WorldWideScience

Sample records for coronal loop model

  1. A model for a stable coronal loop

    International Nuclear Information System (INIS)

    Hoven, G.V.; Chiuderi, C.; Giachetti, R.

    1977-01-01

    We present here a new plasma-physics model of a stable active-region arch which corresponds to the structure observed in the EUV. Pressure gradients are seen, so that the equilibrium magnetic field must depart from the force-free form valid in the surrounding corona. We take advantage of the data and of the approximate cylindrical symmetry to develop a modified form of the commonly assumed sheared-spiral structure. The dynamic MHD behavior of this new pressure/field model is then evaluated by the Newcomb criterion, taken from controlled-fusion physics, and the results show short-wavelength stability in a specific parameter range. Thus we demonstrate the possibility, for pressure profiles with widths of the order of the magnetic-field scale, that such arches can persist for reasonable periods. Finally, the spatial proportions and magnetic fields of a characteristic stable coronal loop are described

  2. Comparison between two models of energy balance in coronal loops

    Science.gov (United States)

    Mac Cormack, C.; López Fuentes, M.; Vásquez, A. M.; Nuevo, F. A.; Frazin, R. A.; Landi, E.

    2017-10-01

    In this work we compare two models to analyze the energy balance along coronal magnetic loops. For the first stationary model we deduce an expression of the energy balance along the loops expressed in terms of quantities provided by the combination of differential emission measure tomography (DEMT) applied to EUV images time series and potential extrapolations of the coronal magnetic field. The second applied model is a 0D hydrodynamic model that provides the evolution of the average properties of the coronal plasma along the loops, using as input parameters the loop length and the heating rate obtained with the first model. We compare the models for two Carrington rotations (CR) corresponding to different periods of activity: CR 2081, corresponding to a period of minimum activity observed with the Extreme Ultraviolet Imager (EUVI) on board of the Solar Terrestrial Relations Observatory (STEREO), and CR 2099, corresponding to a period of activity increase observed with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The results of the models are consistent for both rotations.

  3. MHD modeling of coronal loops: the transition region throat

    Science.gov (United States)

    Guarrasi, M.; Reale, F.; Orlando, S.; Mignone, A.; Klimchuk, J. A.

    2014-04-01

    Context. The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross-sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. Aims: The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. Methods: We study the area response with a time-dependent 2D magnetohydrodynamic (MHD) loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction, and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 MK. Results: We find that the area can change substantially with the quasi-steady heating rate, e.g., by ~40% at 0.5 MK as the loop temperature varies between 1 MK and 4 MK, and, therefore, affects the interpretation of the differential emission measure vs. temperature (DEM(T)) curves. The movie associated to Fig. 4 is available in electronic form at http://www.aanda.org

  4. Coronal Heating: Testing Models of Coronal Heating by Forward-Modeling the AIA Emission of the Ansample of Coronal Loops

    Science.gov (United States)

    Malanushenko, A. V.

    2015-12-01

    We present a systemic exploration of the properties of coronal heating, by forward-modeling the emission of the ensemble of 1D quasi-steady loops. This approximations were used in many theoretical models of the coronal heating. The latter is described in many such models in the form of power laws, relating heat flux through the photosphere or volumetric heating to the strength of the magnetic field and length of a given field line. We perform a large search in the parameter space of these power laws, amongst other variables, and compare the resulting emission of the active region to that observed by AIA. We use a recently developed magnetic field model which uses shapes of coronal loops to guide the magnetic model; the result closely resembles observed structures by design. We take advantage of this, by comparing, in individual sub-regions of the active region, the emission of the active region and its synthetic model. This study allows us to rule out many theoretical models and formulate predictions for the heating models to come.

  5. 3D MHD MODELING OF TWISTED CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Reale, F.; Peres, G. [Dipartimento di Fisica and Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Orlando, S. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Guarrasi, M. [CINECA—Interuniversity consortium, via Magnanelli 6/3, I-40033, Casalecchio di Reno, Bologna (Italy); Mignone, A. [Dipartimento di Fisica Generale, Università di Torino, via Pietro Giuria 1, I-10125, Torino (Italy); Hood, A. W.; Priest, E. R., E-mail: fabio.reale@unipa.it [School of Mathematics and Statistics, University of St. Andrews, St. Andrews, KY16 9SS (United Kingdom)

    2016-10-10

    We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube in the solar atmosphere extending from the high- β chromosphere to the low- β corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ∼30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (∼3 MK) after ∼2/3 hr. Upflows from the chromosphere up to ∼100 km s{sup −1} fill the core of the flux tube to densities above 10{sup 9} cm{sup −3}. More heating is released in the low corona than the high corona and is finely structured both in space and time.

  6. Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Aiying; Zhang, Huai [Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing 100049 (China); Jiang, Chaowei [Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen, 518055 (China); Hu, Qiang; Gary, G. Allen; Wu, S. T. [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Cao, Jinbin, E-mail: duanaiying@ucas.ac.cn, E-mail: hzhang@ucas.ac.cn, E-mail: chaowei@hit.edu.cn [School of Space and Environment, Beihang University, Beijing 100191 (China)

    2017-06-20

    Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE–MHD–NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO /AIA. It is found that the CESE–MHD–NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ∼10°. This suggests that the CESE–MHD–NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (∼30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.

  7. FORWARD MODELING OF STANDING KINK MODES IN CORONAL LOOPS. II. APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Ding; Doorsselaere, Tom Van, E-mail: DYuan2@uclan.ac.uk [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium)

    2016-04-15

    Magnetohydrodynamic waves are believed to play a significant role in coronal heating, and could be used for remote diagnostics of solar plasma. Both the heating and diagnostic applications rely on a correct inversion (or backward modeling) of the observables into the thermal and magnetic structures of the plasma. However, due to the limited availability of observables, this is an ill-posed issue. Forward modeling is designed to establish a plausible mapping of plasma structuring into observables. In this study, we set up forward models of standing kink modes in coronal loops and simulate optically thin emissions in the extreme ultraviolet bandpasses, and then adjust plasma parameters and viewing angles to match three events of transverse loop oscillations observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly. We demonstrate that forward models could be effectively used to identify the oscillation overtone and polarization, to reproduce the general profile of oscillation amplitude and phase, and to predict multiple harmonic periodicities in the associated emission intensity and loop width variation.

  8. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Obenschain, K. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Laming, J. M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Taylor, B. D. [AFRL Eglin AFB, Pensacola, FL 32542 (United States)

    2016-11-10

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  9. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    International Nuclear Information System (INIS)

    Dahlburg, R. B.; Obenschain, K.; Laming, J. M.; Taylor, B. D.

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  10. REFLECTION OF PROPAGATING SLOW MAGNETO-ACOUSTIC WAVES IN HOT CORONAL LOOPS: MULTI-INSTRUMENT OBSERVATIONS AND NUMERICAL MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sudip; Banerjee, Dipankar; Pant, Vaibhav [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Yuan, Ding; Fang, Xia; Doorsselaere, Tom Van, E-mail: sudip@iiap.res.in, E-mail: xia.fang@wis.kuleuven.be [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, bus 2400, 3001, Leuven (Belgium)

    2016-09-10

    Slow MHD waves are important tools for understanding coronal structures and dynamics. In this paper, we report a number of observations from the X-Ray Telescope (XRT) on board HINODE and Solar Dynamic Observatory /Atmospheric Imaging Assembly (AIA) of reflecting longitudinal waves in hot coronal loops. To our knowledge, this is the first report of this kind as seen from the XRT and simultaneously with the AIA. The wave appears after a micro-flare occurs at one of the footpoints. We estimate the density and temperature of the loop plasma by performing differential emission measure (DEM) analysis on the AIA image sequence. The estimated speed of propagation is comparable to or lower than the local sound speed, suggesting it to be a propagating slow wave. The intensity perturbation amplitude, in every case, falls very rapidly as the perturbation moves along the loop and eventually vanishes after one or more reflections. To check the consistency of such reflection signatures with the obtained loop parameters, we perform a 2.5D MHD simulation, which uses the parameters obtained from our observation as inputs, and perform forward modeling to synthesize AIA 94 Å images. Analyzing the synthesized images, we obtain the same properties of the observables as for the real observation. From the analysis we conclude that a footpoint heating can generate a slow wave which then reflects back and forth in the coronal loop before fading. Our analysis of the simulated data shows that the main agent for this damping is anisotropic thermal conduction.

  11. Spatiotemporal Analysis of Coronal Loops Using Seismology of Damped Kink Oscillations and Forward Modeling of EUV Intensity Profiles

    Science.gov (United States)

    Pascoe, D. J.; Anfinogentov, S. A.; Goddard, C. R.; Nakariakov, V. M.

    2018-06-01

    The shape of the damping profile of kink oscillations in coronal loops has recently allowed the transverse density profile of the loop to be estimated. This requires accurate measurement of the damping profile that can distinguish the Gaussian and exponential damping regimes, otherwise there are more unknowns than observables. Forward modeling of the transverse intensity profile may also be used to estimate the width of the inhomogeneous layer of a loop, providing an independent estimate of one of these unknowns. We analyze an oscillating loop for which the seismological determination of the transverse structure is inconclusive except when supplemented by additional spatial information from the transverse intensity profile. Our temporal analysis describes the motion of a coronal loop as a kink oscillation damped by resonant absorption, and our spatial analysis is based on forward modeling the transverse EUV intensity profile of the loop under the isothermal and optically thin approximations. We use Bayesian analysis and Markov chain Monte Carlo sampling to apply our spatial and temporal models both individually and simultaneously to our data and compare the results with numerical simulations. Combining the two methods allows both the inhomogeneous layer width and density contrast to be calculated, which is not possible for the same data when each method is applied individually. We demonstrate that the assumption of an exponential damping profile leads to a significantly larger error in the inferred density contrast ratio compared with a Gaussian damping profile.

  12. Observation and Modeling of Chromospheric Evaporation in a Coronal Loop Related to Active Region Transient Brightening

    Science.gov (United States)

    Gupta, G. R.; Sarkar, Aveek; Tripathi, Durgesh

    2018-04-01

    Using the observations recorded by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory and the Interface Region Imaging Spectrograph (IRIS) and the Extreme-ultraviolet Imaging Spectrometer and X-Ray Telescope both on board Hinode, we present evidence of chromospheric evaporation in a coronal loop after the occurrence of two active region transient brightenings (ARTBs) at the two footpoints. The chromospheric evaporation started nearly simultaneously in all of the three hot channels of AIA 131, 94, and 335 Å and was observed to be temperature dependent, being fastest in the highest temperature channel. The whole loop became fully brightened following the ARTBs after ≈25 s in 131 Å, ≈40 s in 94 Å, and ≈6.5 minutes in 335 Å. The differential emission measurements at the two footpoints (i.e., of two ARTBs) and at the loop top suggest that the plasma attained a maximum temperature of ∼10 MK at all these locations. The spectroscopic observations from IRIS revealed the presence of redshifted emission of ∼20 km s‑1 in cooler lines like C II and Si IV during the ARTBs that was cotemporal with the evaporation flow at the footpoint of the loop. During the ARTBs, the line width of C II and Si IV increased nearly by a factor of two during the peak emission. Moreover, enhancement in the line width preceded that in the Doppler shift, which again preceded enhancement in the intensity. The observed results were qualitatively reproduced by 1D hydrodynamic simulations, where energy was deposited at both of the footpoints of a monolithic coronal loop that mimicked the ARTBs identified in the observations.

  13. Coronal Loop Evolution Observed with AIA and Hi-C

    Science.gov (United States)

    Mulu-Moore, Fana; Winebarger, A.; Cirtain, J.; Kobayashi, K.; Korreck, K.; Golub, L.; Kuzin. S.; Walsh, R.; DeForest, C.; DePontieu, B.; hide

    2012-01-01

    Despite much progress toward understanding the dynamics of the solar corona, the physical properties of coronal loops are not yet fully understood. Recent investigations and observations from different instruments have yielded contradictory results about the true physical properties of coronal loops. In the past, the evolution of loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this poster we discuss the first results of loop analysis comparing AIA and Hi-C data. We find signatures of cooling in a pixel selected along a loop structure in the AIA multi-filter observations. However, unlike previous studies, we find that the cooling time is much longer than the draining time. This is inconsistent with previous cooling models.

  14. BAYESIAN MAGNETOHYDRODYNAMIC SEISMOLOGY OF CORONAL LOOPS

    International Nuclear Information System (INIS)

    Arregui, I.; Asensio Ramos, A.

    2011-01-01

    We perform a Bayesian parameter inference in the context of resonantly damped transverse coronal loop oscillations. The forward problem is solved in terms of parametric results for kink waves in one-dimensional flux tubes in the thin tube and thin boundary approximations. For the inverse problem, we adopt a Bayesian approach to infer the most probable values of the relevant parameters, for given observed periods and damping times, and to extract their confidence levels. The posterior probability distribution functions are obtained by means of Markov Chain Monte Carlo simulations, incorporating observed uncertainties in a consistent manner. We find well-localized solutions in the posterior probability distribution functions for two of the three parameters of interest, namely the Alfven travel time and the transverse inhomogeneity length scale. The obtained estimates for the Alfven travel time are consistent with previous inversion results, but the method enables us to additionally constrain the transverse inhomogeneity length scale and to estimate real error bars for each parameter. When observational estimates for the density contrast are used, the method enables us to fully constrain the three parameters of interest. These results can serve to improve our current estimates of unknown physical parameters in coronal loops and to test the assumed theoretical model.

  15. Endogenous Magnetic Reconnection in Solar Coronal Loops

    Science.gov (United States)

    Asgari-Targhi, M.; Coppi, B.; Basu, B.; Fletcher, A.; Golub, L.

    2017-12-01

    We propose that a magneto-thermal reconnection process occurring in coronal loops be the source of the heating of the Solar Corona [1]. In the adopted model, magnetic reconnection is associated with electron temperature gradients, anisotropic electron temperature fluctuations and plasma current density gradients [2]. The input parameters for our theoretical model are derived from the most recent observations of the Solar Corona. In addition, the relevant (endogenous) collective modes can produce high energy particle populations. An endogenous reconnection process is defined as being driven by factors internal to the region where reconnection takes place. *Sponsored in part by the U.S. D.O.E. and the Kavli Foundation* [1] Beafume, P., Coppi, B. and Golub, L., (1992) Ap. J. 393, 396. [2] Coppi, B. and Basu, B. (2017) MIT-LNS Report HEP 17/01.

  16. Coronal Loops: Evolving Beyond the Isothermal Approximation

    Science.gov (United States)

    Schmelz, J. T.; Cirtain, J. W.; Allen, J. D.

    2002-05-01

    Are coronal loops isothermal? A controversy over this question has arisen recently because different investigators using different techniques have obtained very different answers. Analysis of SOHO-EIT and TRACE data using narrowband filter ratios to obtain temperature maps has produced several key publications that suggest that coronal loops may be isothermal. We have constructed a multi-thermal distribution for several pixels along a relatively isolated coronal loop on the southwest limb of the solar disk using spectral line data from SOHO-CDS taken on 1998 Apr 20. These distributions are clearly inconsistent with isothermal plasma along either the line of sight or the length of the loop, and suggested rather that the temperature increases from the footpoints to the loop top. We speculated originally that these differences could be attributed to pixel size -- CDS pixels are larger, and more `contaminating' material would be expected along the line of sight. To test this idea, we used CDS iron line ratios from our data set to mimic the isothermal results from the narrowband filter instruments. These ratios indicated that the temperature gradient along the loop was flat, despite the fact that a more complete analysis of the same data showed this result to be false! The CDS pixel size was not the cause of the discrepancy; rather, the problem lies with the isothermal approximation used in EIT and TRACE analysis. These results should serve as a strong warning to anyone using this simplistic method to obtain temperature. This warning is echoed on the EIT web page: ``Danger! Enter at your own risk!'' In other words, values for temperature may be found, but they may have nothing to do with physical reality. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783. This research was funded in part by the NASA/TRACE MODA grant for Montana State University.

  17. THE CORONAL LOOP INVENTORY PROJECT: EXPANDED ANALYSIS AND RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Schmelz, J. T. [USRA, 7178 Columbia Gateway Drive, Columbia, MD 21046 (United States); Christian, G. M.; Chastain, R. A., E-mail: jschmelz@usra.edu [Physics Department, University of Memphis, Memphis, TN 38152 (United States)

    2016-11-10

    We have expanded upon earlier work that investigates the relative importance of coronal loops with isothermal versus multithermal cross-field temperature distributions. These results are important for determining if loops have substructure in the form of unresolved magnetic strands. We have increased the number of loops targeted for temperature analysis from 19 to 207 with the addition of 188 new loops from multiple regions. We selected all loop segments visible in the 171 Å images of the Atmospheric Imaging Assembly (AIA) that had a clean background. Eighty-six of the new loops were rejected because they could not be reliably separated from the background in other AIA filters. Sixty-one loops required multithermal models to reproduce the observations. Twenty-eight loops were effectively isothermal, that is, the plasma emission to which AIA is sensitive could not be distinguished from isothermal emission, within uncertainties. Ten loops were isothermal. Also, part of our inventory was one small flaring loop, one very cool loop whose temperature distribution could not be constrained by the AIA data, and one loop with inconclusive results. Our survey can confirm an unexpected result from the pilot study: we found no isothermal loop segments where we could properly use the 171-to-193 ratio method, which would be similar to the analysis done for many loops observed with TRACE and EIT. We recommend caution to observers who assume the loop plasma is isothermal, and hope that these results will influence the direction of coronal heating models and the effort modelers spend on various heating scenarios.

  18. A Hydrodynamic Model of Alfvénic Wave Heating in a Coronal Loop and Its Chromospheric Footpoints

    Science.gov (United States)

    Reep, Jeffrey W.; Russell, Alexander J. B.; Tarr, Lucas A.; Leake, James E.

    2018-02-01

    Alfvénic waves have been proposed as an important energy transport mechanism in coronal loops, capable of delivering energy to both the corona and chromosphere and giving rise to many observed features of flaring and quiescent regions. In previous work, we established that resistive dissipation of waves (ambipolar diffusion) can drive strong chromospheric heating and evaporation, capable of producing flaring signatures. However, that model was based on a simplified assumption that the waves propagate instantly to the chromosphere, an assumption that the current work removes. Via a ray-tracing method, we have implemented traveling waves in a field-aligned hydrodynamic simulation that dissipate locally as they propagate along the field line. We compare this method to and validate against the magnetohydrodynamics code Lare3D. We then examine the importance of travel times to the dynamics of the loop evolution, finding that (1) the ionization level of the plasma plays a critical role in determining the location and rate at which waves dissipate; (2) long duration waves effectively bore a hole into the chromosphere, allowing subsequent waves to penetrate deeper than previously expected, unlike an electron beam whose energy deposition rises in height as evaporation reduces the mean-free paths of the electrons; and (3) the dissipation of these waves drives a pressure front that propagates to deeper depths, unlike energy deposition by an electron beam.

  19. Coronal Seismology: The Search for Propagating Waves in Coronal Loops

    Science.gov (United States)

    Schad, Thomas A.; Seeley, D.; Keil, S. L.; Tomczyk, S.

    2007-05-01

    We report on Doppler observations of the solar corona obtained in the Fe XeXIII 1074.7nm coronal emission line with the HAO Coronal Multi-Channel Polarimeter (CoMP) mounted on the NSO Coronal One Shot coronagraph located in the Hilltop Facility of NSO/Sacramento Peak. The COMP is a tunable filtergraph instrument that records the entire corona from the edge of the occulting disk at approximately 1.03 Rsun out to 1.4 Rsun with a spatial resolution of about 4” x 4”. COMP can be rapidly scanned through the spectral line while recording orthogonal states of linear and circular polarization. The two dimensional spatial resolution allows us to correlate temporal fluctuations observed in one part of the corona with those seen at other locations, in particular along coronal loops. Using cross spectral analysis we find that the observations reveal upward propagating waves that are characterized by Doppler shifts with rms velocities of 0.3 km/s, peak wave power in the 3-5 mHz frequency range, and phase speeds 1-3 Mm/s. The wave trajectories are consistent with the direction of the magnetic field inferred from the linear polarization measurements. We discuss the phase and coherence of these waves as a function of height in the corona and relate our findings to previous observations. The observed waves appear to be Alfvenic in character. "Thomas Schad was supported through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU Program." Daniel Seeley was supported through the National Solar Observatory Research Experience for Teachers (RET) site program, which is funded by the National Science Foundation RET program.

  20. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops ...

    Indian Academy of Sciences (India)

    The standing slow magneto-acoustic oscillations in cooling coronal loops ... turbation and, eventually, reduces the MHD equations to a 1D system modelling ..... where the function Q is expanded in power series with respect to ǫ, i.e.,. Q = Q0 + ...

  1. Observable Signatures of Energy Release in Braided Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Pontin, D. I. [University of Dundee, Nethergate, Dundee, DD1 4HN (United Kingdom); Janvier, M. [Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, F-91405, Orsay Cedex (France); Tiwari, S. K.; Winebarger, A. R.; Cirtain, J. W. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Galsgaard, K. [Niels Bohr Institute, Geological Museum Østervoldgade 5-7, DK-1350, Copenhagen K (Denmark)

    2017-03-10

    We examine the turbulent relaxation of solar coronal loops containing non-trivial field line braiding. Such field line tangling in the corona has long been postulated in the context of coronal heating models. We focus on the observational signatures of energy release in such braided magnetic structures using MHD simulations and forward modeling tools. The aim is to answer the following question: if energy release occurs in a coronal loop containing braided magnetic flux, should we expect a clearly observable signature in emissions? We demonstrate that the presence of braided magnetic field lines does not guarantee a braided appearance to the observed intensities. Observed intensities may—but need not necessarily—reveal the underlying braided nature of the magnetic field, depending on the degree and pattern of the field line tangling within the loop. However, in all cases considered, the evolution of the braided loop is accompanied by localized heating regions as the loop relaxes. Factors that may influence the observational signatures are discussed. Recent high-resolution observations from Hi-C have claimed the first direct evidence of braided magnetic fields in the corona. Here we show that both the Hi-C data and some of our simulations give the appearance of braiding at a range of scales.

  2. Electron acceleration and radiation signatures in loop coronal transients

    International Nuclear Information System (INIS)

    Vlahos, L.; Gergely, T.E.; Papadopoulos, K.

    1982-01-01

    A model for electron aceleration in loop coronal transients is suggested. We propose that in these transients an erupting loop moves away from the solar surface, with a velocity greater than the local Alfven speed, pushing against the overlying magnetic fields and driving a shock in the front of the moving part of the loop. We suggest that lower hybrid waves are excited at the shock front and propagate radially toward the center of the loop with phase velocity along the magnetic field which exceeds the thermal velocity. The lower hybrid waves stochastically accelerate the tail of the electron distribution inside the loop. We discuss how the accelerated electrons are trapped in the moving loop and give a rough estimate of their radiation signature. We find that plasma radiation can explain the power observed in stationary and moving type IV bursts. We discuss some of the conditions under which moving or stationary type IV bursts are expected to be associated with loop coronal transients

  3. Thermal instabilities in magnetically confined plasmas: Solar coronal loops

    International Nuclear Information System (INIS)

    Habbal, S.R.; Rosner, R.

    1979-01-01

    The thermal stability of confined solar coronal structures (''loops'') is investigated, following both normal mode and a new, global instability analysis. We demonstrate that: (a) normal mode analysis shows modes with size scales comparable to that of loops to be unstable, but to be strongly affected by the loop boundary conditions; (b) a global analysis, based upon variation of the total loop energy losses and gains, yields loop stability conditions for global modes dependent upon the coronal loop heating process, with magnetically coupled heating processes giving marginal stability. The connection between the present analysis and the minimum flux corona of Hearn is also discussed

  4. Magnetic Field in the Gravitationally Stratified Coronal Loops B. N. ...

    Indian Academy of Sciences (India)

    field for the longest (L = 406 Mm) coronal loops. The magnetic fields Bstr and Babs also increase with the number density, if the loop length does not vary much. The increment in the magnetic field due to gravitational stratification is small at the lower number densities, however, it is large at the higher number densities.

  5. Evidence of thermal conduction depression in hot coronal loops

    Science.gov (United States)

    Wang, Tongjiang; Ofman, Leon; Sun, Xudong; Provornikova, Elena; Davila, Joseph

    2015-08-01

    Slow magnetoacoustic waves were first detected in hot (>6 MK) flare loops by the SOHO/SUMER spectrometer as Doppler shift oscillations in Fe XIX and Fe XXI lines. These oscillations are identified as standing slow-mode waves because the estimated phase speeds are close to the sound speed in the loop and some cases show a quarter period phase shift between velocity and intensity oscillations. The observed very rapid excitation and damping of standing slow mode waves have been studied by many authors using theories and numerical simulations, however, the exact mechanisms remain not well understood. Recently, flare-induced longitudinal intensity oscillations in hot post-flare loops have been detected by SDO/AIA. These oscillations have the similar physical properties as SUMER loop oscillations, and have been interpreted as the slow-mode waves. The multi-wavelength AIA observations with high spatio-temporal resolution and wide temperature coverage allow us to explore the wave excitation and damping mechanisms with an unprecedented detail to develope new coronal seismology. In this paper, we present accurate measurements of the effective adiabatic index (γeff) in the hot plasma from the electron temperature and density wave signals of a flare-induced longitudinal wave event using SDO/AIA data. Our results strikingly and clearly reveal that thermal conduction is highly depressed in hot (˜10 MK) post-flare loops and suggest that the compressive viscosity is the dominant wave damping mechanism which allows determination of the viscosity coefficient from the observables by coronal seismology. This new finding challenges our current understanding of thermal energy transport in solar and stellar flares, and may provide an alternative explanation of long-duration events and enhance our understand of coronal heating mechanism. We will discuss our results based on non-ideal MHD theory and simulations. We will also discuss the flare trigger mechanism based on magnetic topology

  6. FAST CONTRACTION OF CORONAL LOOPS AT THE FLARE PEAK

    International Nuclear Information System (INIS)

    Liu Rui; Wang Haimin

    2010-01-01

    On 2005 September 8, a coronal loop overlying the active region NOAA 10808 was observed in TRACE 171 A to contract at ∼100 km s -1 at the peak of an X5.4-2B flare at 21:05 UT. Prior to the fast contraction, the loop underwent a much slower contraction at ∼6 km s -1 for about 8 minutes, initiating during the flare preheating phase. The sudden switch to fast contraction is presumably corresponding to the onset of the impulsive phase. The contraction resulted in the oscillation of a group of loops located below, with the period of about 10 minutes. Meanwhile, the contracting loop exhibited a similar oscillatory pattern superimposed on the dominant downward motion. We suggest that the fast contraction reflects a suddenly reduced magnetic pressure underneath due either to (1) the eruption of magnetic structures located at lower altitudes or to (2) the rapid conversion of magnetic free energy in the flare core region. Electrons accelerated in the shrinking trap formed by the contracting loop can theoretically contribute to a late-phase hard X-ray burst, which is associated with Type IV radio emission. To complement the X5.4 flare which was probably confined, a similar event observed in SOHO/EIT 195 A on 2004 July 20 in an eruptive, M8.6 flare is briefly described, in which the contraction was followed by the expansion of the same loop leading up to a halo coronal mass ejection. These observations further substantiate the conjecture of coronal implosion and suggest coronal implosion as a new exciter mechanism for coronal loop oscillations.

  7. A Bayesian Approach to Period Searching in Solar Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Scherrer, Bryan; McKenzie, David [Montana State University, P.O. Box 173840 Bozeman, MT 59717-3840 (United States)

    2017-03-01

    We have applied a Bayesian generalized Lomb–Scargle period searching algorithm to movies of coronal loop images obtained with the Hinode X-ray Telescope (XRT) to search for evidence of periodicities that would indicate resonant heating of the loops. The algorithm makes as its only assumption that there is a single sinusoidal signal within each light curve of the data. Both the amplitudes and noise are taken as free parameters. It is argued that this procedure should be used alongside Fourier and wavelet analyses to more accurately extract periodic intensity modulations in coronal loops. The data analyzed are from XRT Observation Program 129C: “MHD Wave Heating (Thin Filters),” which occurred during 2006 November 13 and focused on active region 10293, which included coronal loops. The first data set spans approximately 10 min with an average cadence of 2 s, 2″ per pixel resolution, and used the Al-mesh analysis filter. The second data set spans approximately 4 min with a 3 s average cadence, 1″ per pixel resolution, and used the Al-poly analysis filter. The final data set spans approximately 22 min at a 6 s average cadence, and used the Al-poly analysis filter. In total, 55 periods of sinusoidal coronal loop oscillations between 5.5 and 59.6 s are discussed, supporting proposals in the literature that resonant absorption of magnetic waves is a viable mechanism for depositing energy in the corona.

  8. Electron acceleration and radiation signatures in loop coronal transients

    Science.gov (United States)

    Vlahos, L.; Gergely, T. E.; Papadopoulos, K.

    1982-01-01

    It is proposed that in loop coronal transients an erupting loop moves away from the solar surface, with a velocity exceeding the local Alfven speed, pushing against the overlying magnetic fields and driving a shock in the front of the moving part of the loop. Lower hybrid waves are excited at the shock front and propagate radially toward the center of the loop with phase velocity along the magnetic field that exceeds the thermal velocity. The lower hybrid waves stochastically accelerate the tail of the electron distribution inside the loop. The manner in which the accelerated electrons are trapped in the moving loop are discussed, and their radiation signature is estimated. It is suggested that plasma radiation can explain the power observed in stationary and moving type IV bursts.

  9. Expansion and broadening of coronal loop transients: A theoretical explanation

    International Nuclear Information System (INIS)

    Mouschovias, T.C.; Poland, A.I.

    1978-01-01

    We explore the consequences of the assumption that a coronal loop transient (observed by the white-light coronagraph aboard Skylab) is a twisted rope of magnetic field lines expanding and broadening in the background coronal plasma and magnetic field. We show that the expansion (i.e., the outward motion of the loop top) can be accounted for by the azimuthal component of the field, B/sub az/; the observed broadening of the loop as it moves outward can be accounted for by the longitudinal component of the field, B/sub l/. In order to have a net outward force and at the same time avoid a classicial pinch (sausage) instability, the two components of the field must satisfy the inequality 1.41 B/sub l/>B/sub az/>B/sub l/.We predict that, as the loop rises, the width (h) of its top portion should vary proportionally with the distance (R) from the Sun's center. This is in good agreement with measurements that show hproportionalR/sup 0.8/. Our prediction, that the radius of curvature (R/sub c/) of the top portion of the loop should be proportional to R, differs from the measured variation R/sub c/proportionalR/sup 1.6/. The difference could be accounted for by a drag due to the background coronal field that flattens the loop's top. A statistical study that can test this possibility is suggested. We also calculate the magnetic field within the top section of the loop. It is approximately equal to 1 gauss at R=2 R/sub sun/ and varies somewhat more slowly than R -2 during expansion

  10. Excitation and damping of transversal oscillation in coronal loops by wake phenomena

    Directory of Open Access Journals (Sweden)

    A abedini

    2018-02-01

    Full Text Available Transversal oscillation of coronal loops that are interpreted as signatures of magneto hydrodynamics (MHD waves are observed frequently in active region corona loops. The amplitude of this oscillation has been found to be strongly attenuated. The damping of transverse oscillation may be produced by the dissipation mechanism and the wake of the traveling disturbance. The damping of transversal loop oscillations with wake phenomena is not related to any dissipation mechanism. Also, these kinds of coronal loop oscillations are not related to the kink mode, although this mode can be occurred after the attenuation process by the energy of the wave packet deposited in the loop.  In this paper the excitation and damping of transversal coronal loop oscillations with wake of traveling wave packet is discussed in detail, both theoretically and observationally. Here, the transversal coronal loop oscillations is modeled with a one dimensional simple line-tied. The dynamics of the loop and the coronal is governed by the Klein–Gordon differential equation. A localized disturbance that can be generated by nearby flare produces a perturbation that undergoes dispersion as it propagates toward the loop. As a consequence, the amplitudes of oscillates decay with time roughly t-1/2 at the external cutoff frequency. These observed data on 2016-Dec-4 by Atmospheric Imaging Assembly (AIA onboard Solar Dynamic Observatory (SDO observations data, consisting of 560 images with an interval of 24 seconds in the 171 A0 pass band is analyzed for evidence of excitation and damping of transverse oscillations of coronal loop that is situated near a flare. In this analyzed signatures of transverse oscillations that are damped rapidly were found, with periods in the range of P=18.5-23.85 minutes. Furthermore, oscillation of loop segments attenuate with time roughly as t-α that average values of α for 4 different loops change form 0.65-0.80. The magnitude values of α are in

  11. On the Occurrence of Thermal Nonequilibrium in Coronal Loops

    Science.gov (United States)

    Froment, C.; Auchère, F.; Mikić, Z.; Aulanier, G.; Bocchialini, K.; Buchlin, E.; Solomon, J.; Soubrié, E.

    2018-03-01

    Long-period EUV pulsations, recently discovered to be common in active regions, are understood to be the coronal manifestation of thermal nonequilibrium (TNE). The active regions previously studied with EIT/Solar and Heliospheric Observatory and AIA/SDO indicated that long-period intensity pulsations are localized in only one or two loop bundles. The basic idea of this study is to understand why. For this purpose, we tested the response of different loop systems, using different magnetic configurations, to different stratifications and strengths of the heating. We present an extensive parameter-space study using 1D hydrodynamic simulations (1020 in total) and conclude that the occurrence of TNE requires specific combinations of parameters. Our study shows that the TNE cycles are confined to specific ranges in parameter space. This naturally explains why only some loops undergo constant periodic pulsations over several days: since the loop geometry and the heating properties generally vary from one loop to another in an active region, only the ones in which these parameters are compatible exhibit TNE cycles. Furthermore, these parameters (heating and geometry) are likely to vary significantly over the duration of a cycle, which potentially limits the possibilities of periodic behavior. This study also confirms that long-period intensity pulsations and coronal rain are two aspects of the same phenomenon: both phenomena can occur for similar heating conditions and can appear simultaneously in the simulations.

  12. PLASMA SLOSHING IN PULSE-HEATED SOLAR AND STELLAR CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Reale, F., E-mail: fabio.reale@unipa.it [Dipartimento di Fisica and Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy)

    2016-08-01

    There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here, hydrodynamic loop modeling shows that several large amplitude oscillations (∼20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter than the sound crossing time of the flaring loop. The reason for this is that the plasma does not have enough time to reach pressure equilibrium during heating, and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these oscillations different from typical magnetohydrodynamic (MHD) waves. This diagnostic can be applied both to observations of solar and stellar flares and to future observations of non-flaring loops at high resolution.

  13. Methods of Temperature and Emission Measure Determination of Coronal Loops

    Science.gov (United States)

    Cirtain, J. W.; Schmelz, J. T.; Martens, P. C. H.

    2002-05-01

    Recent observational results from both SOHO-EIT and TRACE indicate that coronal loops are isothermal along their length (axially). These results are obtained from a narrowband filter ratio method that assumes that the plasma is isothermal along the line of sight (radially). However, these temperatures vary greatly from those derived from differential emission measure (DEM) curves produced from spectral lines recorded by SOHO-CDS. The DEM results indicate that the loops are neither axially nor radially isothermal. This discrepancy was investigated by Schmelz et al. (2001). They chose pairs of iron lines from the same CDS data set to mimic the EIT and TRACE loop results. Ratios of different lines gave different temperatures, indicating that the plasma was not radially isothermal. In addition the results indicated that the loop was axially isothermal, even though the DEM analysis of the same data showed this result to be false. Here we have analyzed the EIT data for the CDS loop published by Schmelz et al. (2001). We took the ratios of the 171-to-195 and 195-to-284 filter data, and made temperature maps of the loop. The results indicate that the loop is axially isothermal, but different temperatures were found for each pair of filters. Both ratio techniques force the resultant temperature to lie within the range where the response functions (for filters) or the emissivity functions (for lines) overlap; isothermal loops are therefore a byproduct of the analysis. This conclusion strengthens support for the idea that temperature and emission measure results from filter ratio methods may be misleading or even drastically wrong. This research was funded in part by the NASA/TRACE MODA grant for Montana State University. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783.

  14. SEISMOLOGY OF A LARGE SOLAR CORONAL LOOP FROM EUVI/STEREO OBSERVATIONS OF ITS TRANSVERSE OSCILLATION

    International Nuclear Information System (INIS)

    Verwichte, E.; Van Doorsselaere, T.; Foullon, C.; Nakariakov, V. M.; Aschwanden, M. J.

    2009-01-01

    The first analysis of a transverse loop oscillation observed by both Solar TErrestrial RElations Observatories (STEREO) spacecraft is presented, for an event on the 2007 June 27 as seen by the Extreme Ultraviolet Imager (EUVI). The three-dimensional loop geometry is determined using a three-dimensional reconstruction with a semicircular loop model, which allows for an accurate measurement of the loop length. The plane of wave polarization is found from comparison with a simulated loop model and shows that the oscillation is a fundamental horizontally polarized fast magnetoacoustic kink mode. The oscillation is characterized using an automated method and the results from both spacecraft are found to match closely. The oscillation period is 630 ± 30 s and the damping time is 1000 ± 300 s. Also, clear intensity variations associated with the transverse loop oscillations are reported for the first time. They are shown to be caused by the effect of line-of-sight integration. The Alfven speed and coronal magnetic field derived using coronal seismology are discussed. This study shows that EUVI/STEREO observations achieve an adequate accuracy for studying long-period, large-amplitude transverse loop oscillations.

  15. Mass and energy supply of a cool coronal loop near its apex

    Science.gov (United States)

    Yan, Limei; Peter, Hardi; He, Jiansen; Xia, Lidong; Wang, Linghua

    2018-03-01

    Context. Different models for the heating of solar corona assume or predict different locations of the energy input: concentrated at the footpoints, at the apex, or uniformly distributed. The brightening of a loop could be due to the increase in electron density ne, the temperature T, or a mixture of both. Aim. We investigate possible reasons for the brightening of a cool loop at transition region temperatures through imaging and spectral observation. Methods: We observed a loop with the Interface Region Imaging Spectrograph (IRIS) and used the slit-jaw images together with spectra taken at a fixed slit position to study the evolution of plasma properties in and below the loop. We used spectra of Si IV, which forms at around 80 000 K in equilibrium, to identify plasma motions and derive electron densities from the ratio of inter-combination lines of O IV. Additional observations from the Solar Dynamics Observatory (SDO) were employed to study the response at coronal temperatures (Atmospheric Imaging Assembly, AIA) and to investigate the surface magnetic field below the loop (Helioseismic and Magnetic Imager, HMI). Results: The loop first appears at transition region temperatures and later also at coronal temperatures, indicating a heating of the plasma in the loop. The appearance of hot plasma in the loop coincides with a possible accelerating upflow seen in Si IV, with the Doppler velocity shifting continuously from -70 km s-1 to -265 km s-1. The 3D magnetic field lines extrapolated from the HMI magnetogram indicate possible magnetic reconnection between small-scale magnetic flux tubes below or near the loop apex. At the same time, an additional intensity enhancement near the loop apex is visible in the IRIS slit-jaw images at 1400 Å. These observations suggest that the loop is probably heated by the interaction between the loop and the upflows, which are accelerated by the magnetic reconnection between small-scale magnetic flux tubes at lower altitudes. Before

  16. AN MHD AVALANCHE IN A MULTI-THREADED CORONAL LOOP

    Energy Technology Data Exchange (ETDEWEB)

    Hood, A. W.; Cargill, P. J.; Tam, K. V. [School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife, KY16 9SS (United Kingdom); Browning, P. K., E-mail: awh@st-andrews.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2016-01-20

    For the first time, we demonstrate how an MHD avalanche might occur in a multithreaded coronal loop. Considering 23 non-potential magnetic threads within a loop, we use 3D MHD simulations to show that only one thread needs to be unstable in order to start an avalanche even when the others are below marginal stability. This has significant implications for coronal heating in that it provides for energy dissipation with a trigger mechanism. The instability of the unstable thread follows the evolution determined in many earlier investigations. However, once one stable thread is disrupted, it coalesces with a neighboring thread and this process disrupts other nearby threads. Coalescence with these disrupted threads then occurs leading to the disruption of yet more threads as the avalanche develops. Magnetic energy is released in discrete bursts as the surrounding stable threads are disrupted. The volume integrated heating, as a function of time, shows short spikes suggesting that the temporal form of the heating is more like that of nanoflares than of constant heating.

  17. Expanding and Contracting Coronal Loops as Evidence of Vortex Flows Induced by Solar Eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Dudík, J. [Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 251 65 Ondřejov (Czech Republic); Zuccarello, F. P.; Aulanier, G.; Schmieder, B.; Démoulin, P., E-mail: jaroslav.dudik@asu.cas.cz [LESIA, Observatoire de Paris, Psl Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)

    2017-07-20

    Eruptive solar flares were predicted to generate large-scale vortex flows at both sides of the erupting magnetic flux rope. This process is analogous to a well-known hydrodynamic process creating vortex rings. The vortices lead to advection of closed coronal loops located at the peripheries of the flaring active region. Outward flows are expected in the upper part and returning flows in the lower part of the vortex. Here, we examine two eruptive solar flares, the X1.1-class flare SOL2012-03-05T03:20 and the C3.5-class SOL2013-06-19T07:29. In both flares, we find that the coronal loops observed by the Atmospheric Imaging Assembly in its 171 Å, 193 Å, or 211 Å passbands show coexistence of expanding and contracting motions, in accordance with the model prediction. In the X-class flare, multiple expanding and contracting loops coexist for more than 35 minutes, while in the C-class flare, an expanding loop in 193 Å appears to be close by and cotemporal with an apparently imploding loop arcade seen in 171 Å. Later, the 193 Å loop also switches to contraction. These observations are naturally explained by vortex flows present in a model of eruptive solar flares.

  18. The Heating of Solar Coronal Loops by Alfvén Wave Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Van Ballegooijen, A. A. [5001 Riverwood Avenue, Sarasota, FL 34231 (United States); Asgari-Targhi, M.; Voss, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-11-01

    In this paper we further develop a model for the heating of coronal loops by Alfvén wave turbulence (AWT). The Alfvén waves are assumed to be launched from a collection of kilogauss flux tubes in the photosphere at the two ends of the loop. Using a three-dimensional magnetohydrodynamic model for an active-region loop, we investigate how the waves from neighboring flux tubes interact in the chromosphere and corona. For a particular combination of model parameters we find that AWT can produce enough heat to maintain a peak temperature of about 2.5 MK, somewhat lower than the temperatures of 3–4 MK observed in the cores of active regions. The heating rates vary strongly in space and time, but the simulated heating events have durations less than 1 minute and are unlikely to reproduce the observed broad differential emission measure distributions of active regions. The simulated spectral line nonthermal widths are predicted to be about 27 km s{sup −1}, which is high compared to the observed values. Therefore, the present AWT model does not satisfy the observational constraints. An alternative “magnetic braiding” model is considered in which the coronal field lines are subject to slow random footpoint motions, but we find that such long-period motions produce much less heating than the shorter-period waves launched within the flux tubes. We discuss several possibilities for resolving the problem of producing sufficiently hot loops in active regions.

  19. NONLINEAR FORCE-FREE MAGNETIC FIELD FITTING TO CORONAL LOOPS WITH AND WITHOUT STEREOSCOPY

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.

    2013-01-01

    We developed a new nonlinear force-free magnetic field (NLFFF) forward-fitting algorithm based on an analytical approximation of force-free and divergence-free NLFFF solutions, which requires as input a line-of-sight magnetogram and traced two-dimensional (2D) loop coordinates of coronal loops only, in contrast to stereoscopically triangulated three-dimensional loop coordinates used in previous studies. Test results of simulated magnetic configurations and from four active regions observed with STEREO demonstrate that NLFFF solutions can be fitted with equal accuracy with or without stereoscopy, which relinquishes the necessity of STEREO data for magnetic modeling of active regions (on the solar disk). The 2D loop tracing method achieves a 2D misalignment of μ 2 = 2.°7 ± 1.°3 between the model field lines and observed loops, and an accuracy of ≈1.0% for the magnetic energy or free magnetic energy ratio. The three times higher spatial resolution of TRACE or SDO/AIA (compared with STEREO) also yields a proportionally smaller misalignment angle between model fit and observations. Visual/manual loop tracings are found to produce more accurate magnetic model fits than automated tracing algorithms. The computation time of the new forward-fitting code amounts to a few minutes per active region.

  20. 3-D numerical simulations of coronal loops oscillations

    Directory of Open Access Journals (Sweden)

    M. Selwa

    2009-10-01

    Full Text Available We present numerical results of 3-D MHD model of a dipole active region field containing a loop with a higher density than its surroundings. We study different ways of excitation of vertical kink oscillations by velocity perturbation: as an initial condition, and as an impulsive excitation with a pulse of a given position, duration, and amplitude. These properties are varied in the parametric studies. We find that the amplitude of vertical kink oscillations is significantly amplified in comparison to horizontal kink oscillations for exciters located centrally (symmetrically below the loop, but not if the exciter is located a significant distance to the side of the loop. This explains why the pure vertical kink mode is so rarely observed in comparison to the horizontally polarized one. We discuss the role of curved magnetic field lines and the pulse overlapping at one of the loop's footpoints in 3-D active regions (AR's on the excitation and the damping of slow standing waves. We find that footpoint excitation becomes more efficient in 3-D curved loops than in 2-D curved arcades and that slow waves can be excited within an interval of time that is comparable to the observed one wave-period due to the combined effect of the pulse inside and outside the loop. Additionally, we study the effect of AR topology on the excitation and trapping of loop oscillations. We find that a perturbation acting directly on a single loop excites oscillations, but results in an increased leakage compared to excitation of oscillations in an AR field by an external source.

  1. 3-D numerical simulations of coronal loops oscillations

    Directory of Open Access Journals (Sweden)

    M. Selwa

    2009-10-01

    Full Text Available We present numerical results of 3-D MHD model of a dipole active region field containing a loop with a higher density than its surroundings. We study different ways of excitation of vertical kink oscillations by velocity perturbation: as an initial condition, and as an impulsive excitation with a pulse of a given position, duration, and amplitude. These properties are varied in the parametric studies. We find that the amplitude of vertical kink oscillations is significantly amplified in comparison to horizontal kink oscillations for exciters located centrally (symmetrically below the loop, but not if the exciter is located a significant distance to the side of the loop. This explains why the pure vertical kink mode is so rarely observed in comparison to the horizontally polarized one. We discuss the role of curved magnetic field lines and the pulse overlapping at one of the loop's footpoints in 3-D active regions (AR's on the excitation and the damping of slow standing waves. We find that footpoint excitation becomes more efficient in 3-D curved loops than in 2-D curved arcades and that slow waves can be excited within an interval of time that is comparable to the observed one wave-period due to the combined effect of the pulse inside and outside the loop. Additionally, we study the effect of AR topology on the excitation and trapping of loop oscillations. We find that a perturbation acting directly on a single loop excites oscillations, but results in an increased leakage compared to excitation of oscillations in an AR field by an external source.

  2. Thermal responses in a coronal loop maintained by wave heating mechanisms

    Science.gov (United States)

    Matsumoto, Takuma

    2018-05-01

    A full 3-dimensional compressible magnetohydrodynamic (MHD) simulation is conducted to investigate the thermal responses of a coronal loop to the dynamic dissipation processes of MHD waves. When the foot points of the loop are randomly and continuously forced, the MHD waves become excited and propagate upward. Then, 1-MK temperature corona is produced naturally as the wave energy dissipates. The excited wave packets become non-linear just above the magnetic canopy, and the wave energy cascades into smaller spatial scales. Moreover, collisions between counter-propagating Alfvén wave packets increase the heating rate, resulting in impulsive temperature increases. Our model demonstrates that the heating events in the wave-heated loops can be nanoflare-like in the sense that they are spatially localized and temporally intermittent.

  3. OBSERVING THE FINE STRUCTURE OF LOOPS THROUGH HIGH-RESOLUTION SPECTROSCOPIC OBSERVATIONS OF CORONAL RAIN WITH THE CRISP INSTRUMENT AT THE SWEDISH SOLAR TELESCOPE

    International Nuclear Information System (INIS)

    Antolin, P.; Rouppe van der Voort, L.

    2012-01-01

    occurs simultaneously in general suggesting a similar thermodynamic evolution among strands, which can be explained by a common footpoint heating process. Constraints for coronal heating models of loops are thus provided. Estimates of the fraction of coronal volume with coronal rain give values between 7% and 30%. Estimates of the occurrence time of the phenomenon in loops set times between 5 and 20 hr, implying that coronal rain may be a common phenomenon, in agreement with the frequent observations of cool downflows in extreme-ultraviolet lines. The coronal mass drain rate in the form of coronal rain is estimated to be on the order of 5 × 10 9 g s –1 , a significant quantity compared to the estimate of mass flux into the corona from spicules.

  4. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: chitta@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  5. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    International Nuclear Information System (INIS)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van; Rodríguez, J. Blanco; Iniesta, J. C. Del Toro; Suárez, D. Orozco; Schmidt, W.; Pillet, V. Martínez; Knölker, M.

    2017-01-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  6. Fundamental and Harmonic Oscillations in Neighboring Coronal Loops

    Science.gov (United States)

    Li, Hongbo; Liu, Yu; Vai Tam, Kuan

    2017-06-01

    We present observations of multimode (fundamental and harmonic) oscillations in a loop system, which appear to be simultaneously excited by a GOES C-class flare. Analysis of the periodic oscillations reveals that (1) the primary loop with a period of P a ≈ 4 minutes and a secondary loop with two periods of P a ≈ 4 minutes and P b ≈ 2 minutes are detected simultaneously in closely spaced loop strands; (2) both oscillation components have their peak amplitudes near the loop apex, while in the second loop the low-frequency component P a dominates in a loop segment that is two times larger than the high-frequency component P b ; (3) the harmonic mode P b shows the largest deviation from a sinusoidal loop shape at the loop apex. We conclude that multiple harmonic modes with different displacement profiles can be excited simultaneously even in closely spaced strands, similar to the overtones of a violin string.

  7. UNRAVELLING THE COMPONENTS OF A MULTI-THERMAL CORONAL LOOP USING MAGNETOHYDRODYNAMIC SEISMOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S. Krishna; Jess, D. B. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Klimchuk, J. A. [Heliophysics Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771 (United States); Banerjee, D., E-mail: krishna.prasad@qub.ac.uk [Indian Institute of Astrophysics, II Block Koramangala, Bengaluru 560034 (India)

    2017-01-10

    Coronal loops, constituting the basic building blocks of the active Sun, serve as primary targets to help understand the mechanisms responsible for maintaining multi-million Kelvin temperatures in the solar and stellar coronae. Despite significant advances in observations and theory, our knowledge on the fundamental properties of these structures is limited. Here, we present unprecedented observations of accelerating slow magnetoacoustic waves along a coronal loop that show differential propagation speeds in two distinct temperature channels, revealing the multi-stranded and multithermal nature of the loop. Utilizing the observed speeds and employing nonlinear force-free magnetic field extrapolations, we derive the actual temperature variation along the loop in both channels, and thus are able to resolve two individual components of the multithermal loop for the first time. The obtained positive temperature gradients indicate uniform heating along the loop, rather than isolated footpoint heating.

  8. MINI-FILAMENT ERUPTION AS THE INITIATION OF A JET ALONG CORONAL LOOPS

    International Nuclear Information System (INIS)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Xiang, Yongyuan

    2016-01-01

    Minifilament eruptions (MFEs) and coronal jets are different types of solar small-scale explosive events. We report an MFE observed at the New Vacuum Solar Telescope (NVST). As seen in the NVST H α images, during the rising phase, the minifilament erupts outward orthogonally to its length, accompanied with a flare-like brightening at the bottom. Afterward, dark materials are found to possibly extend along the axis of the expanded filament body. The MFE is analogous to large filament eruptions. However, a simultaneous observation of the Solar Dynamics Observatory shows that a jet is initiated and flows out along nearby coronal loops during the rising phase of the MFE. Meanwhile, small hot loops, which connect the original eruptive site of the minifilament to the footpoints of the coronal loops, are formed successively. A differential emission measure analysis demonstrates that, on the top of the new small loops, a hot cusp structure exists. We conjecture that the magnetic fields of the MFE interact with magnetic fields of the coronal loops. This interaction is interpreted as magnetic reconnection that produces the jet and the small hot loops.

  9. MINI-FILAMENT ERUPTION AS THE INITIATION OF A JET ALONG CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Xiang, Yongyuan, E-mail: hjcsolar@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-10-20

    Minifilament eruptions (MFEs) and coronal jets are different types of solar small-scale explosive events. We report an MFE observed at the New Vacuum Solar Telescope (NVST). As seen in the NVST H α images, during the rising phase, the minifilament erupts outward orthogonally to its length, accompanied with a flare-like brightening at the bottom. Afterward, dark materials are found to possibly extend along the axis of the expanded filament body. The MFE is analogous to large filament eruptions. However, a simultaneous observation of the Solar Dynamics Observatory shows that a jet is initiated and flows out along nearby coronal loops during the rising phase of the MFE. Meanwhile, small hot loops, which connect the original eruptive site of the minifilament to the footpoints of the coronal loops, are formed successively. A differential emission measure analysis demonstrates that, on the top of the new small loops, a hot cusp structure exists. We conjecture that the magnetic fields of the MFE interact with magnetic fields of the coronal loops. This interaction is interpreted as magnetic reconnection that produces the jet and the small hot loops.

  10. EUV FLICKERING OF SOLAR CORONAL LOOPS: A NEW DIAGNOSTIC OF CORONAL HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Tajfirouze, E.; Reale, F.; Peres, G. [Dipartimento di Fisica e Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 (Italy); Testa, P., E-mail: reale@astropa.unipa.it [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-02-01

    A previous work of ours found the best agreement between EUV light curves observed in an active region core (with evidence of super-hot plasma) and those predicted from a model with a random combination of many pulse-heated strands with a power-law energy distribution. We extend that work by including spatially resolved strand modeling and by studying the evolution of emission along the loops in the EUV 94 Å and 335 Å channels of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Using the best parameters of the previous work as the input of the present one, we find that the amplitude of the random fluctuations driven by the random heat pulses increases from the bottom to the top of the loop in the 94 Å channel and from the top to the bottom in the 335 Å channel. This prediction is confirmed by the observation of a set of aligned neighboring pixels along a bright arc of an active region core. Maps of pixel fluctuations may therefore provide easy diagnostics of nanoflaring regions.

  11. EFFECT OF A RADIATION COOLING AND HEATING FUNCTION ON STANDING LONGITUDINAL OSCILLATIONS IN CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Nakariakov, V. M.; Moon, Y.-J., E-mail: sanjaykumar@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin, 446-701, Gyeonggi (Korea, Republic of)

    2016-06-10

    Standing long-period (with periods longer than several minutes) oscillations in large, hot (with a temperature higher than 3 MK) coronal loops have been observed as the quasi-periodic modulation of the EUV and microwave intensity emission and the Doppler shift of coronal emission lines, and they have been interpreted as standing slow magnetoacoustic (longitudinal) oscillations. Quasi-periodic pulsations of shorter periods, detected in thermal and non-thermal emissions in solar flares could be produced by a similar mechanism. We present theoretical modeling of the standing slow magnetoacoustic mode, showing that this mode of oscillation is highly sensitive to peculiarities of the radiative cooling and heating function. We generalized the theoretical model of standing slow magnetoacoustic oscillations in a hot plasma, including the effects of the radiative losses and accounting for plasma heating. The heating mechanism is not specified and taken empirically to compensate the cooling by radiation and thermal conduction. It is shown that the evolution of the oscillations is described by a generalized Burgers equation. The numerical solution of an initial value problem for the evolutionary equation demonstrates that different dependences of the radiative cooling and plasma heating on the temperature lead to different regimes of the oscillations, including growing, quasi-stationary, and rapidly decaying. Our findings provide a theoretical foundation for probing the coronal heating function and may explain the observations of decayless long-period, quasi-periodic pulsations in flares. The hydrodynamic approach employed in this study should be considered with caution in the modeling of non-thermal emission associated with flares, because it misses potentially important non-hydrodynamic effects.

  12. OBSERVATIONAL SIGNATURES OF CORONAL LOOP HEATING AND COOLING DRIVEN BY FOOTPOINT SHUFFLING

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Taylor, B. D. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Einaudi, G. [Berkeley Research Associates, Inc., Beltsville, MD 20705 (United States); Ugarte-Urra, I. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Warren, H. P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Rappazzo, A. F. [Advanced Heliophysics, Pasadena, CA 91106 (United States); Velli, M., E-mail: rdahlbur@lcp.nrl.navy.mil [EPSS, UCLA, Los Angeles, CA 90095 (United States)

    2016-01-20

    The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions. As a consequence, the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is nonuniformly distributed so that only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scales that, in the solar corona, remain observationally unresolved: the plasma of our simulated loop is multithermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Numerical simulations of coronal loops of 50,000 km length and axial magnetic field intensities ranging from 0.01 to 0.04 T are presented. To connect these simulations to observations, we use the computed number densities and temperatures to synthesize the intensities expected in emission lines typically observed with the Extreme Ultraviolet Imaging Spectrometer on Hinode. These intensities are used to compute differential emission measure distributions using the Monte Carlo Markov Chain code, which are very similar to those derived from observations of solar active regions. We conclude that coronal heating is found to be strongly intermittent in space and time, with only small portions of the coronal loop being heated: in fact, at any given time, most of the corona is cooling down.

  13. Existence of stationary solutions in the coronal loop problem

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, J; Terman, D; Verhulst, F

    1988-01-01

    The study of a hot plasma confined to a magnetic loop in the sun's corona leads to a singularly perturbed nonlinear reaction-diffusion equation with rather unusual side conditions. Monotone solutions of the stationary problem appear as fixed points of an iteration map which is contractive if the perturbation parameter is sufficiently small.

  14. Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Montes-Solís, María; Arregui, Iñigo, E-mail: mmsolis@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2017-09-10

    We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternative mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.

  15. Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops

    International Nuclear Information System (INIS)

    Montes-Solís, María; Arregui, Iñigo

    2017-01-01

    We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternative mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.

  16. Using coronal loops to reconstruct the magnetic field of an active region before and after a major flare

    Energy Technology Data Exchange (ETDEWEB)

    Malanushenko, A. [Department of Physics, Montana State University, Bozeman, MT (United States); Schrijver, C. J.; DeRosa, M. L. [Lockheed Martin Advanced Technology Center, Palo Alto, CA (United States); Wheatland, M. S. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Redfern, NSW (Australia)

    2014-03-10

    The shapes of solar coronal loops are sensitive to the presence of electrical currents that are the carriers of the non-potential energy available for impulsive activity. We use this information in a new method for modeling the coronal magnetic field of active region (AR) 11158 as a nonlinear force-free field (NLFFF). The observations used are coronal images around the time of major flare activity on 2011 February 15, together with the surface line-of-sight magnetic field measurements. The data are from the Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The model fields are constrained to approximate the coronal loop configurations as closely as possible, while also being subject to the force-free constraints. The method does not use transverse photospheric magnetic field components as input and is thereby distinct from methods for modeling NLFFFs based on photospheric vector magnetograms. We validate the method using observations of AR 11158 at a time well before major flaring and subsequently review the field evolution just prior to and following an X2.2 flare and associated eruption. The models indicate that the energy released during the instability is about 1 × 10{sup 32} erg, consistent with what is needed to power such a large eruptive flare. Immediately prior to the eruption, the model field contains a compact sigmoid bundle of twisted flux that is not present in the post-eruption models, which is consistent with the observations. The core of that model structure is twisted by ≈0.9 full turns about its axis.

  17. FLUCTUATING ENERGY STORAGE AND NONLINEAR CASCADE IN AN INHOMOGENEOUS CORONAL LOOP

    International Nuclear Information System (INIS)

    Malara, F.; Nigro, G.; Onofri, M.; Veltri, P.

    2010-01-01

    The dynamics and the energy balance of large-scale fluctuations in a coronal loop are studied. The loop is represented by a simplified structure where the curvature is neglected and the background magnetic field is uniform. In a previous paper, we studied a similar model where a uniform background density was assumed. The present paper represents a generalization of the previous one and it has the purpose of investigating possible modifications to the large-scale energy balance and dynamics due to a more realistic longitudinally nonuniform density. Large-scale fluctuations are dominated by coherent eigenmodes that nonlinearly couple to produce an energy cascade to smaller scales. Eigenmodes properties are calculated by a simplified linear dissipative model, deriving an expression for the input energy flux that is not substantially modified by the presence of the density inhomogeneity and is independent of dissipation. For typical values of the parameters, the derived input energy flux is comparable with that required to heat the active region corona. Nonlinear couplings are dominated by coherence effects due to the symmetry properties of eigenmodes; the consequences are that the system is in a weakly nonlinear regime that produces fluctuating energy storage in the loop, and that the kinetic and magnetic nonlinear energy fluxes are of the same order, despite the dominance of magnetic energy at large scales. From the energy balance, an expression for the velocity fluctuation is derived, which is valid in the more general case of a nonuniform background density; this estimate is in agreement both with measures of nonthermal velocities in the solar corona and with previous numerical results.

  18. First Imaging Observation of Standing Slow Wave in Coronal Fan Loops

    Energy Technology Data Exchange (ETDEWEB)

    Pant, V.; Tiwari, A.; Banerjee, D. [Indian Institute of Astrophysics, Bangalore 560 034 (India); Yuan, D. [Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen 518000 (China)

    2017-09-20

    We observe intensity oscillations along coronal fan loops associated with the active region AR 11428. The intensity oscillations were triggered by blast waves that were generated due to X-class flares in the distant active region AR 11429. To characterize the nature of oscillations, we created time–distance maps along the fan loops and noted that the intensity oscillations at two ends of the loops were out of phase. As we move along the fan loop, the amplitude of the oscillations first decreased and then increased. The out-of-phase nature together with the amplitude variation along the loop implies that these oscillations are very likely to be standing waves. The period of the oscillations is estimated to be ∼27 minutes, damping time to be ∼45 minutes, and phase velocity projected in the plane of sky to be ∼65–83 km s{sup −1}. The projected phase speeds were in the range of the acoustic speed of coronal plasma at about 0.6 MK, which further indicates that these are slow waves. To the best of our knowledge, this is the first report on the existence of the standing slow waves in non-flaring fan loops.

  19. First Imaging Observation of Standing Slow Wave in Coronal Fan Loops

    International Nuclear Information System (INIS)

    Pant, V.; Tiwari, A.; Banerjee, D.; Yuan, D.

    2017-01-01

    We observe intensity oscillations along coronal fan loops associated with the active region AR 11428. The intensity oscillations were triggered by blast waves that were generated due to X-class flares in the distant active region AR 11429. To characterize the nature of oscillations, we created time–distance maps along the fan loops and noted that the intensity oscillations at two ends of the loops were out of phase. As we move along the fan loop, the amplitude of the oscillations first decreased and then increased. The out-of-phase nature together with the amplitude variation along the loop implies that these oscillations are very likely to be standing waves. The period of the oscillations is estimated to be ∼27 minutes, damping time to be ∼45 minutes, and phase velocity projected in the plane of sky to be ∼65–83 km s"−"1. The projected phase speeds were in the range of the acoustic speed of coronal plasma at about 0.6 MK, which further indicates that these are slow waves. To the best of our knowledge, this is the first report on the existence of the standing slow waves in non-flaring fan loops.

  20. How to `Subtract' Spectrally Determined Intensities from a Coronal Loop on the Limb

    Science.gov (United States)

    Martens, P. C. H.; Cirtain, J. W.; Schmelz, J. T.

    2002-05-01

    There are two main problems in the determination of plasma emissions within a coronal loop. First, the line of sight adds the ambient background to the measurement. Second, scattering elevates the intensity for pixels close to a structure (i.e. a loop) by counting photons that actually are emitted from that structure. Here we have a possible solution for these two problems. We show that the intensities for the spectral lines are shown to have scale height dependence when the plasma is not confined to a structure. Accordingly, at any distance greater than its scale height, the ion will not have a statistically significant contribution to the measure of intensity. Additionally, an isolated coronal structure will have a maximum intensity value along an exposure and within a range of pixels that effectively slice a leg of the loop. The maximum is the location of the pixel that is most likely the one containing the loop. All other pixels are considered scatter until the point spread function can deconvolve the true value for intensity per pixel. The resulting values for intensity have then been reduced to approximate the value for intensity for the plasma within the loop. Now the intensity has been reduced to the intensity of the ion within the loop and the analysis of an accurate DEM is now possible. This research was funded in part by the NASA/TRACE MODA grant for Montana State University. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783.

  1. SCALING LAWS AND TEMPERATURE PROFILES FOR SOLAR AND STELLAR CORONAL LOOPS WITH NON-UNIFORM HEATING

    International Nuclear Information System (INIS)

    Martens, P. C. H.

    2010-01-01

    The bulk of solar coronal radiative loss consists of soft X-ray emission from quasi-static loops at the cores of active regions. In order to develop diagnostics for determining the heating mechanism of these loops from observations by coronal imaging instruments, I have developed analytical solutions for the temperature structure and scaling laws of loop strands for a set of temperature- and pressure-dependent heating functions that encompass heating concentrated at the footpoints, uniform heating, and heating concentrated at the loop apex. Key results are that the temperature profile depends only weakly on the heating distribution-not sufficiently to be of significant diagnostic value-and that the scaling laws survive for this wide range of heating distributions, but with the constant of proportionality in the Rosner-Tucker-Vaiana scaling law (P 0 L ∼ T 3 max ) depending on the specific heating function. Furthermore, quasi-static solutions do not exist for an excessive concentration of heating near the loop footpoints, a result in agreement with recent numerical simulations. It is demonstrated that a generalization of the results to a set of solutions for strands with a functionally prescribed variable diameter leads to only relatively small correction factors in the scaling laws and temperature profiles for constant diameter loop strands. A quintet of leading theoretical coronal heating mechanisms is shown to be captured by the formalism of this paper, and the differences in thermal structure between them may be verified through observations. Preliminary results from full numerical simulations demonstrate that, despite the simplifying assumptions, the analytical solutions from this paper are accurate and stable.

  2. Long-period Intensity Pulsations in Coronal Loops Explained by Thermal Non-equilibrium Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Froment, C.; Auchère, F.; Bocchialini, K.; Buchlin, E.; Solomon, J. [Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, F-91405 Orsay cedex (France); Aulanier, G. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France); Mikić, Z., E-mail: clara.froment@astro.uio.no [Predictive Science, Inc., San Diego, CA 92121 (United States)

    2017-02-01

    In solar coronal loops, thermal non-equilibrium (TNE) is a phenomenon that can occur when the heating is both highly stratified and quasi-constant. Unambiguous observational identification of TNE would thus permit us to strongly constrain heating scenarios. While TNE is currently the standard interpretation of coronal rain, the long-term periodic evolution predicted by simulations has never been observed. However, the detection of long-period intensity pulsations (periods of several hours) has been recently reported with the Solar and Heliospheric Observatory /EIT, and this phenomenon appears to be very common in loops. Moreover, the three intensity-pulsation events that we recently studied with the Solar Dynamics Observatory /Atmospheric Imaging Assembly (AIA) show strong evidence for TNE in warm loops. In this paper, a realistic loop geometry from linear force-free field (LFFF) extrapolations is used as input to 1D hydrodynamic simulations. Our simulations show that, for the present loop geometry, the heating has to be asymmetrical to produce TNE. We analyze in detail one particular simulation that reproduces the average thermal behavior of one of the pulsating loop bundle observed with AIA. We compare the properties of this simulation with those deduced from the observations. The magnetic topology of the LFFF extrapolations points to the presence of sites of preferred reconnection at one footpoint, supporting the presence of asymmetric heating. In addition, we can reproduce the temporal large-scale intensity properties of the pulsating loops. This simulation further strengthens the interpretation of the observed pulsations as signatures of TNE. This consequently provides important information on the heating localization and timescale for these loops.

  3. Forward Modeling of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    We apply a forward model of emission from a coronal cavity in an effort to determine the temperature and density distribution in the cavity. Coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and X-rays. When these structures erupt they form the cavity portions of CMEs The model consists of a coronal streamer model with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. Temperature and density can be varied as a function of altitude both in the cavity and streamer. We apply this model to a cavity observed in Aug. 2007 by a wide array of instruments including Hinode/EIS, STEREO/EUVI and SOHO/EIT. Studies such as these will ultimately help us understand the the original structures which erupt to become CMEs and ICMES, one of the prime Solar Orbiter objectives.

  4. Blowout Surge due to Interaction between a Solar Filament and Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haidong; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Bi, Yi; Hong, Junchao; Chen, Hechao [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216 (China); Qu, Zhining, E-mail: lhd@ynao.ac.cn [Department of Physics, School of Science, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2017-06-20

    We present an observation of the interaction between a filament and the outer spine-like loops that produces a blowout surge within one footpoint of large-scale coronal loops on 2015 February 6. Based the observation of the AIA 304 and 94 Å, the activated filament is initially embedded below a dome of a fan-spine configuration. Due to the ascending motion, the erupting filament reconnects with the outer spine-like field. We note that the material in the filament blows out along the outer spine-like field to form the surge with a wider spire, and a two-ribbon flare appears at the site of the filament eruption. In this process, small bright blobs appear at the interaction region and stream up along the outer spine-like field and down along the eastern fan-like field. As a result, a leg of the filament becomes radial and the material in it erupts, while another leg forms the new closed loops. Our results confirm that the successive reconnection occurring between the erupting filament and the coronal loops may lead to a strong thermal/magnetic pressure imbalance, resulting in a blowout surge.

  5. THE CONTRACTION OF OVERLYING CORONAL LOOP AND THE ROTATING MOTION OF A SIGMOID FILAMENT DURING ITS ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Qu, Z. Q.; Xue, Z. K.; Deng, L. H.; Ma, L.; Kong, D. F. [National Astronomical Observatories/Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming 650011 (China); Pan, G. M. [College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001 (China); Liu, J. H. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2013-06-15

    We present an observation of overlying coronal loop contraction and rotating motion of the sigmoid filament during its eruption on 2012 May 22 observed by the Solar Dynamics Observatory (SDO). Our results show that the twist can be transported into the filament from the lower atmosphere to the higher atmosphere. The successive contraction of the coronal loops was due to a suddenly reduced magnetic pressure underneath the filament, which was caused by the rising of the filament. Before the sigmoid filament eruption, there was a counterclockwise flow in the photosphere at the right feet of the filament and the contraction loops and a convergence flow at the left foot of the filament. The hot and cool materials have inverse motion along the filament before the filament eruption. Moreover, two coronal loops overlying the filament first experienced brightening, expansion, and contraction successively. At the beginning of the rising and rotation of the left part of the filament, the second coronal loop exhibited rapid contraction. The top of the second coronal loop also showed counterclockwise rotation during the contraction process. After the contraction of the second loop, the left part of the filament rotated counterclockwise and expanded toward the right of NOAA AR 11485. During the filament expansion, the right part of the filament also exhibited counterclockwise rotation like a tornado.

  6. Observations and Numerical Models of Solar Coronal Heating Associated with Spicules

    Energy Technology Data Exchange (ETDEWEB)

    Pontieu, B. De; Martinez-Sykora, J. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Org. A021S, Building 252, Palo Alto, CA 94304 (United States); Moortel, I. De [School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); McIntosh, S. W. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States)

    2017-08-20

    Spicules have been proposed as significant contributors to the mass and energy balance of the corona. While previous observations have provided a glimpse of short-lived transient brightenings in the corona that are associated with spicules, these observations have been contested and are the subject of a vigorous debate both on the modeling and the observational side. Therefore, it remains unclear whether plasma is heated to coronal temperatures in association with spicules. We use high-resolution observations of the chromosphere and transition region (TR) with the Interface Region Imaging Spectrograph and of the corona with the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory to show evidence of the formation of coronal structures associated with spicular mass ejections and heating of plasma to TR and coronal temperatures. Our observations suggest that a significant fraction of the highly dynamic loop fan environment associated with plage regions may be the result of the formation of such new coronal strands, a process that previously had been interpreted as the propagation of transient propagating coronal disturbances. Our observations are supported by 2.5D radiative MHD simulations that show heating to coronal temperatures in association with spicules. Our results suggest that heating and strong flows play an important role in maintaining the substructure of loop fans, in addition to the waves that permeate this low coronal environment.

  7. CAN LARGE TIME DELAYS OBSERVED IN LIGHT CURVES OF CORONAL LOOPS BE EXPLAINED IN IMPULSIVE HEATING?

    International Nuclear Information System (INIS)

    Lionello, Roberto; Linker, Jon A.; Mikić, Zoran; Alexander, Caroline E.; Winebarger, Amy R.

    2016-01-01

    The light curves of solar coronal loops often peak first in channels associated with higher temperatures and then in those associated with lower temperatures. The delay times between the different narrowband EUV channels have been measured for many individual loops and recently for every pixel of an active region observation. The time delays between channels for an active region exhibit a wide range of values. The maximum time delay in each channel pair can be quite large, i.e., >5000 s. These large time delays make-up 3%–26% (depending on the channel pair) of the pixels where a trustworthy, positive time delay is measured. It has been suggested that these time delays can be explained by simple impulsive heating, i.e., a short burst of energy that heats the plasma to a high temperature, after which the plasma is allowed to cool through radiation and conduction back to its original state. In this paper, we investigate whether the largest observed time delays can be explained by this hypothesis by simulating a series of coronal loops with different heating rates, loop lengths, abundances, and geometries to determine the range of expected time delays between a set of four EUV channels. We find that impulsive heating cannot address the largest time delays observed in two of the channel pairs and that the majority of the large time delays can only be explained by long, expanding loops with photospheric abundances. Additional observations may rule out these simulations as an explanation for the long time delays. We suggest that either the time delays found in this manner may not be representative of real loop evolution, or that the impulsive heating and cooling scenario may be too simple to explain the observations, and other potential heating scenarios must be explored

  8. Conformal boundary loop models

    International Nuclear Information System (INIS)

    Jacobsen, Jesper Lykke; Saleur, Hubert

    2008-01-01

    We study a model of densely packed self-avoiding loops on the annulus, related to the Temperley-Lieb algebra with an extra idempotent boundary generator. Four different weights are given to the loops, depending on their homotopy class and whether they touch the outer rim of the annulus. When the weight of a contractible bulk loop x≡q+q -1 element of (-2,2], this model is conformally invariant for any real weight of the remaining three parameters. We classify the conformal boundary conditions and give exact expressions for the corresponding boundary scaling dimensions. The amplitudes with which the sectors with any prescribed number and types of non-contractible loops appear in the full partition function Z are computed rigorously. Based on this, we write a number of identities involving Z which hold true for any finite size. When the weight of a contractible boundary loop y takes certain discrete values, y r ≡([r+1] q )/([r] q ) with r integer, other identities involving the standard characters K r,s of the Virasoro algebra are established. The connection with Dirichlet and Neumann boundary conditions in the O(n) model is discussed in detail, and new scaling dimensions are derived. When q is a root of unity and y=y r , exact connections with the A m type RSOS model are made. These involve precise relations between the spectra of the loop and RSOS model transfer matrices, valid in finite size. Finally, the results where y=y r are related to the theory of Temperley-Lieb cabling

  9. SIMULTANEOUS OBSERVATION OF SOLAR OSCILLATIONS ASSOCIATED WITH CORONAL LOOPS FROM THE PHOTOSPHERE TO THE CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Su, J. T.; Liu, S.; Zhang, Y. Z.; Zhao, H.; Xu, H. Q.; Xie, W. B. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Science, Beijing 100012 (China); Liu, Y. [National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011 (China)

    2013-01-01

    The solar oscillations along one coronal loop in AR 11504 are observed simultaneously in white light emission and Doppler velocity by SDO/HMI, and in UV and EUV emissions by SDO/AIA. The technique of the time-distance diagram is used to detect the propagating oscillations of the emission intensities along the loop. We find that although all the oscillation signals were intercorrelated, the low chromospheric oscillation correlated more closely to the oscillations of the transition region and corona than to those of the photosphere. Situated above the sunspot, the oscillation periods were {approx}3 minutes in the UV/EUV emissions; however, moving away from the sunspot and into the quiet Sun, the periods became longer, e.g., up to {approx}5 minutes or more. In addition, along another loop we observe both the high-speed outflows and oscillations, which roughly had a one-to-one corresponding relationship. This indicates that the solar periodic oscillations may modulate the magnetic reconnections between the loops of the high and low altitudes that drive the high-speed outflows along the loop.

  10. IMPLOSION OF CORONAL LOOPS DURING THE IMPULSIVE PHASE OF A SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Simões, P. J. A.; Fletcher, L.; Hudson, H. S.; Russell, A. J. B., E-mail: paulo.simoes@glasgow.ac.uk, E-mail: lyndsay.fletcher@glasgow.ac.uk, E-mail: arussell@maths.dundee.ac.uk, E-mail: hhudson@ssl.berkeley.edu [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2013-11-10

    We study the relationship between implosive motions in a solar flare, and the energy redistribution in the form of oscillatory structures and particle acceleration. The flare SOL2012-03-09T03:53 (M6.4) shows clear evidence for an irreversible (stepwise) coronal implosion. Extreme-ultraviolet (EUV) images show at least four groups of coronal loops at different heights overlying the flaring core undergoing fast contraction during the impulsive phase of the flare. These contractions start around a minute after the flare onset, and the rate of contraction is closely associated with the intensity of the hard X-ray and microwave emissions. They also seem to have a close relationship with the dimming associated with the formation of the coronal mass ejection and a global EUV wave. Several studies now have detected contracting motions in the corona during solar flares that can be interpreted as the implosion necessary to release energy. Our results confirm this, and tighten the association with the flare impulsive phase. We add to the phenomenology by noting the presence of oscillatory variations revealed by Geostationary Operational Environmental Satellite soft X-rays (SXR) and spatially integrated EUV emission at 94 and 335 Å. We identify pulsations of ≈60 s in SXR and EUV data, which we interpret as persistent, semi-regular compressions of the flaring core region which modulate the plasma temperature and emission measure. The loop oscillations, observed over a large region, also allow us to provide rough estimates of the energy temporarily stored in the eigenmodes of the active-region structure as it approaches its new equilibrium.

  11. Image-Optimized Coronal Magnetic Field Models

    Science.gov (United States)

    Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M.

    2017-01-01

    We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work we presented early tests of the method which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane, and the effect on the outcome of the optimization of errors in localization of constraints. We find that substantial improvement in the model field can be achieved with this type of constraints, even when magnetic features in the images are located outside of the image plane.

  12. Image-optimized Coronal Magnetic Field Models

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M., E-mail: shaela.i.jones-mecholsky@nasa.gov, E-mail: shaela.i.jonesmecholsky@nasa.gov [NASA Goddard Space Flight Center, Code 670, Greenbelt, MD 20771 (United States)

    2017-08-01

    We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work, we presented early tests of the method, which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper, we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane and the effect on the outcome of the optimization of errors in the localization of constraints. We find that substantial improvement in the model field can be achieved with these types of constraints, even when magnetic features in the images are located outside of the image plane.

  13. CORONAL DENSITY STRUCTURE AND ITS ROLE IN WAVE DAMPING IN LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Cargill, P. J. [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); De Moortel, I.; Kiddie, G., E-mail: p.cargill@imperial.ac.uk [School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland KY16 9SS (United Kingdom)

    2016-05-20

    It has long been established that gradients in the Alfvén speed, and in particular the plasma density, are an essential part of the damping of waves in the magnetically closed solar corona by mechanisms such as resonant absorption and phase mixing. While models of wave damping often assume a fixed density gradient, in this paper the self-consistency of such calculations is assessed by examining the temporal evolution of the coronal density. It is shown conceptually that for some coronal structures, density gradients can evolve in a way that the wave-damping processes are inhibited. For the case of phase mixing we argue that (a) wave heating cannot sustain the assumed density structure and (b) inclusion of feedback of the heating on the density gradient can lead to a highly structured density, although on long timescales. In addition, transport coefficients well in excess of classical are required to maintain the observed coronal density. Hence, the heating of closed coronal structures by global oscillations may face problems arising from the assumption of a fixed density gradient, and the rapid damping of oscillations may have to be accompanied by a separate (non-wave-based) heating mechanism to sustain the required density structuring.

  14. OBSERVATIONS OF LINEAR POLARIZATION IN A SOLAR CORONAL LOOP PROMINENCE SYSTEM OBSERVED NEAR 6173 Å

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Hilaire, Pascal; Martínez Oliveros, Juan-Carlos; Hudson, Hugh S.; Krucker, Säm; Bain, Hazel [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Schou, Jesper [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Couvidat, Sébastien, E-mail: shilaire@ssl.berkeley.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-05-10

    White-light observations by the Solar Dynamics Observatory's Helioseismic and Magnetic Imager of a loop-prominence system occurring in the aftermath of an X-class flare on 2013 May 13 near the eastern solar limb show a linearly polarized component, reaching up to ∼20% at an altitude of ∼33 Mm, about the maximum amount expected if the emission were due solely to Thomson scattering of photospheric light by the coronal material. The mass associated with the polarized component was 8.2 × 10{sup 14} g. At 15 Mm altitude, the brightest part of the loop was 3(±0.5)% linearly polarized, only about 20% of that expected from pure Thomson scattering, indicating the presence of an additional unpolarized component at wavelengths near Fe I (617.33 nm). We estimate the free electron density of the white-light loop system to possibly be as high as 1.8 × 10{sup 12} cm{sup –3}.

  15. Sensitivity of coronal loop sausage mode frequencies and decay rates to radial and longitudinal density inhomogeneities: a spectral approach

    Science.gov (United States)

    Cally, Paul S.; Xiong, Ming

    2018-01-01

    Fast sausage modes in solar magnetic coronal loops are only fully contained in unrealistically short dense loops. Otherwise they are leaky, losing energy to their surrounds as outgoing waves. This causes any oscillation to decay exponentially in time. Simultaneous observations of both period and decay rate therefore reveal the eigenfrequency of the observed mode, and potentially insight into the tubes’ nonuniform internal structure. In this article, a global spectral description of the oscillations is presented that results in an implicit matrix eigenvalue equation where the eigenvalues are associated predominantly with the diagonal terms of the matrix. The off-diagonal terms vanish identically if the tube is uniform. A linearized perturbation approach, applied with respect to a uniform reference model, is developed that makes the eigenvalues explicit. The implicit eigenvalue problem is easily solved numerically though, and it is shown that knowledge of the real and imaginary parts of the eigenfrequency is sufficient to determine the width and density contrast of a boundary layer over which the tubes’ enhanced internal densities drop to ambient values. Linearized density kernels are developed that show sensitivity only to the extreme outside of the loops for radial fundamental modes, especially for small density enhancements, with no sensitivity to the core. Higher radial harmonics do show some internal sensitivity, but these will be more difficult to observe. Only kink modes are sensitive to the tube centres. Variation in internal and external Alfvén speed along the loop is shown to have little effect on the fundamental dimensionless eigenfrequency, though the associated eigenfunction becomes more compact at the loop apex as stratification increases, or may even displace from the apex.

  16. Geometric Model of a Coronal Cavity

    Science.gov (United States)

    Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; hide

    2010-01-01

    We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities

  17. The Effect of a Twisted Magnetic Field on the Phase Mixing of the Kink Magnetohydrodynamic Waves in Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Zanyar; Karami, Kayoomars [Department of Physics, University of Kurdistan, Pasdaran Street, P.O. Box 66177-15175, Sanandaj (Iran, Islamic Republic of); Soler, Roberto, E-mail: z.ebrahimi@uok.ac.ir [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain)

    2017-08-10

    There is observational evidence for the existence of a twisted magnetic field in the solar corona. This inspires us to investigate the effect of a twisted magnetic field on the evolution of magnetohydrodynamic (MHD) kink waves in coronal loops. With this aim, we solve the incompressible linearized MHD equations in a magnetically twisted nonuniform coronal flux tube in the limit of long wavelengths. Our results show that a twisted magnetic field can enhance or diminish the rate of phase mixing of the Alfvén continuum modes and the decay rate of the global kink oscillation depending on the twist model and the sign of the longitudinal ( k{sub z} ) and azimuthal ( m ) wavenumbers. Also, our results confirm that in the presence of a twisted magnetic field, when the sign of one of the two wavenumbers m and k {sub z} is changed, the symmetry with respect to the propagation direction is broken. Even a small amount of twist can have an important impact on the process of energy cascading to small scales.

  18. Intermittency in MHD turbulence and coronal nanoflares modelling

    Directory of Open Access Journals (Sweden)

    P. Veltri

    2005-01-01

    Full Text Available High resolution numerical simulations, solar wind data analysis, and measurements at the edges of laboratory plasma devices have allowed for a huge progress in our understanding of MHD turbulence. The high resolution of solar wind measurements has allowed to characterize the intermittency observed at small scales. We are now able to set up a consistent and convincing view of the main properties of MHD turbulence, which in turn constitutes an extremely efficient tool in understanding the behaviour of turbulent plasmas, like those in solar corona, where in situ observations are not available. Using this knowledge a model to describe injection, due to foot-point motions, storage and dissipation of MHD turbulence in coronal loops, is built where we assume strong longitudinal magnetic field, low beta and high aspect ratio, which allows us to use the set of reduced MHD equations (RMHD. The model is based on a shell technique in the wave vector space orthogonal to the strong magnetic field, while the dependence on the longitudinal coordinate is preserved. Numerical simulations show that injected energy is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. Due to the strong longitudinal magnetic field, dissipative structures propagate along the loop, with the typical speed of the Alfvén waves. The statistical analysis on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics. Moreover the recent observations of non thermal velocity measurements during flare occurrence are well described by the numerical results of the simulation model. All these results naturally emerge from the model dynamical evolution without any need of an ad-hoc hypothesis.

  19. MULTIDIMENSIONAL MODELING OF CORONAL RAIN DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, X.; Xia, C.; Keppens, R. [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, B-3001 Leuven (Belgium)

    2013-07-10

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.

  20. MULTIDIMENSIONAL MODELING OF CORONAL RAIN DYNAMICS

    International Nuclear Information System (INIS)

    Fang, X.; Xia, C.; Keppens, R.

    2013-01-01

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.

  1. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak

  2. Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare

    International Nuclear Information System (INIS)

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng; Feng, Li; Wiegelmann, Thomas; Inhester, Bernd

    2014-01-01

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases strongly suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.

  3. TWO-DIMENSIONAL CELLULAR AUTOMATON MODEL FOR THE EVOLUTION OF ACTIVE REGION CORONAL PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    López Fuentes, Marcelo [Instituto de Astronomía y Física del Espacio, CONICET-UBA, CC. 67, Suc. 28, 1428 Buenos Aires (Argentina); Klimchuk, James A., E-mail: lopezf@iafe.uba.ar [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States)

    2015-02-01

    We study a two-dimensional cellular automaton (CA) model for the evolution of coronal loop plasmas. The model is based on the idea that coronal loops are made of elementary magnetic strands that are tangled and stressed by the displacement of their footpoints by photospheric motions. The magnetic stress accumulated between neighbor strands is released in sudden reconnection events or nanoflares that heat the plasma. We combine the CA model with the Enthalpy Based Thermal Evolution of Loops model to compute the response of the plasma to the heating events. Using the known response of the X-Ray Telescope on board Hinode, we also obtain synthetic data. The model obeys easy-to-understand scaling laws relating the output (nanoflare energy, temperature, density, intensity) to the input parameters (field strength, strand length, critical misalignment angle). The nanoflares have a power-law distribution with a universal slope of –2.5, independent of the input parameters. The repetition frequency of nanoflares, expressed in terms of the plasma cooling time, increases with strand length. We discuss the implications of our results for the problem of heating and evolution of active region coronal plasmas.

  4. MULTIFRACTAL SOLAR EUV INTENSITY FLUCTUATIONS AND THEIR IMPLICATIONS FOR CORONAL HEATING MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Cadavid, A. C.; Lawrence, J. K.; Christian, D. J. [Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330 (United States); Rivera, Y. J. [Department of Climate and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143 (United States); Jennings, P. J. [5174 S. Slauson Avenue, Culver City, CA 90230 (United States); Rappazzo, A. F., E-mail: ana.cadavid@csun.edu [Department of Earth, Planetary and Space Sciences, University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2016-11-10

    We investigate the scaling properties of the long-range temporal evolution and intermittency of Atmospheric Imaging Assembly/ Solar Dynamics Observatory intensity observations in four solar environments: an active region core, a weak emission region, and two core loops. We use two approaches: the probability distribution function (PDF) of time series increments and multifractal detrended fluctuation analysis (MF-DFA). Noise taints the results, so we focus on the 171 Å waveband, which has the highest signal-to-noise ratio. The lags between pairs of wavebands distinguish between coronal versus transition region (TR) emission. In all physical regions studied, scaling in the range of 15–45 minutes is multifractal, and the time series are anti-persistent on average. The degree of anti-correlation in the TR time series is greater than that for coronal emission. The multifractality stems from long-term correlations in the data rather than the wide distribution of intensities. Observations in the 335 Å waveband can be described in terms of a multifractal with added noise. The multiscaling of the extreme-ultraviolet data agrees qualitatively with the radiance from a phenomenological model of impulsive bursts plus noise, and also from ohmic dissipation in a reduced magnetohydrodynamic model for coronal loop heating. The parameter space must be further explored to seek quantitative agreement. Thus, the observational “signatures” obtained by the combined tests of the PDF of increments and the MF-DFA offer strong constraints that can systematically discriminate among models for coronal heating.

  5. Measuring Temperature-Dependent Propagating Disturbances in Coronal Fan Loops Using Multiple SDO-AIA Channels and Surfing Transform Technique

    Science.gov (United States)

    Uritskiy, Vadim M.; Davila, Joseph M.; Viall, Nicholeen M.; Ofman, Leon

    2013-01-01

    A set of co-aligned high resolution images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) is used to investigate propagating disturbances (PDs) in warm fan loops at the periphery of a non-flaring active region NOAA AR 11082. To measure PD speeds at multiple coronal temperatures, a new data analysis methodology is proposed enabling quantitative description of sub visual coronal motions with low signal-to-noise ratios of the order of 0.1. The technique operates with a set of one-dimensional surfing signals extracted from position-timeplots of several AIA channels through a modified version of Radon transform. The signals are used to evaluate a two-dimensional power spectral density distribution in the frequency - velocity space which exhibits a resonance in the presence of quasi-periodic PDs. By applying this analysis to the same fan loop structures observed in several AIA channels, we found that the traveling velocity of PDs increases with the temperature of the coronal plasma following the square root dependence predicted for the slow mode magneto-acoustic wave which seems to be the dominating wave mode in the studied loop structures. This result extends recent observations by Kiddie et al. (2012) to a more general class of fan loop systems not associated with sunspots and demonstrating consistent slow mode activity in up to four AIA channels.

  6. EVIDENCE OF THERMAL CONDUCTION SUPPRESSION IN A SOLAR FLARING LOOP BY CORONAL SEISMOLOGY OF SLOW-MODE WAVES

    International Nuclear Information System (INIS)

    Wang, Tongjiang; Ofman, Leon; Provornikova, Elena; Sun, Xudong; Davila, Joseph M.

    2015-01-01

    Analysis of a longitudinal wave event observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory is presented. A time sequence of 131 Å images reveals that a C-class flare occurred at one footpoint of a large loop and triggered an intensity disturbance (enhancement) propagating along it. The spatial features and temporal evolution suggest that a fundamental standing slow-mode wave could be set up quickly after meeting of two initial disturbances from the opposite footpoints. The oscillations have a period of ∼12 minutes and a decay time of ∼9 minutes. The measured phase speed of 500 ± 50 km s −1 matches the sound speed in the heated loop of ∼10 MK, confirming that the observed waves are of slow mode. We derive the time-dependent temperature and electron density wave signals from six AIA extreme-ultraviolet channels, and find that they are nearly in phase. The measured polytropic index from the temperature and density perturbations is 1.64 ± 0.08 close to the adiabatic index of 5/3 for an ideal monatomic gas. The interpretation based on a 1D linear MHD model suggests that the thermal conductivity is suppressed by at least a factor of 3 in the hot flare loop at 9 MK and above. The viscosity coefficient is determined by coronal seismology from the observed wave when only considering the compressive viscosity dissipation. We find that to interpret the rapid wave damping, the classical compressive viscosity coefficient needs to be enhanced by a factor of 15 as the upper limit

  7. A Nanoflare-Based Cellular Automaton Model and the Observed Properties of the Coronal Plasma

    Science.gov (United States)

    Lopez-Fuentes, Marcelo; Klimchuk, James Andrew

    2016-01-01

    We use the cellular automaton model described in Lopez Fuentes and Klimchuk to study the evolution of coronal loop plasmas. The model, based on the idea of a critical misalignment angle in tangled magnetic fields, produces nanoflares of varying frequency with respect to the plasma cooling time. We compare the results of the model with active region (AR) observations obtained with the Hinode/XRT and SDOAIA instruments. The comparison is based on the statistical properties of synthetic and observed loop light curves. Our results show that the model reproduces the main observational characteristics of the evolution of the plasma in AR coronal loops. The typical intensity fluctuations have amplitudes of 10 percent - 15 percent both for the model and the observations. The sign of the skewness of the intensity distributions indicates the presence of cooling plasma in the loops. We also study the emission measure (EM) distribution predicted by the model and obtain slopes in log(EM) versus log(T) between 2.7 and 4.3, in agreement with published observational values.

  8. A NANOFLARE-BASED CELLULAR AUTOMATON MODEL AND THE OBSERVED PROPERTIES OF THE CORONAL PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, Marcelo López [Instituto de Astronomía y Física del Espacio, CONICET-UBA, CC. 67, Suc. 28, 1428 Buenos Aires (Argentina); Klimchuk, James A., E-mail: lopezf@iafe.uba.ar [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States)

    2016-09-10

    We use the cellular automaton model described in López Fuentes and Klimchuk to study the evolution of coronal loop plasmas. The model, based on the idea of a critical misalignment angle in tangled magnetic fields, produces nanoflares of varying frequency with respect to the plasma cooling time. We compare the results of the model with active region (AR) observations obtained with the Hinode /XRT and SDO /AIA instruments. The comparison is based on the statistical properties of synthetic and observed loop light curves. Our results show that the model reproduces the main observational characteristics of the evolution of the plasma in AR coronal loops. The typical intensity fluctuations have amplitudes of 10%–15% both for the model and the observations. The sign of the skewness of the intensity distributions indicates the presence of cooling plasma in the loops. We also study the emission measure (EM) distribution predicted by the model and obtain slopes in log(EM) versus log(T) between 2.7 and 4.3, in agreement with published observational values.

  9. GUIDING NONLINEAR FORCE-FREE MODELING USING CORONAL OBSERVATIONS: FIRST RESULTS USING A QUASI-GRAD-RUBIN SCHEME

    Energy Technology Data Exchange (ETDEWEB)

    Malanushenko, A. [Department of Physics, Montana State University, Bozeman, MT (United States); Schrijver, C. J.; DeRosa, M. L. [Lockheed Martin Advanced Technology Center, Palo Alto, CA (United States); Wheatland, M. S.; Gilchrist, S. A. [Sydney Institute for Astronomy, School of Physics, University of Sydney (Australia)

    2012-09-10

    At present, many models of the coronal magnetic field rely on photospheric vector magnetograms, but these data have been shown to be problematic as the sole boundary information for nonlinear force-free field extrapolations. Magnetic fields in the corona manifest themselves in high-energy images (X-rays and EUV) in the shapes of coronal loops, providing an additional constraint that is not at present used as constraints in the computational domain, directly influencing the evolution of the model. This is in part due to the mathematical complications of incorporating such input into numerical models. Projection effects, confusion due to overlapping loops (the coronal plasma is optically thin), and the limited number of usable loops further complicate the use of information from coronal images. We develop and test a new algorithm to use images of coronal loops in the modeling of the solar coronal magnetic field. We first fit projected field lines with those of constant-{alpha} force-free fields to approximate the three-dimensional distribution of currents in the corona along a sparse set of trajectories. We then apply a Grad-Rubin-like iterative technique, which uses these trajectories as volume constraints on the values of {alpha}, to obtain a volume-filling nonlinear force-free model of the magnetic field, modifying a code and method presented by Wheatland. We thoroughly test the technique on known analytical and solar-like model magnetic fields previously used for comparing different extrapolation techniques and compare the results with those obtained by currently available methods relying only on the photospheric data. We conclude that we have developed a functioning method of modeling the coronal magnetic field by combining the line-of-sight component of the photospheric magnetic field with information from coronal images. Whereas we focus on the use of coronal loop information in combination with line-of-sight magnetograms, the method is readily extended to

  10. GUIDING NONLINEAR FORCE-FREE MODELING USING CORONAL OBSERVATIONS: FIRST RESULTS USING A QUASI-GRAD-RUBIN SCHEME

    International Nuclear Information System (INIS)

    Malanushenko, A.; Schrijver, C. J.; DeRosa, M. L.; Wheatland, M. S.; Gilchrist, S. A.

    2012-01-01

    At present, many models of the coronal magnetic field rely on photospheric vector magnetograms, but these data have been shown to be problematic as the sole boundary information for nonlinear force-free field extrapolations. Magnetic fields in the corona manifest themselves in high-energy images (X-rays and EUV) in the shapes of coronal loops, providing an additional constraint that is not at present used as constraints in the computational domain, directly influencing the evolution of the model. This is in part due to the mathematical complications of incorporating such input into numerical models. Projection effects, confusion due to overlapping loops (the coronal plasma is optically thin), and the limited number of usable loops further complicate the use of information from coronal images. We develop and test a new algorithm to use images of coronal loops in the modeling of the solar coronal magnetic field. We first fit projected field lines with those of constant-α force-free fields to approximate the three-dimensional distribution of currents in the corona along a sparse set of trajectories. We then apply a Grad-Rubin-like iterative technique, which uses these trajectories as volume constraints on the values of α, to obtain a volume-filling nonlinear force-free model of the magnetic field, modifying a code and method presented by Wheatland. We thoroughly test the technique on known analytical and solar-like model magnetic fields previously used for comparing different extrapolation techniques and compare the results with those obtained by currently available methods relying only on the photospheric data. We conclude that we have developed a functioning method of modeling the coronal magnetic field by combining the line-of-sight component of the photospheric magnetic field with information from coronal images. Whereas we focus on the use of coronal loop information in combination with line-of-sight magnetograms, the method is readily extended to incorporate

  11. Solar Coronal Jets: Observations, Theory, and Modeling

    Science.gov (United States)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  12. FLARE-GENERATED SHOCK WAVE PROPAGATION THROUGH SOLAR CORONAL ARCADE LOOPS AND AN ASSOCIATED TYPE II RADIO BURST

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj; Cho, Kyung-Suk [Korea Astronomy and Space Science Institute (KASI), Daejeon, 305-348 (Korea, Republic of); Innes, D. E., E-mail: pankaj@kasi.re.kr [Max-Planck Institut für Sonnensystemforschung, D-37077 Göttingen (Germany)

    2016-09-01

    This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ∼800 km s{sup −1} and it accelerated to ∼1490 km s{sup −1} after passing through the arcade loops. A fan–spine magnetic topology was revealed at the flare site. A small, confined filament eruption (∼340 km s{sup −1}) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan–spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.

  13. FLARE-GENERATED SHOCK WAVE PROPAGATION THROUGH SOLAR CORONAL ARCADE LOOPS AND AN ASSOCIATED TYPE II RADIO BURST

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Cho, Kyung-Suk; Innes, D. E.

    2016-01-01

    This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ∼800 km s −1 and it accelerated to ∼1490 km s −1 after passing through the arcade loops. A fan–spine magnetic topology was revealed at the flare site. A small, confined filament eruption (∼340 km s −1 ) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan–spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.

  14. Vortex and Sink Flows in Eruptive Flares as a Model for Coronal Implosions

    Energy Technology Data Exchange (ETDEWEB)

    Zuccarello, F. P. [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium); Aulanier, G.; Démoulin, P.; Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cit’e, 5 place Jules Janssen, F-92195 Meudon (France); Dudík, J. [Astronomical Institute of the Academy of Sciences of the Czech Republic, Fričova 298, 251 65 Ondřejov (Czech Republic); Gilchrist, S. A., E-mail: francesco.zuccarello@wis.kuleuven.be, E-mail: dudik@asu.cas.cz [NorthWest Research Associates, 3380 Mitchell Lane, Boulder, CO 80301 (United States)

    2017-03-10

    Eruptive flares are sudden releases of magnetic energy that involve many phenomena, several of which can be explained by the standard 2D flare model and its realizations in 3D. We analyze a 3D magnetohydrodynamics simulation, in the framework of this model, that naturally explains the contraction of coronal loops in the proximity of the flare sites, as well as the inflow toward the region above the cusp-shaped loops. We find that two vorticity arcs located along the flanks of the erupting magnetic flux rope are generated as soon as the eruption begins. The magnetic arcades above the flux rope legs are then subjected to expansion, rotation, or contraction depending on which part of the vortex flow advects them. In addition to the vortices, an inward-directed magnetic pressure gradient exists in the current sheet below the magnetic flux rope. It results in the formation of a sink that is maintained by reconnection. We conclude that coronal loop apparent implosions observed during eruptive flares are the result of hydromagnetic effects related to the generation of vortex and sink flows when a flux rope moves in a magnetized environment.

  15. Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints

    Science.gov (United States)

    Jones-Mecholsky, Shaela I.; Davila, Joseph M.; Uritskiy, Vadim

    2016-01-01

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field, an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.

  16. Solar Magnetic Carpet III: Coronal Modelling of Synthetic Magnetograms

    Science.gov (United States)

    Meyer, K. A.; Mackay, D. H.; van Ballegooijen, A. A.; Parnell, C. E.

    2013-09-01

    This article is the third in a series working towards the construction of a realistic, evolving, non-linear force-free coronal-field model for the solar magnetic carpet. Here, we present preliminary results of 3D time-dependent simulations of the small-scale coronal field of the magnetic carpet. Four simulations are considered, each with the same evolving photospheric boundary condition: a 48-hour time series of synthetic magnetograms produced from the model of Meyer et al. ( Solar Phys. 272, 29, 2011). Three simulations include a uniform, overlying coronal magnetic field of differing strength, the fourth simulation includes no overlying field. The build-up, storage, and dissipation of magnetic energy within the simulations is studied. In particular, we study their dependence upon the evolution of the photospheric magnetic field and the strength of the overlying coronal field. We also consider where energy is stored and dissipated within the coronal field. The free magnetic energy built up is found to be more than sufficient to power small-scale, transient phenomena such as nanoflares and X-ray bright points, with the bulk of the free energy found to be stored low down, between 0.5 - 0.8 Mm. The energy dissipated is currently found to be too small to account for the heating of the entire quiet-Sun corona. However, the form and location of energy-dissipation regions qualitatively agree with what is observed on small scales on the Sun. Future MHD modelling using the same synthetic magnetograms may lead to a higher energy release.

  17. Automated Temperature and Emission Measure Analysis of Coronal Loops and Active Regions Observed with the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO/AIA)

    Science.gov (United States)

    Aschwanden, Markus J.; Boerner, Paul; Schrijver, Carolus J.; Malanushenko, Anna

    2013-03-01

    We developed numerical codes designed for automated analysis of SDO/AIA image datasets in the six coronal filters, including: i) coalignment test between different wavelengths with measurements of the altitude of the EUV-absorbing chromosphere, ii) self-calibration by empirical correction of instrumental response functions, iii) automated generation of differential emission measure [DEM] distributions with peak-temperature maps [ T p( x, y)] and emission measure maps [ EM p( x, y)] of the full Sun or active region areas, iv) composite DEM distributions [d EM( T)/d T] of active regions or subareas, v) automated detection of coronal loops, and vi) automated background subtraction and thermal analysis of coronal loops, which yields statistics of loop temperatures [ T e], temperature widths [ σ T], emission measures [ EM], electron densities [ n e], and loop widths [ w]. The combination of these numerical codes allows for automated and objective processing of numerous coronal loops. As an example, we present the results of an application to the active region NOAA 11158, observed on 15 February 2011, shortly before it produced the largest (X2.2) flare during the current solar cycle. We detect 570 loop segments at temperatures in the entire range of log( T e)=5.7 - 7.0 K and corroborate previous TRACE and AIA results on their near-isothermality and the validity of the Rosner-Tucker-Vaiana (RTV) law at soft X-ray temperatures ( T≳2 MK) and its failure at lower EUV temperatures.

  18. A model for radio emission from solar coronal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J., E-mail: djwu@pmo.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2014-05-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  19. A model for radio emission from solar coronal shocks

    International Nuclear Information System (INIS)

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2014-01-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  20. Numerically modelling the large scale coronal magnetic field

    Science.gov (United States)

    Panja, Mayukh; Nandi, Dibyendu

    2016-07-01

    The solar corona spews out vast amounts of magnetized plasma into the heliosphere which has a direct impact on the Earth's magnetosphere. Thus it is important that we develop an understanding of the dynamics of the solar corona. With our present technology it has not been possible to generate 3D magnetic maps of the solar corona; this warrants the use of numerical simulations to study the coronal magnetic field. A very popular method of doing this, is to extrapolate the photospheric magnetic field using NLFF or PFSS codes. However the extrapolations at different time intervals are completely independent of each other and do not capture the temporal evolution of magnetic fields. On the other hand full MHD simulations of the global coronal field, apart from being computationally very expensive would be physically less transparent, owing to the large number of free parameters that are typically used in such codes. This brings us to the Magneto-frictional model which is relatively simpler and computationally more economic. We have developed a Magnetofrictional Model, in 3D spherical polar co-ordinates to study the large scale global coronal field. Here we present studies of changing connectivities between active regions, in response to photospheric motions.

  1. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J. [Purple Mountain Observatory, CAS, Nanjing 210008 (China); Yan, Y. H., E-mail: djwu@pmo.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, CAS, Beijing 100012 (China)

    2013-06-10

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

  2. Enthalpy-Based Thermal Evolution of Loops: II. Improvements to the Model

    Science.gov (United States)

    Cargill, P. J.; Bradshaw, S. J.; Klimchuk, J. A.

    2011-01-01

    This paper further develops the zero-dimensional (0D) hydrodynamic coronal loop model "Enthalpy-based Thermal Evolution of Loops" (EBTEL) originally proposed by Klimchuk et al (2008), which studies the plasma response to evolving coronal heating. It has typically been applied to impulsive heating events. The basis of EBTEL is the modelling of mass exchange between the corona and transition region and chromosphere in response to heating variations, with the key parameter being the ratio of transition region to coronal radiation. We develop new models for this parameter that now include gravitational stratification and a physically motivated approach to radiative cooling. A number of examples are presented, including nanoflares in short and long loops, and a small flare. It is found that while the evolution of the loop temperature is rather insensitive to the details of the model, accurate tracking of the density requires the inclusion of our new features. In particular, we are able to now obtain highly over-dense loops in the late cooling phase and decreases to the coronal density arising due to stratification. The 0D results are compared to a 1D hydro code (Hydrad). The agreement is acceptable, with the exception of the flare case where some versions of Hydrad can give significantly lower densities. This is attributed to the method used to model the chromosphere in a flare. EBTEL is suitable for general use as a tool for (a) quick-look results of loop evolution in response to a given heating function and (b) situations where the modelling of hundreds or thousands of elemental loops is needed. A single run takes a few seconds on a contemporary laptop.

  3. Formation of Large-scale Coronal Loops Interconnecting Two Active Regions through Gradual Magnetic Reconnection and an Associated Heating Process

    Science.gov (United States)

    Du, Guohui; Chen, Yao; Zhu, Chunming; Liu, Chang; Ge, Lili; Wang, Bing; Li, Chuanyang; Wang, Haimin

    2018-06-01

    Coronal loops interconnecting two active regions (ARs), called interconnecting loops (ILs), are prominent large-scale structures in the solar atmosphere. They carry a significant amount of magnetic flux and therefore are considered to be an important element of the solar dynamo process. Earlier observations showed that eruptions of ILs are an important source of CMEs. It is generally believed that ILs are formed through magnetic reconnection in the high corona (>150″–200″), and several scenarios have been proposed to explain their brightening in soft X-rays (SXRs). However, the detailed IL formation process has not been fully explored, and the associated energy release in the corona still remains unresolved. Here, we report the complete formation process of a set of ILs connecting two nearby ARs, with successive observations by STEREO-A on the far side of the Sun and by SDO and Hinode on the Earth side. We conclude that ILs are formed by gradual reconnection high in the corona, in line with earlier postulations. In addition, we show evidence that ILs brighten in SXRs and EUVs through heating at or close to the reconnection site in the corona (i.e., through the direct heating process of reconnection), a process that has been largely overlooked in earlier studies of ILs.

  4. CONSTRAINING A MODEL OF TURBULENT CORONAL HEATING FOR AU MICROSCOPII WITH X-RAY, RADIO, AND MILLIMETER OBSERVATIONS

    International Nuclear Information System (INIS)

    Cranmer, Steven R.; Wilner, David J.; MacGregor, Meredith A.

    2013-01-01

    Many low-mass pre-main-sequence stars exhibit strong magnetic activity and coronal X-ray emission. Even after the primordial accretion disk has been cleared out, the star's high-energy radiation continues to affect the formation and evolution of dust, planetesimals, and large planets. Young stars with debris disks are thus ideal environments for studying the earliest stages of non-accretion-driven coronae. In this paper we simulate the corona of AU Mic, a nearby active M dwarf with an edge-on debris disk. We apply a self-consistent model of coronal loop heating that was derived from numerical simulations of solar field-line tangling and magnetohydrodynamic turbulence. We also synthesize the modeled star's X-ray luminosity and thermal radio/millimeter continuum emission. A realistic set of parameter choices for AU Mic produces simulated observations that agree with all existing measurements and upper limits. This coronal model thus represents an alternative explanation for a recently discovered ALMA central emission peak that was suggested to be the result of an inner 'asteroid belt' within 3 AU of the star. However, it is also possible that the central 1.3 mm peak is caused by a combination of active coronal emission and a bright inner source of dusty debris. Additional observations of this source's spatial extent and spectral energy distribution at millimeter and radio wavelengths will better constrain the relative contributions of the proposed mechanisms

  5. Coronal Mass Ejections: Models and Their Observational Basis

    Directory of Open Access Journals (Sweden)

    P. F. Chen

    2011-04-01

    Full Text Available Coronal mass ejections (CMEs are the largest-scale eruptive phenomenon in the solar system, expanding from active region-sized nonpotential magnetic structure to a much larger size. The bulk of plasma with a mass of ∼10^11 – 10^13 kg is hauled up all the way out to the interplanetary space with a typical velocity of several hundred or even more than 1000 km s^-1, with a chance to impact our Earth, resulting in hazardous space weather conditions. They involve many other much smaller-sized solar eruptive phenomena, such as X-ray sigmoids, filament/prominence eruptions, solar flares, plasma heating and radiation, particle acceleration, EIT waves, EUV dimmings, Moreton waves, solar radio bursts, and so on. It is believed that, by shedding the accumulating magnetic energy and helicity, they complete the last link in the chain of the cycling of the solar magnetic field. In this review, I try to explicate our understanding on each stage of the fantastic phenomenon, including their pre-eruption structure, their triggering mechanisms and the precursors indicating the initiation process, their acceleration and propagation. Particular attention is paid to clarify some hot debates, e.g., whether magnetic reconnection is necessary for the eruption, whether there are two types of CMEs, how the CME frontal loop is formed, and whether halo CMEs are special.

  6. An ice-cream cone model for coronal mass ejections

    Science.gov (United States)

    Xue, X. H.; Wang, C. B.; Dou, X. K.

    2005-08-01

    In this study, we use an ice-cream cone model to analyze the geometrical and kinematical properties of the coronal mass ejections (CMEs). Assuming that in the early phase CMEs propagate with near-constant speed and angular width, some useful properties of CMEs, namely the radial speed (v), the angular width (α), and the location at the heliosphere, can be obtained considering the geometrical shapes of a CME as an ice-cream cone. This model is improved by (1) using an ice-cream cone to show the near real configuration of a CME, (2) determining the radial speed via fitting the projected speeds calculated from the height-time relation in different azimuthal angles, (3) not only applying to halo CMEs but also applying to nonhalo CMEs.

  7. CORONAL MAGNETIC FIELDS DERIVED FROM SIMULTANEOUS MICROWAVE AND EUV OBSERVATIONS AND COMPARISON WITH THE POTENTIAL FIELD MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Miyawaki, Shun; Nozawa, Satoshi [Department of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Iwai, Kazumasa; Shibasaki, Kiyoto [Nobeyama Solar Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Nagano 384-1305 (Japan); Shiota, Daikou, E-mail: shunmi089@gmail.com [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601 (Japan)

    2016-02-10

    We estimated the accuracy of coronal magnetic fields derived from radio observations by comparing them to potential field calculations and the differential emission measure measurements using EUV observations. We derived line-of-sight components of the coronal magnetic field from polarization observations of the thermal bremsstrahlung in the NOAA active region 11150, observed around 3:00 UT on 2011 February 3 using the Nobeyama Radioheliograph at 17 GHz. Because the thermal bremsstrahlung intensity at 17 GHz includes both chromospheric and coronal components, we extracted only the coronal component by measuring the coronal emission measure in EUV observations. In addition, we derived only the radio polarization component of the corona by selecting the region of coronal loops and weak magnetic field strength in the chromosphere along the line of sight. The upper limits of the coronal longitudinal magnetic fields were determined as 100–210 G. We also calculated the coronal longitudinal magnetic fields from the potential field extrapolation using the photospheric magnetic field obtained from the Helioseismic and Magnetic Imager. However, the calculated potential fields were certainly smaller than the observed coronal longitudinal magnetic field. This discrepancy between the potential and the observed magnetic field strengths can be explained consistently by two reasons: (1) the underestimation of the coronal emission measure resulting from the limitation of the temperature range of the EUV observations, and (2) the underestimation of the coronal magnetic field resulting from the potential field assumption.

  8. Mathematical Modeling of Loop Heat Pipes

    Science.gov (United States)

    Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.

    1998-01-01

    The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.

  9. ANALYSIS AND MODELING OF TWO FLARE LOOPS OBSERVED BY AIA AND EIS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2012-10-10

    We analyze and model an M1.0 flare observed by SDO/AIA and Hinode/EIS to investigate how flare loops are heated and evolve subsequently. The flare is composed of two distinctive loop systems observed in extreme ultraviolet (EUV) images. The UV 1600 A emission at the feet of these loops exhibits a rapid rise, followed by enhanced emission in different EUV channels observed by the Atmospheric Imaging Assembly (AIA) and the EUV Imaging Spectrometer (EIS). Such behavior is indicative of impulsive energy deposit and the subsequent response in overlying coronal loops that evolve through different temperatures. Using the method we recently developed, we infer empirical heating functions from the rapid rise of the UV light curves for the two loop systems, respectively, treating them as two big loops with cross-sectional area of 5'' by 5'', and compute the plasma evolution in the loops using the EBTEL model. We compute the synthetic EUV light curves, which, with the limitation of the model, reasonably agree with observed light curves obtained in multiple AIA channels and EIS lines: they show the same evolution trend and their magnitudes are comparable by within a factor of two. Furthermore, we also compare the computed mean enthalpy flow velocity with the Doppler shift measurements by EIS during the decay phase of the two loops. Our results suggest that the two different loops with different heating functions as inferred from their footpoint UV emission, combined with their different lengths as measured from imaging observations, give rise to different coronal plasma evolution patterns captured both in the model and in observations.

  10. Sigma models and renormalization of string loops

    International Nuclear Information System (INIS)

    Tseytlin, A.A.

    1989-05-01

    An extension of the ''σ-model β-functions - string equations of motion'' correspondence to the string loop level is discussed. Special emphasis is made on how the renormalization group acts in string loops and, in particular, on the renormalizability property of the generating functional Z-circumflex for string amplitudes (related to the σ model partition function integrated over moduli). Renormalization of Z-circumflex at one and two loop order is analyzed in some detail. We also discuss an approach to renormalization based on operators of insertion of topological fixtures. (author). 70 refs

  11. Self consistent MHD modeling of the solar wind from coronal holes with distinct geometries

    Science.gov (United States)

    Stewart, G. A.; Bravo, S.

    1995-01-01

    Utilizing an iterative scheme, a self-consistent axisymmetric MHD model for the solar wind has been developed. We use this model to evaluate the properties of the solar wind issuing from the open polar coronal hole regions of the Sun, during solar minimum. We explore the variation of solar wind parameters across the extent of the hole and we investigate how these variations are affected by the geometry of the hole and the strength of the field at the coronal base.

  12. Two-zone model of coronal hole structure in the high corona

    International Nuclear Information System (INIS)

    Wang, Z.; Kundu, M.R.; Yoshimura, H.

    1988-01-01

    The two-zone coronal hole structure model presently proposed for the high corona at 1.5-1.7 solar radii emerges from a comparison of computation results for the potential magnetic fields of the corona and meter-decameter radio observations. The two zones of a coronal hole are defined by the configuration of magnetic field lines around a coronal hole: (1) the central hole of an open diverging magnetic field line system; and (2) the boundary zone between the central zone of the open field line system and the closed field line system or systems surrounding the open field line system. 19 references

  13. Non-adversarial justice and the coroner's court: a proposed therapeutic, restorative, problem-solving model.

    Science.gov (United States)

    King, Michael S

    2008-12-01

    Increasingly courts are using new approaches that promote a more comprehensive resolution of legal problems, minimise any negative effects that legal processes have on participant wellbeing and/or that use legal processes to promote participant wellbeing. Therapeutic jurisprudence, restorative justice, mediation and problem-solving courts are examples. This article suggests a model for the use of these processes in the coroner's court to minimise negative effects of coroner's court processes on the bereaved and to promote a more comprehensive resolution of matters at issue, including the determination of the cause of death and the public health and safety promotion role of the coroner.

  14. Merging of coronal and heliospheric numerical two dimensional MHD models

    Czech Academy of Sciences Publication Activity Database

    Odstrčil, Dušan; Linker, J. A.; Lionello, R.; Mikic, Z.; Riley, P.; Pizzo, J. V.; Luhmann, J. G.

    2002-01-01

    Roč. 107, A12 (2002), s. SSH14-1 - SSH14-11 ISSN 0148-0227 R&D Projects: GA AV ČR IAA3003003 Institutional research plan: CEZ:AV0Z1003909 Keywords : coronal mass ejection * interplanetary shock * numerical MHD simulation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.245, year: 2002

  15. Rapid Simulation of Flat Knitting Loops Based On the Yarn Texture and Loop Geometrical Model

    Directory of Open Access Journals (Sweden)

    Lu Zhiwen

    2017-06-01

    Full Text Available In order to create realistic loop primitives suitable for the fast computer-aided design (CAD of the flat knitted fabric, we have a research on the geometric model of the loop as well as the variation of the loop surface. Establish the texture variation model based on the changing process from the normal yarn to loop that provides the realistic texture of the simulative loop. Then optimize the simulative loop based on illumination variation. This paper develops the computer program with the optimization algorithm and achieves the loop simulation of different yarns to verify the feasibility of the proposed algorithm. Our work provides a fast CAD of the flat knitted fabric with loop simulation, and it is not only more realistic but also material adjustable. Meanwhile it also provides theoretical value for the flat knitted fabric computer simulation.

  16. Coronal magnetometry

    CERN Document Server

    Zhang, Jie; Bastian, Timothy

    2014-01-01

    This volume is a collection of research articles on the subject of the solar corona, and particularly, coronal magnetism. The book was motivated by the Workshop on Coronal Magnetism: Connecting Models to Data and the Corona to the Earth, which was held 21 - 23 May 2012 in Boulder, Colorado, USA. This workshop was attended by approximately 60 researchers. Articles from this meeting are contained in this topical issue, but the topical issue also contains contributions from researchers not present at the workshop. This volume is aimed at researchers and graduate students active in solar physics. Originally published in Solar Physics, Vol. 288, Issue 2, 2013 and Vol. 289, Issue 8, 2014.

  17. New Evidence that Magnetoconvection Drives Solar–Stellar Coronal Heating

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy R. [NASA Marshall Space Flight Center, Mail Code ST 13, Huntsville, AL 35812 (United States); Thalmann, Julia K., E-mail: sanjivtiwari80@gmail.com [Institute of Physics/IGAM, University of Graz, Universittsplatz 5/II, A-8010 Graz (Austria)

    2017-07-10

    How magnetic energy is injected and released in the solar corona, keeping it heated to several million degrees, remains elusive. Coronal heating generally increases with increasing magnetic field strength. From a comparison of a nonlinear force-free model of the three-dimensional active region coronal field to observed extreme-ultraviolet loops, we find that (1) umbra-to-umbra coronal loops, despite being rooted in the strongest magnetic flux, are invisible, and (2) the brightest loops have one foot in an umbra or penumbra and the other foot in another sunspot’s penumbra or in unipolar or mixed-polarity plage. The invisibility of umbra-to-umbra loops is new evidence that magnetoconvection drives solar-stellar coronal heating: evidently, the strong umbral field at both ends quenches the magnetoconvection and hence the heating. Broadly, our results indicate that depending on the field strength in both feet, the photospheric feet of a coronal loop on any convective star can either engender or quench coronal heating in the loop’s body.

  18. Evidence for the Magnetic Breakout Model in an Equatorial Coronal-hole Jet

    Science.gov (United States)

    Kumar, Pankaj; Karpen, Judith T.; Antiochos, Spiro K.; Wyper, Peter F.; DeVore, C. Richard; DeForest, Craig E.

    2018-02-01

    Small, impulsive jets commonly occur throughout the solar corona, but are especially visible in coronal holes. Evidence is mounting that jets are part of a continuum of eruptions that extends to much larger coronal mass ejections and eruptive flares. Because coronal-hole jets originate in relatively simple magnetic structures, they offer an ideal testbed for theories of energy buildup and release in the full range of solar eruptions. We analyzed an equatorial coronal-hole jet observed by the Solar Dynamics Observatory (SDO)/AIA on 2014 January 9 in which the magnetic-field structure was consistent with the embedded-bipole topology that we identified and modeled previously as an origin of coronal jets. In addition, this event contained a mini-filament, which led to important insights into the energy storage and release mechanisms. SDO/HMI magnetograms revealed footpoint motions in the primary minority-polarity region at the eruption site, but show negligible flux emergence or cancellation for at least 16 hr before the eruption. Therefore, the free energy powering this jet probably came from magnetic shear concentrated at the polarity inversion line within the embedded bipole. We find that the observed activity sequence and its interpretation closely match the predictions of the breakout jet model, strongly supporting the hypothesis that the breakout model can explain solar eruptions on a wide range of scales.

  19. Sequence-structure relationships in RNA loops: establishing the basis for loop homology modeling.

    Science.gov (United States)

    Schudoma, Christian; May, Patrick; Nikiforova, Viktoria; Walther, Dirk

    2010-01-01

    The specific function of RNA molecules frequently resides in their seemingly unstructured loop regions. We performed a systematic analysis of RNA loops extracted from experimentally determined three-dimensional structures of RNA molecules. A comprehensive loop-structure data set was created and organized into distinct clusters based on structural and sequence similarity. We detected clear evidence of the hallmark of homology present in the sequence-structure relationships in loops. Loops differing by structures. Thus, our results support the application of homology modeling for RNA loop model building. We established a threshold that may guide the sequence divergence-based selection of template structures for RNA loop homology modeling. Of all possible sequences that are, under the assumption of isosteric relationships, theoretically compatible with actual sequences observed in RNA structures, only a small fraction is contained in the Rfam database of RNA sequences and classes implying that the actual RNA loop space may consist of a limited number of unique loop structures and conserved sequences. The loop-structure data sets are made available via an online database, RLooM. RLooM also offers functionalities for the modeling of RNA loop structures in support of RNA engineering and design efforts.

  20. Flat Knitting Loop Deformation Simulation Based on Interlacing Point Model

    Directory of Open Access Journals (Sweden)

    Jiang Gaoming

    2017-12-01

    Full Text Available In order to create realistic loop primitives suitable for the faster CAD of the flat-knitted fabric, we have performed research on the model of the loop as well as the variation of the loop surface. This paper proposes an interlacing point-based model for the loop center curve, and uses the cubic Bezier curve to fit the central curve of the regular loop, elongated loop, transfer loop, and irregular deformed loop. In this way, a general model for the central curve of the deformed loop is obtained. The obtained model is then utilized to perform texture mapping, texture interpolation, and brightness processing, simulating a clearly structured and lifelike deformed loop. The computer program LOOP is developed by using the algorithm. The deformed loop is simulated with different yarns, and the deformed loop is applied to design of a cable stitch, demonstrating feasibility of the proposed algorithm. This paper provides a loop primitive simulation method characterized by lifelikeness, yarn material variability, and deformation flexibility, and facilitates the loop-based fast computer-aided design (CAD of the knitted fabric.

  1. MODELING OF REFLECTIVE PROPAGATING SLOW-MODE WAVE IN A FLARING LOOP

    Energy Technology Data Exchange (ETDEWEB)

    Fang, X.; Yuan, D.; Van Doorsselaere, T.; Keppens, R.; Xia, C. [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium)

    2015-11-01

    Quasi-periodic propagating intensity disturbances have been observed in large coronal loops in extreme ultraviolet images over a decade, and are widely accepted to be slow magnetosonic waves. However, spectroscopic observations from Hinode/EIS revealed their association with persistent coronal upflows, making this interpretation debatable. We perform a 2.5D magnetohydrodynamic simulation to imitate the chromospheric evaporation and the following reflected patterns in a flare loop. Our model encompasses the corona, transition region, and chromosphere. We demonstrate that the quasi periodic propagating intensity variations captured by the synthesized Solar Dynamics Observatory/Atmospheric Imaging Assembly 131, 94 Å emission images match the previous observations well. With particle tracers in the simulation, we confirm that these quasi periodic propagating intensity variations consist of reflected slow mode waves and mass flows with an average speed of 310 km s{sup −1} in an 80 Mm length loop with an average temperature of 9 MK. With the synthesized Doppler shift velocity and intensity maps of the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation Fe xix line emission, we confirm that these reflected slow mode waves are propagating waves.

  2. Modeling active region transient brightenings observed with X-ray telescope as multi-stranded loops

    Energy Technology Data Exchange (ETDEWEB)

    Kobelski, Adam R.; McKenzie, David E. [Department of Physics, P.O. Box 173840, Montana State University, Bozeman, MT 59717-3840 (United States); Donachie, Martin, E-mail: kobelski@solar.physics.montana.edu [University of Glasgow, Glasgow, G128QQ, Scotland (United Kingdom)

    2014-05-10

    Strong evidence exists that coronal loops as observed in extreme ultraviolet and soft X-rays may not be monolithic isotropic structures, but can often be more accurately modeled as bundles of independent strands. Modeling the observed active region transient brightenings (ARTBs) within this framework allows for the exploration of the energetic ramifications and characteristics of these stratified structures. Here we present a simple method of detecting and modeling ARTBs observed with the Hinode X-Ray Telescope (XRT) as groups of zero-dimensional strands, which allows us to probe parameter space to better understand the spatial and temporal dependence of strand heating in impulsively heated loops. This partially automated method can be used to analyze a large number of observations to gain a statistical insight into the parameters of coronal structures, including the number of heating events required in a given model to fit the observations. In this article, we present the methodology and demonstrate its use in detecting and modeling ARTBs in a sample data set from Hinode/XRT. These initial results show that, in general, multiple heating events are necessary to reproduce observed ARTBs, but the spatial dependence of these heating events cannot yet be established.

  3. Modeling active region transient brightenings observed with X-ray telescope as multi-stranded loops

    International Nuclear Information System (INIS)

    Kobelski, Adam R.; McKenzie, David E.; Donachie, Martin

    2014-01-01

    Strong evidence exists that coronal loops as observed in extreme ultraviolet and soft X-rays may not be monolithic isotropic structures, but can often be more accurately modeled as bundles of independent strands. Modeling the observed active region transient brightenings (ARTBs) within this framework allows for the exploration of the energetic ramifications and characteristics of these stratified structures. Here we present a simple method of detecting and modeling ARTBs observed with the Hinode X-Ray Telescope (XRT) as groups of zero-dimensional strands, which allows us to probe parameter space to better understand the spatial and temporal dependence of strand heating in impulsively heated loops. This partially automated method can be used to analyze a large number of observations to gain a statistical insight into the parameters of coronal structures, including the number of heating events required in a given model to fit the observations. In this article, we present the methodology and demonstrate its use in detecting and modeling ARTBs in a sample data set from Hinode/XRT. These initial results show that, in general, multiple heating events are necessary to reproduce observed ARTBs, but the spatial dependence of these heating events cannot yet be established.

  4. CLOSED-FIELD CORONAL HEATING DRIVEN BY WAVE TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Downs, Cooper; Lionello, Roberto; Mikić, Zoran; Linker, Jon A [Predictive Science Incorporated, 9990 Mesa Rim Rd. Suite 170, San Diego, CA 92121 (United States); Velli, Marco, E-mail: cdowns@predsci.com [EPSS, UCLA, Los Angeles, CA 90095 (United States)

    2016-12-01

    To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditions is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-Sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.

  5. X-RAY AND EUV OBSERVATIONS OF SIMULTANEOUS SHORT AND LONG PERIOD OSCILLATIONS IN HOT CORONAL ARCADE LOOPS

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Cho, Kyung-Suk; Nakariakov, Valery M.

    2015-01-01

    We report decaying quasi-periodic intensity oscillations in the X-ray (6–12 keV) and extreme-ultraviolet (EUV) channels (131, 94, 1600, 304 Å) observed by the Fermi Gamma-ray Burst Monitor and Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), respectively, during a C-class flare. The estimated periods of oscillation and decay time in the X-ray channel (6–12 keV) were about 202 and 154 s, respectively. A similar oscillation period was detected at the footpoint of the arcade loops in the AIA 1600 and 304 Å channels. Simultaneously, AIA hot channels (94 and 131 Å) reveal propagating EUV disturbances bouncing back and forth between the footpoints of the arcade loops. The period of the oscillation and decay time were about 409 and 1121 s, respectively. The characteristic phase speed of the wave is about 560 km s −1 for about 115 Mm of loop length, which is roughly consistent with the sound speed at the temperature about 10–16 MK (480–608 km s −1 ). These EUV oscillations are consistent with the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation Doppler-shift oscillations interpreted as the global standing slow magnetoacoustic wave excited by a flare. The flare occurred at one of the footpoints of the arcade loops, where the magnetic topology was a 3D fan-spine with a null-point. Repetitive reconnection at this footpoint could have caused the periodic acceleration of non-thermal electrons that propagated to the opposite footpoint along the arcade and that are precipitating there, causing the observed 202 s periodicity. Other possible interpretations, e.g., the second harmonics of the slow mode, are also discussed

  6. X-RAY AND EUV OBSERVATIONS OF SIMULTANEOUS SHORT AND LONG PERIOD OSCILLATIONS IN HOT CORONAL ARCADE LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj; Cho, Kyung-Suk [Korea Astronomy and Space Science Institute (KASI), Daejeon, 305-348 (Korea, Republic of); Nakariakov, Valery M., E-mail: pankaj@kasi.re.kr [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL (United Kingdom)

    2015-05-01

    We report decaying quasi-periodic intensity oscillations in the X-ray (6–12 keV) and extreme-ultraviolet (EUV) channels (131, 94, 1600, 304 Å) observed by the Fermi Gamma-ray Burst Monitor and Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), respectively, during a C-class flare. The estimated periods of oscillation and decay time in the X-ray channel (6–12 keV) were about 202 and 154 s, respectively. A similar oscillation period was detected at the footpoint of the arcade loops in the AIA 1600 and 304 Å channels. Simultaneously, AIA hot channels (94 and 131 Å) reveal propagating EUV disturbances bouncing back and forth between the footpoints of the arcade loops. The period of the oscillation and decay time were about 409 and 1121 s, respectively. The characteristic phase speed of the wave is about 560 km s{sup −1} for about 115 Mm of loop length, which is roughly consistent with the sound speed at the temperature about 10–16 MK (480–608 km s{sup −1}). These EUV oscillations are consistent with the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation Doppler-shift oscillations interpreted as the global standing slow magnetoacoustic wave excited by a flare. The flare occurred at one of the footpoints of the arcade loops, where the magnetic topology was a 3D fan-spine with a null-point. Repetitive reconnection at this footpoint could have caused the periodic acceleration of non-thermal electrons that propagated to the opposite footpoint along the arcade and that are precipitating there, causing the observed 202 s periodicity. Other possible interpretations, e.g., the second harmonics of the slow mode, are also discussed.

  7. Investigations of the sensitivity of a coronal mass ejection model (ENLIL) to solar input parameters

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Vršnak, B.; Taktakishvili, A.

    2010-01-01

    Understanding space weather is not only important for satellite operations and human exploration of the solar system but also to phenomena here on Earth that may potentially disturb and disrupt electrical signals. Some of the most violent space weather effects are caused by coronal mass ejections...... (CMEs), but in order to predict the caused effects, we need to be able to model their propagation from their origin in the solar corona to the point of interest, e.g., Earth. Many such models exist, but to understand the models in detail we must understand the primary input parameters. Here we...... investigate the parameter space of the ENLILv2.5b model using the CME event of 25 July 2004. ENLIL is a time‐dependent 3‐D MHD model that can simulate the propagation of cone‐shaped interplanetary coronal mass ejections (ICMEs) through the solar system. Excepting the cone parameters (radius, position...

  8. Jordan cells of periodic loop models

    International Nuclear Information System (INIS)

    Morin-Duchesne, Alexi; Saint-Aubin, Yvan

    2013-01-01

    Jordan cells in transfer matrices of finite lattice models are a signature of the logarithmic character of the conformal field theories that appear in their thermodynamical limit. The transfer matrix of periodic loop models, T N , is an element of the periodic Temperley–Lieb algebra EPTL N (β,α), where N is the number of sites on a section of the cylinder, and β = −q − q −1 = 2cos λ and α the weights of contractible and non-contractible loops. The thermodynamic limit of T N is believed to describe a conformal field theory of central charge c = 1 − 6λ 2 /(π(λ − π)). The abstract element T N acts naturally on (a sum of) spaces V-tilde N d , similar to those upon which the standard modules of the (classical) Temperley–Lieb algebra act. These spaces known as sectors are labeled by the numbers of defects d and depend on a twist parameter v that keeps track of the winding of defects around the cylinder. Criteria are given for non-trivial Jordan cells of T N both between sectors with distinct defect numbers and within a given sector. (paper)

  9. Multi-loop PWR modeling and hardware-in-the-loop testing using ACSL

    International Nuclear Information System (INIS)

    Thomas, V.M.; Heibel, M.D.; Catullo, W.J.

    1989-01-01

    Westinghouse has developed an Advanced Digital Feedwater Control System (ADFCS) which is aimed at reducing feedwater related reactor trips through improved control performance for pressurized water reactor (PWR) power plants. To support control system setpoint studies and functional design efforts for the ADFCS, an ACSL based model of the nuclear steam supply system (NSSS) of a Westinghouse (PWR) was generated. Use of this plant model has been extended from system design to system testing through integration of the model into a Hardware-in-Loop test environment for the ADFCS. This integration includes appropriate interfacing between a Gould SEL 32/87 computer, upon which the plant model executes in real time, and the Westinghouse Distributed Processing family (WDPF) test hardware. A development program has been undertaken to expand the existing ACSL model to include capability to explicitly model multiple plant loops, steam generators, and corresponding feedwater systems. Furthermore, the program expands the ADFCS Hardware-in-Loop testing to include the multi-loop plant model. This paper provides an overview of the testing approach utilized for the ADFCS with focus on the role of Hardware-in-Loop testing. Background on the plant model, methodology and test environment is also provided. Finally, an overview is presented of the program to expand the model and associated Hardware-in-Loop test environment to handle multiple loops

  10. Characterizing a Model of Coronal Heating and Solar Wind Acceleration Based on Wave Turbulence.

    Science.gov (United States)

    Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M.

    2014-12-01

    Understanding the nature of coronal heating and solar wind acceleration is a key goal in solar and heliospheric research. While there have been many theoretical advances in both topics, including suggestions that they may be intimately related, the inherent scale coupling and complexity of these phenomena limits our ability to construct models that test them on a fundamental level for realistic solar conditions. At the same time, there is an ever increasing impetus to improve our spaceweather models, and incorporating treatments for these processes that capture their basic features while remaining tractable is an important goal. With this in mind, I will give an overview of our exploration of a wave-turbulence driven (WTD) model for coronal heating and solar wind acceleration based on low-frequency Alfvénic turbulence. Here we attempt to bridge the gap between theory and practical modeling by exploring this model in 1D HD and multi-dimensional MHD contexts. The key questions that we explore are: What properties must the model possess to be a viable model for coronal heating? What is the influence of the magnetic field topology (open, closed, rapidly expanding)? And can we simultaneously capture coronal heating and solar wind acceleration with such a quasi-steady formulation? Our initial results suggest that a WTD based formulation performs adequately for a variety of solar and heliospheric conditions, while significantly reducing the number of free parameters when compared to empirical heating and solar wind models. The challenges, applications, and future prospects of this type of approach will also be discussed.

  11. Fast loop modeling for protein structures

    Science.gov (United States)

    Zhang, Jiong; Nguyen, Son; Shang, Yi; Xu, Dong; Kosztin, Ioan

    2015-03-01

    X-ray crystallography is the main method for determining 3D protein structures. In many cases, however, flexible loop regions of proteins cannot be resolved by this approach. This leads to incomplete structures in the protein data bank, preventing further computational study and analysis of these proteins. For instance, all-atom molecular dynamics (MD) simulation studies of structure-function relationship require complete protein structures. To address this shortcoming, we have developed and implemented an efficient computational method for building missing protein loops. The method is database driven and uses deep learning and multi-dimensional scaling algorithms. We have implemented the method as a simple stand-alone program, which can also be used as a plugin in existing molecular modeling software, e.g., VMD. The quality and stability of the generated structures are assessed and tested via energy scoring functions and by equilibrium MD simulations. The proposed method can also be used in template-based protein structure prediction. Work supported by the National Institutes of Health [R01 GM100701]. Computer time was provided by the University of Missouri Bioinformatics Consortium.

  12. COUPLING OF CORONAL AND HELIOSPHERIC MAGNETOHYDRODYNAMIC MODELS: SOLUTION COMPARISONS AND VERIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Merkin, V. G. [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Lionello, R.; Linker, J.; Török, T.; Downs, C. [Predictive Science, Inc., San Diego, CA 92121 (United States); Lyon, J. G., E-mail: slava.merkin@jhuapl.edu [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States)

    2016-11-01

    Two well-established magnetohydrodynamic (MHD) codes are coupled to model the solar corona and the inner heliosphere. The corona is simulated using the MHD algorithm outside a sphere (MAS) model. The Lyon–Fedder–Mobarry (LFM) model is used in the heliosphere. The interface between the models is placed in a spherical shell above the critical point and allows both models to work in either a rotating or an inertial frame. Numerical tests are presented examining the coupled model solutions from 20 to 50 solar radii. The heliospheric simulations are run with both LFM and the MAS extension into the heliosphere, and use the same polytropic coronal MAS solutions as the inner boundary condition. The coronal simulations are performed for idealized magnetic configurations, with an out-of-equilibrium flux rope inserted into an axisymmetric background, with and without including the solar rotation. The temporal evolution at the inner boundary of the LFM and MAS solutions is shown to be nearly identical, as are the steady-state background solutions, prior to the insertion of the flux rope. However, after the coronal mass ejection has propagated through the significant portion of the simulation domain, the heliospheric solutions diverge. Additional simulations with different resolution are then performed and show that the MAS heliospheric solutions approach those of LFM when run with progressively higher resolution. Following these detailed tests, a more realistic simulation driven by the thermodynamic coronal MAS is presented, which includes solar rotation and an azimuthally asymmetric background and extends to the Earth’s orbit.

  13. Nonlinear Force-free Coronal Magnetic Stereoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chifu, Iulia; Wiegelmann, Thomas; Inhester, Bernd, E-mail: chifu@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-03-01

    Insights into the 3D structure of the solar coronal magnetic field have been obtained in the past by two completely different approaches. The first approach are nonlinear force-free field (NLFFF) extrapolations, which use photospheric vector magnetograms as boundary condition. The second approach uses stereoscopy of coronal magnetic loops observed in EUV coronal images from different vantage points. Both approaches have their strengths and weaknesses. Extrapolation methods are sensitive to noise and inconsistencies in the boundary data, and the accuracy of stereoscopy is affected by the ability of identifying the same structure in different images and by the separation angle between the view directions. As a consequence, for the same observational data, the 3D coronal magnetic fields computed with the two methods do not necessarily coincide. In an earlier work (Paper I) we extended our NLFFF optimization code by including stereoscopic constrains. The method was successfully tested with synthetic data, and within this work, we apply the newly developed code to a combined data set from SDO /HMI, SDO /AIA, and the two STEREO spacecraft. The extended method (called S-NLFFF) contains an additional term that monitors and minimizes the angle between the local magnetic field direction and the orientation of the 3D coronal loops reconstructed by stereoscopy. We find that when we prescribe the shape of the 3D stereoscopically reconstructed loops, the S-NLFFF method leads to a much better agreement between the modeled field and the stereoscopically reconstructed loops. We also find an appreciable decrease by a factor of two in the angle between the current and the magnetic field. This indicates the improved quality of the force-free solution obtained by S-NLFFF.

  14. A DATA-DRIVEN ANALYTIC MODEL FOR PROTON ACCELERATION BY LARGE-SCALE SOLAR CORONAL SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Kozarev, Kamen A. [Smithsonian Astrophysical Observatory (United States); Schwadron, Nathan A. [Institute for the Study of Earth, Oceans, and Space, University of New Hampshire (United States)

    2016-11-10

    We have recently studied the development of an eruptive filament-driven, large-scale off-limb coronal bright front (OCBF) in the low solar corona, using remote observations from the Solar Dynamics Observatory ’s Advanced Imaging Assembly EUV telescopes. In that study, we obtained high-temporal resolution estimates of the OCBF parameters regulating the efficiency of charged particle acceleration within the theoretical framework of diffusive shock acceleration (DSA). These parameters include the time-dependent front size, speed, and strength, as well as the upstream coronal magnetic field orientations with respect to the front’s surface normal direction. Here we present an analytical particle acceleration model, specifically developed to incorporate the coronal shock/compressive front properties described above, derived from remote observations. We verify the model’s performance through a grid of idealized case runs using input parameters typical for large-scale coronal shocks, and demonstrate that the results approach the expected DSA steady-state behavior. We then apply the model to the event of 2011 May 11 using the OCBF time-dependent parameters derived by Kozarev et al. We find that the compressive front likely produced energetic particles as low as 1.3 solar radii in the corona. Comparing the modeled and observed fluences near Earth, we also find that the bulk of the acceleration during this event must have occurred above 1.5 solar radii. With this study we have taken a first step in using direct observations of shocks and compressions in the innermost corona to predict the onsets and intensities of solar energetic particle events.

  15. Self consistent MHD modeling of the solar wind from polar coronal holes

    International Nuclear Information System (INIS)

    Stewart, G. A.; Bravo, S.

    1996-01-01

    We have developed a 2D self consistent MHD model for solar wind flow from antisymmetric magnetic geometries. We present results in the case of a photospheric magnetic field which has a dipolar configuration, in order to investigate some of the general characteristics of the wind at solar minimum. As in previous studies, we find that the magnetic configuration is that of a closed field region (a coronal helmet belt) around the solar equator, extending up to about 1.6 R · , and two large open field regions centred over the poles (polar coronal holes), whose magnetic and plasma fluxes expand to fill both hemispheres in interplanetary space. In addition, we find that the different geometries of the magnetic field lines across each hole (from the almost radial central polar lines to the highly curved border equatorial lines) cause the solar wind to have greatly different properties depending on which region it flows from. We find that, even though our simplified model cannot produce realistic wind values, we can obtain a polar wind that is faster, less dense and hotter than equatorial wind, and found that, close to the Sun, there exists a sharp transition between the two wind types. As these characteristics coincide with observations we conclude that both fast and slow solar wind can originate from coronal holes, fast wind from the centre, slow wind from the border

  16. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    Science.gov (United States)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  17. Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE

    Science.gov (United States)

    Möstl, C.; Amerstorfer, T.; Palmerio, E.; Isavnin, A.; Farrugia, C. J.; Lowder, C.; Winslow, R. M.; Donnerer, J. M.; Kilpua, E. K. J.; Boakes, P. D.

    2018-03-01

    Forecasting the geomagnetic effects of solar storms, known as coronal mass ejections (CMEs), is currently severely limited by our inability to predict the magnetic field configuration in the CME magnetic core and by observational effects of a single spacecraft trajectory through its 3-D structure. CME magnetic flux ropes can lead to continuous forcing of the energy input to the Earth's magnetosphere by strong and steady southward-pointing magnetic fields. Here we demonstrate in a proof-of-concept way a new approach to predict the southward field Bz in a CME flux rope. It combines a novel semiempirical model of CME flux rope magnetic fields (Three-Dimensional Coronal ROpe Ejection) with solar observations and in situ magnetic field data from along the Sun-Earth line. These are provided here by the MESSENGER spacecraft for a CME event on 9-13 July 2013. Three-Dimensional Coronal ROpe Ejection is the first such model that contains the interplanetary propagation and evolution of a 3-D flux rope magnetic field, the observation by a synthetic spacecraft, and the prediction of an index of geomagnetic activity. A counterclockwise rotation of the left-handed erupting CME flux rope in the corona of 30° and a deflection angle of 20° is evident from comparison of solar and coronal observations. The calculated Dst matches reasonably the observed Dst minimum and its time evolution, but the results are highly sensitive to the CME axis orientation. We discuss assumptions and limitations of the method prototype and its potential for real time space weather forecasting and heliospheric data interpretation.

  18. Using the Coronal Evolution to Successfully Forward Model CMEs' In Situ Magnetic Profiles

    Science.gov (United States)

    Kay, C.; Gopalswamy, N.

    2017-12-01

    Predicting the effects of a coronal mass ejection (CME) impact requires knowing if impact will occur, which part of the CME impacts, and its magnetic properties. We explore the relation between CME deflections and rotations, which change the position and orientation of a CME, and the resulting magnetic profiles at 1 AU. For 45 STEREO-era, Earth-impacting CMEs, we determine the solar source of each CME, reconstruct its coronal position and orientation, and perform a ForeCAT (Forecasting a CME's Altered Trajectory) simulation of the coronal deflection and rotation. From the reconstructed and modeled CME deflections and rotations, we determine the solar cycle variation and correlations with CME properties. We assume no evolution between the outer corona and 1 AU and use the ForeCAT results to drive the ForeCAT In situ Data Observer (FIDO) in situ magnetic field model, allowing for comparisons with ACE and Wind observations. We do not attempt to reproduce the arrival time. On average FIDO reproduces the in situ magnetic field for each vector component with an error equivalent to 35% of the average total magnetic field strength when the total modeled magnetic field is scaled to match the average observed value. Random walk best fits distinguish between ForeCAT's ability to determine FIDO's input parameters and the limitations of the simple flux rope model. These best fits reduce the average error to 30%. The FIDO results are sensitive to changes of order a degree in the CME latitude, longitude, and tilt, suggesting that accurate space weather predictions require accurate measurements of a CME's position and orientation.

  19. A detailed BWR recirculation loop model for RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Araiza-Martínez, Enrique, E-mail: enrique.araiza@inin.gob.mx; Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.mx; Castillo-Durán, Rogelio, E-mail: rogelio.castillo@inin.gob.mx

    2017-01-15

    Highlights: • A new detailed BWR recirculation loop model was developed for RELAP. • All jet pumps, risers, manifold, suction and control valves, and recirculation pump are modeled. • Model is tested against data from partial blockage of two jet pumps. • For practical applications, simulation results showed good agreement with available data. - Abstract: A new detailed geometric model of the whole recirculation loop of a BWR has been developed for the code RELAP. This detailed model includes the 10 jet pumps, 5 risers, manifold, suction and control valves, and the recirculation pump, per recirculation loop. The model is tested against data from an event of partial blockage at the entrance nozzle of one jet pump in both recirculation loops. For practical applications, simulation results showed good agreement with data. Then, values of parameters considered as figure of merit (reactor power, dome pressure, core flow, among others) for this event are compared against those from the common 1 jet pump per loop model. The results show that new detailed model led to a closer prediction of the reported power change. The detailed recirculation loop model can provide more reliable boundary condition data to a CFD models for studies of, for example, flow induced vibration, wear, and crack initiation.

  20. FRiED: A NOVEL THREE-DIMENSIONAL MODEL OF CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Isavnin, A.

    2016-01-01

    We present a novel three-dimensional (3D) model of coronal mass ejections (CMEs) that unifies all key evolutionary aspects of CMEs and encapsulates their 3D magnetic field configuration. This fully analytic model is capable of reproducing the global geometrical shape of a CME with all major deformations taken into account, i.e., deflection, rotation, expansion, “pancaking,” front flattening, and rotational skew. Encapsulation of 3D magnetic structure allows the model to reproduce in-situ measurements of magnetic field for trajectories of spacecraft-CME encounters of any degree of complexity. As such, the model can be used single-handedly for the consistent analysis of both remote and in-situ observations of CMEs at any heliocentric distance. We demonstrate the latter by successfully applying the model for the analysis of two CMEs.

  1. Diagnostics of Coronal Heating in Solar Active Regions

    Science.gov (United States)

    Fludra, Andrzej; Hornsey, Christopher; Nakariakov, Valery

    2015-04-01

    We aim to develop a diagnostic method for the coronal heating mechanism in active region loops. Observational constraints on coronal heating models have been sought using measurements in the X-ray and EUV wavelengths. Statistical analysis, using EUV emission from many active regions, was done by Fludra and Ireland (2008) who studied power-law relationships between active region integrated magnetic flux and emission line intensities. A subsequent study by Fludra and Warren (2010) for the first time compared fully resolved images in an EUV spectral line of OV 63.0 nm with the photospheric magnetic field, leading to the identification of a dominant, ubiquitous variable component of the transition region EUV emission and a discovery of a steady basal heating, and deriving the dependence of the basal heating rate on the photospheric magnetic flux density. In this study, we compare models of single coronal loops with EUV observations. We assess to what degree observations of individual coronal loops made in the EUV range are capable of providing constraints on the heating mechanism. We model the coronal magnetic field in an active region using an NLFF extrapolation code applied to a photospheric vector magnetogram from SDO/HMI and select several loops that match an SDO/AIA 171 image of the same active region. We then model the plasma in these loops using a 1D hydrostatic code capable of applying an arbitrary heating rate as a function of magnetic field strength along the loop. From the plasma parameters derived from this model, we calculate the EUV emission along the loop in AIA 171 and 335 bands, and in pure spectral lines of Fe IX 17.1 nm and Fe XVI 33.5 nm. We use different spatial distributions of the heating function: concentrated near the loop top, uniform and concentrated near the footpoints, and investigate their effect on the modelled EUV intensities. We find a diagnostics based on the dependence of the total loop intensity on the shape of the heating function

  2. PROPERTIES AND MODELING OF UNRESOLVED FINE STRUCTURE LOOPS OBSERVED IN THE SOLAR TRANSITION REGION BY IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, David H. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Reep, Jeffrey W.; Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-08-01

    Recent observations from the Interface Region Imaging Spectrograph ( IRIS ) have discovered a new class of numerous low-lying dynamic loop structures, and it has been argued that they are the long-postulated unresolved fine structures (UFSs) that dominate the emission of the solar transition region. In this letter, we combine IRIS measurements of the properties of a sample of 108 UFSs (intensities, lengths, widths, lifetimes) with one-dimensional non-equilibrium ionization simulations, using the HYDRAD hydrodynamic model to examine whether the UFSs are now truly spatially resolved in the sense of being individual structures rather than being composed of multiple magnetic threads. We find that a simulation of an impulsively heated single strand can reproduce most of the observed properties, suggesting that the UFSs may be resolved, and the distribution of UFS widths implies that they are structured on a spatial scale of 133 km on average. Spatial scales of a few hundred kilometers appear to be typical for a range of chromospheric and coronal structures, and we conjecture that this could be an important clue for understanding the coronal heating process.

  3. A Culture-Behavior-Brain Loop Model of Human Development.

    Science.gov (United States)

    Han, Shihui; Ma, Yina

    2015-11-01

    Increasing evidence suggests that cultural influences on brain activity are associated with multiple cognitive and affective processes. These findings prompt an integrative framework to account for dynamic interactions between culture, behavior, and the brain. We put forward a culture-behavior-brain (CBB) loop model of human development that proposes that culture shapes the brain by contextualizing behavior, and the brain fits and modifies culture via behavioral influences. Genes provide a fundamental basis for, and interact with, the CBB loop at both individual and population levels. The CBB loop model advances our understanding of the dynamic relationships between culture, behavior, and the brain, which are crucial for human phylogeny and ontogeny. Future brain changes due to cultural influences are discussed based on the CBB loop model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. How Interplanetary Scintillation Data Can Improve Modeling of Coronal Mass Ejection Propagation

    Science.gov (United States)

    Taktakishvili, A.; Mays, M. L.; Manoharan, P. K.; Rastaetter, L.; Kuznetsova, M. M.

    2017-12-01

    Coronal mass ejections (CMEs) can have a significant impact on the Earth's magnetosphere-ionosphere system and cause widespread anomalies for satellites from geosynchronous to low-Earth orbit and produce effects such as geomagnetically induced currents. At the NASA/GSFC Community Coordinated Modeling Center we have been using ensemble modeling of CMEs since 2012. In this presnetation we demonstrate that using of interplanetary scintillation (IPS) observations from the Ooty Radio Telescope facility in India can help to track CME propagaion and improve ensemble forecasting of CMEs. The observations of the solar wind density and velocity using IPS from hundreds of distant sources in ensemble modeling of CMEs can be a game-changing improvement of the current state of the art in CME forecasting.

  5. Casting the Coronal Magnetic Field Reconstruction Tools in 3D Using the MHD Bifrost Model

    Energy Technology Data Exchange (ETDEWEB)

    Fleishman, Gregory D.; Loukitcheva, Maria [Physics Department, Center for Solar-Terrestrial Research, New Jersey Institute of Technology Newark, NJ, 07102-1982 (United States); Anfinogentov, Sergey; Mysh’yakov, Ivan [Institute of Solar-Terrestrial Physics (ISZF), Lermontov st., 126a, Irkutsk, 664033 (Russian Federation); Stupishin, Alexey [Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034 (Russian Federation)

    2017-04-10

    Quantifying the coronal magnetic field remains a central problem in solar physics. Nowadays, the coronal magnetic field is often modeled using nonlinear force-free field (NLFFF) reconstructions, whose accuracy has not yet been comprehensively assessed. Here we perform a detailed casting of the NLFFF reconstruction tools, such as π -disambiguation, photospheric field preprocessing, and volume reconstruction methods, using a 3D snapshot of the publicly available full-fledged radiative MHD model. Specifically, from the MHD model, we know the magnetic field vector in the entire 3D domain, which enables us to perform a “voxel-by-voxel” comparison of the restored and the true magnetic fields in the 3D model volume. Our tests show that the available π -disambiguation methods often fail in the quiet-Sun areas dominated by small-scale magnetic elements, while they work well in the active region (AR) photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although it does produce a more force-free boundary condition, also results in some effective “elevation” of the magnetic field components. This “elevation” height is different for the longitudinal and transverse components, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolations performed starting from the actual AR photospheric magnetogram are free from this systematic error, while other metrics are comparable with those for extrapolations from the preprocessed magnetograms. This finding favors the use of extrapolations from the original photospheric magnetogram without preprocessing. Our tests further suggest that extrapolations from a force-free chromospheric boundary produce measurably better results than those from a photospheric boundary.

  6. Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections

    Energy Technology Data Exchange (ETDEWEB)

    Na, Hyeonock; Moon, Y.-J.; Lee, Harim, E-mail: nho0512@khu.ac.kr, E-mail: moonyj@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin (Korea, Republic of)

    2017-04-20

    It is essential to determine three-dimensional parameters (e.g., radial speed, angular width, and source location) of coronal mass ejections (CMEs) for the space weather forecast. In this study, we investigate which cone type represents a halo CME morphology using 29 CMEs (12 Solar and Heliospheric Observatory (SOHO) /Large Angle and Spectrometric Coronagraph (LASCO) halo CMEs and 17 Solar Terrestrial Relations Observatory ( STEREO )/Sun–Earth Connection Coronal and Heliospheric Investigation COR2 halo CMEs) from 2010 December to 2011 June. These CMEs are identified as halo CMEs by one spacecraft ( SOHO or one of STEREO A and B ) and limb ones by the other spacecraft (One of STEREO A and B or SOHO ). From cone shape parameters of these CMEs, such as their front curvature, we find that the CME observational structures are much closer to a full ice-cream cone type than a shallow ice-cream cone type. Thus, we develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths to estimate the three-dimensional parameters of the halo CMEs. This model is constructed by carrying out the following steps: (1) construct a cone for a given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO /LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model).

  7. Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections

    International Nuclear Information System (INIS)

    Na, Hyeonock; Moon, Y.-J.; Lee, Harim

    2017-01-01

    It is essential to determine three-dimensional parameters (e.g., radial speed, angular width, and source location) of coronal mass ejections (CMEs) for the space weather forecast. In this study, we investigate which cone type represents a halo CME morphology using 29 CMEs (12 Solar and Heliospheric Observatory (SOHO) /Large Angle and Spectrometric Coronagraph (LASCO) halo CMEs and 17 Solar Terrestrial Relations Observatory ( STEREO )/Sun–Earth Connection Coronal and Heliospheric Investigation COR2 halo CMEs) from 2010 December to 2011 June. These CMEs are identified as halo CMEs by one spacecraft ( SOHO or one of STEREO A and B ) and limb ones by the other spacecraft (One of STEREO A and B or SOHO ). From cone shape parameters of these CMEs, such as their front curvature, we find that the CME observational structures are much closer to a full ice-cream cone type than a shallow ice-cream cone type. Thus, we develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths to estimate the three-dimensional parameters of the halo CMEs. This model is constructed by carrying out the following steps: (1) construct a cone for a given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO /LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model).

  8. Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections

    Science.gov (United States)

    Na, Hyeonock; Moon, Y.-J.; Lee, Harim

    2017-04-01

    It is essential to determine three-dimensional parameters (e.g., radial speed, angular width, and source location) of coronal mass ejections (CMEs) for the space weather forecast. In this study, we investigate which cone type represents a halo CME morphology using 29 CMEs (12 Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) halo CMEs and 17 Solar Terrestrial Relations Observatory (STEREO)/Sun-Earth Connection Coronal and Heliospheric Investigation COR2 halo CMEs) from 2010 December to 2011 June. These CMEs are identified as halo CMEs by one spacecraft (SOHO or one of STEREO A and B) and limb ones by the other spacecraft (One of STEREO A and B or SOHO). From cone shape parameters of these CMEs, such as their front curvature, we find that the CME observational structures are much closer to a full ice-cream cone type than a shallow ice-cream cone type. Thus, we develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths to estimate the three-dimensional parameters of the halo CMEs. This model is constructed by carrying out the following steps: (1) construct a cone for a given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (I.e., a triangulation method and a Graduated Cylindrical Shell model).

  9. Comparison of Asymmetric and Ice-cream Cone Models for Halo Coronal Mass Ejections

    Science.gov (United States)

    Na, H.; Moon, Y.

    2011-12-01

    Halo coronal mass ejections (HCMEs) are major cause of the geomagnetic storms. To minimize the projection effect by coronagraph observation, several cone models have been suggested: an ice-cream cone model, an asymmetric cone model etc. These models allow us to determine the three dimensional parameters of HCMEs such as radial speed, angular width, and the angle between sky plane and central axis of the cone. In this study, we compare these parameters obtained from different models using 48 well-observed HCMEs from 2001 to 2002. And we obtain the root mean square error (RMS error) between measured projection speeds and calculated projection speeds for both cone models. As a result, we find that the radial speeds obtained from the models are well correlated with each other (R = 0.86), and the correlation coefficient of angular width is 0.6. The correlation coefficient of the angle between sky plane and central axis of the cone is 0.31, which is much smaller than expected. The reason may be due to the fact that the source locations of the asymmetric cone model are distributed near the center, while those of the ice-cream cone model are located in a wide range. The average RMS error of the asymmetric cone model (85.6km/s) is slightly smaller than that of the ice-cream cone model (87.8km/s).

  10. Coronal rain in magnetic bipolar weak fields

    Science.gov (United States)

    Xia, C.; Keppens, R.; Fang, X.

    2017-07-01

    Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org

  11. Magnetic Flux Rope Identification and Characterization from Observationally Driven Solar Coronal Models

    Science.gov (United States)

    Lowder, Chris; Yeates, Anthony

    2017-09-01

    Formed through magnetic field shearing and reconnection in the solar corona, magnetic flux ropes are structures of twisted magnetic field, threaded along an axis. Their evolution and potential eruption are of great importance for space weather. Here we describe a new methodology for the automated detection of flux ropes in simulated magnetic fields, utilizing field-line helicity. Our Flux Rope Detection and Organization (FRoDO) code, which measures the magnetic flux and helicity content of pre-erupting flux ropes over time, as well as detecting eruptions, is publicly available. As a first demonstration, the code is applied to the output from a time-dependent magnetofrictional model, spanning 1996 June 15-2014 February 10. Over this period, 1561 erupting and 2099 non-erupting magnetic flux ropes are detected, tracked, and characterized. For this particular model data, erupting flux ropes have a mean net helicity magnitude of 2.66× {10}43 Mx2, while non-erupting flux ropes have a significantly lower mean of 4.04× {10}42 Mx2, although there is overlap between the two distributions. Similarly, the mean unsigned magnetic flux for erupting flux ropes is 4.04× {10}21 Mx, significantly higher than the mean value of 7.05× {10}20 Mx for non-erupting ropes. These values for erupting flux ropes are within the broad range expected from observational and theoretical estimates, although the eruption rate in this particular model is lower than that of observed coronal mass ejections. In the future, the FRoDO code will prove to be a valuable tool for assessing the performance of different non-potential coronal simulations and comparing them with observations.

  12. Nonlinear model predictive control for chemical looping process

    Science.gov (United States)

    Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng

    2017-08-22

    A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to a CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.

  13. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  14. Dilaton gravity, Poisson sigma models and loop quantum gravity

    International Nuclear Information System (INIS)

    Bojowald, Martin; Reyes, Juan D

    2009-01-01

    Spherically symmetric gravity in Ashtekar variables coupled to Yang-Mills theory in two dimensions and its relation to dilaton gravity and Poisson sigma models are discussed. After introducing its loop quantization, quantum corrections for inverse triad components are shown to provide a consistent deformation without anomalies. The relation to Poisson sigma models provides a covariant action principle of the quantum-corrected theory with effective couplings. Results are also used to provide loop quantizations of spherically symmetric models in arbitrary D spacetime dimensions.

  15. Loop equations for multi-cut matrix models

    International Nuclear Information System (INIS)

    Akemann, G.

    1995-03-01

    The loop equation for the complex one-matrix model with a multi-cut structure is derived and solved in the planar limit. An iterative scheme for higher genus contributions to the free energy and the multi-loop correlators is presented for the two-cut model, where explicit results are given up to and including genus two. The double-scaling limit is analyzed and the relation to the one-cut solution of the hermitian and complex one-matrix model is discussed. (orig.)

  16. Loop groups, the Luttinger model, anyons, and Sutherland systems

    International Nuclear Information System (INIS)

    Langmann, E.; Carey, A.L.

    1998-01-01

    We discuss the representation theory of loop groups and examples of how it is used in physics. These examples include the construction and solution of the Luttinger model and other 1 + 1-dimensional interacting quantum field theories, the construction of anyon field operators on the circle, and the '2 nd quantization' of the Sutherland model using anyons

  17. Empirical Reconstruction and Numerical Modeling of the First Geoeffective Coronal Mass Ejection of Solar Cycle 24

    Science.gov (United States)

    Wood, B. E.; Wu, C.-C.; Howard, R. A.; Socker, D. G.; Rouillard, A. P.

    2011-03-01

    We analyze the kinematics and morphology of a coronal mass ejection (CME) from 2010 April 3, which was responsible for the first significant geomagnetic storm of solar cycle 24. The analysis utilizes coronagraphic and heliospheric images from the two STEREO spacecraft, and coronagraphic images from SOHO/LASCO. Using an empirical three-dimensional (3D) reconstruction technique, we demonstrate that the CME can be reproduced reasonably well at all times with a 3D flux rope shape, but the case for a flux rope being the correct interpretation is not as strong as some events studied with STEREO in the past, given that we are unable to infer a unique orientation for the flux rope. A model with an orientation angle of -80° from the ecliptic plane (i.e., nearly N-S) works best close to the Sun, but a model at 10° (i.e., nearly E-W) works better far from the Sun. Both interpretations require the cross section of the flux rope to be significantly elliptical rather than circular. In addition to our empirical modeling, we also present a fully 3D numerical MHD model of the CME. This physical model appears to effectively reproduce aspects of the shape and kinematics of the CME's leading edge. It is particularly encouraging that the model reproduces the amount of interplanetary deceleration observed for the CME during its journey from the Sun to 1 AU.

  18. EMPIRICAL RECONSTRUCTION AND NUMERICAL MODELING OF THE FIRST GEOEFFECTIVE CORONAL MASS EJECTION OF SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Wood, B. E.; Wu, C.-C.; Howard, R. A.; Socker, D. G.; Rouillard, A. P.

    2011-01-01

    We analyze the kinematics and morphology of a coronal mass ejection (CME) from 2010 April 3, which was responsible for the first significant geomagnetic storm of solar cycle 24. The analysis utilizes coronagraphic and heliospheric images from the two STEREO spacecraft, and coronagraphic images from SOHO/LASCO. Using an empirical three-dimensional (3D) reconstruction technique, we demonstrate that the CME can be reproduced reasonably well at all times with a 3D flux rope shape, but the case for a flux rope being the correct interpretation is not as strong as some events studied with STEREO in the past, given that we are unable to infer a unique orientation for the flux rope. A model with an orientation angle of -80 deg. from the ecliptic plane (i.e., nearly N-S) works best close to the Sun, but a model at 10 deg. (i.e., nearly E-W) works better far from the Sun. Both interpretations require the cross section of the flux rope to be significantly elliptical rather than circular. In addition to our empirical modeling, we also present a fully 3D numerical MHD model of the CME. This physical model appears to effectively reproduce aspects of the shape and kinematics of the CME's leading edge. It is particularly encouraging that the model reproduces the amount of interplanetary deceleration observed for the CME during its journey from the Sun to 1 AU.

  19. Loop Corrections to Standard Model fields in inflation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xingang [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics,60 Garden Street, Cambridge, MA 02138 (United States); Department of Physics, The University of Texas at Dallas,800 W Campbell Rd, Richardson, TX 75080 (United States); Wang, Yi [Department of Physics, The Hong Kong University of Science and Technology,Clear Water Bay, Kowloon, Hong Kong (China); Xianyu, Zhong-Zhi [Center of Mathematical Sciences and Applications, Harvard University,20 Garden Street, Cambridge, MA 02138 (United States)

    2016-08-08

    We calculate 1-loop corrections to the Schwinger-Keldysh propagators of Standard-Model-like fields of spin-0, 1/2, and 1, with all renormalizable interactions during inflation. We pay special attention to the late-time divergences of loop corrections, and show that the divergences can be resummed into finite results in the late-time limit using dynamical renormalization group method. This is our first step toward studying both the Standard Model and new physics in the primordial universe.

  20. Numerical simulations of flares on M dwarf stars. I - Hydrodynamics and coronal X-ray emission

    Science.gov (United States)

    Cheng, Chung-Chieh; Pallavicini, Roberto

    1991-01-01

    Flare-loop models are utilized to simulate the time evolution and physical characteristics of stellar X-ray flares by varying the values of flare-energy input and loop parameters. The hydrodynamic evolution is studied in terms of changes in the parameters of the mass, energy, and momentum equations within an area bounded by the chromosphere and the corona. The zone supports a magnetically confined loop for which processes are described including the expansion of heated coronal gas, chromospheric evaporation, and plasma compression at loop footpoints. The intensities, time profiles, and average coronal temperatures of X-ray flares are derived from the simulations and compared to observational evidence. Because the amount of evaporated material does not vary linearly with flare-energy input, large loops are required to produce the energy measured from stellar flares.

  1. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections

    Science.gov (United States)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-12-01

    In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.

  2. A MODEL FOR TYPE 2 CORONAL LINE FOREST (CLiF) AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Glidden, Ana [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Rose, Marvin; Elvis, Martin; McDowell, Jonathan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-06-10

    We present a model for the classification of Coronal Line Forest Active Galactic Nuclei (CLiF AGNs). CLiF AGNs are of special interest due to their remarkably large number of emission lines, especially forbidden high-ionization lines (FHILs). Rose et al. suggest that their emission is dominated by reflection from the inner wall of the obscuring region rather than direct emission from the accretion disk. This makes CLiF AGNs laboratories to test AGN-torus models. Modeling an AGN as an accreting supermassive black hole surrounded by a cylinder of dust and gas, we show a relationship between the viewing angle and the revealed area of the inner wall. From the revealed area, we can determine the amount of FHIL emission at various angles. We calculate the strength of [Fe vii] λ 6087 emission for a number of intermediate angles (30°, 40°, and 50°) and compare the results with the luminosity of the observed emission line from six known CLiF AGNs. We find that there is good agreement between our model and the observational results. The model also enables us to determine the relationship between the type 2:type 1 AGN fraction vs the ratio of torus height to radius, h / r .

  3. DATA-CONSTRAINED CORONAL MASS EJECTIONS IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Jin, M. [Lockheed Martin Solar and Astrophysics Lab, Palo Alto, CA 94304 (United States); Manchester, W. B.; Van der Holst, B.; Sokolov, I.; Tóth, G.; Gombosi, T. I. [Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Mullinix, R. E.; Taktakishvili, A.; Chulaki, A., E-mail: jinmeng@lmsal.com, E-mail: chipm@umich.edu, E-mail: richard.e.mullinix@nasa.gov, E-mail: Aleksandre.Taktakishvili-1@nasa.gov [Community Coordinated Modeling Center, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-01-10

    We present a first-principles-based coronal mass ejection (CME) model suitable for both scientific and operational purposes by combining a global magnetohydrodynamics (MHD) solar wind model with a flux-rope-driven CME model. Realistic CME events are simulated self-consistently with high fidelity and forecasting capability by constraining initial flux rope parameters with observational data from GONG, SOHO /LASCO, and STEREO /COR. We automate this process so that minimum manual intervention is required in specifying the CME initial state. With the newly developed data-driven Eruptive Event Generator using Gibson–Low configuration, we present a method to derive Gibson–Low flux rope parameters through a handful of observational quantities so that the modeled CMEs can propagate with the desired CME speeds near the Sun. A test result with CMEs launched with different Carrington rotation magnetograms is shown. Our study shows a promising result for using the first-principles-based MHD global model as a forecasting tool, which is capable of predicting the CME direction of propagation, arrival time, and ICME magnetic field at 1 au (see the companion paper by Jin et al. 2016a).

  4. Challenges in LCA modelling of multiple loops for aluminium cans

    DEFF Research Database (Denmark)

    Niero, Monia; Olsen, Stig Irving

    considered the case of closed-loop recycling for aluminium cans, where body and lid are different alloys, and discussed the abovementioned challenge. The Life Cycle Inventory (LCI) modelling of aluminium processes is traditionally based on a pure aluminium flow, therefore neglecting the presence of alloying...... elements. We included the effect of alloying elements on the LCA modelling of aluminium can recycling. First, we performed a mass balance of the main alloying elements (Mn, Fe, Si, Cu) in aluminium can recycling at increasing levels of recycling rate. The analysis distinguished between different aluminium...... packaging scrap sources (i.e. used beverage can and mixed aluminium packaging) to understand the limiting factors for multiple loop aluminium can recycling. Secondly, we performed a comparative LCA of aluminium can production and recycling in multiple loops considering the two aluminium packaging scrap...

  5. CORONAL JETS SIMULATED WITH THE GLOBAL ALFVÉN WAVE SOLAR MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Szente, J.; Toth, G.; Manchester IV, W. B.; Holst, B. van der; Landi, E.; Gombosi, T. I. [Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); DeVore, C. R.; Antiochos, S. K., E-mail: judithsz@umich.edu [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-01-10

    This paper describes a numerical modeling study of coronal jets to understand their effects on the global corona and their contribution to the solar wind. We implement jets into a well-established three-dimensional, two-temperature magnetohydrodynamic (MHD) solar corona model employing Alfvén-wave dissipation to produce a realistic solar-wind background. The jets are produced by positioning a compact magnetic dipole under the solar surface and rotating the boundary plasma around the dipole's magnetic axis. The moving plasma drags the magnetic field lines along with it, ultimately leading to a reconnection-driven jet similar to that described by Pariat et al. We compare line-of-sight synthetic images to multiple jet observations at EUV and X-ray bands, and find very close matches in terms of physical structure, dynamics, and emission. Key contributors to this agreement are the greatly enhanced plasma density and temperature in our jets compared to previous models. These enhancements arise from the comprehensive thermodynamic model that we use and, also, our inclusion of a dense chromosphere at the base of our jet-generating regions. We further find that the large-scale corona is affected significantly by the outwardly propagating torsional Alfvén waves generated by our polar jet, across 40° in latitude and out to 24 R {sub ⊙}. We estimate that polar jets contribute only a few percent to the steady-state solar-wind energy outflow.

  6. One-loop Yukawa Couplings in Local Models

    CERN Document Server

    Conlon, Joseph P; Palti, Eran; 10.1007

    2010-01-01

    We calculate the one-loop Yukawa couplings and threshold corrections for supersymmetric local models of branes at singularities in type IIB string theory. We compute the corrections coming both from wavefunction and vertex renormalisation. The former comes in the IR from conventional field theory running and in the UV from threshold corrections that cause it to run from the winding scale associated to the full Calabi-Yau volume. The vertex correction is naively absent as it appears to correspond to superpotential renormalisation. However, we find that while the Wilsonian superpotential is not renormalised there is a physical vertex correction in the 1PI action associated to light particle loops.

  7. One-loop Yukawa couplings in local models

    Energy Technology Data Exchange (ETDEWEB)

    Conlon, Joseph P. [Rudolf Peierls Center for Theoretical Physics, Oxford (United Kingdom); Balliol College, Oxford (United Kingdom); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Palti, Eran [Centre de Physique Theorique, Ecole Polytechnique, CNRS, Palaiseau (France)

    2010-07-15

    We calculate the one-loop Yukawa couplings and threshold corrections for supersymmetric local models of branes at singularities in type IIB string theory. We compute the corrections coming both from wavefunction and vertex renormalisation. The former comes in the IR from conventional field theory running and in the UV from threshold corrections that cause it to run from the winding scale associated to the full Calabi-Yau volume. The vertex correction is naively absent as it appears to correspond to superpotential renormalisation. However, we find that while the Wilsonian superpotential is not renormalised there is a physical vertex correction in the 1PI action associated to light particle loops. (orig.)

  8. One-loop Yukawa couplings in local models

    International Nuclear Information System (INIS)

    Conlon, Joseph P.; Goodsell, Mark; Palti, Eran

    2010-07-01

    We calculate the one-loop Yukawa couplings and threshold corrections for supersymmetric local models of branes at singularities in type IIB string theory. We compute the corrections coming both from wavefunction and vertex renormalisation. The former comes in the IR from conventional field theory running and in the UV from threshold corrections that cause it to run from the winding scale associated to the full Calabi-Yau volume. The vertex correction is naively absent as it appears to correspond to superpotential renormalisation. However, we find that while the Wilsonian superpotential is not renormalised there is a physical vertex correction in the 1PI action associated to light particle loops. (orig.)

  9. Nonplanar loops leave the Veneziano model photon massless

    NARCIS (Netherlands)

    Foda, O.

    1987-01-01

    The absence of a pole at p2=0 in the orientable nonplanar one-loop photon self-energy in the Veneziano model is verified. Thus the photon remains massless, and spontaneous symmetry breaking - at least as reported in this context in the literature - is not found.

  10. Nonplanar loops leave the Veneziano model photon massless

    International Nuclear Information System (INIS)

    Foda, O.

    1987-01-01

    The absence of a pole at p 2 =0 in the orientable nonplanar one-loop photon self-energy in the Veneziano model is verified. Thus the photon remains massless, and spontaneous symmetry breaking - at least as reported in this context in the literature - is not found. (orig.)

  11. Nonplanar loops leave the Veneziano model photon massless

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1987-04-16

    The absence of a pole at p/sup 2/=0 in the orientable nonplanar one-loop photon self-energy in the Veneziano model is verified. Thus the photon remains massless, and spontaneous symmetry breaking - at least as reported in this context in the literature - is not found.

  12. Two-loop neutrino model with exotic leptons

    Science.gov (United States)

    Okada, Hiroshi; Orikasa, Yuta

    2016-01-01

    We propose a two-loop induced neutrino mass model, in which we show some bench mark points to satisfy the observed neutrino oscillation, the constraints of lepton flavor violations, and the relic density in the coannihilation system satisfying the current upper bound on the spin independent scattering cross section with nuclei. We also discuss new sources of muon anomalous magnetic moments.

  13. The Drag-based Ensemble Model (DBEM) for Coronal Mass Ejection Propagation

    Science.gov (United States)

    Dumbović, Mateja; Čalogović, Jaša; Vršnak, Bojan; Temmer, Manuela; Mays, M. Leila; Veronig, Astrid; Piantschitsch, Isabell

    2018-02-01

    The drag-based model for heliospheric propagation of coronal mass ejections (CMEs) is a widely used analytical model that can predict CME arrival time and speed at a given heliospheric location. It is based on the assumption that the propagation of CMEs in interplanetary space is solely under the influence of magnetohydrodynamical drag, where CME propagation is determined based on CME initial properties as well as the properties of the ambient solar wind. We present an upgraded version, the drag-based ensemble model (DBEM), that covers ensemble modeling to produce a distribution of possible ICME arrival times and speeds. Multiple runs using uncertainty ranges for the input values can be performed in almost real-time, within a few minutes. This allows us to define the most likely ICME arrival times and speeds, quantify prediction uncertainties, and determine forecast confidence. The performance of the DBEM is evaluated and compared to that of ensemble WSA-ENLIL+Cone model (ENLIL) using the same sample of events. It is found that the mean error is ME = ‑9.7 hr, mean absolute error MAE = 14.3 hr, and root mean square error RMSE = 16.7 hr, which is somewhat higher than, but comparable to ENLIL errors (ME = ‑6.1 hr, MAE = 12.8 hr and RMSE = 14.4 hr). Overall, DBEM and ENLIL show a similar performance. Furthermore, we find that in both models fast CMEs are predicted to arrive earlier than observed, most likely owing to the physical limitations of models, but possibly also related to an overestimation of the CME initial speed for fast CMEs.

  14. A Looping-Based Model for Quenching Repression.

    Directory of Open Access Journals (Sweden)

    Yaroslav Pollak

    2017-01-01

    Full Text Available We model the regulatory role of proteins bound to looped DNA using a simulation in which dsDNA is represented as a self-avoiding chain, and proteins as spherical protrusions. We simulate long self-avoiding chains using a sequential importance sampling Monte-Carlo algorithm, and compute the probabilities for chain looping with and without a protrusion. We find that a protrusion near one of the chain's termini reduces the probability of looping, even for chains much longer than the protrusion-chain-terminus distance. This effect increases with protrusion size, and decreases with protrusion-terminus distance. The reduced probability of looping can be explained via an eclipse-like model, which provides a novel inhibitory mechanism. We test the eclipse model on two possible transcription-factor occupancy states of the D. melanogaster eve 3/7 enhancer, and show that it provides a possible explanation for the experimentally-observed eve stripe 3 and 7 expression patterns.

  15. A Statistical Model of Current Loops and Magnetic Monopoles

    International Nuclear Information System (INIS)

    Ayyer, Arvind

    2015-01-01

    We formulate a natural model of loops and isolated vertices for arbitrary planar graphs, which we call the monopole-dimer model. We show that the partition function of this model can be expressed as a determinant. We then extend the method of Kasteleyn and Temperley-Fisher to calculate the partition function exactly in the case of rectangular grids. This partition function turns out to be a square of a polynomial with positive integer coefficients when the grid lengths are even. Finally, we analyse this formula in the infinite volume limit and show that the local monopole density, free energy and entropy can be expressed in terms of well-known elliptic functions. Our technique is a novel determinantal formula for the partition function of a model of isolated vertices and loops for arbitrary graphs

  16. THE CORONAL ABUNDANCE ANOMALIES OF M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brian E.; Laming, J. Martin [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States); Karovska, Margarita, E-mail: brian.wood@nrl.navy.mil [Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 (United States)

    2012-07-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an 'inverse FIP effect' is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.

  17. The Coronal Abundance Anomalies of M Dwarfs

    Science.gov (United States)

    Wood, Brian E.; Laming, J. Martin; Karovska, Margarita

    2012-07-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an "inverse FIP effect" is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.

  18. THE CORONAL ABUNDANCE ANOMALIES OF M DWARFS

    International Nuclear Information System (INIS)

    Wood, Brian E.; Laming, J. Martin; Karovska, Margarita

    2012-01-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an 'inverse FIP effect' is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.

  19. Loop algorithms for quantum simulations of fermion models on lattices

    International Nuclear Information System (INIS)

    Kawashima, N.; Gubernatis, J.E.; Evertz, H.G.

    1994-01-01

    Two cluster algorithms, based on constructing and flipping loops, are presented for world-line quantum Monte Carlo simulations of fermions and are tested on the one-dimensional repulsive Hubbard model. We call these algorithms the loop-flip and loop-exchange algorithms. For these two algorithms and the standard world-line algorithm, we calculated the autocorrelation times for various physical quantities and found that the ordinary world-line algorithm, which uses only local moves, suffers from very long correlation times that makes not only the estimate of the error difficult but also the estimate of the average values themselves difficult. These difficulties are especially severe in the low-temperature, large-U regime. In contrast, we find that new algorithms, when used alone or in combinations with themselves and the standard algorithm, can have significantly smaller autocorrelation times, in some cases being smaller by three orders of magnitude. The new algorithms, which use nonlocal moves, are discussed from the point of view of a general prescription for developing cluster algorithms. The loop-flip algorithm is also shown to be ergodic and to belong to the grand canonical ensemble. Extensions to other models and higher dimensions are briefly discussed

  20. One-loop dimensional reduction of the linear σ model

    International Nuclear Information System (INIS)

    Malbouisson, A.P.C.; Silva-Neto, M.B.; Svaiter, N.F.

    1997-05-01

    We perform the dimensional reduction of the linear σ model at one-loop level. The effective of the reduced theory obtained from the integration over the nonzero Matsubara frequencies is exhibited. Thermal mass and coupling constant renormalization constants are given, as well as the thermal renormalization group which controls the dependence of the counterterms on the temperature. We also recover, for the reduced theory, the vacuum instability of the model for large N. (author)

  1. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India)

    2017-05-01

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections at the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.

  2. Conformational sampling in template-free protein loop structure modeling: an overview.

    Science.gov (United States)

    Li, Yaohang

    2013-01-01

    Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a "mini protein folding problem" under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized.

  3. CONFORMATIONAL SAMPLING IN TEMPLATE-FREE PROTEIN LOOP STRUCTURE MODELING: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    Yaohang Li

    2013-02-01

    Full Text Available Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a “mini protein folding problem” under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized.

  4. Driver steering model for closed-loop steering function analysis

    Science.gov (United States)

    Bolia, Pratiksh; Weiskircher, Thomas; Müller, Steffen

    2014-05-01

    In this paper, a two level preview driver steering control model for the use in numerical vehicle dynamics simulation is introduced. The proposed model is composed of cascaded control loops: The outer loop is the path following layer based on potential field framework. The inner loop tries to capture the driver's physical behaviour. The proposed driver model allows easy implementation of different driving situations to simulate a wide range of different driver types, moods and vehicle types. The expediency of the proposed driver model is shown with the help of developed driver steering assist (DSA) function integrated with a conventional series production (Electric Power steering System with rack assist servo unit) system. With the help of the DSA assist function, the driver is prevented from over saturating the front tyre forces and loss of stability and controllability during cornering. The simulation results show different driver reactions caused by the change in the parameters or properties of the proposed driver model if the DSA assist function is activated. Thus, the proposed driver model is useful for the advanced driver steering and vehicle stability assist function evaluation in the early stage of vehicle dynamics handling and stability evaluation.

  5. Transient modelling of a natural circulation loop under variable pressure

    International Nuclear Information System (INIS)

    Vianna, Andre L.B.; Faccini, Jose L.H.; Su, Jian; Instituto de Engenharia Nuclear

    2017-01-01

    The objective of the present work is to model the transient operation of a natural circulation loop, which is one-tenth scale in height to a typical Passive Residual Heat Removal system (PRHR) of an Advanced Pressurized Water Nuclear Reactor and was designed to meet the single and two-phase flow similarity criteria to it. The loop consists of a core barrel with electrically heated rods, upper and lower plena interconnected by hot and cold pipe legs to a seven-tube shell heat exchanger of countercurrent design, and an expansion tank with a descending tube. A long transient characterized the loop operation, during which a phenomenon of self-pressurization, without self-regulation of the pressure, was experimentally observed. This represented a unique situation, named natural circulation under variable pressure (NCVP). The self-pressurization was originated in the air trapped in the expansion tank and compressed by the loop water dilatation, as it heated up during each experiment. The mathematical model, initially oriented to the single-phase flow, included the heat capacity of the structure and employed a cubic polynomial approximation for the density, in the buoyancy term calculation. The heater was modelled taking into account the different heat capacities of the heating elements and the heater walls. The heat exchanger was modelled considering the coolant heating, during the heat exchanging process. The self-pressurization was modelled as an isentropic compression of a perfect gas. The whole model was computationally implemented via a set of finite difference equations. The corresponding computational algorithm of solution was of the explicit, marching type, as for the time discretization, in an upwind scheme, regarding the space discretization. The computational program was implemented in MATLAB. Several experiments were carried out in the natural circulation loop, having the coolant flow rate and the heating power as control parameters. The variables used in the

  6. Transient modelling of a natural circulation loop under variable pressure

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, Andre L.B.; Faccini, Jose L.H.; Su, Jian, E-mail: avianna@nuclear.ufrj.br, E-mail: sujian@nuclear.ufrj.br, E-mail: faccini@ien.gov.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2017-07-01

    The objective of the present work is to model the transient operation of a natural circulation loop, which is one-tenth scale in height to a typical Passive Residual Heat Removal system (PRHR) of an Advanced Pressurized Water Nuclear Reactor and was designed to meet the single and two-phase flow similarity criteria to it. The loop consists of a core barrel with electrically heated rods, upper and lower plena interconnected by hot and cold pipe legs to a seven-tube shell heat exchanger of countercurrent design, and an expansion tank with a descending tube. A long transient characterized the loop operation, during which a phenomenon of self-pressurization, without self-regulation of the pressure, was experimentally observed. This represented a unique situation, named natural circulation under variable pressure (NCVP). The self-pressurization was originated in the air trapped in the expansion tank and compressed by the loop water dilatation, as it heated up during each experiment. The mathematical model, initially oriented to the single-phase flow, included the heat capacity of the structure and employed a cubic polynomial approximation for the density, in the buoyancy term calculation. The heater was modelled taking into account the different heat capacities of the heating elements and the heater walls. The heat exchanger was modelled considering the coolant heating, during the heat exchanging process. The self-pressurization was modelled as an isentropic compression of a perfect gas. The whole model was computationally implemented via a set of finite difference equations. The corresponding computational algorithm of solution was of the explicit, marching type, as for the time discretization, in an upwind scheme, regarding the space discretization. The computational program was implemented in MATLAB. Several experiments were carried out in the natural circulation loop, having the coolant flow rate and the heating power as control parameters. The variables used in the

  7. Flare parameters inferred from a 3D loop model data base

    Science.gov (United States)

    Cuambe, Valente A.; Costa, J. E. R.; Simões, P. J. A.

    2018-06-01

    We developed a data base of pre-calculated flare images and spectra exploring a set of parameters which describe the physical characteristics of coronal loops and accelerated electron distribution. Due to the large number of parameters involved in describing the geometry and the flaring atmosphere in the model used, we built a large data base of models (˜250 000) to facilitate the flare analysis. The geometry and characteristics of non-thermal electrons are defined on a discrete grid with spatial resolution greater than 4 arcsec. The data base was constructed based on general properties of known solar flares and convolved with instrumental resolution to replicate the observations from the Nobeyama radio polarimeter spectra and Nobeyama radioheliograph (NoRH) brightness maps. Observed spectra and brightness distribution maps are easily compared with the modelled spectra and images in the data base, indicating a possible range of solutions. The parameter search efficiency in this finite data base is discussed. 8 out of 10 parameters analysed for 1000 simulated flare searches were recovered with a relative error of less than 20 per cent on average. In addition, from the analysis of the observed correlation between NoRH flare sizes and intensities at 17 GHz, some statistical properties were derived. From these statistics, the energy spectral index was found to be δ ˜ 3, with non-thermal electron densities showing a peak distribution ⪅107 cm-3, and Bphotosphere ⪆ 2000 G. Some bias for larger loops with heights as great as ˜2.6 × 109 cm, and looptop events were noted. An excellent match of the spectrum and the brightness distribution at 17 and 34 GHz of the 2002 May 31 flare is presented as well.

  8. Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory.

    Science.gov (United States)

    Möstl, C; Isavnin, A; Boakes, P D; Kilpua, E K J; Davies, J A; Harrison, R A; Barnes, D; Krupar, V; Eastwood, J P; Good, S W; Forsyth, R J; Bothmer, V; Reiss, M A; Amerstorfer, T; Winslow, R M; Anderson, B J; Philpott, L C; Rodriguez, L; Rouillard, A P; Gallagher, P; Nieves-Chinchilla, T; Zhang, T L

    2017-07-01

    We present an advance toward accurately predicting the arrivals of coronal mass ejections (CMEs) at the terrestrial planets, including Earth. For the first time, we are able to assess a CME prediction model using data over two thirds of a solar cycle of observations with the Heliophysics System Observatory. We validate modeling results of 1337 CMEs observed with the Solar Terrestrial Relations Observatory (STEREO) heliospheric imagers (HI) (science data) from 8 years of observations by five in situ observing spacecraft. We use the self-similar expansion model for CME fronts assuming 60° longitudinal width, constant speed, and constant propagation direction. With these assumptions we find that 23%-35% of all CMEs that were predicted to hit a certain spacecraft lead to clear in situ signatures, so that for one correct prediction, two to three false alarms would have been issued. In addition, we find that the prediction accuracy does not degrade with the HI longitudinal separation from Earth. Predicted arrival times are on average within 2.6 ± 16.6 h difference of the in situ arrival time, similar to analytical and numerical modeling, and a true skill statistic of 0.21. We also discuss various factors that may improve the accuracy of space weather forecasting using wide-angle heliospheric imager observations. These results form a first-order approximated baseline of the prediction accuracy that is possible with HI and other methods used for data by an operational space weather mission at the Sun-Earth L5 point.

  9. Testing a solar coronal magnetic field extrapolation code with the Titov–Démoulin magnetic flux rope model

    International Nuclear Information System (INIS)

    Jiang, Chao-Wei; Feng, Xue-Shang

    2016-01-01

    In the solar corona, the magnetic flux rope is believed to be a fundamental structure that accounts for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of the magnetic field from boundary data has been the primary way to obtain fully three-dimensional magnetic information about the corona. As a result, the ability to reliably recover the coronal magnetic flux rope is important for coronal field extrapolation. In this paper, our coronal field extrapolation code is examined with an analytical magnetic flux rope model proposed by Titov and Démoulin, which consists of a bipolar magnetic configuration holding a semi-circular line-tied flux rope in force-free equilibrium. By only using the vector field at the bottom boundary as input, we test our code with the model in a representative range of parameter space and find that the model field can be reconstructed with high accuracy. In particular, the magnetic topological interfaces formed between the flux rope and the surrounding arcade, i.e., the “hyperbolic flux tube” and “bald patch separatrix surface,” are also reliably reproduced. By this test, we demonstrate that our CESE–MHD–NLFFF code can be applied to recovering the magnetic flux rope in the solar corona as long as the vector magnetogram satisfies the force-free constraints. (paper)

  10. A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system.

    Science.gov (United States)

    Cole, R T; Lucas, C L; Cascio, W E; Johnson, T A

    2005-11-01

    While numerous computer models exist for the circulatory system, many are limited in scope, contain unwanted features or incorporate complex components specific to unique experimental situations. Our purpose was to develop a basic, yet multifaceted, computer model of the left heart and systemic circulation in LabVIEW having universal appeal without sacrificing crucial physiologic features. The program we developed employs Windkessel-type impedance models in several open-loop configurations and a closed-loop model coupling a lumped impedance and ventricular pressure source. The open-loop impedance models demonstrate afterload effects on arbitrary aortic pressure/flow inputs. The closed-loop model catalogs the major circulatory waveforms with changes in afterload, preload, and left heart properties. Our model provides an avenue for expanding the use of the ventricular equations through closed-loop coupling that includes a basic coronary circuit. Tested values used for the afterload components and the effects of afterload parameter changes on various waveforms are consistent with published data. We conclude that this model offers the ability to alter several circulatory factors and digitally catalog the most salient features of the pressure/flow waveforms employing a user-friendly platform. These features make the model a useful instructional tool for students as well as a simple experimental tool for cardiovascular research.

  11. Phenomenological aspects of heterotic orbifold models at one loop

    International Nuclear Information System (INIS)

    Birkedal-Hansen, A.; Binetruy, P.; Mambrini, Y.; Nelson, B.

    2003-01-01

    We provide a detailed study of the phenomenology of orbifold compactifications of the heterotic string within the context of supergravity effective theories. Our investigation focuses on those models where the soft Lagrangian is dominated by loop contributions to the various soft supersymmetry breaking parameters. Such models typically predict non-universal soft masses and are thus significantly different from minimal supergravity and other universal models. We consider the pattern of masses that are governed by these soft terms and investigate the implications of certain indirect constraints on supersymmetric models, such as flavor-changing neutral currents, the anomalous magnetic moment of the muon and the density of thermal relic neutralinos. These string-motivated models show novel behavior that interpolates between the phenomenology of unified supergravity models and models dominated by the superconformal anomaly

  12. The Bianchi IX model in loop quantum cosmology

    International Nuclear Information System (INIS)

    Bojowald, Martin; Date, Ghanashyam; Hossain, Golam Mortuza

    2004-01-01

    The Bianchi IX model has been used often to investigate the structure close to singularities of general relativity. Its classical chaos is expected to have, via the BKL scenario, implications even for the approach to general inhomogeneous singularities. Thus, it is a popular model to test consequences of modifications to general relativity suggested by quantum theories of gravity. This paper presents a detailed proof that modifications coming from loop quantum gravity lead to a non-chaotic effective behaviour. The way this is realized, independently of quantization ambiguities, suggests a new look at initial and final singularities

  13. Twist operator correlation functions in O(n) loop models

    International Nuclear Information System (INIS)

    Simmons, Jacob J H; Cardy, John

    2009-01-01

    Using conformal field theoretic methods we calculate correlation functions of geometric observables in the loop representation of the O(n) model at the critical point. We focus on correlation functions containing twist operators, combining these with anchored loops, boundaries with SLE processes and with double SLE processes. We focus further upon n = 0, representing self-avoiding loops, which corresponds to a logarithmic conformal field theory (LCFT) with c = 0. In this limit the twist operator plays the role of a 0-weight indicator operator, which we verify by comparison with known examples. Using the additional conditions imposed by the twist operator null states, we derive a new explicit result for the probabilities that an SLE 8/3 winds in various ways about two points in the upper half-plane, e.g. that the SLE passes to the left of both points. The collection of c = 0 logarithmic CFT operators that we use deriving the winding probabilities is novel, highlighting a potential incompatibility caused by the presence of two distinct logarithmic partners to the stress tensor within the theory. We argue that both partners do appear in the theory, one in the bulk and one on the boundary and that the incompatibility is resolved by restrictive bulk-boundary fusion rules

  14. Closed Loop Brain Model of Neocortical Information Based Exchange

    Directory of Open Access Journals (Sweden)

    James eKozloski

    2016-01-01

    Full Text Available Here we describe an information based exchange' model of brain function that ascribes to neocortex, basal ganglia, and thalamus distinct network functions. The model allows us to analyze whole brain system set point measures, such as the rate and heterogeneity of transitions in striatum and neocortex, in the context of neuromodulation and other perturbations. Our closed-loop model is grounded in neuroanatomical observations, proposing a novel Grand Loop through neocortex, and invokes different forms of plasticity at specific tissue interfaces and their principle cell synapses to achieve these transitions. By implementing a system for maximum information based exchange of action potentials between modeled neocortical areas, we observe changes to these measures in simulation. We hypothesize that similar dynamic set points and modulations exist in the brain's resting state activity, and that different modifications to information based exchange may shift the risk profile of different component tissues, resulting in different neurodegenerative diseases. This model is targeted for further development using IBM's Neural Tissue Simulator, which allows scalable elaboration of networks, tissues, and their neural and synaptic components towards ever greater complexity and biological realism.

  15. Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the eliophysics System Observatory

    Czech Academy of Sciences Publication Activity Database

    Möstl, C.; Isavnin, A.; Boakes, P. D.; Kilpua, E. K. J.; Davies, J. A.; Harrison, R. A.; Barnes, D.; Krupař, Vratislav; Eastwood, J.; Good, S. W.; Forsyth, R. J.; Bothmer, V.; Reiss, M. A.; Amerstorfer, T.; Winslow, R. M.; Anderson, B.J.; Philpott, L. C.; Rodriguez, L.; Rouillard, A. P.; Gallagher, P.; Nieves-Chinchilla, T.; Zhang, T. L.

    2017-01-01

    Roč. 15, č. 7 (2017), s. 955-970 ISSN 1539-4956 R&D Projects: GA ČR(CZ) GJ17-06818Y Institutional support: RVO:68378289 Keywords : space weather * coronal mass ejections * STEREO * heliospheric imagers * Heliophysics System Observatory * heliophysics Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) http://onlinelibrary.wiley.com/doi/10.1002/2017SW001614/full

  16. Loop quantum cosmology of the Bianchi I model: complete quantization

    International Nuclear Information System (INIS)

    Martín-Benito, M; Garay, L J; Mena Marugán, G A; Wilson-Ewing, E

    2012-01-01

    We complete the canonical quantization of the vacuum Bianchi I model within the improved dynamics scheme of loop quantum cosmology, characterizing the Hilbert structure of the physical states and providing a complete set of observables acting on them. In order to achieve this task, it has been essential to determine the structure of the separable superselection sectors that arise owing to the polymeric quantization, and to prove that the initial value problem obtained when regarding the Hamiltonian constraint as an evolution equation, interpreting the volume as the evolution parameter, is well-posed.

  17. Casting the Coronal Magnetic Field Reconstructions with Magnetic Field Constraints above the Photosphere in 3D Using MHD Bifrost Model

    Science.gov (United States)

    Fleishman, G. D.; Anfinogentov, S.; Loukitcheva, M.; Mysh'yakov, I.; Stupishin, A.

    2017-12-01

    Measuring and modeling coronal magnetic field, especially above active regions (ARs), remains one of the central problems of solar physics given that the solar coronal magnetism is the key driver of all solar activity. Nowadays the coronal magnetic field is often modelled using methods of nonlinear force-free field reconstruction, whose accuracy has not yet been comprehensively assessed. Given that the coronal magnetic probing is routinely unavailable, only morphological tests have been applied to evaluate performance of the reconstruction methods and a few direct tests using available semi-analytical force-free field solution. Here we report a detailed casting of various tools used for the nonlinear force-free field reconstruction, such as disambiguation methods, photospheric field preprocessing methods, and volume reconstruction methods in a 3D domain using a 3D snapshot of the publicly available full-fledged radiative MHD model. We take advantage of the fact that from the realistic MHD model we know the magnetic field vector distribution in the entire 3D domain, which enables us to perform "voxel-by-voxel" comparison of the restored magnetic field and the true magnetic field in the 3D model volume. Our tests show that the available disambiguation methods often fail at the quiet sun areas, where the magnetic structure is dominated by small-scale magnetic elements, while they work really well at the AR photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although does produce a more force-free boundary condition, also results in some effective `elevation' of the magnetic field components. The effective `elevation' height turns out to be different for the longitudinal and transverse components of the magnetic field, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolation performed starting from actual AR photospheric magnetogram (i.e., without preprocessing) are

  18. Cumulative growth of minor hysteresis loops in the Kolmogorov model

    International Nuclear Information System (INIS)

    Meilikhov, E. Z.; Farzetdinova, R. M.

    2013-01-01

    The phenomenon of nonrepeatability of successive remagnetization cycles in Co/M (M = Pt, Pd, Au) multilayer film structures is explained in the framework of the Kolmogorov crystallization model. It is shown that this model of phase transitions can be adapted so as to adequately describe the process of magnetic relaxation in the indicated systems with “memory.” For this purpose, it is necessary to introduce some additional elements into the model, in particular, (i) to take into account the fact that every cycle starts from a state “inherited” from the preceding cycle and (ii) to assume that the rate of growth of a new magnetic phase depends on the cycle number. This modified model provides a quite satisfactory qualitative and quantitative description of all features of successive magnetic relaxation cycles in the system under consideration, including the surprising phenomenon of cumulative growth of minor hysteresis loops.

  19. Energy dissipation of Alfven wave packets deformed by irregular magnetic fields in solar-coronal arches

    Science.gov (United States)

    Similon, Philippe L.; Sudan, R. N.

    1989-01-01

    The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.

  20. ANALYSIS OF CORONAL RAIN OBSERVED BY IRIS , HINODE /SOT, AND SDO /AIA: TRANSVERSE OSCILLATIONS, KINEMATICS, AND THERMAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Kohutova, P.; Verwichte, E., E-mail: p.kohutova@warwick.ac.uk [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-08-10

    Coronal rain composed of cool plasma condensations falling from coronal heights along magnetic field lines is a phenomenon occurring mainly in active region coronal loops. Recent high-resolution observations have shown that coronal rain is much more common than previously thought, suggesting its important role in the chromosphere-corona mass cycle. We present the analysis of MHD oscillations and kinematics of the coronal rain observed in chromospheric and transition region lines by the Interface Region Imaging Spectrograph (IRIS) , the Hinode Solar Optical Telescope (SOT), and the Solar Dynamics Observatory ( SDO) Atmospheric Imaging Assembly (AIA). Two different regimes of transverse oscillations traced by the rain are detected: small-scale persistent oscillations driven by a continuously operating process and localized large-scale oscillations excited by a transient mechanism. The plasma condensations are found to move with speeds ranging from few km s{sup −1} up to 180 km s{sup −1} and with accelerations largely below the free-fall rate, likely explained by pressure effects and the ponderomotive force resulting from the loop oscillations. The observed evolution of the emission in individual SDO /AIA bandpasses is found to exhibit clear signatures of a gradual cooling of the plasma at the loop top. We determine the temperature evolution of the coronal loop plasma using regularized inversion to recover the differential emission measure (DEM) and by forward modeling the emission intensities in the SDO /AIA bandpasses using a two-component synthetic DEM model. The inferred evolution of the temperature and density of the plasma near the apex is consistent with the limit cycle model and suggests the loop is going through a sequence of periodically repeating heating-condensation cycles.

  1. Two-point boundary correlation functions of dense loop models

    Directory of Open Access Journals (Sweden)

    Alexi Morin-Duchesne, Jesper Lykke Jacobsen

    2018-06-01

    Full Text Available We investigate six types of two-point boundary correlation functions in the dense loop model. These are defined as ratios $Z/Z^0$ of partition functions on the $m\\times n$ square lattice, with the boundary condition for $Z$ depending on two points $x$ and $y$. We consider: the insertion of an isolated defect (a and a pair of defects (b in a Dirichlet boundary condition, the transition (c between Dirichlet and Neumann boundary conditions, and the connectivity of clusters (d, loops (e and boundary segments (f in a Neumann boundary condition. For the model of critical dense polymers, corresponding to a vanishing loop weight ($\\beta = 0$, we find determinant and pfaffian expressions for these correlators. We extract the conformal weights of the underlying conformal fields and find $\\Delta = -\\frac18$, $0$, $-\\frac3{32}$, $\\frac38$, $1$, $\\tfrac \\theta \\pi (1+\\tfrac{2\\theta}\\pi$, where $\\theta$ encodes the weight of one class of loops for the correlator of type f. These results are obtained by analysing the asymptotics of the exact expressions, and by using the Cardy-Peschel formula in the case where $x$ and $y$ are set to the corners. For type b, we find a $\\log|x-y|$ dependence from the asymptotics, and a $\\ln (\\ln n$ term in the corner free energy. This is consistent with the interpretation of the boundary condition of type b as the insertion of a logarithmic field belonging to a rank two Jordan cell. For the other values of $\\beta = 2 \\cos \\lambda$, we use the hypothesis of conformal invariance to predict the conformal weights and find $\\Delta = \\Delta_{1,2}$, $\\Delta_{1,3}$, $\\Delta_{0,\\frac12}$, $\\Delta_{1,0}$, $\\Delta_{1,-1}$ and $\\Delta_{\\frac{2\\theta}\\lambda+1,\\frac{2\\theta}\\lambda+1}$, extending the results of critical dense polymers. With the results for type f, we reproduce a Coulomb gas prediction for the valence bond entanglement entropy of Jacobsen and Saleur.

  2. Finding Positive Feedback Loops in Environmental Models: A Mathematical Investigation

    Science.gov (United States)

    Sheikholeslami, R.; Razavi, S.

    2016-12-01

    Dynamics of most earth and environmental systems are generally governed by interactions between several hydrological (e.g., soil moisture and precipitation), geological (e.g., and erosion), geochemical (e.g., nutrient loading), and atmospheric (e.g., temperature) processes which operate on a range of spatio-temporal scales. These interactions create numerous feedback mechanisms with complex behaviours, and their understanding and representation can vary depending on the scale in space and/or time at which the system is analyzed. One of the most crucial characteristics of such complex systems is the existence of positive feedback loops. The presence of positive feedbacks may increase complexity, accelerate change, or trigger multiple stable states in the underlying dynamical system. Furthermore, because of the inherent non-linearity, it is often very difficult to obtain a general idea of their complex dynamics. Feedback loops in environmental systems have been well recognized and qualitatively discussed. With a quantitative/mathematical view, in this presentation, we address the question of how the positive feedback loops can be identified/implemented in environmental models. We investigate the nature of different feedback mechanisms and dynamics of simple example case studies that underlie fundamental processes such as vegetation, precipitation and soil moisture. To do this, we apply the concept of "interaction graph" from mathematics which is built from the Jacobian matrix of the dynamical system. The Jacobian matrix contains information on how variations of one state variable depends on variations of other variables, and thus can be used to understand the dynamical possibilities of feedback mechanisms in the underlying system. Moreover, this study highlights that there are some situations where the existence of positive feedback loops can cause multiple stable states, and thereby regime shifts in environmental systems. Systems with multiple stable states are

  3. Modeling Loop Reorganization Free Energies of Acetylcholinesterase: A Comparison of Explicit and Implicit Solvent Models

    National Research Council Canada - National Science Library

    Olson, Mark

    2004-01-01

    ... screening of charge-charge interactions. This paper compares different solvent models applied to the problem of estimating the free-energy difference between two loop conformations in acetylcholinesterase...

  4. The Large-scale Coronal Structure of the 2017 August 21 Great American Eclipse: An Assessment of Solar Surface Flux Transport Model Enabled Predictions and Observations

    Science.gov (United States)

    Nandy, Dibyendu; Bhowmik, Prantika; Yeates, Anthony R.; Panda, Suman; Tarafder, Rajashik; Dash, Soumyaranjan

    2018-01-01

    On 2017 August 21, a total solar eclipse swept across the contiguous United States, providing excellent opportunities for diagnostics of the Sun’s corona. The Sun’s coronal structure is notoriously difficult to observe except during solar eclipses; thus, theoretical models must be relied upon for inferring the underlying magnetic structure of the Sun’s outer atmosphere. These models are necessary for understanding the role of magnetic fields in the heating of the corona to a million degrees and the generation of severe space weather. Here we present a methodology for predicting the structure of the coronal field based on model forward runs of a solar surface flux transport model, whose predicted surface field is utilized to extrapolate future coronal magnetic field structures. This prescription was applied to the 2017 August 21 solar eclipse. A post-eclipse analysis shows good agreement between model simulated and observed coronal structures and their locations on the limb. We demonstrate that slow changes in the Sun’s surface magnetic field distribution driven by long-term flux emergence and its evolution governs large-scale coronal structures with a (plausibly cycle-phase dependent) dynamical memory timescale on the order of a few solar rotations, opening up the possibility for large-scale, global corona predictions at least a month in advance.

  5. Coronal heating via nanoflares

    International Nuclear Information System (INIS)

    Poletto, G.; Kopp, R.

    1993-01-01

    It has been recently proposed that the coronae of single late-type main sequence stars represent the radiative output from a large number of tiny energy release events, the so-called nanoflares. Although this suggestion is attractive and order of magnitude estimates of the physical parameters involved in the process are consistent with available data, nanoflares have not yet been observed and theoretical descriptions of these phenomena are still very crude. In this paper we examine the temporal behavior of a magnetic flux tube subject to the repeated occurrence of energy release events, randomly distributed in time, and we show that an originally empty cool loop may, in fact, reach typical coronal density and temperature values via nanoflare heating. By choosing physical parameters appropriate to solar conditions we also explore the possibilities for observationally detecting nanoflares. Although the Sun is the only star where nanoflares might be observed, present instrumentation appears to be inadequate for this purpose

  6. Efficient dynamic modeling of manipulators containing closed kinematic loops

    Science.gov (United States)

    Ferretti, Gianni; Rocco, Paolo

    An approach to efficiently solve the forward dynamics problem for manipulators containing closed chains is proposed. The two main distinctive features of this approach are: the dynamics of the equivalent open loop tree structures (any closed loop can be in general modeled by imposing some additional kinematic constraints to a suitable tree structure) is computed through an efficient Newton Euler formulation; the constraint equations relative to the most commonly adopted closed chains in industrial manipulators are explicitly solved, thus, overcoming the redundancy of Lagrange's multipliers method while avoiding the inefficiency due to a numerical solution of the implicit constraint equations. The constraint equations considered for an explicit solution are those imposed by articulated gear mechanisms and planar closed chains (pantograph type structures). Articulated gear mechanisms are actually used in all industrial robots to transmit motion from actuators to links, while planar closed chains are usefully employed to increase the stiffness of the manipulators and their load capacity, as well to reduce the kinematic coupling of joint axes. The accuracy and the efficiency of the proposed approach are shown through a simulation test.

  7. HEATING OF FLARE LOOPS WITH OBSERVATIONALLY CONSTRAINED HEATING FUNCTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Jiong; Liu Wenjuan; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States)

    2012-06-20

    We analyze high-cadence high-resolution observations of a C3.2 flare obtained by AIA/SDO on 2010 August 1. The flare is a long-duration event with soft X-ray and EUV radiation lasting for over 4 hr. Analysis suggests that magnetic reconnection and formation of new loops continue for more than 2 hr. Furthermore, the UV 1600 Angstrom-Sign observations show that each of the individual pixels at the feet of flare loops is brightened instantaneously with a timescale of a few minutes, and decays over a much longer timescale of more than 30 minutes. We use these spatially resolved UV light curves during the rise phase to construct empirical heating functions for individual flare loops, and model heating of coronal plasmas in these loops. The total coronal radiation of these flare loops are compared with soft X-ray and EUV radiation fluxes measured by GOES and AIA. This study presents a method to observationally infer heating functions in numerous flare loops that are formed and heated sequentially by reconnection throughout the flare, and provides a very useful constraint to coronal heating models.

  8. Coronal Mass Ejections

    CERN Document Server

    Kunow, H; Linker, J. A; Schwenn, R; Steiger, R

    2006-01-01

    It is well known that the Sun gravitationally controls the orbits of planets and minor bodies. Much less known, however, is the domain of plasma fields and charged particles in which the Sun governs a heliosphere out to a distance of about 15 billion kilometers. What forces activates the Sun to maintain this power? Coronal Mass Ejections (CMEs) and their descendants are the troops serving the Sun during high solar activity periods. This volume offers a comprehensive and integrated overview of our present knowledge and understanding of Coronal Mass Ejections (CMEs) and their descendants, Interplanetary CMEs (ICMEs). It results from a series of workshops held between 2000 and 2004. An international team of about sixty experimenters involved e.g. in the SOHO, ULYSSES, VOYAGER, PIONEER, HELIOS, WIND, IMP, and ACE missions, ground observers, and theoreticians worked jointly on interpreting the observations and developing new models for CME initiations, development, and interplanetary propagation. The book provides...

  9. Coronal ``Wave'': Magnetic Footprint of a Coronal Mass Ejection?

    Science.gov (United States)

    Attrill, Gemma D. R.; Harra, Louise K.; van Driel-Gesztelyi, Lidia; Démoulin, Pascal

    2007-02-01

    We investigate the properties of two ``classical'' EUV Imaging Telescope (EIT) coronal waves. The two source regions of the associated coronal mass ejections (CMEs) possess opposite helicities, and the coronal waves display rotations in opposite senses. We observe deep core dimmings near the flare site and also widespread diffuse dimming, accompanying the expansion of the EIT wave. We also report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions and simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behavior is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME magnetic field and quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings and the widespread diffuse dimming are identified as innate characteristics of this process.

  10. HELIOSPHERIC PROPAGATION OF CORONAL MASS EJECTIONS: COMPARISON OF NUMERICAL WSA-ENLIL+CONE MODEL AND ANALYTICAL DRAG-BASED MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Vršnak, B.; Žic, T.; Dumbović, M. [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kačćeva 26, HR-10000 Zagreb (Croatia); Temmer, M.; Möstl, C.; Veronig, A. M. [Kanzelhöhe Observatory—IGAM, Institute of Physics, University of Graz, Universittsplatz 5, A-8010 Graz (Austria); Taktakishvili, A.; Mays, M. L. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Odstrčil, D., E-mail: bvrsnak@geof.hr, E-mail: tzic@geof.hr, E-mail: mdumbovic@geof.hr, E-mail: manuela.temmer@uni-graz.at, E-mail: christian.moestl@uni-graz.at, E-mail: astrid.veronig@uni-graz.at, E-mail: aleksandre.taktakishvili-1@nasa.gov, E-mail: m.leila.mays@nasa.gov, E-mail: dusan.odstrcil@nasa.gov [George Mason University, Fairfax, VA 22030 (United States)

    2014-08-01

    Real-time forecasting of the arrival of coronal mass ejections (CMEs) at Earth, based on remote solar observations, is one of the central issues of space-weather research. In this paper, we compare arrival-time predictions calculated applying the numerical ''WSA-ENLIL+Cone model'' and the analytical ''drag-based model'' (DBM). Both models use coronagraphic observations of CMEs as input data, thus providing an early space-weather forecast two to four days before the arrival of the disturbance at the Earth, depending on the CME speed. It is shown that both methods give very similar results if the drag parameter Γ = 0.1 is used in DBM in combination with a background solar-wind speed of w = 400 km s{sup –1}. For this combination, the mean value of the difference between arrival times calculated by ENLIL and DBM is Δ-bar =0.09±9.0 hr with an average of the absolute-value differences of |Δ|-bar =7.1 hr. Comparing the observed arrivals (O) with the calculated ones (C) for ENLIL gives O – C = –0.3 ± 16.9 hr and, analogously, O – C = +1.1 ± 19.1 hr for DBM. Applying Γ = 0.2 with w = 450 km s{sup –1} in DBM, one finds O – C = –1.7 ± 18.3 hr, with an average of the absolute-value differences of 14.8 hr, which is similar to that for ENLIL, 14.1 hr. Finally, we demonstrate that the prediction accuracy significantly degrades with increasing solar activity.

  11. Rectangular amplitudes, conformal blocks, and applications to loop models

    Energy Technology Data Exchange (ETDEWEB)

    Bondesan, Roberto, E-mail: roberto.bondesan@cea.fr [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Jacobsen, Jesper L. [LPTENS, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France); Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris (France); Saleur, Hubert [Institute de Physique Theorique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Physics Department, USC, Los Angeles, CA 90089-0484 (United States)

    2013-02-21

    In this paper we continue the investigation of partition functions of critical systems on a rectangle initiated in [R. Bondesan, et al., Nucl. Phys. B 862 (2012) 553-575]. Here we develop a general formalism of rectangle boundary states using conformal field theory, adapted to describe geometries supporting different boundary conditions. We discuss the computation of rectangular amplitudes and their modular properties, presenting explicit results for the case of free theories. In a second part of the paper we focus on applications to loop models, discussing in details lattice discretizations using both numerical and analytical calculations. These results allow to interpret geometrically conformal blocks, and as an application we derive new probability formulas for self-avoiding walks.

  12. Polyakov loop and the hadron resonance gas model.

    Science.gov (United States)

    Megías, E; Arriola, E Ruiz; Salcedo, L L

    2012-10-12

    The Polyakov loop has been used repeatedly as an order parameter in the deconfinement phase transition in QCD. We argue that, in the confined phase, its expectation value can be represented in terms of hadronic states, similarly to the hadron resonance gas model for the pressure. Specifically, L(T)≈1/2[∑(α)g(α)e(-Δ(α)/T), where g(α) are the degeneracies and Δ(α) are the masses of hadrons with exactly one heavy quark (the mass of the heavy quark itself being subtracted). We show that this approximate sum rule gives a fair description of available lattice data with N(f)=2+1 for temperatures in the range 150 MeVmodels. For temperatures below 150 MeV different lattice results disagree. One set of data can be described if exotic hadrons are present in the QCD spectrum while other sets do not require such states.

  13. Electromagnetic Modeling of the Passive Stabilization Loop at EAST

    International Nuclear Information System (INIS)

    Ji Xiang; Song Yuntao; Wu Songtao; Wang Zhibin; Shen Guang; Liu Xufeng; Cao Lei; Zhou Zibo; Peng Xuebing; Wang Chenghao

    2012-01-01

    A passive stabilization loop (PSL) has been designed and manufactured in order to enhance the control of vertical instability and accommodate the new stage for high-performance plasma at EAST. Eddy currents are induced by vertical displacement events (VDEs) and disruption, which can produce a magnetic field to control the vertical instability of the plasma in a short timescale. A finite element model is created and meshed using ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The largest eddy current is 200 kA and the stress is 68 MPa at the outer current bridge, which is the weakest point of the PSL because of the eddy currents and the magnetic fields. The analysis results provide the supporting data for the structural design.

  14. Electromagnetic Modeling of the Passive Stabilization Loop at EAST

    Science.gov (United States)

    Ji, Xiang; Song, Yuntao; Wu, Songtao; Wang, Zhibin; Shen, Guang; Liu, Xufeng; Cao, Lei; Zhou, Zibo; Peng, Xuebing; Wang, Chenghao

    2012-09-01

    A passive stabilization loop (PSL) has been designed and manufactured in order to enhance the control of vertical instability and accommodate the new stage for high-performance plasma at EAST. Eddy currents are induced by vertical displacement events (VDEs) and disruption, which can produce a magnetic field to control the vertical instability of the plasma in a short timescale. A finite element model is created and meshed using ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The largest eddy current is 200 kA and the stress is 68 MPa at the outer current bridge, which is the weakest point of the PSL because of the eddy currents and the magnetic fields. The analysis results provide the supporting data for the structural design.

  15. Conformational Sampling in Template-Free Protein Loop Structure Modeling: An Overview

    OpenAIRE

    Li, Yaohang

    2013-01-01

    Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a “mini protein folding problem” under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increas...

  16. Probing the Production of Extreme-ultraviolet Late-phase Solar Flares Using the Model Enthalpy-based Thermal Evolution of Loops

    Science.gov (United States)

    Dai, Yu; Ding, Mingde

    2018-04-01

    Recent observations in extreme-ultraviolet (EUV) wavelengths reveal an EUV late phase in some solar flares that is characterized by a second peak in warm coronal emissions (∼3 MK) several tens of minutes to a few hours after the soft X-ray (SXR) peak. Using the model enthalpy-based thermal evolution of loops (EBTEL), we numerically probe the production of EUV late-phase solar flares. Starting from two main mechanisms of producing the EUV late phase, i.e., long-lasting cooling and secondary heating, we carry out two groups of numerical experiments to study the effects of these two processes on the emission characteristics in late-phase loops. In either of the two processes an EUV late-phase solar flare that conforms to the observational criteria can be numerically synthesized. However, the underlying hydrodynamic and thermodynamic evolutions in late-phase loops are different between the two synthetic flare cases. The late-phase peak due to a long-lasting cooling process always occurs during the radiative cooling phase, while that powered by a secondary heating is more likely to take place in the conductive cooling phase. We then propose a new method for diagnosing the two mechanisms based on the shape of EUV late-phase light curves. Moreover, from the partition of energy input, we discuss why most solar flares are not EUV late flares. Finally, by addressing some other factors that may potentially affect the loop emissions, we also discuss why the EUV late phase is mainly observed in warm coronal emissions.

  17. Description of the two-loop RELAP5 model of the L-Reactor at the Savannah River Site

    International Nuclear Information System (INIS)

    Cozzuol, J.M.; Davis, C.B.

    1989-12-01

    A two-loop RELAP5 input model of the L-Reactor at the Savannah River Site (SRS) was developed to support thermal-hydraulic analysis of SRS reactors. The model was developed to economically evaluate potential design changes. The primary simplifications in the model were in the number of loops and the detail in the moderator tank. The six loops in the reactor were modeled with two loops, one representing a single loop and the other representing five combined loops. The model has undergone a quality assurance review. This report describes the two-loop model, its limitations, and quality assurance. 29 refs., 18 figs., 10 tabs

  18. Modeling Coronal Mass Ejections with EUHFORIA: A Parameter Study of the Gibson-Low Flux Rope Model using Multi-Viewpoint Observations

    Science.gov (United States)

    Verbeke, C.; Asvestari, E.; Scolini, C.; Pomoell, J.; Poedts, S.; Kilpua, E.

    2017-12-01

    Coronal Mass Ejections (CMEs) are one of the big influencers on the coronal and interplanetary dynamics. Understanding their origin and evolution from the Sun to the Earth is crucial in order to determine the impact on our Earth and society. One of the key parameters that determine the geo-effectiveness of the coronal mass ejection is its internal magnetic configuration. We present a detailed parameter study of the Gibson-Low flux rope model. We focus on changes in the input parameters and how these changes affect the characteristics of the CME at Earth. Recently, the Gibson-Low flux rope model has been implemented into the inner heliosphere model EUHFORIA, a magnetohydrodynamics forecasting model of large-scale dynamics from 0.1 AU up to 2 AU. Coronagraph observations can be used to constrain the kinematics and morphology of the flux rope. One of the key parameters, the magnetic field, is difficult to determine directly from observations. In this work, we approach the problem by conducting a parameter study in which flux ropes with varying magnetic configurations are simulated. We then use the obtained dataset to look for signatures in imaging observations and in-situ observations in order to find an empirical way of constraining the parameters related to the magnetic field of the flux rope. In particular, we focus on events observed by at least two spacecraft (STEREO + L1) in order to discuss the merits of using observations from multiple viewpoints in constraining the parameters.

  19. Modeling Coronal Mass Ejections with the Multi-Scale Fluid-Kinetic Simulation Suite

    International Nuclear Information System (INIS)

    Pogorelov, N. V.; Borovikov, S. N.; Wu, S. T.; Yalim, M. S.; Kryukov, I. A.; Colella, P. C.; Van Straalen, B.

    2017-01-01

    The solar eruptions and interacting solar wind streams are key drivers of geomagnetic storms and various related space weather disturbances that may have hazardous effects on the space-borne and ground-based technological systems as well as on human health. Coronal mass ejections (CMEs) and their interplanetary counterparts, interplanetary CMEs (ICMEs), belong to the strongest disturbances and therefore are of great importance for the space weather predictions. In this paper we show a few examples of how adaptive mesh refinement makes it possible to resolve the complex CME structure and its evolution in time while a CME propagates from the inner boundary to Earth. Simulations are performed with the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS). (paper)

  20. Loop Corrections in Very Special Relativity Standard Model

    Science.gov (United States)

    Alfaro, Jorge

    2018-01-01

    In this talk we want to study one-loop corrections in VSRSM. In particular, we use the new Sim(2)-invariant dimensional regularization to compute one-loop corrections to the Effective Action in the subsector of the VSRSM that describe the interaction of photons with charged leptons. New stringent bounds for the masses of ve and vµ are obtained.

  1. Protein Structure Classification and Loop Modeling Using Multiple Ramachandran Distributions

    KAUST Repository

    Najibi, Seyed Morteza

    2017-02-08

    Recently, the study of protein structures using angular representations has attracted much attention among structural biologists. The main challenge is how to efficiently model the continuous conformational space of the protein structures based on the differences and similarities between different Ramachandran plots. Despite the presence of statistical methods for modeling angular data of proteins, there is still a substantial need for more sophisticated and faster statistical tools to model the large-scale circular datasets. To address this need, we have developed a nonparametric method for collective estimation of multiple bivariate density functions for a collection of populations of protein backbone angles. The proposed method takes into account the circular nature of the angular data using trigonometric spline which is more efficient compared to existing methods. This collective density estimation approach is widely applicable when there is a need to estimate multiple density functions from different populations with common features. Moreover, the coefficients of adaptive basis expansion for the fitted densities provide a low-dimensional representation that is useful for visualization, clustering, and classification of the densities. The proposed method provides a novel and unique perspective to two important and challenging problems in protein structure research: structure-based protein classification and angular-sampling-based protein loop structure prediction.

  2. Protein Structure Classification and Loop Modeling Using Multiple Ramachandran Distributions

    KAUST Repository

    Najibi, Seyed Morteza; Maadooliat, Mehdi; Zhou, Lan; Huang, Jianhua Z.; Gao, Xin

    2017-01-01

    Recently, the study of protein structures using angular representations has attracted much attention among structural biologists. The main challenge is how to efficiently model the continuous conformational space of the protein structures based on the differences and similarities between different Ramachandran plots. Despite the presence of statistical methods for modeling angular data of proteins, there is still a substantial need for more sophisticated and faster statistical tools to model the large-scale circular datasets. To address this need, we have developed a nonparametric method for collective estimation of multiple bivariate density functions for a collection of populations of protein backbone angles. The proposed method takes into account the circular nature of the angular data using trigonometric spline which is more efficient compared to existing methods. This collective density estimation approach is widely applicable when there is a need to estimate multiple density functions from different populations with common features. Moreover, the coefficients of adaptive basis expansion for the fitted densities provide a low-dimensional representation that is useful for visualization, clustering, and classification of the densities. The proposed method provides a novel and unique perspective to two important and challenging problems in protein structure research: structure-based protein classification and angular-sampling-based protein loop structure prediction.

  3. Loop quantum cosmology of k=1 FRW models

    International Nuclear Information System (INIS)

    Ashtekar, Abhay; Pawlowski, Tomasz; Singh, Parampreet; Vandersloot, Kevin

    2007-01-01

    The closed, k=1, FRW model coupled to a massless scalar field is investigated in the framework of loop quantum cosmology using analytical and numerical methods. As in the k=0 case, the scalar field can be again used as emergent time to construct the physical Hilbert space and introduce Dirac observables. The resulting framework is then used to address a major challenge of quantum cosmology: resolving the big-bang singularity while retaining agreement with general relativity at large scales. It is shown that the framework fulfills this task. In particular, for states which are semiclassical at some late time, the big bang is replaced by a quantum bounce and a recollapse occurs at the value of the scale factor predicted by classical general relativity. Thus, the ''difficulties'' pointed out by Green and Unruh in the k=1 case do not arise in a more systematic treatment. As in k=0 models, quantum dynamics is deterministic across the deep Planck regime. However, because it also retains the classical recollapse, in contrast to the k=0 case one is now led to a cyclic model. Finally, we clarify some issues raised by Laguna's recent work addressed to computational physicists

  4. Closed-Loop Supply Chain Planning Model of Rare Metals

    Directory of Open Access Journals (Sweden)

    Dongmin Son

    2018-04-01

    Full Text Available Rare metals (RMs are becoming increasingly important in high-tech industries associated with the Fourth Industrial Revolution, such as the electric vehicle (EV and 3D printer industries. As the growth of these industries accelerates in the near future, manufacturers will also face greater RM supply risks. For this reason, many countries are putting considerable effort into securing the RM supply. For example, countries including Japan, Korea, and the USA have adopted two major policies: the stockpile system and Extended Producer Responsibility (EPR. Therefore, it is necessary for the manufacturers with RMs to establish a suitable supply chain plan that reflects this situation. In this study, the RM classification matrix is created based on the stockpile and recycling level in Korea. Accordingly, three different types of supply chain are designed in order to develop the closed-loop supply chain (CLSC planning model of RM, and the CLSC planning models of RM are validated through experimental analysis. The results show that the stockpiling and the EPR recycling obligation increase the amount of recycled flow and reduce the total cost of the part manufacturing, which means that these two factors are significant for obtaining sustainability of the RMs’ CLSC. In addition, the government needs to set an appropriate sharing cost for promoting the manufacturer’s recycling. Also, from the manufacturer’s perspective, it is better to increase the return rate by making a contract with the collectors to guarantee the collection of used products.

  5. Extending two Higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen, E-mail: liu-zhen@sjtu.edu.cn; Gu, Pei-Hong, E-mail: peihong.gu@sjtu.edu.cn

    2017-02-15

    We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.

  6. Extending two Higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2017-02-01

    Full Text Available We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.

  7. On equivalent radius of curvature for PWL geometrical modeling a loop antenna

    CSIR Research Space (South Africa)

    Lysko, AA

    2012-11-01

    Full Text Available A circular loop antenna is often numerically modeled using a regular polygon. This approach is simple and robust, yet it alters the circumference of the loop and may thus shift the resonance frequency in the numerical model. This letter introduces a...

  8. New class of two-loop neutrino mass models with distinguishable phenomenology

    Science.gov (United States)

    Cao, Qing-Hong; Chen, Shao-Long; Ma, Ernest; Yan, Bin; Zhang, Dong-Ming

    2018-04-01

    We discuss a new class of neutrino mass models generated in two loops, and explore specifically three new physics scenarios: (A) doubly charged scalar, (B) dark matter, and (C) leptoquark and diquark, which are verifiable at the 14 TeV LHC Run-II. We point out how the different Higgs insertions will distinguish our two-loop topology with others if the new particles in the loop are in the simplest representations of the SM gauge group.

  9. Implementation of the Graduated Cylindrical Shell Model for the Three-dimensional Reconstruction of Coronal Mass Ejections

    Science.gov (United States)

    Thernisien, A.

    2011-06-01

    The graduated cylindrical shell (GCS) model developed by Thernisien et al. has been used with the goal of studying the three-dimensional morphology, position, and kinematics of coronal mass ejections observed by coronagraphs. These studies focused more on the results rather than the details of the model itself. As more researchers begin to use the model, it becomes necessary to provide a deeper discussion on how it is derived, which is the purpose of this paper. The model is built using the following features and constraints: (1) the legs are conical, (2) the front is pseudo-circular, (3) the cross section is circular, and (4) it expands in a self-similar way. We derive the equation of the model from these constraints. We also show that the ice-cream cone model is a limit of the GCS when the two legs overlap completely. Finally, we provide formulae for the calculation of various geometrical dimensions, such as angular width and aspect ratio, as well as the pseudo-code that is used for its computer implementation.

  10. IMPLEMENTATION OF THE GRADUATED CYLINDRICAL SHELL MODEL FOR THE THREE-DIMENSIONAL RECONSTRUCTION OF CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Thernisien, A.

    2011-01-01

    The graduated cylindrical shell (GCS) model developed by Thernisien et al. has been used with the goal of studying the three-dimensional morphology, position, and kinematics of coronal mass ejections observed by coronagraphs. These studies focused more on the results rather than the details of the model itself. As more researchers begin to use the model, it becomes necessary to provide a deeper discussion on how it is derived, which is the purpose of this paper. The model is built using the following features and constraints: (1) the legs are conical, (2) the front is pseudo-circular, (3) the cross section is circular, and (4) it expands in a self-similar way. We derive the equation of the model from these constraints. We also show that the ice-cream cone model is a limit of the GCS when the two legs overlap completely. Finally, we provide formulae for the calculation of various geometrical dimensions, such as angular width and aspect ratio, as well as the pseudo-code that is used for its computer implementation.

  11. Dynamic simulation of perturbation responses in a closed-loop virtual arm model.

    Science.gov (United States)

    Du, Yu-Fan; He, Xin; Lan, Ning

    2010-01-01

    A closed-loop virtual arm (VA) model has been developed in SIMULINK environment by adding spinal reflex circuits and propriospinal neural networks to the open-loop VA model developed in early study [1]. An improved virtual muscle model (VM4.0) is used to speed up simulation and to generate more precise recruitment of muscle force at low levels of muscle activation. Time delays in the reflex loops are determined by their synaptic connections and afferent transmission back to the spinal cord. Reflex gains are properly selected so that closed-loop responses are stable. With the closed-loop VA model, we are developing an approach to evaluate system behaviors by dynamic simulation of perturbation responses. Joint stiffness is calculated based on simulated perturbation responses by a least-squares algorithm in MATLAB. This method of dynamic simulation will be essential for further evaluation of feedforward and reflex control of arm movement and position.

  12. Two-loop corrections for nuclear matter in the Walecka model

    International Nuclear Information System (INIS)

    Furnstahl, R.J.; Perry, R.J.; Serot, B.D.; Department of Physics, The Ohio State University, Columbus, Ohio 43210; Physics Department and Nuclear Theory Center, Indiana University, Bloomington, Indiana 47405)

    1989-01-01

    Two-loop corrections for nuclear matter, including vacuum polarization, are calculated in the Walecka model to study the loop expansion as an approximation scheme for quantum hadrodynamics. Criteria for useful approximation schemes are discussed, and the concepts of strong and weak convergence are introduced. The two-loop corrections are evaluated first with one-loop parameters and mean fields and then by minimizing the total energy density with respect to the scalar field and refitting parameters to empirical nuclear matter saturation properties. The size and nature of the corrections indicate that the loop expansion is not convergent at two-loop order in either the strong or weak sense. Prospects for alternative approximation schemes are discussed

  13. Diagnostics of electron-heated solar flare models. III - Effects of tapered loop geometry and preheating

    Science.gov (United States)

    Emslie, A. G.; Li, Peng; Mariska, John T.

    1992-01-01

    A series of hydrodynamic numerical simulations of nonthermal electron-heated solar flare atmospheres and their corresponding soft X-ray Ca XIX emission-line profiles, under the conditions of tapered flare loop geometry and/or a preheated atmosphere, is presented. The degree of tapering is parameterized by the magnetic mirror ratio, while the preheated atmosphere is parameterized by the initial upper chromospheric pressure. In a tapered flare loop, it is found that the upward motion of evaporated material is faster compared with the case where the flare loop is uniform. This is due to the diverging nozzle seen by the upflowing material. In the case where the flare atmosphere is preheated and the flare geometry is uniform, the response of the atmosphere to the electron collisional heating is slow. The upward velocity of the hydrodynamic gas is reduced due not only to the large coronal column depth, but also to the increased inertia of the overlying material. It is concluded that the only possible electron-heated scenario in which the predicted Ca XIX line profiles agree with the BCS observations is when the impulsive flare starts in a preheated dense corona.

  14. Studies of Solar Flares and Coronal Loops.

    Science.gov (United States)

    1984-07-10

    i( Tipo + T pl) and equations (5) and (8), we get P (D - w t P = + 0 (9j where 0 = o ’-, +T (k" -B,)- (o fTQ 10R B0 . G!) = ( - 1 ) R p + T ( k...andStegun. 1 . eds. 1970. HandhoolMathemarical Davis. J. M., and Webb. D F 1981. Bull • 4.4S. 13. -21 F!,n,; .ns INew York Do’er). p. 17 Einaudi. G...Sakanaka. P H 19-4. Ph s fIhids. 17, SIX 1951. Proc Ros Sit London. 1. 244. 17. Harsey. K. L. 1981. Bull . 44S. 13. ,90 tiider. C. Einaudi. G. and

  15. Two-phase Heating in Flaring Loops

    Science.gov (United States)

    Zhu, Chunming; Qiu, Jiong; Longcope, Dana W.

    2018-03-01

    We analyze and model a C5.7 two-ribbon solar flare observed by the Solar Dynamics Observatory, Hinode, and GOES on 2011 December 26. The flare is made of many loops formed and heated successively over one and half hours, and their footpoints are brightened in the UV 1600 Å before enhanced soft X-ray and EUV missions are observed in flare loops. Assuming that anchored at each brightened UV pixel is a half flaring loop, we identify more than 6700 half flaring loops, and infer the heating rate of each loop from the UV light curve at the footpoint. In each half loop, the heating rate consists of two phases: intense impulsive heating followed by a low-rate heating that is persistent for more than 20 minutes. Using these heating rates, we simulate the evolution of their coronal temperatures and densities with the model of the “enthalpy-based thermal evolution of loops.” In the model, suppression of thermal conduction is also considered. This model successfully reproduces total soft X-ray and EUV light curves observed in 15 passbands by four instruments GOES, AIA, XRT, and EVE. In this flare, a total energy of 4.9 × 1030 erg is required to heat the corona, around 40% of this energy is in the slow-heating phase. About two-fifths of the total energy used to heat the corona is radiated by the coronal plasmas, and the other three fifth transported to the lower atmosphere by thermal conduction.

  16. Experimental investigations and modeling of a loop thermosyphon for cooling with zero electrical consumption

    International Nuclear Information System (INIS)

    Chehade, Ali; Louahlia-Gualous, Hasna; Le Masson, Stéphane; Lépinasse, Eric

    2015-01-01

    This paper presents an analytical model for a thermosyphon loop developed for cooling air inside a telecommunication cabinet. The proposed model is based on the combination of thermal and hydraulic management of two-phase flow in the loop. Experimental tests on a closed thermosyphon loop are conducted with different working fluids that could be used for electronic cooling. Correlations for condensation and evaporation heat transfer in the thermosyphon loop are proposed. They are used in the model to calculate condenser and evaporator thermal resistances in order to predict the cabinet operating temperature, the loop's mass flow rate and pressure drops. Furthermore, various figures of merit proposed in the previous works are evaluated in order to be used for selection of the best loop's working fluid. The comparative studies show that the present model well predicts the experimental data. The mean deviation between the predictions of the theoretical model with the measurements for operating temperature is about 6%. Besides, the model is used to define an optimal liquid and vapor lines diameters and the effect of the ambient temperature on the fluid's mass flow rate and pressure drop. - Highlights: • Modeling of thermosyphon loop for cooling telecommunication cabinet. • The cooling system operates with zero electrical consumption. • The new correlations are proposed for condensation and evaporation heat transfer. • FOM equation is defined for selecting the best working fluid. • The proposed model well predicts the experimental data and operating temperature

  17. Computational Model of a Positive BDNF Feedback Loop in Hippocampal Neurons Following Inhibitory Avoidance Training

    Science.gov (United States)

    Zhang, Yili; Smolen, Paul; Alberini, Cristina M.; Baxter, Douglas A.; Byrne, John H.

    2016-01-01

    Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within this molecular cascade. The feedback loop begins…

  18. 3D DD modelling of the prismatic loops and dislocations interaction in pure iron

    International Nuclear Information System (INIS)

    Novokshanov, R.; Roberts, S.

    2007-01-01

    Full text of publication follows: Neutron irradiation can increase the yield stress and reduce the ductility of metals. These effects are mainly caused by the interaction of dislocations with damage produced during irradiation. In iron irradiated with fast neutrons the damage takes the form of 1/2 and 1/2 prismatic dislocation loops (the size of the loops varies from 2 nm to 20 nm depending on the dose of irradiation). The interaction between such loops and dislocations is the subject of this research. 3D dislocation dynamics simulations have been carried out to model the interaction between prismatic loops and dis- locations in pure iron subject to uniaxial loading conditions. The primary goal was to understand the mechanism of interaction of a a/2 loop and a mobile dislocation. The simulations have shown a complicated 3D interaction resulting in either bowing around an obstacle (prismatic loop, Orowan mechanism) or cutting it through, carrying part of the loop away and leaving the other part behind. Cross-slip can be important, in a manner depending on the type of mobile dislocation, size, type and orientation of prismatic loop. The secondary goal was to investigate the dependence of the critical stress needed for dislocations to overcome the obstacles as a function of: size of loops, initial separation between loops, the direction of motion of the mobile dislocation and its type (pure edge or screw), and type of a loop (interstitial or vacancy). Many different configurations have been simulated. The size of the loops was varied from 10 nm to 100 nm; the separation between the loops in a row was varied from one to four loop diameters; the distance between the glide plane and the loop plane was varied from 0 to 20 nm. The glide plane of the mobile dislocation was either perpendicular to and or inclined to the loop plane. The results show a strong dependence of the critical stress on the size of the loops and the initial configuration. (authors)

  19. The First Ionization Potential Effect from the Ponderomotive Force: On the Polarization and Coronal Origin of Alfvén Waves

    Energy Technology Data Exchange (ETDEWEB)

    Laming, J. Martin, E-mail: laming@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Code 7684, Washington, DC 20375 (United States)

    2017-08-01

    We investigate in more detail the origin of chromospheric Alfvén waves that give rise to the separation of ions and neutrals—the first ionization potential (FIP) effect—through the action of the ponderomotive force. In open field regions, we model the dependence of fractionation on the plasma upflow velocity through the chromosphere for both shear (or planar) and torsional Alfvén waves of photospheric origin. These differ mainly in their parametric coupling to slow mode waves. Shear Alfvén waves appear to reproduce observed fractionations for a wider range of model parameters and present less of a “fine-tuning” problem than do torsional waves. In closed field regions, we study the fractionations produced by Alfvén waves with photospheric and coronal origins. Waves with a coronal origin, at or close to resonance with the coronal loop, offer a significantly better match to observed abundances than do photospheric waves, with shear and torsional waves in such a case giving essentially indistinguishable fractionations. Such coronal waves are likely the result of a nanoflare coronal heating mechanism that, as well as heating coronal plasmas, releases Alfvén waves that can travel down to loop footpoints and cause FIP fractionation through the ponderomotive force as they reflect from the chromosphere back into the corona.

  20. The First Ionization Potential Effect from the Ponderomotive Force: On the Polarization and Coronal Origin of Alfvén Waves

    International Nuclear Information System (INIS)

    Laming, J. Martin

    2017-01-01

    We investigate in more detail the origin of chromospheric Alfvén waves that give rise to the separation of ions and neutrals—the first ionization potential (FIP) effect—through the action of the ponderomotive force. In open field regions, we model the dependence of fractionation on the plasma upflow velocity through the chromosphere for both shear (or planar) and torsional Alfvén waves of photospheric origin. These differ mainly in their parametric coupling to slow mode waves. Shear Alfvén waves appear to reproduce observed fractionations for a wider range of model parameters and present less of a “fine-tuning” problem than do torsional waves. In closed field regions, we study the fractionations produced by Alfvén waves with photospheric and coronal origins. Waves with a coronal origin, at or close to resonance with the coronal loop, offer a significantly better match to observed abundances than do photospheric waves, with shear and torsional waves in such a case giving essentially indistinguishable fractionations. Such coronal waves are likely the result of a nanoflare coronal heating mechanism that, as well as heating coronal plasmas, releases Alfvén waves that can travel down to loop footpoints and cause FIP fractionation through the ponderomotive force as they reflect from the chromosphere back into the corona.

  1. Protein loop modeling using a new hybrid energy function and its application to modeling in inaccurate structural environments.

    Directory of Open Access Journals (Sweden)

    Hahnbeom Park

    Full Text Available Protein loop modeling is a tool for predicting protein local structures of particular interest, providing opportunities for applications involving protein structure prediction and de novo protein design. Until recently, the majority of loop modeling methods have been developed and tested by reconstructing loops in frameworks of experimentally resolved structures. In many practical applications, however, the protein loops to be modeled are located in inaccurate structural environments. These include loops in model structures, low-resolution experimental structures, or experimental structures of different functional forms. Accordingly, discrepancies in the accuracy of the structural environment assumed in development of the method and that in practical applications present additional challenges to modern loop modeling methods. This study demonstrates a new strategy for employing a hybrid energy function combining physics-based and knowledge-based components to help tackle this challenge. The hybrid energy function is designed to combine the strengths of each energy component, simultaneously maintaining accurate loop structure prediction in a high-resolution framework structure and tolerating minor environmental errors in low-resolution structures. A loop modeling method based on global optimization of this new energy function is tested on loop targets situated in different levels of environmental errors, ranging from experimental structures to structures perturbed in backbone as well as side chains and template-based model structures. The new method performs comparably to force field-based approaches in loop reconstruction in crystal structures and better in loop prediction in inaccurate framework structures. This result suggests that higher-accuracy predictions would be possible for a broader range of applications. The web server for this method is available at http://galaxy.seoklab.org/loop with the PS2 option for the scoring function.

  2. Modelling and characterization of an airlift-loop bioreactor

    NARCIS (Netherlands)

    Verlaan, P.

    1987-01-01

    An airlift-loop reactor is a bioreactor for aerobic biotechnological processes. The special feature of the ALR is the recirculation of the liquid through a downcomer connecting the top and the bottom of the main bubbling section. Due to the high circulation-flow rate, efficient mixing and

  3. Estimation of Model Uncertainties in Closed-loop Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2008-01-01

    This paper describe a method for estimation of parameters or uncertainties in closed-loop systems. The method is based on an application of the dual YJBK (after Youla, Jabr, Bongiorno and Kucera) parameterization of all systems stabilized by a given controller. The dual YJBK transfer function...

  4. On-line leak detection method for OWL-1 loop by ARX modeling using dewpoint signals

    International Nuclear Information System (INIS)

    Oguma, Ritsuo; Hayashi, Koji; Kitajima, Toshio.

    1981-01-01

    Model identification technique based on ARX (autoregressive model with exogenous variable) process was applied to dewpoint data recorded at OWL-1 (Oarai Water Loop No. 1) loop cubicle in JMTR (Japan Materials Testing Reactor) and the dynamical interrelationship between the supply and exhaust dewpoints in the ventilation system of the cubicle was empirically determined. It was shown that the information so derived on the dewpoint dynamics can assist to enhance the sensitivity of leak detection, if it was incorporated into a leak monitoring system for the OWL-1 loop. A simple digital filter incorporating the dewpoint dynamics was designed in an attempt to develop an efficient leak monitor for the OWL-1 loop. This filter was applied to the dewpoint data recordings during an abnormal leak that had occurred at the OWL-1 loop in the 43 rd cycle of JMTR operation, which demonstrated the effectiveness of the present method for leak detection at its early stage. (author)

  5. A mathematical model for the simulation of thermal transients in the water loop of IPEN

    International Nuclear Information System (INIS)

    Pontedeiro, A.C.

    1980-01-01

    A mathematical model for simulation of thermal transients in the water loop at the Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo, Brasil, is developed. The model is based on energy equations applied to the components of the experimental water loop. The non-linear system of first order diferencial equations and of non-linear algebraic equations obtained through the utilization of the IBM 'System/360-Continous System Modeling Program' (CSMP) is resolved. An optimization of the running time of the computer is made and a typical simulation of the water loop is executed. (Author) [pt

  6. A self-organizing algorithm for modeling protein loops.

    Directory of Open Access Journals (Sweden)

    Pu Liu

    2009-08-01

    Full Text Available Protein loops, the flexible short segments connecting two stable secondary structural units in proteins, play a critical role in protein structure and function. Constructing chemically sensible conformations of protein loops that seamlessly bridge the gap between the anchor points without introducing any steric collisions remains an open challenge. A variety of algorithms have been developed to tackle the loop closure problem, ranging from inverse kinematics to knowledge-based approaches that utilize pre-existing fragments extracted from known protein structures. However, many of these approaches focus on the generation of conformations that mainly satisfy the fixed end point condition, leaving the steric constraints to be resolved in subsequent post-processing steps. In the present work, we describe a simple solution that simultaneously satisfies not only the end point and steric conditions, but also chirality and planarity constraints. Starting from random initial atomic coordinates, each individual conformation is generated independently by using a simple alternating scheme of pairwise distance adjustments of randomly chosen atoms, followed by fast geometric matching of the conformationally rigid components of the constituent amino acids. The method is conceptually simple, numerically stable and computationally efficient. Very importantly, additional constraints, such as those derived from NMR experiments, hydrogen bonds or salt bridges, can be incorporated into the algorithm in a straightforward and inexpensive way, making the method ideal for solving more complex multi-loop problems. The remarkable performance and robustness of the algorithm are demonstrated on a set of protein loops of length 4, 8, and 12 that have been used in previous studies.

  7. Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model

    Science.gov (United States)

    Temmer, Manuela; Hinterreiter, Jürgen; Reiss, Martin A.

    2018-03-01

    We present a concept study of a solar wind forecasting method for Earth, based on persistence modeling from STEREO in situ measurements combined with multi-viewpoint EUV observational data. By comparing the fractional areas of coronal holes (CHs) extracted from EUV data of STEREO and SoHO/SDO, we perform an uncertainty assessment derived from changes in the CHs and apply those changes to the predicted solar wind speed profile at 1 AU. We evaluate the method for the time period 2008-2012, and compare the results to a persistence model based on ACE in situ measurements and to the STEREO persistence model without implementing the information on CH evolution. Compared to an ACE based persistence model, the performance of the STEREO persistence model which takes into account the evolution of CHs, is able to increase the number of correctly predicted high-speed streams by about 12%, and to decrease the number of missed streams by about 23%, and the number of false alarms by about 19%. However, the added information on CH evolution is not able to deliver more accurate speed values for the forecast than using the STEREO persistence model without CH information which performs better than an ACE based persistence model. Investigating the CH evolution between STEREO and Earth view for varying separation angles over ˜25-140° East of Earth, we derive some relation between expanding CHs and increasing solar wind speed, but a less clear relation for decaying CHs and decreasing solar wind speed. This fact most likely prevents the method from making more precise forecasts. The obtained results support a future L5 mission and show the importance and valuable contribution using multi-viewpoint data.

  8. Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model

    Directory of Open Access Journals (Sweden)

    Temmer Manuela

    2018-01-01

    Full Text Available We present a concept study of a solar wind forecasting method for Earth, based on persistence modeling from STEREO in situ measurements combined with multi-viewpoint EUV observational data. By comparing the fractional areas of coronal holes (CHs extracted from EUV data of STEREO and SoHO/SDO, we perform an uncertainty assessment derived from changes in the CHs and apply those changes to the predicted solar wind speed profile at 1 AU. We evaluate the method for the time period 2008–2012, and compare the results to a persistence model based on ACE in situ measurements and to the STEREO persistence model without implementing the information on CH evolution. Compared to an ACE based persistence model, the performance of the STEREO persistence model which takes into account the evolution of CHs, is able to increase the number of correctly predicted high-speed streams by about 12%, and to decrease the number of missed streams by about 23%, and the number of false alarms by about 19%. However, the added information on CH evolution is not able to deliver more accurate speed values for the forecast than using the STEREO persistence model without CH information which performs better than an ACE based persistence model. Investigating the CH evolution between STEREO and Earth view for varying separation angles over ∼25–140° East of Earth, we derive some relation between expanding CHs and increasing solar wind speed, but a less clear relation for decaying CHs and decreasing solar wind speed. This fact most likely prevents the method from making more precise forecasts. The obtained results support a future L5 mission and show the importance and valuable contribution using multi-viewpoint data.

  9. Flare particle acceleration in the interaction of twisted coronal flux ropes

    Science.gov (United States)

    Threlfall, J.; Hood, A. W.; Browning, P. K.

    2018-03-01

    Aim. The aim of this work is to investigate and characterise non-thermal particle behaviour in a three-dimensional (3D) magnetohydrodynamical (MHD) model of unstable multi-threaded flaring coronal loops. Methods: We have used a numerical scheme which solves the relativistic guiding centre approximation to study the motion of electrons and protons. The scheme uses snapshots from high resolution numerical MHD simulations of coronal loops containing two threads, where a single thread becomes unstable and (in one case) destabilises and merges with an additional thread. Results: The particle responses to the reconnection and fragmentation in MHD simulations of two loop threads are examined in detail. We illustrate the role played by uniform background resistivity and distinguish this from the role of anomalous resistivity using orbits in an MHD simulation where only one thread becomes unstable without destabilising further loop threads. We examine the (scalable) orbit energy gains and final positions recovered at different stages of a second MHD simulation wherein a secondary loop thread is destabilised by (and merges with) the first thread. We compare these results with other theoretical particle acceleration models in the context of observed energetic particle populations during solar flares.

  10. Evolution of active region loop plasma

    International Nuclear Information System (INIS)

    Krall, K.R.; Antiochos, S.K.

    1980-01-01

    We investigate numerically the adjustment of coronal active-region loops to changes in their heating rate. The one-dimensional hydrodynamic equations are solved subject to boundary conditions in which heat flux-induced mass exchange between coronal and chromospheric components is allowed. The calculated evolution of physical parameters suggests that (1) mass supplied during chromospheric evaporation is much more effective in moderating coronal temperature excursions than when downward heat flux if dissipated by a static chromosphere, and (2) the method by which rhe chromosphere responds to changing coronal conditions can significantly influence coronal readjustment time scales. Observations are cited which illustrate the range of possible fluctuations in the heating rates

  11. OBSERVATIONAL SIGNATURES OF THE CORONAL KINK INSTABILITY WITH THERMAL CONDUCTION

    International Nuclear Information System (INIS)

    Botha, G. J. J.; Arber, T. D.; Srivastava, Abhishek K.

    2012-01-01

    It is known from numerical simulations that thermal conduction along magnetic field lines plays an important role in the evolution of the kink instability in coronal loops. This study presents the observational signatures of the kink instability in long coronal loops when parallel thermal conduction is included. The three-dimensional nonlinear magnetohydrodynamic equations are solved numerically to simulate the evolution of a coronal loop that is initially in an unstable equilibrium. The loop has length 80 Mm, width 8 Mm, and an initial maximum twist of Φ = 11.5π, where Φ is a function of the radius. The initial loop parameters are obtained from a highly twisted loop observed in the Transition Region and Coronal Explorer (TRACE) 171 Å wave band. Synthetic observables are generated from the data. These observables include spatial and temporal averaging to account for the resolution and exposure times of TRACE images. Parallel thermal conduction reduces the maximum local temperature by up to an order of magnitude. This means that different spectral lines are formed and different internal loop structures are visible with or without the inclusion of thermal conduction. However, the response functions sample a broad range of temperatures. The result is that the inclusion of parallel thermal conductivity does not have as large an impact on observational signatures as the order of magnitude reduction in the maximum temperature would suggest; the net effect is a blurring of internal features of the loop structure.

  12. Physical Properties of the SKYLAB North Polar Coronal Hole with an Extended Base and its MHD Self-Consistent Modelling

    Science.gov (United States)

    Bravo, S.; Ocania, G.

    1991-04-01

    RESUMEN Con base en las observaciones del Skylab del Sol en rayos X que permitieron r la forma de la frontera del hoyo coronal del polo norte y en las observaciones de l 'z que permitieron derivar un perfil de densidad para el flujo de viento solar (IC ese hoyo, Murno yjackson (1977) concluyeron que se requiere una adici6n t l clc energfa al flujo hasta al menos 5 R8. En este trabajo, recalculamos los perfiles de y de temperatura para el mismo hoyo pero considerando una frontera Cs mas ancha en la base, de acuerdo con las observaciones del coron6metro-K del IIAO, los espectroheliogramas en EUV del OSO-7 y las fotografias de la corona solar cerca de los 4 E)()O A. Se tomaron tambien las incertidumbres en el perfil de densidad electr6nica inl & a las observaciones de luz blanca y se consideraron diversos valores posibles dCl fl 'jo (lC masa 1 UA. Encontramos que las diferencias introducidas no son suficientes par clcsc' la necesidad de una energetizaci6n extensa del viento solar, pero una dC las s posibles muestra una concordancia muy buena con el modelado MHD (l( l flujo con el unico t6rmino adicional de la fuerza de Lorentz en la ecuaci6n de # (). ABSTRACT Based on the near to the Sun boundary of the Skylab north polar coroi ' l estimated from the AS & E X-ray photographs and on the density profile fi-C)I white light data, Munro and Jackson (1977) concluded that substantial energy the solar wind flux is required up to at least 5 Rs. In this paper we recalculate `eloci y and temperature profiles for the same hole but considering a different bo ' ry for flux tube which is larger at its base, according to the HAO K- obser"' (i()I0 , the OSO-7 EUV spectroheliograms and pictures of the solar 4500 A. è take into account the uncertainties inherent in the white light observations () electron density profile and consider different possible values of the solar I .' fltix at 1 AU. We that the differences introduced are not sufficient to discard ii y of an extended

  13. SAUSAGE WAVES IN TRANSVERSELY NONUNIFORM MONOLITHIC CORONAL TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Lopin, I. [Ussuriisk astrophysical observatory, Russion Academy of Sciences (Russian Federation); Nagorny, I., E-mail: lopin78@mail.ru [Institute of Automation and Control Processes FEB RAS, Vladivostok (Russian Federation)

    2015-09-10

    We investigate fast sausage waves in a monolithic coronal magnetic tube, modeled as a local density inhomogeneity with a continuous radial profile. This work is a natural extension of our previous results, obtained for a slab loop model for the case of cylindrical geometry. Using Kneser’s oscillating theorem, we provided the criteria for the existence of trapped and leaky wave regimes as a function of the profile features. For a number of density profiles there are only trapped modes for the entire range of longitudinal wave numbers. The phase speed of these modes tends toward the external Alfvén speed in the long wavelength limit. The generalized results were supported by the analytic solution of the wave equation for the specific density profiles. The approximate Wentzel–Kramers–Brillouin solutions allowed us to obtain the desired dispersion relations and to study their properties as a function of the profile parameters. The multicomponent quasi-periodic pulsations in flaring loops, observed on 2001 May 2 and 2002 July 3, are interpreted in terms of the transversely fundamental trapped fast sausage mode with several longitudinal harmonics in a smooth coronal waveguide.

  14. Four-loop beta function in the Wess-Zumino model

    International Nuclear Information System (INIS)

    Avdeev, L.V.; Gorishny, S.G.

    1982-01-01

    A method for calculating momentum integrals, proposed by Chetyrkin and Tkachov, is applied to the foUr-loop calculations of the ν-function in the Wess-Zumino model. The main advantage of the used method is the existence of a relatively simple calculational algorithm that allows one to write an effective computer program on the system of analytical evaluations SCHOONSCHIP. Any three-loop integral with one external momentum can be computed by this program. The four-loop calculation in the WZ model is one of the first and simplest applications of the program

  15. Improved Application of Local Models to Steel Corrosion in Lead-Bismuth Loops

    International Nuclear Information System (INIS)

    Zhang Jinsuo; Li Ning

    2003-01-01

    The corrosion of steels exposed to flowing liquid metals is influenced by local and global conditions of flow systems. The present study improves the previous local models when applied to closed loops by incorporating some global condition effects. In particular the bulk corrosion product concentration is calculated based on balancing the dissolution and precipitation in the entire closed loop. Mass transfer expressions developed in aqueous medium and an analytical expression are tested in the liquid-metal environments. The improved model is applied to a pure lead loop and produces results closer to the experimental data than the previous local models do. The model is also applied to a lead-bismuth eutectic (LBE) test loop. Systematic studies illustrate the effects of the flow rate, the oxygen concentration in LBE, and the temperature profile on the corrosion rate

  16. A reduced fidelity model for the rotary chemical looping combustion reactor

    KAUST Repository

    Iloeje, Chukwunwike O.; Zhao, Zhenlong; Ghoniem, Ahmed F.

    2017-01-01

    The rotary chemical looping combustion reactor has great potential for efficient integration with CO capture-enabled energy conversion systems. In earlier studies, we described a one-dimensional rotary reactor model, and used it to demonstrate

  17. An open-loop, physiologic model-based decision support system can provide appropriate ventilator settings

    DEFF Research Database (Denmark)

    Karbing, Dan Stieper; Spadaro, Savino; Dey, Nilanjan

    2018-01-01

    OBJECTIVES: To evaluate the physiologic effects of applying advice on mechanical ventilation by an open-loop, physiologic model-based clinical decision support system. DESIGN: Prospective, observational study. SETTING: University and Regional Hospitals' ICUs. PATIENTS: Varied adult ICU population...

  18. Coronal magnetic fields inferred from IR wavelength and comparison with EUV observations

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2009-07-01

    Full Text Available Spectropolarimetry using IR wavelength of 1075 nm has been proved to be a powerful tool for directly mapping solar coronal magnetic fields including transverse component directions and line-of-sight component intensities. Solar tomography, or stereoscopy based on EUV observations, can supply 3-D information for some magnetic field lines in bright EUV loops. In a previous paper \\citep{liu08} the locations of the IR emission sources in the 3-D coordinate system were inferred from the comparison between the polarization data and the potential-field-source-surface (PFSS model, for one of five west limb regions in the corona (Lin et al., 2004. The paper shows that the region with the loop system in the active region over the photospheric area with strong magnetic field intensity is the region with a dominant contribution to the observed Stokes signals. So, the inversion of the measured Stokes parameters could be done assuming that most of the signals come from a relatively thin layer over the area with a large photospheric magnetic field strength. Here, the five limb coronal regions are studied together in order to study the spatial correlation between the bright EUV loop features and the inferred IR emission sources. It is found that, for the coronal regions above the stronger photospheric magnetic fields, the locations of the IR emission sources are closer to or more consistent with the bright EUV loop locations than those above weaker photospheric fields. This result suggests that the structures of the coronal magnetic fields observed at IR and EUV wavelengths may be different when weak magnetic fields present there.

  19. Investigation of reflood models by coupling REFLA-1D and multi-loop system model

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Murao, Yoshio

    1983-09-01

    A system analysis code REFLA-1DS was developed by coupling reflood analysis code REFLA-1D and a multi-loop primary system model. The reflood models in the code were investigated for the development of the integral system analysis code. The REFLA-1D, which was developed with the small scale reflood experiment at JAERI, consists of one-dimensional core model and a primary system model with a constant loop resistance. The multi-loop primary system model was developed with the Cylindrical Core Test Facility of JAERI's large scale reflood tests. The components modeled in the code are the upper plenum, the steam generator, the coolant pump, the ECC injection port, the downcomer and the broken cold leg nozzle. The coupling between the two models in REFLA-1DS is accomplished by applying the equivalent flow resistance calculated with the multiloop model to the REFLA-1D. The characteristics of the code is its simplicity of the system model and the solution method which enables the fast running and the easy reflood analysis for the further model development. A fairly good agreement was obtained with the results of the Cylindrical Core Test Facility for the calculated water levels in the downcomer, the core and the upper plenum. A qualitatively good agreement was obtained concerning the parametric effects of the system pressure, the ECC flow rate and the initial clad temperature. Needs for further code improvements of the models, however, were pointed out. These include the problem concerning the generation rate of the steam and water droplets in the core in an early period, the effect of the flow oscillation on the core cooling, the heat release from the downcomer wall, and the stable system calculation. (author)

  20. Interacting loop-current model of superconducting networks

    International Nuclear Information System (INIS)

    Chi, C.C.; Santhanam, P.; Bloechl, P.E.

    1992-01-01

    The authors review their recent approximation scheme to calculate the normal-superconducting phase boundary, T c (H), of a superconducting wire network in a magnetic field in terms of interacting loop currents. The theory is based on the London approximation of the linearized Ginzburg-Landau equation. An approximate general formula is derived for any two-dimensional space-filling lattice comprising tiles of two shapes. Many examples are provided illustrating the use of this method, with a particular emphasis on the fluxoid distribution. In addition to periodic lattices, quasiperiodic lattices and fractal Sierpinski gaskets are also discussed

  1. Exchange bias and asymmetric hysteresis loops from a microscopic model of core/shell nanoparticles

    International Nuclear Information System (INIS)

    Iglesias, Oscar; Batlle, Xavier; Labarta, Amilcar

    2007-01-01

    We present Monte Carlo simulations of hysteresis loops of a model of a magnetic nanoparticle with a ferromagnetic core and an antiferromagnetic shell with varying values of the core/shell interface exchange coupling which aim to clarify the microscopic origin of exchange bias observed experimentally. We have found loop shifts in the field direction as well as displacements along the magnetization axis that increase in magnitude when increasing the interfacial exchange coupling. Overlap functions computed from the spin configurations along the loops have been obtained to explain the origin and magnitude of these features microscopically

  2. Modelling of dielectric hysteresis loops in ferroelectric semiconductors with charged defects

    International Nuclear Information System (INIS)

    Morozovska, Anna N; Eliseev, Eugene A

    2004-01-01

    We have proposed the phenomenological description of dielectric hysteresis loops in ferroelectric semiconductors with charged defects and prevailing extrinsic conductivity. We have modified the Landau-Ginsburg approach and shown that the macroscopic state of the aforementioned inhomogeneous system can be described by three coupled equations for three order parameters. Both the experimentally observed coercive field values well below the thermodynamic values and the various hysteresis-loop deformations (constricted and double loops) have been obtained in the framework of our model. The obtained results quantitatively explain the ferroelectric switching in such ferroelectric materials as thick PZT films

  3. CORONAL HEATING BY SURFACE ALFVEN WAVE DAMPING: IMPLEMENTATION IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL OF THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R. M. [NASA Goddard Space Flight Center, Space Weather Lab, Greenbelt, MD 20771 (United States); Opher, M. [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States); Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Vasquez, A., E-mail: Rebekah.e.frolov@nasa.gov [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina)

    2012-09-10

    -driven model with physical dissipation mechanisms presented in this work is more aligned with an empirical Alfven speed profile. Therefore, a wave-driven model which includes the effects of SAW damping is a better background to simulate coronal-mass-ejection-driven shocks.

  4. Coronal Magnetism and Forward Solarsoft Idl Package

    Science.gov (United States)

    Gibson, S. E.

    2014-12-01

    The FORWARD suite of Solar Soft IDL codes is a community resource for model-data comparison, with a particular emphasis on analyzing coronal magnetic fields. FORWARD may be used both to synthesize a broad range of coronal observables, and to access and compare to existing data. FORWARD works with numerical model datacubes, interfaces with the web-served Predictive Science Inc MAS simulation datacubes and the Solar Soft IDL Potential Field Source Surface (PFSS) package, and also includes several analytic models (more can be added). It connects to the Virtual Solar Observatory and other web-served observations to download data in a format directly comparable to model predictions. It utilizes the CHIANTI database in modeling UV/EUV lines, and links to the CLE polarimetry synthesis code for forbidden coronal lines. FORWARD enables "forward-fitting" of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties.

  5. Creating Synthetic Coronal Observational Data From MHD Models: The Forward Technique

    Science.gov (United States)

    Rachmeler, Laurel A.; Gibson, Sarah E.; Dove, James; Kucera, Therese Ann

    2010-01-01

    We present a generalized forward code for creating simulated corona) observables off the limb from numerical and analytical MHD models. This generalized forward model is capable of creating emission maps in various wavelengths for instruments such as SXT, EIT, EIS, and coronagraphs, as well as spectropolari metric images and line profiles. The inputs to our code can be analytic models (of which four come with the code) or 2.5D and 3D numerical datacubes. We present some examples of the observable data created with our code as well as its functional capabilities. This code is currently available for beta-testing (contact authors), with the ultimate goal of release as a SolarSoft package

  6. THE INSTABILITY AND NON-EXISTENCE OF MULTI-STRANDED LOOPS WHEN DRIVEN BY TRANSVERSE WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Magyar, N.; Van Doorsselaere, T., E-mail: norbert.magyar@wis.kuleuven.be [Centre for Mathematical Plasma Astrophysics (CmPA), KU Leuven, Celestijnenlaan 200B bus 2400, 3001 Leuven (Belgium)

    2016-06-01

    In recent years, omni-present transverse waves have been observed in all layers of the solar atmosphere. Coronal loops are often modeled as a collection of individual strands in order to explain their thermal behavior and appearance. We perform three-dimensional (3D) ideal magnetohydrodynamics simulations to study the effect of a continuous small amplitude transverse footpoint driving on the internal structure of a coronal loop composed of strands. The output is also converted into synthetic images, corresponding to the AIA 171 and 193 Å passbands, using FoMo. We show that the multi-stranded loop ceases to exist in the traditional sense of the word, because the plasma is efficiently mixed perpendicularly to the magnetic field, with the Kelvin–Helmholtz instability acting as the main mechanism. The final product of our simulation is a mixed loop with density structures on a large range of scales, resembling a power-law. Thus, multi-stranded loops are unstable to driving by transverse waves, and this raises strong doubts on the usability and applicability of coronal loop models consisting of independent strands.

  7. Real­-Time Ensemble Forecasting of Coronal Mass Ejections Using the Wsa-Enlil+Cone Model

    Science.gov (United States)

    Mays, M. L.; Taktakishvili, A.; Pulkkinen, A. A.; Odstrcil, D.; MacNeice, P. J.; Rastaetter, L.; LaSota, J. A.

    2014-12-01

    Ensemble forecasting of coronal mass ejections (CMEs) provides significant information in that it provides an estimation of the spread or uncertainty in CME arrival time predictions. Real-time ensemble modeling of CME propagation is performed by forecasters at the Space Weather Research Center (SWRC) using the WSA-ENLIL+cone model available at the Community Coordinated Modeling Center (CCMC). To estimate the effect of uncertainties in determining CME input parameters on arrival time predictions, a distribution of n (routinely n=48) CME input parameter sets are generated using the CCMC Stereo CME Analysis Tool (StereoCAT) which employs geometrical triangulation techniques. These input parameters are used to perform n different simulations yielding an ensemble of solar wind parameters at various locations of interest, including a probability distribution of CME arrival times (for hits), and geomagnetic storm strength (for Earth-directed hits). We present the results of ensemble simulations for a total of 38 CME events in 2013-2014. For 28 of the ensemble runs containing hits, the observed CME arrival was within the range of ensemble arrival time predictions for 14 runs (half). The average arrival time prediction was computed for each of the 28 ensembles predicting hits and using the actual arrival time, an average absolute error of 10.0 hours (RMSE=11.4 hours) was found for all 28 ensembles, which is comparable to current forecasting errors. Some considerations for the accuracy of ensemble CME arrival time predictions include the importance of the initial distribution of CME input parameters, particularly the mean and spread. When the observed arrivals are not within the predicted range, this still allows the ruling out of prediction errors caused by tested CME input parameters. Prediction errors can also arise from ambient model parameters such as the accuracy of the solar wind background, and other limitations. Additionally the ensemble modeling sysem was used to

  8. MAGNETO-FRICTIONAL MODELING OF CORONAL NONLINEAR FORCE-FREE FIELDS. I. TESTING WITH ANALYTIC SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Keppens, R. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Xia, C. [Centre for mathematical Plasma-Astrophysics, Department of Mathematics, KU Leuven, B-3001 Leuven (Belgium); Valori, G., E-mail: guoyang@nju.edu.cn [University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2016-09-10

    We report our implementation of the magneto-frictional method in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC). The method aims at applications where local adaptive mesh refinement (AMR) is essential to make follow-up dynamical modeling affordable. We quantify its performance in both domain-decomposed uniform grids and block-adaptive AMR computations, using all frequently employed force-free, divergence-free, and other vector comparison metrics. As test cases, we revisit the semi-analytic solution of Low and Lou in both Cartesian and spherical geometries, along with the topologically challenging Titov–Démoulin model. We compare different combinations of spatial and temporal discretizations, and find that the fourth-order central difference with a local Lax–Friedrichs dissipation term in a single-step marching scheme is an optimal combination. The initial condition is provided by the potential field, which is the potential field source surface model in spherical geometry. Various boundary conditions are adopted, ranging from fully prescribed cases where all boundaries are assigned with the semi-analytic models, to solar-like cases where only the magnetic field at the bottom is known. Our results demonstrate that all the metrics compare favorably to previous works in both Cartesian and spherical coordinates. Cases with several AMR levels perform in accordance with their effective resolutions. The magneto-frictional method in MPI-AMRVAC allows us to model a region of interest with high spatial resolution and large field of view simultaneously, as required by observation-constrained extrapolations using vector data provided with modern instruments. The applications of the magneto-frictional method to observations are shown in an accompanying paper.

  9. Dynamics of Coronal Hole Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, A. K.; Zurbuchen, T. H. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Antiochos, S. K.; DeVore, C. R. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wyper, P. F. [Universities Space Research Association, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2017-03-10

    Remote and in situ observations strongly imply that the slow solar wind consists of plasma from the hot, closed-field corona that is released onto open magnetic field lines. The Separatrix Web theory for the slow wind proposes that photospheric motions at the scale of supergranules are responsible for generating dynamics at coronal-hole boundaries, which result in the closed plasma release. We use three-dimensional magnetohydrodynamic simulations to determine the effect of photospheric flows on the open and closed magnetic flux of a model corona with a dipole magnetic field and an isothermal solar wind. A rotational surface motion is used to approximate photospheric supergranular driving and is applied at the boundary between the coronal hole and helmet streamer. The resulting dynamics consist primarily of prolific and efficient interchange reconnection between open and closed flux. The magnetic flux near the coronal-hole boundary experiences multiple interchange events, with some flux interchanging over 50 times in one day. Additionally, we find that the interchange reconnection occurs all along the coronal-hole boundary and even produces a lasting change in magnetic-field connectivity in regions that were not driven by the applied motions. Our results show that these dynamics should be ubiquitous in the Sun and heliosphere. We discuss the implications of our simulations for understanding the observed properties of the slow solar wind, with particular focus on the global-scale consequences of interchange reconnection.

  10. Solar Coronal Structure Study

    Science.gov (United States)

    Nitta, Nariaki; Bruner, Marilyn E.; Saba, Julia; Strong, Keith; Harvey, Karen

    2000-01-01

    The subject of this investigation is to study the physics of the solar corona through the analysis of the EUV and UV data produced by two flights (12 May 1992 and 25 April 1994) of the Lockheed Solar Plasma Diagnostics Experiment (SPDE) sounding rocket payload, in combination with Yohkoh and ground-based data. Each rocket flight produced both spectral and imaging data. These joint datasets are useful for understanding the physical state of various features in the solar atmosphere at different heights ranging from the photosphere to the corona at the time of the, rocket flights, which took place during the declining phase of a solar cycle, 2-4 years before the minimum. The investigation is narrowly focused on comparing the physics of small- and medium-scale strong-field structures with that of large-scale, weak fields. As we close th is investigation, we have to recall that our present position in the understanding of basic solar physics problems (such as coronal heating) is much different from that in 1995 (when we proposed this investigation), due largely to the great success of SOHO and TRACE. In other words, several topics and techniques we proposed can now be better realized with data from these missions. For this reason, at some point of our work, we started concentrating on the 1992 data, which are more unique and have more supporting data. As a result, we discontinued the investigation on small-scale structures, i.e., bright points, since high-resolution TRACE images have addressed more important physics than SPDE EUV images could do. In the final year, we still spent long time calibrating the 1992 data. The work was complicated because of the old-fashioned film, which had problems not encountered with more modern CCD detectors. After our considerable effort on calibration, we were able to focus on several scientific topics, relying heavily on the SPDE UV images. They include the relation between filaments and filament channels, the identification of hot

  11. Thermohaline loops, Stommel box models, and the Sandström theorem

    OpenAIRE

    Wunsch, Carl

    2005-01-01

    The Stommel two-box, two flow-regime box model is kinematically and dynamically equivalent to the flow in a onedimensional fluid loop, although one having awkward and extreme mixing coefficients. More generally, such a loop, when heated and cooled at the same geopotential, provides a simple example of the working of the Sandström theorem, with flow intensity capable of increasing or decreasing with growing diffusion. Stress dominates real oceanic flows, and its introduction into the purely th...

  12. Two-loop effective potential for Wess-Zumino model using superfields

    International Nuclear Information System (INIS)

    Santos, R.P. dos; Srivastava, P.P.

    1989-01-01

    For the case of several interacting chiral superfields the propagators for the unconstrained superfield potentials in the 'shifted' theory, where the supersymmetry is explicity broken, are derived in a compact form. They are used to compute the one-loop effective potential in the general case, while a superfield calculation of the renormalized effective potential to two loops for the Wess-Zumino models is performed. (authors) [pt

  13. Formation of coronal cavities

    International Nuclear Information System (INIS)

    An, C.H.; Suess, S.T.; Tandberg-Hanssen, E.; Steinolfson, R.S.

    1986-01-01

    A theoretical study of the formation of a coronal cavity and its relation to a quiescent prominence is presented. It is argued that the formation of a cavity is initiated by the condensation of plasma which is trapped by the coronal magnetic field in a closed streamer and which then flows down to the chromosphere along the field lines due to lack of stable magnetic support against gravity. The existence of a coronal cavity depends on the coronal magnetic field strength; with low strength, the plasma density is not high enough for condensation to occur. Furthermore, we suggest that prominence and cavity material is supplied from the chromospheric level. Whether a coronal cavity and a prominence coexist depends on the magnetic field configuration; a prominence requires stable magnetic support

  14. MODELING THE INITIATION OF THE 2006 DECEMBER 13 CORONAL MASS EJECTION IN AR 10930: THE STRUCTURE AND DYNAMICS OF THE ERUPTING FLUX ROPE

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yuhong, E-mail: yfan@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green Drive, Boulder, CO 80301 (United States)

    2016-06-20

    We carry out a 3D magnetohydrodynamic simulation to model the initiation of the coronal mass ejection (CME) on 2006 December 13 in the emerging δ -sunspot active region NOAA 10930. The setup of the simulation is similar to a previous simulation by Fan, but with a significantly widened simulation domain to accommodate the wide CME. The simulation shows that the CME can result from the emergence of a east–west oriented twisted flux rope whose positive, following emerging pole corresponds to the observed positive rotating sunspot emerging against the southern edge of the dominant pre-existing negative sunspot. The erupting flux rope in the simulation accelerates to a terminal speed that exceeds 1500 km s{sup −1} and undergoes a counter-clockwise rotation of nearly 180° such that its front and flanks all exhibit southward directed magnetic fields, explaining the observed southward magnetic field in the magnetic cloud impacting the Earth. With continued driving of flux emergence, the source region coronal magnetic field also shows the reformation of a coronal flux rope underlying the flare current sheet of the erupting flux rope, ready for a second eruption. This may explain the build up for another X-class eruptive flare that occurred the following day from the same region.

  15. Closed-loop model identification of cooperative manipulators holding deformable objects

    Science.gov (United States)

    Alkathiri, A. A.; Akmeliawati, R.; Azlan, N. Z.

    2017-11-01

    This paper presents system identification to obtain the closed-loop models of a couple of cooperative manipulators in a system, which function to hold deformable objects. The system works using the master-slave principle. In other words, one of the manipulators is position-controlled through encoder feedback, while a force sensor gives feedback to the other force-controlled manipulator. Using the closed-loop input and output data, the closed-loop models, which are useful for model-based control design, are estimated. The criteria for model validation are a 95% fit between the measured and simulated output of the estimated models and residual analysis. The results show that for both position and force control respectively, the fits are 95.73% and 95.88%.

  16. Non centered minor hysteresis loops evaluation based on exponential parameters transforms of the modified inverse Jiles–Atherton model

    International Nuclear Information System (INIS)

    Hamimid, M.; Mimoune, S.M.; Feliachi, M.; Atallah, K.

    2014-01-01

    In this present work, a non centered minor hysteresis loops evaluation is performed using the exponential transforms (ET) of the modified inverse Jiles–Atherton model parameters. This model improves the non centered minor hysteresis loops representation. The parameters of the non centered minor hysteresis loops are obtained from exponential expressions related to the major ones. The parameters of minor loops are obtained by identification using the stochastic optimization method “simulated annealing”. The four parameters of JA model (a,α, k and c) obtained by this transformation are applied only in both ascending and descending branches of the non centered minor hysteresis loops while the major ones are applied to the rest of the cycle. This proposal greatly improves both branches and consequently the minor loops. To validate this model, calculated non-centered minor hysteresis loops are compared with measured ones and good agreements are obtained

  17. FIELD TOPOLOGY ANALYSIS OF A LONG-LASTING CORONAL SIGMOID

    International Nuclear Information System (INIS)

    Savcheva, A. S.; Van Ballegooijen, A. A.; DeLuca, E. E.

    2012-01-01

    We present the first field topology analysis based on nonlinear force-free field (NLFFF) models of a long-lasting coronal sigmoid observed in 2007 February with the X-Ray Telescope on Hinode. The NLFFF models are built with the flux rope insertion method and give the three-dimensional coronal magnetic field as constrained by observed coronal loop structures and photospheric magnetograms. Based on these models, we have computed horizontal maps of the current and the squashing factor Q for 25 different heights in the corona for all six days of the evolution of the region. We use the squashing factor to quantify the degree of change of the field line linkage and to identify prominent quasi-separatrix layers (QSLs). We discuss the major properties of these QSL maps and devise a way to pick out important QSLs since our calculation cannot reach high values of Q. The complexity in the QSL maps reflects the high degree of fragmentation of the photospheric field. We find main QSLs and current concentrations that outline the flux rope cavity and that become characteristically S-shaped during the evolution of the sigmoid. We note that, although intermittent bald patches exist along the length of the sigmoid during its whole evolution, the flux rope remains stable for several days. However, shortly after the topology of the field exhibits hyperbolic flux tubes (HFT) on February 7 and February 12 the sigmoid loses equilibrium and produces two B-class flares and associated coronal mass ejections (CMEs). The location of the most elevated part of the HFT in our model coincides with the inferred locations of the two flares. Therefore, we suggest that the presence of an HFT in a coronal magnetic configuration may be an indication that the system is ready to erupt. We offer a scenario in which magnetic reconnection at the HFT drives the system toward the marginally stable state. Once this state is reached, loss of equilibrium occurs via the torus instability, producing a CME.

  18. Wind turbine model and loop shaping controller design

    Science.gov (United States)

    Gilev, Bogdan

    2017-12-01

    A model of a wind turbine is evaluated, consisting of: wind speed model, mechanical and electrical model of generator and tower oscillation model. Model of the whole system is linearized around of a nominal point. By using the linear model with uncertainties is synthesized a uncertain model. By using the uncertain model is developed a H∞ controller, which provide mode of stabilizing the rotor frequency and damping the tower oscillations. Finally is simulated work of nonlinear system and H∞ controller.

  19. Can coronal hole spicules reach coronal temperatures?

    Science.gov (United States)

    Madjarska, M. S.; Vanninathan, K.; Doyle, J. G.

    2011-08-01

    Aims: The present study aims to provide observational evidence of whether coronal hole spicules reach coronal temperatures. Methods: We combine multi-instrument co-observations obtained with the SUMER/SoHO and with the EIS/SOT/XRT/Hinode. Results: The analysed three large spicules were found to be comprised of numerous thin spicules that rise, rotate, and descend simultaneously forming a bush-like feature. Their rotation resembles the untwisting of a large flux rope. They show velocities ranging from 50 to 250 kms-1. We clearly associated the red- and blue-shifted emissions in transition region lines not only with rotating but also with rising and descending plasmas. Our main result is that these spicules although very large and dynamic, are not present in the spectral lines formed at temperatures above 300 000 K. Conclusions: In this paper we present the analysis of three Ca ii H large spicules that are composed of numerous dynamic thin spicules but appear as macrospicules in lower resolution EUV images. We found no coronal counterpart of these and smaller spicules. We believe that the identification of phenomena that have very different origins as macrospicules is due to the interpretation of the transition region emission, and especially the He ii emission, wherein both chromospheric large spicules and coronal X-ray jets are present. We suggest that the recent observation of spicules in the coronal AIA/SDO 171 Å and 211 Å channels probably comes from the existence of transition region emission there. Movie is available in electronic form at http://www.aanda.org

  20. Using Statistical Multivariable Models to Understand the Relationship Between Interplanetary Coronal Mass Ejecta and Magnetic Flux Ropes

    Science.gov (United States)

    Riley, P.; Richardson, I. G.

    2012-01-01

    In-situ measurements of interplanetary coronal mass ejections (ICMEs) display a wide range of properties. A distinct subset, "magnetic clouds" (MCs), are readily identifiable by a smooth rotation in an enhanced magnetic field, together with an unusually low solar wind proton temperature. In this study, we analyze Ulysses spacecraft measurements to systematically investigate five possible explanations for why some ICMEs are observed to be MCs and others are not: i) An observational selection effect; that is, all ICMEs do in fact contain MCs, but the trajectory of the spacecraft through the ICME determines whether the MC is actually encountered; ii) interactions of an erupting flux rope (PR) with itself or between neighboring FRs, which produce complex structures in which the coherent magnetic structure has been destroyed; iii) an evolutionary process, such as relaxation to a low plasma-beta state that leads to the formation of an MC; iv) the existence of two (or more) intrinsic initiation mechanisms, some of which produce MCs and some that do not; or v) MCs are just an easily identifiable limit in an otherwise corntinuous spectrum of structures. We apply quantitative statistical models to assess these ideas. In particular, we use the Akaike information criterion (AIC) to rank the candidate models and a Gaussian mixture model (GMM) to uncover any intrinsic clustering of the data. Using a logistic regression, we find that plasma-beta, CME width, and the ratio O(sup 7) / O(sup 6) are the most significant predictor variables for the presence of an MC. Moreover, the propensity for an event to be identified as an MC decreases with heliocentric distance. These results tend to refute ideas ii) and iii). GMM clustering analysis further identifies three distinct groups of ICMEs; two of which match (at the 86% level) with events independently identified as MCs, and a third that matches with non-MCs (68 % overlap), Thus, idea v) is not supported. Choosing between ideas i) and

  1. Detection of no-model input-output pairs in closed-loop systems.

    Science.gov (United States)

    Potts, Alain Segundo; Alvarado, Christiam Segundo Morales; Garcia, Claudio

    2017-11-01

    The detection of no-model input-output (IO) pairs is important because it can speed up the multivariable system identification process, since all the pairs with null transfer functions are previously discarded and it can also improve the identified model quality, thus improving the performance of model based controllers. In the available literature, the methods focus just on the open-loop case, since in this case there is not the effect of the controller forcing the main diagonal in the transfer matrix to one and all the other terms to zero. In this paper, a modification of a previous method able to detect no-model IO pairs in open-loop systems is presented, but adapted to perform this duty in closed-loop systems. Tests are performed by using the traditional methods and the proposed one to show its effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Empirical potential and elasticity theory modelling of interstitial dislocation loops in UO2 for cluster dynamics application

    International Nuclear Information System (INIS)

    Le-Prioux, Arno

    2017-01-01

    During irradiation in reactor, the microstructure of UO 2 changes and deteriorates, causing modifications of its physical and mechanical properties. The kinetic models used to describe these changes such as cluster dynamics (CRESCENDO calculation code) consider the main microstructural elements that are cavities and interstitial dislocation loops, and provide a rather rough description of the loop thermodynamics. In order to tackle this issue, this work has led to the development of a thermodynamic model of interstitial dislocation loops based on empirical potential calculations. The model considers two types of interstitial dislocation loops on two different size domains: Type 1: Dislocation loops similar to Frank partials in F.C.C. materials which are stable in the smaller size domain. Type 2: Perfect dislocation loops of Burgers vector (a/2)(110) stable in the larger size domain. The analytical formula used to compute the interstitial dislocation loop formation energies is the one for circular loops which has been modified in order to take into account the effects of the dislocation core, which are significant at smaller sizes. The parameters have been determined by empirical potential calculations of the formation energies of prismatic pure edge dislocation loops. The effect of the habit plane reorientation on the formation energies of perfect dislocation loops has been taken into account by a simple interpolation method. All the different types of loops seen during TEM observations are thus accounted for by the model. (author) [fr

  3. Matrix Solution of Coupled Differential Equations and Looped Car Following Models

    Science.gov (United States)

    McCartney, Mark

    2008-01-01

    A simple mathematical model for the behaviour of how vehicles follow each other along a looped stretch of road is described. The resulting coupled first order differential equations are solved using appropriate matrix techniques and the physical significance of the model is discussed. A number possible classroom exercises are suggested to help…

  4. Modelling and simulation of a U-loop Reactor for Single Cell Protein Production

    DEFF Research Database (Denmark)

    Wu, Mengzhe; Huusom, Jakob Kjøbsted; Gernaey, Krist

    2016-01-01

    In this work, two approaches of modelling a one phase U-loop reactor are presented. A simple CSTR model consisting of first-principles dynamic process equations was implemented in Matlab. The results give a good indication of the basic understanding of the effect of changing operation conditions...

  5. Using Video Modeling with Substitutable Loops to Teach Varied Play to Children with Autism

    Science.gov (United States)

    Dupere, Sally; MacDonald, Rebecca P. F.; Ahearn, William H.

    2013-01-01

    Children with autism often engage in repetitive play with little variation in the actions performed or items used. This study examined the use of video modeling with scripted substitutable loops on children's pretend play with trained and untrained characters. Three young children with autism were shown a video model of scripted toy play that…

  6. Observational Signatures of Transverse Magnetohydrodynamic Waves and Associated Dynamic Instabilities in Coronal Flux Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Antolin, P.; Moortel, I. De [School of Mathematics and Statistics, University of St. Andrews, St. Andrews, Fife KY16 9SS (United Kingdom); Doorsselaere, T. Van [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Yokoyama, T., E-mail: patrick.antolin@st-andrews.ac.uk [Department of Earth and Planetary Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-02-20

    Magnetohydrodynamic (MHD) waves permeate the solar atmosphere and constitute potential coronal heating agents. Yet, the waves detected so far may be but a small subset of the true existing wave power. Detection is limited by instrumental constraints but also by wave processes that localize the wave power in undetectable spatial scales. In this study, we conduct 3D MHD simulations and forward modeling of standing transverse MHD waves in coronal loops with uniform and non-uniform temperature variation in the perpendicular cross-section. The observed signatures are largely dominated by the combination of the Kelvin–Helmholtz instability (KHI), resonant absorption, and phase mixing. In the presence of a cross-loop temperature gradient, we find that emission lines sensitive to the loop core catch different signatures compared to those that are more sensitive to the loop boundary and the surrounding corona, leading to an out-of-phase intensity and Doppler velocity modulation produced by KHI mixing. In all of the considered models, common signatures include an intensity and loop width modulation at half the kink period, a fine strand-like structure, a characteristic arrow-shaped structure in the Doppler maps, and overall line broadening in time but particularly at the loop edges. For our model, most of these features can be captured with a spatial resolution of 0.″33 and a spectral resolution of 25 km s{sup −1}, although we do obtain severe over-estimation of the line width. Resonant absorption leads to a significant decrease of the observed kinetic energy from Doppler motions over time, which is not recovered by a corresponding increase in the line width from phase mixing and KHI motions. We estimate this hidden wave energy to be a factor of 5–10 of the observed value.

  7. Simplified Models for Analysis and Design of the Control System Main Loops of CAREM Reactor

    International Nuclear Information System (INIS)

    Etchepareborda, Andres; Flury, Celso

    2000-01-01

    The target of this work is to show a few models developed for control analysis and design of the reactor CAREM's main control loops within a broad range of power (between 40 % and 100%).By one side, it is shown the main features of a analytic model programed in MATLAB.This model is based on fitting steady state points at different power levels of the CAREM's RETRAN model.By the other side, it is shown linear models of black-box type denoting the perturbed behavior of the system for each level power point.These models are identified from temporal responses of CAREM's RETRAN model to perturbed input signals over the different steady power level points.Then the dynamics of these models are verified contrasting the temporal responses of the RETRAN model versus the responses of the MATLAB model and the identified models, in each steady power level point.Also are contrasting the frequency response of the linearization of MATLAB model versus the frequency response of the identified models, in each steady power level point.Either the MATLAB model as the identified models are good enough for the control analysis and design of the three main control loops.The MATLAB model has a few differences against the RETRAN model in the primary pressure output variable, that it must be taken into account in the design of this control loop if this model is used.The aim of these models is to represent in a satisfactory way the dynamics of the plant for a later control analysis and design of the control loops in a frequency range between 0.01 rad/seg and 0.3 rad/seg, and a power range between 40 % and 100 %

  8. TIME-RESOLVED EMISSION FROM BRIGHT HOT PIXELS OF AN ACTIVE REGION OBSERVED IN THE EUV BAND WITH SDO/AIA AND MULTI-STRANDED LOOP MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Tajfirouze, E.; Reale, F.; Petralia, A. [Dipartimento di Fisica e Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 (Italy); Testa, P., E-mail: aastex-help@aas.org [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-01-01

    Evidence of small amounts of very hot plasma has been found in active regions and might be an indication of impulsive heating released at spatial scales smaller than the cross-section of a single loop. We investigate the heating and substructure of coronal loops in the core of one such active region by analyzing the light curves in the smallest resolution elements of solar observations in two EUV channels (94 and 335 Å) from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. We model the evolution of a bundle of strands heated by a storm of nanoflares by means of a hydrodynamic 0D loop model (EBTEL). The light curves obtained from a random combination of those of single strands are compared to the observed light curves either in a single pixel or in a row of pixels, simultaneously in the two channels, and using two independent methods: an artificial intelligent system (Probabilistic Neural Network) and a simple cross-correlation technique. We explore the space of the parameters to constrain the distribution of the heat pulses, their duration, their spatial size, and, as a feedback on the data, their signatures on the light curves. From both methods the best agreement is obtained for a relatively large population of events (1000) with a short duration (less than 1 minute) and a relatively shallow distribution (power law with index 1.5) in a limited energy range (1.5 decades). The feedback on the data indicates that bumps in the light curves, especially in the 94 Å channel, are signatures of a heating excess that occurred a few minutes before.

  9. Droop Control with an Adjustable Complex Virtual Impedance Loop based on Cloud Model Theory

    DEFF Research Database (Denmark)

    Li, Yan; Shuai, Zhikang; Xu, Qinming

    2016-01-01

    Droop control framework with an adjustable virtual impedance loop is proposed in this paper, which is based on the cloud model theory. The proposed virtual impedance loop includes two terms: a negative virtual resistor and an adjustable virtual inductance. The negative virtual resistor term...... sometimes. The cloud model theory is applied to get online the changing line impedance value, which relies on the relevance of the reactive power responding the changing line impedance. The verification of the proposed control strategy is done according to the simulation in a low voltage microgrid in Matlab....

  10. Two loop effective Kahler potential of (non)-renormalizable supersymmetric models

    International Nuclear Information System (INIS)

    Groot Nibbelink, S.; Nyawelo, T.S.

    2005-10-01

    We perform a supergraph computation of the effective Kahler potential at one and two loops for general four dimensional N=1 supersymmetric theories described by arbitrary Kahler potential, superpotential and gauge kinetic function. We only insist on gauge invariance of the Kahler potential and the superpotential as we heavily rely on its consequences in the quantum theory. However, we do not require gauge invariance for the gauge kinetic functions, so that our results can also be applied to anomalous theories that involve the Green-Schwarz mechanism. We illustrate our two loop results by considering a few simple models: the (non-)renormalizable Wess-Zumino model and Super Quantum Electrodynamics. (author)

  11. Closing the loop: modelling of heart failure progression from health to end-stage using a meta-analysis of left ventricular pressure-volume loops.

    Science.gov (United States)

    Warriner, David R; Brown, Alistair G; Varma, Susheel; Sheridan, Paul J; Lawford, Patricia; Hose, David R; Al-Mohammad, Abdallah; Shi, Yubing

    2014-01-01

    The American Heart Association (AHA)/American College of Cardiology (ACC) guidelines for the classification of heart failure (HF) are descriptive but lack precise and objective measures which would assist in categorising such patients. Our aim was two fold, firstly to demonstrate quantitatively the progression of HF through each stage using a meta-analysis of existing left ventricular (LV) pressure-volume (PV) loop data and secondly use the LV PV loop data to create stage specific HF models. A literature search yielded 31 papers with PV data, representing over 200 patients in different stages of HF. The raw pressure and volume data were extracted from the papers using a digitising software package and the means were calculated. The data demonstrated that, as HF progressed, stroke volume (SV), ejection fraction (EF%) decreased while LV volumes increased. A 2-element lumped parameter model was employed to model the mean loops and the error was calculated between the loops, demonstrating close fit between the loops. The only parameter that was consistently and statistically different across all the stages was the elastance (Emax). For the first time, the authors have created a visual and quantitative representation of the AHA/ACC stages of LVSD-HF, from normal to end-stage. The study demonstrates that robust, load-independent and reproducible parameters, such as elastance, can be used to categorise and model HF, complementing the existing classification. The modelled PV loops establish previously unknown physiological parameters for each AHA/ACC stage of LVSD-HF, such as LV elastance and highlight that it this parameter alone, in lumped parameter models, that determines the severity of HF. Such information will enable cardiovascular modellers with an interest in HF, to create more accurate models of the heart as it fails.

  12. Closing the loop: modelling of heart failure progression from health to end-stage using a meta-analysis of left ventricular pressure-volume loops.

    Directory of Open Access Journals (Sweden)

    David R Warriner

    Full Text Available INTRODUCTION: The American Heart Association (AHA/American College of Cardiology (ACC guidelines for the classification of heart failure (HF are descriptive but lack precise and objective measures which would assist in categorising such patients. Our aim was two fold, firstly to demonstrate quantitatively the progression of HF through each stage using a meta-analysis of existing left ventricular (LV pressure-volume (PV loop data and secondly use the LV PV loop data to create stage specific HF models. METHODS AND RESULTS: A literature search yielded 31 papers with PV data, representing over 200 patients in different stages of HF. The raw pressure and volume data were extracted from the papers using a digitising software package and the means were calculated. The data demonstrated that, as HF progressed, stroke volume (SV, ejection fraction (EF% decreased while LV volumes increased. A 2-element lumped parameter model was employed to model the mean loops and the error was calculated between the loops, demonstrating close fit between the loops. The only parameter that was consistently and statistically different across all the stages was the elastance (Emax. CONCLUSIONS: For the first time, the authors have created a visual and quantitative representation of the AHA/ACC stages of LVSD-HF, from normal to end-stage. The study demonstrates that robust, load-independent and reproducible parameters, such as elastance, can be used to categorise and model HF, complementing the existing classification. The modelled PV loops establish previously unknown physiological parameters for each AHA/ACC stage of LVSD-HF, such as LV elastance and highlight that it this parameter alone, in lumped parameter models, that determines the severity of HF. Such information will enable cardiovascular modellers with an interest in HF, to create more accurate models of the heart as it fails.

  13. TEMPORAL AND SPATIAL RELATIONSHIP OF FLARE SIGNATURES AND THE FORCE-FREE CORONAL MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, J. K.; Veronig, A.; Su, Y., E-mail: julia.thalmann@uni-graz.at [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5/II, A-8010 Graz (Austria)

    2016-08-01

    We investigate the plasma and magnetic environment of active region NOAA 11261 on 2011 August 2 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at the (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths in order to pin down the intersection of previously reconnected flaring loops in the lower solar atmosphere. These locations are used to calculate field lines from three-dimensional (3D) nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. Using this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet’s lower tip during an on-disk observed flare as a few kilometers per second. A comparison to post-flare loops observed later above the limb in STEREO EUVI images supports this velocity estimate. Furthermore, we provide evidence for an implosion of parts of the flaring coronal model magnetic field, and identify the corresponding coronal sub-volumes associated with the loss of magnetic energy. Finally, we spatially relate the build up of magnetic energy in the 3D models to highly sheared fields, established due to the dynamic relative motions of polarity patches within the active region.

  14. Validation for global solar wind prediction using Ulysses comparison: Multiple coronal and heliospheric models installed at the Community Coordinated Modeling Center

    Science.gov (United States)

    Jian, L. K.; MacNeice, P. J.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; Jackson, B.; Yu, H.-S.; Riley, P.; Sokolov, I. V.

    2016-08-01

    The prediction of the background global solar wind is a necessary part of space weather forecasting. Several coronal and heliospheric models have been installed and/or recently upgraded at the Community Coordinated Modeling Center (CCMC), including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and heliospheric tomography using interplanetary scintillation data. Ulysses recorded the last fast latitudinal scan from southern to northern poles in 2007. By comparing the modeling results with Ulysses observations over seven Carrington rotations, we have extended our third-party validation from the previous near-Earth solar wind to middle to high latitudes, in the same late declining phase of solar cycle 23. Besides visual comparison, we have quantitatively assessed the models' capabilities in reproducing the time series, statistics, and latitudinal variations of solar wind parameters for a specific range of model parameter settings, inputs, and grid configurations available at CCMC. The WSA-Enlil model results vary with three different magnetogram inputs. The MAS-Enlil model captures the solar wind parameters well, despite its underestimation of the speed at middle to high latitudes. The new version of SWMF misses many solar wind variations probably because it uses lower grid resolution than other models. The interplanetary scintillation-tomography cannot capture the latitudinal variations of solar wind well yet. Because the model performance varies with parameter settings which are optimized for different epochs or flow states, the performance metric study provided here can serve as a template that researchers can use to validate the models for the time periods and conditions of interest to them.

  15. Validation for Global Solar Wind Prediction Using Ulysses Comparison: Multiple Coronal and Heliospheric Models Installed at the Community Coordinated Modeling Center

    Science.gov (United States)

    Jian, L. K.; MacNeice, P. J.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; Jackson, B.; Yu, H.-S.; Riley, P.; Sokolov, I. V.

    2016-01-01

    The prediction of the background global solar wind is a necessary part of space weather forecasting. Several coronal and heliospheric models have been installed and/or recently upgraded at the Community Coordinated Modeling Center (CCMC), including the Wang-Sheely-Arge (WSA)-Enlil model, MHD-Around-a-Sphere (MAS)-Enlil model, Space Weather Modeling Framework (SWMF), and Heliospheric tomography using interplanetary scintillation data. Ulysses recorded the last fast latitudinal scan from southern to northern poles in 2007. By comparing the modeling results with Ulysses observations over seven Carrington rotations, we have extended our third-party validation from the previous near-Earth solar wind to middle to high latitudes, in the same late declining phase of solar cycle 23. Besides visual comparison, wehave quantitatively assessed the models capabilities in reproducing the time series, statistics, and latitudinal variations of solar wind parameters for a specific range of model parameter settings, inputs, and grid configurations available at CCMC. The WSA-Enlil model results vary with three different magnetogram inputs.The MAS-Enlil model captures the solar wind parameters well, despite its underestimation of the speed at middle to high latitudes. The new version of SWMF misses many solar wind variations probably because it uses lower grid resolution than other models. The interplanetary scintillation-tomography cannot capture the latitudinal variations of solar wind well yet. Because the model performance varies with parameter settings which are optimized for different epochs or flow states, the performance metric study provided here can serve as a template that researchers can use to validate the models for the time periods and conditions of interest to them.

  16. All-loop anomalous dimensions in integrable λ-deformed σ-models

    Directory of Open Access Journals (Sweden)

    George Georgiou

    2015-12-01

    Full Text Available We calculate the all-loop anomalous dimensions of current operators in λ-deformed σ-models. For the isotropic integrable deformation and for a semi-simple group G we compute the anomalous dimensions using two different methods. In the first we use the all-loop effective action and in the second we employ perturbation theory along with the Callan–Symanzik equation and in conjunction with a duality-type symmetry shared by these models. Furthermore, using CFT techniques we compute the all-loop anomalous dimension of bilinear currents for the isotropic deformation case and a general G. Finally we work out the anomalous dimension matrix for the cases of anisotropic SU(2 and the two couplings, corresponding to the symmetric coset G/H and a subgroup H, splitting of a group G.

  17. String states, loops and effective actions in noncommutative field theory and matrix models

    Directory of Open Access Journals (Sweden)

    Harold C. Steinacker

    2016-09-01

    Full Text Available Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  18. String states, loops and effective actions in noncommutative field theory and matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold C., E-mail: harold.steinacker@univie.ac.at

    2016-09-15

    Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  19. Modeling a forced to natural convection boiling test with the program LOOP-W

    International Nuclear Information System (INIS)

    Carbajo, J.J.

    1984-01-01

    Extensive testing has been conducted in the Simulant Boiling Flow Visualization (SBFV) loop in which water is boiled in a vertical transparent tube by circulating hot glycerine in an annulus surrounding the tube. Tests ranged from nonboiling forced convection to oscillatory boiling natural convection. The program LOOP-W has been developed to analyze these tests. This program is a multi-leg, one-dimensional, two-phase equilibrium model with slip between the phases. In this study, a specific test, performed at low power where non-boiling forced convection was changed to boiling natural convection and then to non-boiling again, has been modeled with the program LOOP-W

  20. Hippocampal closed-loop modeling and implications for seizure stimulation design

    Science.gov (United States)

    Sandler, Roman A.; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.; Marmarelis, Vasilis Z.

    2015-10-01

    Objective. Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the entorhinal cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Approach. Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3 → CA1, via the schaffer-collateral synapse, and CA1 → CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (principal dynamic modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Main results. Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Significance. Deep-brain stimulation (DBS) is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy.

  1. EXPLAINING INVERTED-TEMPERATURE LOOPS IN THE QUIET SOLAR CORONA WITH MAGNETOHYDRODYNAMIC WAVE-MODE CONVERSION

    Energy Technology Data Exchange (ETDEWEB)

    Schiff, Avery J.; Cranmer, Steven R. [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309 (United States)

    2016-11-01

    Coronal loops trace out bipolar, arch-like magnetic fields above the Sun’s surface. Recent measurements that combine rotational tomography, extreme-ultraviolet imaging, and potential-field extrapolation have shown the existence of large loops with inverted-temperature profiles, i.e., loops for which the apex temperature is a local minimum, not a maximum. These “down loops” appear to exist primarily in equatorial quiet regions near solar minimum. We simulate both these and the more prevalent large-scale “up loops” by modeling coronal heating as a time-steady superposition of (1) dissipation of incompressible Alfvén wave turbulence and (2) dissipation of compressive waves formed by mode conversion from the initial population of Alfvén waves. We found that when a large percentage (>99%) of the Alfvén waves undergo this conversion, heating is greatly concentrated at the footpoints and stable “down loops” are created. In some cases we found loops with three maxima that are also gravitationally stable. Models that agree with the tomographic temperature data exhibit higher gas pressures for “down loops” than for “up loops,” which is consistent with observations. These models also show a narrow range of Alfvén wave amplitudes: 3 to 6 km s{sup -1} at the coronal base. This is low in comparison to typical observed amplitudes of 20–30 km s{sup -1} in bright X-ray loops. However, the large-scale loops we model are believed to compose a weaker diffuse background that fills much of the volume of the corona. By constraining the physics of loops that underlie quiescent streamers, we hope to better understand the formation of the slow solar wind.

  2. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    International Nuclear Information System (INIS)

    Kramar, M.; Lin, H.; Tomczyk, S.

    2016-01-01

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments

  3. Loop Evolution Observed with AIA and Hi-C

    Science.gov (United States)

    Mulu-Moore, Fana; Winebarger, Amy R.; Cirtain, Jonathan W.; Kobayashi, Ken; Korreck, Kelly E.; Golub, Leon; Kuzin, Sergei; Walsh, Robert William; DeForest, Craig E.; De Pontieu, Bart; hide

    2012-01-01

    In the past decade, the evolution of EUV loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this presentation we discuss the first results of loop analysis comparing AIA and Hi-C data. In the past decade, the evolution of EUV loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this presentation we discuss the first results of loop analysis comparing AIA and Hi-C data.

  4. Reactor design, cold-model experiment and CFD modeling for chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaohua; Ma, Jinchen; Hu, Xintao; Zhao, Haibo; Wang, Baowen; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    Chemical looping combustion (CLC) is an efficient, clean and cheap technology for CO{sub 2} capture, and an interconnected fluidized bed is more appropriate solution for CLC. This paper aims to design a reactor system for CLC, carry out cold-model experiment of the system, and model fuel reactor using commercial CFD software. As for the CLC system, the air reactor (AR) is designed as a fast fluidized bed while the fuel reactor (FR) is a bubbling bed; a cyclone is used for solid separation of the AR exit flow. The AR and FR are separated by two U-type loop seals to remain gas sealed. Considered the chemical kinetics of oxygen carrier, fluid dynamics, pressure balance and mass balance of the system simultaneously, some key design parameters of a CH{sub 4}-fueled and Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3}-based CLC reactor (thermal power of 50 kWth) are determined, including key geometric parameters (reactor cross-sectional area and reactor height) and operation parameters (bed material quantity, solid circulation rate, apparent gas velocity of each reactor). A cold-model bench having same geometric parameters with its prototype is built up to study the effects of various operation conditions (including gas velocity in the reactors and loop seals, and bed material height, etc.) on the solids circulation rate, gas leakage, and pressure balance. It is witnessed the cold-model system is able to meet special requirements for CLC system such as gas sealing between AR and FR, the circulation rate and particles residence time. Furthermore, the thermal FR reactor with oxygen carrier of Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3} and fuel of CH{sub 4} is simulated by commercial CFD solver FLUENT. It is found that for the design case the combustion efficiency of CH{sub 4} reaches 88.2%. A few part of methane is unburned due to fast, large bubbles rising through the reactor.

  5. ON THE FOURIER AND WAVELET ANALYSIS OF CORONAL TIME SERIES

    International Nuclear Information System (INIS)

    Auchère, F.; Froment, C.; Bocchialini, K.; Buchlin, E.; Solomon, J.

    2016-01-01

    Using Fourier and wavelet analysis, we critically re-assess the significance of our detection of periodic pulsations in coronal loops. We show that the proper identification of the frequency dependence and statistical properties of the different components of the power spectra provides a strong argument against the common practice of data detrending, which tends to produce spurious detections around the cut-off frequency of the filter. In addition, the white and red noise models built into the widely used wavelet code of Torrence and Compo cannot, in most cases, adequately represent the power spectra of coronal time series, thus also possibly causing false positives. Both effects suggest that several reports of periodic phenomena should be re-examined. The Torrence and Compo code nonetheless effectively computes rigorous confidence levels if provided with pertinent models of mean power spectra, and we describe the appropriate manner in which to call its core routines. We recall the meaning of the default confidence levels output from the code, and we propose new Monte-Carlo-derived levels that take into account the total number of degrees of freedom in the wavelet spectra. These improvements allow us to confirm that the power peaks that we detected have a very low probability of being caused by noise.

  6. ON THE FOURIER AND WAVELET ANALYSIS OF CORONAL TIME SERIES

    Energy Technology Data Exchange (ETDEWEB)

    Auchère, F.; Froment, C.; Bocchialini, K.; Buchlin, E.; Solomon, J., E-mail: frederic.auchere@ias.u-psud.fr [Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, F-91405 Orsay (France)

    2016-07-10

    Using Fourier and wavelet analysis, we critically re-assess the significance of our detection of periodic pulsations in coronal loops. We show that the proper identification of the frequency dependence and statistical properties of the different components of the power spectra provides a strong argument against the common practice of data detrending, which tends to produce spurious detections around the cut-off frequency of the filter. In addition, the white and red noise models built into the widely used wavelet code of Torrence and Compo cannot, in most cases, adequately represent the power spectra of coronal time series, thus also possibly causing false positives. Both effects suggest that several reports of periodic phenomena should be re-examined. The Torrence and Compo code nonetheless effectively computes rigorous confidence levels if provided with pertinent models of mean power spectra, and we describe the appropriate manner in which to call its core routines. We recall the meaning of the default confidence levels output from the code, and we propose new Monte-Carlo-derived levels that take into account the total number of degrees of freedom in the wavelet spectra. These improvements allow us to confirm that the power peaks that we detected have a very low probability of being caused by noise.

  7. The Life Cycle Evaluation Model of External Diseconomy of Open-loop Supply Chain

    Science.gov (United States)

    Liu, Qian; Hu, Tianjun

    2017-08-01

    In recent years, with the continuous deterioration of pollution, resource space is gradually narrowed, the number of waste items increased, people began to use the method of recycling on waste products to ease the pressure on the environment. This paper adopted the external diseconomy of open-loop supply chain as the research object and constructed the model by the life cycle evaluation method, comparative analysis through the case. This paper also concludes that the key to solving the problem is to realize the closed-loop supply chain and building reverse logistics system is of great significance.

  8. Anderson localization through Polyakov loops: Lattice evidence and random matrix model

    International Nuclear Information System (INIS)

    Bruckmann, Falk; Schierenberg, Sebastian; Kovacs, Tamas G.

    2011-01-01

    We investigate low-lying fermion modes in SU(2) gauge theory at temperatures above the phase transition. Both staggered and overlap spectra reveal transitions from chaotic (random matrix) to integrable (Poissonian) behavior accompanied by an increasing localization of the eigenmodes. We show that the latter are trapped by local Polyakov loop fluctuations. Islands of such ''wrong'' Polyakov loops can therefore be viewed as defects leading to Anderson localization in gauge theories. We find strong similarities in the spatial profile of these localized staggered and overlap eigenmodes. We discuss possible interpretations of this finding and present a sparse random matrix model that reproduces these features.

  9. Scalar loops and the Higgs mass in the Salam-Weinberg-Glashow model

    International Nuclear Information System (INIS)

    Ghose, P.

    1982-08-01

    It is shown that spontaneous symmetry breaking is predominantly driven by scalar loops in the standard Salam-Weinberg-Glashow model if lambda approx.=0(e 2 ). The Higgs mass is predicted to be 0(64 GeV), which is considerably higher than the Coleman Weinberg prediction. (author)

  10. The one loop calculation of the strong coupling β function in the Toy Model

    International Nuclear Information System (INIS)

    Bai Zhiming; Jiang Yuanfang

    1991-01-01

    The background field quantization is used to calculate the one-loop β function in the Toy Model which has the strong coupling and the SU(3) symmetry. The function obtained is consistent with the Appalquist-Carrazone theorem in the low energy condition

  11. Two-loop calculation of the effective potential for the Wess-Zumino model

    International Nuclear Information System (INIS)

    Fogleman, G.; Starkmann, G.D.; Viswanathan, K.S.; Simon Fraser Univ., Burnaby, British Columbia

    1983-01-01

    The effective potential for the supersymmetric Wess-Zumino model is computed off-shell to two loops. A renormalization procedure which preserves positivity of the kinetic terms in the effective action is implemented. Supersymmetry is not broken to this order. (orig.)

  12. Optimal closed-loop identification test design for internal model control

    NARCIS (Netherlands)

    Zhu, Y.; Bosch, van den P.P.J.

    2000-01-01

    In this work, optimal closed-loop test design for control is studied. Simple design formulas are derived based on the asymptotic theory of Ljung. The control scheme used is internal model control (IMC) and the design constraint is the power of the process output or that of the reference signal. The

  13. Scalar loops and the Higgs mass in the Salam-Weinberg-Glashow model

    International Nuclear Information System (INIS)

    Ghose, P.

    1983-01-01

    It is shown that spontaneous symmetry breaking is predominantly driven by scalar loops in the standard Salam-Weinberg-Glashow model if lambdaapproximately equal to O(e 2 ). The Higgs mass is predicted to be O(64 GeV), which is considerably higher than the Coleman-Weinberg prediction (1973 Phys. Rev. D 7 1888). (author)

  14. Model Optimization Identification Method Based on Closed-loop Operation Data and Process Characteristics Parameters

    Directory of Open Access Journals (Sweden)

    Zhiqiang GENG

    2014-01-01

    Full Text Available Output noise is strongly related to input in closed-loop control system, which makes model identification of closed-loop difficult, even unidentified in practice. The forward channel model is chosen to isolate disturbance from the output noise to input, and identified by optimization the dynamic characteristics of the process based on closed-loop operation data. The characteristics parameters of the process, such as dead time and time constant, are calculated and estimated based on the PI/PID controller parameters and closed-loop process input/output data. And those characteristics parameters are adopted to define the search space of the optimization identification algorithm. PSO-SQP optimization algorithm is applied to integrate the global search ability of PSO with the local search ability of SQP to identify the model parameters of forward channel. The validity of proposed method has been verified by the simulation. The practicability is checked with the PI/PID controller parameter turning based on identified forward channel model.

  15. Polarization of Coronal Forbidden Lines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao; Qu, Zhongquan [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China); Landi Degl’Innocenti, Egidio, E-mail: sayahoro@ynao.ac.cn [Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy)

    2017-03-20

    Since the magnetic field is responsible for most manifestations of solar activity, one of the most challenging problems in solar physics is the diagnostics of solar magnetic fields, particularly in the outer atmosphere. To this end, it is important to develop rigorous diagnostic tools to interpret polarimetric observations in suitable spectral lines. This paper is devoted to analyzing the diagnostic content of linear polarization imaging observations in coronal forbidden lines. Although this technique is restricted to off-limb observations, it represents a significant tool to diagnose the magnetic field structure in the solar corona, where the magnetic field is intrinsically weak and still poorly known. We adopt the quantum theory of polarized line formation developed in the framework of the density matrix formalism, and synthesize images of the emergent linear polarization signal in coronal forbidden lines using potential-field source-surface magnetic field models. The influence of electronic collisions, active regions, and Thomson scattering on the linear polarization of coronal forbidden lines is also examined. It is found that active regions and Thomson scattering are capable of conspicuously influencing the orientation of the linear polarization. These effects have to be carefully taken into account to increase the accuracy of the field diagnostics. We also found that linear polarization observation in suitable lines can give valuable information on the long-term evolution of the magnetic field in the solar corona.

  16. Solar Coronal Plumes

    Directory of Open Access Journals (Sweden)

    Giannina Poletto

    2015-12-01

    Full Text Available Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features.

  17. One-loop contributions to neutral minima in the inert doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, P.M. [Instituto Superior de Engenharia de Lisboa - ISEL,1959-007 Lisboa (Portugal); Centro de Física Teórica e Computacional - FCUL,Universidade de Lisboa, R. Ernesto de Vasconcelos, 1749-016 Lisboa (Portugal); Świeżewska, Bogumiła [Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland)

    2016-04-15

    The vacuum structure of the inert doublet model is analysed at the one-loop level using the effective potential formalism, to verify the validity of tree-level predictions for the properties of the global minimum. An inert minimum (with massive fermions) and an inert-like minimum (with massless fermions) can coexist at tree level. But the one-loop analysis reveals that the allowed parameter space for the coexistence of more than one minimum is larger than the tree-level expected one. It is also shown that for some choices of parameters, the global minimum found at the one-loop level may be inert (or inert-like), contrary to what the tree-level analysis indicates.

  18. Two-loop renormalization in the standard model, part I. Prolegomena

    Energy Technology Data Exchange (ETDEWEB)

    Actis, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Ferroglia, A. [Albert-Ludwigs-Univ., Freiburg (Germany). Fakultat fur Phys.]|[Zuerich Univ. (Switzerland). Inst. fuer Theoretische Physik; Passera, M. [Padua Univ. (Italy). Dipt. di Fisica]|[INFN, Sezione di Padova (Italy); Passarino, G. [Torino Univ. (Italy). Dipt. di Fisica Teorica]|[INFN, Sezione di Torino (Italy)

    2006-12-15

    In this paper the building blocks for the two-loop renormalization of the Standard Model are introduced with a comprehensive discussion of the special vertices induced in the Lagrangian by a particular diagonalization of the neutral sector and by two alternative treatments of the Higgs tadpoles. Dyson resummed propagators for the gauge bosons are derived, and two-loop Ward-Slavnov-Taylor identities are discussed. In part II, the complete set of counterterms needed for the two-loop renormalization will be derived. In part III, a renormalization scheme will be introduced, connecting the renormalized quantities to an input parameter set of (pseudo-)experimental data, critically discussing renormalization of a gauge theory with unstable particles. (orig.)

  19. High-Temperature Structural Analysis Model of the Process Heat Exchanger for Helium Gas Loop (II)

    International Nuclear Information System (INIS)

    Song, Kee Nam; Lee, Heong Yeon; Kim, Chan Soo; Hong, Seong Duk; Park, Hong Yoon

    2010-01-01

    PHE (Process Heat Exchanger) is a key component required to transfer heat energy of 950 .deg. C generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute established the helium gas loop for the performance test of components, which are used in the VHTR, and they manufactured a PHE prototype to be tested in the loop. In this study, as part of the high temperature structural-integrity evaluation of the PHE prototype, which is scheduled to be tested in the helium gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal expansion analysis of the PHE prototype. The results obtained in this study will be used to design the performance test setup for the PHE prototype

  20. The 1-loop effective potential for the Standard Model in curved spacetime

    Science.gov (United States)

    Markkanen, Tommi; Nurmi, Sami; Rajantie, Arttu; Stopyra, Stephen

    2018-06-01

    The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of β-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which is demonstrated with the example of vacuum stability in de Sitter space.

  1. A bag model calculation of the electroweak s → dγ loop

    International Nuclear Information System (INIS)

    Eeg, J.O.; Ruud, J.Aa.

    1990-10-01

    The CP-conservering electroweak transitions s → dγ have been considered. In order to include confinement effects below the charm scale, the loop calculations within the bag model were performed. According to the calculations, confinement effects are rather important and give amplitudes three orders of magnitude larger than those obtained from the free quark loop, which is ∼eG F m c 2 /M W 2 . Moreover, the amplitude is of the same order of magnitude as the perturbative two-loop amplitude ∼eG F α s ln(m c /μ). For the decay mode Ω - → γΞ - , a branching ratio 4.4 x 10 -5 was obtained. Other radiative decays of strange baryons are known to be dominated by pole diagrams. 14 refs., 1 fig

  2. Fault detection in IRIS reactor secondary loop using inferential models

    International Nuclear Information System (INIS)

    Perillo, Sergio R.P.; Upadhyaya, Belle R.; Hines, J. Wesley

    2013-01-01

    The development of fault detection algorithms is well-suited for remote deployment of small and medium reactors, such as the IRIS, and the development of new small modular reactors (SMR). However, an extensive number of tests are still to be performed for new engineering aspects and components that are not yet proven technology in the current PWRs, and present some technological challenges for its deployment since many of its features cannot be proven until a prototype plant is built. In this work, an IRIS plant simulation platform was developed using a Simulink® model. The dynamic simulation was utilized in obtaining inferential models that were used to detect faults artificially added to the secondary system simulations. The implementation of data-driven models and the results are discussed. (author)

  3. Robust Model-based Control of Open-loop Unstable Processes

    International Nuclear Information System (INIS)

    Emad, Ali

    1999-01-01

    This paper addresses the development of new formulations for estimating modeling errors or unmeasured disturbances to be used in Model Predictive Control (MPC) algorithms during open-loop prediction. Two different formulations were developed in this paper. One is used in MPC that directly utilizes linear models and the other in MPC that utilizes non-linear models. These estimation techniques were utilized to provide robust performance for MPC algorithms when the plant is open-loop unstable and under the influence of modeling error and/or unmeasured disturbances. For MPC that utilizes a non-linear model, the estimation technique is formulated as a fixed small size on-line optimization problem, while for linear MPC, the unmeasured disturbances are estimated via a proposed linear disturbance model. The disturbance model coefficients are identified on-line from historical estimates of plant-model mismatch. The effectiveness of incorporating these proposed estimation techniques into MPC is tested through simulated implementation on non-linear unstable exothermic fluidized bed reactor. Closed-loop simulations proved the capability of the proposed estimation methods to stabilize and, thereby, improve the MPC performance in such cases. (Author)

  4. In-the-loop simulation of electronic automatic temperature control systems: HVAC modeling

    Energy Technology Data Exchange (ETDEWEB)

    Domschke, R.; Matthes, M. [Visteon Deutschland GmbH, Kerpen (Germany)

    2006-07-01

    The Electronic Automatic Temperature Control (EATC) ensures the occupant comfort and provides safety features like rapid defrost and demist protection. Doing this, the EATC controller provides a direct interface to the end consumer and has a considerable impact on customer satisfaction. The In-the-loop (IL) simulation process is an integral part of Visteons model-based development process. It helps to design and calibrate the EATC controller. It consists of several IL simulation techniques like Model-in-the-loop (MIL), Software-in-the-loop (SIL) and Hardware-in-the-loop (HIL). In this article, we will focus on MIL/SIL Simulations. MIL/SIL allows simulation of the EATC controller in a virtual vehicle environment from the early states of and throughout the development process. This ensures a rapid, high quality and robust development process. The MIL/SIL model contains a thermal vehicle model, a heating, ventilation and air conditioning (HVAC) unit model and a model of the EATC controller itself. The thermal vehicle model simulates transient temperature and humidity conditions in the passenger compartment of a vehicle, settings from the controller, heat fluxes through the vehicle shell and windows, solar load and several further boundary conditions. Whereas the thermal vehicle model of a specific vehicle can be adapted from a default data base, one has to pay special attention to the HVAC unit model. Visteon has developed a special, physically based HVAC unit model to be adapted and implemented into the MIL/SIL simulation. This HVAC model enables a straightforward implementation of different HVAC architectures into the MIL/SIL simulation. Moreover, changes in the HVAC settings (i.e. different blower/scroll assemblies) can be assessed and the influence on passenger comfort can be quantified. Examples of the MIL/SIL simulation demonstrate the benefits of this approach. Results are discussed and a further outlook provided. (orig.)

  5. Generalized one-loop neutrino mass model with charged particles

    Science.gov (United States)

    Cheung, Kingman; Okada, Hiroshi

    2018-04-01

    We propose a radiative neutrino-mass model by introducing 3 generations of fermion pairs E-(N +1 )/2E+(N +1 )/2 and a couple of multicharged bosonic doublet fields ΦN /2,ΦN /2 +1, where N =1 , 3, 5, 7, 9. We show that the models can satisfy the neutrino masses and oscillation data, and are consistent with lepton-flavor violations, the muon anomalous magnetic moment, the oblique parameters, and the beta function of the U (1 )Y hypercharge gauge coupling. We also discuss the collider signals for various N , namely, multicharged leptons in the final state from the Drell-Yan production of E-(N +1 )/2E+(N +1 )/2. In general, the larger the N the more charged leptons will appear in the final state.

  6. Kinks, chains, and loop groups in the CPn sigma models

    International Nuclear Information System (INIS)

    Harland, Derek

    2009-01-01

    We consider topological solitons in the CP n sigma models in two space dimensions. In particular, we study 'kinks', which are independent of one coordinate up to a rotation of the target space, and 'chains', which are periodic in one coordinate up to a rotation of the target space. Kinks and chains both exhibit constituents, similar to monopoles and calorons in SU(n) Yang-Mills-Higgs and Yang-Mills theories. We examine the constituent structure using Lie algebras.

  7. Structure-Function Model for Kissing Loop Interactions That Initiate Dimerization of Ty1 RNA

    Directory of Open Access Journals (Sweden)

    Eric R. Gamache

    2017-04-01

    Full Text Available The genomic RNA of the retrotransposon Ty1 is packaged as a dimer into virus-like particles. The 5′ terminus of Ty1 RNA harbors cis-acting sequences required for translation initiation, packaging and initiation of reverse transcription (TIPIRT. To identify RNA motifs involved in dimerization and packaging, a structural model of the TIPIRT domain in vitro was developed from single-nucleotide resolution RNA structural data. In general agreement with previous models, the first 326 nucleotides of Ty1 RNA form a pseudoknot with a 7-bp stem (S1, a 1-nucleotide interhelical loop and an 8-bp stem (S2 that delineate two long, structured loops. Nucleotide substitutions that disrupt either pseudoknot stem greatly reduced helper-Ty1-mediated retrotransposition of a mini-Ty1, but only mutations in S2 destabilized mini-Ty1 RNA in cis and helper-Ty1 RNA in trans. Nested in different loops of the pseudoknot are two hairpins with complementary 7-nucleotide motifs at their apices. Nucleotide substitutions in either motif also reduced retrotransposition and destabilized mini- and helper-Ty1 RNA. Compensatory mutations that restore base-pairing in the S2 stem or between the hairpins rescued retrotransposition and RNA stability in cis and trans. These data inform a model whereby a Ty1 RNA kissing complex with two intermolecular kissing-loop interactions initiates dimerization and packaging.

  8. Color superconductivity in the Nambu-Jona-Lasinio model complemented by a Polyakov loop

    Energy Technology Data Exchange (ETDEWEB)

    Blanquier, Eric

    2017-06-15

    The color superconductivity is studied with the Nambu and Jona-Lasinio (NJL) model. This one is coupled to a Polyakov loop, to form the PNJL model. A μ-dependent Polyakov loop potential is also considered (μPNJL model). An objective is to detail the analytical calculations that lead to the equations to be solved, in all of the treated cases. They are the normal quark (NQ), 2-flavor color-superconducting (2SC) and color-flavor-locked (CFL) phases, in an SU(3){sub f} x SU(3){sub c} description. The calculations are performed according to the temperature T, the chemical potentials μ{sub f} or the densities ρ{sub f}, with or without the isospin symmetry. The relation between the μ{sub f} and ρ{sub f} results is studied. The influence of the color superconductivity and the Polyakov loop on the found data is analyzed. A triple coincidence is observed at low T between the chiral restoration, the deconfinement transition described by the Polyakov loop and the NQ/2SC phase transition. Furthermore, an sSC phase is identified in the ρ{sub q}, ρ{sub s} plane. Possible links between certain of the obtained results and physical systems are pointed out. (orig.)

  9. The X-ray signature of solar coronal mass

    Science.gov (United States)

    Harrison, R. A.; Waggett, P. W.; Bentley, R. D.; Phillips, K. J. H.; Bruner, M.

    1985-01-01

    The coronal response to six solar X-ray flares has been investigated. At a time coincident with the projected onset of the white-light coronal mass ejection associated with each flare, there is a small, discrete soft X-ray enhancement. These enhancements (precursors) precede by typically about 20 m the impulsive phase of the solar flare which is dominant by the time the coronal mass ejection has reached an altitude above 0.5 solar radii. Motions of hot X-ray emitting plasma, during the precursors, which may well be a signature of the mass ejection onsets, are identified. Further investigations have also revealed a second class of X-ray coronal transient, during the main phase of the flare. These appear to be associated with magnetic reconnection above post-flare loop systems.

  10. Numerical modeling of supercritical CO{sub 2} natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Archana, V., E-mail: archanav@barc.gov.in [Homi Bhabha National Institute, Mumbai, Maharashtra 400 094 (India); Vaidya, A.M., E-mail: avaidya@barc.gov.in [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400 085 (India); Vijayan, P.K., E-mail: vijayanp@barc.gov.in [Bhabha Atomic Research Centre, Mumbai, Maharashtra 400 085 (India)

    2015-11-15

    Highlights: • Supercritical CO{sub 2} natural circulation loop is modeled by in-house developed 1D and 2D axi-symmetric CFD codes. • Steady state characteristics of VHVC configuration of supercritical CO{sub 2} natural circulation loop are studied over a range of power. • Improved accuracy of predictions by 2D axi-symmetric formulation over 1D formulation is demonstrated. • The validity of correlations used in 1D model such as friction factor and heat transfer correlations is analyzed. • Simulation results shows normal, enhanced and deteriorated heat transfer regimes in supercritical CO{sub 2} natural circulation loop. - Abstract: The objective of this research project is to estimate steady state characteristics of supercritical natural circulation loop (SCNCL) using computational methodology and to compliment on-going experimental investigation of the same at the authors’ organization. For computational investigation, a couple of in-house codes are developed. At first, formulation and a corresponding computer program for the SCNCL based on conservation equations written in 1D framework is developed. Comparison of 1D code results with experimental data showed that, under some operating conditions, there is deviation between computed results and experimental data. To improve predictive capability, it was thought to model the SCNCL using conservation equations in 2D axi-symmetric framework. An existing 2D axi-symmetric code (named NAFA), which was developed and validated for supercritical fluid flow in pipes, is modified for natural circulation loop (NCL) geometry. The modified code, named NAFA-Loop, is subsequently used to compute the steady state characteristics of the SCNCL. These results are compared with experimental data. The steady state characteristics such as the variation of mass flow rate with power, velocity and temperature profiles in heater and cooler are studied using NAFA-Loop. The computed velocity and temperature fields show that the

  11. ON THE NATURE OF THE SOLAR WIND FROM CORONAL PSEUDOSTREAMERS

    International Nuclear Information System (INIS)

    Wang, Y.-M.; Sheeley, N. R. J.R.; Grappin, R.; Robbrecht, E.

    2012-01-01

    Coronal pseudostreamers, which separate like-polarity coronal holes, do not have current sheet extensions, unlike the familiar helmet streamers that separate opposite-polarity holes. Both types of streamers taper into narrow plasma sheets that are maintained by continual interchange reconnection with the adjacent open magnetic field lines. White-light observations show that pseudostreamers do not emit plasma blobs; this important difference from helmet streamers is due to the convergence of like-polarity field lines above the X-point, which prevents the underlying loops from expanding outward and pinching off. The main component of the pseudostreamer wind has the form of steady outflow along the open field lines rooted just inside the boundaries of the adjacent coronal holes. These flux tubes are characterized by very rapid expansion below the X-point, followed by reconvergence at greater heights. Analysis of an idealized pseudostreamer configuration shows that, as the separation between the underlying holes increases, the X-point rises and the expansion factor f ss at the source surface increases. In situ observations of pseudostreamer crossings indicate wind speeds v ranging from ∼350 to ∼550 km s –1 , with O 7+ /O 6+ ratios that are enhanced compared with those in high-speed streams but substantially lower than in the slow solar wind. Hydrodynamic energy-balance models show that the empirical v-f ss relation overestimates the wind speeds from nonmonotonically expanding flux tubes, particularly when the X-point is located at low heights and f ss is small. We conclude that pseudostreamers produce a 'hybrid' type of outflow that is intermediate between classical slow and fast solar wind.

  12. Four loop wave function renormalization in the non-abelian Thirring model

    International Nuclear Information System (INIS)

    Ali, D.B.; Gracey, J.A.

    2001-01-01

    We compute the anomalous dimension of the fermion field with N f flavours in the fundamental representation of a general Lie colour group in the non-abelian Thirring model at four loops. The implications on the renormalization of the two point Green's function through the loss of multiplicative renormalizability of the model in dimensional regularization due to the appearance of evanescent four fermi operators are considered at length. We observe the appearance of one new colour group Casimir, d F abcd d F abcd , in the final four loop result and discuss its consequences for the relation of the Knizhnik-Zamolodchikov critical exponents in the Wess-Zumino-Witten-Novikov model to the non-abelian Thirring model. Renormalization scheme changes are also considered to ensure that the underlying Fierz symmetry broken by dimensional regularization is restored

  13. Markov chain sampling of the O(n) loop models on the infinite plane

    Science.gov (United States)

    Herdeiro, Victor

    2017-07-01

    A numerical method was recently proposed in Herdeiro and Doyon [Phys. Rev. E 94, 043322 (2016), 10.1103/PhysRevE.94.043322] showing a precise sampling of the infinite plane two-dimensional critical Ising model for finite lattice subsections. The present note extends the method to a larger class of models, namely the O(n) loop gas models for n ∈(1 ,2 ] . We argue that even though the Gibbs measure is nonlocal, it is factorizable on finite subsections when sufficient information on the loops touching the boundaries is stored. Our results attempt to show that provided an efficient Markov chain mixing algorithm and an improved discrete lattice dilation procedure the planar limit of the O(n) models can be numerically studied with efficiency similar to the Ising case. This confirms that scale invariance is the only requirement for the present numerical method to work.

  14. Development of a transient calculation model for a closed sodium natural circulation loop

    International Nuclear Information System (INIS)

    Chang, Won Pyo; Ha, Kwi Seok; Jeong, Hae Yong; Heo, Sun; Lee, Yong Bum

    2003-09-01

    A natural circulation loop has usually adopted for a Liquid Metal Reactor (LMR) because of its high reliability. Up-rating of the current KALIMER capacity requires an additional PDRC to the existing PVCS to remove its decay heat under an accident. As the system analysis code currently used for LMR in Korea does not feature a stand alone capability to simulate a closed natural circulation loop, it is not eligible to be applied to PDRC. To supplement its limitation, a steady state calculation model had been developed during the first phase, and development of the transient model has successively carried out to close the present study. The developed model will then be coupled with the system analysis code, SSC-K to assess a long term cooling for the new conceptual design. The incompressibility assumption of sodium which allows the circuit to be modeled with a single loop flow, makes the model greatly simplified comparing with LWR. Some thermal-hydraulic models developed during this study can be effectively applied to other system analysis codes which require such component models, and the present development will also contribute to establishment of a code system for the LMR analysis

  15. Unambiguous Evidence of Coronal Implosions during Solar Eruptions and Flares

    Science.gov (United States)

    Wang, Juntao; Simões, P. J. A.; Fletcher, L.

    2018-05-01

    In the implosion conjecture, coronal loops contract as the result of magnetic energy release in solar eruptions and flares. However, after almost two decades, observations of this phenomenon are still rare and most previous reports are plagued by projection effects so that loop contraction could be either true implosion or just a change in loop inclination. In this paper, to demonstrate the reality of loop contractions in the global coronal dynamics, we present four events with the continuously contracting loops in an almost edge-on geometry from the perspective of SDO/AIA, which are free from the ambiguity caused by the projection effects, also supplemented by contemporary observations from STEREO for examination. In the wider context of observations, simulations and theories, we argue that the implosion conjecture is valid in interpreting these events. Furthermore, distinct properties of the events allow us to identify two physical categories of implosion. One type demonstrates a rapid contraction at the beginning of the flare impulsive phase, as magnetic free energy is removed rapidly by a filament eruption. The other type, which has no visible eruption, shows a continuous loop shrinkage during the entire flare impulsive phase, which we suggest shows the ongoing conversion of magnetic free energy in a coronal volume. Corresponding scenarios are described that can provide reasonable explanations for the observations. We also point out that implosions may be suppressed in cases when a heavily mass-loaded filament is involved, possibly serving as an alternative account for their observational rarity.

  16. Model-based minimization algorithm of a supercritical helium loop consumption subject to operational constraints

    Science.gov (United States)

    Bonne, F.; Bonnay, P.; Girard, A.; Hoa, C.; Lacroix, B.; Le Coz, Q.; Nicollet, S.; Poncet, J.-M.; Zani, L.

    2017-12-01

    Supercritical helium loops at 4.2 K are the baseline cooling strategy of tokamaks superconducting magnets (JT-60SA, ITER, DEMO, etc.). This loops work with cryogenic circulators that force a supercritical helium flow through the superconducting magnets in order that the temperature stay below the working range all along their length. This paper shows that a supercritical helium loop associated with a saturated liquid helium bath can satisfy temperature constraints in different ways (playing on bath temperature and on the supercritical flow), but that only one is optimal from an energy point of view (every Watt consumed at 4.2 K consumes at least 220 W of electrical power). To find the optimal operational conditions, an algorithm capable of minimizing an objective function (energy consumption at 5 bar, 5 K) subject to constraints has been written. This algorithm works with a supercritical loop model realized with the Simcryogenics [2] library. This article describes the model used and the results of constrained optimization. It will be possible to see that the changes in operating point on the temperature of the magnet (e.g. in case of a change in the plasma configuration) involves large changes on the cryodistribution optimal operating point. Recommendations will be made to ensure that the energetic consumption is kept as low as possible despite the changing operating point. This work is partially supported by EUROfusion Consortium through the Euratom Research and Training Program 20142018 under Grant 633053.

  17. A self-adaptive genetic algorithm to estimate JA model parameters considering minor loops

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hai-liang; Wen, Xi-shan; Lan, Lei; An, Yun-zhu; Li, Xiao-ping

    2015-01-15

    A self-adaptive genetic algorithm for estimating Jiles–Atherton (JA) magnetic hysteresis model parameters is presented. The fitness function is established based on the distances between equidistant key points of normalized hysteresis loops. Linearity function and logarithm function are both adopted to code the five parameters of JA model. Roulette wheel selection is used and the selection pressure is adjusted adaptively by deducting a proportional which depends on current generation common value. The Crossover operator is established by combining arithmetic crossover and multipoint crossover. Nonuniform mutation is improved by adjusting the mutation ratio adaptively. The algorithm is used to estimate the parameters of one kind of silicon-steel sheet’s hysteresis loops, and the results are in good agreement with published data. - Highlights: • We present a method to find JA parameters for both major and minor loops. • Fitness function is based on distances between key points of normalized loops. • The selection pressure is adjusted adaptively based on generations.

  18. Two-loop renormalization in the standard model, part II. Renormalization procedures and computational techniques

    Energy Technology Data Exchange (ETDEWEB)

    Actis, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Passarino, G. [Torino Univ. (Italy). Dipt. di Fisica Teorica; INFN, Sezione di Torino (Italy)

    2006-12-15

    In part I general aspects of the renormalization of a spontaneously broken gauge theory have been introduced. Here, in part II, two-loop renormalization is introduced and discussed within the context of the minimal Standard Model. Therefore, this paper deals with the transition between bare parameters and fields to renormalized ones. The full list of one- and two-loop counterterms is shown and it is proven that, by a suitable extension of the formalism already introduced at the one-loop level, two-point functions suffice in renormalizing the model. The problem of overlapping ultraviolet divergencies is analyzed and it is shown that all counterterms are local and of polynomial nature. The original program of 't Hooft and Veltman is at work. Finite parts are written in a way that allows for a fast and reliable numerical integration with all collinear logarithms extracted analytically. Finite renormalization, the transition between renormalized parameters and physical (pseudo-)observables, are discussed in part III where numerical results, e.g. for the complex poles of the unstable gauge bosons, are shown. An attempt is made to define the running of the electromagnetic coupling constant at the two-loop level. (orig.)

  19. Modeling and Analysis of a Closed-Loop System for High-Q MEMS Accelerometer Sensor

    Directory of Open Access Journals (Sweden)

    Wang Yalin

    2018-01-01

    Full Text Available High-Q sensing element is desirable for high performance while makes the loop control a great challenge. This paper presents a closed-loop system for high-Q capacitive MEMS accelerometer which has achieved loop control effectively. The proportional-derivative(PDcontrol is developed in the system to improve the system stability. In addition, pulse width modulation (PWM electrostatic force feedback is designed in the loop to overcome the nonlinearity. Furthermore, a sigma-delta (ΣΔ modulator with noise shaping is built to realize digital output. System model is built in Matlab/Simulink. The simulation results indicate that equivalent Q value is reduced to 1.5 to ensure stability and responsiveness of the system. The effective number of bits of system output is 14.7 bits. The system nonlinearity is less than 5‰. The equivalent linear model including main noise factors is built, and then a complete theory of noise and linearity analysis is established to contribute to common MEMS accelerometer research.

  20. A self-adaptive genetic algorithm to estimate JA model parameters considering minor loops

    International Nuclear Information System (INIS)

    Lu, Hai-liang; Wen, Xi-shan; Lan, Lei; An, Yun-zhu; Li, Xiao-ping

    2015-01-01

    A self-adaptive genetic algorithm for estimating Jiles–Atherton (JA) magnetic hysteresis model parameters is presented. The fitness function is established based on the distances between equidistant key points of normalized hysteresis loops. Linearity function and logarithm function are both adopted to code the five parameters of JA model. Roulette wheel selection is used and the selection pressure is adjusted adaptively by deducting a proportional which depends on current generation common value. The Crossover operator is established by combining arithmetic crossover and multipoint crossover. Nonuniform mutation is improved by adjusting the mutation ratio adaptively. The algorithm is used to estimate the parameters of one kind of silicon-steel sheet’s hysteresis loops, and the results are in good agreement with published data. - Highlights: • We present a method to find JA parameters for both major and minor loops. • Fitness function is based on distances between key points of normalized loops. • The selection pressure is adjusted adaptively based on generations

  1. One-loop beta functions for the orientable non-commutative Gross Neveu model TH1"-->

    Science.gov (United States)

    Lakhoua, A.; Vignes-Tourneret, F.; Wallet, J.-C.

    2007-11-01

    We compute at the one-loop order the β-functions for a renormalisable non-commutative analog of the Gross Neveu model defined on the Moyal plane. The calculation is performed within the so called x-space formalism. We find that this non-commutative field theory exhibits asymptotic freedom for any number of colors. The β-function for the non-commutative counterpart of the Thirring model is found to be non vanishing.

  2. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    Science.gov (United States)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  3. Dose rates modeling of pressurized water reactor primary loop components with SCALE6.0

    International Nuclear Information System (INIS)

    Matijević, Mario; Pevec, Dubravko; Trontl, Krešimir

    2015-01-01

    Highlights: • Shielding analysis of the typical PWR primary loop components was performed. • FW-CADIS methodology was thoroughly investigated using SCALE6.0 code package. • Versatile ability of SCALE6.0/FW-CADIS for deep penetration models was proved. • The adjoint source with focus on specific material can improve MC modeling. - Abstract: The SCALE6.0 simulation model of a typical PWR primary loop components for effective dose rates calculation based on hybrid deterministic–stochastic methodology was created. The criticality sequence CSAS6/KENO-VI of the SCALE6.0 code package, which includes KENO-VI Monte Carlo code, was used for criticality calculations, while neutron and gamma dose rates distributions were determined by MAVRIC/Monaco shielding sequence. A detailed model of a combinatorial geometry, materials and characteristics of a generic two loop PWR facility is based on best available input data. The sources of ionizing radiation in PWR primary loop components included neutrons and photons originating from critical core and photons from activated coolant in two primary loops. Detailed calculations of the reactor pressure vessel and the upper reactor head have been performed. The efficiency of particle transport for obtaining global Monte Carlo dose rates was further examined and quantified with a flexible adjoint source positioning in phase-space. It was demonstrated that generation of an accurate importance map (VR parameters) is a paramount step which enabled obtaining Monaco dose rates with fairly uniform uncertainties. Computer memory consumption by the S N part of hybrid methodology represents main obstacle when using meshes with large number of cells together with high S N /P N parameters. Detailed voxelization (homogenization) process in Denovo together with high S N /P N parameters is essential for precise VR parameters generation which will result in optimized MC distributions. Shielding calculations were also performed for the reduced PWR

  4. The Sustainability Cycle and Loop: models for a more unified understanding of sustainability.

    Science.gov (United States)

    Hay, Laura; Duffy, Alex; Whitfield, R I

    2014-01-15

    In spite of the considerable research on sustainability, reports suggest that we are barely any closer to a more sustainable society. As such, there is an urgent need to improve the effectiveness of human efforts towards sustainability. A clearer and more unified understanding of sustainability among different people and sectors could help to facilitate this. This paper presents the results of an inductive literature investigation, aiming to develop models to explain the nature of sustainability in the Earth system, and how humans can effectively strive for it. The major contributions are two general and complementary models, that may be applied in any context to provide a common basis for understanding sustainability: the Sustainability Cycle (S-Cycle), and the Sustainability Loop (S-Loop). Literature spanning multiple sectors is examined from the perspective of three concepts, emerging as significant in relation to our aim. Systems are shown to provide the context for human action towards sustainability, and the nature of the Earth system and its sub-systems is explored. Activities are outlined as a fundamental target that humans need to sustain, since they produce the entities both needed and desired by society. The basic behaviour of activities operating in the Earth system is outlined. Finally, knowledge is positioned as the driver of human action towards sustainability, and the key components of knowledge involved are examined. The S-Cycle and S-Loop models are developed via a process of induction from the reviewed literature. The S-Cycle describes the operation of activities in a system from the perspective of sustainability. The sustainability of activities in a system depends upon the availability of resources, and the availability of resources depends upon the rate that activities consume and produce them. Humans may intervene in these dynamics via an iterative process of interpretation and action, described in the S-Loop model. The models are briefly

  5. The implementation of a mid-loop model for Doel 1/2 training simulator

    International Nuclear Information System (INIS)

    Houte, U. Van; Damme, M. Van

    1999-01-01

    To cope with upgrade requirements of the Full Scope training simulator of Doel 1/2 (Belgium), a 5-equation model has been implemented for mid-loop operation training. This model will permit to simulate the following conditions: (a) Normal operating conditions; Draining of the primary circuit at vacuum conditions; Venting of the primary loop with the help of a vacuum pump; Filling-up of the primely circuit, (2) Incident and Accident conditions; Loss of RHR (Cavitation of RHR pumps); Reactor heat-up and boiling. In order to simulate the pressurizer water hold-up and loss of steam generator reflux cooling, flooding correlations are used predicting steam generator U-tube and pressurizer surgeline flooding. Loss of horizontal stratification in the hot leg has been taken into account. A steam generator piston model for heat transfer has been implemented. This paper describes the mid-loop model specifications, its implementation and testing in the simulator environment. Special attention is given on how the model has been integrated within the existing simulator. (author)

  6. A small-scale eruption leading to a blowout macrospicule jet in an on-disk coronal hole

    International Nuclear Information System (INIS)

    Adams, Mitzi; Sterling, Alphonse C.; Moore, Ronald L.; Gary, G. Allen

    2014-01-01

    We examine the three-dimensional magnetic structure and dynamics of a solar EUV-macrospicule jet that occurred on 2011 February 27 in an on-disk coronal hole. The observations are from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) and the SDO Helioseismic and Magnetic Imager (HMI). The observations reveal that in this event, closed-field-carrying cool absorbing plasma, as in an erupting mini-filament, erupted and opened, forming a blowout jet. Contrary to some jet models, there was no substantial recently emerged, closed, bipolar-magnetic field in the base of the jet. Instead, over several hours, flux convergence and cancellation at the polarity inversion line inside an evolved arcade in the base apparently destabilized the entire arcade, including its cool-plasma-carrying core field, to undergo a blowout eruption in the manner of many standard-sized, arcade-blowout eruptions that produce a flare and coronal mass ejection. Internal reconnection made bright 'flare' loops over the polarity inversion line inside the blowing-out arcade field, and external reconnection of the blowing-out arcade field with an ambient open field made longer and dimmer EUV loops on the outside of the blowing-out arcade. That the loops made by the external reconnection were much larger than the loops made by the internal reconnection makes this event a new variety of blowout jet, a variety not recognized in previous observations and models of blowout jets.

  7. A small-scale eruption leading to a blowout macrospicule jet in an on-disk coronal hole

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Mitzi; Sterling, Alphonse C.; Moore, Ronald L. [Space Science Office, ZP13, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Gary, G. Allen, E-mail: mitzi.adams@nasa.gov, E-mail: alphonse.sterling@nasa.gov, E-mail: ron.moore@nasa.gov, E-mail: gag0002@uah.edu [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35805, USA. (United States)

    2014-03-01

    We examine the three-dimensional magnetic structure and dynamics of a solar EUV-macrospicule jet that occurred on 2011 February 27 in an on-disk coronal hole. The observations are from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) and the SDO Helioseismic and Magnetic Imager (HMI). The observations reveal that in this event, closed-field-carrying cool absorbing plasma, as in an erupting mini-filament, erupted and opened, forming a blowout jet. Contrary to some jet models, there was no substantial recently emerged, closed, bipolar-magnetic field in the base of the jet. Instead, over several hours, flux convergence and cancellation at the polarity inversion line inside an evolved arcade in the base apparently destabilized the entire arcade, including its cool-plasma-carrying core field, to undergo a blowout eruption in the manner of many standard-sized, arcade-blowout eruptions that produce a flare and coronal mass ejection. Internal reconnection made bright 'flare' loops over the polarity inversion line inside the blowing-out arcade field, and external reconnection of the blowing-out arcade field with an ambient open field made longer and dimmer EUV loops on the outside of the blowing-out arcade. That the loops made by the external reconnection were much larger than the loops made by the internal reconnection makes this event a new variety of blowout jet, a variety not recognized in previous observations and models of blowout jets.

  8. Coronal mass ejections and coronal structures

    International Nuclear Information System (INIS)

    Hildner, E.; Bassi, J.; Bougeret, J.L.

    1986-01-01

    Research on coronal mass ejections (CMF) took a variety of forms, both observational and theoretical. On the observational side there were: case studies of individual events, in which it was attempted to provide the most complete descriptions possible, using correlative observations in diverse wavelengths; statistical studies of the properties of CMEs and their associated activity; observations which may tell us about the initiation of mass ejections; interplanetary observations of associated shocks and energetic particles; observations of CMEs traversing interplanetary space; and the beautiful synoptic charts which show to what degree mass ejections affect the background corona and how rapidly (if at all) the corona recovers its pre-disturbance form. These efforts are described in capsule form with an emphasis on presenting pictures, graphs, and tables so that the reader can form a personal appreciation of the work and its results

  9. Dynamic modelling and PID loop control of an oil-injected screw compressor package

    Science.gov (United States)

    Poli, G. W.; Milligan, W. J.; McKenna, P.

    2017-08-01

    A significant amount of time is spent tuning the PID (Proportional, Integral and Derivative) control loops of a screw compressor package due to the unique characteristics of the system. Common mistakes incurred during the tuning of a PID control loop include improper PID algorithm selection and unsuitable tuning parameters of the system resulting in erratic and inefficient operation. This paper details the design and development of software that aims to dynamically model the operation of a single stage oil injected screw compressor package deployed in upstream oil and gas applications. The developed software will be used to assess and accurately tune PID control loops present on the screw compressor package employed in controlling the oil pressures, temperatures and gas pressures, in a bid to improve control of the operation of the screw compressor package. Other applications of the modelling software will include its use as an evaluation tool that can estimate compressor package performance during start up, shutdown and emergency shutdown processes. The paper first details the study into the fundamental operational characteristics of each of the components present on the API 619 screw compressor package and then discusses the creation of a dynamic screw compressor model within the MATLAB/Simulink software suite. The paper concludes by verifying and assessing the accuracy of the created compressor model using data collected from physical screw compressor packages.

  10. Dynamic control of modeled tonic-clonic seizure states with closed-loop stimulation

    Directory of Open Access Journals (Sweden)

    Bryce eBeverlin II

    2013-02-01

    Full Text Available Seizure control using deep brain stimulation (DBS provides an alternative therapy to patients with intractable and drug resistant epilepsy. This paper presents novel DBS stimulus protocols to disrupt seizures. Two protocols are presented: open-loop stimulation and a closed-loop feedback system utilizing measured firing rates to adjust stimulus frequency. Stimulation suppression is demonstrated in a computational model using 3000 excitatory Morris-Lecar model neurons connected with depressing synapses. Cells are connected using second order network topology to simulate network topologies measured in cortical networks. The network spontaneously switches from tonic to clonic as synaptic strengths and tonic input to the neurons decreases. To this model we add periodic stimulation pulses to simulate DBS. Periodic forcing can synchronize or desynchronize an oscillating population of neurons, depending on the stimulus frequency and amplitude. Therefore, it is possible to either extend or truncate the tonic or clonic phases of the seizure. Stimuli applied at the firing rate of the neuron generally synchronize the population while stimuli slightly slower than the firing rate prevent synchronization. We present an adaptive stimulation algorithm that measures the firing rate of a neuron and adjusts the stimulus to maintain a relative stimulus frequency to firing frequency and demonstrate it in a computational model of a tonic-clonic seizure. This adaptive algorithm can affect the duration of the tonic phase using much smaller stimulus amplitudes than the open-loop control.

  11. One-loop corrections for e+e- annihilation into μ+μ- in the Weinberg model

    NARCIS (Netherlands)

    Veltman, M.J.G.; Passarino, G.

    1979-01-01

    Analytical expressions for the cross section including all the one-loop radiative corrections in the context of the Weinberg model are presented. The systematic calculation of one-loop diagrams has been carried out using a recently proposed scheme. Numerical results are shown in a region from

  12. Hardware-in-the-loop vehicle system including dynamic fuel cell model

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Z.; Lenhart, T.; Braun, M.; Maencher, H. [MAGNUM Automatisierungstechnik GmbH, Darmstadt (Germany)

    2005-07-01

    In order to reduce costs and accelerate the development of fuel cells and systems the usage of hardware-in-the-loop (HIL) testing and dynamic modelling opens new possibilities. The dynamic model of a proton exchange membrane fuel cell (PEMFC) together with a vehicle model is used to carry out a comprehensive system investigation, which allows designing and optimising the behaviour of the components and the entire fuel cell system. The set-up of a HIL system enables real time interaction between the selected hardware and the model. (orig.)

  13. One loop beta functions and fixed points in higher derivative sigma models

    International Nuclear Information System (INIS)

    Percacci, Roberto; Zanusso, Omar

    2010-01-01

    We calculate the one loop beta functions of nonlinear sigma models in four dimensions containing general two- and four-derivative terms. In the O(N) model there are four such terms and nontrivial fixed points exist for all N≥4. In the chiral SU(N) models there are in general six couplings, but only five for N=3 and four for N=2; we find fixed points only for N=2, 3. In the approximation considered, the four-derivative couplings are asymptotically free but the coupling in the two-derivative term has a nonzero limit. These results support the hypothesis that certain sigma models may be asymptotically safe.

  14. Feedback versus open-loop leader/fringe models of the oil supply market

    International Nuclear Information System (INIS)

    Pelot, R.P.; Fuller, J.D.

    1991-01-01

    A multiperiod feedback Stackelberg model of exhaustible resources is presented. The results of the feedback model are compared with those from a corresponding open-loop formulation to determine whether the solution to the latter, and much simpler, model produces the same or similar outcomes. An analysis of the world oil market with OPEC as leader dictating the price to a competitive fringe comprised of the remaining oil suppliers demonstrates the features of the model. It permits variable length periods and cumulative extraction cost functions

  15. A time-dependent stop operator for modeling a class of singular hysteresis loops in a piezoceramic actuator

    Energy Technology Data Exchange (ETDEWEB)

    Al Janaideh, Mohammad, E-mail: aljanaideh@gmail.com [Department of Mechatronics Engineering, The University of Jordan, 11942 Amman (Jordan)

    2013-03-15

    We present a time-dependent stop operator-based Prandtl–Ishlinskii model to characterize singular hysteresis loops in a piezoceramic actuator. The model is constructed based on the time-dependent threshold. The inverse time-dependent stop operator-based Prandtl–Ishlinskii model is obtained analytically and it can be applied as a feedforward compensator to compensate for singular hysteresis loops in a class of smart-material-based actuators. The objective of this study is to present an invertible Prandtl–Ishlinskii model that can be applied as a feedforward compensator to compensate for singular hysteresis loops without inserting a feedback control system.

  16. A time-dependent stop operator for modeling a class of singular hysteresis loops in a piezoceramic actuator

    International Nuclear Information System (INIS)

    Al Janaideh, Mohammad

    2013-01-01

    We present a time-dependent stop operator-based Prandtl–Ishlinskii model to characterize singular hysteresis loops in a piezoceramic actuator. The model is constructed based on the time-dependent threshold. The inverse time-dependent stop operator-based Prandtl–Ishlinskii model is obtained analytically and it can be applied as a feedforward compensator to compensate for singular hysteresis loops in a class of smart-material-based actuators. The objective of this study is to present an invertible Prandtl–Ishlinskii model that can be applied as a feedforward compensator to compensate for singular hysteresis loops without inserting a feedback control system

  17. Gravity loop corrections to the standard model Higgs in Einstein gravity

    International Nuclear Information System (INIS)

    Yugo Abe; Masaatsu Horikoshi; Takeo Inami

    2016-01-01

    We study one-loop quantum gravity corrections to the standard model Higgs potential V(φ) à la Coleman-Weinberg and examine the stability question of V(φ) in the energy region of Planck mass scale, μ ≃ M_P_l (M_P_l = 1.22x10"1"9 GeV). We calculate the gravity one-loop corrections to V(φ) in Einstein gravity by using the momentum cut-off Λ. We have found that even small gravity corrections compete with the standard model term of V(φ) and affect the stability argument of the latter part alone. This is because the latter part is nearly zero in the energy region of M_P_l. (author)

  18. Four-loop critical exponents for the Gross-Neveu-Yukawa models

    International Nuclear Information System (INIS)

    Zerf, Nikolai; Mihaila, Luminita N.; Herbut, Igor F.; Scherer, Michael M.

    2017-09-01

    We study the chiral Ising, the chiral XY and the chiral Heisenberg models at four-loop order with the perturbative renormalization group in 4-ε dimensions and compute critical exponents for the Gross-Neveu-Yukawa fixed points to order O(ε 4 ). Further, we provide Pade estimates for the correlation length exponent, the boson and fermion anomalous dimension as well as the leading correction to scaling exponent in 2+1 dimensions. We also confirm the emergence of supersymmetric field theories at four loops for the chiral Ising and the chiral XY models with N=1/4 and N=1/2 fermions, respectively. Furthermore, applications of our results relevant to various quantum transitions in the context of Dirac and Weyl semimetals are discussed, including interaction-induced transitions in graphene and surface states of topological insulators.

  19. Four-loop critical exponents for the Gross-Neveu-Yukawa models

    Energy Technology Data Exchange (ETDEWEB)

    Zerf, Nikolai; Mihaila, Luminita N. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Herbut, Igor F. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Physics; Scherer, Michael M. [Koeln Univ. (Germany). Inst. for Theoretical Physics

    2017-09-15

    We study the chiral Ising, the chiral XY and the chiral Heisenberg models at four-loop order with the perturbative renormalization group in 4-ε dimensions and compute critical exponents for the Gross-Neveu-Yukawa fixed points to order O(ε{sup 4}). Further, we provide Pade estimates for the correlation length exponent, the boson and fermion anomalous dimension as well as the leading correction to scaling exponent in 2+1 dimensions. We also confirm the emergence of supersymmetric field theories at four loops for the chiral Ising and the chiral XY models with N=1/4 and N=1/2 fermions, respectively. Furthermore, applications of our results relevant to various quantum transitions in the context of Dirac and Weyl semimetals are discussed, including interaction-induced transitions in graphene and surface states of topological insulators.

  20. Modelling of Wheat-Flour Dough Mixing as an Open-Loop Hysteretic Process

    Czech Academy of Sciences Publication Activity Database

    Anderssen, R.; Kružík, Martin

    2013-01-01

    Roč. 18, č. 2 (2013), s. 283-293 ISSN 1531-3492 R&D Projects: GA AV ČR IAA100750802 Keywords : Dissipation * Dough mixing * Rate-independent systems Subject RIV: BA - General Mathematics Impact factor: 0.628, year: 2013 http://library.utia.cas.cz/separaty/2013/MTR/kruzik-modelling of wheat-flour dough mixing as an open-loop hysteretic process.pdf

  1. Loop kinematics

    International Nuclear Information System (INIS)

    Migdal, A.A.

    1982-01-01

    Basic operators acting in the loop space are introduced. The topology of this space and properties of the Stokes type loop functionals are discussed. The parametrically invariant loop calculus developed here is used in the loop dynamics

  2. Coronal mass ejections and solar radio bursts

    International Nuclear Information System (INIS)

    Kundu, M.R.

    1990-01-01

    The properties of coronal mass ejection (CME) events and their radio signatures are discussed. These signatures are mostly in the form of type II and type IV burst emissions. Although type II bursts are temporally associated with CMEs, it is shown that there is no spatial relationship between them. Type II's associated with CMEs have in most cases a different origin, and they are not piston-driven by CMEs. Moving type IV and type II bursts can be associated with slow CMEs with speeds as low as 200 km/s, contrary to the earlier belief that only CMEs with speeds >400 km/s are associated with radio bursts. A specific event has been discussed in which the CME and type IV burst has nearly the same speed and direction, but the type II burst location was behind the CME and its motion was transverse. The speed and motion of the type II burst strongly suggest that the type II shock was decoupled from the CME and was probably due to a flare behind the limb. Therefore only the type IV source could be directly associated with the slow CME. The electrons responsble for the type IV emission could be produced in the flare or in the type II and then become trapped in a plasmoid associated with the CME. The reconnected loop could then move outwards as in the usual palsmoid model. Alternatively, the type IV emission could be interpreted as due to electrons produced by acceleration in wave turbulence driven by currents in the shock front driven by the CME. The lower-hybrid model Lampe and Papadopoulos (1982), which operates at both fast and slow mode shocks, could be applied to this situation. (author). 31 refs., 12 figs

  3. Mathematical modelling for magnetite (crude removal from primary heat transfer loop by ion-exchange resins

    Directory of Open Access Journals (Sweden)

    Zeeshan Nawaz

    2009-04-01

    Full Text Available The present research focuses to develop mathematical model for the removal of iron (magnetite by ion-exchange resin from primary heat transfer loop of process industries. This mathematical model is based on operating capacities (that’s provide more effective design as compared to loading capacity from static laboratory tests. Results showed non-steady state distribution of external Fe2+ and limitations imposed on operating conditions, these conditions includes; loading and elution cycle time, flow rate, concentration of both loading and removal, volume of resin required. Number of generalized assumptions was made under shortcut modeling techniques to overcome the gap of theoretical and actual process design.

  4. Model-based closed-loop glucose control in type 1 diabetes

    DEFF Research Database (Denmark)

    Schmidt, Signe; Boiroux, Dimitri; Duun-Henriksen, Anne Katrine

    2013-01-01

    To improve type 1 diabetes mellitus (T1DM) management, we developed a model predictive control (MPC) algorithm for closed-loop (CL) glucose control based on a linear second-order deterministic-stochastic model. The deterministic part of the model is specified by three patient-specific parameters......: insulin sensitivity factor, insulin action time, and basal insulin infusion rate. The stochastic part is identical for all patients but identified from data from a single patient. Results of the first clinical feasibility test of the algorithm are presented....

  5. Dynamic modelling and hardware-in-the-loop testing of PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Vath, Andreas; Soehn, Matthias; Nicoloso, Norbert; Hartkopf, Thomas [Technische Universitaet Darmstadt/Institut fuer Elektrische Energie wand lung, Landgraf-Georg-Str. 4, D-64283 Darmstadt (Germany); Lemes, Zijad; Maencher, Hubert [MAGNUM Automatisierungstechnik GmbH, Bunsenstr. 22, D-64293 Darmstadt (Germany)

    2006-07-03

    Modelling and hardware-in-the-loop (HIL) testing of fuel cell components and entire systems open new ways for the design and advance development of FCs. In this work proton exchange membrane fuel cells (PEMFC) are dynamically modelled within MATLAB-Simulink at various operation conditions in order to establish a comprehensive description of their dynamic behaviour as well as to explore the modelling facility as a diagnostic tool. Set-up of a hardware-in-the-loop (HIL) system enables real time interaction between the selected hardware and the model. The transport of hydrogen, nitrogen, oxygen, water vapour and liquid water in the gas diffusion and catalyst layers of the stack are incorporated into the model according to their physical and electrochemical characteristics. Other processes investigated include, e.g., the membrane resistance as a function of the water content during fast load changes. Cells are modelled three-dimensionally and dynamically. In case of system simulations a one-dimensional model is preferred to reduce computation time. The model has been verified by experiments with a water-cooled stack. (author)

  6. Two-loop corrections to the ρ parameter in Two-Higgs-Doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Hessenberger, Stephan; Hollik, Wolfgang [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Muenchen (Germany)

    2017-03-15

    Models with two scalar doublets are among the simplest extensions of the Standard Model which fulfill the relation ρ = 1 at lowest order for the ρ parameter as favored by experimental data for electroweak observables allowing only small deviations from unity. Such small deviations Δρ originate exclusively from quantum effects with special sensitivity to mass splittings between different isospin components of fermions and scalars. In this paper the dominant two-loop electroweak corrections to Δρ are calculated in the CP-conserving THDM, resulting from the top-Yukawa coupling and the self-couplings of the Higgs bosons in the gauge-less limit. The on-shell renormalization scheme is applied. With the assumption that one of the CP-even neutral scalars represents the scalar boson observed by the LHC experiments, with standard properties, the two-loop non-standard contributions in Δρ can be separated from the standard ones. These contributions are of particular interest since they increase with mass splittings between non-standard Higgs bosons and can be additionally enhanced by tanβ and λ{sub 5}, an additional free coefficient of the Higgs potential, and can thus modify the one-loop result substantially. Numerical results are given for the dependence on the various non-standard parameters, and the influence on the calculation of electroweak precision observables is discussed. (orig.)

  7. Generalized nucleation and looping model for epigenetic memory of histone modifications

    Science.gov (United States)

    Erdel, Fabian; Greene, Eric C.

    2016-01-01

    Histone modifications can redistribute along the genome in a sequence-independent manner, giving rise to chromatin position effects and epigenetic memory. The underlying mechanisms shape the endogenous chromatin landscape and determine its response to ectopically targeted histone modifiers. Here, we simulate linear and looping-driven spreading of histone modifications and compare both models to recent experiments on histone methylation in fission yeast. We find that a generalized nucleation-and-looping mechanism describes key observations on engineered and endogenous methylation domains including intrinsic spatial confinement, independent regulation of domain size and memory, variegation in the absence of antagonists, and coexistence of short- and long-term memory at loci with weak and strong constitutive nucleation. These findings support a straightforward relationship between the biochemical properties of chromatin modifiers and the spatiotemporal modification pattern. The proposed mechanism gives rise to a phase diagram for cellular memory that may be generally applicable to explain epigenetic phenomena across different species. PMID:27382173

  8. New Constraints on Dark Matter Effective Theories from Standard Model Loops

    CERN Document Server

    Crivellin, Andreas; Procura, Massimiliano

    2014-01-01

    We consider an effective field theory for a gauge singlet Dirac dark matter (DM) particle interacting with the Standard Model (SM) fields via effective operators suppressed by the scale $\\Lambda \\gtrsim 1$ TeV. We perform a systematic analysis of the leading loop contributions to spin-independent (SI) DM--nucleon scattering using renormalization group evolution between $\\Lambda$ and the low-energy scale probed by direct detection experiments. We find that electroweak interactions induce operator mixings such that operators that are naively velocity-suppressed and spin-dependent can actually contribute to SI scattering. This allows us to put novel constraints on Wilson coefficients that were so far poorly bounded by direct detection. Constraints from current searches are comparable to LHC bounds, and will significantly improve in the near future. Interestingly, the loop contribution we find is maximally isospin violating even if the underlying theory is isospin conserving.

  9. Quark Loop Effects on Dressed Gluon Propagator in Framework of Global Color Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; SUN Wei-Min

    2006-01-01

    Based on the global color symmetry model (GCM), a method for obtaining the quark loop effects on the dressed gluon propagator in GCM is developed. In the chiral limit, it is found that the dressed gluon propagator containing the quark loop effects in the Nambu-Goldstone and Wigner phases are quite different. In solving the quark self-energy functions in the two different phases and subsequent study of bag constant one should use the above dressed gluon propagator as input. The above approach for obtaining the current quark mass effects on the dressed gluon propagator is quite general and can also be used to calculate the chemical potential dependence of the dressed gluon propagator.

  10. Two-loop renormalization in the standard model, part III. Renormalization equations and their solutions

    International Nuclear Information System (INIS)

    Actis, S.; Passarino, G.

    2006-12-01

    In part I and II of this series of papers all elements have been introduced to extend, to two loops, the set of renormalization procedures which are needed in describing the properties of a spontaneously broken gauge theory. In this paper, the final step is undertaken and finite renormalization is discussed. Two-loop renormalization equations are introduced and their solutions discussed within the context of the minimal standard model of fundamental interactions. These equations relate renormalized Lagrangian parameters (couplings and masses) to some input parameter set containing physical (pseudo-)observables. Complex poles for unstable gauge and Higgs bosons are used and a consistent setup is constructed for extending the predictivity of the theory from the Lep1 Z-boson scale (or the Lep2 WW scale) to regions of interest for LHC and ILC physics. (orig.)

  11. Two-loop renormalization in the standard model, part III. Renormalization equations and their solutions

    Energy Technology Data Exchange (ETDEWEB)

    Actis, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Passarino, G. [Torino Univ. (Italy). Dipt. di Fisica Teorica; INFN, Sezione di Torino (Italy)

    2006-12-15

    In part I and II of this series of papers all elements have been introduced to extend, to two loops, the set of renormalization procedures which are needed in describing the properties of a spontaneously broken gauge theory. In this paper, the final step is undertaken and finite renormalization is discussed. Two-loop renormalization equations are introduced and their solutions discussed within the context of the minimal standard model of fundamental interactions. These equations relate renormalized Lagrangian parameters (couplings and masses) to some input parameter set containing physical (pseudo-)observables. Complex poles for unstable gauge and Higgs bosons are used and a consistent setup is constructed for extending the predictivity of the theory from the Lep1 Z-boson scale (or the Lep2 WW scale) to regions of interest for LHC and ILC physics. (orig.)

  12. COMPOSITION OF CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zurbuchen, T. H.; Weberg, M.; Lepri, S. T. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI (United States); Von Steiger, R. [International Space Science Institute, Bern (Switzerland); Mewaldt, R. A. [California Institute of Technology, Pasadena, CA (United States); Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-07-20

    We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) < 10 eV, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q {sub Fe} > 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70% over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself.

  13. PHOTOSPHERIC PROPERTIES OF WARM EUV LOOPS AND HOT X-RAY LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Kano, R. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ueda, K. [Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tsuneta, S., E-mail: ryouhei.kano@nao.ac.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan)

    2014-02-20

    We investigate the photospheric properties (vector magnetic fields and horizontal velocity) of a well-developed active region, NOAA AR 10978, using the Hinode Solar Optical Telescope specifically to determine what gives rise to the temperature difference between ''warm loops'' (1-2 MK), which are coronal loops observed in EUV wavelengths, and ''hot loops'' (>3 MK), coronal loops observed in X-rays. We found that outside sunspots, the magnetic filling factor in the solar network varies with location and is anti-correlated with the horizontal random velocity. If we accept that the observed magnetic features consist of unresolved magnetic flux tubes, this anti-correlation can be explained by the ensemble average of flux-tube motion driven by small-scale random flows. The observed data are consistent with a flux tube width of ∼77 km and horizontal flow at ∼2.6 km s{sup –1} with a spatial scale of ∼120 km. We also found that outside sunspots, there is no significant difference between warm and hot loops either in the magnetic properties (except for the inclination) or in the horizontal random velocity at their footpoints, which are identified with the Hinode X-Ray Telescope and the Transition Region and Coronal Explorer. The energy flux injected into the coronal loops by the observed photospheric motion of the magnetic fields is estimated to be 2 × 10{sup 6} erg s{sup –1} cm{sup –2}, which is the same for both warm and hot loops. This suggests that coronal properties (e.g., loop length) play a more important role in giving rise to temperature differences of active-region coronal loops than photospheric parameters.

  14. The model of the thermal and hydraulic behaviour of a out-of-pile test loop; Model thermohidraulickog ponasanja vanreaktorskog exksperimentalnog cirkulacionog kola

    Energy Technology Data Exchange (ETDEWEB)

    Vehauc, A; Stosic, Z [Institut za nuklearne nauke Boris Kidric, Voinca, Belgrade (Yugoslavia)

    1988-07-01

    A complex circulation loop was modeled and a simulation program developed for the determination of the pressure, temperature, velocity and flow rate distribution in legs of the loop. The model was used to study the thermal and hydraulic behaviour of an out-of-pile test loop at IBK-ITE. For a given set of conditions in the test section, the model yields data on all the operating modes possible with the existing control system and in consequence on the optimum operating conditions for the loop as a whole. (author)

  15. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.

    Directory of Open Access Journals (Sweden)

    Yaroslav I Molkov

    Full Text Available Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2 exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient

  16. Coronal seismology waves and oscillations in stellar coronae

    CERN Document Server

    Stepanov, Alexander; Nakariakov, Valery M

    2012-01-01

    This concise and systematic account of the current state of this new branch of astrophysics presents the theoretical foundations of plasma astrophysics, magneto-hydrodynamics and coronal magnetic structures, taking into account the full range of available observation techniques -- from radio to gamma. The book discusses stellar loops during flare energy releases, MHD waves and oscillations, plasma instabilities and heating and charged particle acceleration. Current trends and developments in MHD seismology of solar and stellar coronal plasma systems are also covered, while recent p

  17. Loop calculations for the non-commutative U*(1) gauge field model with oscillator term

    International Nuclear Information System (INIS)

    Blaschke, Daniel N.; Grosse, Harald; Kronberger, Erwin; Schweda, Manfred; Wohlgenannt, Michael

    2010-01-01

    Motivated by the success of the non-commutative scalar Grosse-Wulkenhaar model, a non-commutative U * (1) gauge field theory including an oscillator-like term in the action has been put forward in (Blaschke et al. in Europhys. Lett. 79:61002, 2007). The aim of the current work is to analyze whether that action can lead to a fully renormalizable gauge model on non-commutative Euclidean space. In a first step, explicit one-loop graph computations are hence presented, and their results as well as necessary modifications of the action are successively discussed. (orig.)

  18. Reduced Moment-Based Models for Oxygen Precipitates and Dislocation Loops in Silicon

    Science.gov (United States)

    Trzynadlowski, Bart

    The demand for ever smaller, higher-performance integrated circuits and more efficient, cost-effective solar cells continues to push the frontiers of process technology. Fabrication of silicon devices requires extremely precise control of impurities and crystallographic defects. Failure to do so not only reduces performance, efficiency, and yield, it threatens the very survival of commercial enterprises in today's fiercely competitive and price-sensitive global market. The presence of oxygen in silicon is an unavoidable consequence of the Czochralski process, which remains the most popular method for large-scale production of single-crystal silicon. Oxygen precipitates that form during thermal processing cause distortion of the surrounding silicon lattice and can lead to the formation of dislocation loops. Localized deformation caused by both of these defects introduces potential wells that trap diffusing impurities such as metal atoms, which is highly desirable if done far away from sensitive device regions. Unfortunately, dislocations also reduce the mechanical strength of silicon, which can cause wafer warpage and breakage. Engineers must negotiate this and other complex tradeoffs when designing fabrication processes. Accomplishing this in a complex, modern process involving a large number of thermal steps is impossible without the aid of computational models. In this dissertation, new models for oxygen precipitation and dislocation loop evolution are described. An oxygen model using kinetic rate equations to evolve the complete precipitate size distribution was developed first. This was then used to create a reduced model tracking only the moments of the size distribution. The moment-based model was found to run significantly faster than its full counterpart while accurately capturing the evolution of oxygen precipitates. The reduced model was fitted to experimental data and a sensitivity analysis was performed to assess the robustness of the results. Source

  19. Modeling the Global Coronal Field with Simulated Synoptic Magnetograms from Earth and the Lagrange Points L3, L4, and L5

    Science.gov (United States)

    Petrie, Gordon; Pevtsov, Alexei; Schwarz, Andrew; DeRosa, Marc

    2018-06-01

    The solar photospheric magnetic flux distribution is key to structuring the global solar corona and heliosphere. Regular full-disk photospheric magnetogram data are therefore essential to our ability to model and forecast heliospheric phenomena such as space weather. However, our spatio-temporal coverage of the photospheric field is currently limited by our single vantage point at/near Earth. In particular, the polar fields play a leading role in structuring the large-scale corona and heliosphere, but each pole is unobservable for {>} 6 months per year. Here we model the possible effect of full-disk magnetogram data from the Lagrange points L4 and L5, each extending longitude coverage by 60°. Adding data also from the more distant point L3 extends the longitudinal coverage much further. The additional vantage points also improve the visibility of the globally influential polar fields. Using a flux-transport model for the solar photospheric field, we model full-disk observations from Earth/L1, L3, L4, and L5 over a solar cycle, construct synoptic maps using a novel weighting scheme adapted for merging magnetogram data from multiple viewpoints, and compute potential-field models for the global coronal field. Each additional viewpoint brings the maps and models into closer agreement with the reference field from the flux-transport simulation, with particular improvement at polar latitudes, the main source of the fast solar wind.

  20. Dynamic fuel cell models and their application in hardware in the loop simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Zijad; Maencher, H. [MAGNUM Automatisierungstechnik GmbH, Bunsenstr. 22, D-64293 Darmstadt (Germany); Vath, Andreas; Hartkopf, Th. [Technische Universitaet Darmstadt/Institut fuer Elektrische Energiewandlung, Landgraf-Georg-Str. 4, D-64283 Darmstadt (Germany)

    2006-03-21

    Currently, fuel cell technology plays an important role in the development of alternative energy converters for mobile, portable and stationary applications. With the help of physical based models of fuel cell systems and appropriate test benches it is possible to design different applications and investigate their stationary and dynamic behaviour. The polymer electrolyte membrane (PEM) fuel cell system model includes gas humidifier, air and hydrogen supply, current converter and a detailed stack model incorporating the physical characteristics of the different layers. In particular, the use of these models together with hardware in the loop (HIL) capable test stands helps to decrease the costs and accelerate the development of fuel cell systems. The interface program provides fast data exchange between the test bench and the physical model of the fuel cell or any other systems in real time. So the flexibility and efficiency of the test bench increase fundamentally, because it is possible to replace real components with their mathematical models. (author)

  1. Mass-loss Rates from Coronal Mass Ejections: A Predictive Theoretical Model for Solar-type Stars

    Energy Technology Data Exchange (ETDEWEB)

    Cranmer, Steven R. [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309 (United States)

    2017-05-10

    Coronal mass ejections (CMEs) are eruptive events that cause a solar-type star to shed mass and magnetic flux. CMEs tend to occur together with flares, radio storms, and bursts of energetic particles. On the Sun, CME-related mass loss is roughly an order of magnitude less intense than that of the background solar wind. However, on other types of stars, CMEs have been proposed to carry away much more mass and energy than the time-steady wind. Earlier papers have used observed correlations between solar CMEs and flare energies, in combination with stellar flare observations, to estimate stellar CME rates. This paper sidesteps flares and attempts to calibrate a more fundamental correlation between surface-averaged magnetic fluxes and CME properties. For the Sun, there exists a power-law relationship between the magnetic filling factor and the CME kinetic energy flux, and it is generalized for use on other stars. An example prediction of the time evolution of wind/CME mass-loss rates for a solar-mass star is given. A key result is that for ages younger than about 1 Gyr (i.e., activity levels only slightly higher than the present-day Sun), the CME mass loss exceeds that of the time-steady wind. At younger ages, CMEs carry 10–100 times more mass than the wind, and such high rates may be powerful enough to dispel circumstellar disks and affect the habitability of nearby planets. The cumulative CME mass lost by the young Sun may have been as much as 1% of a solar mass.

  2. The energy balance in coronal holes and average quiet-sun regions

    Science.gov (United States)

    Raymond, J. C.; Doyle, J. G.

    1981-01-01

    Emission measure curves are presented for average coronal hole and quiet-sun spectra taken during the Skylab mission by Vernazza and Reeves (1978), and the curves are used to discuss the energy balance in each region. Close-coupling calculations are used for the Be sequence, assuming a 10 level ion; for B sequence ions mainly distorted wave calculations in an 11 level ion are used, but close-coupling cross sections are used for some ions; for C and Mg sequence ions, distorted wave calculations are used with 15 and 10 level ions, respectively, and close-coupling results are used for Li-like ions with two levels. Results are presented and include the following: the coronal hole spectrum shows a smaller slope in the emission measure distribution, consistent with the expected outflow effects. It is concluded that the simple constant pressure models of static coronal loops of constant cross section are basically able to match the observed emission measure distribution of the average quiet sun between 1,000,000 and 10,000,000 K. However, the cell center and network distributions are respectively steeper and shallower than predicted by the detailed cooling curve.

  3. Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: A better model

    International Nuclear Information System (INIS)

    Dong Qingshan; Shang Hongtao; Wu Wei; Chen Fulin; Zhang Junrui; Guo Jiaping; Mao Tianqiu

    2012-01-01

    The most important problem for the survival of thick 3-dimensional tissues is the lack of vascularization in the context of bone tissue engineering. In this study, a modified arteriovenous loop (AVL) was developed to prefabricate an axial vascularized tissue engineering coral bone in rabbit, with comparison of the arteriovenous bundle (AVB) model. An arteriovenous fistula between rabbit femoral artery and vein was anastomosed to form an AVL. It was placed in a circular side groove of the coral block. The complex was wrapped with an expanded-polytetrafluoroethylene membrane and implanted beneath inguinal skin. After 2, 4, 6 and 8 weeks, the degree of vascularization was evaluated by India ink perfusion, histological examination, vascular casts, and scanning electron microscopy images of vascular endangium. Newly formed fibrous tissues and vasculature extended over the surfaces and invaded the interspaces of entire coral block. The new blood vessels robustly sprouted from the AVL. Those invaginated cavities in the vascular endangium from scanning electron microscopy indicated vessel's sprouted pores. Above indexes in AVL model are all superior to that in AVB model, indicating that the modified AVL model could more effectively develop vascularization in larger tissue engineering bone. - Highlights: ► A modified arteriovenous loop (AVL) model in rabbit was developed in this study. ► Axial prevascularization was induced in a larger coral block by using the AVL. ► The prefabrication of axial vascularized coral bone is superior as vascular carrier.

  4. Second and third stages of project for the implementation of two asymmetric cooling loops modeled by the ALMOD3 code

    International Nuclear Information System (INIS)

    Dominguez, L.; Camargo, C.T.M.

    1985-04-01

    The second and third steps of the project for implementation of two non-symmetric cooling loops modeled by the ALMOD3 computer code are presented. These steps consists in activate the option for 2 loops already present in ALMOD3 original version and to introduce the GEVAP model for one of the two steam generators. In ALMOD3 original version the simulation of two non-symmetric loops was only possible using external functions, which provide the removed heat for each time step for one of the steam generators. With the introduction of GEVAP model, it is possible to obtain more accurate results. Due to its simplicity, the computer time required for execution is short. The results obtained in Angra 1 simulations are presented, analysed and compared with results obtained using one loop for simulating symmetric transients. (Author) [pt

  5. A photovoltaic source I/U model suitable for hardware in the loop application

    Directory of Open Access Journals (Sweden)

    Stala Robert

    2017-12-01

    Full Text Available This paper presents a novel, low-complexity method of simulating PV source characteristics suitable for real-time modeling and hardware implementation. The application of the suitable model of the PV source as well as the model of all the PV system components in a real-time hardware gives a safe, fast and low cost method of testing PV systems. The paper demonstrates the concept of the PV array model and the hardware implementation in FPGAs of the system which combines two PV arrays. The obtained results confirm that the proposed model is of low complexity and can be suitable for hardware in the loop (HIL tests of the complex PV system control, with various arrays operating under different conditions.

  6. An observationally-driven kinetic approach to coronal heating

    Science.gov (United States)

    Moraitis, K.; Toutountzi, A.; Isliker, H.; Georgoulis, M.; Vlahos, L.; Chintzoglou, G.

    2016-11-01

    Aims: Coronal heating through the explosive release of magnetic energy remains an open problem in solar physics. Recent hydrodynamical models attempt an investigation by placing swarms of "nanoflares" at random sites and times in modeled one-dimensional coronal loops. We investigate the problem in three dimensions, using extrapolated coronal magnetic fields of observed solar active regions. Methods: We applied a nonlinear force-free field extrapolation above an observed photospheric magnetogram of NOAA active region (AR) 11 158. We then determined the locations, energy contents, and volumes of "unstable" areas, namely areas prone to releasing magnetic energy due to locally accumulated electric current density. Statistical distributions of these volumes and their fractal dimension are inferred, investigating also their dependence on spatial resolution. Further adopting a simple resistivity model, we inferred the properties of the fractally distributed electric fields in these volumes. Next, we monitored the evolution of 105 particles (electrons and ions) obeying an initial Maxwellian distribution with a temperature of 10 eV, by following their trajectories and energization when subjected to the resulting electric fields. For computational convenience, the length element of the magnetic-field extrapolation is 1 arcsec, or 725 km, much coarser than the particles' collisional mean free path in the low corona (0.1-1 km). Results: The presence of collisions traps the bulk of the plasma around the unstable volumes, or current sheets (UCS), with only a tail of the distribution gaining substantial energy. Assuming that the distance between UCS is similar to the collisional mean free path we find that the low active-region corona is heated to 100-200 eV, corresponding to temperatures exceeding 2 MK, within tens of seconds for electrons and thousands of seconds for ions. Conclusions: Fractally distributed, nanoflare-triggening fragmented UCS in the active-region corona can

  7. On the significance of the noise model for the performance of a linear MPC in closed-loop operation

    DEFF Research Database (Denmark)

    Hagdrup, Morten; Boiroux, Dimitri; Mahmoudi, Zeinab

    2016-01-01

    This paper discusses the significance of the noise model for the performance of a Model Predictive Controller when operating in closed-loop. The process model is parametrized as a continuous-time (CT) model and the relevant sampled-data filtering and control algorithms are developed. Using CT...... models typically means less parameters to identify. Systematic tuning of such controllers is discussed. Simulation studies are conducted for linear time-invariant systems showing that choosing a noise model of low order is beneficial for closed-loop performance. (C) 2016, IFAC (International Federation...

  8. Three-loop Standard Model effective potential at leading order in strong and top Yukawa couplings

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Stephen P. [Santa Barbara, KITP

    2014-01-08

    I find the three-loop contribution to the effective potential for the Standard Model Higgs field, in the approximation that the strong and top Yukawa couplings are large compared to all other couplings, using dimensional regularization with modified minimal subtraction. Checks follow from gauge invariance and renormalization group invariance. I also briefly comment on the special problems posed by Goldstone boson contributions to the effective potential, and on the numerical impact of the result on the relations between the Higgs vacuum expectation value, mass, and self-interaction coupling.

  9. Loop equations and topological recursion for the arbitrary-$\\beta$ two-matrix model

    CERN Document Server

    Bergère, Michel; Marchal, Olivier; Prats-Ferrer, Aleix

    2012-01-01

    We write the loop equations for the $\\beta$ two-matrix model, and we propose a topological recursion algorithm to solve them, order by order in a small parameter. We find that to leading order, the spectral curve is a "quantum" spectral curve, i.e. it is given by a differential operator (instead of an algebraic equation for the hermitian case). Here, we study the case where that quantum spectral curve is completely degenerate, it satisfies a Bethe ansatz, and the spectral curve is the Baxter TQ relation.

  10. Little strings, quasi-topological sigma model on loop group, and toroidal Lie algebras

    Science.gov (United States)

    Ashwinkumar, Meer; Cao, Jingnan; Luo, Yuan; Tan, Meng-Chwan; Zhao, Qin

    2018-03-01

    We study the ground states and left-excited states of the Ak-1 N = (2 , 0) little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP1 with target space the based loop group of SU (k). The ground states, described by L2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.

  11. GoSam 2.0. Automated one loop calculations within and beyond the standard model

    International Nuclear Information System (INIS)

    Greiner, Nicolas; Deutsches Elektronen-Synchrotron

    2014-10-01

    We present GoSam 2.0, a fully automated framework for the generation and evaluation of one loop amplitudes in multi leg processes. The new version offers numerous improvements both on generational aspects as well as on the reduction side. This leads to a faster and more stable code for calculations within and beyond the Standard Model. Furthermore it contains the extended version of the standardized interface to Monte Carlo programs which allows for an easy combination with other existing tools. We briefly describe the conceptual innovations and present some phenomenological results.

  12. Little strings, quasi-topological sigma model on loop group, and toroidal Lie algebras

    Directory of Open Access Journals (Sweden)

    Meer Ashwinkumar

    2018-03-01

    Full Text Available We study the ground states and left-excited states of the Ak−1 N=(2,0 little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP1 with target space the based loop group of SU(k. The ground states, described by L2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.

  13. Mobile application MDDCS for modeling the expansion dynamics of a dislocation loop in FCC metals

    Science.gov (United States)

    Kirilyuk, Vasiliy; Petelin, Alexander; Eliseev, Andrey

    2017-11-01

    A mobile version of the software package Dynamic Dislocation of Crystallographic Slip (MDDCS) designed for modeling the expansion dynamics of dislocation loops and formation of a crystallographic slip zone in FCC-metals is examined. The paper describes the possibilities for using MDDCS, the application interface, and the database scheme. The software has a simple and intuitive interface and does not require special training. The user can set the initial parameters of the experiment, carry out computational experiments, export parameters and results of the experiment into separate text files, and display the experiment results on the device screen.

  14. Model-Based, Closed-Loop Control of PZT Creep for Cavity Ring-Down Spectroscopy.

    Science.gov (United States)

    McCartt, A D; Ognibene, T J; Bench, G; Turteltaub, K W

    2014-09-01

    Cavity ring-down spectrometers typically employ a PZT stack to modulate the cavity transmission spectrum. While PZTs ease instrument complexity and aid measurement sensitivity, PZT hysteresis hinders the implementation of cavity-length-stabilized, data-acquisition routines. Once the cavity length is stabilized, the cavity's free spectral range imparts extreme linearity and precision to the measured spectrum's wavelength axis. Methods such as frequency-stabilized cavity ring-down spectroscopy have successfully mitigated PZT hysteresis, but their complexity limits commercial applications. Described herein is a single-laser, model-based, closed-loop method for cavity length control.

  15. Feedback loops and temporal misalignment in component-based hydrologic modeling

    Science.gov (United States)

    Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.

    2011-12-01

    In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.

  16. Profit Analysis and Supply Chain Planning Model for Closed-Loop Supply Chain in Fashion Industry

    Directory of Open Access Journals (Sweden)

    Jisoo Oh

    2014-12-01

    Full Text Available In recent decades, due to market growth and use of synthetic fiber, the fashion industry faces a rapid increase of CO2 emission throughout the production cycle and raises environmental issues in recovery processing. This study proposes a closed-loop supply chain (CLSC structure in fashion industry and develops its planning model as multi-objective mixed integer linear programming to find an optimal trade-off between CLSC profit and CO2 emission. The planning model is associated with the profit analysis of each member in CLSC to find the optimal price of products on CLSC network. The model determines optimal production, transportation, and inventory quantities on CLSC network. The proposed models are validated using numerical experiments and sensitivity analyses, and from the results some managerial insights are addressed.

  17. A Unified Impedance Model of Voltage-Source Converters with Phase-Locked Loop Effect

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Harnefors, Lennart; Blaabjerg, Frede

    2016-01-01

    This paper proposes a unified impedance model for analyzing the effect of Phase-Locked Loop (PLL) on the stability of grid-connected voltage-source converters. In the approach, the dq-frame impedance model is transformed into the stationary αβ-frame by means of complex transfer functions...... and complex space vectors, which not only predicts the stability impact of the PLL, but reveals also its frequency coupling effect in the phase domain. Thus, the impedance models previously developed in the different domains can be unified. Moreover, the impedance shaping effects of PLL are structurally...... characterized for the current control in the rotating dq-frame and the stationary αβ-frame. Case studies based on the unified impedance model are presented, which are then verified in the time-domain simulations and experiments. The results closely correlate with the impedance-based analysis....

  18. Causal Loop-based Modeling on System Dynamics for Risk Communication

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Ju [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kang, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    It is true that a national policy should be based on public confidence, analyzing their recognition and attitude on life safety, since they have very special risk perception characteristics. For achieving effective public consensus regarding a national policy such as nuclear power, we have to utilize a risk communication (hereafter, calls RiCom) process. However, domestic research models on RiCom process do not provide a practical guideline, because most of them are still superficial and stick on an administrative aspect. Also, most of current models have no experience in terms of verification and validation for effective applications to diverse stake holders. This study focuses on public's dynamic mechanism through the modeling on system dynamics, basically utilizing casual loop diagram (CLD) and stock flow diagram (SFD), which regards as a critical technique for decision making in many industrial RiCom models.

  19. Causal Loop-based Modeling on System Dynamics for Risk Communication

    International Nuclear Information System (INIS)

    Lee, Chang Ju; Kang, Kyung Min

    2009-01-01

    It is true that a national policy should be based on public confidence, analyzing their recognition and attitude on life safety, since they have very special risk perception characteristics. For achieving effective public consensus regarding a national policy such as nuclear power, we have to utilize a risk communication (hereafter, calls RiCom) process. However, domestic research models on RiCom process do not provide a practical guideline, because most of them are still superficial and stick on an administrative aspect. Also, most of current models have no experience in terms of verification and validation for effective applications to diverse stake holders. This study focuses on public's dynamic mechanism through the modeling on system dynamics, basically utilizing casual loop diagram (CLD) and stock flow diagram (SFD), which regards as a critical technique for decision making in many industrial RiCom models

  20. Simplicity constraints: A 3D toy model for loop quantum gravity

    Science.gov (United States)

    Charles, Christoph

    2018-05-01

    In loop quantum gravity, tremendous progress has been made using the Ashtekar-Barbero variables. These variables, defined in a gauge fixing of the theory, correspond to a parametrization of the solutions of the so-called simplicity constraints. Their geometrical interpretation is however unsatisfactory as they do not constitute a space-time connection. It would be possible to resolve this point by using a full Lorentz connection or, equivalently, by using the self-dual Ashtekar variables. This leads however to simplicity constraints or reality conditions which are notoriously difficult to implement in the quantum theory. We explore in this paper the possibility of using completely degenerate actions to impose such constraints at the quantum level in the context of canonical quantization. To do so, we define a simpler model, in 3D, with similar constraints by extending the phase space to include an independent vielbein. We define the classical model and show that a precise quantum theory by gauge unfixing can be defined out of it, completely equivalent to the standard 3D Euclidean quantum gravity. We discuss possible future explorations around this model as it could help as a stepping stone to define full-fledged covariant loop quantum gravity.

  1. Home-Based Risk of Falling Assessment Test Using a Closed-Loop Balance Model.

    Science.gov (United States)

    Ayena, Johannes C; Zaibi, Helmi; Otis, Martin J-D; Menelas, Bob-Antoine J

    2016-12-01

    The aim of this study is to improve and facilitate the methods used to assess risk of falling at home among older people through the computation of a risk of falling in real time in daily activities. In order to increase a real time computation of the risk of falling, a closed-loop balance model is proposed and compared with One-Leg Standing Test (OLST). This balance model allows studying the postural response of a person having an unpredictable perturbation. Twenty-nine volunteers participated in this study for evaluating the effectiveness of the proposed system which includes seventeen elder participants: ten healthy elderly ( 68.4 ±5.5 years), seven Parkinson's disease (PD) subjects ( 66.28 ±8.9 years), and twelve healthy young adults ( 28.27 ±3.74 years). Our work suggests that there is a relationship between OLST score and the risk of falling based on center of pressure measurement with four low cost force sensors located inside an instrumented insole, which could be predicted using our suggested closed-loop balance model. For long term monitoring at home, this system could be included in a medical electronic record and could be useful as a diagnostic aid tool.

  2. Benchmarking Model Variants in Development of a Hardware-in-the-Loop Simulation System

    Science.gov (United States)

    Aretskin-Hariton, Eliot D.; Zinnecker, Alicia M.; Kratz, Jonathan L.; Culley, Dennis E.; Thomas, George L.

    2016-01-01

    Distributed engine control architecture presents a significant increase in complexity over traditional implementations when viewed from the perspective of system simulation and hardware design and test. Even if the overall function of the control scheme remains the same, the hardware implementation can have a significant effect on the overall system performance due to differences in the creation and flow of data between control elements. A Hardware-in-the-Loop (HIL) simulation system is under development at NASA Glenn Research Center that enables the exploration of these hardware dependent issues. The system is based on, but not limited to, the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). This paper describes the step-by-step conversion from the self-contained baseline model to the hardware in the loop model, and the validation of each step. As the control model hardware fidelity was improved during HIL system development, benchmarking simulations were performed to verify that engine system performance characteristics remained the same. The results demonstrate the goal of the effort; the new HIL configurations have similar functionality and performance compared to the baseline C-MAPSS40k system.

  3. Two aspects of one loop structure: Unitarity delay in the Standard Model and modular invariance in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, C.

    1989-08-01

    We study two aspects of one loop structures in quantum field theories which describe two different areas of particle physics: the one loop unitarity behavior of the Standard Model of electroweak interactions and modular invariance of string model theory. Loop expansion has its importance in that it contains quantum fluctuations due to all physical states in the theory. Therefore, by studying the various models to one loop, we can understand how the contents of the theory can contribute to physically measurable quantities and how the consistency at quantum level restricts the physical states of the theory, as well. In the first half of the thesis, we study one loop corrections to the process {ital e}{sup +}{ital e}{sup {minus}} {yields} {ital W}{sup +}{ital W}{sup {minus}}. In this process, there is a delicate unitarity-saving cancellation between s-channel and t-channel tree level Feynman diagrams. If the one loop contribution due to heavy particles corrects the channels asymmetrically, the cancellation, hence unitarity, will be delayed up to the mass scale of these heavy particles. We refer to this phenomena as the unitarity delay effect. Due to this effect, cross section below these mass scales can have significant radiative corrections which may provide an appropriate window through which we can see the high energy structure of the Standard Model from relatively low energy experiments. In the second half, we will show how quantum consistency can restrict the physical states in string theory. 53 refs., 13 figs.

  4. Solar wind acceleration in coronal holes

    International Nuclear Information System (INIS)

    Kopp, R.A.

    1978-01-01

    Past attempts to explain the large solar wind velocities in high speed streams by theoretical models of the expansion have invoked either extended nonthermal heating of the corona, heat flux inhibition, or direct addition of momentum to the expanding coronal plasma. Several workers have shown that inhibiting the heat flux at low coronal densities is probably not adequate to explain quantitatively the observed plasma velocities in high speed streams. It stressed that, in order to account for both these large plasma velocities and the low densities found in coronal holes (from which most high speed streams are believed to emanate), extended heating by itself will not suffice. One needs a nonthermal mechanism to provide the bulk acceleration of the high wind plasma close to the sun, and the most likely candidate at present is direct addition of the momentum carried by outward-propagating waves to the expanding corona. Some form of momentum addition appears to be absolutely necessary if one hopes to build quantitatively self-consistent models of coronal holes and high speed solar wind streams

  5. Predictive models of circulating fluidized bed combustors: SO[sub 2] sorption in the CFB loop

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D.; Therdthianwong, A. (Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Chemical Engineering)

    1993-02-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. Sorption of S0[sub 2] with calcined limestone was studied in a PYROFLOW type CFB loop at conditions approximating those found in a CFB combustor. Initially the CFB loop contained 150 micron CaO particles of a density of 3.3 g/cm[sup 3] and air at 1143[degrees]K and 3.25 atm. Atzero time, air containing 600 ppm SO[sub 2], was introduced into the riser bottom at 1143[degrees]K. The effect of gas velocity, sorbent inventory and inlet pressure on the sorption of SO[sub 2], were studied isothermally by running our hydrodynamic code with the S0[sub 2] sorption conservation of species equation. At a velocity of 5m/sec., reported to be a typical velocity by PYROPOWER, there is reasonably good S0[sub 2] removal. At 10 m/sec the S0[sub 2] removal is poor. The best SO[sub 2], removal is for a velocity of 5 m/s and a high bed inventory, initial bed height, H = 9m. Most of the S0[sub 2] is removed in the first two meters of the reactor. However, the S0[sub 2] removal is not complete at the bed outlet. This is due to mixing. At the left wall of the reactor (wall opposite the solids inlet) the S0[sub 2] removal was poor due to gas bypassing caused by the asymmetrical solids inlet. Simulation of the PYROPOWER loop with a symmetrical inlet gave us an order of magnitude improvement over the conventional PYROPOWER system. These results demonstrate the practical utility of the predictive model that we have developed over the last three years.

  6. Determination of Coronal Magnetic Fields from Vector Magnetograms

    Science.gov (United States)

    Mikic, Zoran

    1997-01-01

    During the course of the present contract we developed an 'evolutionary technique' for the determination of force-free coronal magnetic fields from vector magnetograph observations. The method can successfully generate nonlinear force- free fields (with non-constant-a) that match vector magnetograms. We demonstrated that it is possible to determine coronal magnetic fields from photospheric measurements, and we applied it to vector magnetograms of active regions. We have also studied theoretical models of coronal fields that lead to disruptions. Specifically, we have demonstrated that the determination of force-free fields from exact boundary data is a well-posed mathematical problem, by verifying that the computed coronal field agrees with an analytic force-free field when boundary data for the analytic field are used; demonstrated that it is possible to determine active-region coronal magnetic fields from photospheric measurements, by computing the coronal field above active region 5747 on 20 October 1989, AR6919 on 15 November 1991, and AR7260 on 18 August 1992, from data taken with the Stokes Polarimeter at Mees Solar Observatory, University of Hawaii; started to analyze active region 7201 on 19 June 1992 using measurements made with the Advanced Stokes Polarimeter at NSO/Sac Peak; investigated the effects of imperfections in the photospheric data on the computed coronal magnetic field; documented the coronal field structure of AR5747 and compared it to the morphology of footpoint emission in a flare, showing that the 'high- pressure' H-alpha footpoints are connected by coronal field lines; shown that the variation of magnetic field strength along current-carrying field lines is significantly different from the variation in a potential field, and that the resulting near-constant area of elementary flux tubes is consistent with observations; begun to develop realistic models of coronal fields which can be used to study flare trigger mechanisms; demonstrated that

  7. Approximate Models for Closed-Loop Trajectory Tracking in Underactuated Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Control of robotic systems, as a field, spans both traditional closed-loop feedback techniques and modern machine learning strategies, which are primarily open-loop....

  8. Model-Based Closed-Loop Glucose Control in Type 1 Diabetes: The DiaCon Experience

    DEFF Research Database (Denmark)

    Schmidt, Signe; Boiroux, Dimitri; Duun-Henriksen, Anne Katrine

    2013-01-01

    Background: To improve type 1 diabetes mellitus (T1DM) management, we developed a model predictive control (MPC) algorithm for closed-loop (CL) glucose control based on a linear second-order deterministic-stochastic model. The deterministic part of the model is specified by three patient-specific......Background: To improve type 1 diabetes mellitus (T1DM) management, we developed a model predictive control (MPC) algorithm for closed-loop (CL) glucose control based on a linear second-order deterministic-stochastic model. The deterministic part of the model is specified by three patient...... crossover studies. Study 1 compared CL with open-loop (OL) control. Study 2 compared glucose control after CL initiation in the euglycemic (CL-Eu) and hyperglycemic (CL-Hyper) ranges, respectively. Patients were studied from 22:00–07:00 on two separate nights. Results: Each study included six T1DM patients...

  9. INTERCHANGE RECONNECTION AND CORONAL HOLE DYNAMICS

    International Nuclear Information System (INIS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Lynch, B. J.; Zurbuchen, T. H.

    2010-01-01

    We investigate the effect of magnetic reconnection between open and closed fields, often referred to as 'interchange' reconnection, on the dynamics and topology of coronal hole boundaries. The most important and most prevalent three-dimensional topology of the interchange process is that of a small-scale bipolar magnetic field interacting with a large-scale background field. We determine the evolution of such a magnetic topology by numerical solution of the fully three-dimensional MHD equations in spherical coordinates. First, we calculate the evolution of a small-scale bipole that initially is completely inside an open field region and then is driven across a coronal hole boundary by photospheric motions. Next the reverse situation is calculated in which the bipole is initially inside the closed region and driven toward the coronal hole boundary. In both cases, we find that the stress imparted by the photospheric motions results in deformation of the separatrix surface between the closed field of the bipole and the background field, leading to rapid current sheet formation and to efficient reconnection. When the bipole is inside the open field region, the reconnection is of the interchange type in that it exchanges open and closed fields. We examine, in detail, the topology of the field as the bipole moves across the coronal hole boundary and find that the field remains well connected throughout this process. Our results, therefore, provide essential support for the quasi-steady models of the open field, because in these models the open and closed flux are assumed to remain topologically distinct as the photosphere evolves. Our results also support the uniqueness hypothesis for open field regions as postulated by Antiochos et al. On the other hand, the results argue against models in which open flux is assumed to diffusively penetrate deeply inside the closed field region under a helmet streamer. We discuss the implications of this work for coronal observations.

  10. Evolving Coronal Holes and Interplanetary Erupting Stream ...

    Indian Academy of Sciences (India)

    prominences, have a significantly higher rate of occurrence in the vicinity of coronal .... coronal holes due to the birth of new holes or the growth of existing holes. .... Statistics of newly formed coronal hole areas (NFOCHA) associated with ...

  11. Modeling and Closed Loop Flight Testing of a Fixed Wing Micro Air Vehicle

    Directory of Open Access Journals (Sweden)

    Harikumar Kandath

    2018-03-01

    Full Text Available This paper presents the nonlinear six degrees of freedom dynamic modeling of a fixed wing micro air vehicle. The static derivatives of the micro air vehicle are obtained through the wind tunnel testing. The propeller effects on the lift, drag, pitching moment and side force are quantified through wind tunnel testing. The dynamic derivatives are obtained through empirical relations available in the literature. The trim conditions are computed for a straight and constant altitude flight condition. The linearized longitudinal and lateral state space models are obtained about trim conditions. The variations in short period mode, phugoid mode, Dutch roll mode, roll subsidence mode and spiral mode with respect to different trim operating conditions is presented. A stabilizing static output feedback controller is designed using the obtained model. Successful closed loop flight trials are conducted with the static output feedback controller.

  12. One-loop potential in the new string model with negative stiffness

    International Nuclear Information System (INIS)

    Kleinert, H.; Chervyakov, A.M.; Nesterenko, V.V.

    1996-01-01

    The color-electric flux tube between quarks has a finite thickness therefore also a finite curvature stiffness. Contrary to earlier rigid-string proposal by Polyakov and Kleinert and motivated by the properties of a magnetic flux tube in a type-II superconductor, we put forward the hypothesis that the stiffness is negative. We set up and study the properties of an idealized string model with such negative stiffness. In contrast to the rigid string, the propagator in the new model has no unphysical pole. One-loop calculations show that the model generates an interquark potential which does not contain the square root singularity even for moderate values of a negative stiffness. At large distances, the potential has usual linearly rising term with the universal Luescher correction

  13. Activity build-up on the circulation loops of boiling water reactors: Basics for modelling of transport and deposition processes

    International Nuclear Information System (INIS)

    Covelli, B.; Alder, H.P.

    1988-03-01

    In the past 20 years the radiation field of nuclear power plant loops outside the core zone was the object of investigations in many countries. In this context test loops were built and basic research done. At our Institute PSI the installation of a LWR-contamination loop is planned for this year. This experimental loop has the purpose to investigate the complex phenomena of activity deposition from the primary fluid of reactor plants and to formulate analytical models. From the literature the following conclusions can be drawn: The principal correlations of the activity build-up outside the core are known. The plant specific single phenomena as corrosion, crud-transport, activation and deposit of cobalt in the oxide layer are complex and only partially understood. The operational experience of particular plants with low contaminated loops (BWR-recirculation loops) show that in principle the problem is manageable. The reduction of the activity build-up in older plants necessitates a combination of measures to modify the crud balance in the primary circuit. In parallel to the experimental work several simulation models in the form of computer programs were developed. These models have the common feature that they are based on mass balances, in which the exchange of materials and the sedimentation processes are described by global empirical transport coefficients. These models yield satisfactory results and allow parameter studies; the application however is restricted to the particular installation. All programs lack models that describe the thermodynamic and hydrodynamic mechanisms on the surface of deposition layers. Analytical investigations on fouling of process equipment led to models that are also applicable to the activity build-up in reactor loops. Therefore it seems appropriate to combine the nuclear simulation models with the fundamental equations for deposition. 10 refs., 18 figs., 3 tabs

  14. A RETRAN-02 model of the Sizewell B PCSR design - the Winfrith one-loop model, version 3.0

    International Nuclear Information System (INIS)

    Kinnersly, S.R.

    1983-11-01

    A one-loop RETRAN-02 model of the Sizewell B Pre Construction Safety Report (PCSR) design, set up at Winfrith, is described and documented. The model is suitable for symmetrical pressurised transients. Comparison with data from the Sizewell B PCSR shows that the model is a good representation of that design. Known errors, limitations and deficiencies are described. The mode of storage and maintenance at Winfrith using PROMUS (Program Maintenance and Update System) is noted. It is recommended that users modify the standard data by adding replacement cards to the end so as to aid in identification, use and maintenance of local versions. (author)

  15. Two-loop renormalization group analysis of supersymmetric SO(10) models with an intermediate scale

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; Brahmachari, B.

    1996-03-01

    Two-loop evolutions of the gauge couplings in a class of intermediate scale supersymmetric SO(10) models including the effect of third generation Yukawa couplings are studied. The unification scale, the intermediate scale and the value of the unification gauge coupling in these models are calculated and the gauge boson mediated proton decay rates are estimated. In some cases the predicted proton lifetime turns out to be in the border-line of experimental limit. The predictions of the top quark mass, the mass ratio m b (m b )/m τ (m τ ) from the two-loop evolution of Yukawa couplings and the mass of the left handed neutrino via see-saw mechanism are summarized. The lower bounds on the ratio of the VEVs of the two low energy doublets (tan β) from the requirement of the perturbative unitarity of the top quark Yukawa coupling up to the grand unification scale are also presented. All the predictions have been compared with those of the one-step unified theory. (author). 33 refs, 5 figs, 1 tab

  16. Closed-loop supply chain models with considering the environmental impact.

    Science.gov (United States)

    Mohajeri, Amir; Fallah, Mohammad

    2014-01-01

    Global warming and climate changes created by large scale emissions of greenhouse gases are a worldwide concern. Due to this, the issue of green supply chain management has received more attention in the last decade. In this study, a closed-loop logistic concept which serves the purposes of recycling, reuse, and recovery required in a green supply chain is applied to integrate the environmental issues into a traditional logistic system. Here, we formulate a comprehensive closed-loop model for the logistics planning considering profitability and ecological goals. In this way, we can achieve the ecological goal reducing the overall amount of CO2 emitted from journeys. Moreover, the profitability criterion can be supported in the cyclic network with the minimum costs and maximum service level. We apply three scenarios and develop problem formulations for each scenario corresponding to the specified regulations and investigate the effect of the regulation on the preferred transport mode and the emissions. To validate the models, some numerical experiments are worked out and a comparative analysis is investigated.

  17. Closed-Loop Supply Chain Models with Considering the Environmental Impact

    Directory of Open Access Journals (Sweden)

    Amir Mohajeri

    2014-01-01

    Full Text Available Global warming and climate changes created by large scale emissions of greenhouse gases are a worldwide concern. Due to this, the issue of green supply chain management has received more attention in the last decade. In this study, a closed-loop logistic concept which serves the purposes of recycling, reuse, and recovery required in a green supply chain is applied to integrate the environmental issues into a traditional logistic system. Here, we formulate a comprehensive closed-loop model for the logistics planning considering profitability and ecological goals. In this way, we can achieve the ecological goal reducing the overall amount of CO2 emitted from journeys. Moreover, the profitability criterion can be supported in the cyclic network with the minimum costs and maximum service level. We apply three scenarios and develop problem formulations for each scenario corresponding to the specified regulations and investigate the effect of the regulation on the preferred transport mode and the emissions. To validate the models, some numerical experiments are worked out and a comparative analysis is investigated.

  18. One-loop correlation functions in the model of noncritical fermionic strings

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Iofa, M.Z.

    1996-01-01

    In the model of noncritical fermionic strings, the David-Distler-Kawai ansatz is used to study one-loop n-point (n≤4) correlation functions for the vertex operators of massless bosonic states. The action functional of the model is the sum of super-Liouville action functional for the conformal mode and the action functional of d scalar supermultiplets. It is assumed that the total cosmological term is equal to zero. The amplitudes are calculated as the residues at the pole of the correlation function that corresponds to the conservation of Liouville momentum in the form Σβi=Q(1-h), where Q=√(9-d)/2 and h is the genus of the work sheet. In the one-loop approximation, the amplitudes can be obtained in the modular-invariant form, provided that the coefficients appearing in the sum over spin structures depend on moduli. In this case, the modular measure is defined up to a modular-invariant factor. This arbitrariness can be used to represent one-point correlation functions in the same functional form as for strings of critical dimension

  19. A model for improving microbial biofuel production using a synthetic feedback loop

    Energy Technology Data Exchange (ETDEWEB)

    Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

    2011-07-14

    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

  20. The meson and the baryon in the one-loop dual model of the pomeron

    International Nuclear Information System (INIS)

    Pennington, M.R.; Gula, A.

    1975-01-01

    In the lowest order dual loop perturbation theory the crossing and factorisation properties of the pomeron are considered. It is shown that the baryon loop is the necessary complement of the single crossed meson loop in building the low-energy pomeron. Recent experimental indications that in this energy region the pomeron is different in MM, MB and BB processes are naturally explained. (Auth.)

  1. Hydrodynamical model and experimental results of a calcium looping cycle for CO2 capture

    International Nuclear Information System (INIS)

    Lisbona, Pilar; Martínez, Ana; Romeo, Luis M.

    2013-01-01

    Highlights: ► A scaled experimental cold flow model of a dual fluidized bed facility is presented. ► Two MATLAB models are developed for the single CFB and the dual CFB facility. ► Set of experiments are carried out and used to validate the mathematical model. ► Good agreement between model and experimental tests for sCFB. ► Further work required for validating dual CFB operation. -- Abstract: High temperature looping cycles involving solid circulation, such as carbonation–calcination, play an essential role among the CO 2 capture technologies under development. The low cost and high availability of Ca-based sorbents together with the feasibility of integration between these capture systems and existing power plants lead to very competitive potential costs of avoided CO 2 , below 20 €/tonne. Optimal configurations make use of several interconnected fluidized beds. One promising configuration for Ca-based sorbents looping systems relies on the use of two circulating beds (carbonator and calciner) and two bubbling beds acting as non-mechanical valves. Fluidized beds are well characterized when operating independently since they are extensively used in industrial applications, power and chemical plants. However, the operation when two or more fluidized beds exchange solid material through non-mechanical valves is still uncertain because of the more complex pressure balance of the system. Theoretical studies based on thermo-chemical simulations and experimental studies show that minimum CO 2 capture cost is attained with large solid circulation flow between reactors. The challenge is to reach the required particle circulation in a system with a complex configuration and be able to control it. Solid internal recirculation in any of these fluidized beds would provide flexibility in its control but it will also make harder the characterization of the whole system. The aim of this work is to analyse the hydrodynamics of the system and to generate a

  2. Magnetic Topology of Coronal Hole Linkages

    Science.gov (United States)

    Titov, V. S.; Mikic, Z.; Linker, J. A.; Lionello, R.; Antiochos, S. K.

    2010-01-01

    In recent work, Antiochos and coworkers argued that the boundary between the open and closed field regions on the Sun can be extremely complex with narrow corridors of open ux connecting seemingly disconnected coronal holes from the main polar holes, and that these corridors may be the sources of the slow solar wind. We examine, in detail, the topology of such magnetic configurations using an analytical source surface model that allows for analysis of the eld with arbitrary resolution. Our analysis reveals three important new results: First, a coronal hole boundary can join stably to the separatrix boundary of a parasitic polarity region. Second, a single parasitic polarity region can produce multiple null points in the corona and, more important, separator lines connecting these points. Such topologies are extremely favorable for magnetic reconnection, because it can now occur over the entire length of the separators rather than being con ned to a small region around the nulls. Finally, the coronal holes are not connected by an open- eld corridor of finite width, but instead are linked by a singular line that coincides with the separatrix footprint of the parasitic polarity. We investigate how the topological features described above evolve in response to motion of the parasitic polarity region. The implications of our results for the sources of the slow solar wind and for coronal and heliospheric observations are discussed.

  3. The physical structure of coronal holes

    International Nuclear Information System (INIS)

    Pneuman, G.W.

    1978-11-01

    The longitudinal geometrical structure of solar wind streams as observed at the orbit of earth is governed by two mechanisms - solar rotation and, most importantly, the geometry of the inner coronal magnetic fields. Here, we study the influence of the latter for the polar coronal hole observed by Skylab in 1973 and modeled by Munro and Jackson (1977). The influence of coronal heating on the properties of the solar wind in this geometry is also investigated. To do this, a crude exponentially damped heating function similar to that used by Kopp and Orrall (1976) is introduced into the solar wind equations. We find that increased heating produces higher temperatures in the inner corona but has little effect upon the temperature at 1 A.U. However, the density at 1 A.U. is increased significantly due to the increase in scale height. The most surprising consequence of coronal heating is its effect on the solar wind velocity, being that the velocity at 1 A.U. is actually decreased by heating in the inner corona. Physical reasons for this effect are discussed. (orig./WL) [de

  4. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  5. Loop Transfer Matrix and Loop Quantum Mechanics

    International Nuclear Information System (INIS)

    Savvidy, George K.

    2000-01-01

    The gonihedric model of random surfaces on a 3d Euclidean lattice has equivalent representation in terms of transfer matrix K(Q i ,Q f ), which describes the propagation of loops Q. We extend the previous construction of the loop transfer matrix to the case of nonzero self-intersection coupling constant κ. We introduce the loop generalization of Fourier transformation which allows to diagonalize transfer matrices, that depend on symmetric difference of loops only and express all eigenvalues of 3d loop transfer matrix through the correlation functions of the corresponding 2d statistical system. The loop Fourier transformation allows to carry out the analogy with quantum mechanics of point particles, to introduce conjugate loop momentum P and to define loop quantum mechanics. We also consider transfer matrix on 4d lattice which describes propagation of memebranes. This transfer matrix can also be diagonalized by using the generalized Fourier transformation, and all its eigenvalues are equal to the correlation functions of the corresponding 3d statistical system. In particular the free energy of the 4d membrane system is equal to the free energy of 3d gonihedric system of loops and is equal to the free energy of 2d Ising model. (author)

  6. Bending and Twisting the Embryonic Heart: A Computational Model for C-Looping Based on Realistic Geometry

    Directory of Open Access Journals (Sweden)

    Yunfei eShi

    2014-08-01

    Full Text Available The morphogenetic process of cardiac looping transforms the straight heart tube into a curved tube that resembles the shape of the future four-chambered heart. Although great progress has been made in identifying the molecular and genetic factors involved in looping, the physical mechanisms that drive this process have remained poorly understood. Recent work, however, has shed new light on this complicated problem. After briefly reviewing the current state of knowledge, we propose a relatively comprehensive hypothesis for the mechanics of the first phase of looping, termed c-looping, as the straight heart tube deforms into a c-shaped tube. According to this hypothesis, differential hypertrophic growth in the myocardium supplies the main forces that cause the heart tube to bend ventrally, while regional growth and contraction in the omphalomesenteric veins (primitive atria and compressive loads exerted by the splanchnopleuric membrane drive rightward torsion. A computational model based on realistic embryonic heart geometry is used to test this hypothesis. The behavior of the model is in reasonable agreement with available experimental data from control and perturbed embryos, offering support for our hypothesis. The results also suggest, however, that several other mechanisms contribute secondarily to normal looping, and we speculate that these mechanisms play backup roles when looping is perturbed. Finally, some outstanding questions are discussed for future study.

  7. DETERMINING HEATING RATES IN RECONNECTION FORMED FLARE LOOPS OF THE M8.0 FLARE ON 2005 MAY 13

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenjuan; Qiu Jiong; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Caspi, Amir [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States)

    2013-06-20

    We analyze and model an M8.0 flare on 2005 May 13 observed by the Transition Region and Coronal Explorer and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) to determine the energy release rate from magnetic reconnection that forms and heats numerous flare loops. The flare exhibits two ribbons in UV 1600 A emission. Analysis shows that the UV light curve at each flaring pixel rises impulsively within a few minutes, and decays slowly with a timescale longer than 10 minutes. Since the lower atmosphere (the transition region and chromosphere) responds to energy deposit nearly instantaneously, the rapid UV brightening is thought to reflect the energy release process in the newly formed flare loop rooted at the footpoint. In this paper, we utilize the spatially resolved (down to 1'') UV light curves and the thick-target hard X-ray emission to construct heating functions of a few thousand flare loops anchored at the UV footpoints, and compute plasma evolution in these loops using the enthalpy-based thermal evolution of loops model. The modeled coronal temperatures and densities of these flare loops are then used to calculate coronal radiation. The computed soft X-ray spectra and light curves compare favorably with those observed by RHESSI and by the Geostationary Operational Environmental Satellite X-ray Sensor. The time-dependent transition region differential emission measure for each loop during its decay phase is also computed with a simplified model and used to calculate the optically thin C IV line emission, which dominates the UV 1600 A bandpass during the flare. The computed C IV line emission decays at the same rate as observed. This study presents a method to constrain heating of reconnection-formed flare loops using all available observables independently, and provides insight into the physics of energy release and plasma heating during the flare. With this method, the lower limit of the total energy used to heat the flare loops in

  8. Using a New Infrared Si X Coronal Emission Line for Discriminating between Magnetohydrodynamic Models of the Solar Corona During the 2006 Solar Eclipse

    Science.gov (United States)

    Dima, Gabriel I.; Kuhn, Jeffrey R.; Mickey, Don; Downs, Cooper

    2018-01-01

    During the 2006 March 29 total solar eclipse, coronal spectropolarimetric measurements were obtained over a 6 × 6 R ⊙ field of view with a 1–2 μm spectral range. The data yielded linearly polarized measurements of the Fe XIII 1.075 μm, He I 1.083 μm, and for the first time, of the Si X 1.430 μm emission lines. To interpret the measurements, we used forward-integrated synthetic emission from two magnetohydrodynamic models for the same Carrington rotation with different heating functions and magnetic boundary conditions. Observations of the Fe XIII 1.075/Si X 1.430 line ratio allowed us to discriminate between two models of the corona, with the observations strongly favoring the warmer model. The observed polarized amplitudes for the Si X 1.430 μm line are around 7%, which is three times higher than the predicted values from available atomic models for the line. This discrepancy indicates a need for a closer look at some of the model assumptions for the collisional coefficients, as well as new polarized observations of the line to rule out any unknown systematic effect in the present data. All but two near-limb fibers show correlated bright He I 1.083 μm and H I 1.282 μm emission, which likely indicates cool prominence emission that is non-localized by the strongly defocused optics. One of the distant fibers located at 1.5 R ⊙ detected a weak He I 1.083 μm intensity signal consistent with previous eclipse measurements around 3 × 10‑7 {B}ȯ . However, given the limitations of these observations, it is not possible to completely remove contamination that is due to emission from prominence material that is not obscured by the lunar limb.

  9. Measurements of EUV coronal holes and open magnetic flux

    International Nuclear Information System (INIS)

    Lowder, C.; Qiu, J.; Leamon, R.; Liu, Y.

    2014-01-01

    Coronal holes are regions on the Sun's surface that map the footprints of open magnetic field lines. We have developed an automated routine to detect and track boundaries of long-lived coronal holes using full-disk extreme-ultraviolet (EUV) images obtained by SOHO/EIT, SDO/AIA, and STEREO/EUVI. We measure coronal hole areas and magnetic flux in these holes, and compare the measurements with calculations by the potential field source surface (PFSS) model. It is shown that, from 1996 through 2010, the total area of coronal holes measured with EIT images varies between 5% and 17% of the total solar surface area, and the total unsigned open flux varies between (2-5)× 10 22 Mx. The solar cycle dependence of these measurements is similar to the PFSS results, but the model yields larger hole areas and greater open flux than observed by EIT. The AIA/EUVI measurements from 2010-2013 show coronal hole area coverage of 5%-10% of the total surface area, with significant contribution from low latitudes, which is under-represented by EIT. AIA/EUVI have measured much enhanced open magnetic flux in the range of (2-4)× 10 22 Mx, which is about twice the flux measured by EIT, and matches with the PFSS calculated open flux, with discrepancies in the location and strength of coronal holes. A detailed comparison between the three measurements (by EIT, AIA-EUVI, and PFSS) indicates that coronal holes in low latitudes contribute significantly to the total open magnetic flux. These low-latitude coronal holes are not well measured with either the He I 10830 line in previous studies, or EIT EUV images; neither are they well captured by the static PFSS model. The enhanced observations from AIA/EUVI allow a more accurate measure of these low-latitude coronal holes and their contribution to open magnetic flux.

  10. Measurements of EUV coronal holes and open magnetic flux

    Energy Technology Data Exchange (ETDEWEB)

    Lowder, C.; Qiu, J.; Leamon, R. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Liu, Y., E-mail: clowder@solar.physics.montana.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-03-10

    Coronal holes are regions on the Sun's surface that map the footprints of open magnetic field lines. We have developed an automated routine to detect and track boundaries of long-lived coronal holes using full-disk extreme-ultraviolet (EUV) images obtained by SOHO/EIT, SDO/AIA, and STEREO/EUVI. We measure coronal hole areas and magnetic flux in these holes, and compare the measurements with calculations by the potential field source surface (PFSS) model. It is shown that, from 1996 through 2010, the total area of coronal holes measured with EIT images varies between 5% and 17% of the total solar surface area, and the total unsigned open flux varies between (2-5)× 10{sup 22} Mx. The solar cycle dependence of these measurements is similar to the PFSS results, but the model yields larger hole areas and greater open flux than observed by EIT. The AIA/EUVI measurements from 2010-2013 show coronal hole area coverage of 5%-10% of the total surface area, with significant contribution from low latitudes, which is under-represented by EIT. AIA/EUVI have measured much enhanced open magnetic flux in the range of (2-4)× 10{sup 22} Mx, which is about twice the flux measured by EIT, and matches with the PFSS calculated open flux, with discrepancies in the location and strength of coronal holes. A detailed comparison between the three measurements (by EIT, AIA-EUVI, and PFSS) indicates that coronal holes in low latitudes contribute significantly to the total open magnetic flux. These low-latitude coronal holes are not well measured with either the He I 10830 line in previous studies, or EIT EUV images; neither are they well captured by the static PFSS model. The enhanced observations from AIA/EUVI allow a more accurate measure of these low-latitude coronal holes and their contribution to open magnetic flux.

  11. Surface state decoherence in loop quantum gravity, a first toy model

    International Nuclear Information System (INIS)

    Feller, Alexandre; Livine, Etera R

    2017-01-01

    The quantum-to-classical transition through decoherence is a major facet of the semi-classical analysis of quantum models that are supposed to admit a classical regime, as quantum gravity should be. A particular problem of interest is the decoherence of black hole horizons and holographic screens induced by the bulk-boundary coupling with interior degrees of freedom. Here in this paper we present a first toy-model, in the context of loop quantum gravity, for the dynamics of a surface geometry as an open quantum system. We discuss the resulting decoherence and recoherence and compare the exact density matrix evolution to the commonly used master equation approximation à la Lindblad underlining its merits and limitations. The prospect of this study is to have a clearer understanding of the boundary decoherence of black hole horizons seen by outside observers. (paper)

  12. Quantum Gowdy model within the new loop quantum cosmology improved dynamics

    International Nuclear Information System (INIS)

    Martin-Benito, M; Garay, L J; Mena Marugan, G A

    2011-01-01

    The linearly polarized Gowdy T 3 model can be regarded as compact Bianchi I cosmologies with inhomogeneous modes allowed to travel in one direction. We study a hybrid quantization of this model that combines the loop quantization of the Bianchi I background, adopting the improved dynamics scheme put forward by Ashtekar and Wilson-Ewing, with a Fock quantization for the inhomogeneities. The Hamiltonian constraint operator provides a resolution of the cosmological singularity and superselects separable sectors. We analyze the complicated structure of these sectors. In any of them the Hamiltonian constraint provides an evolution equation with respect to the volume of the associated Bianchi I universe, with a well posed initial value problem. This fact allows us to construct the Hilbert space of physical states and to show that we recover the standard quantum field theory for the inhomogeneities.

  13. Coupling sensing to crop models for closed-loop plant production in advanced life support systems

    Science.gov (United States)

    Cavazzoni, James; Ling, Peter P.

    1999-01-01

    We present a conceptual framework for coupling sensing to crop models for closed-loop analysis of plant production for NASA's program in advanced life support. Crop status may be monitored through non-destructive observations, while models may be independently applied to crop production planning and decision support. To achieve coupling, environmental variables and observations are linked to mode inputs and outputs, and monitoring results compared with model predictions of plant growth and development. The information thus provided may be useful in diagnosing problems with the plant growth system, or as a feedback to the model for evaluation of plant scheduling and potential yield. In this paper, we demonstrate this coupling using machine vision sensing of canopy height and top projected canopy area, and the CROPGRO crop growth model. Model simulations and scenarios are used for illustration. We also compare model predictions of the machine vision variables with data from soybean experiments conducted at New Jersey Agriculture Experiment Station Horticulture Greenhouse Facility, Rutgers University. Model simulations produce reasonable agreement with the available data, supporting our illustration.

  14. Natural Circulation High Pressure Loop Dynamics Around Operating Point, Tests and Modelling With Retran 02

    International Nuclear Information System (INIS)

    Masriera, N.A; Doval, A.S; Mazufri, C.M

    2000-01-01

    The Natural Circulation High Pressure Loop (CAPCN) reproduces in scale all the one-dimensional thermal-hydraulic phenomena occurring in the primary loop of CAREM-25 reactor.It plays an important role in the qualification process of calculating computer codes.This facility demanded to develop several technological solutions in order to achieve the measuring and control quality required by that process.This engineering and experimental development allowed completing the first stage of dynamic tests during 1998.The trends of recorded data were systematically evaluated in terms of the deviations of main variables in response to different perturbations.By this analysis a group of eight transients was selected, providing a Minimum Representative Set (MRS) of dynamic tests, allowing the evaluation of all dynamic phenomena.Each of these transients was simulated with RETRAN-02, using a spreadsheet to facilitate the consistent elaboration and modification of input files.Comparing measured data and computer simulations, it may be concluded that it is possible to reproduce the dynamic response of all the transients with a level of approximation quite homogeneous and generally acceptable.It is possible to identify the detailed physical models that fit better the dynamic phenomena, and which of the limitations of RETRAN code are more relevant

  15. Temporal differential proteomes of Clostridium difficile in the pig ileal-ligated loop model.

    Directory of Open Access Journals (Sweden)

    Tavan Janvilisri

    Full Text Available The impact of Clostridium difficile infection (CDI on healthcare is becoming increasingly recognized as it represents a major cause of nosocomial diarrhea. A rising number of CDI cases and outbreaks have been reported worldwide. Here, we developed the pig ileal-ligated loop model for semi-quantitative analysis comparing temporal differential proteomes in C. difficile following in vivo incubation with in vitro growth using isobaric tags for relative and absolute quantification (iTRAQ. Proteins retrieved from the in vitro cultures and the loop contents after 4, 8, and 12 h in vivo incubation were subjected to in-solution digestion, iTRAQ labeling, two-dimensional liquid chromatography/tandem mass spectrometry and statistical analyses. From a total of 1152 distinct proteins identified in this study, 705 proteins were available for quantitative measures at all time points in both biological and technical replicates; 109 proteins were found to be differentially expressed. With analysis of clusters of orthologous group and protein-protein network interactions, we identified the proteins that might play roles in adaptive responses to the host environment, hence enhancing pathogenicity during CDI. This report represents the quantitative proteomic analysis of C. difficile that demonstrates time-dependent protein expression changes under conditions that mimic in vivo infection and identifies potential candidates for diagnostic or therapeutic measures.

  16. Noise-shaping all-digital phase-locked loops modeling, simulation, analysis and design

    CERN Document Server

    Brandonisio, Francesco

    2014-01-01

    This book presents a novel approach to the analysis and design of all-digital phase-locked loops (ADPLLs), technology widely used in wireless communication devices. The authors provide an overview of ADPLL architectures, time-to-digital converters (TDCs) and noise shaping. Realistic examples illustrate how to analyze and simulate phase noise in the presence of sigma-delta modulation and time-to-digital conversion. Readers will gain a deep understanding of ADPLLs and the central role played by noise-shaping. A range of ADPLL and TDC architectures are presented in unified manner. Analytical and simulation tools are discussed in detail. Matlab code is included that can be reused to design, simulate and analyze the ADPLL architectures that are presented in the book.   • Discusses in detail a wide range of all-digital phase-locked loops architectures; • Presents a unified framework in which to model time-to-digital converters for ADPLLs; • Explains a procedure to predict and simulate phase noise in oscil...

  17. A computational model clarifies the roles of positive and negative feedback loops in the Drosophila circadian clock

    International Nuclear Information System (INIS)

    Wang Junwei; Zhou Tianshou

    2010-01-01

    Previous studies showed that a single negative feedback structure should be sufficient for robust circadian oscillations. It is thus pertinent to ask why current cellular clock models almost universally have interlocked negative feedback loop (NFL) and positive feedback loop (PFL). Here, we propose a molecular model that reflects the essential features of the Drosophila circadian clock to clarify the different roles of negative and positive feedback loops. In agreement with experimental observations, the model can simulate circadian oscillations in constant darkness, entrainment by light-dark cycles, as well as phenotypes of per 01 and clk Jrk mutants. Moreover, sustained oscillations persist when the PFL is removed, implying the crucial role of NFL for rhythm generation. Through parameter sensitivity analysis, it is revealed that incorporation of PFL increases the robustness of the system to regulatory processes in PFL itself. Such reduced models can aid understanding of the design principles of circadian clocks in Drosophila and other organisms with complex transcriptional feedback structures.

  18. A reduced fidelity model for the rotary chemical looping combustion reactor

    KAUST Repository

    Iloeje, Chukwunwike O.

    2017-01-11

    The rotary chemical looping combustion reactor has great potential for efficient integration with CO capture-enabled energy conversion systems. In earlier studies, we described a one-dimensional rotary reactor model, and used it to demonstrate the feasibility of continuous reactor operation. Though this detailed model provides a high resolution representation of the rotary reactor performance, it is too computationally expensive for studies that require multiple model evaluations. Specifically, it is not ideal for system-level studies where the reactor is a single component in an energy conversion system. In this study, we present a reduced fidelity model (RFM) of the rotary reactor that reduces computational cost and determines an optimal combination of variables that satisfy reactor design requirements. Simulation results for copper, nickel and iron-based oxygen carriers show a four-order of magnitude reduction in simulation time, and reasonable prediction accuracy. Deviations from the detailed reference model predictions range from 3% to 20%, depending on oxygen carrier type and operating conditions. This study also demonstrates how the reduced model can be modified to deal with both optimization and design oriented problems. A parametric study using the reduced model is then applied to analyze the sensitivity of the optimal reactor design to changes in selected operating and kinetic parameters. These studies show that temperature and activation energy have a greater impact on optimal geometry than parameters like pressure or feed fuel fraction for the selected oxygen carrier materials.

  19. THE RELATION BETWEEN EIT WAVES AND CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Chen, P. F.

    2009-01-01

    More and more evidence indicates that 'EIT waves' are strongly related to coronal mass ejections (CMEs). However, it is still not clear how the two phenomena are related to each other. We investigate a CME event on 1997 September 9, which was well observed by both the EUV Imaging Telescope (EIT) and the high-cadence Mark-III K-Coronameter at Mauna Loa Solar Observatory, and compare the spatial relation between the 'EIT wave' fronts and the CME leading loops. It is found that 'EIT wave' fronts are cospatial with the CME leading loops, and the expanding EUV dimmings are cospatial with the CME cavity. It is also found that the CME stopped near the boundary of a coronal hole, a feature common to observations of 'EIT waves'. It is suggested that 'EIT waves'/dimmings are the EUV counterparts of the CME leading loop/cavity, based on which we propose that, as in the case of 'EIT waves', CME leading loops are apparently moving density enhancements that are generated by successive stretching (or opening-up) of magnetic loops.

  20. A Mixed Integer Linear Programming Model for the Design of Remanufacturing Closed–loop Supply Chain Network

    Directory of Open Access Journals (Sweden)

    Mbarek Elbounjimi

    2015-11-01

    Full Text Available Closed-loop supply chain network design is a critical issue due to its impact on both economic and environmental performances of the supply chain. In this paper, we address the problem of designing a multi-echelon, multi-product and capacitated closed-loop supply chain network. First, a mixed-integer linear programming formulation is developed to maximize the total profit. The main contribution of the proposed model is addressing two economic viability issues of closed-loop supply chain. The first issue is the collection of sufficient quantity of end-of-life products are assured by retailers against an acquisition price. The second issue is exploiting the benefits of colocation of forward facilities and reverse facilities. The presented model is solved by LINGO for some test problems. Computational results and sensitivity analysis are conducted to show the performance of the proposed model.

  1. A closed-loop hybrid physiological model relating to subjects under physical stress.

    Science.gov (United States)

    El-Samahy, Emad; Mahfouf, Mahdi; Linkens, Derek A

    2006-11-01

    The objective of this research study is to derive a comprehensive physiological model relating to subjects under physical stress conditions. The model should describe the behaviour of the cardiovascular system, respiratory system, thermoregulation and brain activity in response to physical workload. An experimental testing rig was built which consists of recumbent high performance bicycle for inducing the physical load and a data acquisition system comprising monitors and PCs. The signals acquired and used within this study are the blood pressure, heart rate, respiration, body temperature, and EEG signals. The proposed model is based on a grey-box based modelling approach which was used because of the sufficient level of details it provides. Cardiovascular and EEG Data relating to 16 healthy subject volunteers (data from 12 subjects were used for training/validation and the data from 4 subjects were used for model testing) were collected using the Finapres and the ProComp+ monitors. For model validation, residual analysis via the computing of the confidence intervals as well as related histograms was performed. Closed-loop simulations for different subjects showed that the model can provide reliable predictions for heart rate, blood pressure, body temperature, respiration, and the EEG signals. These findings were also reinforced by the residual analyses data obtained, which suggested that the residuals were within the 90% confidence bands and that the corresponding histograms were of a normal distribution. A higher intelligent level was added to the model, based on neural networks, to extend the capabilities of the model to predict over a wide range of subjects dynamics. The elicited physiological model describing the effect of physiological stress on several physiological variables can be used to predict performance breakdown of operators in critical environments. Such a model architecture lends itself naturally to exploitation via feedback control in a 'reverse

  2. Modeling Open-Loop MEMS Tunneling Accelerometer Based on Circular Plate

    Directory of Open Access Journals (Sweden)

    Hossein Jodat Kordlar

    2007-04-01

    Full Text Available In this paper open-loop MEMS tunneling accelerometer was modeled based on a clamped micro circular plate with a tip tunneling at its centre. Mechanical behavior of the micro plate was studied deriving governing equation based on classic Kirchhoff thin plate theory and it was discretized using Galerkin method. Dynamic response of the proposed accelerometer due to step and harmonic external excitation was studied and the magnitude of the applied acceleration was identified by measuring of the changing of tunneling current. Obtained results show that the proposed tunneling accelerometer very sensitive and it can be measure acceleration with very high resolution but very small gap of tip tunneling limit the range of measurable acceleration.

  3. Numerical Modeling of an Integrated Vehicle Fluids System Loop for Pressurizing a Cryogenic Tank

    Science.gov (United States)

    LeClair, A. C.; Hedayat, A.; Majumdar, A. K.

    2017-01-01

    This paper presents a numerical model of the pressurization loop of the Integrated Vehicle Fluids (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance to reduce system weight and enhance reliability, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) conducted tests to verify the functioning of the IVF system using a flight-like tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to support the test program. This paper presents the simulation of three different test series, comparison of numerical prediction and test data and a novel method of presenting data in a dimensionless form. The paper also presents a methodology of implementing a compressor map in a system level code.

  4. A genetic algorithm approach for solving a closed loop supply chain model

    DEFF Research Database (Denmark)

    Kannan, G.; Sasikumar, P.; Kannan, Devika

    2010-01-01

    in reverse logistics is to take back the used products, either under warranty or at the end of use or at the end of lease, so that the products or its parts are appropriately disposed, recycled, reused or remanufactured. In order to overcome this issue, it is necessary to setup a logistics network...... for arising goods flow from end users to manufacturers. In this study, the optimum usage of secondary lead recovered from the spent lead-acid batteries for producing new battery is presented. The disposal in surface or sewage water or land of liquid content of the lead-acid batteries is strictly restricted....... Because of the need for environmental protection and the lack of considerable lead resources, the spent batteries treatment and lead recovery are becoming crucial now-a-days. The objective of this paper is to develop a multi echelon, multi period, multi product closed loop supply chain network model...

  5. Evolution of the pion wave function in the scalar /phi/63 model: two-loop calculation

    International Nuclear Information System (INIS)

    Mikhailov, S.V.; Radyushkin, A.V.

    1986-01-01

    The authors study the structure of the contributions that violate the multiplicative renormalizability of the conformal operators in the model based on the /phi/ 6 3 theory in space-time of six dimensions. This theory has a number of features in common with QCD in four dimensions. The basic propositions are presented and the key elements of the calculation are demonstrated. The connection between the kernels for exclusive and inclusive processes are discused and the structure of the two-loop evolution kernel V(x,y) and the solution of the evolution equation are discussed. Main conclusions are formulated and the results of the calculations for concrete diagrams are deferred to in Appendix A. Formulas for the transition from the exclusive to the inclusive kernels are presented in Appendix B

  6. Enforced neutrality and color-flavor unlocking in the three-flavor Polyakov-loop Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Abuki, H.; Ciminale, M.; Nardulli, G.; Ruggieri, M.; Gatto, R.

    2008-01-01

    We study how the charge neutrality affects the phase structure of the three-flavor Polyakov-loop Nambu-Jona-Lasinio (PNJL) model. We point out that, within the conventional PNJL model at finite density, the color neutrality is missing because the Wilson line serves as an external colored field coupled to dynamical quarks. In this paper we heuristically assume that the model may still be applicable. To get color neutrality, one has then to allow nonvanishing color chemical potentials. We study how the quark matter phase diagram in (T,m s 2 /μ)-plane is affected by imposing neutrality and by including the Polyakov-loop dynamics. Although these two effects are correlated in a nonlinear way, the impact of the Polyakov loop turns out to be significant in the T direction, while imposing neutrality brings a remarkable effect in the m s 2 /μ direction. In particular, we find a novel unlocking transition, when the temperature is increased, even in the chiral SU(3) limit. We clarify how and why this is possible once the dynamics of the colored Polyakov loop is taken into account. Also we succeed in giving an analytic expression for T c for the transition from two-flavor pairing (2SC) to unpaired quark matter in the presence of the Polyakov loop.

  7. Chromospheric counterparts of solar transition region unresolved fine structure loops

    Science.gov (United States)

    Pereira, Tiago M. D.; Rouppe van der Voort, Luc; Hansteen, Viggo H.; De Pontieu, Bart

    2018-04-01

    Low-lying loops have been discovered at the solar limb in transition region temperatures by the Interface Region Imaging Spectrograph (IRIS). They do not appear to reach coronal temperatures, and it has been suggested that they are the long-predicted unresolved fine structures (UFS). These loops are dynamic and believed to be visible during both heating and cooling phases. Making use of coordinated observations between IRIS and the Swedish 1-m Solar Telescope, we study how these loops impact the solar chromosphere. We show for the first time that there is indeed a chromospheric signal of these loops, seen mostly in the form of strong Doppler shifts and a conspicuous lack of chromospheric heating. In addition, we find that several instances have a inverse Y-shaped jet just above the loop, suggesting that magnetic reconnection is driving these events. Our observations add several puzzling details to the current knowledge of these newly discovered structures; this new information must be considered in theoretical models. Two movies associated to Fig. 1 are available at http://https://www.aanda.org

  8. A reduced fidelity model for the rotary chemical looping combustion reactor

    International Nuclear Information System (INIS)

    Iloeje, Chukwunwike O.; Zhao, Zhenlong; Ghoniem, Ahmed F.

    2017-01-01

    Highlights: • Methodology for developing a reduced fidelity rotary CLC reactor model is presented. • The reduced model determines optimal reactor configuration that meets design and operating requirements. • A 4-order of magnitude reduction in computational cost is achieved with good prediction accuracy. • Sensitivity studies demonstrate importance of accurate kinetic parameters for reactor optimization. - Abstract: The rotary chemical looping combustion reactor has great potential for efficient integration with CO_2 capture-enabled energy conversion systems. In earlier studies, we described a one-dimensional rotary reactor model, and used it to demonstrate the feasibility of continuous reactor operation. Though this detailed model provides a high resolution representation of the rotary reactor performance, it is too computationally expensive for studies that require multiple model evaluations. Specifically, it is not ideal for system-level studies where the reactor is a single component in an energy conversion system. In this study, we present a reduced fidelity model (RFM) of the rotary reactor that reduces computational cost and determines an optimal combination of variables that satisfy reactor design requirements. Simulation results for copper, nickel and iron-based oxygen carriers show a four-order of magnitude reduction in simulation time, and reasonable prediction accuracy. Deviations from the detailed reference model predictions range from 3% to 20%, depending on oxygen carrier type and operating conditions. This study also demonstrates how the reduced model can be modified to deal with both optimization and design oriented problems. A parametric study using the reduced model is then applied to analyze the sensitivity of the optimal reactor design to changes in selected operating and kinetic parameters. These studies show that temperature and activation energy have a greater impact on optimal geometry than parameters like pressure or feed fuel

  9. Enlarged symmetry algebras of spin chains, loop models, and S-matrices

    International Nuclear Information System (INIS)

    Read, N.; Saleur, H.

    2007-01-01

    The symmetry algebras of certain families of quantum spin chains are considered in detail. The simplest examples possess m states per site (m>=2), with nearest-neighbor interactions with U(m) symmetry, under which the sites transform alternately along the chain in the fundamental m and its conjugate representation m-bar. We find that these spin chains, even with arbitrary coefficients of these interactions, have a symmetry algebra A m much larger than U(m), which implies that the energy eigenstates fall into sectors that for open chains (i.e., free boundary conditions) can be labeled by j=0,1,...,L, for the 2L-site chain such that the degeneracies of all eigenvalues in the jth sector are generically the same and increase rapidly with j. For large j, these degeneracies are much larger than those that would be expected from the U(m) symmetry alone. The enlarged symmetry algebra A m (2L) consists of operators that commute in this space of states with the Temperley-Lieb algebra that is generated by the set of nearest-neighbor interaction terms; A m (2L) is not a Yangian. There are similar results for supersymmetric chains with gl(m+n|n) symmetry of nearest-neighbor interactions, and a richer representation structure for closed chains (i.e., periodic boundary conditions). The symmetries also apply to the loop models that can be obtained from the spin chains in a spacetime or transfer matrix picture. In the loop language, the symmetries arise because the loops cannot cross. We further define tensor products of representations (for the open chains) by joining chains end to end. The fusion rules for decomposing the tensor product of representations labeled j 1 and j 2 take the same form as the Clebsch-Gordan series for SU(2). This and other structures turn the symmetry algebra A m into a ribbon Hopf algebra, and we show that this is 'Morita equivalent' to the quantum group U q (sl 2 ) for m=q+q -1 . The open-chain results are extended to the cases vertical bar m vertical

  10. Order α'(two-loop) equivalence of the string equations of motion and the σ-model Weyl invariance conditions

    International Nuclear Information System (INIS)

    Metsaev, R.R.; Tseytlin, A.A.

    1987-01-01

    We prove the on-shell equivalence of the order α' terms in the string effective equations (for the graviton, dilaton and the antisymmetric tensor) to the vanishing of the corresponding (two-loop) terms in the Weyl anomaly coefficients for the general bosonic σ-model. We first determine the α' term in the string effective action starting with the known expression for the 3- and 4-point string amplitudes. Then we compute the two-loop β-function in the general σ-model with the antisymmetric tensor coupling. Special emphasis is made on the renormalization scheme dependence of the β-function. Our result disagrees with the previously known one and cannot be manifestly expressed in terms of the generalized curvature for the connection with torsion. We also prove (to the order α' 2 ) that the parallelizable spaces are solutions of the string equations of motion and establish the complete 3-loop expression for the 'central charge' coefficient. (orig.)

  11. Photospheric Driving of Non-Potential Coronal Magnetic Field Simulations

    Science.gov (United States)

    2016-09-19

    synthesize observable emission . In future, the computational speed of the MF model makes it a potential avenue for near- real time and/or ensemble...AFRL-AFOSR-UK-TR-2016-0030 PHOTOSPHERIC DRIVING OF NON-POTENTIAL CORONAL MAGNETIC FIELD SIMULATIONS Anthony Yeates UNIVERSITY OF DURHAM Final Report...Final 3. DATES COVERED (From - To)  15 Sep 2014 to 14 Sep 2017 4. TITLE AND SUBTITLE PHOTOSPHERIC DRIVING OF NON-POTENTIAL CORONAL MAGNETIC FIELD

  12. Multidetector CT enteroclysis: comparison of the reading performance for axial and coronal views

    International Nuclear Information System (INIS)

    Schmidt, Sabine; Chalaron, Marc; Schnyder, Pierre; Denys, Alban; Chevallier, Patrick; Bessoud, Bertrand; Verdun, Francis R.; Frascarolo, Philippe

    2005-01-01

    The purpose of this study was to compare the diagnostic performance of axial and coronal views in multidetector CT enteroclysis (MDCTE). We retrospectively evaluated 48 patients with pathological correlation investigated by MDCTE for small bowel disorders. After nasojejunal administration of 2 l of 5% methylcellulose axial arterial and venous acquisition of MDCTE was followed by coronal reconstructions using equal slice thicknesses of 2.5 mm with 2 mm increments. Spatial resolution of both planes was evaluated by phantom. Three radiologists independently read axial and coronal images concerning 12 pathological features. The interobserver agreement and time of reading was calculated. Sensitivity and specificity resulted from comparison with histopathology (n=39) or follow-up (n=9). Phantom study revealed higher spatial resolution for axial than coronal views, whatever reconstruction interval was used. However, spatial frequency always remained high. Most pathological signs, such as bowel wall thickening (BWT), bowel wall enhancement (BWE) and intraperitoneal fluid (IPF), showed better interobserver agreement on axial than coronal views (BWT: 0.61 vs. 0.44; BWE: 0.56 vs. 0.5; IPF:0.53 vs. 0.43). The Wilcoxon signed-rank test revealed significantly higher sensitivity for axial than coronal views (P=0.0453); the time of reading was significantly shorter for the latter (P=0.0146). The diagnostic value of axial slices is superior to coronal reconstructions despite the reduced data volume and display of the physiological course of bowel loops on the coronal plane. (orig.)

  13. The Fate of Cool Material in the Hot Corona: Solar Prominences and Coronal Rain

    Science.gov (United States)

    Liu, Wei; Antolin, Patrick; Sun, Xudong; Vial, Jean-Claude; Berger, Thomas

    2017-08-01

    As an important chain of the chromosphere-corona mass cycle, some of the million-degree hot coronal mass undergoes a radiative cooling instability and condenses into material at chromospheric or transition-region temperatures in two distinct forms - prominences and coronal rain (some of which eventually falls back to the chromosphere). A quiescent prominence usually consists of numerous long-lasting, filamentary downflow threads, while coronal rain consists of transient mass blobs falling at comparably higher speeds along well-defined paths. It remains puzzling why such material of similar temperatures exhibit contrasting morphologies and behaviors. We report recent SDO/AIA and IRIS observations that suggest different magnetic environments being responsible for such distinctions. Specifically, in a hybrid prominence-coronal rain complex structure, we found that the prominence material is formed and resides near magnetic null points that favor the radiative cooling process and provide possibly a high plasma-beta environment suitable for the existence of meandering prominence threads. As the cool material descends, it turns into coronal rain tied onto low-lying coronal loops in a likely low-beta environment. Such structures resemble to certain extent the so-called coronal spiders or cloud prominences, but the observations reported here provide critical new insights. We will discuss the broad physical implications of these observations for fundamental questions, such as coronal heating and beyond (e.g., in astrophysical and/or laboratory plasma environments).

  14. Experimental tests for the Babu-Zee two-loop model of Majorana neutrino masses

    International Nuclear Information System (INIS)

    Sierra, Diego Aristizabal; Hirsch, Martin

    2006-01-01

    The smallness of the observed neutrino masses might have a radiative origin. Here we revisit a specific two-loop model of neutrino mass, independently proposed by Babu and Zee. We point out that current constraints from neutrino data can be used to derive strict lower limits on the branching ratio of flavour changing charged lepton decays, such as μ→eγ. Non-observation of Br(μ→eγ) at the level of 10 -13 would rule out singly charged scalar masses smaller than 590 GeV (5.04 TeV) in case of normal (inverse) neutrino mass hierarchy. Conversely, decay branching ratios of the non-standard scalars of the model can be fixed by the measured neutrino angles (and mass scale). Thus, if the scalars of the model are light enough to be produced at the LHC or ILC, measuring their decay properties would serve as a direct test of the model as the origin of neutrino masses

  15. Experimental tests for the Babu-Zee two-loop model of Majorana neutrino masses

    International Nuclear Information System (INIS)

    Aristizabal, D.

    2006-01-01

    Abstract: The smallness of the observed neutrino masses might have a radiative origin. Here we revisit a specific two-loop model of neutrino mass, independently proposed by Babu and Zee. We point out that current constraints from neutrino data can be used to derive strict lower limits on the branching ratio of flavour changing charged lepton decays, such as μ → e γ. Non-observation of Br(μ → e γ) at the level of 10 -13 would rule out singly charged scalar masses smaller than 590 GeV (5.04 TeV) in case of normal (inverse) neutrino mass hierarchy. Conversely, decay branching ratios of the non-standard scalars of the model can be fixed by the measured neutrino angles (and mass scale). Thus, if the scalars of the model are light enough to be produced at the LHC or ILC, measuring their decay properties would serve as a direct test of the model as the origin of neutrino masses. (author)

  16. Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: a better model.

    Science.gov (United States)

    Dong, Qing-shan; Shang, Hong-tao; Wu, Wei; Chen, Fu-lin; Zhang, Jun-rui; Guo, Jia-ping; Mao, Tian-qiu

    2012-08-01

    The most important problem for the survival of thick 3-dimensional tissues is the lack of vascularization in the context of bone tissue engineering. In this study, a modified arteriovenous loop (AVL) was developed to prefabricate an axial vascularized tissue engineering coral bone in rabbit, with comparison of the arteriovenous bundle (AVB) model. An arteriovenous fistula between rabbit femoral artery and vein was anastomosed to form an AVL. It was placed in a circular side groove of the coral block. The complex was wrapped with an expanded-polytetrafluoroethylene membrane and implanted beneath inguinal skin. After 2, 4, 6 and 8 weeks, the degree of vascularization was evaluated by India ink perfusion, histological examination, vascular casts, and scanning electron microscopy images of vascular endangium. Newly formed fibrous tissues and vasculature extended over the surfaces and invaded the interspaces of entire coral block. The new blood vessels robustly sprouted from the AVL. Those invaginated cavities in the vascular endangium from scanning electron microscopy indicated vessel's sprouted pores. Above indexes in AVL model are all superior to that in AVB model, indicating that the modified AVL model could more effectively develop vascularization in larger tissue engineering bone. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Interpretation of coronal synoptic observations

    International Nuclear Information System (INIS)

    Munro, R.H.; Fisher, R.R.

    1986-01-01

    Three-dimensional reconstruction techniques used to determine coronal density distributions from synoptic data are complicated and time consuming to employ. Current techniques also assume time invariant structures and thus mix both temporal and spatial variations present in the coronal data. The observed distribution of polarized brightness, pB, and brightness, B, of coronal features observed either at eclipses or with coronagraphs depends upon both the three-dimensional distribution of electron density within the structure and the location of the feature with respect to the plane-of-the-sky. By theoretically studying the signature of various coronal structures as they would appear during a limb transit, it is possible to recognize these patterns in real synoptic data as well as estimate temporal evolutionary effects

  18. Temperature Structure of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    we analyze the temperature structure of a coronal cavity observed in Aug. 2007. coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and x-rays. when these structures erupt they form the cavity portions of CMEs. It is important to establish the temperature structure of cavities in order to understand the thermodynamics of cavities in relation to their three-dimensional magnetic structure. To analyze the temperature we compare temperature ratios of a series of iron lines observed by the Hinode/EUv Imaging spectrometer (EIS). We also use those lines to constrain a forward model of the emission from the cavity and streamer. The model assumes a coronal streamer with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel lenth. Temperature and density can be varied as a function of altitude both in the cavity and streamer. The general cavity morphology and the cavity and streamer density have already been modeled using data from STEREO's SECCHI/EUVI and Hinode/EIS (Gibson et al 2010 and Schmit & Gibson 2011).

  19. [Development of electroforming apparatus for coronal restoration].

    Science.gov (United States)

    Watanabe, M; Sawada, T; Ukiya, M

    1989-03-01

    As dental technologies become highly developed, techniques have been more diversified. From as aspect of prosthodontic practice, both esthetic and functional requirements are emphasized for coronal restoration and consequently, these should be considered in the routine procedure. In fabrication of coronal restorations, metal, porcelain and resin are commonly used, and there exists the various disadvantages for metal cast method due to complicated processes by using different dental materials. Therefore, an electroforming apparatus was developed by us to replace the conventional procedure by a cathode rotary system. It was applied for coronal restorations to allow an electroforming directly on a working model. An experiment was successfully conducted to apply for a veneer crown on abutment tooth of upper central incisor on plaster model. The results were obtained as follows, 1. It was become possible to construct a metal framework by the electroforming. 2. Metal framework can be constructed on the same working model without a duplication of it. 3. The combined system for cathode rotation and liquid circulation could shorten the electroposition time, and allows a high current density extending to 50 A/dm2.

  20. Theoretical Modeling and Simulation of Phase-Locked Loop (PLL for Clock Data Recovery (CDR

    Directory of Open Access Journals (Sweden)

    Zainab Mohamad Ashari

    2012-01-01

    Full Text Available Modern communication and computer systems require rapid (Gbps, efficient  and large bandwidth data transfers. Agressive scaling of digital integrated systems  allow buses and communication controller circuits to be integrated with the microprocessor on the same chip. The  Peripheral Component Interconnect Express (PCIe protocol handles all communcation between the central processing unit (CPU and hardware devices. PCIe buses require efficient clock data recovery circuits (CDR to recover clock signals embedded in data during transmission. This paper describes the theoretical modeling and simulation of a phase-locked loop (PLL used in a CDR circuit. A simple PLL architecture for a 5 GHz CDR circuit is proposed  and elaborated in this work. Simulations were carried out using a Hardware Description Language, Verilog-AMS. The effect of jitter on the proposed design is also simulated and evaluated in this work. It was found that the proposed design is robust against both input and VCO jitter.ABSTRAK: Sistem komunikasi dan komputer moden memerlukan pemindahan data yang cekap (Gbps, dan bandwidth yang besar. Pengecilan agresif menggunakan teknik sistem digital bersepadu membenarkan bas dan litar pengawal komunikasi disatukan dengan  mikroprocessor dalam cip yang sama. Protokol persisian komponen sambung tara ekspres (PCIe mengendalikan semua komunikasi antara unit pemprosesan pusat (CPU dan peranti perkakasan. Bas PCIe memerlukan litar jam pemulihan data (CDR yang cekap untuk mendapatkan kembali isyarat jam yang tertanam dalam data semasa transmisi. Karya ini menerangkan teori pemodelan dan simulasi gelung fasa terkunci (PLL untuk CDR. Rekabentuk 5 GHz PLL yang mudah telah dicadangkan dalm kertas kerja ini. Simulasi telah dijalankan menggunakan perisian verilog-AMS. Simulasi mengunnakan kesan ketar dalam reka bentuk yang dicadangkan telah dinilai. Reka bentuk yang dicadangkan terbukti teguh mengatasi ganguan ketar di input dan VCO.KEY WORDS

  1. A differential equation approach to minor loops in the Jiles-Atherton hysteresis model

    International Nuclear Information System (INIS)

    Carpenter, K.H.

    1991-01-01

    Jiles and Atherton, in a series of papers, present physically based differential equations for magnetization in ferromagnetic materials. however, if one directly solves their differential equations, the minor loops obtained can be negative slopes, which is a nonphysical behavior. Only one of their papers gives a method for obtaining minor loops, and the method does not use a differential equation, but requires a priori knowledge of the loop turning points in order to obtain a scale factor and offset which allow a portion of a major loop to serve as a portion of a minor one. In this paper, the reason for the failure of the differential equations to yield physical minor loops is explained, and a modified solution for minor loops is presented which retains the features of Jiles and Atherton's original minor loops, but only requires knowledge of the initial point on each portion of the loop to obtain the solution. This yields a general differential equation formulation for the Jiles-Atherton theory that can be used with circuit simulations having arbitrary excitations and initial conditions for ferromagnetic components

  2. Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares

    Science.gov (United States)

    Thiemann, E. M. B.; Chamberlin, P. C.; Eparvier, F. G.; Epp, L.

    2018-02-01

    It is generally accepted that densities of quiet-Sun and active region plasma are sufficiently low to justify the optically thin approximation, and this is commonly used in the analysis of line emissions from plasma in the solar corona. However, the densities of solar flare loops are substantially higher, compromising the optically thin approximation. This study begins with a radiative transfer model that uses typical solar flare densities and geometries to show that hot coronal emission lines are not generally optically thin. Furthermore, the model demonstrates that the observed line intensity should exhibit center-to-limb variability (CTLV), with flares observed near the limb being dimmer than those occurring near disk center. The model predictions are validated with an analysis of over 200 flares observed by the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO), which uses six lines, with peak formation temperatures between 8.9 and 15.8 MK, to show that limb flares are systematically dimmer than disk-center flares. The data are then used to show that the electron column density along the line of sight typically increases by 1.76 × 10^{19} cm^{-2} for limb flares over the disk-center flare value. It is shown that the CTLV of hot coronal emissions reduces the amount of ionizing radiation propagating into the solar system, and it changes the relative intensities of lines and bands commonly used for spectral analysis.

  3. THE CONTRIBUTION OF CORONAL JETS TO THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Lionello, R.; Török, T.; Titov, V. S.; Mikić, Z.; Linker, J. A. [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Leake, J. E.; Linton, M. G., E-mail: lionel@predsci.com [US Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375 (United States)

    2016-11-01

    Transient collimated plasma eruptions in the solar corona, commonly known as coronal (or X-ray) jets, are among the most interesting manifestations of solar activity. It has been suggested that these events contribute to the mass and energy content of the corona and solar wind, but the extent of these contributions remains uncertain. We have recently modeled the formation and evolution of coronal jets using a three-dimensional (3D) magnetohydrodynamic (MHD) code with thermodynamics in a large spherical domain that includes the solar wind. Our model is coupled to 3D MHD flux-emergence simulations, i.e., we use boundary conditions provided by such simulations to drive a time-dependent coronal evolution. The model includes parametric coronal heating, radiative losses, and thermal conduction, which enables us to simulate the dynamics and plasma properties of coronal jets in a more realistic manner than done so far. Here, we employ these simulations to calculate the amount of mass and energy transported by coronal jets into the outer corona and inner heliosphere. Based on observed jet-occurrence rates, we then estimate the total contribution of coronal jets to the mass and energy content of the solar wind to (0.4–3.0)% and (0.3–1.0)%, respectively. Our results are largely consistent with the few previous rough estimates obtained from observations, supporting the conjecture that coronal jets provide only a small amount of mass and energy to the solar wind. We emphasize, however, that more advanced observations and simulations (including parametric studies) are needed to substantiate this conjecture.

  4. Modeling of coronal mass ejections with the STEREO heliospheric imagers verified with in situ observations by the Heliophysics System Observatory

    Science.gov (United States)

    Möstl, Christian; Isavnin, Alexey; Kilpua, Emilia; Bothmer, Volker; Mrotzek, Nicolas; Boakes, Peter; Rodriguez, Luciano; Krupar, Vratislav; Eastwood, Jonathan; Davies, Jackie; Harrison, Richard; Barnes, David; Winslow, Reka; Helcats Team

    2017-04-01

    We present the first study to verify modeling of CMEs as observed by the heliospheric imagers on the two STEREO spacecraft with a large scale dataset of in situ plasma and magnetic field observations from the Heliophysics System Observatory, including MESSENGER, VEX, Wind, and the in situ measurements on the two STEREO spacecraft. To this end, we have established a new interplanetary CME catalog (ICMECAT) for these spacecraft by gathering and updating individual ICME lists. In addition, we have re-calculated the in situ parameters in a consistent way, resulting in 668 events observed between 2007-2015. We then calculated the efficacy of the STEREO/HI instruments for predicting (in hindsight) with the SSEF30 model the arrival time and speed of CMEs as well as hit/miss ratios. We also show how ICMECAT gives decent statistics concerning CME impacts on all of the terrestrial planets, including Mars. The results show some major implications for future heliospheric imagers which may be used for space weather forecasting. Our effort should also serve as a baseline for the upcoming new era in heliospheric science with Solar Orbiter, Solar Probe Plus, BepiColombo returning partly comparable observations in the next decade. The presented work has received funding from the European Union Seventh Framework Programme (FP7/ 2007-2013) under grant agreement No. 606692 [HELCATS].

  5. The Role Of Torsional Alfvén Waves in Coronal Heating

    Science.gov (United States)

    Antolin, P.; Shibata, K.

    2010-03-01

    In the context of coronal heating, among the zoo of magnetohydrodynamic (MHD) waves that exist in the solar atmosphere, Alfvén waves receive special attention. Indeed, these waves constitute an attractive heating agent due to their ability to carry over the many different layers of the solar atmosphere sufficient energy to heat and maintain a corona. However, due to their incompressible nature these waves need a mechanism such as mode conversion (leading to shock heating), phase mixing, resonant absorption, or turbulent cascade in order to heat the plasma. Furthermore, their incompressibility makes their detection in the solar atmosphere very difficult. New observations with polarimetric, spectroscopic, and imaging instruments such as those on board the Japanese satellite Hinode, or the Crisp spectropolarimeter of the Swedish Solar Telescope or the Coronal Multi-channel Polarimeter, are bringing strong evidence for the existence of energetic Alfvén waves in the solar corona. In order to assess the role of Alfvén waves in coronal heating, in this work we model a magnetic flux tube being subject to Alfvén wave heating through the mode conversion mechanism. Using a 1.5 dimensional MHD code, we carry out a parameter survey varying the magnetic flux tube geometry (length and expansion), the photospheric magnetic field, the photospheric velocity amplitudes, and the nature of the waves (monochromatic or white-noise spectrum). The regimes under which Alfvén wave heating produces hot and stable coronae are found to be rather narrow. Independently of the photospheric wave amplitude and magnetic field, a corona can be produced and maintained only for long (>80 Mm) and thick (area ratio between the photosphere and corona >500) loops. Above a critical value of the photospheric velocity amplitude (generally a few km s-1) the corona can no longer be maintained over extended periods of time and collapses due to the large momentum of the waves. These results establish several

  6. First step of the project for implementation of two non-symmetric cooling loops modeled by the ALMOD3 code

    International Nuclear Information System (INIS)

    Dominguez, L.; Camargo, C.T.M.

    1984-09-01

    The first step of the project for implementation of two non-symmetric cooling loops modeled by the ALMOD3 computer code is presented. This step consists of the introduction of a simplified model for simulating the steam generator. This model is the GEVAP computer code, integrant part of LOOP code, which simulates the primary coolant circuit of PWR nuclear power plants during transients. The ALMOD3 computer code has a model for the steam generator, called UTSG, which is very detailed. This model has spatial dependence, correlations for 2-phase flow, distinguished correlations for different heat transfer process. The GEVAP model has thermal equilibrium between phases (gaseous and liquid homogeneous mixture), no spatial dependence and uses only one generalized correlation to treat several heat transfer processes. (Author) [pt

  7. Modeling of the Near Field Coupling Between an External Loop and an Implantable Spiral Chip Antennas in Biosensor Systems

    Science.gov (United States)

    Simons, Rainee N.; Miranda, Felix A.

    2006-01-01

    In this paper, the near field coupling between an external hand-held loop antenna and an implantable miniature (1x1 mm) printed square spiral chip antenna used in bio-MEMS sensors for contact-less powering and RF telemetry is investigated. The loop and the spiral are inductively coupled and effectively form a transformer. The numerical results include the quasi-stationary magnetic field pattern of the implanted antenna, near zone wave impedance as a function of the radial distance and the values of the lumped elements in the equivalent circuit model for the transformer.

  8. Hardware-in-the-Loop Modeling and Simulation Methods for Daylight Systems in Buildings

    Science.gov (United States)

    Mead, Alex Robert

    This dissertation introduces hardware-in-the-loop modeling and simulation techniques to the daylighting community, with specific application to complex fenestration systems. No such application of this class of techniques, optimally combining mathematical-modeling and physical-modeling experimentation, is known to the author previously in the literature. Daylighting systems in buildings have a large impact on both the energy usage of a building as well as the occupant experience within a space. As such, a renewed interest has been placed on designing and constructing buildings with an emphasis on daylighting in recent times as part of the "green movement.''. Within daylighting systems, a specific subclass of building envelope is receiving much attention: complex fenestration systems (CFSs). CFSs are unique as compared to regular fenestration systems (e.g. glazing) in the regard that they allow for non-specular transmission of daylight into a space. This non-specular nature can be leveraged by designers to "optimize'' the times of the day and the days of the year that daylight enters a space. Examples of CFSs include: Venetian blinds, woven fabric shades, and prismatic window coatings. In order to leverage the non-specular transmission properties of CFSs, however, engineering analysis techniques capable of faithfully representing the physics of these systems are needed. Traditionally, the analysis techniques available to the daylighting community fall broadly into three classes: simplified techniques, mathematical-modeling and simulation, and physical-modeling and experimentation. Simplified techniques use "rules-of-thumb'' heuristics to provide insights for simple daylighting systems. Mathematical-modeling and simulation use complex numerical models to provide more detailed insights into system performance. Finally, physical-models can be instrumented and excited using artificial and natural light sources to provide performance insight into a daylighting system

  9. Chapter 5: Modeling and Control of Three-Phase AC/DC Converter Including Phase-Locked Loop

    DEFF Research Database (Denmark)

    Zhou, Dao; Song, Yipeng; Blaabjerg, Frede

    2018-01-01

    In this chapter, a mathematical model of the power circuit of a three-phase AC/DC converter is developed in the stationary and synchronous reference frames. Then, the operation principle of the phasor locked loop is addressed to exact the angle information of the power grid to realize the accurat...

  10. MODELING OF THE HEAT PUMP STATION CONTROLABLE LOOP OF AN INTERMEDIATE HEAT-TRANSFER AGENT (Part II

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2011-08-01

    Full Text Available It is studied the model of the heat pump station controllable loop of an intermediate heat-transfer agent for the use in wineries. There are demonstrated transients after the disturbing action of the temperature on the input of cooling jacket of the fermentation stirred tank. There are compared different control laws of the object.

  11. Fermion loops in the effective potential of N = 1 supergravity, with application to no-scale models

    International Nuclear Information System (INIS)

    Burton, J.W.

    1990-01-01

    Powerful and quite general arguments suggest that N = 1 supergravity, and in particular the superstring-inspired no-scale models, may describe the physics of the four-dimensional vacuum at energy densities below the Planck scale. These models are not renormalizable, since they arise as effective theories after the large masses have been integrated out of the fundamental theory; thus, they have divergences in their loop amplitudes that must be regulated by imposing a cutoff. Before physics at experimental energies can be extracted from these models, the true vacuum state or states must be identified: at tree level, the ground states of the effective theories are highly degenerate. Radiative corrections at the one-loop level have been shown to break the degeneracy sufficiently to identify the states of vanishing vacuum energy. As the concluding step in a program to calculate these corrections within a self-consistent cutoff prescription, all fermionic one-loop divergent corrections to the scalar effective potential are evaluated. (The corresponding bosonic contributions have been found elsewhere.) The total effective scalar Lagrange density for N = 1 supergravity is written down, and comments are made about cancellations between the fermionic and bosonic loops. Finally, the result is specialized to a toy no-scale model with a single generation of matter fields, and prospects for eventual phenomenological constraints on theories of this type are briefly discussed. 48 refs

  12. Chemical looping reforming in packed-bed reactors : modelling, experimental validation and large-scale reactor design

    NARCIS (Netherlands)

    Spallina, V.; Marinello, B.; Gallucci, F.; Romano, M.C.; van Sint Annaland, M.

    This paper addresses the experimental demonstration and model validation of chemical looping reforming in dynamically operated packed-bed reactors for the production of H2 or CH3OH with integrated CO2 capture. This process is a combination of auto-thermal and steam methane reforming and is carried

  13. Hidden attractors in dynamical models of phase-locked loop circuits: Limitations of simulation in MATLAB and SPICE

    Science.gov (United States)

    Kuznetsov, N. V.; Leonov, G. A.; Yuldashev, M. V.; Yuldashev, R. V.

    2017-10-01

    During recent years it has been shown that hidden oscillations, whose basin of attraction does not overlap with small neighborhoods of equilibria, may significantly complicate simulation of dynamical models, lead to unreliable results and wrong conclusions, and cause serious damage in drilling systems, aircrafts control systems, electromechanical systems, and other applications. This article provides a survey of various phase-locked loop based circuits (used in satellite navigation systems, optical, and digital communication), where such difficulties take place in MATLAB and SPICE. Considered examples can be used for testing other phase-locked loop based circuits and simulation tools, and motivate the development and application of rigorous analytical methods for the global analysis of phase-locked loop based circuits.

  14. SIMULATION MODELLING OF VITÓRIA-MINAS CLOSED-LOOP RAIL NETWORK

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Fernandes de FARIA

    2015-12-01

    Full Text Available This paper presents a closed loop simulation model that represents the mining logistics chain of the Vitória Minas Railway (VMR, Brazil. The simulator includes the loading process, circulation of loaded trains, unloading of ores for external and internal markets and the distribution of empty trains for new loads. General cargo and passengers trains are also included in the model, which, along with the queues formed in the circulation and the preventive and corrective maintenance of rolling stock, tracks and equipment, interfere with the transportation of iron ore. The primary objective of the iron ore transport is to meet the daily loading and unloading schedules and minimize queues by maximizing the operations at the loading and unloading points. The VMR simulator developed uses macro-mesoscopic approach with Monte Carlo simulation. To validate the simulator, we used actual data of the railway and compared with reality. We obtained a very good adhesion to the value of 2.9% for the validation scenario (Scenario 1 and 3.4% for the scenario with reducing the number of lots of wagons (Scenario 2. We concluded with this simulation that it is possible to reduce the number of GDE wagons without reducing the current level of productivity of the rail system.

  15. Reliability Measure Model for Assistive Care Loop Framework Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Venki Balasubramanian

    2010-01-01

    Full Text Available Body area wireless sensor networks (BAWSNs are time-critical systems that rely on the collective data of a group of sensor nodes. Reliable data received at the sink is based on the collective data provided by all the source sensor nodes and not on individual data. Unlike conventional reliability, the definition of retransmission is inapplicable in a BAWSN and would only lead to an elapsed data arrival that is not acceptable for time-critical application. Time-driven applications require high data reliability to maintain detection and responses. Hence, the transmission reliability for the BAWSN should be based on the critical time. In this paper, we develop a theoretical model to measure a BAWSN's transmission reliability, based on the critical time. The proposed model is evaluated through simulation and then compared with the experimental results conducted in our existing Active Care Loop Framework (ACLF. We further show the effect of the sink buffer in transmission reliability after a detailed study of various other co-existing parameters.

  16. Solar radio bursts of spectral type II, coronal shocks, and optical coronal transients

    Science.gov (United States)

    Maxwell, A.; Dryer, M.

    1981-01-01

    An examination is presented of the association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H-alpha, the green coronal line, and white-light coronagraphs. It is suggested that fast-moving optical coronal transients should for the most part be identified with piston-type phenomena well behind the outward-traveling shock waves that generate type II radio bursts. A general model is presented which relates type II radio bursts and coronal shocks to optically observed ejecta and consists of three main velocity regimes: (1) a quasi-hemispherical shock wave moving outward from the flare at speeds of 1000-2000 km/sec and Alfven Mach number of about 1.5; (2) the velocity of the piston driving the shock, on the order of 0.8 that of the shock; and (3) the regime of the slower-moving H-alpha ejecta, with velocities of 300-500 km/sec.

  17. Effects of design variables predicted by a steady - state thermal performance analysis model of a loop heat pipe

    International Nuclear Information System (INIS)

    Jung, Eui Guk; Boo, Joon Hong

    2008-01-01

    This study deals with a mathematical modeling for the steady-state temperature characteristics of an entire loop heat pipe. The lumped layer model was applied to each node for temperature analysis. The flat type evaporator and condenser in the model had planar dimensions of 40 mm (W) x 50 mm (L). The wick material was a sintered metal and the working fluid was methanol. The molecular kinetic theory was employed to model the phase change phenomena in the evaporator and the condenser. Liquid-vapor interface configuration was expressed by the thin film theories available in the literature. Effects of design factors of loop heat pipe on the thermal performance were investigated by the modeling proposed in this study

  18. Modeling and performance analysis of a closed-loop supply chain using first-order hybrid Petri nets

    Directory of Open Access Journals (Sweden)

    Imane Outmal

    2016-05-01

    Full Text Available Green or closed-loop supply chain had been the focus of many manufacturers during the last decade. The application of closed-loop supply chain in today’s manufacturing is not only due to growing environmental concerns and the recognition of its benefits in reducing greenhouse gas emissions, energy consumption, and meeting a more strict environmental regulations but it also offers economic competitive advantages if appropriately managed. First-order hybrid Petri nets represent a powerful graphical and mathematical formalism to map and analyze the dynamics of complex systems such as closed-loop supply chain networks. This article aims at illustrating the use of first-order hybrid Petri nets to model a closed-loop supply chain network and evaluate its operational, financial, and environmental performance measures under different management policies. Actual data from auto manufacturer in the United States are used to validate network’s performance under both tactical and strategic decision-making, namely, (1 tactical decision—production policies: increase of recovered versus new components and (2 strategic decision—closed-loop supply chain network structure: manufacturer internal recovery process or recovery process done by a third-party collection and recovery center. The work presented in this article is an extension of the use of first-order hybrid Petri nets as a modeling and performance analysis tool from supply chain to closed-loop supply chain. The modularity property of first-order hybrid Petri nets has been used in the modeling process, and the simulation and analysis of the modeled network are done in MATLAB® environment. The results of the experiments depict that first-order hybrid Petri nets are a powerful modeling and analysis formalism for closed-loop supply chain networks and can be further used as an efficient decision-making tool at both tactical and strategic levels. Unlike other researches on modeling supply chain

  19. Benchmarking of thermalhydraulic loop models for lead-alloy-cooled advanced nuclear energy systems. Phase I: Isothermal forced convection case

    International Nuclear Information System (INIS)

    2012-06-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of the Fuel Cycle (WPFC) has been established to co-ordinate scientific activities regarding various existing and advanced nuclear fuel cycles, including advanced reactor systems, associated chemistry and flowsheets, development and performance of fuel and materials and accelerators and spallation targets. The WPFC has different expert groups to cover a wide range of scientific issues in the field of nuclear fuel cycle. The Task Force on Lead-Alloy-Cooled Advanced Nuclear Energy Systems (LACANES) was created in 2006 to study thermal-hydraulic characteristics of heavy liquid metal coolant loop. The objectives of the task force are to (1) validate thermal-hydraulic loop models for application to LACANES design analysis in participating organisations, by benchmarking with a set of well-characterised lead-alloy coolant loop test data, (2) establish guidelines for quantifying thermal-hydraulic modelling parameters related to friction and heat transfer by lead-alloy coolant and (3) identify specific issues, either in modelling and/or in loop testing, which need to be addressed via possible future work. Nine participants from seven different institutes participated in the first phase of the benchmark. This report provides details of the benchmark specifications, method and code characteristics and results of the preliminary study: pressure loss coefficient and Phase-I. A comparison and analysis of the results will be performed together with Phase-II

  20. A SURVEY OF CORONAL CAVITY DENSITY PROFILES

    International Nuclear Information System (INIS)

    Fuller, J.; Gibson, S. E.

    2009-01-01

    Coronal cavities are common features of the solar corona that appear as darkened regions at the base of coronal helmet streamers in coronagraph images. Their darkened appearance indicates that they are regions of lowered density embedded within the comparatively higher density helmet streamer. Despite interfering projection effects of the surrounding helmet streamer (which we refer to as the cavity rim), Fuller et al. have shown that under certain conditions it is possible to use a Van de Hulst inversion of white-light polarized brightness (pB) data to calculate the electron density of both the cavity and cavity rim plasma. In this article, we apply minor modifications to the methods of Fuller et al. in order to improve the accuracy and versatility of the inversion process, and use the new methods to calculate density profiles for both the cavity and cavity rim in 24 cavity systems. We also examine trends in cavity morphology and how departures from the model geometry affect our density calculations. The density calculations reveal that in all 24 cases the cavity plasma has a flatter density profile than the plasma of the cavity rim, meaning that the cavity has a larger density depletion at low altitudes than it does at high altitudes. We find that the mean cavity density is over four times greater than that of a coronal hole at an altitude of 1.2 R sun and that every cavity in the sample is over twice as dense as a coronal hole at this altitude. Furthermore, we find that different cavity systems near solar maximum span a greater range in density at 1.2 R sun than do cavity systems near solar minimum, with a slight trend toward higher densities for systems nearer to solar maximum. Finally, we found no significant correlation of cavity density properties with cavity height-indeed, cavities show remarkably similar density depletions-except for the two smallest cavities that show significantly greater depletion.