurenine/Tryptophan (Kyn/Trp) ratio, malondialdehyde (MDA) and allantoin/uric acid (All/UA) ratio] were measured in 30 CKD patients randomized to three cholesterol lowering regimens for 12 months (simvastatin 40mg/day, ezetimibe/simvastatin 10/20mg/day, or ezetimibe/simvastatin 10/40mg/day). Treatment significantly reduced ADMA concentrations in all patients [0.694μmol/L (0.606-0.761) at baseline vs. 0.622μmol/L (0.563-0.681) after treatment, p<0.001]. ADMA reduction was paralleled by a significant decrease of MDA, All/AU ratio and Kyn/Trp ratio, but not VCAM and ICAM plasma concentrations. Cholesterol lowering treatment was associated with a significant reduction in plasma ADMA concentrations in CKD patients. This might be mediated by reduced oxidative stress and inflammation.

  13. Effect of AST-120 on Endothelial Dysfunction in Adenine-Induced Uremic Rats

    Directory of Open Access Journals (Sweden)

    Yuko Inami

    2014-01-01

    Full Text Available Aim. Chronic kidney disease (CKD represents endothelial dysfunction. Monocyte adhesion is recognized as the initial step of arteriosclerosis. Indoxyl sulfate (IS is considered to be a risk factor for arteriosclerosis in CKD. Oral adsorbent AST-120 retards deterioration of renal function, reducing accumulation of IS. In the present study, we determined the monocyte adhesion in the adenine-induced uremic rats in vivo and effects of AST-120 on the adhesion molecules. Methods. Twenty-four rats were divided into control, control+AST-120, adenine, and adenine+AST-120 groups. The number of monocytes adherent to the endothelium of thoracic aorta by imaging the entire endothelial surface and the mRNA expressions of adhesion and atherosclerosis-related molecules were examined on day 49. The mRNA expressions of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells were also examined. Results. Adenine increased the number of adherent monocytes, and AST-120 suppressed the increase. The monocyte adhesion was related to serum creatinine and IS in sera. Overexpression of VCAM-1 and TGF-β1 mRNA in the arterial walls was observed in uremic rats. IS induced increase of the ICAM-1 and VCAM-1 mRNA expressions in vitro. Conclusion. It appears that uremic condition introduces the monocyte adhesion to arterial wall and AST-120 might inhibit increasing of the monocyte adherence with CKD progression.

  14. Two weeks taurine supplementation reverses endothelial dysfunction in young male type 1 diabetics.

    LENUS (Irish Health Repository)

    Moloney, Michael A

    2010-10-01

    Type 1 diabetics have a well-recognised risk of accelerated cardiovascular disease. Even in the absence of clinical signs there are detectable abnormalities of conduit vessel function. Our group has previously reported reversal of endothelial dysfunction in diabetics with pravastatin. In young asymptomatic smokers, taurine supplementation has a beneficial impact on macrovascular function, assessed by FMD, and shows an up-regulation of nitric oxide from monocyte-endothelial cell interactions. We hypothesise that taurine supplementation reverses early endothelial abnormalities in young male type 1 diabetics, as assessed by applanation tonometry, brachial artery ultrasound and laser Doppler fluximetry. Asymptomatic, male diabetics (n=9) were scanned prior to treatment and then randomised in a double-blind cross-over fashion to receive either 2 weeks placebo or taurine. Control patients (n=10) underwent a baseline scan. Assessed diabetics had detectable, statistically significant abnormalities when compared with controls, in both arterial stiffness (augmentation index) and brachial artery reactivity (FMD). Both of these parameters were returned to control levels with 2 weeks taurine supplementation. In conclusion, 2 weeks taurine supplementation reverses early, detectable conduit vessel abnormalities in young male diabetics. This may have important implications in the long-term treatment of diabetic patients and their subsequent progression towards atherosclerotic disease.

  15. A Fermented Whole Grain Prevents Lipopolysaccharides-Induced Dysfunction in Human Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Laura Giusti

    2017-01-01

    Full Text Available Endogenous and exogenous signals derived by the gut microbiota such as lipopolysaccharides (LPS orchestrate inflammatory responses contributing to development of the endothelial dysfunction associated with atherosclerosis in obesity, metabolic syndrome, and diabetes. Endothelial progenitor cells (EPCs, bone marrow derived stem cells, promote recovery of damaged endothelium playing a pivotal role in cardiovascular repair. Since healthy nutrition improves EPCs functions, we evaluated the effect of a fermented grain, Lisosan G (LG, on early EPCs exposed to LPS. The potential protective effect of LG against LPS-induced alterations was evaluated as cell viability, adhesiveness, ROS production, gene expression, and NF-kB signaling pathway activation. Our results showed that LPS treatment did not affect EPCs viability and adhesiveness but induced endothelial alterations via activation of NF-kB signaling. LG protects EPCs from inflammation as well as from LPS-induced oxidative and endoplasmic reticulum (ER stress reducing ROS levels, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defense. Moreover, LG pretreatment prevented NF-kB translocation from the cytoplasm into the nucleus caused by LPS exposure. In human EPCs, LPS increases ROS and upregulates proinflammatory tone, proapoptotic factors, and antioxidants. LG protects EPCs exposed to LPS reducing ROS, downregulating proinflammatory and proapoptotic factors, and strengthening antioxidant defenses possibly by inhibiting NF-κB nuclear translocation.

  16. Endothelial dysfunction state in migraine headache and neutrally mediated syncope in children and young adults

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Sabri

    2015-01-01

    Full Text Available Background: Recent evidences have supported migraine headache and neurally mediated syncope as the especial types of endotheliopathies. To determine endothelial function in patients with migraine headache or those with neurally mediated syncope, the present study was conducted. Materials and Methods: This cross-sectional study was performed on 93 consecutive patients aged 5-20 years in four groups; neurally mediated syncope, migraine, both neurally mediated syncope and migraine, and control groups. All subjects were tested for basic biophysical and biochemical features including age, gender, body mass index, systolic, and diastolic blood pressures, intima-media thickness (IMT and flow-mediated dilation (FMD , blood hemoglobin, fasting blood glucose, lipid profile, intercellular adhesion molecule (ICAM, vascular cell adhesion molecule (VCAM, and E-selectin. Results: The mean levels of VCAM and ICAM were significantly higher in all groups when compared to control group (P < 0.05. FMD was significantly higher in syncope, migraine, and syncope and migraine groups than in the control group (P < 0.05. Furthermore, mean IMT was significantly lower in migraine and also in syncope and migraine groups than in syncope group and control group (P < 0.05. Examining the association between IMT and other baseline parameters showed positive association of IMT with systolic and diastolic blood pressures. Conclusion: Endothelial dysfunction is seen in both migraine headache and neurally mediated syncope. Changes in endothelial functional indices are also dependent on the blood pressure.

  17. Oleanolic acid ameliorates high glucose-induced endothelial dysfunction via PPARδ activation

    Science.gov (United States)

    Zhang, Zihui; Jiang, Manli; Xie, Xinya; Yang, Haixia; Wang, Xinfeng; Xiao, Lei; Wang, Nanping

    2017-01-01

    Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid, OA) is a pentacyclic triterpenes widely distributed in food, medicinal plants and nutritional supplements. OA exhibits various pharmacological properties, such as hepatoprotective and anti-tumor effects. In this study, we analyzed the effect of OA on endothelial dysfunction induced by high glucose in human vascular endothelial cells (ECs). Western blotting showed that OA attenuated high glucose-reduced nitric production oxide (NO) as well as Akt-Ser473 and eNOS-Ser1177 phosphorylation in cultured human umbilical vein ECs (HUVECs). Next, luciferase reporter assay showed that OA activated peroxisome proliferators-activated receptor δ (PPARδ) activity. Quantitative reverse transcriptase PCR (qRT-PCR) demonstrated that OA increased the expressions of PPARδ target genes (PDK4, ADRP and ANGPTL4) in ECs. Meanwhile, the induced expressions of PDK4, ADRP and ANGPTL4 by OA were inhibited by GSK0660, a specific antagonist of PPARδ. In addition, inhibition of PPARδ abolished OA-induced the Akt-Ser473 and eNOS-Ser1177 phosphorylation, and NO production. Finally, by using Multi Myograph System, we showed that OA prevented high glucose-impaired vasodilation. This protective effect on vasodilation was inhibited in aortic rings pretreated with GSK0660. Collectively, we demonstrated that OA improved high glucose-impaired endothelial function via a PPARδ-mediated mechanism and through eNOS/Akt/NO pathway. PMID:28067284

  18. Hemin, a heme oxygenase-1 inducer, improves aortic endothelial dysfunction in insulin resistant rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Under an insulin resistance(IR)state,overproduction of reactive oxygen species(ROS)may be playing a maior role in the pathogenesis of endothelial dysfunction,hypertension and atherosclerosis.Recently,increasing attention has been drawn to the beneficial effects of heme oxygenase-1(HO-1)in the cardiovascular system.This study aimed to investigate the effects of HO-1 on vascular function of thoracic aorta in IR rats and demonstrate the probable mechanisms of HO-1 against endothelial dysfunction in IR states.Methods Sprague-Dawley (SD) rats fed with high-fat diet for 6 weeks and the IR models were validated with hyperinsulinemic-euglycemic clamp test.Then the IR rat models (n=44) were further randomized into 3 subgroups,namely,the IR control group (n=26, in which 12 were sacrificed immediately and evaluated for all study measures),a hemin treated IR group (n=10) and a zinc protoporphyrin-Ⅸ (ZnPP-Ⅸ)treated IR group (n=8) that were fed with a high-fat diet.Rats with standardized chow diet were used as the normal control group (n=12). The rats in IR control group,hemin treated IR group and ZnPP-Ⅸ treated IR group were subsequently treated every other day with an intraperitoneal injection of normal saline,hemin (inducer of HO-1,30 μmol/kg) or ZnPP-Ⅸ (inhibitor of HO-1,10 μmol/kg) for 4 weeks.Rats in the normal control group remained on a standardized chow diet and were treated with intraperitoneal injections of normal saline every other day for 4 weeks.Systolic arterial blood pressure (SABP) was measured by tall-cuffed microphotoelectric plethysmography.The blood carbon monoxide (CO) was measured by blood gas analysis. The levels of nitric oxide (NO),inducible nitric oxide synthase (INOS),endothelial nitric oxide synthase (eNOS),blood glucose (BG),insulin,total cholesterol (TC) and triglyceride (TG) in serum,and the levels of total antioxidant capacity (rAOC),maIondialdehyde (MDA) and superoxide dismutase (SOD) in the aorta were measured

  19. Intake of heat-expanded amaranth grain reverses endothelial dysfunction in hypercholesterolemic rabbits.

    Science.gov (United States)

    Caselato-Sousa, Valeria Maria; Ozaki, Michiko Regina; de Almeida, Eros Antonio; Amaya-Farfan, Jaime

    2014-12-01

    This study reports the new functional property of amaranth grain against diet-induced endothelial dysfunction in rabbits. Twenty-seven New Zealand rabbits were fed either a standard diet (SD/G1) or a hypercholesterolemic diet (Hichol) for 28 days. On day 29, the Hichol group was subdivided into four groups and begun receiving the following diets for 21 days: G2: SD + amaranth, G3: Hichol + amaranth, G4: SD alone, and G5: Hichol alone, while G1 continued to receive SD for 21 days. Amaranth intake restored endothelial function (G2, G3) to nearly normal during the 21-day recovery besides substantially lowering total and LDL blood cholesterol levels. This effect was not seen by simply correcting the diet (G4). Upon continuance of Hichol, however, amaranth supplementation did show some contribution to the cholesterol-lowering effect (G4 vs. G3). On day 49, feeding Hichol without the help of amaranth, harm was further magnified by lowering HDL-cholesterol (G5). Fecal cholesterol was found increased in groups that ingested amaranth (G2, G3), but no significant impact from either supplementation or diet reversal was found in fecal bile acids. Amaranth supplementation granted some protection against tissue cholesterol (G5) and tissue peroxidation (G3). It is concluded that even in concurrence with a hypercholesterolemic diet, intake of heat-expanded amaranth can revert an associated endothelial dysfunction besides incrementing fecal cholesterol excretion and lowering blood and tissue cholesterol oxidation in dyslipidemic rabbits. These results supported the notion of a lipid peroxidation process occurring with high cholesterol intakes.

  20. Aldolase B knockdown prevents high glucose-induced methylglyoxal overproduction and cellular dysfunction in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Jianghai Liu

    Full Text Available We used cultured endothelial cells as a model to examine whether up-regulation of aldolase B and enhanced methylglyoxal (MG formation play an important role in high glucose-induced overproduction of advanced glycosylation endproducts (AGEs, oxidative stress and cellular dysfunction. High glucose (25 mM incubation up-regulated mRNA levels of aldose reductase (an enzyme converting glucose to fructose and aldolase B (a key enzyme that catalyzes MG formation from fructose and enhanced MG formation in human umbilical vein endothelial cells (HUVECs and HUVEC-derived EA. hy926 cells. High glucose-increased MG production in EA. hy926 cells was completely prevented by siRNA knockdown of aldolase B, but unaffected by siRNA knockdown of aldolase A, an enzyme responsible for MG formation during glycolysis. In addition, inhibition of cytochrome P450 2E1 or semicarbazide-sensitive amine oxidase which produces MG during the metabolism of lipid and proteins, respectively, did not alter MG production. Both high glucose (25 mM and MG (30, 100 µM increased the formation of N(ε-carboxyethyl-lysine (CEL, a MG-induced AGE, oxidative stress (determined by the generation of oxidized DCF, H(2O(2, protein carbonyls and 8-oxo-dG, O-GlcNAc modification (product of the hexosamine pathway, membrane protein kinase C activity and nuclear translocation of NF-κB in EA. hy926 cells. However, the above metabolic and signaling alterations induced by high glucose were completely prevented by knockdown of aldolase B and partially by application of aminoguanidine (a MG scavenger or alagebrium (an AGEs breaker. In conclusion, efficient inhibition of aldolase B can prevent high glucose-induced overproduction of MG and related cellular dysfunction in endothelial cells.

  1. Endothelial dysfunction and cardiorenal injury in experimental salt-sensitive hypertension: effects of antihypertensive therapy.

    Science.gov (United States)

    Hayakawa, H; Coffee, K; Raij, L

    1997-10-07

    Pharmacological control of hypertension has contributed to a significant decrease in cardiovascular morbidity and mortality, although the beneficial effect on cardiac and renal diseases has been far more modest than the reduction in stroke. The endothelium plays a crucial homeostatic role in the regulation of vascular tone thrombogenesis and vascular remodeling. We studied the relationship between endothelial dysfunction and cardiorenal injury in hypertensive rats and evaluated the effects of two classes of antihypertensive agents commonly used in the clinical setting, a diuretic (DIU) and an ACE inhibitor (CEI). Dahl salt-sensitive rats (DS) given high dietary salt (4% NaCl) developed hypertension (systolic blood pressure [SBP], 218+/-9 versus 147+/-3 mm Hg in DS given 0.5% NaCl; PDIU indapamide (1.44 mg x kg(-1) x d(-1)) normalized SBP (151+/-2 mm Hg; PDIU reduced SBP (175+/-3 mm Hg; P<.05) and normalized EDR and left ventricular hypertrophy but did not provide effective renal protection. In hypertensive DS, impaired EDR and left ventricular hypertrophy were positively correlated with SBP. In addition, we found a significant correlation between cardiac hypertrophy and endothelial dysfunction. Indeed, a hierarchical regression analysis revealed that impaired aortic EDR, and therefore decreased aortic compliance, positively contributed to left ventricular hypertrophy in addition to but independently of SBP [F(2,37)=6.29; P=.004]. These studies suggest a dissociation of the endothelial, cardiac, and renal effects of antihypertensive therapy in hypertension and may explain the variable success of antihypertensive regimens in treating hypertension while preventing cardiac and renal damage.

  2. Euterpe oleracea Mart. extract prevents vascular remodeling and endothelial dysfunction in spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Viviane Silva Cristino Cordeiro

    2015-06-01

    Full Text Available Summary. We assessed the effects of Euterpe oleracea Mart. (açaí seed extract (ASE rich in proanthocyanidins and catechin on vascular dysfunction and oxidative stress associated with hypertension in spontaneously hypertensive rats (SHR. SHR and control rats were treated with ASE (200 mg/kg/day or vehicle for 10 weeks. In the rat mesenteric arterial bed (MAB, acetylcholine response, endothelial nitric oxide synthase (eNOS and superoxide dismutase 1 (SOD 1 expressions were studied. The antioxidant enzyme activity, oxidative damage and nitrite quantification were assessed in MAB and heart homogenates. eNOS immunohistochemistry and histological analysis was carried out on aortic sections. ASE was able to attenuate the hypertension and prevent the endothelial dysfunction in MAB of SHR. The increased levels of protein carbonylation and associated low levels of nitrite in MAB and heart of SHR were attenuated by ASE. The up-regulation of eNOS and SOD1 expression and the increased activity of SOD in MAB from SHR were normalized by ASE. In aorta from SHR, ASE prevented the increase in media thickness, media:lumen ratio and the decrease in the percentage of elastic fibers. Our results suggest that ASE produces antihypertensive effect and prevents the vascular dysfunction in SHR, through mechanisms involving antioxidant effects and NO production. Industrial relevance. Euterpe oleracea Mart. (Açaí has been considered one of the most important medicinal plants of the Amazon by its beneficial effects in the treatment of fever, pain, inflammation and anemia. More recently, Euterpe oleracea Mart. has been reported to reduce blood pressure with an important antioxidant property. The present research reports the protective effect of the extract of the seeds from Euterpe oleraca Mart. against high blood pressure and the associated vascular structural and functional changes. The test for antihypertensive and vascular anti-hypertrophic effect of the hydro

  3. Leptin promotes endothelial dysfunction in chronic kidney disease through AKT/GSK3β and β-catenin signals.

    Science.gov (United States)

    Ding, Nannan; Liu, Bing; Song, Jiaguang; Bao, Shougang; Zhen, Junhui; Lv, Zhimei; Wang, Rong

    2016-11-25

    Endothelial dysfunction (ED) is a well-recognized instigator of cardiovascular diseases and develops in chronic kidney disease (CKD) with high rate. Recent studies have implicated that leptin is associated with endothelial dysfunction. We investigated the relationship between leptin and markers of ED in CKD patients and how leptin contributed to endothelial damage. 140 CKD patients and 140 healthy subjects were studied. Serum leptin levels were significantly higher in CKD than in controls and displayed significantly positive association with the increase levels of sICAM-1 and sVCAM-1 but negative correlation with flow-mediated dilatation (FMD) reduction in patients. Our in vitro study demonstrated that leptin induced overexpression of ICAM-1 and VCAM-1, led to f-actin reorganization and vinculin assembly, increased endothelial monolayer permeability for FITC-dextran, and accelerated endothelial cell migration; these changes were markedly reversed when the cells were transfected with AKT or β-catenin shRNA vectors. Notably, high leptin resulted in hyper-phosphorylation of AKT and GSK3β, along with nuclear accumulation of β-catenin. In conclusion, serum leptin was elevated in CKD patients and it might contribute to endothelial dysfunction by disarrangement of f-actin cytoskeleton via a mechanism involving the AKT/GSK3β and β-catenin pathway.

  4. Protective effects of exercise training on endothelial dysfunction induced by total sleep deprivation in healthy subjects.

    Science.gov (United States)

    Sauvet, Fabien; Arnal, Pierrick J; Tardo-Dino, Pierre Emmanuel; Drogou, Catherine; Van Beers, Pascal; Bougard, Clément; Rabat, Arnaud; Dispersyn, Garance; Malgoyre, Alexandra; Leger, Damien; Gomez-Merino, Danielle; Chennaoui, Mounir

    2017-04-01

    Sleep loss is a risk factor for cardiovascular events mediated through endothelial dysfunction. To determine if 7weeks of exercise training can limit cardiovascular dysfunction induced by total sleep deprivation (TSD) in healthy young men. 16 subjects were examined during 40-h TSD, both before and after 7weeks of interval exercise training. Vasodilatation induced by ACh, insulin and heat (42°C) and pulse wave velocity (PWV), blood pressure and heart rate (HR) were assessed before TSD (controlday), during TSD, and after one night of sleep recovery. Biomarkers of endothelial activation, inflammation, and hormones were measured from morning blood samples. Before training, ACh-, insulin- and heat-induced vasodilatations were significantly decreased during TSD and recovery as compared with the control day, with no difference after training. Training prevented the decrease of ACh-induced vasodilation related to TSD after sleep recovery, as well as the PWV increase after TSD. A global lowering effect of training was found on HR values during TSD, but not on blood pressure. Training induces the decrease of TNF-α concentration after TSD and prevents the increase of MCP-1 after sleep recovery. Before training, IL-6 concentrations increased. Cortisol and testosterone decreased after TSD as compared with the control day, while insulin and E-selectin increased after sleep recovery. No effect of TSD or training was found on CRP and sICAM-1. In healthy young men, a moderate to high-intensity interval training is effective at improving aerobic fitness and limiting vascular dysfunction induced by TSD, possibly through pro-inflammatory cytokine responses.(ClinicalTrial:NCT02820649). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Carotid artery stiffness, digital endothelial function, and coronary calcium in patients with essential thrombocytosis, free of overt atherosclerotic disease

    Directory of Open Access Journals (Sweden)

    Vrtovec Matjaz

    2017-05-01

    Full Text Available Patients with myeloproliferative neoplasms (MPNs are at increased risk for atherothrombotic events. Our aim was to determine if patients with essential thrombocytosis (ET, a subtype of MPNs, free of symptomatic atherosclerosis, have greater carotid artery stiffness, worse endothelial function, greater coronary calcium and carotid plaque burden than control subjects.

  6. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Peter E Westerweel

    Full Text Available BACKGROUND: Circulating Endothelial Progenitor Cell (EPC levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment. METHODS: Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+Flk-1(+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+ hematopoietic progenitor cells (HPC and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. RESULTS: In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. CONCLUSION: EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  7. Impaired Endothelial Progenitor Cell Mobilization and Dysfunctional Bone Marrow Stroma in Diabetes Mellitus

    Science.gov (United States)

    Rafii, Shahin; Jaspers, Janneke E.; White, Ian A.; Hooper, Andrea T.; Doevendans, Pieter A.; Verhaar, Marianne C.

    2013-01-01

    Background Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired –at least partly– due to dysfunction of the bone marrow stromal compartment. Methods Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1+Flk-1+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34+ hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell–endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. Results In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. Conclusion EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients. PMID:23555959

  8. Possible vasculoprotective role of linagliptin against sodium arsenite-induced vascular endothelial dysfunction.

    Science.gov (United States)

    Jyoti, Uma; Kansal, Sunil Kumar; Kumar, Puneet; Goyal, Sandeep

    2016-02-01

    Vascular endothelial dysfunction (VED) interrupts the integrity and function of endothelial lining through enhanced markers of oxidative stress and decrease endothelial nitric oxide synthase (eNOS) expression. The main aim of the present study has been designed to investigate the possible vasculoprotective role of linagliptin against sodium arsenite-induced VED. Sodium arsenite (1.5 mg/kg, i.p., 2 weeks) abrogated the acetylcholine-induced, endothelium-dependent vasorelaxation by depicting the decrease in serum nitrite/nitrate concentration, reduced glutathione level, and simultaneously enhance the thiobarbituric acid reactive substances (TBARS) level, superoxide level, and tumor necrosis factor-alpha. These elevated markers interrupt the integrity of endothelial lining of thoracic aorta which was assessed histologically. The study elicits dose dependent effect of linagliptin (1.5 mg/kg, i.p. and 3 mg/kg, i.p.) or atorvastatin (30 mg/kg, p.o.) treatment, improved the endothelium-dependent independent relaxation, improve the integrity of endothelium lining which was assessed histologically by enhancing the serum nitrite/nitrate level, reduced glutathione level and simultaneously decreasing the TBARS level, superoxide anion level and tumor necrosis factor-alpha (TNF-α) level. L-NAME (25 mg/kg, i.p.), eNOS inhibitor, abrogated the ameliorative potential of linagliptin. However, the ameliorative potential of linagliptin has been enhanced by l-arginine (200 mg/kg, i.p.) which elicits that ameliorative potential of linagliptin was through eNOS signaling cascade and it may be concluded that linagliptin 3 mg/kg, i.p. has more significantly activated the eNOS and decreased the oxidative markers than linagliptin 1.5 mg/kg, i.p. and prevented sodium arsenite-induced VED.

  9. Angiostatic factors in the pulmonary endarterectomy material from chronic thromboembolic pulmonary hypertension patients cause endothelial dysfunction.

    Directory of Open Access Journals (Sweden)

    Diana Zabini

    Full Text Available Chronic thromboembolic pulmonary hypertension (CTEPH is a rare disease with persistent thrombotic occlusion or stenosis of the large pulmonary arteries resulting in pulmonary hypertension. Surgical removal of the neointimal layer of these vessels together with the non-resolved thrombus consisting of organized collagen-rich fibrotic areas with partly recanalized regions is the treatment of choice (pulmonary endarterectomy, PEA. The present study investigates endothelial cells isolated from such material as well as factors present in the surgical PEA material, which may contribute to impairment of recanalization and thrombus non-resolution. We observed muscularized vessels and non-muscularized vessels in the PEA material. The isolated endothelial cells from the PEA material showed significantly different calcium homeostasis as compared to pulmonary artery endothelial cells (hPAECs from normal controls. In the supernatant (ELISA as well as on the tissue level (histochemical staining of the PEA material, platelet factor 4 (PF4, collagen type I and interferon-gamma-inducible 10 kD protein (IP-10 were detected. CXCR3, the receptor for PF4 and IP-10, was particularly elevated in the distal parts of the PEA material as compared to human control lung (RT-PCR. PF4, collagen type I and IP-10 caused significant changes in calcium homeostasis and affected the cell proliferation, migration and vessel formation in hPAECs. The presence of angiostatic factors like PF4, collagen type I and IP-10, as recovered from the surgical PEA material from CTEPH patients, may lead to changes in calcium homeostasis and endothelial dysfunction.

  10. Caveolin1/protein arginine methyltransferase1/sirtuin1 axis as a potential target against endothelial dysfunction.

    Science.gov (United States)

    Charles, Soniya; Raj, Vijay; Arokiaraj, Jesu; Mala, Kanchana

    2017-01-23

    Endothelial dysfunction (ED), an established response to cardiovascular risk factors, is characterized by increased levels of soluble molecules secreted by endothelial cells (EC). Evidence suggest that ED is an independent predictor of cardiac events and that it is associated with a deficiency in production or bioavailability of nitric oxide (NO) and/or an imbalance in the relative contribution of endothelium-derived relaxing and contracting factors. ED can be reversed by treating cardiovascular risk factors, hence, beyond ambiguity, ED contributes to initiation and progression of atherosclerotic disease. Majority of cardiovascular risk factors act by a common pathway, oxidative stress (OS), characterized by an imbalance in bioavailability of NO and reactive oxygen species (ROS). Enhanced ROS, through several mechanisms, alters competence of EC that leads to ED, reducing its potential to maintain homeostasis and resulting in development of cardiovascular disease (CVD). Influential mechanisms that have been implicated in the development of ED include (i) presence of elevated levels of NOS inhibitor, asymmetric dimethylarginine (ADMA) due to augmented enzyme activity of protein arginine methyl transferase-1 (PRMT1); (ii) decrease in NO generation by endothelial nitric oxide synthase (eNOS) uncoupling, or by reaction of NO with free radicals and (iii) impaired post translational modification of protein (PTM) such as eNOS, caveolin-1 (cav1) and sirtuin-1 (SIRT1). However, the inter-related mechanisms that concur to developing ED is yet to be understood. The events that possibly overlay include OS-induced sequestration of SIRT1 to caveolae facilitating cav1-SIRT1 association; potential increase in lysine acetylation of enzymes such as eNOS and PRMT1 leading to enhanced ADMA formation; imbalance in acetylation-methylation ratio (AMR); diminished NO generation and ED. Here we review current literature from research showing interdependent association between cav1-PRMT1

  11. Circulating microparticles from Crohn's disease patients cause endothelial and vascular dysfunctions.

    Directory of Open Access Journals (Sweden)

    Daniela Leonetti

    Full Text Available BACKGROUND: Microparticles (MPs are small vesicles released during cell activation or apoptosis. They are involved in coagulation, inflammation and vascular dysfunction in several diseases. We characterized circulating MPs from Crohn's Disease (CD patients and evaluated their effects on endothelial function and vascular reactivity after in vivo injection into mice. METHODS: Circulating MPs and their cellular origins were examined by flow cytometry from blood samples from healthy subjects (HS and inactive or active CD patients. MPs were intravenously injected into mice. After 24 hours, endothelial function and vascular reactivity were assessed. RESULTS: Circulating MP levels did not differ between HS and inactive CD patients except for an increase in leukocyte-derived MPs in CD. Active CD patients compared to HS displayed increased total circulating MPs, pro-coagulant MPs and those from platelets, endothelium, erythrocytes, leukocytes, activated leukocytes and activated platelets. A significant correlation was found between total levels of MPs, those from platelets and endothelial cells, and the Harvey-Bradshaw clinical activity index. MPs from CD, but not from HS, impaired endothelium-dependent relaxation in mice aorta and flow-induced dilation in mice small mesenteric arteries, MPs from inactive CD patients being more effective than those from active patients. CDMPs induced vascular hypo-reactivity in aorta that was prevented by a nitric oxide (NO-synthase inhibitor, and was associated with a subtle alteration of the balance between NO, reactive oxygen species and the release of COX metabolites. CONCLUSIONS: We provide evidence that MPs from CD patients significantly alter endothelial and vascular function and therefore, may play a role in CD pathophysiology, at least by contributing to uncontrolled vascular-dependent intestinal damage.

  12. 786T/c endothelial nitric oxide synthase gene polymorphism and coronary collateral circulation

    Directory of Open Access Journals (Sweden)

    Satilmis Seckin

    2016-02-01

    Full Text Available Introduction: In this study, we investigated the association between -786T/C polymorphism of the endothelial nitric oxide (NOS3 gene in which thymidine is replaced by a cytosine at nucleotide -786 (rs 2070744 and coronary collateral circulation (CCC in patients with stable coronary artery disease. Materials and Methods: 286 patients having a critical stenosis (> 95% in at least one major epicardial coronary vessel were included in the study. CCC was defined according to the Rentrop classification (R. Patients with R0-1 CCC were included in the poor CCC group and subjects with R2-3 CCC were assigned to the good CCC group. The polymerase chain reaction method was used for genotyping. 152 patients with poor CCC and 134 patients with good CCC were examined.Results: The frequency of cytosine-cytosine (CC and thymidine-cytosine (TC genotypes and allele C were higher in the poor CCC group, but the difference did not reach statistical significance. In the dominant model, the frequency of CC+TC vs. thymidine-thymidine (TT genotypes was significantly higher in the poor CCC group (67.1% vs. 54.5%, respectively; χ2=4.78; p=0.02. In multivariate regression analysis, the dominant model for -786T/C polymorphism of the NOS3 gene remained as an independent correlate of poor CCC.Discussion: -786T/C polymorphism of the NOS3 gene (rs 2070744 may be associated with poor angiogenesis and the development of CCC in stable coronary artery disease.

  13. Nicorandil prevents endothelial dysfunction due to antioxidative effects via normalisation of NADPH oxidase and nitric oxide synthase in streptozotocin diabetic rats

    Directory of Open Access Journals (Sweden)

    Serizawa Ken-ichi

    2011-11-01

    Full Text Available Abstract Background Nicorandil, an anti-angina agent, reportedly improves outcomes even in angina patients with diabetes. However, the precise mechanism underlying the beneficial effect of nicorandil on diabetic patients has not been examined. We investigated the protective effect of nicorandil on endothelial function in diabetic rats because endothelial dysfunction is a major risk factor for cardiovascular disease in diabetes. Methods Male Sprague-Dawley rats (6 weeks old were intraperitoneally injected with streptozotocin (STZ, 40 mg/kg, once a day for 3 days to induce diabetes. Nicorandil (15 mg/kg/day and tempol (20 mg/kg/day, superoxide dismutase mimetic were administered in drinking water for one week, starting 3 weeks after STZ injection. Endothelial function was evaluated by measuring flow-mediated dilation (FMD in the femoral arteries of anaesthetised rats. Cultured human coronary artery endothelial cells (HCAECs were treated with high glucose (35.6 mM, 24 h and reactive oxygen species (ROS production with or without L-NAME (300 μM, apocynin (100 μM or nicorandil (100 μM was measured using fluorescent probes. Results Endothelial function as evaluated by FMD was significantly reduced in diabetic as compared with normal rats (diabetes, 9.7 ± 1.4%; normal, 19.5 ± 1.7%; n = 6-7. There was a 2.4-fold increase in p47phox expression, a subunit of NADPH oxidase, and a 1.8-fold increase in total eNOS expression in diabetic rat femoral arteries. Nicorandil and tempol significantly improved FMD in diabetic rats (nicorandil, 17.7 ± 2.6%; tempol, 13.3 ± 1.4%; n = 6. Nicorandil significantly inhibited the increased expressions of p47phox and total eNOS in diabetic rat femoral arteries. Furthermore, nicorandil significantly inhibited the decreased expression of GTP cyclohydrolase I and the decreased dimer/monomer ratio of eNOS. ROS production in HCAECs was increased by high-glucose treatment, which was prevented by L-NAME and nicorandil

  14. Endothelial Injury Associated with Cold or Warm Blood Cardioplegia during Coronary Artery Bypass Graft Surgery

    Directory of Open Access Journals (Sweden)

    Elmar W. Kuhn

    2015-01-01

    Full Text Available The aim of this investigation was to analyze the impact of intermittent cold blood cardioplegia (ICC and intermittent warm blood cardioplegia (IWC on endothelial injury in patients referred to elective on-pump coronary artery bypass graft (CABG surgery. Patients undergoing CABG procedures were randomized to either ICC or IWC. Myocardial injury was assessed by CK-MB and cardiac troponin T (cTnT. Endothelial injury was quantified by circulating endothelial cells (CECs, von Willebrand factor (vWF, and soluble thrombomodulin (sTM. Perioperative myocardial injury (PMI and major adverse cardiac events (MACE were recorded. Demographic data and preoperative risk profile of included patients (ICC: n=32, IWC: n=36 were comparable. No deaths, PMI, or MACE were observed. Levels of CK-MB and cTnT did not show intergroup differences. Concentrations of CECs peaked at 6 h postoperatively with significantly higher values for IWC-patients at 1 h (ICC: 10.1 ± 3.9/mL; IWC: 18.4 ± 4.1/mL; P=0.012 and 6 h (ICC: 19.3 ± 6.2/mL; IWC: 29.2 ± 6.7/mL; P<0.001. Concentrations of vWF (ICC: 178.4 ± 73.2 U/dL; IWC: 258.2 ± 89.7 U/dL; P<0.001 and sTM (ICC: 3.2 ± 2.1 ng/mL; IWC: 5.2 ± 2.4 ng/mL; P=0.011 were significantly elevated in IWC-group at 1 h postoperatively. This study shows that the use of IWC is associated with a higher extent of endothelial injury compared to ICC without differences in clinical endpoints.

  15. Impact of diabetes and diastolic dysfunction on exercise capacity in normotensive patients without coronary artery disease.

    Science.gov (United States)

    Gürdal, Ahmet; Kasikcioglu, Erdem; Yakal, Sertac; Bugra, Zehra

    2015-05-01

    The aim of this study was to determine the impact of diabetes and diastolic dysfunction on exercise capacity in asymptomatic, normotensive patients with type 2 diabetes without coronary artery disease. A total of 43 type 2 diabetes patients (age: 50 ± 5 years) and 20 healthy controls (age: 48 ± 4 years) were enrolled. Diastolic function was investigated by conventional pulsed-wave (PW) Doppler and tissue Doppler imaging (TDI). Exercise capacity was evaluated with cardiopulmonary exercise testing (CPET). In patients with type 2 diabetes, increase in resting heart rate (HR-rest) (p = 0.013), decrease in maximum heart rate during exercise (HR-max) (p VO2-max) (p VO2-an) (p VO2-max (r = -0.456, p < 0.01) independent of the absence or presence of mild diastolic dysfunction. Exercise capacity was found to be significantly decreased in normotensive patients with type 2 diabetes without coronary artery disease, and this decrease was independent of diastolic dysfunction. © The Author(s) 2015.

  16. Mitochondrial APE1/Ref-1 suppressed protein kinase C-induced mitochondrial dysfunction in mouse endothelial cells.

    Science.gov (United States)

    Joo, Hee Kyoung; Lee, Yu Ran; Park, Myoung Soo; Choi, Sunga; Park, Kyoungsook; Lee, Sang Ki; Kim, Cuk-Seong; Park, Jin Bong; Jeon, Byeong Hwa

    2014-07-01

    Protein kinase C (PKC) induces mitochondrial dysfunction, which is an important pathological factor in cardiovascular diseases. The role of apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE1/Ref-1) on PKC-induced mitochondrial dysfunction has not been variously investigated. In this study, phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, induced mitochondrial hyperpolarization and reactive oxygen species generation and also increased mitochondrial translocation of APE1/Ref-1. APE1/Ref-1 overexpression suppressed PMA-induced mitochondrial dysfunction. In contrast, gene silencing of APE1/Ref-1 increased the sensitivity of mitochondrial dysfunction. Moreover, mitochondrial targeting sequence (MTS)-fused APE1/Ref-1 more effectively suppressed PMA-induced mitochondrial dysfunctions. These results suggest that mitochondrial APE1/Ref-1 is contributed to the protective role to protein kinase C-induced mitochondrial dysfunction in endothelial cells.

  17. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential

  18. Association of higher resistin levels with inflammatory activation and endothelial dysfunction in patients with essential hypertension

    Institute of Scientific and Technical Information of China (English)

    FANG Chang; LEI Juan; ZHOU Shu-xian; ZHANG Yu-ling; YUAN Gui-yi; WANG Jing-feng

    2013-01-01

    Background Some studies have shown that serum resistin levels increase in hypertensive patients.Whether the increase of resistin is related to inflammatory or vascular endothelial function is still unknown.We investigated the relationship of increased resistin levels to inflammatory factors and circulating biomarkers of vascular endothelial function in hypertensive patients.Methods One hundred and forty-four nondiabetic patients with new onset,hypertension were recruited.Blood pressure,blood glucose,insulin,resistin,tumour necrosis factor-α (TNF-α),interleukin-6 (IL-6),von Willebrand factor (vWF),endothelin-1 (ET-1) and nitric oxide (NO)were measured.The homeostasis model assessment,insulin resistance index (HOMA-IR) was calculated.Patients were divided into two groups according to the median level of resistin.Cytokine levels and indicators of vascular endothelial function were compared.Multiple linear regression was used to determine factors influencing resistin.Results Serum resistin ranged from 2.57 ng/ml to 20.18 ng/ml in hypertensive patients.High resistin group (>8.36 ng/ml) had higher levels of TNF-α,IL-6,vWF and ET-1 but lower level of NO compared with low resistin group (P <0.01).Resistin was positively correlated with body mass index,systolic blood pressure,HOMA-IR,low-density lipoprotein cholesterol,TNF-α and ET-1 but negatively correlated with NO (all P <0.05).Multiple linear regression analysis revealed that HOMA-IR,TNF-α,NO and ET-1 are independent predictors of resistin with standardized regression coefficients of 0.625,0.368,-0.260 and 0.222,respectively (all P <0.01).Conclusions We conclude that higher resistin levels are associated with inflammatory activation and endothelial dysfunction,because patients with essential hypertension have increased TNF-α,IL-6,vWF and ET-1 and decreased NO.Moreover,the statistical association of resistin with TNF-α,NO and ET-1 suggests involvement of resistin in the progression of hypertension by

  19. Arginase 1 mediates increased blood pressure and contributes to vascular endothelial dysfunction in deoxycorticosterone acetate (DOCA-salt hypertension

    Directory of Open Access Journals (Sweden)

    Haroldo A. Toque

    2013-07-01

    Full Text Available Enhanced arginase (ARG activity has been identified as a factor that reduces nitric oxide (NO production and impairs endothelial function in vascular pathologies. Using a gene deletion model, we investigated involvement of arginase isoforms (1 and 2 in hypertension and endothelial dysfunction in a mineralocorticoid-salt mouse model. Hypertension was induced in wild type (WT, partial ARG1+/- knockout (KO and complete ARG2-/- KO mice by uninephrectomy and DOCA-salt treatment for 6-weeks. (Control uninephrectomized mice drank tap water. After 2 wks of DOCA-salt treatment, systolic blood pressure (SBP was increased by ~15 mmHg in all mouse genotypes. SBP continued to rise in DOCA-salt WT and ARG2-/- mice to ~130 mmHg at 5-6 wks, whereas in ARG1+/- mice SBP waned toward control levels by 6 wks (109±4 vs 101±3 mmHg, respectively. DOCA-salt treatment in WT mice increased vascular ARG activity (aorta by 1.5-fold; mesenteric artery (MA by 2.6-fold and protein levels of ARG1 (aorta: 1.49-fold and MA: 1.73-fold versus WT Sham tissues. ARG2 protein increased in WT DOCA MA (by 2.15-fold but not in aorta compared to those of WT Sham tissues. Maximum endothelium-dependent vasorelaxation to acetylcholine was significantly reduced in DOCA-salt WT mice and largely or partially maintained in DOCA ARG1+/- and ARG2-/- mice vs their Sham controls. DOCA-salt augmented contractile responses to phenylephrine in aorta of all mouse genotypes. Additionally, treatment of aorta or MA from WT DOCA mice with arginase inhibitor ABH (100 µM improved endothelium-mediated vasorelaxation. DOCA-salt induced coronary perivascular fibrosis (increased by 2.1-fold in WT was prevented in ARG1+/- and reduced in ARG2-/- mice. In summary, arginase is involved in murine DOCA-salt induced impairment of vascular function and hypertension and may represent a novel target for antihypertensive therapy.

  20. Role of endothelial dysfunction in the pathogenesis of diabetic retinopathy in patients with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    I. V. Vorobyeva

    2014-07-01

    Full Text Available The reason for the progressive vision reduction at diabetes mellitus (DM is diabetic retinopathy (DR. When type 2 diabetes combined with hypertension (Ht, it increases the risk of vision loss by 25 times. In the pathogenesis of DR is important to endothelial dysfunction and a variety of biochemical processes (an excess of intracellular sorbitol, non-enzymatic glycation of proteins, oxidative stress. there is a decrease in generation vasodilating factors, nitric oxide, with a simultaneous increase of endothelin, which causes vasoconstriction. Key processes underlying the development of DR, such as increased vascular permeability, edema, neovasculariza- tion, inflammation and associated with the effects of kallikrein-kinin system. In the pathogenesis of DR can be involved independent intraocular renin-angiotensin system, which is an important mediator of angiogenesis and increased vascular permeability. Damage to the endothelium of retinal vessels leads to ischemia of the retina. there is growth and development of newly formed blood vessels, which may provoke recurrent bleeding.

  1. Protection against vascular endothelial dysfunction by polyphenols in sea buckthorn berries in rats with hyperlipidemia.

    Science.gov (United States)

    Yang, Fang; Suo, Yourui; Chen, Dongli; Tong, Li

    2016-07-19

    Chronic hyperlipemia increases the incidence of vascular endothelial dysfunction and can even induce cardiovascular disease. Sea buckthorn contains a host of bioactives such as flavonoids and polyphenols that can prevent the development of cardiovascular disease. The current study isolated active ingredients, polyphenols, from sea buckthorn berries (SVP) and orally administered SVP at a dose of 7-28 mg/kg. This treatment significantly reduced serum lipids, it enhanced the activity of antioxidant enzymes, and it decreased the level of serum TNF-α and IL-6. SVP also alleviate vascular impairment by decreasing the expression of eNOS, ICAM-1, and LOX-1 mRNA and proteins in aortas of rats with hyperlipidemia. Based on these findings, SVP has antioxidant action and it protects endothelium.

  2. High density lipoproteins as indicators of endothelial dysfunction in children with diadetes type I

    Directory of Open Access Journals (Sweden)

    Lobanova S.M.

    2011-12-01

    Full Text Available The aim of the investigation was to study the level of blood high density lipoproteins (HDL in the groups of children with different course of diadetes type I in order to find out the dependence of course and complications of diabetes on that level. Materials and methods: Blood high density lipoprotein (HDL levels were investigated in children and adolescents with diadetes type I, depending on the duration of diadetes type I, age, stage of sexual development, the stage of diabetic nephropathy and levels of plasma endothelin-1 (E-1. Results: Decrease in HDL level with increasing duration of diadetes type I in prepubertate patients, higher indices of HDL cholesterol were determined in girls, especially with impaired puberty. HDL cholesterol was higher in diabetic nephropathy at the stage of proteinuria and high level of blood endothelin-1. Conclusion: The revealed changes were considered to cause deregulation of vascular endothelium as a manifestation of the initial stages of endothelial dysfunction

  3. l-arginine and l-NMMA for assessing cerebral endothelial dysfunction in ischaemic cerebrovascular disease

    DEFF Research Database (Denmark)

    Karlsson, William K; Sørensen, Caspar G; Kruuse, Christina

    2017-01-01

    Endothelial dysfunction (ED), in particular cerebral ED, may be an essential biomarker for ischaemic cerebrovascular disease. However, there is no consensus on methods to best estimate cerebral ED. In this systematic review, we evaluate the use of l-arginine and NG -monomethyl-l-arginine (l......-NMMA) for assessment of cerebral ED. A systematic search of PubMed, EMBASE and the Cochrane Library was done. We included studies investigating cerebrovascular response to l-arginine or l-NMMA in human subjects with vascular risk factors or ischaemic cerebrovascular disease. Seven studies (315 subjects) were eligible...... according to inclusion and exclusion criteria. Studies investigated the effect of age (n=2), type 2 diabetes mellitus (DM) (n=1), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) (n=1), leukoaraiosis (n=1), and prior ischaemic stroke or transient ischaemic...

  4. Extracellular but not cytosolic superoxide dismutase protects against oxidant-mediated endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Erin L. Foresman

    2013-01-01

    Full Text Available Superoxide (O2•− contributes to the development of cardiovascular disease. Generation of O2•− occurs in both the intracellular and extracellular compartments. We hypothesized that the gene transfer of cytosolic superoxide dismutase (SOD1 or extracellular SOD (SOD3 to blood vessels would differentially protect against O2•−-mediated endothelial-dependent dysfunction. Aortic ring segments from New Zealand rabbits were incubated with adenovirus (Ad containing the gene for Escherichia coli β-galactosidase, SOD1, or SOD3. Activity assays confirmed functional overexpression of both SOD3 and SOD1 isoforms in aorta 24 h following gene transfer. Histochemical staining for β-galactosidase showed gene transfer occurred in the endothelium and adventitia. Next, vessels were prepared for measurement of isometric tension in Kreb's buffer containing xanthine. After precontraction with phenylephrine, xanthine oxidase impaired relaxation to the endothelium-dependent dilator acetylcholine (ACh, max relaxation 33±4% with XO vs. 64±3% without XO, p<0.05, whereas relaxation to the endothelium-independent dilator sodium nitroprusside was unaffected. In the presence of XO, maximal relaxation to ACh was improved in vessels incubated with AdSOD3 (55±2%, p<0.05 vs. control but not AdSOD1 (34±4%. We conclude that adenoviral-mediated gene transfer of SOD3, but not SOD1, protects the aorta from xanthine/XO-mediated endothelial dysfunction. These data provide important insight into the location and enzymatic source of O2•− production in vascular disease.

  5. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gebhard, Catherine; Staehli, Barbara E. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Shi, Yi; Camici, Giovanni G.; Akhmedov, Alexander; Hoegger, Lisa; Lohmann, Christine [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Matter, Christian M. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); Hassa, Paul O.; Hottiger, Michael O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Malinski, Tadeusz [Department of Chemistry and Biochemistry, Ohio University, Athens, OH (United States); Luescher, Thomas F. [Cardiovascular Research, Physiology Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zurich, Raemistrasse 100, 8091 Zurich (Switzerland); and others

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings were suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.

  6. The Role of Hypertriglyceridemia in the Development of Atherosclerosis and Endothelial Dysfunction

    Science.gov (United States)

    Matsumoto, Saki; Gotoh, Nozomi; Hishinuma, Saori; Abe, Yohei; Shimizu, Yoshimi; Katano, Yumi; Ishihata, Akira

    2014-01-01

    A hereditary postprandial hypertriglyceridemic rabbit (PHT rabbit) is a new dyslipidemic model showing remarkably high plasma triglycerides with only limited elevation of plasma total cholesterol. In PHT rabbits, plasma triglyceride was markedly elevated postprandially compared with healthy Japanese white (JW) rabbits. In physiological experiments, the ring preparation of the thoracic aorta was suspended in an organ bath filled with modified Krebs-Henseleit solution, and the developed tension was recorded. Endothelial function was evaluated by acetylcholine-induced vasorelaxation in each preparation with intact endothelium. The acetylcholine-induced endothelium-dependent relaxation was diminished in PHT compared with JW rabbits, suggesting endothelial dysfunction in PHT rabbits. Histological examination was carried out in adipose tissue, liver and aorta. They were fixed in formaldehyde and embedded in paraffin. The tissues were sliced (4 μm) and stained using hematoxylin-eosin solution. In the adipose tissue, the visceral fat accumulated, and the size of adipose cells was enlarged in PHT rabbits. The liver of the PHT rabbit was fatty and degenerated. In aorta, increased intimal thickness was observed, suggesting the progression of atherosclerosis in the PHT rabbit. This study suggests the important role of postprandial hypertriglyceridemia in atherosclerosis. By using PHT rabbits, the effects of hypertriglyceridemia on health and diseases could be evaluated precisely. PMID:24667131

  7. Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction.

    Science.gov (United States)

    Wolf, Matthew B; Baynes, John W

    2007-02-01

    We investigated the ability of cadmium and mercury ions to cause endothelial dysfunction in bovine pulmonary artery endothelial cell monolayers. Exposure of monolayers for 48 h to metal concentrations greater than 3-5 microM produced profound cytotoxicity (increased lactate dehydrogenase leakage), a permeability barrier failure, depletion of glutathione and ATP and almost complete inhibition of the activity of key thiol enzymes, glucose-6-phosphate dehydrogenase (G6PDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In contrast, metal concentrations less than 1-2 microM induced increases in glutathione and thiol-enzyme activities with minimal changes in LDH leakage, barrier function and ATP content. At shorter incubation times (24 h or less), high concentrations of cadmium caused glutathione induction rather than depletion. Thus, oxidative stress and cytotoxicity induced by lower concentrations of the metal ions stimulate compensatory responses, including increased synthesis of glutathione, which presumably preserved the activity of key thiol enzymes, however these responses were not sustainable at higher metal ion concentrations. We conclude, while high concentrations of heavy metals are cytotoxic, lower concentration induce a compensatory protective response, which may explain threshold effects in metal-ion toxicity.

  8. ENDOTHELIAL DYSFUNCTION IN YOUNG NORMOTENSIVE SUBJECTS WITH A FAMILY HISTORY OF ESSENTIAL HYPERTENSION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective:To investigate whether endothelial dysfunction occurred in genetically vulnerable normotensive patients.Methods:Endothelial function was assessed by high-resolution vascular ultrasound.The diameter of brachial arteries were measured at rest.during reactive hyperemia and atfer sublingual nitroglycerine(GTN) in 70 young subjects with a mean age of 44.7(12.1 years:Among them,there were 30 patients with essential hypertension (group 1),20 normotensive patients with a family history of hypertension(group2)and 20 normotensive patients without a family history of cardiovascular diseases that served as controls(group3).Results:Flow-mediated dilatation of brachial arteries was significantly reduced in-roup 1and 2 when compared to group3(Group1:6.8(3.9vs group 2:8.0(3.6vs group3:13.2(5.9%,P<0.01).Conclusion:Endothelium-dependent vasodilatation was impaired in the young normotensive patients with a family history of hypertension.

  9. Salt loading in canola oil fed SHRSP rats induces endothelial dysfunction.

    Directory of Open Access Journals (Sweden)

    Annateresa Papazzo

    Full Text Available This study aimed to determine if 50 days of canola oil intake in the absence or presence of salt loading affects: (1 antioxidant and oxidative stress markers, (2 aortic mRNA of NADPH oxidase (NOX subunits and superoxide dismutase (SOD isoforms and (3 endothelial function in SHRSP rats. SHRSP rats were fed a diet containing 10 wt/wt% soybean oil or 10 wt/wt% canola oil, and given tap water or water containing 1% NaCl for 50 days. Without salt, canola oil significantly increased RBC SOD, plasma cholesterol and triglycerides, aortic p22 (phox , NOX2 and CuZn-SOD mRNA, and decreased RBC glutathione peroxidase activity. With salt, canola oil reduced RBC SOD and catalase activity, LDL-C, and p22 (phox mRNA compared with canola oil alone, whereas plasma malondialdehyde (MDA was reduced and RBC MDA and LDL-C were higher. With salt, the canola oil group had significantly reduced endothelium-dependent vasodilating responses to ACh and contractile responses to norepinephrine compared with the canola oil group without salt and to the WKY rats. These results indicate that ingestion of canola oil increases O2 (- generation, and that canola oil ingestion in combination with salt leads to endothelial dysfunction in the SHRSP model.

  10. Microvascular Endothelial Dysfunction in Obesity Is Driven by Macrophage-Dependent Hydrogen Sulfide Depletion.

    Science.gov (United States)

    Candela, Joseph; Wang, Rui; White, Carl

    2017-05-01

    The function of perivascular adipose tissue as an anticontractile mediator in the microvasculature is lost during obesity. Obesity results in inflammation and recruitment of proinflammatory macrophages to the perivascular adipose tissue that is paralleled by depletion of the vasorelaxant signaling molecule hydrogen sulfide (H2S) in the vessel. The current objective was to assess the role of macrophages in determining vascular [H2S] and defining how this impinged on vasodilation. Contractility and [H2S] were measured in mesenteric resistance arterioles from lean and obese mice by using pressure myography and confocal microscopy, respectively. Vasodilation was impaired and smooth muscle and endothelial [H2S] decreased in vessels from obese mice compared with those from lean controls. Coculturing vessels from lean mice with macrophages from obese mice, or macrophage-conditioned media, recapitulated obese phenotypes in vessels. These effects were mediated by low molecular weight species and dependent on macrophage inducible nitric oxide synthase activity. The inducible nitric oxide synthase activity of perivascular adipose tissue-resident proinflammatory macrophages promotes microvascular endothelial dysfunction by reducing the bioavailability of H2S in the vessel. These findings support a model in which vascular H2S depletion underpins the loss of perivascular adipose tissue anticontractile function in obesity. © 2017 American Heart Association, Inc.

  11. The Role of Hypertriglyceridemia in the Development of Atherosclerosis and Endothelial Dysfunction

    Directory of Open Access Journals (Sweden)

    Saki Matsumoto

    2014-03-01

    Full Text Available A hereditary postprandial hypertriglyceridemic rabbit (PHT rabbit is a new dyslipidemic model showing remarkably high plasma triglycerides with only limited elevation of plasma total cholesterol. In PHT rabbits, plasma triglyceride was markedly elevated postprandially compared with healthy Japanese white (JW rabbits. In physiological experiments, the ring preparation of the thoracic aorta was suspended in an organ bath filled with modified Krebs-Henseleit solution, and the developed tension was recorded. Endothelial function was evaluated by acetylcholine-induced vasorelaxation in each preparation with intact endothelium. The acetylcholine-induced endothelium-dependent relaxation was diminished in PHT compared with JW rabbits, suggesting endothelial dysfunction in PHT rabbits. Histological examination was carried out in adipose tissue, liver and aorta. They were fixed in formaldehyde and embedded in paraffin. The tissues were sliced (4 μm and stained using hematoxylin-eosin solution. In the adipose tissue, the visceral fat accumulated, and the size of adipose cells was enlarged in PHT rabbits. The liver of the PHT rabbit was fatty and degenerated. In aorta, increased intimal thickness was observed, suggesting the progression of atherosclerosis in the PHT rabbit. This study suggests the important role of postprandial hypertriglyceridemia in atherosclerosis. By using PHT rabbits, the effects of hypertriglyceridemia on health and diseases could be evaluated precisely.

  12. Perindopril Induces TSP-1 Expression in Hypertensive Patients with Endothelial Dysfunction in Chronic Treatment

    Directory of Open Access Journals (Sweden)

    Valentina Buda

    2017-02-01

    Full Text Available Thrombospondin-1 (TSP-1 is a potent endogenous inhibitor of both physiological and pathological angiogenesis, widely studied as a target in drug development for treating cancer. Several studies performed in the cardiovascular field on TSP-1 are contradictory, the role of TSP-1 in the physiopathology of cardiovascular disorders (CVDs being, for the moment, incompletely understood and may be due to the presence of several domains in its structure which can stimulate many cellular receptors. It has been reported to inhibit NO-mediated signaling and to act on the angiogenesis, tissue perfusion, endothelial cell proliferation, and homeostasis, so we aimed to quantify the effect Perindopril has on TSP-1 plasma levels in hypertensive patients with endothelial dysfunction in comparison with other antihypertensive drugs, such as beta blockers, calcium channel blockers, and diuretics, in a chronic treatment. As a conclusion, patients under treatment with Perindopril had increased plasma levels of TSP-1 compared with other hypertensive patients and with the control group. The results of this study confirms the pleiotropic properties of Perindopril: anti-proliferative, anti-inflammatory, with effects showed by quantifying a single biomarker: TSP-1.

  13. Lipid peroxidation as risk factor for endothelial dysfunction in antiphospholipid syndrome patients.

    Science.gov (United States)

    Stanisavljevic, Natasa; Stojanovich, L; Marisavljevic, D; Djokovic, A; Dopsaj, V; Kotur-Stevuljevic, J; Martinovic, J; Memon, L; Radovanovic, S; Todic, B; Lisulov, D

    2016-10-01

    The aim of this study was to evaluate oxidative stress markers and it relations to endothelial damage as risk factor for thrombosis in patients with primary (PAPS) and secondary (SAPS) antiphospholipid syndrome (APS) in correlation to traditional risk factors. Flow-mediated (FMD) and nitroglycerine (NMD)-induced dilation of the brachial artery were studied in 140 APS patients (90 PAPS, 50 SAPS) and 40 controls matched by age, sex, and conventional risk factors for atherosclerosis. Markers of oxidative stress, lipid hydroperoxydes (LOOH), advanced oxidation protein products (AOPP), total sulfhydryl groups (tSHG), and paraoxonase 1 activity (PON1) were determined by spectrophotometric method. Oxidative stress dominates in APS patients. LOOH and AOPP correlate to lipid fractions (p antiphospholipid antibody positivity (p < 0.05). FMD was lower in APS patients comparing to controls (p < 0.001). Cholesterol is independent variable for FMD impairment in control group (p = 0.011); LOOH in PAPS (p = 0.004); LOOH, aCL, and triglycerides in SAPS patients (p = 0.009, p = 0.049, and p = 0.012, respectively). Combined predictive of aCL and LOOH is better for FMD impairment than LOOH alone in both PAPS and SAPS patients (AUC 0.727, p = 0.001, 95 % CI 0.616-0.837 and AUC 0.824, p˂0.001, 95 % CI 0.690-0.957, respectively). Lipid peroxidation is independent predictor for endothelial dysfunction in APS patients. We demonstrated synergistic effect of aCL and LOOH as risk for endothelial impairment in both PAPS and SAPS patients.

  14. Contribution of Oxidative stress to Endothelial Dysfunction in Hereditary Hemorrhagic Telangiectasia

    Directory of Open Access Journals (Sweden)

    Mirjana eJerkic

    2015-02-01

    Full Text Available Oxidative stress causes endothelial dysfunction and is implicated in the pathogenesis of cardiovascular diseases. Our studies suggested that reactive oxygen species (ROS play a crucial role in Hereditary Hemorrhagic Telangiectasia (HHT disease, a vascular dysplasia affecting 1 in 5,000-8,000 people. Mutations in endoglin (ENG and activin receptor-like kinase (ACVRL1 genes are responsible for HHT1 and HHT2 and are associated with arteriovenous malformations. Endoglin and ACVRL1 interact with endothelial NO synthase (eNOS and regulate its activation. Mice heterozygous for these genes (Eng+/− and Acvrl1+/- show reduced endoglin or ACVRL1 protein levels in endothelial cells causing eNOS uncoupling, generation of reactive oxygen species (ROS rather than nitric oxide (NO•, leading to impaired NO• mediated vasodilation. ROS production is increased in several organs of Eng+/− and Acvrl1+/− mice, including lungs, liver, and colon, affected in HHT. The major source of increased oxidative stress in these tissues is eNOS-derived ROS and not mitochondrial or NADPH oxidase-dependent ROS. Eng+/− and Acvrl1+/− mice also develop with age signs of pulmonary arterial hypertension (PH attributable to eNOS-derived ROS, which was preventable by antioxidant treatment. To date, only one pilot study has been carried out in HHT patients, and it showed beneficial effects of antioxidant therapy on epistaxis. We suggest that more clinical studies are warranted to investigate whether antioxidants would prevent, delay or attenuate manifestations of disease in individuals with HHT, based on our experimental data in mouse models.

  15. Relationship between testosterone and indexes indicating endothelial function in male coronary heart disease patients

    Institute of Scientific and Technical Information of China (English)

    Lu Fu; Qian-Ping Gao; Jing-Xia Shen

    2008-01-01

    Aim: To investigate the relationship between androgen level and the indexes indicating endothelial function in male patients with coronary heart disease (CHD). Methods: We registered the following data for 106 50-70-year-old men:age, weight, blood lipid, including total cholesterol, low density lipoprotein cholesterol, high density lipoprotein cho-lesterol and triglyceride, whether a smoker, sugar levels, blood pressure, free testosterone (FT), vascular cell adhe-sion molecule-1 (VCAM-1) and the intima-media thickness (IMT) of common carotid artery, common carotid diameter,maximum velocity in systolic phase, minimum velocity in diastolic phase and resistent index. Among the 106 men, 51 were patients with CHD. The relationships between FT level, VCAM-1 concentration and IMT were examined,respectively, using a stepwise linear regression technique among all the 106 men. Results: There was no statistical difference in terms of age, blood pressure, whether a smoker, sugar levels, HDL-C, minimum velocity in diastolic phase, resistent index between male CHD patients and controls; whereas results for weight, total cholesterol, low density lipoprotein cholesterol, triglyceride, VCAM-1 and IMT of male CHD patients were higher than those of controls; FT level and maximum velocity in systolic phase were lower. It was found that among all the objects, FT level was inversely correlated with IMT and VCAM-1 concentration. Conclusion: FT level was inversely correlated with VCAM-1 concentration and IMT which are indicators of endothelial function.

  16. Colocalization of Serum Amyloid A with Microtubules in Human Coronary Artery Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Katja Lakota

    2011-01-01

    Full Text Available Serum amyloid A (SAA acts as a major acute phase protein and represents a sensitive and accurate marker of inflammation. Besides its hepatic origin, as the main source of serum SAA, this protein is also produced extrahepatically. The mRNA levels of SAA become significantly elevated following proinflammatory stimuli, as well as, are induced through their own positive feedback in human primary coronary artery endothelial cells. However, the intracellular functions of SAA are so far unknown. Colocalization of SAA with cytoskeletal filaments has previously been proposed, so we analyzed the colocalization of SAA with all three cytoskeletal elements: actin filaments, vimentin filaments, and microtubules. Immunofluorescent double-labeling analyses confirmed by PLA method revealed a strict colocalization of SAA with microtubules and a very infrequent attachment to vimentin while the distribution of actin filaments appeared clearly separated from SAA staining. Also, no significant colocalization was found between SAA and endomembranes labeled with the fluorescent lipid stain DiO6. However, SAA appears to be located also unbound in the cytosol, as well as inside the nucleus and within nanotubes extending from the cells or bridging neighboring cells. These different locations of SAA in endothelial cells strongly indicate multiple potential functions of this protein.

  17. Endothelial dysfunction and brachial intima-media thickness: long term cardiovascular risk with claudication related to peripheral arterial disease: a prospective analysis.

    Directory of Open Access Journals (Sweden)

    Franz Hafner

    Full Text Available OBJECTIVE: Endothelial dysfunction plays a key role in the development, progression, and clinical manifestation of atherosclerosis, and in symptomatic peripheral arterial disease, endothelial dysfunction and enlarged intima-media thickness might be associated with increased cardiovascular risk. Flow-mediated dilatation and serologic parameters are used to evaluate individual endothelial function. Brachial intima-media thickness, a less recognized parameter of cardiovascular risk, is independently associated with coronary artery disease. The aim of this study was to evaluate the prognostic value of ultrasound and serologic parameters of endothelial function in relation to cardiovascular mortality in peripheral arterial disease. DESIGN: monocentric, prospective cohort study. METHODS: Flow mediated dilatation and brachial intima-media thickness were assessed in 184 (124 male patients with peripheral arterial disease (Rutherford stages 2-3. Serologic parameters of endothelial function included asymmetric dimethylarginine (ADMA, symmetric dimethylarginine (SDMA, and L-homoarginine. Cardiovascular events were recorded during a follow-up of 99.1±11.1 months. Subjects who died of noncardiovascular causes were excluded from further analysis. RESULTS: Eighty-two patients (44.6% died during follow-up after a mean duration of 49.7±28.3 months. There were 49 cardiovascular deaths (59.8% and 33 other deaths (40.2%. Flow mediated dilatation was associated with cardiovascular death [1.17% (0.0, 4.3 vs. 4.1% (1.2, 6.4, p<0.001]. Intima-media thickness was greater in patients who succumbed to cardiovascular disease [0.37 mm (0.30, 0.41] than in survivors [0.21 mm (0.15, 0.38, p<0.001]. Brachial intima-media thickness above 0.345 mm was most predictive of cardiovascular death, with sensitivity and specificity values of 0.714 and 0.657, respectively (p<0.001. Furthermore, ADMA levels above 0.745 µmol/l and SDMA levels above 0.825 µmol/l were significantly

  18. Post-procedural hemodiafiltration in acute coronary syndrome patients with associated renal and cardiac dysfunction undergoing urgent and emergency coronary angiography.

    Science.gov (United States)

    Marenzi, Giancarlo; Mazzotta, Gianfranco; Londrino, Francesco; Gistri, Roberto; Moltrasio, Marco; Cabiati, Angelo; Assanelli, Emilio; Veglia, Fabrizio; Rombolà, Giuseppe

    2015-02-15

    We investigated the use of a 3-hr treatment with hemodiafiltration, initiated soon after emergency or urgent coronary angiography in acute coronary syndrome (ACS) patients with associated severe renal and cardiac dysfunction. Patients with ACS and severe combined renal and cardiac dysfunction have a particularly high mortality risk. In them, the ideal strategy to both optimize treatment of coronary disease and minimize renal injury risk is currently unknown. This was an interventional study. ACS patients (STEMI and NSTEMI) with associated severe renal (eGFR ≤30 ml/min/1.73 m(2) ) and cardiac (LVEF ≤40%) dysfunction, admitted at La Spezia Hospital emergency coronary procedure. Controls were patients matched for age, gender, Mehran's risk score, and kind of ACS, admitted at the Centro Cardiologico Monzino Milan. In-hospital and 1-year outcomes were evaluated. Sixty patients (30% STEMI), 30 hemodiafiltration-treated patients and 30 controls, with similar baseline characteristics, were included. In-hospital and cumulative 1-year mortality rates were significantly lower in hemodiafiltration-treated patients than in controls (3% vs. 23%; P = 0.05, and 10% vs. 53%; P emergency coronary angiography seems to be associated with a relevant improvement in survival. © 2014 Wiley Periodicals, Inc.

  19. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.

    Science.gov (United States)

    Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao

    2017-03-11

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H2O2), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H2O2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H2O2-MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases.

  20. Contribution of Cyclooxygenase End Products and Oxidative Stress to Intrahepatic Endothelial Dysfunction in Early Non-Alcoholic Fatty Liver Disease.

    Directory of Open Access Journals (Sweden)

    Francisco Javier Gonzalez-Paredes

    Full Text Available Metabolic syndrome induces endothelial dysfunction, a surrogate marker of cardiovascular disease. In parallel, metabolic syndrome is frequently associated with non-alcoholic fatty liver disease (NAFLD, which may progress to cirrhosis. The aim of the present study was to evaluate intrahepatic endothelial dysfunction related to cyclooxygenase end products and oxidative stress as possible mechanisms involved in the pathophysiology of NAFLD.Sprague-Dawley rats were fed standard diet (control-diet, CD or high-fat-diet (HFD for 6 weeks. Metabolic syndrome was assessed by recording arterial pressure, lipids, glycemia and rat body weight. Splanchnic hemodynamics were measured, and endothelial dysfunction was evaluated using concentration-effect curves to acetylcholine. Response was assessed with either vehicle, L-NG-Nitroarginine (L-NNA, indomethacin, tempol, or a thromboxane receptor antagonist, SQ 29548. We quantified inflammation, fibrosis, oxidative stress, nitric oxide (NO bioavailability and thromboxane B2 levels.HFD rats exhibited metabolic syndrome together with the presence of NAFLD. Compared to control-diet livers, HFD livers showed increased hepatic vascular resistance unrelated to inflammation or fibrosis, but with decreased NO activity and increased oxidative stress. Endothelial dysfunction was observed in HFD livers compared with CD rats and improved after cyclooxygenase inhibition or tempol pre-incubation. However, pre-incubation with SQ 29548 did not modify acetylcholine response.Our study provides evidence that endothelial dysfunction at an early stage of NAFLD is associated with reduced NO bioavailability together with increased cyclooxygenase end products and oxidative stress, which suggests that both pathways are involved in the pathophysiology and may be worth exploring as therapeutic targets to prevent progression of the disease.

  1. Contribution of Cyclooxygenase End Products and Oxidative Stress to Intrahepatic Endothelial Dysfunction in Early Non-Alcoholic Fatty Liver Disease

    Science.gov (United States)

    Morales Arraez, Dalia; Marcelino Reyes, Raquel; Abrante, Beatriz; Diaz-Flores, Felicitas; Salido, Eduardo; Quintero, Enrique; Hernández-Guerra, Manuel

    2016-01-01

    Introduction Metabolic syndrome induces endothelial dysfunction, a surrogate marker of cardiovascular disease. In parallel, metabolic syndrome is frequently associated with non-alcoholic fatty liver disease (NAFLD), which may progress to cirrhosis. The aim of the present study was to evaluate intrahepatic endothelial dysfunction related to cyclooxygenase end products and oxidative stress as possible mechanisms involved in the pathophysiology of NAFLD. Materials and Methods Sprague-Dawley rats were fed standard diet (control-diet, CD) or high-fat-diet (HFD) for 6 weeks. Metabolic syndrome was assessed by recording arterial pressure, lipids, glycemia and rat body weight. Splanchnic hemodynamics were measured, and endothelial dysfunction was evaluated using concentration-effect curves to acetylcholine. Response was assessed with either vehicle, L-NG-Nitroarginine (L-NNA), indomethacin, tempol, or a thromboxane receptor antagonist, SQ 29548. We quantified inflammation, fibrosis, oxidative stress, nitric oxide (NO) bioavailability and thromboxane B2 levels. Results HFD rats exhibited metabolic syndrome together with the presence of NAFLD. Compared to control-diet livers, HFD livers showed increased hepatic vascular resistance unrelated to inflammation or fibrosis, but with decreased NO activity and increased oxidative stress. Endothelial dysfunction was observed in HFD livers compared with CD rats and improved after cyclooxygenase inhibition or tempol pre-incubation. However, pre-incubation with SQ 29548 did not modify acetylcholine response. Conclusions Our study provides evidence that endothelial dysfunction at an early stage of NAFLD is associated with reduced NO bioavailability together with increased cyclooxygenase end products and oxidative stress, which suggests that both pathways are involved in the pathophysiology and may be worth exploring as therapeutic targets to prevent progression of the disease. PMID:27227672

  2. Endothelial dysfunction in normal and prediabetic rats with metabolic syndrome exposed by oral gavage to carbon black nanoparticles

    DEFF Research Database (Denmark)

    Folkmann, Janne Kjærsgaard; Vesterdal, Lise Kristine; Sheykhzade, Majid

    2012-01-01

    Exposure to nanosized particles may increase the risk of cardiovascular diseases by endothelial dysfunction, particularly in susceptible subjects with metabolic syndrome. We investigated vasomotor dysfunction in aorta from obese and lean Zucker rats after oral exposure to nanosized carbon black (CB....... In conclusion, repeated oral exposure to CB was associated with endothelial dysfunction in rats, further aggravating the effect of metabolic syndrome.......). Rats were exposed to 1 or 10 weekly doses of 0, 0.064, 0.64 or 6.4mg/kg bodyweight and sacrificed 24h or 13 weeks later. The exposure to 10 doses of 0.064 or 0.64mg/kg reduced the acetylcholine-induced vasorelaxation in the lean and obese rats. The half maximal effect concentration values increased...

  3. Angiotensin converting enzyme inhibitors effect on endothelial dysfunction: a meta-analysis of randomised controlled trials.

    Science.gov (United States)

    Shahin, Yousef; Khan, Junaid Alam; Samuel, Nehemiah; Chetter, Ian

    2011-05-01

    Several studies have assessed the effect of angiotensin converting enzyme inhibitors (ACEIs) on endothelial dysfunction as measured by brachial flow-mediated vasodilatation (FMD). We conducted a meta-analysis to investigate this effect in comparison to placebo or no treatment and to other antihypertensive agents. MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials (CENTRAL) were searched from 1996 to October 2010 on randomised controlled trials (RCTs) that assessed the effect of ACEIs on brachial FMD versus placebo or no treatment and ACEIs versus angiotensin receptor blockers (ARBs), calcium channel blockers (CCBs) and β-blockers. Data from included studies were pooled with use of random effects meta-analysis of the weighted mean change differences between the comparator groups. Heterogeneity across studies was assessed with the I(2) statistic. In 10 trials including 1129 patients, treatment with ACEIs (n = 498) versus placebo or no treatment (n = 503) significantly improved brachial FMD (pooled mean change difference 1.26%, 95% C.I. 0.46-2.07, p = 0.002 with significant heterogeneity). In 11 trials which included 805 patients, treatment with ACEIs (n = 264) had a significant effect on brachial FMD when compared with other antihypertensives (ARBs, CCBs and β-blockers) (n = 420) (pooled mean change difference 0.89%, 95% C.I. 0.22-1.56, p = 0.009, I(2) = 83%, p for heterogeneity ACEIs had no significant effect on FMD when compared with ARBs (pooled mean change difference = 0.21%, 95% C.I. -0.24 to 0.66, p = 0.36, I(2) = 0%). However, in 4 trials ACEIs significantly improved FMD when compared with CCBs (pooled mean change difference 2.15%, 95% C.I. 0.55-3.75, p = 0.009, I(2) = 90%, p for heterogeneity ACEIs also had a significant effect on FMD (pooled mean change difference = 0.59%, 95% C.I. 0.05-1.13, p = 0.03, I(2) = 34%, p for heterogeneity = 0.21). This study shows that ACEIs improve brachial FMD which is a marker of endothelial function in

  4. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension

    Science.gov (United States)

    Spiekerkoetter, Edda; Tian, Xuefei; Cai, Jie; Hopper, Rachel K.; Sudheendra, Deepti; Li, Caiyun G.; El-Bizri, Nesrine; Sawada, Hirofumi; Haghighat, Roxanna; Chan, Roshelle; Haghighat, Leila; de Jesus Perez, Vinicio; Wang, Lingli; Reddy, Sushma; Zhao, Mingming; Bernstein, Daniel; Solow-Cordero, David E.; Beachy, Philip A.; Wandless, Thomas J.; ten Dijke, Peter; Rabinovitch, Marlene

    2013-01-01

    Dysfunctional bone morphogenetic protein receptor-2 (BMPR2) signaling is implicated in the pathogenesis of pulmonary arterial hypertension (PAH). We used a transcriptional high-throughput luciferase reporter assay to screen 3,756 FDA-approved drugs and bioactive compounds for induction of BMPR2 signaling. The best response was achieved with FK506 (tacrolimus), via a dual mechanism of action as a calcineurin inhibitor that also binds FK-binding protein-12 (FKBP12), a repressor of BMP signaling. FK506 released FKBP12 from type I receptors activin receptor-like kinase 1 (ALK1), ALK2, and ALK3 and activated downstream SMAD1/5 and MAPK signaling and ID1 gene regulation in a manner superior to the calcineurin inhibitor cyclosporine and the FKBP12 ligand rapamycin. In pulmonary artery endothelial cells (ECs) from patients with idiopathic PAH, low-dose FK506 reversed dysfunctional BMPR2 signaling. In mice with conditional Bmpr2 deletion in ECs, low-dose FK506 prevented exaggerated chronic hypoxic PAH associated with induction of EC targets of BMP signaling, such as apelin. Low-dose FK506 also reversed severe PAH in rats with medial hypertrophy following monocrotaline and in rats with neointima formation following VEGF receptor blockade and chronic hypoxia. Our studies indicate that low-dose FK506 could be useful in the treatment of PAH. PMID:23867624

  5. Erectile dysfunction.

    Science.gov (United States)

    Wylie, Kevan

    2008-01-01

    Erectile dysfunction is a common problem affecting sexual function in men. Approximately one in 10 men over the age of 40 is affected by this condition and the incidence is age related. Erectile dysfunction is a sentinel marker for several reversible conditions including peripheral and coronary vascular disease, hypertension and diabetes mellitus. Endothelial dysfunction is a common factor between the disease states. Concurrent conditions such as depression, late-onset hypogonadism, Peyronie's disease and lower urinary tract symptoms may significantly worsen erectile function, other sexual and relationship issues and penis dysmorphophobia. A focused physical examination and baseline laboratory investigations are mandatory. Management consists of initiating modifiable lifestyle changes, psychological and psychosexual/couples interventions and pharmacological and other interventions. In combination and with treatment of concurrent comorbid states, these interventions will often bring about successful resolution of symptoms and avoid the need for surgical interventions.

  6. Association between erectile dysfunction and coronary artery disease. Role of coronary clinical presentation and extent of coronary vessels involvement: the COBRA trial.

    Science.gov (United States)

    Montorsi, Piero; Ravagnani, Paolo M; Galli, Stefano; Rotatori, Francesco; Veglia, Fabrizio; Briganti, Alberto; Salonia, Andrea; Dehò, Federico; Rigatti, Patrizio; Montorsi, Francesco; Fiorentini, Cesare

    2006-11-01

    To investigate the prevalence of erectile dysfunction (ED) in patients with CAD according to clinical presentation, acute coronary syndrome (ACS) vs. chronic coronary syndrome (CCS), and extent of vessel involvement (single vs. multi-vessel disease). 285 patients with CAD divided into three age-matched groups: group 1 (G1, n=95), ACS and one-vessel disease (1-VD); group 2 (G2, n=95), ACS and 2,3-VD; group 3 (G3, n=95), chronic CS. Control group (C, n=95) was composed of patients with suspected CAD who were found to have entirely normal coronary arteries by angiography. Gensini's score used to assess extent of CAD. ED as any value <26 according to the International Index of Erectile Function (IIEF). ED prevalence was lower in G1 vs. G3 (22 vs. 65%, P<.0001) as a result of less atherosclerotic burden as expressed by Gensini's score [2 (0-6) vs. 40 (19-68), P=0.0001]. Controls had ED rate values similar to G1 (24%). Group 2 ED rate, IIEF, and Gensini's scores were significantly different from G1 [55%, P<0.0001; 24 (17-29), P=0.0001; 21 (12.5-32), P<0.0001] and similar to G3 suggesting that despite similar clinical presentation, ED in ACS differs according to the extent of CAD. No significant difference between groups was found in the number and type of conventional risk factors. Treatment with beta-blockers was more frequent in G3 vs. G1 and G2. In G3 patients who had ED, onset of sexual dysfunction occurred before CAD onset in 93%, with a mean time interval of 24 [12-36] months. In logistic regression analysis, age (OR=1.1; 95% confidence interval (CI), 1.05-1.16; P=<0.0001), multi-vessel vs. single-vessel (OR=2.53; 95% CI, 1.43-4.51; P=0.0002), and CCS vs. ACS (OR=2.32; 95% CI, 1.22-4.41; P=0.01) were independent predictors of ED. ED prevalence differs across subsets of patients with CAD and is related to coronary clinical presentation and extent of CAD. In patients with established CAD, ED comes before CAD in the majority by an average of 2 up to 3 years.

  7. N-Acetylcysteine, a glutathione precursor, reverts vascular dysfunction and endothelial epigenetic programming in intrauterine growth restricted guinea pigs.

    Science.gov (United States)

    Herrera, Emilio A; Cifuentes-Zúñiga, Francisca; Figueroa, Esteban; Villanueva, Cristian; Hernández, Cherie; Alegría, René; Arroyo-Jousse, Viviana; Peñaloza, Estefania; Farías, Marcelo; Uauy, Ricardo; Casanello, Paola; Krause, Bernardo J

    2017-02-15

    Intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial epigenetic programming of the umbilical vessels. There is no evidence that this epigenetic programming is occurring on systemic fetal arteries. In IUGR guinea pigs we studied the functional and epigenetic programming of endothelial nitric oxide synthase (eNOS) (Nos3 gene) in umbilical and systemic fetal arteries, addressing the role of oxidative stress in this process by maternal treatment with N-acetylcysteine (NAC) during the second half of gestation. The present study suggests that IUGR endothelial cells have common molecular markers of programming in umbilical and systemic arteries. Notably, maternal treatment with NAC restores fetal growth by increasing placental efficiency and reverting the functional and epigenetic programming of eNOS in arterial endothelium in IUGR guinea pigs. In humans, intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial programming in umbilical vessels. We aimed to determine the effects of maternal antioxidant treatment with N-acetylcysteine (NAC) on fetal endothelial function and endothelial nitric oxide synthase (eNOS) programming in IUGR guinea pigs. IUGR was induced by implanting ameroid constrictors on uterine arteries of pregnant guinea pigs at mid gestation, half of the sows receiving NAC in the drinking water (from day 34 until term). Fetal biometry and placental vascular resistance were followed by ultrasound throughout gestation. At term, umbilical arteries and fetal aortae were isolated to assess endothelial function by wire-myography. Primary cultures of endothelial cells (ECs) from fetal aorta, femoral and umbilical arteries were used to determine eNOS mRNA levels by quantitative PCR and analyse DNA methylation in the Nos3 promoter by pyrosequencing. Doppler ultrasound measurements showed that NAC reduced placental vascular resistance

  8. Aberrant production of extracellular matrix proteins and dysfunction in kidney endothelial cells with a short duration of diabetes.

    Science.gov (United States)

    Grutzmacher, Cathy; Park, SunYoung; Zhao, Yun; Morrison, Margaret E; Sheibani, Nader; Sorenson, Christine M

    2013-01-01

    Diabetic nephropathy is the most common cause of end-stage renal disease and is a major risk factor for cardiovascular disease. In the United States, microvascular complications during diabetic nephropathy contribute to high morbidity and mortality rates. However, the cell-autonomous impact of diabetes on kidney endothelial cell function requires further investigation. Male Akita/+ [autosomal dominant mutation in the insulin II gene (Ins2)] mice reproducibly develop diabetes by 4 wk of age. Here, we examined the impact a short duration of diabetes had on kidney endothelial cell function. Kidney endothelial cells were prepared from nondiabetic and diabetic mice (4 wk of diabetes) to delineate the early changes in endothelial cell function. Kidney endothelial cells from Akita/+ mice following 4 wk of diabetes demonstrated aberrant expression of extracellular matrix proteins including decreased osteopontin and increased fibronectin expression which correlated with increased α5-integrin expression. These changes were associated with the attenuation of migration and capillary morphogenesis. Kidney endothelial cells from Akita/+ mice had decreased VEGF levels but increased levels of endothelial nitric oxide synthase(eNOS) and NO, suggesting uncoupling of VEGF-mediated NO production. Knocking down eNOS expression in Akita/+ kidney endothelial cells increased VEGF expression, endothelial cell migration, and capillary morphogenesis. Furthermore, attenuation of sprouting angiogenesis of aortas from Akita/+ mice with 8 wk of diabetes was restored in the presence of the antioxidant N-acetylcysteine. These studies demonstrate that aberrant endothelial cell function with a short duration of diabetes may set the stage for vascular dysfunction and rarefaction at later stages of diabetes.

  9. Rosmarinic Acid Alleviates the Endothelial Dysfunction Induced by Hydrogen Peroxide in Rat Aortic Rings via Activation of AMPK

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2017-01-01

    Full Text Available Endothelial dysfunction is the key player in the development and progression of vascular events. Oxidative stress is involved in endothelial injury. Rosmarinic acid (RA is a natural polyphenol with antioxidative, antiapoptotic, and anti-inflammatory properties. The present study investigates the protective effect of RA on endothelial dysfunction induced by hydrogen peroxide (H2O2. Compared with endothelium-denuded aortic rings, the endothelium significantly alleviated the decrease of vasoconstrictive reactivity to PE and KCl induced by H2O2. H2O2 pretreatment significantly injured the vasodilative reactivity to ACh in endothelium-intact aortic rings in a concentration-dependent manner. RA individual pretreatment had no obvious effect on the vasoconstrictive reaction to PE and KCl, while its cotreatment obviously mitigated the endothelium-dependent relaxation impairments and the oxidative stress induced by H2O2. The RA cotreatment reversed the downregulation of AMPK and eNOS phosphorylation induced by H2O2 in HAEC cells. The pretreatment with the inhibitors of AMPK (compound C and eNOS (L-NAME wiped off RA’s beneficial effects. All these results demonstrated that RA attenuated the endothelial dysfunction induced by oxidative stress by activating the AMPK/eNOS pathway.

  10. Endothelial dysfunction in hyperandrogenic polycystic ovary syndrome is not explained by either obesity or ectopic fat deposition.

    Science.gov (United States)

    Sprung, Victoria S; Jones, Helen; Pugh, Christopher J A; Aziz, Nabil F; Daousi, Christina; Kemp, Graham J; Green, Daniel J; Cable, N Timothy; Cuthbertson, Daniel J

    2014-01-01

    PCOS (polycystic ovary syndrome) is associated with IR (insulin resistance), increased visceral fat and NAFLD (non-alcoholic fatty liver disease) all of which may contribute to endothelial dysfunction, an early marker of CVD (cardiovascular disease) risk. Our objective was to examine the relationships between endothelial dysfunction in PCOS, the volume of AT (adipose tissue) compartments and the size of intracellular TAG (triacylglycerol) pools in liver and skeletal muscle. A total of 19 women with PCOS (means±S.D.; 26±6 years, 36±5 kg/m2) and 16 control women (31±8 years, 30±6 kg/m2) were recruited. Endothelial function was assessed in the brachial artery using FMD (flow-mediated dilation). VAT (visceral AT) and abdominal SAT (subcutaneous AT) volume were determined by whole body MRI, and liver and skeletal muscle TAG by 1H-MRS (proton magnetic resonance spectroscopy). Cardiorespiratory fitness and HOMA-IR (homoeostasis model assessment of IR) were also determined. Differences between groups were analysed using independent Student's t tests and ANCOVA (analysis of co-variance). FMD was impaired in PCOS by 4.6% [95% CI (confidence interval), 3.0-7.7; Pobese PCOS women. The results suggest that endothelial dysfunction in PCOS is not explained by body fat distribution or volume. FMD might be a useful independent prognostic tool to assess CVD risk in this population.

  11. Vitamin D improves endothelial dysfunction and restores myeloid angiogenic cell function via reduced CXCL-10 expression in systemic lupus erythematosus.

    Science.gov (United States)

    Reynolds, John A; Haque, Sahena; Williamson, Kate; Ray, David W; Alexander, M Yvonne; Bruce, Ian N

    2016-03-01

    Patients with systemic lupus erythematosus (SLE) have accelerated cardiovascular disease and dysfunctional endothelial repair mechanisms. Myeloid angiogenic cells (MACs), derived from circulating monocytes, augment vascular repair by paracrine secretion of pro-angiogenic factors. We observed that SLE MACs are dysfunctional and secrete pro-inflammatory cytokines. We also found that the vitamin D receptor was transiently expressed during MAC differentiation and that in vitro, calcitriol increased differentiation of monocytes into MACs in both SLE and in a model using the prototypic SLE cytokine, interferon-alpha. The active form of vitamin D (calcitriol) restored the SLE MAC phenotype towards that of healthy subjects with reduced IL-6 secretion, and normalised surface marker expression. Calcitriol also augmented the angiogenic capacity of MACs via the down-regulation of CXCL-10. In SLE patients treated with cholecalciferol for 12 weeks, the improvement in endothelial function correlated with increase in serum 25(OH)D concentrations independently of disease activity. We also show that MACs were able to positively modulate eNOS expression in human endothelial cells in vitro, an effect further enhanced by calcitriol treatment of SLE MACs. The results demonstrate that vitamin D can positively modify endothelial repair mechanisms and thus endothelial function in a population with significant cardiovascular risk.

  12. Effect of ruthenium red, a ryanodine receptor antagonist in experimental diabetes induced vascular endothelial dysfunction and associated dementia in rats.

    Science.gov (United States)

    Jain, Swati; Sharma, Bhupesh

    2016-10-01

    Diabetes mellitus is considered as a main risk factor for vascular dementia. In the past, we have reported the induction of vascular dementia by experimental diabetes. This study investigates the efficacy of a ruthenium red, a ryanodine receptor antagonist and pioglitazone in the pharmacological interdiction of pancreatectomy diabetes (PaD) induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. PaD rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with an increase in brain inflammation, oxidative stress and calcium. Administration of ruthenium red and pioglitazone has significantly attenuated PaD induced impairment of learning, memory, blood brain barrier permeability, endothelial function and biochemical parameters. It may be concluded that ruthenium red, a ryanodine receptor antagonist and pioglitazone, a PPAR-γ agonist may be considered as potent pharmacological agent for the management of PaD induced endothelial dysfunction and subsequent vascular dementia. Ryanodine receptor may be explored further for their possible benefits in vascular dementia.

  13. Synergistic effects of metformin with liraglutide against endothelial dysfunction through GLP-1 receptor and PKA signalling pathway

    Science.gov (United States)

    Ke, Jing; Liu, Ye; Yang, Jin; Lu, Ran; Tian, Qing; Hou, Wenfang; Wang, Guang; Wei, Rui; Hong, Tianpei

    2017-01-01

    Metformin or glucagon-like peptide-1 (GLP-1) analogue liraglutide has cardiovascular benefits. However, it is not clear whether their combined treatment have additive or synergistic effects on the vasculature. In this study, human umbilical vein endothelial cells (HUVECs), exposed to palmitic acid (PA) to induce endothelial dysfunction, were incubated with metformin, liraglutide or their combination. High fat diet (HFD)-fed ApoE−/− mice were randomized into control, metformin, liraglutide, and combination treatment groups. Results showed that in PA-treated HUVECs and HFD-fed ApoE−/− mice, combination of metformin and liraglutide at lower dose significantly improved endothelial dysfunction compared with the single treatment. Metformin upregulated GLP-1 receptor (GLP-1R) level and protein kinase A (PKA) phosphorylation. However, PKA inhibition but not GLP-1R blockade eliminated the protective effects of metformin on endothelial function. Furthermore, AMPK inhibitor compound C abolished the metformin-mediated upregulation of GLP-1R level and PKA phosphorylation. In conclusion, combination of metformin and liraglutide has synergistic protective effects on endothelial function. Moreover, metformin stimulates GLP-1R and PKA signalling via AMPK-dependent pathway, which may account for its synergistic protective effects with liraglutide. Our findings provide new insights on the interaction between metformin and GLP-1, and provide important information for designing new GLP-1-based therapy strategies in treating type 2 diabetes. PMID:28145471

  14. Integration of suboptimal health status and endothelial dysfunction as a new aspect for risk evaluation of cardiovascular disease.

    Science.gov (United States)

    Kupaev, Vitalii; Borisov, Oleg; Marutina, Ekaterina; Yan, Yu-Xiang; Wang, Wei

    2016-01-01

    Suboptimal health status (SHS) is recognized as a subclinical, reversible stage of chronic disease. Association has been confirmed between SHS and cardiovascular risk factors, indicating that SHS may contribute to the development of cardiovascular disease. This study explored integrated risk assessment of cardiovascular disease by combining SHS questionnaire-25 (SHSQ-25) and indicators of endothelial dysfunction. A community-based cross-sectional study was conducted in a sample of 459 residents of Samara, Russia, who had no history of clinical diagnosed disease and did not receive any treatment in the last 2 weeks. The SHS score was derived from the data collected in the SHSQ-25. Blood pressure, body mass index, and glucose and lipid levels (total cholesterol, low density lipoprotein, cholesterol and triglycerides) were measured by physical examination and laboratory performance. The relationship between SHS and endothelial dysfunction was examined using Pearson's correlation linear regression analysis. Cluster analysis was performed to identify systemic patterns arising from exposure to a variety of risk factors. Significant correlations were observed between index of endothelial function and the overall performance of SHS (r = -0.31, p cardiovascular system (r = -0.36). Based on cluster analysis, all subjects were grouped into five clusters: (1) optimal health status, (2) SHS at low risk of disease states, (3) SHS with a high risk of non-cardiac pathologies profile, (4) SHS of low risk of cardiovascular disease, and (5) SHS with high risk of cardiovascular disease. SHS is associated with endothelial dysfunction. Integration of suboptimal health status and endothelial dysfunction provides a novel tool to allow people to get a more holistic picture of both subjective and objective health measures, and also can be applied to routine screening for risks of cardiovascular diseases.

  15. Inhibition of endocytosis exacerbates TNF-α-induced endothelial dysfunction via enhanced JNK and p38 activation.

    Science.gov (United States)

    Choi, Hyehun; Nguyen, Hong N; Lamb, Fred S

    2014-04-15

    Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine that causes endothelial dysfunction. Endocytosis of TNF-α receptors (TNFR) precedes endosomal reactive oxygen species (ROS) production, which is required for NF-κB activation in vascular smooth muscle cells. It is unknown how endocytosis of TNFRs impacts signaling in endothelial cells. We hypothesized that TNF-α-induced endothelial dysfunction is induced by both endosomal and cell surface events, including NF-κB and mitogen-activated protein kinases (MAPKs) activation, and endocytosis of the TNFR modifies signaling. Mesenteric artery segments from C57BL/6 mice were treated with TNF-α (10 ng/ml) for 22 h in tissue culture, with or without signaling inhibitors (dynasore for endocytosis, SP600125 for JNK, SB203580 for p38, U0126 for ERK), and vascular function was assessed. Endothelium-dependent relaxation to acetylcholine (ACh) was impaired by TNF-α, and dynasore exacerbated this, whereas JNK or p38 inhibition prevented these effects. In cultured endothelial cells from murine mesenteric arteries, dynasore potentiated JNK and p38 but not ERK phosphorylation and promoted cell death. NF-κB activation by TNF-α was decreased by dynasore. JNK inhibition dramatically increased both the magnitude and duration of TNF-α-induced NF-κB activation and potentiated intercellular adhesion molecule-1 (ICAM-1) activation. Dynasore still inhibited NF-κB activation in the presence of SP600125. Thus TNF-α-induced endothelial dysfunction is both JNK and p38 dependent. Endocytosis modulates the balance of NF-κB and MAPK signaling, and inhibition of NF-κB activation by JNK limits this pro-proliferative signal, which may contribute to endothelial cell death in response to TNF-α.

  16. Inhibitory effect of extracts of Ginkgo biloba leaves on VEGF-induced hyperpermeability of bovine coronary endothelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Yan QIU; Yao-cheng RUI; Tie-jun LI; Li ZHANG; Peng-yuan YANG

    2004-01-01

    AIM: To study whether extract of Ginkgo biloba (EGb) can protect against atherosclerosis. METHODS: Confluent monolayers of bovine coronary endothelial cells (BCECs), bovine coronary smooth muscle cells (BCSMCs), and cocultures of the two were incubated with medium containing VEGF and/or EGb, and flux of 125Ⅰ-labeled oxidized low density lipoprotein (ox-LDL) across the monolayers was measured. RESULTS: Incubation with VEGF significantly increased the permeability of BCEC monolayers to 125Ⅰ-ox-LDL in a time- and concentration-dependent manner, but had no effect on permeability of BCSMCs or endothelial cells-smooth muscle cells cocultures. EGb significantly inhibited the VEGF-induced hyperpermeability of BCECs. CONCLUSION: VEGF was important in the formation and development of atherosclerosis. The inhibition of VEGF-induced permeability by EGb suggests that extracts of Ginkgo biloba leaves may have important clinical applications in the treatment of cardiovascular diseases.

  17. Diabetic HDL is dysfunctional in stimulating endothelial cell migration and proliferation due to down regulation of SR-BI expression.

    Science.gov (United States)

    Pan, Bing; Ma, Yijing; Ren, Hui; He, Yubin; Wang, Yongyu; Lv, Xiaofeng; Liu, Donghui; Ji, Liang; Yu, Baoqi; Wang, Yuhui; Chen, Y Eugene; Pennathur, Subramaniam; Smith, Jonathan D; Liu, George; Zheng, Lemin

    2012-01-01

    Diabetic HDL had diminished capacity to stimulate endothelial cell (EC) proliferation, migration, and adhesion to extracellular matrix. The mechanism of such dysfunction is poorly understood and we therefore sought to determine the mechanistic features of diabetic HDL dysfunction. We found that the dysfunction of diabetic HDL on human umbilical vein endothelial cells (HUVECs) was associated with the down regulation of the HDL receptor protein, SR-BI. Akt-phosphorylation in HUVECs was induced in a biphasic manner by normal HDL. While diabetic HDL induced Akt phosphorylation normally after 20 minutes, the phosphorylation observed 24 hours after diabetic HDL treatment was reduced. To determine the role of SR-BI down regulation on diminished EC responses of diabetic HDL, Mouse aortic endothelial cells (MAECs) were isolated from wild type and SR-BI (-/-) mice, and treated with normal and diabetic HDL. The proliferative and migratory effects of normal HDL on wild type MAECs were greatly diminished in SR-BI (-/-) cells. In contrast, response to diabetic HDL was impaired in both types suggesting diminished effectiveness of diabetic HDL on EC proliferation and migration might be due to the down regulation of SR-BI. Additionally, SR-BI down regulation diminishes diabetic HDL's capacity to activate Akt chronically. Diabetic HDL was dysfunctional in promoting EC proliferation, migration, and adhesion to matrix which was associated with the down-regulation of SR-BI. Additionally, SR-BI down regulation diminishes diabetic HDL's capacity to activate Akt chronically.

  18. The role of tissue renin angiotensin aldosterone system in the development of endothelial dysfunction and arterial stiffness

    Directory of Open Access Journals (Sweden)

    Annayya R Aroor

    2013-10-01

    Full Text Available Epidemiological studies support the notion that arterial stiffness is an independent predictor of adverse cardiovascular events contributing significantly to systolic hypertension, impaired ventricular-arterial coupling and diastolic dysfunction, impairment in myocardial oxygen supply and demand, and progression of kidney disease. Although arterial stiffness is associated with aging, it is accelerated in the presence of obesity and diabetes. The prevalence of arterial stiffness parallels the increase of obesity that is occurring in epidemic proportions and is partly driven by a sedentary life style and consumption of a high fructose, high salt and high fat western diet. Although the underlying mechanisms and mediators of arterial stiffness are not well understood, accumulating evidence supports the role of insulin resistance and endothelial dysfunction. The local tissue renin angiotensin aldosterone system (RAAS in the vascular tissue and immune cells and perivascular adipose tissue is recognized as an important element involved in endothelial dysfunction which contributes significantly to arterial stiffness. Activation of vascular RAAS is seen in humans and animal models of obesity and diabetes, and associated with enhanced oxidative stress and inflammation in the vascular tissue. The cross talk between angiotensin and aldosterone underscores the importance of mineralocorticoid receptors in modulation of insulin resistance, decreased bioavailability of nitric oxide, endothelial dysfunction and arterial stiffness. In addition, both innate and adaptive immunity are involved in this local tissue activation of RAAS. In this review we will attempt to present a unifying mechanism of how environmental and immunological factors are involved in this local tissue RAAS activation, and the role of this process in the development of endothelial dysfunction and arterial stiffness and targeting tissue RAAS activation.

  19. Prognostic significance of endothelial dysfunctional markers of the first stage of chronic kidney disease

    Directory of Open Access Journals (Sweden)

    M. M. Mnuskina

    2014-01-01

    Full Text Available Non-adaptive remodeling of cardiovascular system and progressive kidney damage at chronic kidney disease (CKD is associated with the development of endothelial dysfunction (ED and apoptosis. The aim of this research was to study the changes of indicators of apoptosis and ED in patients with CKD 1 stage throughout 12 months. Complex biochemical, immunoferment and tool methods were applied at patient examinations. Arterial pressure of all observed patients was resolved on target values in 12 months. However, the indicators of endothelium-dependent vasodilation (EDV increased in 55 patients (1st group, and the peak of circulating blood volume in skin microvessels in 22 patients (2nd group wasn't changed: 134±4 % и 136±4 %, p>0.1. The level of the annexin A5 reduced from 3.5±0.47 to 1.27±0.31 ng/ml (p0.1 in 2nd group. Diurnal excretion of sodium chloride decreased from 6.8±0.57 g/d to 2.8±0.39 g/d (p<0.05 in patients of 1st group. Dynamics of these indicators was not marked in patients of 2nd group: accordingly from 7.39±0.63 g/d to 7.01±0.65 g/d. Diurnal excretion of sodium chloride reflected the salt intake in patients with CKD 1 stage is associated with disturbance of endothelial-dependent vasodilation and apoptosis.

  20. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Murrin L Charles

    2011-03-01

    Full Text Available Abstract Background Methamphetamine (METH, an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB to date. Results In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM increased the expression of glucose transporter protein-1 (GLUT1 in primary human brain endothelial cell (hBEC, main component of BBB without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. Conclusion Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity.

  1. The defensive effect of benfotiamine in sodium arsenite-induced experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Verma, Sanjali; Reddy, Krishna; Balakumar, Pitchai

    2010-10-01

    The present study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in sodium arsenite-induced vascular endothelial dysfunction (VED) in rats. Sodium arsenite (1.5 mg(-1) kg(-1) day(-1) i.p., 2 weeks) was administered in rats to produce VED. The development of VED was assessed by employing isolated aortic ring preparation and estimating the serum and aortic concentrations of nitrite/nitrate. Further, the integrity of vascular endothelium in thoracic aorta was assessed by scanning electron microscopy. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of sodium arsenite markedly produced VED by attenuating acetylcholine-induced endothelium-dependent relaxation, decreasing serum and aortic concentrations of nitrite/nitrate, and impairing the integrity of vascular endothelium. Further, sodium arsenite produced oxidative stress by increasing serum TBARS and aortic superoxide generation. The treatment with benfotiamine (25, 50, and 100 mg(-1) kg(-1) day(-1) p.o.) or atorvastatin (30 mg(-1) kg(-1) day(-1) p.o., a standard agent) prevented sodium arsenite-induced VED and oxidative stress. However, the beneficial effects of benfotiamine in preventing the sodium arsenite-induced VED were attenuated by co-administration with N-omega-nitro-L: -arginine methyl ester (L: -NAME) (25 mg(-1) kg(-1) day(-1), i.p.), an inhibitor of NOS. Thus, it may be concluded that benfotiamine reduces oxidative stress and activates endothelial nitric oxide synthase to enhance the generation and bioavailability of NO and subsequently improves the integrity of vascular endothelium to prevent sodium arsenite-induced experimental VED.

  2. Fenofibrate attenuates nicotine-induced vascular endothelial dysfunction in the rat.

    Science.gov (United States)

    Chakkarwar, Vishal Arvind

    2011-01-01

    The study has been designed to investigate the effect of fenofibrate on nicotine-induced vascular endothelial dysfunction (VED) in rats. Nicotine (2 mg/kg/day, i.p., 4 weeks) was administered to produce VED in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum and aortic concentration of nitrite/nitrate. Further, the integrity of vascular endothelium was assessed using the scanning electron microscopy of thoracic aorta. The expression of mRNA for p22phox and eNOS was assessed by using reverse transcriptase-polymerase chain reaction. Serum thiobarbituric acid reactive substances concentration (TBARS) and aortic superoxide anion concentration were estimated to assess oxidative stress. Moreover, the serum lipid profile was assessed by estimating serum cholesterol, triglycerides and high density lipoprotein. The administration of nicotine induces VED by increased oxidative stress, altered lipid profile and impaired the integrity of vascular endothelium as assessed in terms of decrease in expression of mRNA for endothelial nitric oxide synthase (eNOS), impairing the integrity of vascular endothelium and subsequently decreasing serum and aortic nitrite/nitrate and attenuating acetylcholine-induced endothelium dependent relaxation. Further, nicotine produced oxidative stress, assessed in terms of increase in serum TBARS and aortic superoxide anion generation and increase in expression of mRNA for p22phox. Nicotine altered the lipid profile by increasing the serum cholesterol, triglycerides and decreasing the high density lipoprotein. However, treatment with fenofibrate (32 mg/kg, p.o.) markedly prevented nicotine-induced VED by decreasing oxidative stress and improving integrity of vascular endothelium, normalising the altered lipid profile, increasing the concentration of serum and aortic nitrite/nitrate, enhancing the acetylcholine-induced endothelium dependent relaxation and decreasing serum TBARS and aortic

  3. Cerebral endothelial dysfunction in reversible cerebral vasoconstriction syndrome: a case-control study.

    Science.gov (United States)

    Choi, Hyun Ah; Lee, Mi Ji; Chung, Chin-Sang

    2017-12-01

    The aim of this study is to investigate cerebral endothelial dysfunction in patients with reversible cerebral vasoconstriction syndrome (RCVS). We prospectively recruited patients with RCVS, age-matched controls with episodic migraine, and age-matched healthy controls at Samsung Medical Center from Apr 2015 to Jul 2016. All participants underwent transcranial Doppler evaluation, with a breath-holding maneuver, for the evaluation of bilateral middle cerebral arteries (MCAs), posterior cerebral arteries (PCAs), and the basilar artery (BA). The breath-holding index (BHI) was used to measure cerebral endothelium-dependent vasodilation. Follow-up BHIs were recorded in selected patients with RCVS after 3 months. A total of 84 subjects were recruited for this study (n = 28 in each group of RCVS, episodic migraine, and healthy control; mean age, 49.8 years). The RCVS group showed lower BHIs in all basal arteries, in comparison to healthy controls (p < 0.001, 0.009 for bilateral MCAs, p < 0.001 and 0.028 for bilateral PCAs, and p = 0.060 for the BA). Compared to migraineurs, RCVS patients had lower BHIs only in the anterior circulation (p = 0.002 and 0.038 for bilateral MCAs; p = 0.069 and 0.247 for bilateral PCAs; p = 0.120 for the BA). Of the 10 patients who had follow-up BHIs at 3 months, 7 showed complete normalization, while three did not. Cerebral endothelial function is impaired in a widespread distribution in RCVS. Its role in the pathogenesis and clinical outcome of RCVS should be determined in further studies.

  4. Nitric Oxide Plasma Level as a Barometer of Endothelial Dysfunction in Factory Workers.

    Science.gov (United States)

    Miyata, Seiko; Noda, Akiko; Hara, Yuki; Ueyama, Jun; Kitaichi, Kiyoyuki; Kondo, Takaaki; Koike, Yasuo

    2017-07-27

    Objective Nitric oxide (NO) plays a key role in the regulation of vascular tone and is known as one of the key markers of endothelial dysfunction. We investigated the relationship between NO and risk factors of lifestyle-related disease in factory workers. Methods Our study included 877 factory workers presenting hypertension, dyslipidemia and type 2 diabetes. oxidated forms of NO, NO2-/NO3- (NOx) plasma concentrations were measured using a colorimetric method. Results NOx plasma levels in patients with lifestyle-related disease were significantly lower than those in the controls. The brachial-ankle pulse wave velocity (baPWV) measured in those patients was significantly greater than that of the controls. Multiple regression analysis revealed that LDL cholesterol was an independent risk factor for reducing NOx plasma concentrations. Interestingly, individuals with low NOx plasma concentrations were more likely to present type 2 diabetes compared to those with the highest plasma levels of NOx (odds ratio [OR] [95% confidence interval; CI]=3.65 [1.61-8.28], P=0.002, 2.67 [1.15-6.20], P=0.022, and 3.27 [1.43-7.48], P=0.005). Subjects with the lowest levels of plasma NOx were more likely to present dyslipidemia (OR [95% CI]=1.69 [1.13-2.53], P=0.01). Conclusion Endothelial function evaluated with plasma NOx may be indicative of lifestyle-related diseases independently from the vascular function assessed using baPWV. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction.

    Science.gov (United States)

    Lopez-Garcia, Esther; Schulze, Matthias B; Meigs, James B; Manson, JoAnn E; Rifai, Nader; Stampfer, Meir J; Willett, Walter C; Hu, Frank B

    2005-03-01

    Trans fatty acid intake has been associated with a higher risk of cardiovascular disease. The relation is explained only partially by the adverse effect of these fatty acids on the lipid profile. We examined whether trans fatty acid intake could also affect biomarkers of inflammation and endothelial dysfunction including C-reactive protein (CRP), interleukin-6 (IL-6), soluble tumor necrosis factor receptor 2 (sTNFR-2), E-selectin, and soluble cell adhesion molecules (sICAM-1 and sVCAM-1). We conducted a cross-sectional study of 730 women from the Nurses' Health Study I cohort, aged 43-69 y, free of cardiovascular disease, cancer, and diabetes at time of blood draw (1989-1990). Dietary intake was assessed by a validated FFQ in 1986 and 1990. CRP levels were 73% higher among those in the highest quintile of trans fat intake, compared with the lowest quintile. IL-6 levels were 17% higher, sTNFR-2 5%, E-selectin 20%, sICAM-1 10%, and sVCAM-1 levels 10% higher. Trans fatty acid intake was positively related to plasma concentration of CRP (P = 0.009), sTNFR-2 (P = 0.002), E-selectin (P = 0.003), sICAM-1 (P = 0.007), and sVCAM-1 (P = 0.001) in linear regression models after controlling for age, BMI, physical activity, smoking status, alcohol consumption, intake of monounsaturated, polyunsaturated, and saturated fatty acids, and postmenopausal hormone therapy. In conclusion, this study suggests that higher intake of trans fatty acids could adversely affect endothelial function, which might partially explain why the positive relation between trans fat and cardiovascular risk is greater than one would predict based solely on its adverse effects on lipids.

  6. Endothelial Dysfunction and Insulin Resistance as Pathophysiologic Mechanisms in a Rat Model of Preeclampsia

    Directory of Open Access Journals (Sweden)

    Ayman Z. Elsamanoudy

    2010-01-01

    Full Text Available Problem statement: To assess the plasma concentrations and placental gene expression of soluble fms like tyrosine kinase (sFlt-1, Vascular Endothelial Growth Factor (VEGF, visfatin and Tumour Necrosis Factor α (TNFα in a rat model of preeclampsia, induced by chronic Reduction of Uterine Perfusion Pressure (RUPP and to investigate the involvement of Insulin Resistance (IR in the pathophysiology of preeclampsia and the possible relation of visfatin and TNFα to IR in preclampsia. Approach: Twenty female Sprague-Dawley rats weighing 220-250 g were divided into either RUPP (n = 10 or Normal Pregnant (NP; n = 10 (control groups. Plasma levels and placental gene expression of sFlt-1, VEGF, visfatin, TNFα, plasma endothelin (ET-1, glucose, serum insulin, creatinine, HOMA-IR and placental Malondialdehyde (MDA and total antioxidants were measured. Also, Mean Arterial Pressure (MAP, fetal number and weight were determined. Results: In RUPP rats, MAP increased, plasma level and placental gene expression of sFlt-1, visfatin and TNFα increased while those of VEGF decreased. Moreover, plasma ET-1, glucose, insulin, HOMA-IR increased while GFR, fetal weight and number decreased. There is a significant positive correlation between TNFα, ET-1, sFlt-1 and MAP, between plasma visfatin or TNFα levels and both serum insulin and HOMA-IR, between visfatin and TNFα, between TNFα and ET-1 and between placental MDA and either sFlt-1 or ET-1. Furthermore, a negative correlation was reported between VEGF and MAP. Conclusion: RUPP increased sFlt-1, TNFα and decreased VEGF resulting in endothelial dysfunction which is manifested by increased MDA and ET-1. This results in altered renal function and hypertension. Moreover, IR may be involved in the pathophysiology of preeclampsia. Visfatin and TNFα, may have a role in IR during preclampsia.

  7. GenousTM endothelial progenitor cell capturing stent vs. the Taxus Liberte stent in patients with de novo coronary lesions with a high-risk of coronary restenosis: a randomized, single-centre, pilot study

    NARCIS (Netherlands)

    M.A.M. Beijk; M. Klomp; N.J.W. Verouden; N. van Geloven; K.T. Koch; J.P.S. Henriques; J. Baan; M.M. Vis; E. Scheunhage; J.J. Piek; J.G.P. Tijssen; R.J. de Winter

    2010-01-01

    Aims The purpose of this study was to evaluate the Genous(TM) endothelial progenitor cell capturing stent vs. the Taxus Liberté paclitaxel-eluting stent in patients with de novo coronary lesions with a high-risk of coronary restenosis. Methods and results We randomly assigned 193 patients with lesio

  8. Coronary and peripheral endothelial function in HIV patients studied with positron emission tomography and flow-mediated dilation: relation to hypercholesterolemia

    DEFF Research Database (Denmark)

    Lebech, Anne-Mette; Kristoffersen, Ulrik; Wiinberg, Niels

    2008-01-01

    BACKGROUND: The mechanisms underlying increased cardiovascular risk in HIV patients in antiretroviral therapy (ART) are not known. Our aim was to study the endothelial function of the coronary arteries by cardiac perfusion positron emission tomography (PET), in HIV patients with normal or high ch...... in hypercholesterolemic patients. Also, the increased level of plasma endothelial markers found in HIV patients was not related to hypercholesterolemia....

  9. Preservation of vascular DDAH activity contributes to the protection of captopril against endothelial dysfunction in hyperlipidemic rabbits.

    Science.gov (United States)

    Lin, Yuan; Feng, Mei; Lu, Chang-Wu; Lei, Yan-Ping; He, Zhi-Min; Xiong, Yan

    2017-03-05

    Endothelial dysfunction plays a pivotal role in the pathogenesis of atherosclerosis. Endogenous inhibitor of nitric oxide synthase (NOS) asymmetric dimethylarginine (ADMA) has been recognized as an independent risk factor of endothelial dysfunction and the biomarker of atherosclerosis. This study was to investigate whether endogenous ADMA and its metabolic enzyme dimethylarginine dimethylaminohydrolase (DDAH) were involved in mechanisms of captopril protection against endothelial dysfunction in high fat diet feeding rabbits. Half of model rabbits were treated with captopril (10mg/kg/d, i.g.) for 12w. Vascular morphology and serum lipid profiles were detected. Serum ADMA concentration were assayed by high performance liquid chromatography. Recombinant DDAH2 gene adenoviruses were ex vivo transferred to thoracic aortas of high fat diet feeding rabbits. Endothelium-dependent relaxation of aortas response to acetylcholine and DDAH activity were measured. Atherosclerosis was confirmed in high fat diet feeding rabbits by increased serum lipid profiles and morphologic changes of vascular wall. Serum ADMA levels were significantly increased in hyperlipidemic rabbits accompanied with impairment of endothelium-dependent relaxation and inhibition of DDAH activity in thoracic aortas. Captopril treatment not only decreased vascular intima thickening and serum ADMA concentration but also preserved vascular DDAH activity and endothelium-dependent relaxation in hyperlipidemic rabbits without influence on serum lipid profiles. Similar beneficial effects on endothelial function and DDAH activity could be achieved by DDAH2 gene transfection. These results indicated that captopril could protect against injuries of vascular morphology and endothelial function in hyperlipidemic rabbits, the mechanisms may be related to the preservation of DDAH activity and decrease of ADMA accumulation in vascular endothelium. Copyright © 2017. Published by Elsevier B.V.

  10. Reduction in circulating markers of endothelial dysfunction in HIV-infected patients during antiretroviral therapy

    DEFF Research Database (Denmark)

    Kjær, Andreas; Kristoffersen, U S; Kofoed, K;

    2009-01-01

    OBJECTIVES: Antiretroviral therapy (ART) in HIV-infected patients is associated with increased cardiovascular risk. Circulating markers of endothelial dysfunction may be used to study early atherogenesis. The aim of our study was to investigate changes in such markers during initiation of ART....... METHODS: In 115 HIV-positive treatment-naïve patients, plasma lipids, E-selectin, soluble intercellular adhesion molecule 1 (sICAM-1), soluble vascular cell adhesion molecule 1 (sVCAM-1), tissue-type plasminogen activator inhibitor 1 (tPAI-1) and high-sensitivity C-reactive protein (hsCRP) were measured...... before and after 2 and 14 months of ART. A control group of 30 healthy subjects was included. Values are mean+/-standard error of the mean. RESULTS: Prior to treatment, HIV-infected patients had elevated levels of sICAM-1 (296+/-24 vs. 144+/-12 ng/mL), tPAI-1 (18 473+/-1399 vs. 5490+/-576 pg/mL) and hs...

  11. Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia

    Directory of Open Access Journals (Sweden)

    Luciana Teofili

    2015-05-01

    Full Text Available We set a model to replicate the vascular bone marrow niche by using endothelial colony forming cells (ECFCs, and we used it to explore the vascular niche function in patients with low-risk myelodysplastic syndromes (MDS. Overall, we investigated 56 patients and we observed higher levels of ECFCs in MDS than in healthy controls; moreover, MDS ECFCs were found variably hypermethylated for p15INK4b DAPK1, CDH1, or SOCS1. MDS ECFCs exhibited a marked adhesive capacity to normal mononuclear cells. When normal CD34+ cells were co-cultured with MDS ECFCs, they generated significant lower amounts of CD11b+ and CD41+ cells than in co-culture with normal ECFCs. At gene expression profile, several genes involved in cell adhesion were upregulated in MDS ECFCs, while several members of the Wingless and int (Wnt pathways were underexpressed. Furthermore, at miRNA expression profile, MDS ECFCs hypo-expressed various miRNAs involved in Wnt pathway regulation. The addition of Wnt3A reduced the expression of intercellular cell adhesion molecule-1 on MDS ECFCs and restored the defective expression of markers of differentiation. Overall, our data demonstrate that in low-risk MDS, ECFCs exhibit various primary abnormalities, including putative MDS signatures, and suggest the possible contribution of the vascular niche dysfunction to myelodysplasia.

  12. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets

    Directory of Open Access Journals (Sweden)

    Lee Yun

    2012-08-01

    Full Text Available Abstract Background Arctium lappa L. (Asteraceae, burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD. Method EAL-I (100 mg·kg−1/day, EAL-II (200 mg·kg−1/day, and fluvastatin (3 mg·kg−1/day groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Results Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM-1, vascular cell adhesion molecule (VCAM-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. Conclusion The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation.

  13. Alveolar macrophage inducible nitric oxide synthase-dependent pulmonary microvascular endothelial cell septic barrier dysfunction.

    Science.gov (United States)

    Farley, K S; Wang, L F; Law, C; Mehta, S

    2008-11-01

    Inducible nitric oxide (NO) synthase (iNOS) from neutrophils and alveolar macrophages (AM) contributes to the pathophysiology of murine septic acute lung injury (ALI). It is not known if AM iNOS has a direct effect on septic pulmonary microvascular endothelial cell (PMVEC) permeability. We hypothesized that AM iNOS mediates PMVEC permeability in vitro under septic conditions through NO and peroxynitrite. 100,000 confluent PMVEC on cell-culture inserts were co-incubated with iNOS+/+ vs. iNOS-/- AM, in various ratios of AM to PMVEC. PMVEC injury was assessed by trans-PMVEC Evans Blue-labelled albumin flux in the presence or absence of cytomix (equimolar TNF-alpha, IL-1beta and IFN-gamma). Cytomix stimulation dose-dependently increased trans-PMVEC EB-albumin flux, which was exaggerated (1.4+/-0.1% vs. 0.4+/-0.1% in unstimulated PMVEC, pDETA-NONOate. Septic iNOS+/+ AM-dependent trans-PMVEC albumin leak was significantly attenuated by pharmacologic iNOS inhibition (L-NAME and 1400W), and scavenging of either NO (oxyhemoglobin), superoxide (PEG-SOD), or peroxynitrite (FeTPPS). Exogenous NO (DETA-NONOate) had no effect on PMVEC permeability. These data are consistent with a direct role of AM iNOS in septic PMVEC barrier dysfunction, which is likely mediated, in part, through peroxynitrite.

  14. Advanced glycation end products: A link between metabolic and endothelial dysfunction in polycystic ovary syndrome?

    Science.gov (United States)

    Pertynska-Marczewska, Magdalena; Diamanti-Kandarakis, Evanthia; Zhang, John; Merhi, Zaher

    2015-11-01

    Polycystic ovary syndrome (PCOS), a heterogeneous syndrome of reproductive and metabolic alterations, is associated with increased long-term risk of cardiovascular complications. This phenomenon has been linked to an increase in oxidative stress and inflammatory markers. Advanced glycation end products (AGEs) are pro-inflammatory molecules that trigger a state of intracellular oxidative stress and inflammation after binding to their cell membrane receptors RAGE. The activation of the AGE-RAGE axis has been well known to play a role in atherosclerosis in both men and women. Women with PCOS have systemic chronic inflammatory condition even at the ovarian level as represented by elevated levels of serum/ovarian AGEs and increased expression of the pro-inflammatory RAGE in ovarian tissue. Data also showed the presence of sRAGE in the follicular fluid and its potential protective role against the harmful effect of AGEs on ovarian function. Thus, whether AGE-RAGE axis constitutes a link between metabolic and endothelial dysfunction in women with PCOS is addressed in this review. Additionally, we discuss the role of hormonal changes observed in PCOS and how they are linked with the AGE-RAGE axis in order to better understand the nature of this complex syndrome whose consequences extend well beyond reproduction.

  15. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets.

    Science.gov (United States)

    Lee, Yun Jung; Choi, Deok Ho; Cho, Guk Hyun; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-08-06

    Arctium lappa L. (Asteraceae), burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL) seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD). EAL-I (100 mg·kg-1/day), EAL-II (200 mg·kg-1/day), and fluvastatin (3 mg·kg-1/day) groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL) in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh)-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP) and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP)-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation.

  16. Renal Dysfunction after Off-Pump Coronary Artery Bypass Surgery- Risk Factors and Preventive Strategies

    Directory of Open Access Journals (Sweden)

    Gaurab Maitra

    2009-01-01

    Full Text Available Postoperative renal dysfunction is a relatively common and one of the serious complications of cardiac surgery. Though off-pump coronary artery bypass surgery technique avoids cardiopulmonary bypass circuit induced adverse effects on renal function, multiple other factors cause postoperative renal dysfunction in these groups of patients. Acute kidney injury is generally defined as an abrupt and sustained decrease in kidney function. There is no consen-sus on the amount of dysfunction that defines acute kidney injury, with more than 30 definitions in use in the literature today. Although serum creatinine is widely used as a marker for changes in glomerular filtration rate, the criteria used to define renal dysfunction and acute renal failure is highly variable. The variety of definitions used in clinical studies may be partly responsible for the large variations in the reported incidence. Indeed, the lack of a uniform definition for acute kidney injury is believed to be a major impediment to research in the field. To establish a uniform definition for acute kidney injury, the Acute Dialysis Quality Initiative formulated the Risk, Injury, Failure, Loss, and End-stage Kidney (RIFLE classification. RIFLE , defines three grades of increasing severity of acute kidney injury -risk (class R, injury (class I and failure (class F - and two outcome classes (loss and end-stage kidney disease. Various perioperative risk factors for postoperative renal dysfunction and failure have been identified. Among the important preoperative factors are advanced age, reduced left ventricular function, emergency surgery, preoperative use of intraaortic balloon pump, elevated preoperative serum glucose and creatinine. Most important intraoperative risk factor is the intraoperative haemodynamic instability and all the causes of postoperative low output syndrome com-prise the postoperative risk factors. The most important preventive strategies are the identification of the

  17. The effects of different exercise modes for preventing endothelial dysfunction of arteries and bone loss in ovariectomized rats

    OpenAIRE

    Park,Jonghoon; Omi, Naomi

    2014-01-01

    [Purpose] Several epidemiological studies have demonstrated that there are positive correlations between vascular disorders and bone loss in postmenopausal women. The aim of the present study was to examine the effect of different types of exercise (e.g., climbing and swimming) for preventing endothelial dysfunction of arteries and bone loss in ovariectomized rats. [Methods] Twenty Sprague-Dawley female rats were randomly divided into three groups: ovariectomy (OVX) plus treatment with vitami...

  18. Coronary flow reserve in hypertrophic cardiomyopathy: relation with microvascular dysfunction and pathophysiological characteristics.

    Science.gov (United States)

    Kofflard, M J; Michels, M; Krams, R; Kliffen, M; Geleijnse, M L; Ten Cate, F J; Serruys, P W

    2007-01-01

    BACKGROUND.: The decrease in coronary flow reserve (CFR) in hypertrophic cardiomyopathy (HCM) predisposes to myocardial ischaemia, systolic dysfunction and cardiac death. In this study we investigate to which extent haemodynamic, echocardiographic, and histological parameters contribute to the reduction of CFR. METHODS.: In ten HCM patients (mean age 44+/-14 years) and eight heart transplant (HTX) patients (mean age 51+/-6 years) CFR was calculated in the left anterior descending coronary artery. In all subjects haemodynamic, echocardiographic and histological parameters were assessed. The relationship between these variables and CFR was determined using linear regression analysis. RESULTS.: CFR was reduced in HCM compared with HTX patients (1.6+/-0.7 vs. 2.7+/-0.8, p<0.01). An increase in septal thickness (p<0.005), indexed left ventricular (LV) mass (p<0.005), LV end-diastolic pressure (p<0.001), LV outflow tract gradient (p<0.05) and a decrease in arteriolar lumen size (p<0.05) were all related to a reduction in CFR. CONCLUSION.: In HCM patients haemodynamic (LV end-diastolic pressure, LV outflow tract gradient), echocardiographic (indexed LV mass) and histological (% luminal area of the arterioles) changes are responsible for a decrease in CFR. (Neth Heart J 2007;15:209-15.).

  19. A possible link between endothelial dysfunction and insulin resistance in hypertension. A LIFE substudy. Losartan Intervention For Endpoint-Reduction in Hypertension

    DEFF Research Database (Denmark)

    Olsen, M H; Andersen, U B; Wachtell, K;

    2000-01-01

    We wanted to investigate whether insulin resistance and time to steady state during isoglycemic clamp were associated with endothelial dysfunction, peripheral vascular remodeling and forearm blood flow (FBF) in patients with longstanding hypertension....

  20. Doppler assessment of brachial artery flow as a measure of endothelial dysfunction in pediatric chronic renal failure.

    Science.gov (United States)

    Hussein, Gehan; Bughdady, Yasser; Kandil, Manal E; Bazaraa, Hafez M; Taher, Heba

    2008-11-01

    Cardiovascular morbidity and mortality are highly prevalent among patients with chronic renal failure (CRF). Endothelial dysfunction is regarded as the initial reversible step in the development of atherosclerosis and has been demonstrated in all stages of renal failure. Non-invasive techniques to assess endothelial function have been recently developed and have been proven to predict future mortality in adults. We aimed to assess endothelial function in children with stage 4 chronic kidney disease (CKD 4) on conservative treatment, using a-non invasive, high-resolution, ultrasound Doppler study of the brachial artery flow, correlating it with other clinical and laboratory parameters. This study included 34 children with CKD 4 on conservative treatment who were compared with 30 healthy controls. Flow-mediated dilatation (FMD), nitroglycerin-mediated dilatation (NTG-MD) and FMD/NTG-MD ratio were estimated. FMD was abnormal (< 5%) in 24 patients (71%). FMD and FMD/NTG-MD ratio were significantly lower in patients than in controls (P = 0.001 and P = 0.01, respectively). FMD correlated positively with serum calcium and negatively with alkaline phosphatase. We concluded that endothelial dysfunction is present in children with CKD 4 on conservative treatment and may reflect increased atherogenic and thrombogenic properties of the endothelium, contributing to subsequent adverse cardiovascular outcome.

  1. Elevated Monocyte to High-Density Lipoprotein Cholesterol Ratio and Endothelial Dysfunction in Behçet Disease.

    Science.gov (United States)

    Acikgoz, Nusret; Kurtoğlu, Ertuğrul; Yagmur, Julide; Kapicioglu, Yelda; Cansel, Mehmet; Ermis, Necip

    2017-01-01

    Behçet disease (BD) is a multisystemic disorder characterized by endothelial dysfunction and inflammation. Monocyte to high-density lipoprotein cholesterol ratio (MHR) is a recently emerged indicator of inflammation and oxidative stress. Sixty patients with BD and 50 control individuals were included to investigate the relationship between MHR and endothelial dysfunction. Endothelial function was assessed by flow- and nitroglycerin-mediated dilatation technique (FMD and NMD, respectively). Serum high-sensitivity C-reactive protein (hsCRP) levels were measured in all study participants. The MHR and hsCRP levels were significantly higher in patients with active BD than in controls. Brachial artery FMD was significantly lower in patients with active BD than in controls. Brachial artery NMD was similar between groups. There was a strong inverse correlation between MHR and FMD and a strong positive correlation between MHR and serum hsCRP levels. Thus, elevated MHR may be a useful marker reflecting impaired endothelial function and systemic inflammation in patients with BD.

  2. Associations between endothelial dysfunction and clinical and laboratory parameters in children and adolescents with sickle cell anemia

    Science.gov (United States)

    Ferreira, Tatiane Anunciação; Machado, Vinícius Ramos; Perdiz, Marya Izadora; Lyra, Isa Menezes; Nascimento, Valma Lopes; Boa-Sorte, Ney; Andrade, Bruno B.; Ladeia, Ana Marice

    2017-01-01

    Background Hematological changes can drive damage of endothelial cells, which potentially lead to an early endothelial dysfunction in patients with sickle cell anemia (SCA). An association may exist between endothelial dysfunction and several clinical manifestations of SCA. The present study aims to evaluate the links between changes in endothelial function and clinical and laboratory parameters in children and adolescents with SCA. Methods This study included 40 children and adolescents with stable SCA as well as 25 healthy children; aged 6–18 years. All study subjects were evaluated for endothelial function using Doppler ultrasonography. In addition, a number of laboratory assays were performed, including reticulocyte and leukocyte counts as well as measurement of circulating levels of total bilirubin, C-reactive protein (CRP), glucose, lipoproteins and peripheral oxyhemoglobin saturation. These parameters were also compared between SCA patients who were undertaking hydroxyurea (HU) and those who were not. Results Flow-mediated vasodilation (FMD) values were found to be reduced in SCA patients compared with those detected in healthy controls. SCA individuals with lower FMD values exhibited higher number of hospital admissions due to vaso-occlusive events. Additional analyses revealed that patients who had decreased FMD values exhibited higher odds of acute chest syndrome (ACS) episodes. A preliminary analysis with limited number of individuals failed to demonstrate significant differences in FMD values between SCA individuals who were treated with HU and those who were not. Conclusions Children and adolescents with SCA exhibit impaired endothelial function. Reductions in FMD values are associated with ACS. These findings underline the potential use of FMD as screening strategy of SCA patients with severe prognosis at early stages. PMID:28863145

  3. Hypercholesterolemia increases plasma saturated and n-6 fatty acids altering prostaglandin homeostasis and promotes endothelial dysfunction in rabbits.

    Science.gov (United States)

    Medina, M; Alberto, M R; Sierra, L; Van Nieuwenhove, C; Saad, S; Isla, M I; Jerez, S

    2014-07-01

    The present study evaluated the plasma fatty acid levels and the vascular prostaglandin (PG) release in a rabbit model of early hypercholesterolemia with endothelial dysfunction. Rabbits were fed either a control diet (CD) or a diet containing 1 % cholesterol (HD) for 5-6 weeks. The level of fatty acids was measured in plasma. The levels of PG and nitric oxide (NO) released from the aorta were also determined. Vascular morphology of the aorta was characterized by intima and media thickness measurements. The rabbits fed with HD had higher levels of arachidonic acid (ARA) and lower levels of oleic acid. The linoleic acid level was unchanged. PGI(2) and NO were diminished and PGF(2α) levels, the PGI(2)/TXA(2) ratio and the intima/media ratio were increased in rabbits fed with HD. In conclusion, feeding HD for a short period increased ARA plasma levels and unbalanced release of vasodilator/vasoconstrictor PG redirected the pathway to vasoconstrictor metabolite release. These lipid metabolism alterations in addition to the reduced NO levels and the moderate changes in the vascular morphology contributed to the endothelial dysfunction in this animal model. Therefore, the present findings support the importance of early correction or prevention of high cholesterol levels to disrupt the endothelial dysfunction process that leads to cardiovascular disease.

  4. Endothelial dysfunction correlates with exaggerated exercise pressor response during whole body maximal exercise in chronic kidney disease.

    Science.gov (United States)

    Downey, Ryan M; Liao, Peizhou; Millson, Erin C; Quyyumi, Arshed A; Sher, Salman; Park, Jeanie

    2017-05-01

    Chronic kidney disease (CKD) patients have exercise intolerance associated with increased cardiovascular mortality. Previous studies demonstrate that blood pressure (BP) and sympathetic nerve responses to handgrip exercise are exaggerated in CKD. These patients also have decreased nitric oxide (NO) bioavailability and endothelial dysfunction, which could potentially lead to an impaired ability to vasodilate during exercise. We hypothesized that CKD patients have exaggerated BP responses during maximal whole body exercise and that endothelial dysfunction correlates with greater exercise pressor responses in these patients. Brachial artery flow-mediated dilation (FMD) was assessed before maximal treadmill exercise in 56 participants: 38 CKD (56.7 ± 1.2 yr old, 38 men) and 21 controls (52.8 ± 1.8 yr old, 20 men). During maximal treadmill exercise, the slope-of-rise in systolic BP (+10.32 vs. +7.75 mmHg/stage, P exercise in CKD, as well as poorer exercise capacity measured as peak oxygen uptake (V̇o2peak; 19.47 ± 1.47 vs. 24.57 ± 1.51 ml·min(-1)·kg(-1), P exercise and lower V̇o2peak, suggesting that endothelial dysfunction may contribute to exaggerated exercise pressor responses and poor exercise capacity in CKD patients.

  5. Endothelial dysfunction in high fructose containing diet fed rats: Increased nitric oxide and decreased endothelin-1 levels in liver tissue

    Directory of Open Access Journals (Sweden)

    Zeki Arı

    2010-09-01

    Full Text Available Objectives: Dietary high fructose consumption which is closely associated with endothelial dysfunction via insulin re-sistance has recently increased in developed countries. Insulin resistance has a promoter effect on many metabolic disorders such as syndrome X, polycystic ovary syndrome, Type 2 diabetes mellitus etc. Our aim in this study is to understand the impact of increased fructose intake on metabolisms of glucose, insulin and endothelial dysfunction by measuring nitric oxide (NO and endothelin-1 (ET-1 levels in hepatic tissue which is crucial in fructose metabolism.Materials and Methods: We designed an animal study to understand increased fructose intake on hepatic endothe-lium. Twenty adult male albino rats were divided into two groups; the study group (group 1, n=10 received isocaloric fructose enriched diet (fructose-fed rats, containing 18.3% protein, 60.3% fructose and 5.2% fat while the control group received purified regular chow (group 2, n=10 for 2 weeks. After feeding period, blood and hepatic tissue samples were collected and glucose, insulin, NO and ET-1 levels were analysed.Results: We found increased fasting glucose and insulin levels and impaired glucose tolerance in fructose fed rats. Higher NO and lower ET–1 levels were also detected in hepatic tissue samples of the group 1.Conclusion: Increased fructose consumption has deleterious effects on glucose tolerance, insulin resistance and may cause to endothelial dysfunction.

  6. The Role of Endothelial Dysfunction in the Pathogenesis of Vascular Complications of Diabetes Mellitus - A High Priority Area of Investigation

    Directory of Open Access Journals (Sweden)

    Străchinariu Rodica Teodora

    2015-03-01

    Full Text Available Endothelium, the inner layer of the vasculature, represents the interface between blood and organ systems and it is active in the process of contraction and relaxation of vascular smooth muscle and in functions like secretion of vasoactive substances. Endothelial dysfunction is an important cause of cardiovascular disease. The function of the endothelium can be assessed by invasive and noninvasive methods. Endothelial cells produce vasoactive substances like endothelium derived relaxing factor, prostacyclin, nitric oxide, and endothelium derived hyperpolarizing factor. Diabetes mellitus is associated with an increased risk of cardiovascular diseases. Hyperglycemia leads to cardiovascular damage through different pathways, including the polyol and hexosamine pathways, generation of advanced glycation end products, and activation of protein kinase C. Together with hyperglycemia induced mitochondrial dysfunction and endoplasmic reticulum stress, all these can promote the accumulation of reactive oxygen species. The oxidative stress induced by hyperglycemia promotes endothelial dysfunction with an important role in micro and macro vascular disease. Insulin-resistance could be independently predictive of cardiovascular disease. Life style modification and pharmacotherapy could possibly ameliorate the effect of insulin resistance

  7. TMEM16A Contributes to Endothelial Dysfunction by Facilitating Nox2 NADPH Oxidase-Derived Reactive Oxygen Species Generation in Hypertension.

    Science.gov (United States)

    Ma, Ming-Ming; Gao, Min; Guo, Kai-Min; Wang, Mi; Li, Xiang-Yu; Zeng, Xue-Lin; Sun, Lu; Lv, Xiao-Fei; Du, Yan-Hua; Wang, Guan-Lei; Zhou, Jia-Guo; Guan, Yong-Yuan

    2017-03-20

    Ca2(+)-activated Cl(-) channels play a crucial role in various physiological processes. However, the role of TMEM16A in vascular endothelial dysfunction during hypertension is unclear. In this study, we investigated the specific involvement of TMEM16A in regulating endothelial function and blood pressure and the underlying mechanism. Reverse transcription-polymerase chain reaction, Western blotting, coimmunoprecipitation, confocal imaging, patch-clamp recordings, and TMEM16A endothelial-specific transgenic and knockout mice were used. We found that TMEM16A was expressed abundantly and functioned as a Ca2(+)-activated Cl(-) channel in endothelial cells. Angiotensin II induced endothelial dysfunction with an increase in TMEM16A expression. The knockout of endothelial-specific TMEM16A significantly lowered the blood pressure and ameliorated endothelial dysfunction in angiotensin II-induced hypertension, whereas the overexpression of endothelial-specific TMEM16A resulted in the opposite effects. These results were related to the increased reactive oxygen species production, Nox2-containing NADPH oxidase activation, and Nox2 and p22phox protein expression that were facilitated by TMEM16A on angiotensin II-induced hypertensive challenge. Moreover, TMEM16A directly bound with Nox2 and reduced the degradation of Nox2 through the proteasome-dependent degradation pathway. Therefore, TMEM16A is a positive regulator of endothelial reactive oxygen species generation via Nox2-containing NADPH oxidase, which induces endothelial dysfunction and hypertension. Modification of TMEM16A may be a novel therapeutic strategy for endothelial dysfunction-associated diseases.

  8. A possible link between endothelial dysfunction and insulin resistance in hypertension. A LIFE substudy. Losartan Intervention For Endpoint-Reduction in Hypertension

    DEFF Research Database (Denmark)

    Olsen, M H; Andersen, U B; Wachtell, K;

    2000-01-01

    We wanted to investigate whether insulin resistance and time to steady state during isoglycemic clamp were associated with endothelial dysfunction, peripheral vascular remodeling and forearm blood flow (FBF) in patients with longstanding hypertension.......We wanted to investigate whether insulin resistance and time to steady state during isoglycemic clamp were associated with endothelial dysfunction, peripheral vascular remodeling and forearm blood flow (FBF) in patients with longstanding hypertension....

  9. Coronary microvascular dysfunction in a porcine model of early atherosclerosis and diabetes

    NARCIS (Netherlands)

    Heuvel, van den M.; Sorop, O.; Koopmans, S.J.; Dekker, R.A.; Vries, de R.; Beusekom, H.M.M.; Eringa, E.C.; Duncker, D.J.; Danser, A.H.J.; Giessen, W.J.

    2012-01-01

    Detailed evaluation of coronary function early in diabetes mellitus (DM)-associated coronary artery disease (CAD) development is difficult in patients. Therefore, we investigated coronary conduit and small artery function in a preatherosclerotic DM porcine model with type 2 characteristics.

  10. Dysfunctional high-density lipoproteins in coronary heart disease: implications for diagnostics and therapy.

    Science.gov (United States)

    Annema, Wijtske; von Eckardstein, Arnold

    2016-07-01

    Low plasma levels of high-density lipoprotein (HDL) cholesterol are associated with increased risks of coronary heart disease. HDL mediates cholesterol efflux from macrophages for reverse transport to the liver and elicits many anti-inflammatory and anti-oxidative activities which are potentially anti-atherogenic. Nevertheless, HDL has not been successfully targeted by drugs for prevention or treatment of cardiovascular diseases. One potential reason is the targeting of HDL cholesterol which does not capture the structural and functional complexity of HDL particles. Hundreds of lipid species and dozens of proteins as well as several microRNAs have been identified in HDL. This physiological heterogeneity is further increased in pathologic conditions due to additional quantitative and qualitative molecular changes of HDL components which have been associated with both loss of physiological function and gain of pathologic dysfunction. This structural and functional complexity of HDL has prevented clear assignments of molecules to the functions of normal HDL and dysfunctions of pathologic HDL. Systematic analyses of structure-function relationships of HDL-associated molecules and their modifications are needed to test the different components and functions of HDL for their relative contribution in the pathogenesis of atherosclerosis. The derived biomarkers and targets may eventually help to exploit HDL for treatment and diagnostics of cardiovascular diseases.

  11. Long term prognosis of acute coronary syndrome with chronic renal dysfunction treated in different therapy units at department of cardiology: a retrospective cohort study.

    Science.gov (United States)

    Fu, Cong; Sheng, Zulong; Yao, Yuyu; Wang, Xin; Yu, Chaojun; Ma, Genshan

    2015-01-01

    Coronary care unit is common in hospitals and clinical centers which offer intensive care and therapy for severe coronary artery disease patients. However, if coronary care unit could improve the long term prognosis of acute coronary syndrome patients with renal dysfunction remain unknown. Accordingly, we designed this study to evaluate the differences of incidence of major adverse cardiovascular events for acute coronary syndromes patients with renal dysfunction who treated in coronary care unit or normal unit. The primary end point was all cause mortality. A total of 414 acute coronary syndromes patients with renal dysfunction involved in the study. The results showed that during 12-48 months follow-up, death of any cause occurred in 1.8% patients (4 of 247) in coronary care unit group, as compared with 1.8% in the normal group (3 of 167) (hazard ratio, 1.098; 95% confidence interval, 0.246 to 4.904; P=0.903). Kaplan-Meier survival analysis showed that there were no significant differences between the two groups with respect to the risk of death (P=0.903), revascularization (P=0.948), stroke (P=0.542), heart failure (P=0.198). This trial firstly revealed that acute coronary syndromes patients with renal dysfunction treated in coronary care unit and normal units. Our study showed that acute coronary syndromes patients with renal dysfunction treated in coronary care unit obtained no significant benefits compared with patients in normal units, although there was a declining tendency of the risk of major adverse cardiovascular effectswith patients in coronary care unit.

  12. Long term prognosis of acute coronary syndrome with chronic renal dysfunction treated in different therapy units at department of cardiology: a retrospective cohort study

    Science.gov (United States)

    Fu, Cong; Sheng, Zulong; Yao, Yuyu; Wang, Xin; Yu, Chaojun; Ma, Genshan

    2015-01-01

    Coronary care unit is common in hospitals and clinical centers which offer intensive care and therapy for severe coronary artery disease patients. However, if coronary care unit could improve the long term prognosis of acute coronary syndrome patients with renal dysfunction remain unknown. Accordingly, we designed this study to evaluate the differences of incidence of major adverse cardiovascular events for acute coronary syndromes patients with renal dysfunction who treated in coronary care unit or normal unit. The primary end point was all cause mortality. A total of 414 acute coronary syndromes patients with renal dysfunction involved in the study. The results showed that during 12-48 months follow-up, death of any cause occurred in 1.8% patients (4 of 247) in coronary care unit group, as compared with 1.8% in the normal group (3 of 167) (hazard ratio, 1.098; 95% confidence interval, 0.246 to 4.904; P=0.903). Kaplan-Meier survival analysis showed that there were no significant differences between the two groups with respect to the risk of death (P=0.903), revascularization (P=0.948), stroke (P=0.542), heart failure (P=0.198). This trial firstly revealed that acute coronary syndromes patients with renal dysfunction treated in coronary care unit and normal units. Our study showed that acute coronary syndromes patients with renal dysfunction treated in coronary care unit obtained no significant benefits compared with patients in normal units, although there was a declining tendency of the risk of major adverse cardiovascular effectswith patients in coronary care unit. PMID:26770436

  13. The influence of genotype on vascular endothelial growth factor and regulation of myocardial collateral blood flow in patients with acute and chronic coronary heart disease

    DEFF Research Database (Denmark)

    Ripa, R.S.; Jorgensen, E.; Baldazzi, F.;

    2009-01-01

    OBJECTIVE: To test the hypothesis that mutations in the vascular endothelial growth factor (VEGF) gene are associated with plasma concentration of VEGF and subsequently the ability to influence coronary collateral arteries in patients with coronary heart disease (CHD). METHODS: Blood samples from...... patients with chronic ischemic heart disease (n=53) and acute coronary syndrome (n=61) were analysed. Coronary collaterals were scored from diagnostic biplane coronary angiograms. RESULTS: The plasma concentration of VEGF was increased in patients with acute compared to chronic CHD (p=0.01). The genotype......-1154 and coronary collateral size (p=0.03) and a significant association between the VEGF plasma concentration and the collateral size (p=0.03). CONCLUSION: VEGF plasma concentration seems related to coronary collateral function in patients with CHD. The results did not support the hypothesis...

  14. The development of 3-D, in vitro, endothelial culture models for the study of coronary artery disease

    Directory of Open Access Journals (Sweden)

    Fraser Richard

    2009-10-01

    Full Text Available Abstract The response of the vascular endothelium to wall shear stress plays a central role in the development and progression of atherosclerosis. Current studies have investigated endothelial response using idealized in vitro flow chambers. Such cell culture models are unable to accurately replicate the complex in vivo wall shear stress patterns arising from anatomical geometries. To better understand this implication, we have created both simplified/tubular and anatomically realistic in vitro endothelial flow models of the human right coronary artery. A post-mortem vascular cast of the human left ventricular outflow tract was used to create geometrically accurate silicone elastomer models. Straight, tubular models were created using a custom made mold. Following the culture of human abdominal aortic endothelial cells within the inner lumen, cells were exposed to steady flow (Re = 233 for varying time periods. The resulting cell morphology was analyzed in terms of shape index and angle of orientation relative to the flow direction. In both models a progressive elongation and alignment of the endothelium in the flow direction was observed following 8, 12, and 24 hours. This change, however, was significantly less pronounced in the anatomical model (as observed from morphological variations indicative of localized flow features. Differences were also observed between the inner and outer walls at the disease-prone proximal region. Since morphological adaptation is a visual indication of endothelial shear stress activation, the use of anatomical models in endothelial genetic and biochemical studies may offer better insight into the disease process.

  15. Disruption of Endothelial Cell Homeostasis Plays a Key Role in the Early Pathogenesis of Coronary Artery Abnormalities in Kawasaki Disease

    Science.gov (United States)

    Ueno, Kentaro; Ninomiya, Yumiko; Hazeki, Daisuke; Masuda, Kiminori; Nomura, Yuichi; Kawano, Yoshifumi

    2017-01-01

    Disruption of endothelial cell homeostasis may be associated with the pathogenesis of coronary artery abnormalities (CAA) in Kawasaki disease (KD). We sought to clarify the poorly understood pathogenic role of endothelial cell survival and death in KD vasculitis. Human umbilical vein endothelial cells (HUVECs) stimulated with sera from KD patients, compared with sera from patients with bacterial infections, exhibited significant increases in cytotoxicity, high mobility group box protein 1 (HMGB-1), and caspase-3/7 and a decrease in phosphorylated Akt/Akt (pAkt/Akt) ratios. HUVECs stimulated with sera from KD patients treated with immunoglobulin (IG) showed significantly decreased cytotoxicity, HMGB-1, and caspase-3/7 levels and increased pAkt/Akt ratios, as compared with results for untreated HUVECs (P < 0.001, P = 0.008, P = 0.040, and P < 0.001, respectively). In HUVECs stimulated with sera from KD patients, the increased cytotoxicity levels and the suppression of increased pAkt/Akt ratios after subsequent IG treatment were closely related to the development of CAA (P = 0.002 and P = 0.035). Our data reveal that shifting the balance toward cell death rather than survival appears to perturb endothelial cell homeostasis and is closely related to the development of CAA. The cytoprotective effects of IG treatment appear to ameliorate endothelial cell homeostasis. PMID:28255175

  16. Nafamostat Mesilate Inhibits TNF-α-Induced Vascular Endothelial Cell Dysfunction by Inhibiting Reactive Oxygen Species Production.

    Science.gov (United States)

    Kang, Min-Woong; Song, Hee-Jung; Kang, Shin Kwang; Kim, Yonghwan; Jung, Saet-Byel; Jee, Sungju; Moon, Jae Young; Suh, Kwang-Sun; Lee, Sang Do; Jeon, Byeong Hwa; Kim, Cuk-Seong

    2015-05-01

    Nafamostat mesilate (NM) is a serine protease inhibitor with anticoagulant and anti-inflammatory effects. NM has been used in Asia for anticoagulation during extracorporeal circulation in patients undergoing continuous renal replacement therapy and extra corporeal membrane oxygenation. Oxidative stress is an independent risk factor for atherosclerotic vascular disease and is associated with vascular endothelial function. We investigated whether NM could inhibit endothelial dysfunction induced by tumor necrosis factor-α (TNF-α). Human umbilical vein endothelial cells (HUVECs) were treated with TNF-α for 24 h. The effects of NM on monocyte adhesion, vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) protein expression, p38 mitogen-activated protein kinase (MAPK) activation, and intracellular superoxide production were then examined. NM (0.01~100 µg/mL) did not affect HUVEC viability; however, it inhibited the increases in reactive oxygen species (ROS) production and p66shc expression elicited by TNF-α (3 ng/mL), and it dose dependently prevented the TNF-α-induced upregulation of endothelial VCAM-1 and ICAM-1. In addition, it mitigated TNF-α-induced p38 MAPK phosphorylation and the adhesion of U937 monocytes. These data suggest that NM mitigates TNF-α-induced monocyte adhesion and the expression of endothelial cell adhesion molecules, and that the anti-adhesive effect of NM is mediated through the inhibition of p66shc, ROS production, and p38 MAPK activation.

  17. VASCULAR ENDOTHELIAL FUNCTION CHANGE IN ELDERLY CHINESE PATINENTS WITH OBSTRUCTIVE SLEEP APNEA AND ITS ASSOCIATION WITH CORONARY HEART DISEASE

    Institute of Scientific and Technical Information of China (English)

    王虹; 张希龙; 殷凯生; 贾恩志; 苏梅

    2004-01-01

    Objective To investigate the function change index of vascular endothelial cells (EC), plasma levelsof nitricoxide (NO) and endothelin (ET) in elderly Chinese patients with obstructive sleepapnea hypopnea syndrome(OSAHS) and its associat ion with coronary heart disease (CHD). Methods 31 elderly simple snorers with neitherOSAHSnor CHD were randomly selected as control group. 45 elderly patients with moderate or severe degree of OSAHS wererecruited as OSAHS group, which were further divided into two subgroups, CHD subgroup (16 pat ients) and non CHDsubgroup (29 pa tients). The changes of plasma concentrations of NO and ET were tested and compared from group togroup. Results Compared with control group, in OSAHS group there was a significant lower NO level (27.69±9. 17mmol/Lvs 61.90± 13.47, P<0. 01), higher ET level (58.08±14.21pg/ml vs 34. 77±8.23pg/ml, P<0. 01), and lower rate of NO/ET(0. 47±0. 18 vs 1. 72±0. 97mmol/L, P<0. 01). The incidence of CHD in OSAS group was 35.6%. Comparison between controlgroup and non-CHD OSAHS subgroup showed that the decreased NO level (35.53±9.39), increased ET level(47.78±11.13pg/ml) and declined NO/ET (0.75±0.13) in non CHD subgroup were statistically significant (P<0.05).Such a difference was more significant between conrol group and CHD OSAS subgroup (P<0. 01). Comparison between thetwo subgroups in OSAHS group indicated that there was a significantly lower NO level, higher ET level and more declinedNO/ET in OSAHS with CHD subgroup than in OSAHS without CHD subgroup (all P<0.05). Conclusion Vascular endothelialfunction was significantly impaired in elderly Chinese patients with OSAHS, especially in those with both OSAHSand CHD. Dysfunction of vascular EC may be one of the causes of complicated CHD in OSAHS patients.

  18. Proliferation, migration and apoptosis activities of endothelial progenitor cells in acute coronary syndrome

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-jie; LIU Wen-xian; CHEN Yun-dai; SONG Xian-tao; JIN Ze-ning; L(U) Shu-zheng

    2010-01-01

    Background There are numerous articles on the endothelial progenitor cells (EPCs) in different disease conditions.However, the functional properties of EPCs in acute coronary syndrome (ACS) are still uncertain. Here we aimed to study the number and functions of EPCs in ACS patients.Methods Patients were enrolled with admitted ACS (n=25) and another 25 gender-, age-, atherosclerotic risk factors-matched stable coronary artery disease (CAD) controls. EPCs were defined as CD34+/CD133+/VEGFR-2+ and quantified by flow cytometry. Moreover, functional properties of EPCs including colony-forming unit (CFU), proliferation,migration as well as apoptosis were evaluated and compared between the two groups. Plasma matrix metalloproteinase-9 (MMP-9) was detected in all patients as well.Results The two groups had similar medication and clinical characteristics on admission. The EPCs in ACS patients were more than 2.6 times that in stable CAD subjects (15.6±2.7 vs. 6.0±0.8/100 000 events, P <0.01). CFU was not statistically different between the two groups (10.8±2.9 vs. 8.2±1.8, number/well, P >0.05). Furthermore, EPCs isolated from ACS patients were significantly impaired in their proliferation (0.498±0.035 vs. 0.895±0.067, OD value, P <0.01) and migration capacity (20.5±3.4 vs. 30.7±4.3, number/well, P <0.01) compared with controls. Moreover, the apoptosis cell in cultured EPCs was drastically increased in ACS group ((18.3 ±2.1 )% vs. (7.8±0.4)%, P <0.01 ).Conclusions Patients with ACS exhibited apparently increased circulating EPCs as well as cultured apoptosis percentage together with a remarkable impairment of proliferation and migration activities compared with stable CAD subjects.

  19. Endothelial lipase concentrations are increased in metabolic syndrome and associated with coronary atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Karen O Badellino

    2006-02-01

    Full Text Available BACKGROUND: Endothelial lipase (EL, a new member of the lipase family, has been shown to modulate high-density lipoprotein (HDL-C metabolism and atherosclerosis in mouse models. We hypothesized that EL concentrations would be associated with decreased HDL-C and increased atherosclerosis in humans. METHODS AND FINDINGS: Healthy individuals with a family history of premature coronary heart disease (n = 858 were recruited as part of the Study of the Inherited Risk of Atherosclerosis. Blood was drawn in the fasting state before and, in a subgroup (n = 510, after administration of a single dose of intravenous heparin. Plasma lipids were measured enzymatically, lipoprotein subclasses were assessed by nuclear magnetic resonance, and coronary artery calcification (CAC was quantified by electron beam computed tomography. Plasma EL mass was measured using a newly developed enzyme-linked immunosorbent assay. Median EL mass in pre-heparin plasma was 442 (interquartile range = 324-617 ng/ml. Median post-heparin mass was approximately 3-fold higher, 1,313 (888-1,927 ng/ml. The correlation between pre-heparin EL mass and post-heparin EL mass was 0.46 (p < 0.001. EL mass concentrations in both pre- and post-heparin plasma significantly correlated with all NCEP ATPIII-defined metabolic syndrome factors: waist circumference (r = 0.28 and 0.22, respectively, p < 0.001 for each, blood pressure (r = 0.18 and 0.24, p < 0.001 for each, triglycerides (r = 0.22, p < 0.001; and 0.13, p = 0.004, HDL cholesterol (r = -0.11, p = 0.002; and -0.18, p < 0.001, and fasting glucose (r = 0.11 and 0.16, p = 0.001 for both. EL mass in both routine (odds ratio [OR] = 1.67, p = 0.01 and post-heparin (OR = 2.42, p = 0.003 plasma was associated with CAC as determined by ordinal regression after adjustment for age, gender, waist circumference, vasoactive medications, hormone replacement therapy (women, and established cardiovascular risk factors. CONCLUSIONS: We report, to our knowledge

  20. Endothelial Lipase Concentrations Are Increased in Metabolic Syndrome and Associated with Coronary Atherosclerosis.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available BACKGROUND: Endothelial lipase (EL, a new member of the lipase family, has been shown to modulate high-density lipoprotein (HDL-C metabolism and atherosclerosis in mouse models. We hypothesized that EL concentrations would be associated with decreased HDL-C and increased atherosclerosis in humans. METHODS AND FINDINGS: Healthy individuals with a family history of premature coronary heart disease (n = 858 were recruited as part of the Study of the Inherited Risk of Atherosclerosis. Blood was drawn in the fasting state before and, in a subgroup (n = 510, after administration of a single dose of intravenous heparin. Plasma lipids were measured enzymatically, lipoprotein subclasses were assessed by nuclear magnetic resonance, and coronary artery calcification (CAC was quantified by electron beam computed tomography. Plasma EL mass was measured using a newly developed enzyme-linked immunosorbent assay. Median EL mass in pre-heparin plasma was 442 (interquartile range = 324-617 ng/ml. Median post-heparin mass was approximately 3-fold higher, 1,313 (888-1,927 ng/ml. The correlation between pre-heparin EL mass and post-heparin EL mass was 0.46 (p < 0.001. EL mass concentrations in both pre- and post-heparin plasma significantly correlated with all NCEP ATPIII-defined metabolic syndrome factors: waist circumference (r = 0.28 and 0.22, respectively, p < 0.001 for each, blood pressure (r = 0.18 and 0.24, p < 0.001 for each, triglycerides (r = 0.22, p < 0.001; and 0.13, p = 0.004, HDL cholesterol (r = -0.11, p = 0.002; and -0.18, p < 0.001, and fasting glucose (r = 0.11 and 0.16, p = 0.001 for both. EL mass in both routine (odds ratio [OR] = 1.67, p = 0.01 and post-heparin (OR = 2.42, p = 0.003 plasma was associated with CAC as determined by ordinal regression after adjustment for age, gender, waist circumference, vasoactive medications, hormone replacement therapy (women, and established cardiovascular risk factors. CONCLUSIONS: We report, to our knowledge

  1. Attenuation of oxidative stress, inflammation, and endothelial dysfunction in hypercholesterolemic rabbits by allicin.

    Science.gov (United States)

    El-Sheakh, Ahmed R; Ghoneim, Hamdy A; Suddek, Ghada M; Ammar, El Sayed M

    2015-08-14

    Allicin, the active substance of garlic, exerts a broad spectrum of pharmacological activities and is considered to have potential therapeutic applications. The present study was designed to investigate the possible beneficial effects of allicin against oxidative stress, inflammation, and endothelial dysfunction in hypercholesterolemic rabbits. Male New Zealand white rabbits were used in this study. Rabbits randomly received 1 of the following treatments: normal chow diet for 4 weeks, 1% high cholesterol diet (HCD), HCD plus allicin (10 mg/kg/day), or HCD plus atorvastatin (10 mg/kg/day). Blood samples were collected at the end of experimental diets for measurement of serum total cholesterol (TC), triglycerides (TGs), high-density lipoprotein cholesterol (HDL-C), C-reactive protein (CRP), malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD). In addition, the aorta was removed for measurement of vascular reactivity, histopathological changes, intima/media (I/M) ratio, and immunohistochemical staining of both tumor necrosis-alpha (TNF-α) and nuclear factor (NF)-κB. HCD induced significant increases in serum TC, TGs, low-density lipoprotein cholesterol (LDL-C), CRP, and MDA. Moreover, HCD caused significant decrease in serum GSH and SOD. In addition, aortic relaxation response to acetylcholine (ACh) was impaired. Immunohistochemical staining of aortic specimens from HCD-fed rabbits revealed high expression levels of both TNF-α and the oxidant-induced transcription factor, NF-κB. Allicin supplementation significantly decreased serum MDA and CRP, increased serum HDL-C, GSH, and SOD levels while nonsignificantly affecting HCD-induced elevations in serum TC and LDL-C. Additionally, allicin significantly protected against HCD-induced attenuation of rabbit aortic endothelium-dependent relaxation to ACh and elevation in I/M ratio. This effect was confirmed by histopathological examination of the aorta. Moreover, allicin has substantially

  2. Combination therapy with losartan and L-carnitine protects against endothelial dysfunction of streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Sleem, Mostafa; Taye, Ashraf; El-Moselhy, Mohamed A; Mangoura, Safwat A

    2014-12-01

    Endothelial dysfunction is a critical factor during the initiation of diabetic cardiovascular complications and angiotensin II appears to play a pivotal role in this setting. The present study aimed to investigate whether the combination therapy with losartan and the nutritional supplement, L-carnitine can provide an additional protection against diabetes-associated endothelial dysfunction and elucidate the possible mechanism(s) underlying this effect. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ) (60 mg/kg) in rat. Effects of losartan (20 mg/kg, orally, 3 months) and L-carnitine (200 mg/kg, orally, 3 months) on tumor necrosis factor (TNF)-α, oxidative stress parameters, endothelial nitric oxide synthase expression (eNOS), and vascular function were evaluated. Our results showed a marked increase in aortic superoxide anion (O2(-)) production and serum malondialdehyde (MDA) level alongside attenuating antioxidant enzyme capacities in diabetic rats. This was associated with a significant increase in anigiotensin II type 1 receptor gene expression and TNF-α serum level of diabetic rats alongside reducing aortic eNOS gene expression and nitric oxide (NO) bioavailability. The single or combined administration of losartan and L-carnitine significantly inhibited these changes. Additionally, the vascular endothelium-dependent relaxation with acetylcholine (ACh) in aortic diabetic rat was significantly ameliorated by the single and combined administration of losartan or L-carnitine. Noteworthy, the combination therapy exhibited a more profound response over the monotherapy. Collectively, our results demonstrate that the combined therapy of losartan and L-carnitine affords additive beneficial effects against diabetes-associated endothelial dysfunction, possibly via normalizing the dysregulated eNOS and reducing the inflammation and oxidative stress in diabetic rats.

  3. Dysfunction of microvascular endothelial cells induced by TNFα and its molecular mechanism

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Microvascular endothelial cell (MVEC) is one of the target cells of TNFα (TNF effect). The dysfunction of MVEC induced by TNF plays an important role in some cardio-cerebral vascular diseases. ① Cell proliferation kinetic: Using flow cytometry, we found cell count [(4.30±0.34)×107/L)] in TNF group (4×105 U/L) was obviously less than that in control [(5.23±0.50)×107/L, P<0.01]. The cells of G1 phase were more than those of the control, while the cells of G2, S and M phase became less (P<0.05). ② Coagulant and anticoagulant: 72 h after MVEC cultued in the media, the content of 6-keto-PGF1α (RIA) and activity of PAI decreased significantly in TNF (4×105 U/L) group (P<0.01, vs control). The difference between TXB2 content and t-PA activity in groups was not significant (P>0.05). ③ Adhesive molecule: The effect of low concentration TNF (<4×105 U/L) on adhesion between cultured MVEC and leukocytes was not signficant, but when the concentration of TNF reached 8×105 U/L or more, 12 h after culture the adhesion rate between MVEC and neutrophil increased 30.8%±4.5%. If adding monoclonal antibody of ICAM-1/CD11 into media, the adhesion rate of leukocytes decreased significantly (from 31.2% to 63.4%). ④ NO: The level of nitrite in culture media (Griess reaction) was higher than that of control (P<0.05) after pretreatment of TNF (2×106 U/L) for 6 h. Adding L-NMMA, Dexamethasone or Cycloheximide in media could block the increase of nitrite induced by TNF, while L-Arg could enhance it. The expression of iNOS mRNA of PMVEC increased significantly after treated with TNF (2×106 U/L) for 24 h (quantitative RT/PCR). Pretreatment with Dexamethasone or Cycloheximide could block the increase (P<0.05). Meanwhile, the expression of eNOS mRNA decreased significantly compared with control, the decrease can be blocked by Cycloheximide but not by Dexamethasone. So that TNF can induce the expression of iNOS mRNA in PMVEC, but inhibited the

  4. HZE ⁵⁶Fe-ion irradiation induces endothelial dysfunction in rat aorta: role of xanthine oxidase.

    Science.gov (United States)

    Soucy, Kevin G; Lim, Hyun Kyo; Kim, Jae Hyung; Oh, Young; Attarzadeh, David O; Sevinc, Baris; Kuo, Maggie M; Shoukas, Artin A; Vazquez, Marcelo E; Berkowitz, Dan E

    2011-10-01

    Ionizing radiation has been implicated in the development of significant cardiovascular complications. Since radiation exposure is associated with space exploration, astronauts are potentially at increased risk of accelerated cardiovascular disease. This study investigated the effect of high atomic number, high-energy (HZE) iron-ion radiation on vascular and endothelial function as a model of space radiation. Rats were exposed to a single whole-body dose of iron-ion radiation at doses of 0, 0.5 or 1 Gy. In vivo aortic stiffness and ex vivo aortic tension responses were measured 6 and 8 months after exposure as indicators of chronic vascular injury. Rats exposed to 1 Gy iron ions demonstrated significantly increased aortic stiffness, as measured by pulse wave velocity. Aortic rings from irradiated rats exhibited impaired endothelial-dependent relaxation consistent with endothelial dysfunction. Acute xanthine oxidase (XO) inhibition or reactive oxygen species (ROS) scavenging restored endothelial-dependent responses to normal. In addition, XO activity was significantly elevated in rat aorta 4 months after whole-body irradiation. Furthermore, XO inhibition, initiated immediately after radiation exposure and continued until euthanasia, completely inhibited radiation-dependent XO activation. ROS production was elevated after 1 Gy irradiation while production of nitric oxide (NO) was significantly impaired. XO inhibition restored NO and ROS production. Finally, dietary XO inhibition preserved normal endothelial function and vascular stiffness after radiation exposure. These results demonstrate that radiation induced XO-dependent ROS production and nitroso-redox imbalance, leading to chronic vascular dysfunction. As a result, XO is a potential target for radioprotection. Enhancing the understanding of vascular radiation injury could lead to the development of effective methods to ameliorate radiation-induced vascular damage.

  5. Post-Weaning Protein Malnutrition Increases Blood Pressure and Induces Endothelial Dysfunctions in Rats

    Science.gov (United States)

    Siman, Fabiana D. M.; Silveira, Edna A.; Meira, Eduardo F.; da Costa, Carlos P.; Vassallo, Dalton V.; Padilha, Alessandra S.

    2012-01-01

    Malnutrition during critical periods in early life may increase the subsequent risk of hypertension and metabolic diseases in adulthood, but the underlying mechanisms are still unclear. We aimed to evaluate the effects of post-weaning protein malnutrition on blood pressure and vascular reactivity in aortic rings (conductance artery) and isolated-perfused tail arteries (resistance artery) from control (fed with Labina®) and post-weaning protein malnutrition rats (offspring that received a diet with low protein content for three months). Systolic and diastolic blood pressure and heart rate increased in the post-weaning protein malnutrition rats. In the aortic rings, reactivity to phenylephrine (10−10–3.10−4 M) was similar in both groups. Endothelium removal or L-NAME (10−4 M) incubation increased the response to phenylephrine, but the L-NAME effect was greater in the aortic rings from the post-weaning protein malnutrition rats. The protein expression of the endothelial nitric oxide isoform increased in the aortic rings from the post-weaning protein malnutrition rats. Incubation with apocynin (0.3 mM) reduced the response to phenylephrine in both groups, but this effect was higher in the post-weaning protein malnutrition rats, suggesting an increase of superoxide anion release. In the tail artery of the post-weaning protein malnutrition rats, the vascular reactivity to phenylephrine (0.001–300 µg) and the relaxation to acetylcholine (10−10–10−3 M) were increased. Post-weaning protein malnutrition increases blood pressure and induces vascular dysfunction. Although the vascular reactivity in the aortic rings did not change, an increase in superoxide anion and nitric oxide was observed in the post-weaning protein malnutrition rats. However, in the resistance arteries, the increased vascular reactivity may be a potential mechanism underlying the increased blood pressure observed in this model. PMID:22529948

  6. Effect of rosiglitazone in sodium arsenite-induced experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Kaur, Tajpreet; Goel, Rajesh Kumar; Balakumar, Pitchai

    2010-04-01

    The present study has been designed to investigate the effect of rosiglitazone, a peroxisome proliferator activated receptor gamma agonist in sodium arsenite-induced vascular endothelial dysfunction (VED) in rats. The rats were administered sodium arsenite (1.5 mg/kg/day, i.p., 2 weeks) to induce VED. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum nitrite/nitrate concentration. Further, the integrity of the aortic endothelium was assessed histologically using haematoxylin-eosin staining. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances, aortic reactive oxygen species and reduced form of glutathione. The administration of sodium arsenite produced VED by impairing acetylcholine-induced endothelium dependent relaxation, diminishing the integrity of vascular endothelium and decreasing the serum nitrite/nitrate concentration. In addition, sodium arsenite was noted to produce oxidative stress as it increased serum thiobarbituric acid reactive substances and aortic reactive oxygen species and consequently decreased glutathione. Treatment with rosiglitazone (3 mg/kg/day, p.o., 2 weeks and 5 mg/kg/day, p.o., 2 weeks) significantly prevented sodium arsenite-induced VED by enhancing acetylcholine-induced endothelium dependent relaxation, improving the integrity of vascular endothelium, increasing the nitrite/nitrate concentration and decreasing the oxidative stress. However, the vascular protective effect of rosiglitazone was markedly abolished by co-administration of nitric oxide synthase inhibitor, N-Omega-Nitro-L-Arginine Methyl Ester (L-NAME) (25 mg/kg/day, i.p., 2 weeks). Thus, it may be concluded that rosiglitazone reduces oxidative stress, activates eNOS and enhances the generation of nitric oxide to prevent sodium arsenite-induced VED in rats.

  7. Benfotiamine attenuates nicotine and uric acid-induced vascular endothelial dysfunction in the rat.

    Science.gov (United States)

    Balakumar, Pitchai; Sharma, Ramica; Singh, Manjeet

    2008-01-01

    The study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in nicotine and uric acid-induced vascular endothelial dysfunction (VED) in rats. Nicotine (2 mg kg(-1)day(-1), i.p., 4 weeks) and uric acid (150 mg kg(-1)day(-1), i.p., 3 weeks) were administered to produce VED in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum and aortic concentration of nitrite/nitrate. Further, the integrity of vascular endothelium was assessed using the scanning electron microscopy (SEM) of thoracic aorta. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of nicotine and uric acid produced VED by impairing the integrity of vascular endothelium and subsequently decreasing serum and aortic concentration of nitrite/nitrate and attenuating acetylcholine-induced endothelium dependent relaxation. Further, nicotine and uric acid produced oxidative stress, which was assessed in terms of increase in serum TBARS and aortic superoxide generation. However, treatment with benfotiamine (70 mg kg(-1)day(-1), p.o.) or atorvastatin (30 mg kg(-1)day(-1) p.o., a standard agent) markedly prevented nicotine and uric acid-induced VED and oxidative stress by improving the integrity of vascular endothelium, increasing the concentration of serum and aortic nitrite/nitrate, enhancing the acetylcholine-induced endothelium dependent relaxation and decreasing serum TBARS and aortic superoxide anion generation. Thus, it may be concluded that benfotiamine reduces the oxidative stress and consequently improves the integrity of vascular endothelium and enhances the generation of nitric oxide to prevent nicotine and uric acid-induced experimental VED.

  8. Post-weaning protein malnutrition increases blood pressure and induces endothelial dysfunctions in rats.

    Science.gov (United States)

    de Belchior, Aucelia C S; Angeli, Jhuli K; Faria, Thaís de O; Siman, Fabiana D M; Silveira, Edna A; Meira, Eduardo F; da Costa, Carlos P; Vassallo, Dalton V; Padilha, Alessandra S

    2012-01-01

    Malnutrition during critical periods in early life may increase the subsequent risk of hypertension and metabolic diseases in adulthood, but the underlying mechanisms are still unclear. We aimed to evaluate the effects of post-weaning protein malnutrition on blood pressure and vascular reactivity in aortic rings (conductance artery) and isolated-perfused tail arteries (resistance artery) from control (fed with Labina®) and post-weaning protein malnutrition rats (offspring that received a diet with low protein content for three months). Systolic and diastolic blood pressure and heart rate increased in the post-weaning protein malnutrition rats. In the aortic rings, reactivity to phenylephrine (10(-10)-3.10(-4) M) was similar in both groups. Endothelium removal or L-NAME (10(-4) M) incubation increased the response to phenylephrine, but the L-NAME effect was greater in the aortic rings from the post-weaning protein malnutrition rats. The protein expression of the endothelial nitric oxide isoform increased in the aortic rings from the post-weaning protein malnutrition rats. Incubation with apocynin (0.3 mM) reduced the response to phenylephrine in both groups, but this effect was higher in the post-weaning protein malnutrition rats, suggesting an increase of superoxide anion release. In the tail artery of the post-weaning protein malnutrition rats, the vascular reactivity to phenylephrine (0.001-300 µg) and the relaxation to acetylcholine (10(-10)-10(-3) M) were increased. Post-weaning protein malnutrition increases blood pressure and induces vascular dysfunction. Although the vascular reactivity in the aortic rings did not change, an increase in superoxide anion and nitric oxide was observed in the post-weaning protein malnutrition rats. However, in the resistance arteries, the increased vascular reactivity may be a potential mechanism underlying the increased blood pressure observed in this model.

  9. Post-weaning protein malnutrition increases blood pressure and induces endothelial dysfunctions in rats.

    Directory of Open Access Journals (Sweden)

    Aucelia C S de Belchior

    Full Text Available Malnutrition during critical periods in early life may increase the subsequent risk of hypertension and metabolic diseases in adulthood, but the underlying mechanisms are still unclear. We aimed to evaluate the effects of post-weaning protein malnutrition on blood pressure and vascular reactivity in aortic rings (conductance artery and isolated-perfused tail arteries (resistance artery from control (fed with Labina® and post-weaning protein malnutrition rats (offspring that received a diet with low protein content for three months. Systolic and diastolic blood pressure and heart rate increased in the post-weaning protein malnutrition rats. In the aortic rings, reactivity to phenylephrine (10(-10-3.10(-4 M was similar in both groups. Endothelium removal or L-NAME (10(-4 M incubation increased the response to phenylephrine, but the L-NAME effect was greater in the aortic rings from the post-weaning protein malnutrition rats. The protein expression of the endothelial nitric oxide isoform increased in the aortic rings from the post-weaning protein malnutrition rats. Incubation with apocynin (0.3 mM reduced the response to phenylephrine in both groups, but this effect was higher in the post-weaning protein malnutrition rats, suggesting an increase of superoxide anion release. In the tail artery of the post-weaning protein malnutrition rats, the vascular reactivity to phenylephrine (0.001-300 µg and the relaxation to acetylcholine (10(-10-10(-3 M were increased. Post-weaning protein malnutrition increases blood pressure and induces vascular dysfunction. Although the vascular reactivity in the aortic rings did not change, an increase in superoxide anion and nitric oxide was observed in the post-weaning protein malnutrition rats. However, in the resistance arteries, the increased vascular reactivity may be a potential mechanism underlying the increased blood pressure observed in this model.

  10. Endothelial dysfunction and decreased vascular responsiveness in the anterior cruciate ligament-deficient model of osteoarthritis.

    Science.gov (United States)

    Miller, Daniel; Forrester, Kevin; Hart, David A; Leonard, Catherine; Salo, Paul; Bray, Robert C

    2007-03-01

    Chronic inflammation associated with osteoarthritis (OA) may alter normal vascular responses and contribute to joint degradation. Vascular responses to vasoactive mediators were evaluated in the medial collateral ligament (MCL) of the anterior cruciate ligament (ACL)-deficient knee. Chronic joint instability and progressive OA were induced in rabbit knees by surgical transection of the ACL. Under halothane anesthesia, laser speckle perfusion imaging (LSPI) was used to measure MCL blood flow in unoperated control (n = 12) and 6-wk ACL-transected knees (n = 12). ACh, bradykinin, histamine, substance P (SP), and prostaglandin E(2) (PGE(2)) were applied to the MCL vasculature in topical boluses of 100 microl (dose range 10(-14) to 10(-8) mol). In normal joints, ACh, bradykinin, histamine, and PGE(2) evoked a dilatory response. Substance P caused a biphasic response that was dilatory from 10(-14) to 10(-11) mol and constricting at higher doses. In ACL-deficient knees, ACh, bradykinin, histamine, and SP decreased perfusion, whereas PGE(2) had a biphasic response that decreased perfusion at 10(-14) to 10(-11) mol and was dilatory at higher concentrations. Sodium nitroprusside increased perfusion in resting and phenylephrine-precontracted vessels with no significant differences between ACL-transected and control knees. Femoral artery occlusion and release increased perfusion by 74.3 +/- 11.1% in control knees but only by 25.8 +/- 4.4% in ACL-deficient knees. The altered responsiveness of the MCL vasculature to these inflammatory mediators may indicate endothelial dysfunction in the MCL, which may contribute to the progression and severity of OA and to the adaptation of the joint in an altered mechanical environment.

  11. Association of parental blood pressure with retinal microcirculatory abnormalities indicative of endothelial dysfunction in children.

    Science.gov (United States)

    Islam, Muhammad; Jafar, Tazeen H; Bux, Rasool; Hashmi, Shiraz; Chaturvedi, Nish; Hughes, Alun D

    2014-03-01

    Microcirculatory abnormalities precede the onset of hypertension and may explain its familial nature. We examined the relationship between parental blood pressure (BP) and offspring retinal microvasculature in Pakistani trios [father, mother, and child (aged 9-14 years)]. This is a substudy of a population-based trial of BP reduction. Data were available on 358 normotensive, and 410 offspring of at least one hypertensive parent. Retinal vessel characteristics were measured from digital images. Multivariable linear regression models were built to assess the associations between maternal and paternal BP and offspring retinal microvasculature. Optimality deviation was greatest in offspring of two hypertensive parents, compared with those with one or no hypertensive parent (P=0.030 for trend). Paternal SBP and DBP were each significantly associated with optimality deviation in offspring (P=0.023 and P=0.006, respectively). This relationship persisted after accounting for offspring cardiovascular risk factors [increase in optimality deviation (95% confidence interval, CI) 0.0053 (0.0001-0.0106, P=0.047) and 0.0109 (0.0025-0.0193, P=0.011), for each 10 mmHg increase in paternal SBP and DBP, respectively]. Maternal DBP was inversely associated with offspring arteriovenous ratio -0.0102 (-0.0198 to -0.0007, P=0.035). Microvascular endothelial dysfunction in children is associated with increasing levels of parental hypertension. The association with paternal BP is independent of other cardiovascular risk factors, including the child's BP. Higher maternal DBP is associated with evidence of arteriolar narrowing in offspring. These early microcirculatory changes may help explain familial predisposition to hypertension in people of Pakistani origin at an early age. :

  12. Diabetic HDL Is Dysfunctional in Stimulating Endothelial Cell Migration and Proliferation Due to Down Regulation of SR-BI Expression

    Science.gov (United States)

    Pan, Bing; Ma, Yijing; Ren, Hui; He, Yubin; Wang, Yongyu; Lv, Xiaofeng; Liu, Donghui; Ji, Liang; Yu, Baoqi; Wang, Yuhui; Chen, Y. Eugene; Pennathur, Subramaniam; Smith, Jonathan D.; Liu, George; Zheng, Lemin

    2012-01-01

    Background Diabetic HDL had diminished capacity to stimulate endothelial cell (EC) proliferation, migration, and adhesion to extracellular matrix. The mechanism of such dysfunction is poorly understood and we therefore sought to determine the mechanistic features of diabetic HDL dysfunction. Methodology/Principal Findings We found that the dysfunction of diabetic HDL on human umbilical vein endothelial cells (HUVECs) was associated with the down regulation of the HDL receptor protein, SR-BI. Akt-phosphorylation in HUVECs was induced in a biphasic manner by normal HDL. While diabetic HDL induced Akt phosphorylation normally after 20 minutes, the phosphorylation observed 24 hours after diabetic HDL treatment was reduced. To determine the role of SR-BI down regulation on diminished EC responses of diabetic HDL, Mouse aortic endothelial cells (MAECs) were isolated from wild type and SR-BI (−/−) mice, and treated with normal and diabetic HDL. The proliferative and migratory effects of normal HDL on wild type MAECs were greatly diminished in SR-BI (−/−) cells. In contrast, response to diabetic HDL was impaired in both types suggesting diminished effectiveness of diabetic HDL on EC proliferation and migration might be due to the down regulation of SR-BI. Additionally, SR-BI down regulation diminishes diabetic HDL’s capacity to activate Akt chronically. Conclusions/Significance Diabetic HDL was dysfunctional in promoting EC proliferation, migration, and adhesion to matrix which was associated with the down-regulation of SR-BI. Additionally, SR-BI down regulation diminishes diabetic HDL’s capacity to activate Akt chronically. PMID:23133640

  13. Tetramethylpyrazine Protects against Hydrogen Peroxide-Provoked Endothelial Dysfunction in Isolated Rat Aortic Rings: Implications for Antioxidant Therapy of Vascular Diseases

    Directory of Open Access Journals (Sweden)

    Xiaojia Ni

    2014-01-01

    Full Text Available Background and Objectives. Oxidative stress can initiate endothelial dysfunction and atherosclerosis. This study evaluated whether tetramethylpyrazine (TMP, the predominant active ingredient in Rhizoma Ligustici Wallichii (chuanxiong, prevents endothelial dysfunction in a rat model of oxidative stress. Methods. Isolated rat aortic rings were pretreated with various drugs before the induction of endothelial dysfunction by hydrogen peroxide (H2O2. Changes in isometric tension were then measured in acetylcholine- (ACh- relaxed rings. Endothelial nitric oxide synthase (eNOS expression was evaluated in the rings by Western blotting, and superoxide anion (O2∙- content was assessed in primary rat aortic endothelial cells by dihydroethidium- (DHE- mediated fluorescence microscopy. Results. ACh-induced endothelium-dependent relaxation (EDR was disrupted by H2O2 in endothelium-intact aortic rings. H2O2-impaired relaxation was ameliorated by acute pretreatment with low concentrations of TMP, as well as by pretreatment with catalase and the NADPH oxidase inhibitors, apocynin and diphenyleneiodonium (DPI. TMP, apocynin, and DPI also reduced O2∙- accumulation in endothelial cells,but TMP failed to alter eNOS expression in aortic rings incubated with H2O2. Conclusions. TMP safeguards against oxidative stress-induced endothelial dysfunction, suggesting that the agent might find therapeutic utility in the management of vascular diseases. However, TMP’s role in inhibiting NADPH oxidase and its vascular-protective mechanism of action requires further investigation.

  14. Reverse-D-4F Increases the Number of Endothelial Progenitor Cells and Improves Endothelial Progenitor Cell Dysfunctions in High Fat Diet Mice.

    Science.gov (United States)

    Nana, Yang; Peng, Jiao; Jianlin, Zhang; Xiangjian, Zhang; Shutong, Yao; Enxin, Zhan; Bin, Li; Chuanlong, Zong; Hua, Tian; Yanhong, Si; Yunsai, Du; Shucun, Qin; Hui, Wang

    2015-01-01

    Although high density lipoprotein (HDL) improves the functions of endothelial progenitor cells (EPCs), the effect of HDL ApoAI mimetic peptide reverse-D-4F (Rev-D4F) on EPC mobilization and repair of EPC dysfunctions remains to be studied. In this study, we investigated the effects of Rev-D4F on peripheral blood cell subpopulations in C57 mice treated with a high fat diet and the mechanism of Rev-D4F in improving the function of EPCs impaired by tumor necrosis factor-α (TNF-α). The high fat diet significantly decreased the number of EPCs, EPC migratory functions, and the percentage of lymphocytes in the white blood cells. However, it significantly increased the number of white blood cells, the percentage of monocytes in the white blood cells, and the level of vascular endothelial growth factor (VEGF) and TNF-α in the plasma. Rev-D4F clearly inhibited the effect of the high fat diet on the quantification of peripheral blood cell subpopulations and cytokine levels, and increased stromal cell derived factor 1α (SDF-1α) in the plasma. We provided in vitro evidence that TNF-α impaired EPC proliferation, migration, and tube formation through inactive AKT and eNOS, which was restored by Rev-D4F treatment. In contrast, both the PI3-kinase (PI3K) inhibitor (LY294002) and AKT inhibitor (perifosine) obviously inhibited the restoration of Rev-4F on EPCs impaired by TNF-α. Our results suggested that Rev-D4F increases the quantity of endothelial progenitor cells through increasing the SDF-1α levels and decreasing the TNF-α level of peripheral blood in high fat diet-induced C57BL/6J mice, and restores TNF-α induced dysfunctions of EPCs partly through stimulating the PI3K/AKT signal pathway.

  15. Nitrosative stress and redox-cycling agents synergize to cause mitochondrial dysfunction and cell death in endothelial cells

    Directory of Open Access Journals (Sweden)

    Anne R. Diers

    2013-01-01

    Full Text Available Nitric oxide production by the endothelium is required for normal vascular homeostasis; however, in conditions of oxidative stress, interactions of nitric oxide with reactive oxygen species (ROS are thought to underlie endothelial dysfunction. Beyond canonical nitric oxide signaling pathways, nitric oxide production results in the post-translational modification of protein thiols, termed S-nitrosation. The potential interplay between S-nitrosation and ROS remains poorly understood and is the focus of the current study. The effects of the S-nitrosating agent S-nitrosocysteine (CysNO in combination with redox-cycling agents was examined in bovine aortic endothelial cells (BAEC. CysNO significantly impairs mitochondrial function and depletes the NADH/NAD+ pool; however, these changes do not result in cell death. When faced with the additional stressor of a redox-cycling agent used to generate ROS, further loss of NAD+ occurs, and cellular ATP pools are depleted. Cellular S-nitrosothiols also accumulate, and cell death is triggered. These data demonstrate that CysNO sensitizes endothelial cells to redox-cycling agent-dependent mitochondrial dysfunction and cell death and identify attenuated degradation of S-nitrosothiols as one potential mechanism for the enhanced cytotoxicity.

  16. Activation of sonic hedgehog signaling attenuates oxidized low-density lipoprotein-stimulated brain microvascular endothelial cells dysfunction in vitro.

    Science.gov (United States)

    Jiang, Xiu-Long; Chen, Ting; Zhang, Xu

    2015-01-01

    The study was performed to investigate the role of sonic hedgehog (SHH) in the oxidized low-density lipoprotein (oxLDL)-induced blood-brain barrier (BBB) disruption. The primary mouse brain microvascular endothelial cells (MBMECs) were exposed to oxLDL. The results indicated that treatment of MBMECs with oxLDL decreased the cell viability, and oxidative stress was involved in oxLDL-induce MBMECs dysfunction with increasing intracellular ROS and MDA formation as well as decreasing NO release and eNOS mRNA expression. In addition, SHH signaling components, such as SHH, Smo and Gli1, mRNA and protein levels were significantly decreased after incubation with increasing concentrations of oxLDL. Treatment with oxLDL alone or SHH loss-of-function significantly increased the permeability of MBMECs, and overexpression of SHH attenuated oxLDL-induced elevation of permeability in MBMECs. Furthermore, SHH gain-of-function could reverse oxLDL-induced apoptosis through inhibition caspase3 and caspase8 levels in MBMECs. Taken together, these results demonstrated that the suppression of SHH in MBMECs might contribute to the oxLDL-induced disruption of endothelial barrier. However, the overexpression of SHH could reverse oxLDL-induced endothelial cells dysfunction in vitro.

  17. Nitrosative stress and redox-cycling agents synergize to cause mitochondrial dysfunction and cell death in endothelial cells.

    Science.gov (United States)

    Diers, Anne R; Broniowska, Katarzyna A; Hogg, Neil

    2013-01-01

    Nitric oxide production by the endothelium is required for normal vascular homeostasis; however, in conditions of oxidative stress, interactions of nitric oxide with reactive oxygen species (ROS) are thought to underlie endothelial dysfunction. Beyond canonical nitric oxide signaling pathways, nitric oxide production results in the post-translational modification of protein thiols, termed S-nitrosation. The potential interplay between S-nitrosation and ROS remains poorly understood and is the focus of the current study. The effects of the S-nitrosating agent S-nitrosocysteine (CysNO) in combination with redox-cycling agents was examined in bovine aortic endothelial cells (BAEC). CysNO significantly impairs mitochondrial function and depletes the NADH/NAD(+) pool; however, these changes do not result in cell death. When faced with the additional stressor of a redox-cycling agent used to generate ROS, further loss of NAD(+) occurs, and cellular ATP pools are depleted. Cellular S-nitrosothiols also accumulate, and cell death is triggered. These data demonstrate that CysNO sensitizes endothelial cells to redox-cycling agent-dependent mitochondrial dysfunction and cell death and identify attenuated degradation of S-nitrosothiols as one potential mechanism for the enhanced cytotoxicity.

  18. Sympathetic activation and endothelial dysfunction in polycystic ovary syndrome are not explained by either obesity or insulin resistance.

    Science.gov (United States)

    Lambert, Elisabeth A; Teede, Helena; Sari, Carolina Ika; Jona, Eveline; Shorakae, Soulmaz; Woodington, Kiri; Hemmes, Robyn; Eikelis, Nina; Straznicky, Nora E; De Courten, Barbora; Dixon, John B; Schlaich, Markus P; Lambert, Gavin W

    2015-12-01

    Polycystic ovary syndrome (PCOS) is a common endocrine condition underpinned by insulin resistance and associated with increased risk of obesity, type 2 diabetes and adverse cardiovascular risk profile. Previous data suggest autonomic imbalance [elevated sympathetic nervous system (SNS) activity and decreased heart rate variability (HRV)] as well as endothelial dysfunction in PCOS. However, it is not clear whether these abnormalities are driven by obesity and metabolic disturbance or whether they are independently related to PCOS. We examined multiunit and single-unit muscle SNS activity (by microneurography), HRV (time and frequency domain analysis) and endothelial function [ischaemic reactive hyperaemia index (RHI) using the EndoPAT device] in 19 overweight/obese women with PCOS (BMI: 31·3 ± 1·5 kg/m(2), age: 31·3 ± 1·6 years) and compared them with 21 control overweight/obese women (BMI: 33·0 ± 1·4 kg/m(2), age: 28·2 ± 1·6 years) presenting a similar metabolic profile (fasting total, HDL and LDL cholesterol, glucose, triglycerides, insulin sensitivity and blood pressure). Women with PCOS had elevated multiunit muscle SNS activity (41 ± 2 vs 33 ± 3 bursts per 100 heartbeats, P obesity and metabolic disturbances. Sympathetic activation and endothelial dysfunction may confer greater cardiovascular risk in women with PCOS. © 2015 John Wiley & Sons Ltd.

  19. [Incidence and risk factors of postoperative cognitive dysfunction in patients underwent coronary artery bypass grafting surgery].

    Science.gov (United States)

    Ge, Yali; Ma, Zhengliang; Shi, Hongwei; Zhao, Yamei; Gu, Xiaoping; Wei, Haiyan

    2014-10-01

    To investigate the incidence rate and the risk factors for postoperative cognitive dysfunction (POCD) in patients underwent coronary artery bypass grafting surgery. A total of 147 patients underwent elective coronary artery bypass grafting (CABG) surgery between January to July 2013 were included in this study. POCD was diagnosed using a neuropsychological test battery. All enrolled patients were interviewed on the day before surgery, the seventh day and 3 months after surgery, respectively, by the same researcher, and were divided into two groups based on the results: the POCD group and the non-POCD group. The information, including age, sex, body mass index, educational status, comorbidities, history of smoking and drinking, ASA grade, left ventricular ejection fraction, operation method, duration of operations, regional cerebral oxygen saturation, the lowest haemoglobin concentrations and the haemoglobin concentration decline rate during the operation, tracheal catheter retention time, postoperative pain on visual analogue scales (VAS) and systemic inflammatory response syndrome score (SIRS score), were recorded based on a schedule of survey. Multivariate logistic regression was used to analyze the risk factors for POCD. A total of 101 patients finished this study. On 7 days and 3 months after surgery, 38 and 21 cases showed POCD, with an incidence rate at 37.6% and 20.8%, respectively. Interestingly, there was no significant difference in incidence of POCD between CABG and OPCABG group on both 7 days and 3 months after surgery (P>0.05). The logistic stepwise regression analysis indicated that the risk factors for POCD included advanced age (OR=1.177, 95%CI 1.071-1.292, P=0.001), the haemoglobin concentration decline rate (OR=1.334, 95%CI 1.152-1.545, PSIRS score (OR=2.815, 95%CI 1.014-7.818, P=0.047). The incidence rate of POCD was 37.6% and 20.8% on 7 days and 3 months after surgery respectively. Advanced age, the haemoglobin concentration decline rate and

  20. High serum apolipoprotein E determines hypertriglyceridemic dyslipidemias, coronary disease and apoA-I dysfunctionality.

    Science.gov (United States)

    Onat, Altan; Can, Günay; Ornek, Ender; Ayhan, Erkan; Erginel-Ünaltuna, Nihan; Murat, Sani N

    2013-01-01

    The relevance of serum apolipoprotein E (apoE) levels to two hypertriglyceridemic dyslipidemias has not been clarified. We explored, in a cross-sectional (and short-term prospective) evaluation, the independent relationship of serum apoE to the atherogenic dyslipidemia, hypertriglyceridemia with elevated apoB (HtgB) and to apoA-I dysfunctionality, previously shown in Turkish adults to be independent of apoE genotype. Serum apoE concentrations were measured by immunonephelometry in 1,127 middle-aged adults. In multivariable regression analysis, apoE concentrations showed log-linear associations with apoB and apoA-I levels, waist circumference, independent of C-reactive protein (CRP), homeostatic model assessment (HOMA) index and other confounders. The likelihood of atherogenic dyslipidemia and of HtgB roughly tripled per 1-SD increment in apoE concentrations, additively to apoE genotype, HOMA, apoA-I, CRP concentrations and waist circumference; yet apoA-I, protective against atherogenic dyslipidemia, appeared to promote HtgB, a finding consistent with apoA-I dysfunctionality in this setting. Each 1-SD increment in the apoE level was moreover, associated in both genders with MetS (at OR 1.5), after adjustment for sex, age, apoB, apoA-I and CRP, or for apoE genotypes. Circulating apoE predicted in both genders age-adjusted prevalent and incident coronary heart disease (CHD), independent of apoE genotype and CRP (OR 1.32 [95 % CI 1.11; 1.58]). To conclude, in a general population prone to MetS, elevated apoE concentrations are strongly linked to HtgB and atherogenic dyslipidemia, irrespective of apoE genotype, are associated with MetS and CHD. Excess apoE reflects pro-inflammatory state and likely autoimmune activation.

  1. Level of complement activity predicts cardiac dysfunction after acute myocardial infarction treated with primary percutaneous coronary intervention

    DEFF Research Database (Denmark)

    2009-01-01

    BACKGROUND: The positive effect of reperfusion after ST-elevation myocardial infarction (STEMI) can be reduced by ischemic/reperfusion (I/R) injury.Mannose-binding-lectin (MBL) and soluble C5b-9 (membrane-attack-complex) are involved in complement-driven cell lysis and may play a role in human...... descending coronary artery who were successfully treated with pPCI. Cardiac dysfunction was defined as left ventricular ejection fraction LVEF or = 35%. After adjustment...

  2. Mild preoperative renal dysfunction as a predictor of long-term clinical outcome after coronary bypass surgery.

    Science.gov (United States)

    van de Wal, Ruud M A; van Brussel, Ben L; Voors, Adriaan A; Smilde, Tom D J; Kelder, Johannes C; van Swieten, Henry A; van Gilst, Wiek H; van Veldhuisen, Dirk Jan; Plokker, H W Thijs

    2005-02-01

    Renal dysfunction is a prognostic marker in patients with cardiovascular disease. However, no long-term follow-up studies on the influence of mild renal dysfunction on mortality in patients undergoing coronary bypass grafting have been reported. Therefore, we aimed to identify the significance of preoperative (mild) renal dysfunction as a long-term predictor of clinical outcome after coronary bypass surgery. In 358 patients who underwent isolated saphenous vein aorta-coronary artery bypass grafting, estimated glomerular filtration rates were calculated with the Cockroft-Gault equation (GFRc). Patients were categorized into 2 groups (group 1, GFRc >71.1 mL x min (-1) x 1.73 m (-2) ; group 2, GFRc <71.1 mL x min (-1) x 1.73 m (-2) ). Multivariate Cox proportional hazard analyses were performed to determine the independent prognostic value of GFRc. During a median follow-up of 18.2 years, 233 patients (65.1%) died. Patients who died had lower GFRc and were older. Multivariate analysis demonstrated that total mortality in patients with lower GFRc was significantly increased (lower GFRc group vs normal GFRc group: hazard ratio, 1.44; P = .019). Lower GFRc was also an independent predictor of cardiac mortality (hazard ratio, 1.51; P = .032). No significant differences were observed between groups in the occurrence of myocardial infarction and the need for reintervention. Our study demonstrates that after long-term follow-up, preoperative mild renal dysfunction is an independent predictor of long-term (cardiac) mortality in patients who undergo coronary artery bypass grafting.

  3. Increased urinary orosomucoid excretion: a proposed marker for inflammation and endothelial dysfunction in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Christiansen, M.S.; Iversen, K.; Larsen, Carsten Toftager

    2008-01-01

    , impaired left ventricular function and endothelial dysfunction in patients with type 2 diabetes. Material and methods. We performed a cross-sectional study of 41 patients with type 2 diabetes (17 patients with normal UOER and 24 with increased UOER) with no history of cardiovascular disease and 21 healthy...... controls. Urinary orosomucoid was measured using a particle-enhanced immunoturbidimetric assay. Plasma interleukin-6 (IL-6), tissue plasminogen activator (tPA) and soluble intercellular adhesion molecule-1 (sICAM) were measured using ELISA. Endothelial function measured as vasodilatory capacity...... of the brachial artery and echocardiography were done in all participants. Results. Patients with diabetes and increased UOER had subclinically increased serum orosomucoid (pprotein (CRP) (p

  4. Northern contaminant mixtures induced morphological and functional changes in human coronary artery endothelial cells under culture conditions typifying high fat/sugar diet and ethanol exposure.

    Science.gov (United States)

    Florian, Maria; Yan, Jin; Ulhaq, Saad; Coughlan, Melanie; Laziyan, Mahemuti; Willmore, William; Jin, Xiaolei

    2013-11-16

    It has been reported that Northern populations are exposed to mixtures of various environmental contaminants unique to the Arctic (Northern contaminant mixtures - NCM) at a large range of concentrations, depending on their geological location, age, lifestyle and dietary habits. To determine if these contaminants may contribute to a cardiovascular health risk, especially when combined with a high fat and sugar diet and ethanol exposure, we treated human coronary artery endothelial cells (HCAEC) with two mixtures of 4 organic (NCM1) or 22 organic and inorganic (NCM2) chemicals detected in Northerners' blood during 2004-2005 in the presence or absence of low-density lipoprotein (1.5mg/ml), very-low-density lipoprotein (1.0mg/ml) and glucose (10mmol/L) (LVG), and in the absence or presence of 0.1% ethanol. After 24h of exposure, cell morphology and markers of cytotoxicity and endothelial function were examined. NCM1 treatment did not affect cell viability, but increased cell size, disrupted cell membrane integrity, and decreased cell density, uptake of small peptides, release of endothelin-1 (ET-1) and plasminogen activator inhibitor (PAI), while causing no changes in endothelial nitric oxide synthase (eNOS) protein expression and nitric oxide (NO) release. In contrast, NCM2 decreased cell viability, total protein yield, uptake of small peptides, eNOS protein expression, and NO release and caused membrane damage, but caused no changes in the secretion of ET-1, prostacyclin and PAI. The presence of LVG and/or alcohol did or did not influence the effects of NCM1 or NCM2 depending on the endpoint and the mixture examined. These results suggested that the effects of one or one group of contaminants may be altered by the presence of other contaminants, and that with or without the interaction of high fat and sugar diet and/or ethanol exposure, NCMs at the concentrations used caused endothelial dysfunction in vitro. It remains to be investigated if these effects of NCMs also

  5. Platelet Endothelial Cell Adhesion Molecule-1 Gene Polymorphisms are Associated with Coronary Artery Lesions in the Chronic Stage of Kawasaki Disease.

    Science.gov (United States)

    Lu, Wen-Hsien; Huang, Sin-Jhih; Yuh, Yeong-Seng; Hsieh, Kai-Sheng; Tang, Chia-Wan; Liou, Huei-Han; Ger, Luo-Ping

    2017-05-01

    Kawasaki disease is the most common cause of pediatric acquired heart disease. The role of platelet endothelial cell adhesion molecule-1 in the inflammatory process has been documented. To date, no report has investigated the relationship between coronary artery lesions of Kawasaki disease and platelet endothelial cell adhesion molecule-1 polymorphisms. A total of 114 Kawasaki disease children with coronary artery lesions and 185 Kawasaki disease children without coronary artery lesions were recruited in this study. The TaqMan assay was conducted to identify the genotype in this case-control study. In three single nucleotide polymorphisms (Leu125Val, Ser563Asn, and Arg670Gly) of platelet endothelial cell adhesion molecule-1, we found that the Leu-Ser-Arg haplotype was associated with a significantly increased risk for coronary artery lesions in the chronic stage (odds ratio 3.05, 95% confidence interval 1.06-8.80, p = 0.039), but not for coronary artery lesions in the acute stage. Analysis based on the diplotypes of platelet endothelial cell adhesion molecule-1 also showed that Kawasaki disease with one or two alleles of Leu-Ser-Arg had a significantly increased risk of chronic coronary artery lesions (odds ratio 3.38, 95% confidence interval 1.11-10.28, p = 0.032) and had increased platelet counts after Kawasaki disease was diagnosed, as compared to those with other diplotypes. The haplotype of platelet endothelial cell adhesion molecule-1 Leu-Ser-Arg might be associated with the increased platelet counts and the following risk of chronic coronary artery lesions in a dominant manner in Kawasaki disease.

  6. Connecting heart failure with preserved ejection fraction and renal dysfunction : the role of endothelial dysfunction and inflammation

    NARCIS (Netherlands)

    ter Maaten, Jozine M.; Damman, Kevin; Verhaar, Marianne C.; Paulus, Walter J.; Duncker, Dirk J.; Cheng, Caroline; van Heerebeek, Loek; Hillege, Hans L.; Lam, Carolyn S. P.; Navis, Gerjan; Voors, Adriaan A.

    2016-01-01

    Renal dysfunction in heart failure with preserved ejection fraction (HFpEF) is common and is associated with increased mortality. Impaired renal function is also a risk factor for developing HFpEF. A new paradigm for HFpEF, proposing a sequence of events leading to myocardial remodelling and dysfunc

  7. CLINICAL IMPORTANCE OF ENDOTHELIAL DYSFUNCTION AND INSULIN RESISTANCE SYNDROME IN PATIENTS WITH GOUT ASSOCIATED WITH ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    N. N. Kushnarenko

    2015-09-01

    Full Text Available Aim. To study the endothelium status and determine the correlation between endothelial dysfunction and glucose metabolism in men with gout associated with arterial hypertension (HT.Material and methods. Patients (n=175, all are males with gout were enrolled into the study. Ambulatory blood pressure monitoring (ABPM was performed in all patients. Endothelial function was studied in tests with reactive hyperemia (endothelium-dependent reaction and nitroglycerin (endothelium independent reaction in brachial artery by ultrasonic Doppler examination. The level of nitrite-nitrate and endothelin-1 in blood serum was determined by ELISA technique. Fasting blood glucose and oral glucose tolerance tests were performed as well as fasting insulin blood level was determined by immunoenzyme method. Insulin-resistance index (HOMA-IR was calculated. Patients with HOMA- IR>2.77 were considered as insulin-resistant.Results. Patients with gout demonstrated endothelial deterioration associated with activation of nitroxid producing function, elevation in endothelin-1 serum level (1.36 fmol/ml [0.91; 2.32 fmol/ml] vs 0.19 fmol/ml [0.16; 0.27 fmol/ml] in controls, p<0.05 and impairments of endothelium-dependent vasodilation (6.4% [3.3; 7.3%] vs 17.8% [12.7; 23.9%] in controls, p<0.05. The revealed changes were the most marked in patients with gout associated with HT. The correlation between some endothelial dysfunction in- dices and glucose metabolism was observed.Conclusion. ABPM, brachial artery endothelium-dependent vasodilation and glucose metabolism status should be studied in patients with gout. Complex treatment of cardiovascular diseases in patients with gout should include ω-3 polyunsaturated fatty acids, angiotensin receptor antagonists should be used for antihypertensive therapy.

  8. CLINICAL IMPORTANCE OF ENDOTHELIAL DYSFUNCTION AND INSULIN RESISTANCE SYNDROME IN PATIENTS WITH GOUT ASSOCIATED WITH ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    N. N. Kushnarenko

    2013-01-01

    Full Text Available Aim. To study the endothelium status and determine the correlation between endothelial dysfunction and glucose metabolism in men with gout associated with arterial hypertension (HT.Material and methods. Patients (n=175, all are males with gout were enrolled into the study. Ambulatory blood pressure monitoring (ABPM was performed in all patients. Endothelial function was studied in tests with reactive hyperemia (endothelium-dependent reaction and nitroglycerin (endothelium independent reaction in brachial artery by ultrasonic Doppler examination. The level of nitrite-nitrate and endothelin-1 in blood serum was determined by ELISA technique. Fasting blood glucose and oral glucose tolerance tests were performed as well as fasting insulin blood level was determined by immunoenzyme method. Insulin-resistance index (HOMA-IR was calculated. Patients with HOMA- IR>2.77 were considered as insulin-resistant.Results. Patients with gout demonstrated endothelial deterioration associated with activation of nitroxid producing function, elevation in endothelin-1 serum level (1.36 fmol/ml [0.91; 2.32 fmol/ml] vs 0.19 fmol/ml [0.16; 0.27 fmol/ml] in controls, p<0.05 and impairments of endothelium-dependent vasodilation (6.4% [3.3; 7.3%] vs 17.8% [12.7; 23.9%] in controls, p<0.05. The revealed changes were the most marked in patients with gout associated with HT. The correlation between some endothelial dysfunction in- dices and glucose metabolism was observed.Conclusion. ABPM, brachial artery endothelium-dependent vasodilation and glucose metabolism status should be studied in patients with gout. Complex treatment of cardiovascular diseases in patients with gout should include ω-3 polyunsaturated fatty acids, angiotensin receptor antagonists should be used for antihypertensive therapy.

  9. Role of NADPH Oxidase in the Endothelial Dysfunction and Oxidative Stress in Aorta of Aged Spontaneous Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Ashraf Taye

    2010-04-01

    Full Text Available Objective(sIncreased reactive oxygen species (ROS production is implicated in the pathogenesis of arterial hypertension and the development of endothelial dysfunction. NADPH oxidase type enzyme family has been suggested to form ROS and to interfere with endothelium-dependent relaxation. However, the specific isoform of NADPH oxidases that may predominantly contribute to these events remains to be clarified. Materials and MethodsHere we investigated the expressional regulation of NADPH oxidase isoforms (NOX1, NOX2 and NOX4 in aorta of aged spontaneously hypertensive rats (SHR in comparison to age matched Wistar Kyoto rats (WKY. Moreover, we examined the effect of in vitro inhibition of NADPH oxidase by apocynin or the novel NADPH oxidase inhibitor, VAS2870 on the vascular reactivity and ROS production.ResultsOur results showed that ROS formation was largely increased in aorta of SHR as measured by dihydroethidine (DHE fluorescence and inhibited by apocynin or VAS2870. NADPH oxidase activity, measured by lucigenin-enhanced chemiluminescence and of NOX1 and NOX2 protein levels were increased in aortic homogenates from SHR compared to WKY. However, NOX4 protein expression was not significantly changed. Furthermore, the impaired acetylcholine-induced relaxation of SHR aorta was significantly improved in the presence of either apocynin or VAS2870. ConclusionCollectively, our data suggest that NADPH oxidases, particularly NOX1 and NOX2 are relevant sources of ROS in the aorta of aged SHR thereby cause endothelial dysfunction, and VAS2870 is effective as apocynin in reversing these consequences.Aorta, Endothelial dysfunction, Oxidative stress, Spontaneously hypertensive rats

  10. Prognostic value of exercise-induced left ventricular systolic dysfunction in hypertensive patients without coronary artery disease.

    Science.gov (United States)

    Prada-Delgado, Oscar; Barge-Caballero, Eduardo; Peteiro, Jesús; Bouzas-Mosquera, Alberto; Estévez-Loureiro, Rodrigo; Barge-Caballero, Gonzalo; López-Pérez, Manuel; Vázquez-González, Nicolás; Castro-Beiras, Alfonso

    2015-02-01

    We sought to assess the prognostic value of exercise-induced left ventricular systolic dysfunction in hypertensive patients with normal resting echocardiography and absence of coronary artery disease. From our database of patients referred for treadmill exercise echocardiography, we identified 93 hypertensive patients with preserved resting left ventricular ejection fraction (≥ 50%), no evidence of structural heart disease, and absence of coronary artery disease on angiography. Overall, 39 patients developed exercise-induced left ventricular systolic dysfunction (defined as a decrease in left ventricular ejection fraction below 50% at peak exercise) and 54 exhibited a normal left ventricular ejection fraction response to exercise. The mean follow-up was 6.1 (3.7) years. End points were all-cause mortality, cardiac death, heart failure, and the composite event of cardiac death or heart failure. Patients who developed exercise-induced left ventricular systolic dysfunction were at higher risk of death from any cause (hazard ratio=3.4; 95% confidence interval, 1.1-10.3), cardiac death (hazard ratio=5.6; 95%CI, 1.1-29.4), heart failure (hazard ratio=8.9; 95% confidence interval, 1.8-44.2), and the composite end point (hazard ratio=5.7; 95% confidence interval, 1.7-19.0). In the multivariate analysis, exercise-induced left ventricular systolic dysfunction remained an independent predictor of both heart failure (hazard ratio=6.9; 95% CI, 1.3-37.4) and the composite event of cardiac death or heart failure (hazard ratio=4.5; 95% confidence interval, 1.2-16.0). In hypertensive patients with preserved resting left ventricular ejection fraction and absence of coronary artery disease, exercise-induced left ventricular systolic dysfunction is a strong predictor of cardiac events and may represent early hypertensive heart disease. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  11. Glycemic control with ipragliflozin, a novel selective SGLT2 inhibitor, ameliorated endothelial dysfunction in streptozotocin-induced diabetic mouse

    Directory of Open Access Journals (Sweden)

    Hotimah Masdan Salim

    2016-10-01

    Full Text Available Background: Endothelial dysfunction caused by increased oxidative stress is a critical initiator of macro- and micro-vascular disease development in diabetic patients. Ipragliflozin, a selective sodium glucose co-transporter 2 (SGLT2 inhibitor, offers a novel approach for the treatment of diabetes by enhancing urinary glucose excretion. The aim of the present study was to examine whether ipragliflozin attenuates endothelial dysfunction in diabetic mice.Methods: Eight-week-old male C57BL/6 mice were treated with streptozotocin (150 mg/kg by a single intraperitoneal injection to induce diabetes mellitus. At three days of injection, ipragliflozin (3 mg/kg/day was administered via gavage for 3 weeks. Vascular function was assessed by isometric tension recording. Human umbilical endothelial cells (HUVEC were used for in vitro experiments. RNA and protein expression were examined by quantitative RT-PCR (qPCR and western blot, respectively. Oxidative stress was determined by measuring urine 8-hydroxy-2'-deoxyguanosine (8-OHdG level.Results: Ipragliflozin administration significantly reduced blood glucose level (P<0.01 and attenuated the impairment of endothelial function in diabetic mice, as determined by acetylcholine-dependent vasodilation (P<0.001. Ipragliflozin did not alter metabolic parameters such as body weight and food intake. Ipragliflozin administration ameliorated impaired phosphorylation of Akt and eNOSSer1177 in the abdominal aorta and reduced reactive oxygen species generation as determined by urinary excretion of 8-OHdG in diabetic mice. Furthermore, qPCR analyses demonstrated that ipragliflozin decreased the expression of inflammatory molecules (e.g.; MCP-1, VCAM-1 and ICAM-1 in the abdominal aorta (P<0.05, respectively. In in vitro studies, incubation with methylglyoxal, one of the advanced glycation end products, significantly impaired phosphorylation of Akt and eNOSSer1177 (P<0.01, respectively and increased the expression of MCP-1

  12. Dysfunction of endothelial NO system originated from homocysteine-induced aberrant methylation pattern in promoter region of DDAH2 gene

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-ge; LIU Jun-xu; LI Zhu-hua; WANG Li-zhen; JIANG Yi-deng; WANG Shu-ren

    2007-01-01

    Background Hyperhomocysteinemia (HHcy)-mediated dysfunction of endothelial NO system is an important mechanism for atherosclerotic pathogenesis.Dimethylarginine dimethylaminohydrolase (DDAH) is the key enzyme for degrading asymmetric dimethylarginine (ADMA),which is an endogenous inhibitor of endothelial nitric oxide (NO) synthase (eNOS).This study was designed to investigate whether the dysfunction of endothelial NO system originates from HHcy-mediated aberrant methylation modification in promotor region of DDAH2 gene.Methods Human umbilical vein endothelial cells (HUVECs) were cultured to the third generation and treated with homocysteine (Hcy) at different concentrations (0,10,30,100,and 300 μmol/L) for 72 hours.The methylation pattern in promoter region CpG island of DDAH2 gene was analyzed by nested methylation-specific PCR (nMSP).The mRNA expression of eNOS gene and DDAH2 gene was detected by semi-quantitative RT-PCR.The activity of DDAH2 and eNOS in cells,and the concentrations of ADMA and NO in culture medium were assayed respectively.Results Mild increased concentration of Hcy (10 and 30 μmol/L) induced hypomethylation,while high concentration of Hcy (100 and 300 μmol/L) induced hypermethylation in the promoter CpG island of DDAH2 gene.The mRNA expression of DDAH2 increased in mild enhanced concentration of Hcy,and decreased in high concentration of Hcy correspondingly.The inhibition of DDAH2 activity,the increase of ADMA concentration,the reduction of eNOS activity and the decrease of NO production were all consistently relevant to the alteration of Hcy concentration Conclusion The increased concentration of Hcy induced aberrant methylation pattern in promotor region of DDAH2 gene and the successive alterations in DDAH/ADMA/NOS/NO pathway,which showed highly relevant and dose-effect relationship.The results suggested that the dysfunction of endothelial NO system induced by HHcy could be partially originated from Hcy-mediated aberrant methylation in

  13. Endothelial dysfunction and metabolic control in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Rodríguez-Mañas, L; Angulo, J; Peiró, C; Llergo, J L; Sánchez-Ferrer, A; López-Dóriga, P; Sánchez-Ferrer, C F

    1998-04-01

    1. The aim of this work was to study the influence of the metabolic control, estimated by the levels of glycosylated haemoglobin in total blood samples (HbA1c), in developing vascular endothelial dysfunction in streptozotocin-induced diabetic rats. Four groups of animals with different levels of insulin treatment were established, by determining HbA1c values in 5.5 to 7.4%, 7.5 to 9.4%, 9.5 to 12% and > 12%, respectively. 2. The parameters analysed were: (1) the endothelium-dependent relaxations to acetylcholine (ACh) in isolated aorta and mesenteric microvessels; (2) the vasodilator responses to exogenous nitric oxide (NO) in aorta: and (3) the existence of oxidative stress by studying the influence of the free radical scavenger superoxide dismutase (SOD) on the vasodilator responses to both ACh and NO. 3. In both isolated aortic segments and mesenteric microvessels, the endothelium-mediated concentration-dependent relaxant responses elicited by ACh were significantly decreased when the vessels were obtained from diabetic animals but only with HbA1c values higher than 7.5%. There was a high correlation between HbA1c levels and the impairment of ACh-induced relaxations, measured by pD2 values. 4. The concentration-dependent vasorelaxant responses to NO in endothelium-denuded aortic segments were significantly reduced only in vessels from diabetic animals with HbA1c values higher than 7.5%. Again, a very high correlation was found between the HbA1c values and pD2 for NO-evoked responses. 5. In the presence of SOD, the responses to ACh or NO were only increased in the segments from diabetic rats with HbA1c levels higher than 7.5%, but not in those from non-diabetic or diabetic rats with a good metabolic control (HbA1c levels metabolic control of diabetes, estimated by the levels of HbA1c; and (2) an increased production of superoxide anions in the vascular wall of the diabetic rats, which is also related to the metabolic control of the disease.

  14. Markers of low-grade inflammation and endothelial dysfunction are related to reduced information processing speed and executive functioning in an older population - the Hoorn Study.

    Science.gov (United States)

    Heringa, S M; van den Berg, E; Reijmer, Y D; Nijpels, G; Stehouwer, C D A; Schalkwijk, C G; Teerlink, T; Scheffer, P G; van den Hurk, K; Kappelle, L J; Dekker, J M; Biessels, G J

    2014-02-01

    Low-grade inflammation and endothelial dysfunction are related to cognitive decline and dementia, in a complex interplay with vascular factors and aging. We investigated, in an older population, low-grade inflammation and endothelial dysfunction in relation to detailed assessment of cognitive functioning. Furthermore, we explored this association within the context of vascular factors. 377 participants (73 ± 6 years) of the population-based Hoorn Study were included. In plasma samples of 2000-2001 (n=363) and/or 2005-2008 (n=323), biomarkers were determined of low-grade inflammation (CRP, TNF-alpha, IL-6, IL-8, SAA, MPO, and sICAM-1) and endothelial dysfunction (vWF, sICAM-1, sVCAM-1, sTM, sE-selectin). In 2005-2008, all participants underwent neuropsychological examination. Composite z-scores were computed for low-grade inflammation and endothelial dysfunction at both time points, and for six domains of cognitive functioning (abstract reasoning, memory, information processing speed, attention and executive functioning, visuoconstruction, and language). The association between low-grade inflammation and endothelial dysfunction, and cognitive functioning was evaluated with linear regression analysis. In secondary analyses, we explored the relation with vascular risk factors and cardiovascular disease. Low-grade inflammation and endothelial dysfunction were associated with worse performance on information processing speed and attention and executive functioning, in prospective and cross-sectional analyses (standardized betas ranging from -0.20 to -0.10). No significant relation with other cognitive domains was observed. Adjusting for vascular factors slightly attenuated the associations. Low-grade inflammation and endothelial dysfunction accounted for only 2.6% explained variance in cognitive functioning, on top of related vascular risk factors and cardiovascular disease. Bootstrapping analyses show that low-grade inflammation and endothelial dysfunction mediate the

  15. Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway

    Directory of Open Access Journals (Sweden)

    Duan J

    2014-11-01

    Full Text Available Junchao Duan,1,2 Yongbo Yu,1,2 Yang Yu,1,2 Yang Li,1,2 Ji Wang,1,2 Weijia Geng,1,2 Lizhen Jiang,1,2 Qiuling Li,1,2 Xianqing Zhou,1,2 Zhiwei Sun1,2 1School of Public Health, Capital Medical University, Beijing, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People’s Republic of China Abstract: Although nanoparticles have a great potential for biomedical applications, there is still a lack of a correlative safety evaluation on the cardiovascular system. This study is aimed to clarify the biological behavior and influence of silica nanoparticles (Nano-SiO2 on endothelial cell function. The results showed that the Nano-SiO2 were internalized into endothelial cells in a dose-dependent manner. Monodansylcadaverine staining, autophagic ultrastructural observation, and LC3-I/LC3-II conversion were employed to verify autophagy activation induced by Nano-SiO2, and the whole autophagic process was also observed in endothelial cells. In addition, the level of nitric oxide (NO, the activities of NO synthase (NOS and endothelial (eNOS were significantly decreased in a dose-dependent way, while the activity of inducible (iNOS was markedly increased. The expression of C-reactive protein, as well as the production of proinflammatory cytokines (tumor necrosis factor α, interleukin [IL]-1β, and IL-6 were significantly elevated. Moreover, Nano-SiO2 had an inhibitory effect on the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt/mammalian target of rapamycin (mTOR signaling pathway. Our findings demonstrated that Nano-SiO2 could disturb the NO/NOS system, induce inflammatory response, activate autophagy, and eventually lead to endothelial dysfunction via the PI3K/Akt/mTOR pathway. This indicates that exposure to Nano-SiO2 is a potential risk factor for cardiovascular diseases. Keywords: silica nanoparticles, endothelial dysfunction, autophagy, nitric oxide, inflammation

  16. Hyperandrogenism and Insulin Resistance, Not Changes in Body Weight, Mediate the Development of Endothelial Dysfunction in a Female Rat Model of Polycystic Ovary Syndrome (PCOS).

    Science.gov (United States)

    Hurliman, Amanda; Keller Brown, Jennifer; Maille, Nicole; Mandala, Maurizio; Casson, Peter; Osol, George

    2015-11-01

    This study was designed to differentiate the contributions of hyperandrogenism, insulin resistance (IR), and body weight to the development of endothelial dysfunction in polycystic ovary syndrome and determine the effectiveness of insulin sensitization and antiandrogenic therapy after the establishment of vascular and metabolic dysfunction using a rat model of polycystic ovary syndrome. We hypothesized that the observed endothelial dysfunction was a direct steroidal effect, as opposed to changes in insulin sensitivity or body weight. Prepubertal female rats were randomized to the implantation of a pellet containing DHT or sham procedure. In phase 1, DHT-exposed animals were randomized to pair feeding to prevent weight gain or metformin, an insulin-sensitizing agent, from 5 to 14 weeks. In phase 2, DHT-exposed animals were randomized to treatment with metformin or flutamide, a nonsteroidal androgen receptor blocker from 12 to 16 weeks. Endothelial function was assessed by the vasodilatory response of preconstricted arteries to acetylcholine. Serum steroid levels were analyzed in phase 1 animals. Fasting blood glucose and plasma insulin were analyzed and homeostasis model assessment index calculated in all animals. Our data confirm the presence of endothelial dysfunction as well as increased body weight, hypertension, hyperinsulinemia, and greater IR among DHT-treated animals. Even when normal weight was maintained through pair feeding, endothelial dysfunction, hyperinsulinemia, and IR still developed. Furthermore, despite weight gain, treatment with metformin and flutamide improved insulin sensitivity and blood pressure and restored normal endothelial function. Therefore, the observed endothelial dysfunction is most likely a direct result of hyperandrogenism-induced reductions in insulin sensitivity, as opposed to weight gain.

  17. 内皮微粒与冠心病相关性研究%Correlationship of endothelial microparticles and coronary heart disease

    Institute of Scientific and Technical Information of China (English)

    张欣; 龙盼; 张俊峰; 王连升; 魏冬; 张田田; 徐芒华

    2012-01-01

    目的:探讨血浆内皮微粒(EMP)与冠心病的相关性.方法:冠心病组367例,其中稳定型心绞痛(SA)119例,急性冠状动脉综合征(ACS)248例,后者含不稳定型心绞痛(UA) 158例,急性心肌梗死(AMI) 90例.非冠心病组166例.ELISA法测定血浆ET-1,流式微球技术检测血浆EMP.结果:冠心病组ET-1、EMP水平升高,呈正相关(r=0.233,P=0.001).ACS组EMP(547.405)显著高于非冠心病组(148.185)及SA组(429.890),亚组分析中UA组EMP(551.660)升高最为显著;冠心病冠状动脉病变支数与EMP无明显相关;AMI患者EMP与BNP、TnT、TnI间无明显相关;EMP与ACS患者短期预后相关(r=0.280,P<0.01).结论:血浆EMP水平可反映冠心病内皮功能障碍,与冠心病的发生、冠状动脉斑块的不稳定性有关.%Objective:To study the expression of endothelial microparticles (EMP) in coronary heart disease (CHD) and the relationship of EMP and the severity of CHD. Method: 367 patients with CHD were enrolled (119 patients were stable angina (SA) group, 248 patients were acute coronary syndrome (ACS) group, including unstable angina UA 158 and acute myocardial infarction 90). Besides, 166 coronary negative patients were included as control. ELISA was used to detect plasma ET-1 levels and Cytometric Bead Assay (CBA) to detect plasma EMP levels. Result: The levels of ET-1 and EMP were elevated in CHD group with a positive correlation (r = 0. 233, P = 0. 001). The EMP level in ACS (547. 405) was significantly higher than control group (148. 185) and SA group (429. 890). The EMP levelin UA subgroup was the highest. There was no obvious relationship between EMP and the stability of coronary lesions in CHD group. And also no obvious relationship between EMP and BNP, TnT. Tnl in AMI group. The positive correlation was observed between EMP levels and short-term prognosis of ACS (r=0. 280, P<0. 01). Conclusion:Plasma EMP level reflected the endothelial dysfunction of CHD, and correlated to the occurrence

  18. Effects of a Physical Activity Program on Markers of Endothelial Dysfunction, Oxidative Stress, and Metabolic Status in Adolescents with Metabolic Syndrome

    Science.gov (United States)

    Camarillo-Romero, Eneida; Dominguez-Garcia, Ma Victoria; Amaya-Chavez, Araceli; Camarillo-Romero, Maria del Socorro; Talavera-Piña, Juan; Huitron-Bravo, Gerardo; Majluf-Cruz, Abraham

    2012-01-01

    The metabolic syndrome (MetS) is a precursor of diabetes. Physical activity (PA) improves endothelial dysfunction and may benefit patients with MetS. Aims. To evaluate the effect of a physical activity (PA) program on markers of endothelial dysfunction and oxidative stress in adolescents with (MetS). Methods. We carried out a cohort study of 38 adolescents with and without MetS (18 females and 20 males). All participants completed a 3-month PA program. All variables of the MetS as well as markers of endothelial dysfunction and oxidative stress tests were evaluated. Results. Females with and without MetS showed significant differences for almost all components of the MetS, whereas males were significantly different in half of the components. After the PA program, components of the MetS were not different from baseline values except for HDL-C levels. Some baseline endothelial dysfunction markers were significantly different among adolescents with and without MetS; however, after the PA program, most of these markers significantly improved in subjects with and without MetS. Conclusion. PA improves the markers of endothelial dysfunction in adolescents with MetS although other changes in the components of the MetS were not observed. Perhaps the benefits of PA on all components of MetS would appear after a PA program with a longer duration. PMID:22888450

  19. Coronary microvascular dysfunction in a porcine model of early atherosclerosis and diabetes

    NARCIS (Netherlands)

    Heuvel, van den M.; Sorop, O.; Koopmans, S.J.; Dekker, R.A.; Vries, de R.; Beusekom, H.M.M.; Eringa, E.C.; Duncker, D.J.; Danser, A.H.J.; Giessen, W.J.

    2012-01-01

    Detailed evaluation of coronary function early in diabetes mellitus (DM)-associated coronary artery disease (CAD) development is difficult in patients. Therefore, we investigated coronary conduit and small artery function in a preatherosclerotic DM porcine model with type 2 characteristics. Streptoz

  20. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-08-01

    Full Text Available We previously demonstrated that in normal glucose (5 mM, methylglyoxal (MG, a model of carbonyl stress induced brain microvascular endothelial cell (IHEC dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC. Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia; moreover, barrier function remained disrupted 6 h after cell transfer to normal glucose media (acute glycemic fluctuation. Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG–occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG–occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes.

  1. Implantation of healthy matrix-embedded endothelial cells rescues dysfunctional endothelium and ischaemic tissue in liver engraftment.

    Science.gov (United States)

    Melgar-Lesmes, Pedro; Balcells, Mercedes; Edelman, Elazer R

    2017-07-01

    Liver transplantation is limited by ischaemic injury which promotes endothelial cell and hepatocyte dysfunction and eventually organ failure. We sought to understand how endothelial state determines liver recovery after hepatectomy and engraftment. Matrix-embedded endothelial cells (MEECs) with retained healthy phenotype or control acellular matrices were implanted in direct contact with the remaining median lobe of donor mice undergoing partial hepatectomy (70%), or in the interface between the remaining median lobe and an autograft or isograft from the left lobe in hepatectomised recipient mice. Hepatic vascular architecture, DNA fragmentation and apoptosis in the median lobe and grafts, serum markers of liver damage and phenotype of macrophage and lymphocyte subsets in the liver after engraftment were analysed 7 days post-op. Healthy MEECs create a functional vascular splice in donor and recipient liver after 70% hepatectomy in mouse protecting these livers from ischaemic injury, hepatic congestion and inflammation. Macrophages recruited adjacent to the vascular nodes into the implants switched to an anti-inflammatory and regenerative profile M2. MEECs improved liver function and the rate of liver regeneration and prevented apoptosis in donor liver lobes, autologous grafts and syngeneic engraftment. Implants with healthy endothelial cells rescue liver donor and recipient endothelium and parenchyma from ischaemic injury after major hepatectomy and engraftment. This study highlights endothelial-hepatocyte crosstalk in hepatic repair and provides a promising new approach to improve regenerative medicine outcomes and liver transplantation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Binding of human coronary artery endothelial cells to plasma-treated titanium dioxide nanotubes of different diameters.

    Science.gov (United States)

    Flašker, Ajda; Kulkarni, Mukta; Mrak-Poljšak, Katjuša; Junkar, Ita; Čučnik, Saša; Žigon, Polona; Mazare, Anca; Schmuki, Patrik; Iglič, Aleš; Sodin-Semrl, Snezna

    2016-05-01

    Nanoscale topography in improving vascular response in vitro was established previously on various titanium surfaces. In the present study different surface nanotopographies that is different diameters of titanium dioxide (TiO2 ) nanotubes (NTs) were fabricated by electrochemical anodization and conditioned with highly reactive gaseous oxygen plasma. The morphology of different diameter NTs was studied by scanning electron microscopy and atomic force microscopy, while changes in chemical composition on the surface before and after plasma treatment were determined by X-ray photoelectron spectroscopy. Performance of human coronary artery endothelial cells (HCAEC) on those conditioned surfaces was studied in regard to cell proliferation, released IL-6 protein and immunofluorescence microscopy (IFM). We show that HCAEC function is dependent on the diameter of the TiO2 NTs, functioning far less optimally when bound to 100 nm TiO2 NTs as compared to Ti foil, 15 nm NTs or 50 nm NTs. There were improved, morphological cell shape changes, observed with IFM, between HCAEC growing on oxygen-rich plasma-treated versus nontreated 100 nm NTs. These endothelialized conditioned Ti nanosurfaces could elucidate optimization conditions necessary for vascular implants in coronary arteries.

  3. Effects of Music Therapy on Endothelial Function in Patients With Coronary Artery Disease Participating in Aerobic Exercise Therapy.

    Science.gov (United States)

    Deljanin Ilic, Marina; Pavlovic, Radmila F; Kocic, Gordana; Simonovic, Dejan; Lazarevic, Gordana

    2017-02-27

    Context • Pleasant music that evokes a positive emotional response may activate brain pathways of the insular cortex, central nucleus of the amygdala, and lateral hypothalamus, which are involved in the integration of emotional and ambient sensory input, with corresponding autonomic responses. Exercise training can improve endothelium-dependent vasodilatation, both in epicardial coronary vessels and in resistance vessels, for patients with coronary heart disease. Objective • The aim of the present study was to evaluate the effects on endothelial function when patients with stable coronary artery disease (CAD) listened to their favorite music. Design • The study was a randomized controlled trial. Setting • The study occurred at the Institute of Cardiology, Niska Banja, Faculty of Medicine, University of Nis (Nis, Serbia). Participants • Participants were 74 patients with stable CAD. Intervention • Participants were randomly assigned to 1 of 3 groups: (1) exercise training only (T) group (n = 33), (2) listening to music and exercise training (MT) group (n = 31), and listening to music only (M) group (n = 10). Participants in the T and MT groups received usual medical care and underwent 3 wk of supervised aerobic exercise training. In addition to the exercise training, participants in the MT group listened to their favorite music for 1.5 h every day. Participants in the M group received the usual medical care and listened to their favorite music for 1.5 h every day. Outcome Measures • At baseline and postintervention, outcomes were assessed through measurement of the changes in circulating blood markers of endothelial function-the stable end product of nitric oxide (NOx), asymmetric dimethylarginine, symmetric dimethylarginine, and xanthine oxidase-and through the results of submaximal or symptom-limited exercise test. Results • After 3 wk, the NOx significantly increased in both in MT and T groups, with P < .001 and P < .01, respectively. The level of

  4. EECP in the treatment of endothelial dysfunction: preventing progression of cardiovascular disease

    Institute of Scientific and Technical Information of China (English)

    John CK Hui; William E Lawson; Gregory W Barsness

    2010-01-01

    @@ Enhanced external counterpulsation External counterpulsation (ECP) was originally conceived to be a circulatory assist device to promote blood flow to areas of the heart muscle that were lacking adequate blood supply due to obstruction of the coronary artery. During ECP the lower extremities are compressed to squeeze both arterial and venous blood back to the heart during diastole,increasing coronary perfusion pressure and right ventricu-lar filling.

  5. The effect of homocysteine reduction by B-vitamin supplementation on markers of endothelial dysfunction.

    NARCIS (Netherlands)

    Peeters, A.C.T.; Molen, E.F. van der; Blom, H.J.; Heijer, M. den

    2004-01-01

    Hyperhomocysteinemia is a risk factor for arterial vascular disease and venous thrombosis. The pathophysiology of this relation is unclear, but several studies suggest that hyperhomocysteinemia impairs endothelial function. We examined the effect of homocysteine lowering by B-vitamin supplementation

  6. Additive Effect of Non-Alcoholic Fatty Liver Disease on Metabolic Syndrome-Related Endothelial Dysfunction in Hypertensive Patients

    Directory of Open Access Journals (Sweden)

    Maria Perticone

    2016-03-01

    Full Text Available Metabolic syndrome (MS is characterized by an increased risk of incident diabetes and cardiovascular (CV events, identifying insulin resistance (IR and endothelial dysfunction as key elements. Moreover, non-alcoholic fatty liver disease (NAFLD is bidirectionally linked with MS as a consequence of metabolic and inflammatory abnormalities. We addressed the question if the evolution in NAFLD might worsen endothelium-dependent vasodilating response in MS hypertensives. We recruited 272 Caucasian newly-diagnosed never-treated hypertensive outpatients divided into three groups according to the presence/absence of MS alone or in combination with NAFLD. MS and NAFLD were defined according to the National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATPIII and non-invasive fatty liver index, respectively. We determined IR by using the homeostasis model assessment (HOMA index. Vascular function, as forearm blood flow (FBF, was determined through strain-gauge plethysmography after intra-arterial infusion of acetylcholine (ACh and sodium nitroprusside. MS+NAFLD+ group showed worse metabolic, inflammatory and vascular profiles compared with MS−NAFLD− and MS