WorldWideScience

Sample records for coronal line region

  1. Demystifying the coronal line region of active galactic nuclei: spatially resolved spectroscopy with HST

    CERN Document Server

    Mazzalay, Ximena; Komossa, S

    2010-01-01

    We present an analysis of STIS/HST optical spectra of a sample of ten Seyfert galaxies aimed at studying the structure and physical properties of the coronal-line region (CLR). The high-spatial resolution provided by STIS allowed us to resolve the CLR and obtain key information about the kinematics of the coronal-line gas, measure directly its spatial scale, and study the mechanisms that drive the high-ionisation lines. We find CLRs extending from just a few parsecs (~10 pc) up to 230 pc in radius, consistent with the bulk of the coronal lines (CLs) originating between the BLR and NLR, and extending into the NLR in the case of [FeVII] and [NeV] lines. The CL profiles strongly vary with the distance to the nucleus. We observed line splitting in the core of some of the galaxies. Line peak shifts, both red- and blue-shifts, typically reached 500 km/s, and even higher velocities (1000 km/s) in some of the galaxies. In general, CLs follow the same pattern of rotation curves as low-ionisation lines like [OIII]. Fro...

  2. Outflows from AGN: Kinematics of the Narrow-Line and Coronal-Line Regions in Seyfert Galaxies

    CERN Document Server

    Müller-Sánchez, F; Hicks, E K S; Vives-Arias, H; Davies, R I; Malkan, M; Tacconi, L J; Genzel, R

    2011-01-01

    As part of an extensive study of the physical properties of active galactic nuclei (AGN) we report high spatial resolution near-IR integral-field spectroscopy of the narrow-line region (NLR) and coronal-line region (CLR) of seven Seyfert galaxies. These measurements elucidate for the first time the two-dimensional spatial distribution and kinematics of the recombination line Br{\\gamma} and high-ionization lines [Sivi], [Alix] and [Caviii] on scales <300 pc from the AGN. The observations reveal kinematic signatures of rotation and outflow in the NLR and CLR. The spatially resolved kinematics can be modeled as a combination of an outflow bicone and a rotating disk coincident with the molecular gas. High-excitation emission is seen in both components, suggesting it is leaking out of a clumpy torus. While NGC 1068 (Seyfert 2) is viewed nearly edge-on, intermediate-type Seyferts are viewed at intermediate angles, consistent with unified schemes. A correlation between the outflow velocity and the molecular gas m...

  3. The complexity of the coronal line region in AGNs: Gas-jet interactions and outflows revealed by NIR spectroscopy

    Science.gov (United States)

    Rodríguez-Ardila, Alberto; Prieto, Almudena; Mazzalay, Ximena

    2016-08-01

    Apart from the classical broad line region (BLR) at small core distances, and the extended classical narrow-line region (NLR), a subset of active galactic nuclei (AGN) show, in their spectra, lines from very highly ionised atoms, known as Coronal lines (CLs). The precise nature and origin of these CLs remain uncertain. Advances on this matter include the determination of the size and morphology of the CLR by means of optical HST and ground-based AO imaging/spectroscopy in a few AGNs. The results indicate CLRs with sizes varying from compact (~30 pc) to extended (~200 pc) emission and aligned preferentially with the direction of the lower ionisation cones seen in these sources. In this talk, we present results of a pioneering work aimed at studying the CLR in the near-infrared region on a selected sample of nearby AGNs. The excellent angular resolution of the data allowed us to resolve and map the extension of the coronal line gas and compare it to that emitting low- and mid-ionization lines. In most cases, the very good match between the radio emission and the CLR suggest that at least part of the high-ionization gas is jet-driven. Results from photoionization models where the central engine is the only source of energy input strongly fail at reproducing the observed line ratios, mainly at distances larger than 60 pc from the centre. We discuss here other processes that should be at work to enhance this energetic emission and suggest that the presence of coronal lines in AGNs is an unambiguous signature of feedback processes in these sources.

  4. Resolving the coronal line region of NGC1068 with near infrared integral field spectroscopy

    CERN Document Server

    Mazzalay, X; Komossa, S; McGregor, Peter J

    2012-01-01

    We present AO-assisted J- and K-band integral field spectroscopy of the inner 300 x 300 pc of the Seyfert 2 galaxy NGC1068. The data were obtained with the Gemini NIFS integral field unit spectrometer, which provided us with high-spatial and -spectral resolution sampling. The wavelength range covered by the observations allowed us to study the [CaVIII], [SiVI], [SiVII], [AlIX] and [SIX] coronal-line (CL) emission, covering ionization potentials up to 328 eV. The observations reveal very rich and complex structures, both in terms of velocity fields and emission-line ratios. The CL emission is elongated along the NE-SW direction, with the stronger emission preferentially localized to the NE of the nucleus. CLs are emitted by gas covering a wide range of velocities, with maximum blueshifts/redshifts of ~ -1600/1000 km/s. There is a trend for the gas located on the NE side of the nucleus to be blueshifted while the gas located towards the SW is redshifted. The morphology and the kinematics of the near-infrared CL...

  5. The location and kinematics of the coronal-line emitting regions in AGN

    CERN Document Server

    Mullaney, J R; Done, C; Ferland, G J; Schurch, N

    2008-01-01

    We use the photoionisation code Cloudy to determine both the location and the kinematics of the optical forbidden, high ionisation line (hereafter, FHIL) emitting gas in the narrow line Seyfert 1 galaxy Ark 564. The results of our models are compared with the observed properties of these emission lines to produce a physical model that is used to explain both the kinematics and the source of this gas. The main features of this model are that the FHIL emitting gas is launched from the putative dusty torus and is quickly accelerated to its terminal velocity of a few hundred km/s. Iron-carrying grains are destroyed during this initial acceleration. This velocity is maintained by a balance between radiative forces and gravity in this super-Eddington source. Eventually the outflow is slowed at large radii by the gravitational forces of and interactions with the host galaxy. In this model, FHIL emission traces the transition between the AGN and bulge zones of influence.

  6. Periodic Variations in the Coronal Green Line Intensity and their Connection with the White-light Coronal Structures

    Indian Academy of Sciences (India)

    Milan Minarovjech; Milan Rybansky; Vojtech Rusin

    2000-09-01

    We present an analysis of short time-scale intensity variations in the coronal green line as obtained with high time resolution observations. The observed data can be divided into two groups. The first one shows periodic intensity variations with a period of 5 min. the second one does not show any significant intensity variations. We studied the relation between regions of coronal intensity oscillations and the shape of whitelight coronal structures. We found that the coronal green-line oscillations occur mainly in regions where open white-light coronal structures are located.

  7. From Forbidden Coronal Lines to Meaningful Coronal Magnetic Fields

    CERN Document Server

    Judge, Philip G; Landi, Enrico

    2013-01-01

    We review methods to measure magnetic fields within the corona using the polarized light in magnetic-dipole (M1) lines. We are particularly interested in both the global magnetic-field evolution over a solar cycle, and the local storage of magnetic free energy within coronal plasmas. We address commonly held skepticisms concerning angular ambiguities and line-of-sight confusion. We argue that ambiguities are in principle no worse than more familiar remotely sensed photospheric vector-fields, and that the diagnosis of M1 line data would benefit from simultaneous observations of EUV lines. Based on calculations and data from eclipses, we discuss the most promising lines and different approaches that might be used. We point to the S-like [Fe {\\sc XI}] line (J=2 to J=1) at 789.2nm as a prime target line (for ATST for example) to augment the hotter 1074.7 and 1079.8 nm Si-like lines of [Fe {\\sc XIII}] currently observed by the Coronal Multi-channel Polarimeter (CoMP). Significant breakthroughs will be made possibl...

  8. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kramar, M. [Physics Department, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Lin, H. [Institute for Astronomy, University of Hawaii at Manoa, 34 Ohia Ku Street, Pukalani, Maui, HI 96768 (United States); Tomczyk, S., E-mail: kramar@cua.edu, E-mail: lin@ifa.hawaii.edu, E-mail: tomczyk@ucar.edu [High Altitude Observatory, 3080 Center Green Drive, Boulder, CO 80301 (United States)

    2016-03-10

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments.

  9. Coronal loops above an Active Region - observation versus model

    CERN Document Server

    Bourdin, Philippe-A; Peter, Hardi

    2014-01-01

    We conducted a high-resolution numerical simulation of the solar corona above a stable active region. The aim is to test the field-line braiding mechanism for a sufficient coronal energy input. We also check the applicability of scaling laws for coronal loop properties like the temperature and density. Our 3D-MHD model is driven from below by Hinode observations of the photosphere, in particular a high-cadence time series of line-of-sight magnetograms and horizontal velocities derived from the magnetograms. This driving applies stress to the magnetic field and thereby delivers magnetic energy into the corona, where currents are induced that heat the coronal plasma by Ohmic dissipation. We compute synthetic coronal emission that we directly compare to coronal observations of the same active region taken by Hinode. In the model, coronal loops form at the same places as they are found in coronal observations. Even the shapes of the synthetic loops in 3D space match those found from a stereoscopic reconstruction ...

  10. Near-Infrared Coronal Lines in Narrow-Line Seyfert 1 Galaxies

    CERN Document Server

    Rodríguez-Ardila, A; Pastoriza, M G; Prato, L; Rodriguez-Ardila, Alberto; Viegas, Sueli M.; Pastoriza, Miriani G.; Prato, Lisa

    2002-01-01

    We report spectroscopic observations in the wavelength region 0.8-2.4 microns aimed at detecting near-infrared coronal lines in a sample of 5 narrow-line and 1 broad-line Seyfert 1 galaxies. Our measurements show that [SiVI] 1.963mu, [SIX] 1.252mu and [SVIII] 0.991mu are present in most of the objects and are useful tracers of nuclear activity. Line ratios between coronal and low ionization forbidden lines are larger in narrow-line Seyfert 1 galaxies. A positive correlation between FHWM and ionization potential of the forbidden lines is observed. Some coronal lines have widths similar to that of lines emitted in the broad line region (BLR), indicating that part of their flux originates in gas close to the outer portions of the BLR. Most coronal lines are blueshifted relative to the systemic velocity of the galaxy and this shift increases with the increase in line width. Assymetries towards the blue are observed in the profiles of high-ionization Fe lines, suggesting that the emitting gas is related to winds o...

  11. Intermediate Inclinations of Type 2 Coronal-Line Forest AGN

    CERN Document Server

    Rose, Marvin; Crenshaw, Michael; Glidden, Ana

    2015-01-01

    Coronal-Line Forest Active Galactic Nuclei (CLiF AGN) are remarkable in the sense that they have a rich spectrum of dozens of coronal emission lines (e.g. [FeVII], [FeX] and [NeV]) in their spectra. Rose, Elvis & Tadhunter (2015) suggest that the inner obscuring torus wall is the most likely location of the coronal line region in CLiF AGN, and the unusual strength of the forbidden high ionization lines is due to a specific AGN-torus inclination angle. Here we test this suggestion using mid-IR colours (4.6$\\mu$m-22$\\mu$m) from the Wide-Field Infrared Survey Explorer (WISE) for the CLiF AGN. We use the Fischer et al. (2014) result that showed that as the AGN-torus inclination becomes more face on, the Spitzer 5.5$\\mu$m to 30$\\mu$m colours become bluer. We show that the [W2-W4] colours for the CLiF AGN ($\\langle$[W2-W4]$\\rangle$ = 5.92$\\pm$0.12) are intermediate between SDSS type 1 ($\\langle$[W2-W4]$\\rangle$ = 5.22$\\pm$0.01) and type 2 AGN ($\\langle$[W2-W4]$\\rangle$ = 6.35$\\pm$0.03). This implies that the AG...

  12. Observing coronal nanoflares in active region moss

    CERN Document Server

    Testa, Paola; Martinez-Sykora, Juan; DeLuca, Ed; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Golub, Leon; Kobayashi, Ken; Korreck, Kelly; Kuzin, Sergey; Walsh, Robert; DeForest, Craig; Title, Alan; Weber, Mark

    2013-01-01

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial (~0.3-0.4 arcsec) and temporal (5.5s) resolution. The Hi-C observations show in some moss regions variability on timescales down to ~15s, significantly shorter than the minute scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by SDO/AIA in the 94A channel, and by Hinode/XRT. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few $10^{23}rg, also supporting the nanoflare scenario. These Hi-C...

  13. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    Energy Technology Data Exchange (ETDEWEB)

    Testa, Paola; DeLuca, Ed; Golub, Leon; Korreck, Kelly; Weber, Mark [Smithsonian Astrophysical Observatory, 60 Garden street, MS 58, Cambridge, MA 02138 (United States); De Pontieu, Bart; Martinez-Sykora, Juan; Title, Alan [Lockheed Martin Solar and Astrophysics Lab, Org. A021S, Bldg. 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Hansteen, Viggo [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Kuzin, Sergey [P. N. Lebedev Physical institute of the Russian Academy of Sciences, Leninskii prospekt, 53, 119991 Moscow (Russian Federation); Walsh, Robert [University of Central Lancashire, Lancashire, Preston PR1 2HE (United Kingdom); DeForest, Craig, E-mail: ptesta@cfa.harvard.edu [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2013-06-10

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Ray Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).

  14. Coronal Jets from Minifilament Eruptions in Active Regions

    Science.gov (United States)

    Sterling, A. C.; Martinez, F.; Falconer, D. A.; Moore, R. L.

    2016-12-01

    Solar coronal jets are transient (frequently of lifetime 10 min) features that shoot out from near the solar surface, become much longer than their width, and occur in all solar regions, including coronal holes, quiet Sun, and active regions (e.g., Shimojo et al. 1996, Certain et al. 2007). Sterling et al. (2015) and other studies found that in coronal holes and in quiet Sun the jets result when small-scale filaments, called ``minifilaments,'' erupt onto nearby open or high-reaching field lines. Additional studies found that coronal-jet-onset locations (and hence presumably the minifilament-eruption-onset locations) coincided with locations of magnetic-flux cancellation. For active region (AR) jets however the situation is less clear. Sterling et al. (2016) studied jets in one active region over a 24-hour period; they found that some AR jets indeed resulted from minifilament eruptions, usually originating from locations of episodes of magnetic-flux cancelation. In some cases however they could not determine whether flux was emerging or canceling at the polarity inversion line from which the minifilament erupted; and for other jets of that region minifilaments were not conclusively apparent prior to jet occurrence. Here we further study AR jets, by observing them in a single AR over a one-week period, using X-ray images from Hinode/XRT and EUV/UV images from SDO/AIA, and line-of-sight magnetograms and white-light intensity-grams from SDO/HMI. We initially identified 13 prominent jets in the XRT data, and examined corresponding AIA and HMI data. For at least several of the jets, our findings are consistent with the jets resulting from minifilament eruptions, and originating from sights of magnetic-field cancelation. Thus our findings support that, at least in many cases, AR coronal jets result from the same physical processes that produce coronal jets in quiet-Sun and coronal-hole regions. FM was supportedby the Research Experience for Undergraduates (REU) program at

  15. Observing coronal nanoflares in active region moss

    OpenAIRE

    Testa, Paola; De Pontieu, Bart; Martinez-Sykora, Juan; DeLuca, Ed; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Golub, Leon; Kobayashi, Ken; Korreck, Kelly; Kuzin, Sergey; Walsh, Robert; DeForest, Craig; Title, Alan; Weber, Mark

    2013-01-01

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial (~0.3-0.4 arcsec) and temporal (5.5s) resolution. The Hi-C observations show in some moss regions variability on timescales down to ~15s, significantly shorter than the minute scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss r...

  16. Relation between incremental lines and tensile strength of coronal dentin.

    Science.gov (United States)

    Inoue, Toshiko; Saito, Makoto; Yamamoto, Masato; Nishimura, Fumio; Miyazaki, Takashi

    2012-01-01

    In one aspect, this study examined the tensile strength of coronal dentin, as a function of the location of incremental lines, in two types of teeth: human molar versus bovine incisor. In another aspect, tensile strength in coronal dentin was examined with tensile loading in two different orientations to the incremental lines: parallel versus perpendicular. There were four experimental groups in this study: HPa, human molar dentin with tensile orientation parallel to the incremental lines; HPe, human molar dentin with tensile orientation perpendicular to the incremental lines; BPa, bovine incisor dentin with tensile orientation parallel to the incremental lines; BPe, bovine incisor dentin with tensile orientation perpendicular to the incremental lines. Tensile strengths of the parallel group (HPa and BPa) were significantly higher (pincremental lines, was thus confirmed in coronal dentin. However, there were no differences in anisotropy effect between the two tooth types.

  17. The coronal line regions of planetary nebulae NGC6302 and NGC6537 3-13 $\\mu$m grating and echelle spectroscopy

    CERN Document Server

    Casassus, S; Barlow, M J; Casassus, Simon; Roche, Patrick F.; Barlow, Mike J.

    1999-01-01

    We report on advances in the study of the cores of NGC6302 and NGC6537 using infrared grating and echelle spectroscopy. In NGC6302, emission lines from species spanning a large range of ionization potential, and in particular [SiIX]3.934um, are interpreted using photoionization models (including CLOUDY), which allow us to reestimate the central star's temperature to be about 250000K. All of the detected lines are consistent with this value, except for [AlV] and [AlVI]. Aluminium is found to be depleted to one hundredth of the solar abundance, which provides further evidence for some dust being mixed with the highly ionized gas (with photons harder than 154eV). A similar depletion pattern is observed in NGC6537. Echelle spectroscopy of IR coronal ions in NGC6302 reveals a stratified structure in ionization potential, which confirms photoionization to be the dominant ionization mechanism. The lines are narrow (< 22km/s FWHM), with no evidence of the broad wings found in optical lines from species with simila...

  18. Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops

    Science.gov (United States)

    Duan, Aiying; Jiang, Chaowei; Hu, Qiang; Zhang, Huai; Gary, G. Allen; Wu, S. T.; Cao, Jinbin

    2017-06-01

    Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE-MHD-NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO/AIA. It is found that the CESE-MHD-NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ˜10°. This suggests that the CESE-MHD-NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (˜30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.

  19. Diagnostics of Coronal Heating in Active-region Loops

    Science.gov (United States)

    Fludra, A.; Hornsey, C.; Nakariakov, V. M.

    2017-01-01

    Understanding coronal heating remains a central problem in solar physics. Many mechanisms have been proposed to explain how energy is transferred to and deposited in the corona. We summarize past observational studies that attempted to identify the heating mechanism and point out the difficulties in reproducing the observations of the solar corona from the heating models. The aim of this paper is to study whether the observed extreme ultraviolet (EUV) emission in individual coronal loops in solar active regions can provide constraints on the volumetric heating function, and to develop a diagnostic for the heating function for a subset of loops that are found close to static thermal equilibrium. We reconstruct the coronal magnetic field from Solar Dynamics Observatory/HMI data using a nonlinear force-free magnetic field model. We model selected loops using a one-dimensional stationary model, with a heating rate dependent locally on the magnetic field strength along the loop, and we calculate the emission from these loops in various EUV wavelengths for different heating rates. We present a method to measure a power index β defining the dependence of the volumetric heating rate EH on the magnetic field, {E}H\\propto {B}β , and controlling also the shape of the heating function: concentrated near the loop top, uniform and concentrated near the footpoints. The diagnostic is based on the dependence of the electron density on the index β. This method is free from the assumptions of the loop filling factor but requires spectroscopic measurements of the density-sensitive lines. The range of applicability for loops of different length and heating distributions is discussed, and the steps to solving the coronal heating problem are outlined.

  20. Coronal energy input and dissipation in a solar active region 3D MHD model

    CERN Document Server

    Bourdin, Philippe-A; Peter, Hardi

    2015-01-01

    Context. We have conducted a 3D MHD simulation of the solar corona above an active region in full scale and high resolution, which shows coronal loops, and plasma flows within them, similar to observations. Aims. We want to find the connection between the photospheric energy input by field-line braiding with the coronal energy conversion by Ohmic dissipation of induced currents. Methods. To this end we compare the coronal energy input and dissipation within our simulation domain above different fields of view, e.g. for a small loops system in the active region (AR) core. We also choose an ensemble of field lines to compare, e.g., the magnetic energy input to the heating per particle along these field lines. Results. We find an enhanced Ohmic dissipation of currents in the corona above areas that also have enhanced upwards-directed Poynting flux. These regions coincide with the regions where hot coronal loops within the AR core are observed. The coronal density plays a role in estimating the coronal temperatur...

  1. Impulsively Driven Waves And Flows In Coronal Active Regions

    Science.gov (United States)

    Ofman, Leon; Wang, T.; Davila, J. M.; Liu, W.

    2012-05-01

    Recent SDO/AIA and Hinode EIS observations indicate that both (super) fast and slow magnetosonic waves are present in active region (AR) magnetic structures. Evidence for fast (100-300 km/s) impulsive flows is found in spectroscopic and imaging observations of AR loops. The super-fast waves were observed in magnetic funnels of ARs. The observations suggest that waves and flow are produced by impulsive events, such as (micro) flares. We have performed three-dimensional magnetohydrodynamic (3D MHD) simulations of impulsively generated flows and waves in coronal loops of a model bi-polar active region (AR). The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with impulsively driven flow at the coronal base of the AR in localized magnetic field structures. We model the excitation of the flows in hot (6MK) and cold (1MK) active region plasma, and find slow and fast magnetosonic waves produced by these events. We also find that high-density (compared to surrounding corona) loops are produced as a result of the upflows. We investigate the parametric dependence between the properties of the impulsive flows and the waves. The results of the 3D MHD modeling study supports the conjecture that slow magnetosonic waves are often produced by impulsive upflows along the magnetic field, and fast magnetosonic waves can result from impulsive transverse field line perturbations associated with reconnection events. The waves and flows can be used for diagnostic of AR structure and dynamics.

  2. Near infrared spectral and polarization imaging observation of coronal emission lines during the 2008 total solar eclipse

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    During the 2008 total solar eclipse, the coronal emission lines were observed by using optical fibre spectrometric and polarization imaging system in near infrared waveband. The profiles of the coronal emission lines including Fe XIII 10747 , 10798  and He I 10830  were obtained with dispersion of 0.5 /pix. The intensity of Fe XIII 10747  remained unchanged in the two different coronal regions while the intensity of He I 10830  varied considerably in the two coronal locations no matter whether the prominence appeared or not. The coronal polarization images were observed at Fe XI 7892  with a bandpass of 30  in a series of exposure times.

  3. Near infrared spectral and polarization imaging observation of coronal emission lines during the 2008 total solar eclipse

    Institute of Scientific and Technical Information of China (English)

    BAO XingMing; WANG XiaoFan; ZHANG ZhiYong; DENG Jian; HU KeLiang; XUAN WeiJia; LIU YangBing; ZHANG HongQi; DENG YuanYong; WANG DongGuang

    2009-01-01

    During the 2008 total solar eclipse, the coronal emission lines were observed by using optical fibre spectrometric and polarization imaging system in near infrared waveband. The profiles of the coronal emission lines Including Fe ⅩⅢ 10747 A, 10798 A and He 1 10830 A were obtained with dispersion of 0.5 A/pix. The intensity of Fe ⅩⅢ 10747 A remained unchanged In the two different coronal regions while the intensity of He I 10830 A varied considerably in the two coronal locations no matter whether the prominence appeared or not. The coronal polarization images were observed at Fe XI 7892 A with a bandpass of 30 A in a series of exposure times.

  4. Infrared Dual-line Hanle diagnostic of the Coronal Vector Magnetic Field

    Directory of Open Access Journals (Sweden)

    Gabriel Ionel Dima

    2016-04-01

    Full Text Available Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (e.g. ~4G at a height of 0.1Rsun above an active region and the large thermal broadening of coronal emission lines. We propose using concurrent linear polarization measurements of near-infrared forbidden and permitted lines together with Hanle effect models to calculate the coronal vector magnetic field. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while in the saturated regime the polarization is insensitive to the strength of the field. The relatively long radiative lifetimes of coronal forbidden atomic transitions implies that the emission lines are formed in the saturated Hanle regime and the linear polarization is insensitive to the strength of the field. By combining measurements of both forbidden and permitted lines, the direction and strength of the field can be obtained. For example, the SiX 1.4301 um line shows strong linear polarization and has been observed in emission over a large field-of-view (out to elongations of 0.5 Rsun. Here we describe an algorithm that combines linear polarization measurements of the SiX 1.4301 um forbidden line with linear polarization observations of the HeI 1.0830 um permitted coronal line to obtain the vector magnetic field. To illustrate the concept we assume the emitting gas for both atomic transitions is located in the plane of the sky. The further development of this method and associated tools will be a critical step towards interpreting the high spectral, spatial and temporal infrared spectro-polarimetric measurements that will be possible when the Daniel K. Inouye Solar Telescope (DKIST is completed in 2019.

  5. Infrared Dual-line Hanle diagnostic of the Coronal Vector Magnetic Field

    Science.gov (United States)

    Dima, Gabriel; Kuhn, Jeffrey; Berdyugina, Svetlana

    2016-04-01

    Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (e.g. ~4G at a height of 0.1Rsun above an active region) and the large thermal broadening of coronal emission lines. We propose using concurrent linear polarization measurements of near-infrared forbidden and permitted lines together with Hanle effect models to calculate the coronal vector magnetic field. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while in the saturated regime the polarization is insensitive to the strength of the field. The relatively long radiative lifetimes of coronal forbidden atomic transitions implies that the emission lines are formed in the saturated Hanle regime and the linear polarization is insensitive to the strength of the field. By combining measurements of both forbidden and permitted lines, the direction and strength of the field can be obtained. For example, the SiX 1.4301 um line shows strong linear polarization and has been observed in emission over a large field-of-view (out to elongations of 0.5 Rsun. Here we describe an algorithm that combines linear polarization measurements of the SiX 1.4301 um forbidden line with linear polarization observations of the HeI 1.0830 um permitted coronal line to obtain the vector magnetic field. To illustrate the concept we assume the emitting gas for both atomic transitions is located in the plane of the sky. The further development of this method and associated tools will be a critical step towards interpreting the high spectral, spatial and temporal infrared spectro-polarimetric measurements that will be possible when the Daniel K. Inouye Solar Telescope (DKIST) is completed in 2019.

  6. The Warm Absorber constrained by the coronal lines in Seyfert 1 galaxies

    CERN Document Server

    Porquet, D; Collin, S; Mouchet, M; Porquet, Delphine; Dumont, Anne-Marie; Collin, Suzy; Mouchet, Martine

    1999-01-01

    We present results of the photoionization code IRIS, which calculates the spectrum emitted by the Warm Absorber (WA) in Seyfert 1 galaxies for a large grid of parameters (density, column density, ionization parameter...). We show that in Seyfert 1s, coronal lines ([Fe X], [Fe XI], [Fe XIV]...), unlike the absorption edges, such as those of O VII and O VIII observed in soft X-rays which are produced by the WA, strongly constrain the physical parameters of the WA, especially the hydrogen density. Indeed, in order to avoid producing coronal line equivalent widths larger than observed, a high density ($n_{H} models (photoionized medium in or out of thermal equilibrium). This result is obtained for the mean observed Seyfert 1 features, as well as for the case study of MCG-6-30-15. It implies that the distance of the WA from the incident radiation source is of the order of that of the Broad Line Region (BLR).

  7. Statistical study of network jets observed in the solar transition region: A comparison between coronal holes and quiet sun regions

    CERN Document Server

    Narang, Nancy; Tian, Hui; Banerjee, Dipankar; Cranmer, Steven R; DeLuca, Ed E; McKillop, Sean

    2016-01-01

    Recent IRIS observations have revealed a prevalence of intermittent small-scale jets with apparent speeds of 80 - 250 km s$^{-1}$, emanating from small-scale bright regions inside network boundaries of coronal holes. We find that these network jets appear not only in coronal holes but also in quiet-sun regions. Using IRIS 1330A (C II) slit-jaw images, we extract several parameters of these network jets, e.g. apparent speed, length, lifetime and increase in foot-point brightness. Using several observations, we find that some properties of the jets are very similar but others are obviously different between the quiet sun and coronal holes. For example, our study shows that the coronal-hole jets appear to be faster and longer than those in the quiet sun. This can be directly attributed to a difference in the magnetic configuration of the two regions with open magnetic field lines rooted in coronal holes and magnetic loops often present in quiet sun. We have also detected compact bright loops, likely transition r...

  8. The relationship between the magnetic field and the coronal activities in the polar region

    Science.gov (United States)

    Shimojo, Masumi

    The image of the polar region of the sun is changing based on the observations taken by the three telescopes aboard the Hinode satellite. Based on the data of Solar Optical Telescope (SOT) aboard Hinode, Tsuneta et al. (2007) reported that there are many localized magnetic poles in the polar region, and the magnetic strength of the magnetic poles is over thousand Gauss. They called the strong magnetic pole in the polar region "kG-pathce". And, Cirtain, et al. (2007) and Savcheva, et al. (2007) presented that the occurrence rate of X-ray jets in the polar region is very high and 10 events/hour. Their result was obtained by the high resolution observations by X-ray Telescope (XRT) aboard Hinode. These results are very important for understanding the fast solar wind that blows from the polar region. On the other hand, in order to understand the activities in the polar region, it is very important to investigate the relationship between the magnetic environments and the coronal structures/activities. In the paper, for the purpose, we aligned the photospheric images (G-band, Stoke-IQUV of FeI), the chromospheric images (Ca II H line, Stokes-V of Na) and coronal images (X-ray) obtained by Hinode, and investigate the relationship. Basically, the co-alignment process was done based on the alignment information of the telescopes reported by Shimizu et al. (2007). And, we aligned the images using the curve of the solar limb, finally. As the result of the co-alignments, we found the following things. 1) On most kG-patches in the polar coronal hole, there is any coronal structure. 2) X-ray jets in the polar coronal hole are not always associated with the kG-patches. Some X-ray jets are associated with very weak magnetic field. And, the jets are strongly associated with the emerging/cancelling magnetic flux. The first one suggests that the coronal heating is not effective only in the magnetic field strong, such as the center of the sunspot. The second result indicates that the

  9. Flux Cancelation as the trigger of quiet-region coronal jet eruptions

    Science.gov (United States)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2017-08-01

    Coronal jets are frequent transient features on the Sun, observed in EUV and X-ray emissions. They occur in active regions, quiet Sun and coronal holes, and appear as a bright spire with base brightenings. Recent studies show that many coronal jets are driven by the eruption of a minifilament. Here we investigate the magnetic cause of jet-driving minifilament eruptions. We study ten randomly-found on-disk quiet-region coronal jets using SDO/AIA intensity images and SDO/HMI magnetograms. For all ten events, we track the evolution of the jet-base region and find that (a) a cool (transition-region temperature) minifilament is present prior to each jet eruption; (b) the pre-eruption minifilament resides above the polarity-inversion line between majority-polarity and minority-polarity magnetic flux patches; (c) the opposite-polarity flux patches converge and cancel with each other; (d) the ongoing cancelation between the majority-polarity and minority-polarity flux patches eventually destabilizes the field holding the minifilament to erupt outwards; (e) the envelope of the erupting field barges into ambient oppositely-directed far-reaching field and undergoes external reconnection (interchange reconnection); (f) the external reconnection opens the envelope field and the minifilament field inside, allowing reconnection-heated hot material and cool minifilament material to escape along the reconnected far-reaching field, producing the jet spire. In summary, we found that each of our ten jets resulted from a minifilament eruption during flux cancelation at the magnetic neutral line under the pre-eruption minifilament. These observations show that flux cancelation is usually the trigger of quiet-region coronal jet eruptions.

  10. Data-driven coronal evolutionary model of active region 11944.

    Science.gov (United States)

    Kazachenko, M.

    2014-12-01

    Recent availability of systematic measurements of vector magnetic fields and Doppler velocities has allowed us to utilize a data-driven approach for modeling observed active regions (AR), a crucial step for understanding the nature of solar flare initiation. We use a sequence of vector magnetograms and Dopplergrams from the Helioseismic and Magnetic Imager (HMI) aboard the SDO to drive magnetofrictional (MF) model of the coronal magnetic field in the the vicinity of AR 11944, where an X1.2 flare on January 7 2014 occurred. To drive the coronal field we impose a time-dependent boundary condition based on temporal sequences of magnetic and electric fields at the bottom of the computational domain, i.e. the photosphere. To derive the electric fields we use a recently improved poloidal-toroidal decomposition (PTD), which we call the ``PTD-Doppler-FLCT-Ideal'' or PDFI technique. We investigate the results of the simulated coronal evolution, compare those with EUV observations from Atmospheric Imaging Assembly (AIA) and discuss what we could learn from them. This work is a a collaborative effort from the UC Berkeley Space Sciences Laboratory (SSL), Stanford University, and Lockheed-Martin and is a part of Coronal Global Evolutionary (CGEM) Model, funded jointly by NASA and NSF.

  11. Modeling coronal magnetic field using spherical geometry: cases with several active regions

    CERN Document Server

    Tadesse, Tilaye; Olson, K; MacNeice, P J

    2013-01-01

    The magnetic fields in the solar atmosphere structure the plasma, store free magnetic energy and produce a wide variety of active solar phenomena, like flare and coronal mass ejections(CMEs). The distribution and strength of magnetic fields are routinely measured in the solar surface(photosphere). Therefore, there is considerable interest in accurately modeling the 3D structure of the coronal magnetic field using photospheric vector magnetograms. Knowledge of the 3D structure of magnetic field lines also help us to interpret other coronal observations, e.g., EUV images of the radiating coronal plasma. Nonlinear force-free field (NLFFF) models are thought to be viable tools for those task. Usually those models use Cartesian geometry. However, the spherical nature of the solar surface cannot be neglected when the field of view is large. In this work, we model the coronal magnetic field above multiple active regions using NLFFF extrapolation code using vector magnetograph data from the Synoptic Optical Long-term...

  12. Comparing High-speed Transition Region Jets in Coronal Holes and Quiet Sun Regions

    Science.gov (United States)

    Tate Arbacher, Rebecca; Tian, Hui; Cranmer, Steven R.

    2015-01-01

    The complicated energy transfer and plasma motion in the transition region, between the photosphere and the corona, may play a significant role in the formation and acceleration of the solar wind. New observations from the Interface Region Imaging Spectrograph (IRIS) have revealed unprecedented levels of detail in this less-studied region. Coronal holes in particular are a likely source of solar wind material, though the formation and acceleration mechanisms of the fast solar wind are still largely unknown. In our previous work, we have reported the prevalence of small-scale high-speed (~80-250 km/s) jets with transition region temperatures from the network structures of coronal holes. Here we undertake a comparative study of these short-lived episodic network jets in a coronal hole region and a quiet sun region using IRIS sit-and-stare slit-jaw imaging in the 1330 Angstrom (C II) passband. The pointing coordinates, exposure time, observing cadence, and field of view of both observations are all identical. Our preliminary study suggests that the speeds and lengths of the network jets may differ between quiet sun and coronal hole regions. The quiet sun region exhibits many compact bright regions with sizes of 5-10 arcseconds which produce very few jets. The jets that do exist tend to propagate at much slower speeds over smaller distances than their coronal hole counterparts. Comparatively, in the coronal hole, such compact regions are almost absent and all network patches are permeated by the intermittent high-reaching jets. Such a difference suggests that magnetic loops are much smaller in the coronal hole and the network jets are produced at low heights. The recurrence frequency seems to be higher in the coronal hole region, with many of the isolated quiet sun region jets demonstrating curved trajectories.This work is supported under contract 8100002705 from Lockheed-Martin to SAO and by the NSF-REU solar physics program at SAO, grant number AGS-1263241.

  13. Analysis of the solar coronal green line profiles from eclipse observations

    CERN Document Server

    Prabhakar, Maya; Chandrasekhar, T

    2013-01-01

    Analysis of the solar coronal green line profiles reveals information regarding the physical conditions of the solar corona like temperature, density, Doppler velocity, non-thermal velocity etc. It provides insights to the unresolved problems like the coronal heating and the acceleration of the solar winds. Recent studies have reported excess blueshifts in the coronal line profiles and are interpreted as due to nanoflare heating, type II spicules and nascent solar wind flow. We have analyzed a time series of Fabry-Perot interferograms of the solar corona obtained during the total solar eclipse of 2001 June 21 from Lusaka, Zambia. The spatial behavior of the coronal green line profiles were examined and variations in intensity, linewidth, Doppler velocity and line asymmetry were obtained. Several line profiles showed asymmetry indicating the presence of multicomponents. Such line profiles were fitted with double Gaussian curves. It has been found that 42% of the line profiles were single components, 34% were b...

  14. Coronal loop hydrodynamics. The solar flare observedon November 12 1980 revisited the UV line emission

    CERN Document Server

    Betta, R M; Reale, F; Serio, S

    2001-01-01

    We revisit a well-studied solar flare whose X-ray emission originating from a simple loop structure was observed by most of the instruments on board SMM on November 12 1980. The X-ray emission of this flare, as observed with the XRP, was successfully modeled previously. Here we include a detailed modeling of the transition region and we compare the hydrodynamic results with the UVSP observations in two EUV lines, measured in areas smaller than the XRP rasters, covering only some portions of the flaring loop (the top and the foot-points). The single loop hydrodynamic model, which fits well the evolution of coronal lines (those observed with the XRP and the \\FeXXI 1354.1 \\AA line observed with the UVSP) fails to model the flux level and evolution of the \\OV 1371.3 \\AA line.

  15. Spectroscopic Studies of Solar Corona VI: Trend in Line-width Variation of Coronal Emission Lines with Height Independent of the Structure of Coronal Loops

    Indian Academy of Sciences (India)

    Jagdev Singh; Takashi Sakurai; Kiyoshi Ichimoto; S. Muneer

    2006-06-01

    We have obtained spectroscopic observations in coronal emission lines by choosing two lines simultaneously, one [Fe X] 6374 Å and the other [Fe XI] 7892 Å or [Fe XIII] 10747 Å or [Fe XIV] 5303 Å. We found that in 95 per cent of the coronal loops observed in 6374 Å, the FWHM of the emission line increases with height above the limb irrespective of the size, shape and orientation of the loop and that in case of 5303 Å line decreases with height in about 89 per cent of the coronal loops. The FWHM of 7892 Å and 10747 Å emission lines show intermediate behavior. The increase in the FWHM of 6374 Å line with height is the steepest among these four lines.We have also studied the intensity ratio and ratio of FWHM of these lines with respect to those of 6374 Å as a function height above the limb. We found that the intensity ratio of 7892 Å and 10747 Å lines with respect to 6374 Å line increases with height and that of 5303 Å to 6374 Å decreases with height above the limb. This implies that temperature in coronal loops will appear to increase with height in the intensity ratio plots of 7892 Å and 6374 Å; and 10747 Å and 6374 Å whereas it will appear to decrease with height in intensity ratio of 5303 Å to 6374 Å line versus height plot. These findings are up to a height of about 200 arcsec above the limb. The varying ratios with height indicate that relatively hotter and colder plasma in coronal loops interact with each other. Therefore, the observed increase in FWHM with height above the limb of coronal emission lines associated with plasma at about 1 MK may not be due to increase in non-thermal motions caused by coronal waves but due to interaction with the relatively hotter plasma. These findings also do not support the existing coronal loop models, which predict an increase in temperature of the loop with height above the limb.

  16. Magnetic Flux Cancelation as the Trigger of Solar Quiet-region Coronal Jets

    Science.gov (United States)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.; Chakrapani, Prithi

    2016-11-01

    We report observations of 10 random on-disk solar quiet-region coronal jets found in high-resolution extreme ultraviolet (EUV) images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly and having good coverage in magnetograms from the SDO/Helioseismic and Magnetic Imager (HMI). Recent studies show that coronal jets are driven by the eruption of a small-scale filament (called a minifilament). However, the trigger of these eruptions is still unknown. In the present study, we address the question: what leads to the jet-driving minifilament eruptions? The EUV observations show that there is a cool-transition-region-plasma minifilament present prior to each jet event and the minifilament eruption drives the jet. By examining pre-jet evolutionary changes in the line of sight photospheric magnetic field, we observe that each pre-jet minifilament resides over the neutral line between majority-polarity and minority-polarity patches of magnetic flux. In each of the 10 cases, the opposite-polarity patches approach and merge with each other (flux reduction between 21% and 57%). After several hours, continuous flux cancelation at the neutral line apparently destabilizes the field holding the cool-plasma minifilament to erupt and undergo internal reconnection, and external reconnection with the surrounding coronal field. The external reconnection opens the minifilament field allowing the minifilament material to escape outward, forming part of the jet spire. Thus, we found that each of the 10 jets resulted from eruption of a minifilament following flux cancelation at the neutral line under the minifilament. These observations establish that magnetic flux cancelation is usually the trigger of quiet-region coronal jet eruptions.

  17. Implications of Coronal Line Emission in NGC 4696

    CERN Document Server

    Chatzikos, M; Ferland, G J; Canning, R E A; Fabian, A C; Sanders, J S; van Hoof, P A M; Johnstone, R M; Lykins, M; Porter, R L

    2014-01-01

    We announce a new facility in the spectral code CLOUDY that enables tracking the evolution of a cooling parcel of gas with time. For gas cooling from temperatures relevant to galaxy clusters, earlier calculations estimated the [Fe XIV] {\\lambda}5303 / [Fe X] {\\lambda}6375 luminosity ratio, a critical diagnostic of a cooling plasma, to slightly less than unity. By contrast, our calculations predict a ratio ~3. We revisit recent optical coronal line observations along the X-ray cool arc around NGC 4696 by Canning et al. (2011), which detected [Fe X] {\\lambda}6375, but not [Fe XIV] {\\lambda}5303. We show that these observations are not consistent with predictions of cooling flow models. Differential extinction could in principle account for the observations, but it requires extinction levels (A_V > 3.625) incompatible with previous observations. The non-detection of [Fe XIV] implies a temperature ceiling of 2.1 million K. Assuming cylindrical geometry and transonic turbulent pressure support, we estimate the gas...

  18. MHD modeling of coronal loops: the transition region throat

    CERN Document Server

    Guarrasi, M; Orlando, S; Mignone, A; Klimchuk, J A

    2014-01-01

    The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. We study the area response with a time-dependent 2D MHD loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 MK. We find that the area can change substantially with the quasi-steady heating rate, e.g. by ~40% at 0.5 MK as the loop temperature varies between 1 and 4 MK, and, therefore, affects the interpretation of DEM(T) curves.

  19. Coronal-Line Forest AGN: the best view of the inner edge of the AGN torus?

    CERN Document Server

    Rose, Marvin; Tadhunter, Clive

    2015-01-01

    We introduce Coronal-Line Forest Active Galactic Nuclei (CLiF AGN), AGN which have a rich spectrum of forbidden high-ionization lines (FHILs, e.g. [FeVII], [FeX] and [NeV]), as well as relatively strong narrow ($\\sim$300 km s$^{-1}$) H$\\alpha$ emission when compared to the other Balmer transition lines. We find that the kinematics of the CLiF emitting region are similar to those of the forbidden low-ionization emission-line (FLIL) region. We compare emission line strengths of both FHILs and FLILs to CLOUDY photoionization results and find that the CLiF emitting region has higher densities (10$^{4.5}$ $<$ n$_H$ $<$ 10$^{7.5}$ cm$^{-3}$) when compared to the FLIL emitting region (10$^{3.0}$ $<$ n$_H$ $<$ 10$^{4.5}$ cm$^{-3}$). We use the photoionization results to calculate the CLiF regions radial distances (0.04 $<$ R$_{CLiF}$ $<$ 32.5 pc) and find that they are comparable to the dust grain sublimation distances (0.10 $<$ R$_{SUB}$ $<$ 4.3 pc). As a result we suggest that the inner toru...

  20. The Narrow Line Region of Ark 564

    CERN Document Server

    Contini, M; Viegas, S M M; Contini, Marcella; Rodriguez-Ardila, Alberto; Viegas, Sueli

    2003-01-01

    The continuum and emission-line spectrum of the narrow-line Seyfert 1 galaxy Ark 564 is used to investigate, for the first time, the physical conditions and structure of its narrow line region (NLR). For this purpose, composite models, accounting for the coupled effect of photoionization and shocks, are employed. The emission-line spectrum of Ark 564, which ranges from the ultraviolet to the near-infrared, shows a rich forbidden line spectrum. Strong emphasis is given to the study of the coronal line region. The diversity of physical conditions deduced from the observations requires multi-cloud models to reproduce the observed lines and continuum. We find that a combination of high velocity (Vs = 1500 km/s) shock-dominated clouds as well as low velocity (Vs = 150 km/s) radiation-dominated clouds explains the coronal lines, while the optical low-ionization lines are mainly explained by shock-dominated clouds. The results for Ark 564 are compared with those obtained for other Seyfert galaxies previously analyze...

  1. Scaling laws of coronal loops compared to a 3D MHD model of an Active Region

    CERN Document Server

    Bourdin, Philippe-A; Peter, Hardi

    2016-01-01

    Context. The structure and heating of coronal loops are investigated since decades. Established scaling laws relate fundamental quantities like the loop apex temperature, pressure, length, and the coronal heating. Aims. We test such scaling laws against a large-scale 3D MHD model of the Solar corona, which became feasible with nowadays high-performance computing. Methods. We drive an active region simulation a with photospheric observations and found strong similarities to the observed coronal loops in X-rays and EUV wavelength. A 3D reconstruction of stereoscopic observations showed that our model loops have a realistic spatial structure. We compare scaling laws to our model data extracted along an ensemble of field lines. Finally, we fit a new scaling law that represents well hot loops and also cooler structures, which was not possible before only based on observations. Results. Our model data gives some support for scaling laws that were established for hot and EUV-emissive coronal loops. For the RTV scali...

  2. Molecular absorption in transition region spectral lines

    CERN Document Server

    Schmit, Donald; Ayres, Thomas; Peter, Hardi; Curdt, Werner; Jaeggli, Sarah

    2014-01-01

    Aims: We present observations from the Interface Region Imaging Spectrograph (IRIS) of absorption features from a multitude of cool atomic and molecular lines within the profiles of Si IV transition region lines. Many of these spectral lines have not previously been detected in solar spectra. Methods: We examined spectra taken from deep exposures of plage on 12 October 2013. We observed unique absorption spectra over a magnetic element which is bright in transition region line emission and the ultraviolet continuum. We compared the absorption spectra with emission spectra that is likely related to fluorescence. Results: The absorption features require a population of sub-5000 K plasma to exist above the transition region. This peculiar stratification is an extreme deviation from the canonical structure of the chromosphere-corona boundary . The cool material is not associated with a filament or discernible coronal rain. This suggests that molecules may form in the upper solar atmosphere on small spatial scales...

  3. Diagnostics of Coronal Magnetic Fields Through the Hanle Effect in UV and IR Lines

    CERN Document Server

    Raouafi, N E; Gibson, S; Fineschi, S; Solanki, S K

    2016-01-01

    The plasma thermodynamics in the solar upper atmosphere, particularly in the corona, are dominated by the magnetic field, which controls the flow and dissipation of energy. The relative lack of knowledge of the coronal vector magnetic field is a major handicap for progress in coronal physics. This makes the development of measurement methods of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV and IR spectral lines is a largely unexplored diagnostic. We use magnetohydrodynamic (MHD) simulations to study the magnitude of the signal to be expected for typical coronal magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely the H I Ly-$\\alpha$ and the He I 10830 {\\AA} lines. We show that the selected lines are useful for reliable diagnosis of coronal magnetic fields. The results show that the combination of polarization measurements of spectral lines with different sensitivities to the Hanle effect may be most appropriate for deducing coronal magne...

  4. Major electron events and coronal magnetic configurations of the related solar active regions

    CERN Document Server

    Li, C; Matthews, S A; Dai, Y; Tang, Y H

    2013-01-01

    A statistical survey of 26 major electron events during the period 2002 February through the end of solar cycle 23 is presented. We have obtained electron solar onset times and the peak flux spectra for each event by fitting to a powerlaw spectrum truncated by an exponential high-energy tail. We also derived the coronal magnetic configurations of the related solar active regions (ARs) from the potential-field source-surface model. It is found that (1) 10 of the 11 well-connected open field-line events are prompt events whose solar onset times coincide with the maxima of flare emission and 13 of the 14 closed field-line events are delayed events. (2) A not-wellconnected open field-line event and one of the closed field-line events are prompt events, they are both associated with large-scale coronal disturbances or dimming. (3)An averaged harder spectrum is found in open field-line events compared with the closed ones. Specifically, the averaged spectral index is of 1.6 +/- 0.3 in open field-line events and of ...

  5. Electric currents and coronal heating in NOAA active region 6952

    Science.gov (United States)

    Metcalf, T. R.; Canfield, R. C.; Hudson, H. S.; Mickey, D. L.; Wulser, J. -P.; Martens, P. C. H.; Tsuneta, S.

    1994-01-01

    We examine the spatial and temporal relationship between coronal structures observed with the soft X-ray telescope (SXT) on board the Yohkoh spacecraft and the vertical electric current density derived from photospheric vector magnetograms obtained using the Stokes Polarimeter at the Mees Solar Observatory. We focus on a single active region: AR 6952 which we observed on 7 days during 1991 December. For 11 independent maps of the vertical electric current density co-aligned with non-flaring X-ray images, we search for a morphological relationship between sites of high vertical current density in the photosphere and enhanced X-ray emission in the overlying corona. We find no compelling spatial or temporal correlation between the sites of vertical current and the bright X-ray structures in this active region.

  6. A Far Ultraviolet Spectroscopic Explorer Survey of Coronal Forbidden Lines in Late-Type Stars

    CERN Document Server

    Redfield, S; Linsky, J L; Ake, T B; Dupree, A K; Robinson, R D; Young, P R; Redfield, Seth; Ayres, Thomas R.; Linsky, Jeffrey L.; Ake, Thomas B.; Robinson, Richard D.; Young, Peter R.

    2002-01-01

    We present a survey of coronal forbidden lines detected in Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of nearby stars. Two strong coronal features, Fe XVIII 974 A and Fe XIX 1118 A, are observed in 10 of the 26 stars in our sample. Various other coronal forbidden lines, observed in solar flares, also were sought but not detected. The Fe XVIII feature, formed at log T (K) = 6.8, appears to be free of blends, whereas the Fe XIX line can be corrupted by a C I multiplet. FUSE observations of these forbidden iron lines at spectral resolution R ~ 15,000 provides the opportunity to study dynamics of hot coronal plasmas. We find that the velocity centroid of the Fe XVIII feature deviates little from the stellar rest frame, confirming that the hot coronal plasma is confined. The observed line widths generally are consistent with thermal broadening at the high temperatures of formation and show little indication of additional turbulent broadening. The fastest rotating stars, 31 Com, alpha Aur Ab, and AB Dor,...

  7. Photospheric and Coronal Observations of Abrupt Magnetic Restructuring in Two Flaring Active Regions

    Science.gov (United States)

    Petrie, Gordon

    2016-05-01

    For two major X-class flares observed by the Solar Dynamics Observatory (SDO) and the Solar TErrestrial RElations Observatory Ahead (STEREO-A) spacecraft when they were close to quadrature, we compare major, abrupt changes in the photospheric magnetic vector field to changes in the observed coronal magnetic structure during the two flares. The Lorentz force changes in strong photospheric fields within active regions are estimated from time series of SDO Helioseismic and Magnetic Imager (HMI) vector magnetograms. These show that the major changes occurred in each case near the main neutral line of the region and in two neighboring twisted opposite-polarity sunspots. In each case the horizontal parallel field strengthened significantly near the neutral line while the azimuthal field in the sunspots decreased, suggesting that a flux rope joining the two sunspots collapsed across the neutral line with reduced magnetic pressure because of a reduced field twist component. At the same time, the coronal extreme ultraviolet (EUV) loop structure was observed by the Atmospheric Imaging Assembly (AIA) onboard SDO and the Extreme Ultraviolet Imager (EUVI) on STEREO-A to decrease significantly in height during each eruption, discontinuous changes signifying ejection of magnetized plasma, and outward-propagating continuous but abrupt changes consistent with loop contraction. An asymmetry in the observed EUV loop changes during one of the flares matches an asymmetry in the photospheric magnetic changes associated with that flare. The observations are discussed in terms of the well-known tether-cutting and breakout flare initiation models.

  8. Solar Active Region Coronal Jets. II. Triggering and Evolution of Violent Jets

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Martinez, Francisco

    2017-07-01

    We study a series of X-ray-bright, rapidly evolving active region coronal jets outside the leading sunspot of AR 12259, using Hinode/X-ray telescope, Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI), and Interface Region Imaging Spectrograph (IRIS) data. The detailed evolution of such rapidly evolving “violent” jets remained a mystery after our previous investigation of active region jets. The jets we investigate here erupt from three localized subregions, each containing a rapidly evolving (positive) minority-polarity magnetic-flux patch bathed in a (majority) negative-polarity magnetic-flux background. At least several of the jets begin with eruptions of what appear to be thin (thickness ≲ 2\\prime\\prime ) miniature-filament (minifilament) “strands” from a magnetic neutral line where magnetic flux cancelation is ongoing, consistent with the magnetic configuration presented for coronal-hole jets in Sterling et al. (2016). Some jets strands are difficult/impossible to detect, perhaps due to, e.g., their thinness, obscuration by surrounding bright or dark features, or the absence of erupting cool-material minifilaments in those jets. Tracing in detail the flux evolution in one of the subregions, we find bursts of strong jetting occurring only during times of strong flux cancelation. Averaged over seven jetting episodes, the cancelation rate was ˜ 1.5× {10}19 Mx hr-1. An average flux of ˜ 5× {10}18 Mx canceled prior to each episode, arguably building up ˜1028-1029 erg of free magnetic energy per jet. From these and previous observations, we infer that flux cancelation is the fundamental process responsible for the pre-eruption build up and triggering of at least many jets in active regions, quiet regions, and coronal holes.

  9. A Model for Type 2 Coronal Line Forest (CLiF) AGN

    CERN Document Server

    Glidden, Ana; Elvis, Martin; McDowell, Jonathan

    2016-01-01

    We present a model for the classification of Coronal-Line Forest Active Galactic Nuclei (CLiF AGN). CLiF AGN are of special interest due to their remarkably large number of emission lines, especially forbidden high ionization lines (FHILs). Rose et al. (2015a) suggest that their emission is dominated by reflection from the inner wall of the obscuring region rather than direct emission from the accretion disk. This makes CLiF AGN laboratories to test AGN-torus models. Modeling AGN as an accreting supermassive black hole, surrounded by a cylinder of dust and gas, we show a relationship between viewing angle and the revealed area of the inner wall. From the revealed area, we can determine the amount of FHIL emission at various angles. We calculate the strength of [FeVII]{\\lambda}6087 emission for a number of intermediate angles (30{\\deg}, 40{\\deg}, and 50{\\deg}) and compare the results with the luminosity of the observed emission line from six known CLiF AGN. We find that there is good agreement between our mode...

  10. CORONIUM IN THE LABORATORY: MEASURING THE Fe XIV GREEN CORONAL LINE BY LASER SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Schnorr, K.; Mäckel, V.; Oreshkina, N. S.; Brunner, F.; Harman, Z.; Keitel, C. H.; Ullrich, J.; Crespo López-Urrutia, J. R. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Augustin, S. [Justus-Liebig-Univerität Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany)

    2013-10-20

    The green coronal line at 530.3 nm was first observed during the total solar eclipse of 1869. Once identified as emitted by Fe XIV, it became clear that this highly charged ion was typical for the range of temperatures found in coronal plasmas, stellar winds, outflows, and accretion disks. Under these conditions of high ionization, the strongest transitions are in the X-ray, extreme ultraviolet, and ultraviolet wavelength range, with only few optical lines. For these so-called forbidden coronal lines, only scarce laboratory data is available, and even advanced atomic theory codes cannot yet predict their wavelengths with the accuracy required for precise absolute velocity determinations of such plasmas. Here we report on a study of the Fe XIV line, a key coronal transition of a highly charged ion, using laser spectroscopy in an electron beam ion trap, obtaining the first laboratory measurement of 530.2801(4) nm for its rest wavelength. The result enables the determination of absolute line shifts and line broadenings in hot turbulent plasmas and astrophysical environments, with an error bar of only 0.24 km s{sup –1}. In addition, our measurement provides a much-needed benchmark for advanced atomic structure calculations, which are fundamental for astronomy.

  11. Magnetic Flux Cancellation as the Trigger of Solar Quiet-Region Coronal Jets

    CERN Document Server

    Panesar, Navdeep K; Moore, Ronald L; Chakrapani, Prithi

    2016-01-01

    We report observations of ten random on-disk solar quiet region coronal jets found in high resolution Extreme Ultraviolet (EUV) images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and having good coverage in magnetograms from the SDO/Helioseismic and Magnetic Imager (HMI). Recent studies show that coronal jets are driven by the eruption of a small-scale filament (called a minifilament). However the trigger of these eruptions is still unknown. In the present study we address the question: what leads to the jet-driving minifilament eruptions? The EUV observations show that there is a cool-transition-region-plasma minifilament present prior to each jet event and the minifilament eruption drives the jet. By examining pre-jet evolutionary changes in the line-of-sight photospheric magnetic field we observe that each pre-jet minifilament resides over the neutral line between majority-polarity and minority-polarity patches of magnetic flux. In each of the ten cases, the opposite-polari...

  12. Ubiquitous High Speed Transition Region and Coronal Upflows in the Quiet Sun

    CERN Document Server

    Mcintosh, Scott W

    2009-01-01

    We study the line profiles of a range of transition region (TR) emission lines observed in typical quiet Sun regions. In magnetic network regions, the Si IV 1402\\AA{}, C IV 1548\\AA{}, N V 1238\\AA{}, O VI 1031\\AA{}, and Ne VIII 770\\AA{} spectral lines show significant asymmetry in the blue wing of the emission line profiles. We interpret these high-velocity upflows in the lower and upper TR as the quiet Sun equivalent of the recently discovered upflows in the low corona above plage regions (Hara et al., 2008). The latter have been shown to be directly associated with high-velocity chromospheric spicules that are (partially) heated to coronal temperatures and play a significant role in supplying the active region corona with hot plasma (DePontieu et al., 2009}. We show that a similar process likely dominates the quiet Sun network. We provide a new interpretation of the observed quiet Sun TR emission in terms of the relentless mass transport between the chromosphere and corona - a mixture of emission from dynami...

  13. Constraining reconnection region conditions using imaging and spectroscopic analysis of a coronal jet

    Science.gov (United States)

    Brannon, Sean; Kankelborg, Charles

    2017-08-01

    Coronal jets typically appear as thin, collimated structures in EUV and X-ray wavelengths, and are understood to be initiated by magnetic reconnection in the lower corona or upper chromosphere. Plasma that is heated and accelerated upward into coronal jets may therefore carry indirect information on conditions in the reconnection region and current sheet located at the jet base. On 2017 October 14, the Interface Region Imaging Spectrograph (IRIS) and Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA) observed a series of jet eruptions originating from NOAA AR 12599. The jet structure has a length-to-width ratio that exceeds 50, and remains remarkably straight throughout its evolution. Several times during the observation bright blobs of plasma are seen to erupt upward, ascending and subsequently descending along the structure. These blobs are cotemporal with footpoint and arcade brightenings, which we believe indicates multiple episodes of reconnection at the structure base. Through imaging and spectroscopic analysis of jet and footpoint plasma we determine a number of properties, including the line-of-sight inclination, the temperature and density structure, and lift-off velocities and accelerations of jet eruptions. We use these properties to constrain the geometry of the jet structure and conditions in reconnection region.

  14. Coronal physics and the chandra emission line project

    Directory of Open Access Journals (Sweden)

    N. S. Brickhouse

    2000-01-01

    Full Text Available Con el lanzamiento del observatorio de rayos-X Chandra se ha iniciado la espectroscop a de alta resoluci on en rayos-X de las fuentes c osmicas. Observa- ciones profundas de tres fuentes estelares con emisi on coronal|Capela, Proci on y HR 1099|est an dando no s olo datos de calibraci on invaluables sino tambi en medios de comparaci on para los modelos de emisi on de plasmas. Estos modelos, que han sido cuestionados por los problemas para entender los datos de baja y moderada re- soluci on de ASCA y del EUVE, son necesarios para interpretar los datos de coronas estelares, galaxias y c umulos de galaxias, remanentes de supernova y otras fuentes. El Proyecto de L neas de Emisi on es una colaboraci on para mejorar los modelos y su primera fase es la comparaci on de los modelos con los espectros observados de Capela, Proci on y HR 1099. Las metas de la comparaci on son (1 determinar y veri car la precisi on y fortaleza de los diagn osticos y (2 identi car y priorizar los elementos de la espectroscop a que requieran m as trabajo tanto te orico como de laboratorio. Uno de los puntos cr ticos de esta labor es entender hasta que punto se pueden aplicar las hip otesis simpli cadoras comunmente usadas (equilibrio coro- nal, baja opacidad. Discutimos, en este contexto, los avances m as recientes en el entendimiento de las coronas estelares.

  15. Decay of Activity Complexes, Formation of Unipolar Magnetic Regions and Coronal Holes in their Causal Relation

    CERN Document Server

    Golubeva, Elena

    2016-01-01

    North-south asymmetry of sunspot activity resulted in an asynchronous reversal of the Sun's polar fields in the current cycle. The asymmetry is also observed in the formation of polar coronal holes. A stable coronal hole was first formed at the South Pole, despite the later polar-field reversal there. The aim of this study is to understand processes making this situation possible. Synoptic magnetic maps from the Global Oscillation Network Group and corresponding coronal-hole maps from the Extreme ultraviolet Imaging Telescope aboard the Solar and Heliospheric Observatory and the Atmospheric Imaging Assembly aboard the Solar Dynamics Observatory are analyzed here to study a causal relationship between the decay of activity complexes, evolution of large-scale magnetic fields, and formation of coronal holes. Ensembles of coronal holes associated with decaying active regions and activity complexes are presented. These ensembles take part in global rearrangements of the Sun's open magnetic flux. In particular, the...

  16. Long Term Spectral Evolution of Tidal Disruption Candidates Selected by Strong Coronal Lines

    CERN Document Server

    Yang, Chenwei; Ferland, Gary; Yuan, Weimin; Zhou, Hongyan; Jiang, Peng

    2013-01-01

    We present results of follow-up optical spectroscopic observations of seven rare, extreme coronal line emitting galaxies reported by Wang et al. (2012) with Multi-Mirror Telescope (MMT). Large variations in coronal lines are found in four objects, making them strong candidates of tidal disruption events (TDE). For the four TDE candidates, all the coronal lines with ionization status higher than [Fe VII] disappear within 5-9 years. The [Fe VII] faded by a factor of about five in one object (J0952+2143) within 4 years, whereas emerged in other two without them previously. A strong increment in the [O III] flux is observed, shifting the line ratios towards the loci of active galactic nucleus on the BPT diagrams. Surprisingly, we detect a non-canonical [O III]5007/[O III]4959 2 in two objects, indicating a large column density of O$^{2+}$ and thus probably optical thick gas. This also requires a very large ionization parameter and relatively soft ionizing spectral energy distribution (e.g. blackbody with $T < ...

  17. Study of the Photospheric Magnetic Field and Coronal Emission from Solar Active Regions

    Science.gov (United States)

    Aguilera, Jordan Armando Guerra

    2016-01-01

    Solar explosive phenomena (flares and Coronal Mass Ejections, CMEs) are examples of how the most dynamical processes within the heliosphere are interconnected and powered by the Sun. Solar flares originate in active regions (AR) -- areas of strong magnetic field on the solar surface. The electromagnetic (EM) energy released during flares, along with the often-seen CMEs, propagate through the heliosphere. In the Earth's vicinity, EM radiation and charged particles have the potential to produce unfavorable conditions for humans and technology in space. From many points of view (scientific, operational, economical) it is thus important to understand and try to predict when solar flares and associated eruptive phenomena will occur. This dissertation explores how to best leverage the available observational data to provide predictive information about the future flaring activity. This dissertation consists of two main components: 1) investigation of the photosphere-corona coupling by analyzing photospheric magnetic field and coronal data in search for signals or behaviors that precede eruptions; and 2) the combination of existing flare prediction methods in order to develop a novel ensemble prediction. For the first part, the data employed correspond to line-of-sight (LOS) magnetograms from the Helioseismic and Magnetic Imager (HMI) and EUV intensity maps from the Atmospheric Imaging Assembly (AIA), both instruments onboard NASA's Solar Dynamics Observatory (SDO) satellite. Photospheric magnetic field and coronal EUV emissions were characterized by measuring the power-law decay of their spatio-temporal spectra and the data statistical associations (auto- and cross-correlations). These measures, calculated with high spatio-temporal resolution, appeared to characterize the AR evolution, provide information about the state of the photospheric plasma, reveal insights into the photospheric conditions for flares, and expose the potential of combining coronal and photospheric

  18. Decay of Activity Complexes, Formation of Unipolar Magnetic Regions, and Coronal Holes in Their Causal Relation

    Science.gov (United States)

    Golubeva, E. M.; Mordvinov, A. V.

    2016-12-01

    The peculiar development of solar activity in the current cycle resulted in an asynchronous reversal of the Sun's polar fields. The asymmetry is also observed in the formation of polar coronal holes. A stable coronal hole was first formed at the South Pole, despite the later polar-field reversal there. The aim of this study is to understand the processes making this situation possible. Synoptic magnetic maps from the Global Oscillation Network Group and corresponding coronal-hole maps from the Extreme ultraviolet Imaging Telescope onboard the Solar and Heliospheric Observatory and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory are analyzed here to study the causal relationship between the decay of activity complexes, evolution of large-scale magnetic fields, and formation of coronal holes. Ensembles of coronal holes associated with decaying active regions and activity complexes are presented. These ensembles take part in global rearrangements of the Sun's open magnetic flux. In particular, the south polar coronal hole was formed from an ensemble of coronal holes that came into existence after the decay of multiple activity complexes observed during 2014.

  19. Diagnosing Coronal Heating in a Survey of Active Regions using the Time Lag Method

    Science.gov (United States)

    Viall, Nicholeen; Klimchuk, James A.

    2017-08-01

    In this paper we examine 15 different active regions observed with the Solar Dynamics Observatory and analyze their nanoflare properties using the time lag method. The time lag method is a diagnostic of whether the plasma is maintained at a steady temperature, or if it is dynamic, undergoing heating and cooling cycles. An important aspect of our technique is that it analyses both observationally distinct coronal loops as well as the much more prevalent diffuse emission surrounding them. Warren et al. (2012) first studied these same 15 active regions, which are all quiescent and exhibit a broad range of characteristics, including age, total unsigned magnetic flux, area, hot emission, and emission measure distribution. We find that widespread cooling is a generic property of both loop and diffuse emission from all 15 active regions. However, the range of temperatures through which the plasma cools varies between active regions and within each active region, and only occasionally is there full cooling from above 7 MK to well below 1 MK. We find that the degree of cooling is not well correlated with slopes of the emission measure distribution measured by Warren et al. (2012). We show that these apparently contradictory observations can be reconciled with the presence of a distribution of nanoflare energies and frequencies along the line of sight, with the average delay between successive nanoflare events on a single flux tube being comparable to the plasma cooling timescale. Warren, H. P., Winebarger, A. R., & Brooks, D. H. 2012, ApJ, 759, 141

  20. Modeling Coronal Response in Decaying Active Regions with Magnetic Flux Transport and Steady Heating

    Science.gov (United States)

    Ugarte-Urra, Ignacio; Warren, Harry P.; Upton, Lisa A.; Young, Peter R.

    2017-09-01

    We present new measurements of the dependence of the extreme ultraviolet (EUV) radiance on the total magnetic flux in active regions as obtained from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Using observations of nine active regions tracked along different stages of evolution, we extend the known radiance—magnetic flux power-law relationship (I\\propto {{{Φ }}}α ) to the AIA 335 Å passband, and the Fe xviii 93.93 Å spectral line in the 94 Å passband. We find that the total unsigned magnetic flux divided by the polarity separation ({{Φ }}/D) is a better indicator of radiance for the Fe xviii line with a slope of α =3.22+/- 0.03. We then use these results to test our current understanding of magnetic flux evolution and coronal heating. We use magnetograms from the simulated decay of these active regions produced by the Advective Flux Transport model as boundary conditions for potential extrapolations of the magnetic field in the corona. We then model the hydrodynamics of each individual field line with the Enthalpy-based Thermal Evolution of Loops model with steady heating scaled as the ratio of the average field strength and the length (\\bar{B}/L) and render the Fe xviii and 335 Å emission. We find that steady heating is able to partially reproduce the magnitudes and slopes of the EUV radiance—magnetic flux relationships and discuss how impulsive heating can help reconcile the discrepancies. This study demonstrates that combined models of magnetic flux transport, magnetic topology, and heating can yield realistic estimates for the decay of active region radiances with time.

  1. Successive Homologous Coronal Mass Ejections Driven by Shearing and Converging Motions in Solar Active Region NOAA 12371

    Science.gov (United States)

    Vemareddy, P.

    2017-08-01

    We study the magnetic field evolution in AR 12371, related to its successive eruptive nature. During the disk transit of seven days, the active region (AR) launched four sequential fast coronal mass ejections (CMEs), which are associated with long duration M-class flares. Morphological study delineates a pre-eruptive coronal sigmoid structure above the polarity inversion line (PIL) similar to Moore et al.’s study. The velocity field derived from tracked magnetograms indicates persistent shear and converging motions of polarity regions about the PIL. While these shear motions continue, the crossed arms of two sigmoid elbows are being brought to interaction by converging motions at the middle of the PIL, initiating the tether-cutting reconnection of field lines and the onset of the CME explosion. The successive CMEs are explained by a cyclic process of magnetic energy storage and release referred to as “sigmoid-to-arcade-to-sigmoid” transformation driven by photospheric flux motions. Furthermore, the continued shear motions inject helicity flux with a dominant negative sign, which contributes to core field twist and its energy by building a twisted flux rope (FR). After a limiting value, the excess coronal helicity is expelled by bodily ejection of the FR, which is initiated by some instability as realized by intermittent CMEs. This AR is in contrast with the confined AR 12192 with a predominant negative sign and larger helicity flux, but much weaker (-0.02 turns) normalized coronal helicity content. While predominant signed helicity flux is a requirement for CME eruption, our study suggests that the magnetic flux normalized helicity flux is a necessary condition accommodating the role of background flux and appeals to a further study of a large sample of ARs.

  2. Helium line formation and abundance in a solar active region

    CERN Document Server

    Mauas, P J D; Falchi, A; Falciani, R; Teriaca, L N; Cauzzi, G

    2004-01-01

    An observing campaign (SOHO JOP 139), coordinated between ground based and SOHO instruments, has been planned to obtain simultaneous spectroheliograms of the same active region in several spectral lines. The chromospheric lines CaII K, Halpha and Na D as well as HeI 10830, 5876, 584 and HeII 304 AA lines have been observed.These simultaneous observations allow us to build semi-empirical models of the chromosphere and low transition region of an active region, taking into account the estimated total number of photoionizing photons impinging on the target active region and their spectral distribution. We obtained a model that matches very well all the observed line profiles, using a standard value for the He abundance ([He]=0.1) and a modified distribution of microturbulence. For this model we study the influence of the coronal radiation on the computed helium lines. We find that, even in an active region, the incident coronal radiation has a limited effect on the UV He lines, while it results of fundamental im...

  3. Revealing the Nature of Extreme Coronal-line Emitter SDSS J095209.56+214313.3

    CERN Document Server

    Palaversa, Lovro; Sesar, Branimir; Stuart, J Scott; Wozniak, Przemyslaw; Holl, Berry; Ivezić, Željko

    2015-01-01

    Extreme coronal-line emitter (ECLE) SDSSJ095209.56+214313.3, known by its strong, fading, high ionization lines, has been a long standing candidate for a tidal disruption event, however a supernova origin has not yet been ruled out. Here we add several new pieces of information to the puzzle of the nature of the transient that powered its variable coronal lines: 1) an optical light curve from the Lincoln Near Earth Asteroid Research (LINEAR) survey that serendipitously catches the optical flare, and 2) late-time observations of the host galaxy with the Swift Ultraviolet and Optical Telescope (UVOT) and X-ray telescope (XRT) and the ground-based Mercator telescope. The well-sampled, $\\sim10$-year long, unfiltered LINEAR light curve constrains the onset of the flare to a precision of $\\pm5$ days and enables us to place a lower limit on the peak optical magnitude. Difference imaging allows us to estimate the location of the flare in proximity of the host galaxy core. Comparison of the \\textsl{GALEX} data (early ...

  4. Polar Coronal Hole Ephemeral Regions, the Fast Solar Wind and the Global Magnetic Dynamo

    Science.gov (United States)

    Cirtain, Jonathan W.

    2010-01-01

    The X-Ray Telescope aboard Hinode has been regularly observing both the north and south solar polar coronal holes from November 2006 through March 2009. We use the observations of emerged flux regions within the coronal hole as evidenced by small x-ray bright points to study the physical properties of these regions. The width of the emerged flux region loop footpoints, the duration of the x-ray emission lifetime for the emerged flux region, the latitude of formation and whether an x-ray or EUV jet was observed were all recorded. In the present work we detail these observations and show a dependence on the width of the emerged flux region (bright point) to the number of x-ray jets observed. The distribution of base width is then related to a power law for number of emerged flux regions as a function of base width.

  5. Analysis of the coronal green line profiles: evidence of excess blueshifts

    CERN Document Server

    Raju, K P; Ashok, N M

    2011-01-01

    The coronal green line (Fe XIV 5303 A) profiles were obtained from Fabry-Perot interferometric observations of the solar corona during the total solar eclipse of 21 June 2001 from Lusaka, Zambia. The instrumental width is about 0.2 A and the spectral resolution is about 26000. About 300 line profiles were obtained within a radial range of 1.0-1.5 R\\odot and position angle coverage of about 240\\circ. The line profiles were fitted with single Gaussian and their intensity, Doppler velocity, and line width have been obtained. Also obtained are the centroids of the line profiles which give a measure of line asymmetry. The histograms of Doppler velocity show excess blueshifts while the centroids reveal a pre-dominant blue wing in the line profiles. It has been found that the centroids and the Doppler velocities are highly correlated. This points to the presence of multiple components in the line profiles with an excess of blueshifted components. We have then obtained the(Blue-Red) wing intensity which clearly revea...

  6. Network Coronal Bright Points: Coronal Heating Concentrations Found in the Solar Magnetic Network

    Science.gov (United States)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    1998-01-01

    We examine the magnetic origins of coronal heating in quiet regions by combining SOHO/EIT Fe xii coronal images and Kitt Peak magnetograms. Spatial filtering of the coronal images shows a network of enhanced structures on the scale of the magnetic network in quiet regions. Superposition of the filtered coronal images on maps of the magnetic network extracted from the magnetograms shows that the coronal network does indeed trace and stem from the magnetic network. Network coronal bright points, the brightest features in the network lanes, are found to have a highly significant coincidence with polarity dividing lines (neutral lines) in the network and are often at the feet of enhanced coronal structures that stem from the network and reach out over the cell interiors. These results indicate that, similar to the close linkage of neutral-line core fields with coronal heating in active regions (shown in previous work), low-lying core fields encasing neutral lines in the magnetic network often drive noticeable coronal heating both within themselves (the network coronal bright points) and on more extended field lines rooted around them. This behavior favors the possibility that active core fields in the network are the main drivers of the heating of the bulk of the quiet corona, on scales much larger than the network lanes and cells.

  7. Transition-Region/Coronal Signatures of Penumbral Microjets: Hi-C, SDO/AIA and Hinode (SOT/FG) Observations

    Science.gov (United States)

    Tiwari, Sanjiv K.; Alpert, Shane E.; Moore, Ronald L.; Winebarger, Amy R.

    2014-01-01

    Penumbral microjets are bright, transient features seen in the chromosphere of sunspot penumbrae. Katsuaka et al. (2007) noted their ubiquity and characterized them using the Ca II H-line filter on Hinode's Solar Optical Telescope (SOT). The jets are 1000{4000 km in length, 300{400 km in width, and last less than one minute. It was proposed that these penumbral microjets could contribute to the transition-region and coronal heating above sunspots. We examine whether these microjets appear in the transition-region (TR) and/or corona or are related{ temporally and spatially{ to similar brightenings in the TR and/or corona. First, we identify penumbral microjets with the SOT's Ca II H-line filter. The chosen sunspot is observed on July 11, 2012 from 18:50:00 UT to 20:00:00 UT at approx. 14 inches, -30 inches. We then examine the sunspot in the same field of view and at the same time in other wavelengths. We use the High Resolution Coronal Imager Telescope (Hi-C) at 193A and the 1600A, 304A, 171A, 193A, and 94A passbands of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamic Observatory. We include examples of these jets and where they should appear in the other passbands, but find no signifcant association, except for a few jets with longer lifetimes and bigger sizes seen at locations in the penumbra with repeated stronger brightenings. We conclude that the normal microjets are not heated to transition-region/coronal temperatures, but the larger jets are.

  8. Planar magnetic structures in coronal mass ejection-driven sheath regions

    Energy Technology Data Exchange (ETDEWEB)

    Palmerio, Erika; Kilpua, Emilia K.J. [Helsinki Univ. (Finland). Dept. of Physics; Savani, Neel P. [Maryland Univ., Baltimore County, MD (United States). Goddard Planetary Heliophysics Inst. (GPHI); NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-05-01

    Planar magnetic structures (PMSs) are periods in the solar wind during which interplanetary magnetic field vectors are nearly parallel to a single plane. One of the specific regions where PMSs have been reported are coronal mass ejection (CME)-driven sheaths. We use here an automated method to identify PMSs in 95 CME sheath regions observed in situ by the Wind and ACE spacecraft between 1997 and 2015. The occurrence and location of the PMSs are related to various shock, sheath, and CME properties. We find that PMSs are ubiquitous in CME sheaths; 85% of the studied sheath regions had PMSs with the mean duration of 6 h. In about one-third of the cases the magnetic field vectors followed a single PMS plane that covered a significant part (at least 67 %) of the sheath region. Our analysis gives strong support for two suggested PMS formation mechanisms: the amplification and alignment of solar wind discontinuities near the CME-driven shock and the draping of the magnetic field lines around the CME ejecta. For example, we found that the shock and PMS plane normals generally coincided for the events where the PMSs occurred near the shock (68% of the PMS plane normals near the shock were separated by less than 20 from the shock normal), while deviations were clearly larger when PMSs occurred close to the ejecta leading edge. In addition, PMSs near the shock were generally associated with lower upstream plasma beta than the cases where PMSs occurred near the leading edge of the CME. We also demonstrate that the planar parts of the sheath contain a higher amount of strong southward magnetic field than the non-planar parts, suggesting that planar sheaths are more likely to drive magnetospheric activity.

  9. Three-Dimensional MHD Models of Waves and Flows in Coronal Active Region Loops

    Science.gov (United States)

    Ofman, L.; Wang, T.; Davila, J. M.

    2011-12-01

    Recent observations show that slow magnetosonic waves are present in active region loops, and are often associated with subsonic up-flows of coronal material. In order to study the relation between up-flows and waves we develop a 3D MHD model of an idealized bi-polar active region with flows in coronal loops. The model is initiated with a dipole magnetic field and gravitationally stratified isothermal atmosphere. To model the effects of flares, coronal material is injected in small-scale regions at the base of the model active region. The up-flows have sub-sonic speeds of ˜100 km/s and are steady or periodic, producing higher density loops by filling magnetic flux-tubes with injected material. We find that the up-flows produce fast and slow magnetosonic waves that propagate in the coronal loops. We perform a parametric study of up-flow magnitude and periodicity, and the relation with the resulting waves. As expected, we find that the up-flow speed decreases with loop height due to the diverge of the flux tubes, while the slow magnetosonic speed is independent of height. When the amplitude of the driving pulses is increased above the sound speed, we find that slow shocks are produced in the loops. Using the results of the 3D MHD model we show that observed slow magnetosonic waves in active region loops can be driven by impulsive flare-produced up-flows at the transition region/corona interface of active regions.

  10. REVEALING THE NATURE OF EXTREME CORONAL-LINE EMITTER SDSS J095209.56+214313.3

    Energy Technology Data Exchange (ETDEWEB)

    Palaversa, Lovro; Holl, Berry [Observatoire astronomique de l’Université de Genève, 51 chemin des Maillettes, CH-1290 Sauverny (Switzerland); Gezari, Suvi [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Sesar, Branimir [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Stuart, J. Scott [Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02420-9108 (United States); Wozniak, Przemyslaw [Los Alamos National Laboratory, 30 Bikini Atoll Road, Los Alamos, NM 87545-0001 (United States); Ivezić, Željko, E-mail: lovro.palaversa@unige.ch [University of Washington, Department of Astronomy, P.O. Box 351580, Seattle, WA 98195-1580 (United States)

    2016-03-10

    Extreme coronal-line emitter (ECLE) SDSS J095209.56+214313.3, known by its strong, fading, high-ionization lines, has been a long-standing candidate for a tidal disruption event; however, a supernova (SN) origin has not yet been ruled out. Here we add several new pieces of information to the puzzle of the nature of the transient that powered its variable coronal lines: (1) an optical light curve from the Lincoln Near Earth Asteroid Research (LINEAR) survey that serendipitously catches the optical flare, and (2) late-time observations of the host galaxy with the Swift Ultraviolet and Optical Telescope (UVOT) and X-ray telescope (XRT) and the ground-based Mercator telescope. The well-sampled, ∼10 yr long, unfiltered LINEAR light curve constrains the onset of the flare to a precision of ±5 days and enables us to place a lower limit on the peak optical magnitude. Difference imaging allows us to estimate the location of the flare in proximity of the host galaxy core. Comparison of the GALEX data (early 2006) with the recently acquired Swift UVOT (2015 June) and Mercator observations (2015 April) demonstrates a decrease in the UV flux over a ∼10 yr period, confirming that the flare was UV-bright. The long-lived UV-bright emission, detected 1.8 rest-frame years after the start of the flare, strongly disfavors an SN origin. These new data allow us to conclude that the flare was indeed powered by the tidal disruption of a star by a supermassive black hole and that tidal disruption events are in fact capable of powering the enigmatic class of ECLEs.

  11. THE EFFECTS OF LINE-OF-SIGHT INTEGRATION ON MULTISTRAND CORONAL LOOP OSCILLATIONS

    Energy Technology Data Exchange (ETDEWEB)

    De Moortel, I.; Pascoe, D. J., E-mail: ineke@mcs.st-and.ac.uk [School of Mathematics and Statistics, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom)

    2012-02-10

    Observations have shown that transverse oscillations are present in a multitude of coronal structures. It is generally assumed that these oscillations are driven by (sub)surface footpoint motions. Using fully three-dimensional MHD simulations, we show that these footpoint perturbations generate propagating kink (Alfvenic) modes which couple very efficiently into (azimuthal) Alfven waves. Using an ensemble of randomly distributed loops, driven by footpoint motions with random periods and directions, we compare the absolute energy in the numerical domain with the energy that is 'visible' when integrating along the line of sight (LOS). We show that the kinetic energy derived from the LOS Doppler velocities is only a small fraction of the actual energy provided by the footpoint motions. Additionally, the superposition of loop structures along the LOS makes it nearly impossible to identify which structure the observed oscillations are actually associated with and could impact the identification of the mode of oscillation.

  12. Coronal lines and the importance of deep core-valence correlation in Ag-like ions

    CERN Document Server

    Grumer, Jon; Brage, Tomas; Li, Wenxian; Huldt, Sven; Hutton, Roger; Zou, Yaming

    2014-01-01

    We report on large-scale and critically evaluated {\\em ab initio} MCDHF calculations of the wavelength of the "coronal", M1 transition $4f\\ ^2\\mathrm{F}_{5/2}^o~-~^2\\mathrm{F}_{7/2}^o$ in Ag-like ions. The transition between these two fine structure levels, which makes up the ground term for $Z \\ge 62$ in the isoelectronic sequence, has recently been observed in Yb$^{23+}$ and W$^{27+}$, where the latter could be of great importance for fusion plasma diagnostics. We present recommended values for all members of the sequence between $Z = 50$ and $94$, which are supported by excellent agreement with values from recent experiments. The importance of including core-valence correlation with the $n=3$ shell in the theoretical model is emphasized. The results show close to spectroscopic accuracy for these forbidden lines.

  13. The Near-Infrared Coronal Line Spectrum of 54 Nearby Active Galactic Nuclei

    CERN Document Server

    Rodríguez-Ardila, A; Portilla, J G; Tejeiro, J M

    2011-01-01

    (Abridge) The relationship between coronal line (CL) emission and nuclear activity in active galactic nuclei (AGNs) is analyzed, for the first time, based on NIR spectra. The 8 CLs studied, of Si, S, Fe, Al and Ca elements and corresponding to ionization potentials (IP) in the range 125-450 eV, are detected in 67% (36 AGNs) of the sample. The four most frequent CLs - [SiVI] 19630\\AA, [SVIII] 9913\\AA, [SIX] 12520\\AA\\ and [SiX] 14320\\AA, - display a narrow range in luminosity, with most lines located in the interval logL 39-40 erg/s. We found that the non-detection is largely associated with either a lost of spatial resolution or increasing object distance. Yet, there are AGNs where the lack of CLs may be genuine and reflect an AGN ionising continuum lacking photons below a few keV. The FWHM of the lines profiles increases with increasing IP up to energies around 300 eV, where a maximum in the FWHM is reached. For higher IP lines, the FWHM remains nearly constant or decreases with increasing IP. We ascribe this...

  14. Influence of remaining coronal structure and finish line on the fracture strength of roots restored with metallic posts.

    Science.gov (United States)

    Carlini-Jr, Bruno; Cecchin, Doglas; Pereira, Gisele Damiana da Silveira; Paulillo, Luis Alexandre Maffei Sartini

    2011-01-01

    The purpose of this study was to evaluate the fracture strength of roots that were prosthetically restored with metallic posts with or without any remaining coronal structure and with different finish lines. Sixty bovine incisors were sectioned below the cementoenamel junction, endodontically treated, and randomly divided into six experimental groups (n = 10) containing teeth with or without any remaining coronal structure, and with a beveled shoulder, a bevel, or a shoulder finish line design. The metallic posts were luted with dual-cured resin cement. The cores were made with composite resin, and metal crowns were cemented with zinc phosphate cement. The specimens were subjected to a tangential compressive load (135º angle) at a crosshead speed of 0.5 mm/min until failure, using a universal testing machine. The fracture strength data were analyzed using the ANOVA and LSMeans (least square means) tests (α= 0.05). The data indicated that the teeth with 2 mm of remaining coronal structure showed the highest fracture strength values when compared with the teeth without any remaining structure (p finish line designs, the highest fracture strength values were obtained for the beveled shoulder, followed by the bevel and then by the shoulder designs (p < 0.05). It may be concluded that, to increase fracture strength, a beveled shoulder and 2 mm of remaining coronal structure are the ideal conditions.

  15. Influence of remaining coronal structure and finish line on the fracture strength of roots restored with metallic posts

    Directory of Open Access Journals (Sweden)

    Bruno Carlini-Jr

    2011-08-01

    Full Text Available The purpose of this study was to evaluate the fracture strength of roots that were prosthetically restored with metallic posts with or without any remaining coronal structure and with different finish lines. Sixty bovine incisors were sectioned below the cementoenamel junction, endodontically treated, and randomly divided into six experimental groups (n = 10 containing teeth with or without any remaining coronal structure, and with a beveled shoulder, a bevel, or a shoulder finish line design. The metallic posts were luted with dual-cured resin cement. The cores were made with composite resin, and metal crowns were cemented with zinc phosphate cement. The specimens were subjected to a tangential compressive load (135º angle at a crosshead speed of 0.5 mm/min until failure, using a universal testing machine. The fracture strength data were analyzed using the ANOVA and LSMeans (least square means tests (α= 0.05. The data indicated that the teeth with 2 mm of remaining coronal structure showed the highest fracture strength values when compared with the teeth without any remaining structure (p < 0.05. As to the different finish line designs, the highest fracture strength values were obtained for the beveled shoulder, followed by the bevel and then by the shoulder designs (p < 0.05. It may be concluded that, to increase fracture strength, a beveled shoulder and 2 mm of remaining coronal structure are the ideal conditions.

  16. Coronal mass ejection-related particle acceleration regions during a simple eruptive event

    Science.gov (United States)

    Salas-Matamoros, Carolina; Klein, Karl-Ludwig; Rouillard, Alexis P.

    2016-05-01

    An intriguing feature of many solar energetic particle (SEP) events is the detection of particles over a very extended range of longitudes in the heliosphere. This may be due to peculiarities of the magnetic field in the corona, to a broad accelerator, to cross-field transport of the particles, or to a combination of these processes. The eruptive flare on 26 April 2008 provided an opportunity to study relevant processes under particularly favourable conditions since it occurred in a very quiet solar and interplanetary environment. This enabled us to investigate the physical link between a single well-identified coronal mass ejection (CME), electron acceleration as traced by radio emission, and the production of SEPs. We conduct a detailed analysis, which combines radio observations (Nançay Radio Heliograph and Nançay Decametre Array, Wind/Waves spectrograph) with remote-sensing observations of the corona in extreme ultraviolet (EUV) and white light, as well as in situ measurements of energetic particles near 1AU (SoHO and STEREO spacecraft). By combining images taken from multiple vantage points, we were able to derive the time-dependent evolution of the 3D pressure front that was developing around the erupting CME. Magnetic reconnection in the post-CME current sheet accelerated electrons, which remained confined in closed magnetic fields in the corona, while the acceleration of escaping particles can be attributed to the pressure front ahead of the expanding CME. The CME accelerated electrons remotely from the parent active region, owing to the interaction of its laterally expanding flank, which was traced by an EUV wave, with the ambient corona. SEPs detected at one STEREO spacecraft and SoHO were accelerated later, when the frontal shock of the CME intercepted the spacecraft-connected interplanetary magnetic field line. The injection regions into the heliosphere inferred from the radio and SEP observations are separated in longitude by about 140°. The

  17. TWO-DIMENSIONAL CELLULAR AUTOMATON MODEL FOR THE EVOLUTION OF ACTIVE REGION CORONAL PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    López Fuentes, Marcelo [Instituto de Astronomía y Física del Espacio, CONICET-UBA, CC. 67, Suc. 28, 1428 Buenos Aires (Argentina); Klimchuk, James A., E-mail: lopezf@iafe.uba.ar [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States)

    2015-02-01

    We study a two-dimensional cellular automaton (CA) model for the evolution of coronal loop plasmas. The model is based on the idea that coronal loops are made of elementary magnetic strands that are tangled and stressed by the displacement of their footpoints by photospheric motions. The magnetic stress accumulated between neighbor strands is released in sudden reconnection events or nanoflares that heat the plasma. We combine the CA model with the Enthalpy Based Thermal Evolution of Loops model to compute the response of the plasma to the heating events. Using the known response of the X-Ray Telescope on board Hinode, we also obtain synthetic data. The model obeys easy-to-understand scaling laws relating the output (nanoflare energy, temperature, density, intensity) to the input parameters (field strength, strand length, critical misalignment angle). The nanoflares have a power-law distribution with a universal slope of –2.5, independent of the input parameters. The repetition frequency of nanoflares, expressed in terms of the plasma cooling time, increases with strand length. We discuss the implications of our results for the problem of heating and evolution of active region coronal plasmas.

  18. Evidence for Power Law in the Spectrum of the Coronal Ly-alpha Line

    Science.gov (United States)

    Telloni, Daniele; Antonucci, Ester; Bruno, Roberto; D'Amicis, Raffaella

    Long time series of the intensity of the hydrogen Lyα line revealed the existence of f-2 power spectra in the corona at low and mid latitudes and very close to the Sun, at 1.7 solar radii. These observations are performed with the UltraViolet Coronagraph Spectrometer (UVCS) on board the Solar and Heliospheric Observatory (SoHO). A preliminary analysis indicates that this scaling extends for more than a decade and terminates at higher frequencies with a flat spectrum indicating the presence of white-noise fluctuations. The frequency corresponding to the knee which separates these two different spectral regimes moves to lower and lower values for observations performed at higher and higher heliographic latitudes. Low-frequency power spectra with a f-2 dependence may be due rapid changes (jumps) in the time series. If these coherent structures are removed from the time series, hydrogen coronal intensity power spectra seem to show a power law following the f-1 scaling which would suggest that 1/f interplanetary noise originates in corona.

  19. TRANSITION-REGION/CORONAL SIGNATURES AND MAGNETIC SETTING OF SUNSPOT PENUMBRAL JETS: HINODE (SOT/FG), Hi-C, AND SDO/AIA OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Sanjiv K.; Moore, Ronald L.; Winebarger, Amy R. [NASA Marshall Space Flight Center, Mail Code ZP 13, Huntsville, AL 35812 (United States); Alpert, Shane E., E-mail: sanjiv.k.tiwari@nasa.gov [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)

    2016-01-10

    Penumbral microjets (PJs) are transient narrow bright features in the chromosphere of sunspot penumbrae, first characterized by Katsukawa et al. using the Ca ii H-line filter on Hinode's Solar Optical Telescope (SOT). It was proposed that the PJs form as a result of reconnection between two magnetic components of penumbrae (spines and interspines), and that they could contribute to the transition region (TR) and coronal heating above sunspot penumbrae. We propose a modified picture of formation of PJs based on recent results on the internal structure of sunspot penumbral filaments. Using data of a sunspot from Hinode/SOT, High Resolution Coronal Imager, and different passbands of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we examine whether PJs have signatures in the TR and corona. We find hardly any discernible signature of normal PJs in any AIA passbands, except for a few of them showing up in the 1600 Å images. However, we discovered exceptionally stronger jets with similar lifetimes but bigger sizes (up to 600 km wide) occurring repeatedly in a few locations in the penumbra, where evidence of patches of opposite-polarity fields in the tails of some penumbral filaments is seen in Stokes-V images. These tail PJs do display signatures in the TR. Whether they have any coronal-temperature plasma is unclear. We infer that none of the PJs, including the tail PJs, directly heat the corona in active regions significantly, but any penumbral jet might drive some coronal heating indirectly via the generation of Alfvén waves and/or braiding of the coronal field.

  20. Realistic Modeling of Fast MHD Wave Trains in Coronal Active Regions

    Science.gov (United States)

    Ofman, Leon; Sun, Xudong

    2017-08-01

    Motivated by recent SDO/AIA observations we have developed realistic modeling of quasi-periodic, fast-mode propagating MHD wave trains (QFPs) using 3D MHD model initiated with potential magnetic field extrapolated from the solar coronal boundary. Localized quasi-periodic pulsations associated with C-class flares that drive the waves (as deduced from observations) are modeled with transverse periodic displacement of magnetic field at the lower coronal boundary. The modeled propagating speed and the form of the wave expansions matches the observed fast MHD waves speed >1000 km/s and topology. We study the parametric dependence of the amplitude, propagation, and damping of the waves for a range of key model parameters, such as the background temperature, density, and the location of the flaring site within the active region. We investigate the interaction of multiple QFP wave trains excited by adjacent flaring sources. We use the model results to synthesize EUV intensities in multiple AIA channels and obtain the model parameters that best reproduce the properties of observed QFPs, such as the recent DEM analysis. We discuss the implications of our modeling results for the seismological application of QFPs for the diagnostic of the active region field, flare pulsations, end estimate the energy flux carried by the waves.

  1. Long Fading Mid-Infrared Emission in Transient Coronal Line Emitters: Dust Echo of Tidal Disruption Flare

    OpenAIRE

    Dou, Liming; Wang, Ting-Gui; Jiang, Ning; Yang, Chenwei; Lyu, Jianwei; Zhou, Hongyan

    2016-01-01

    The sporadic accretion following the tidal disruption of a star by a super-massive black hole (TDE) leads to a bright UV and soft X-ray flare in the galactic nucleus. The gas and dust surrounding the black hole responses to such a flare with an echo in emission lines and infrared emission. In this paper, we report the detection of long fading mid-IR emission lasting up to 14 years after the flare in four TDE candidates with transient coronal lines using the WISE public data release. We estima...

  2. Segmentation of Coronal Holes Using Active Contours Without Edges

    CERN Document Server

    Boucheron, L E; McAteer, R T J

    2016-01-01

    An application of active contours without edges is presented as an efficient and effective means of extracting and characterizing coronal holes. Coronal holes are regions of low-density plasma on the Sun with open magnetic field lines. As the source of the fast solar wind, the detection and characterization of these regions is important for both testing theories of their formation and evolution and from a space weather perspective. Coronal holes are detected in full disk extreme ultraviolet (EUV) images of the corona obtained with the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA). The proposed method detects coronal boundaries without determining any fixed intensity value in the data. Instead, the active contour segmentation employs an energy-minimization in which coronal holes are assumed to have more homogeneous intensities than surrounding active regions and quiet Sun. The segmented coronal holes tend to correspond to unipolar magnetic regions, are consistent with concurrent solar wind ...

  3. BAT AGN Spectroscopic Survey - IV: Near-Infrared Coronal Lines, Hidden Broad Lines, and Correlation with Hard X-ray Emission

    Science.gov (United States)

    Lamperti, Isabella; Koss, Michael; Trakhtenbrot, Benny; Schawinski, Kevin; Ricci, Claudio; Oh, Kyuseok; Landt, Hermine; Riffel, Rogério; Rodríguez-Ardila, Alberto; Gehrels, Neil; Harrison, Fiona; Masetti, Nicola; Mushotzky, Richard; Treister, Ezequiel; Ueda, Yoshihiro; Veilleux, Sylvain

    2017-01-01

    We provide a comprehensive census of the near-Infrared (NIR, 0.8-2.4 μm) spectroscopic properties of 102 nearby (z X-ray band (14-195 keV) from the Swift-Burst Alert Telescope (BAT) survey. With the launch of the James Webb Space Telescope this regime is of increasing importance for dusty and obscured AGN surveys. We measure black hole masses in 68% (69/102) of the sample using broad emission lines (34/102) and/or the velocity dispersion of the Ca II triplet or the CO band-heads (46/102). We find that emission line diagnostics in the NIR are ineffective at identifying bright, nearby AGN galaxies because ([Fe II] 1.257μm/Paβ and H2 2.12μm/Brγ) identify only 25% (25/102) as AGN with significant overlap with star forming galaxies and only 20% of Seyfert 2 have detected coronal lines (6/30). We measure the coronal line emission in Seyfert 2 to be weaker than in Seyfert 1 of the same bolometric luminosity suggesting obscuration by the nuclear torus. We find that the correlation between the hard X-ray and the [Fe II] coronal line luminosity is significantly better than with the [O III] λ5007 luminosity. Finally, we find 3/29 galaxies (10%) that are optically classified as Seyfert 2 show broad emission lines in the NIR. These AGN have the lowest levels of obscuration among the Seyfert 2s in our sample (log NH < 22.43 cm-2), and all show signs of galaxy-scale interactions or mergers suggesting that the optical broad emission lines are obscured by host galaxy dust.

  4. ARE DECAYING MAGNETIC FIELDS ABOVE ACTIVE REGIONS RELATED TO CORONAL MASS EJECTION ONSET?

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, J. [Department of Astronomy, University of California, Berkeley, CA 94720-7450 (United States); Welsch, B. T.; Li, Y. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States)

    2012-10-10

    Coronal mass ejections (CMEs) are powered by magnetic energy stored in non-potential (current-carrying) coronal magnetic fields, with the pre-CME field in balance between outward magnetic pressure of the proto-ejecta and inward magnetic tension from overlying fields that confine the proto-ejecta. In studies of global potential (current-free) models of coronal magnetic fields-Potential Field Source Surface (PFSS) models-it has been reported that model field strengths above flare sites tend to be weaker when CMEs occur than when eruptions fail to occur. This suggests that potential field models might be useful to quantify magnetic confinement. One straightforward implication of this idea is that a decrease in model field strength overlying a possible eruption site should correspond to diminished confinement, implying an eruption is more likely. We have searched for such an effect by post facto investigation of the time evolution of model field strengths above a sample of 10 eruption sites. To check if the strengths of overlying fields were relevant only in relatively slow CMEs, we included both slow and fast CMEs in our sample. In most events we study, we find no statistically significant evolution in either (1) the rate of magnetic field decay with height, (2) the strength of overlying magnetic fields near 50 Mm, or (3) the ratio of fluxes at low and high altitudes (below 1.1 R{sub Sun }, and between 1.1 and 1.5 R{sub Sun }, respectively). We did observe a tendency for overlying field strengths and overlying flux to increase slightly, and their rates of decay with height to become slightly more gradual, consistent with increased confinement. The fact that CMEs occur regardless of whether the parameters we use to quantify confinement are increasing or decreasing suggests that either (1) the parameters that we derive from PFSS models do not accurately characterize the actual large-scale field in CME source regions, (2) systematic evolution in the large-scale magnetic

  5. Coronal mass ejections from the same active region cluster: Two different perspectives

    CERN Document Server

    Cremades, Hebe; Schmieder, Brigitte; Crescitelli, Alberto Maximiliano

    2015-01-01

    The cluster formed by active regions (ARs) NOAA 11121 and 11123, approximately located on the solar central meridian on 11 November 2010, is of great scientific interest. This complex was the site of violent flux emergence and the source of a series of Earth-directed events on the same day. The onset of the events was nearly simultaneously observed by the Atmospheric Imaging Assembly (AIA) telescope aboard the Solar Dynamics Observatory (SDO) and the Extreme-Ultraviolet Imagers (EUVI) on the Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI) suite of telescopes onboard the Solar-Terrestrial Relations Observatory (STEREO) twin spacecraft. The progression of these events in the low corona was tracked by the Large Angle Spectroscopic Coronagraphs (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) and the SECCHI/COR coronagraphs on STEREO. SDO and SOHO imagers provided data from the Earth's perspective, whilst the STEREO twin instruments procured images from the orthogonal directions....

  6. Using Coronal Loops to Reconstruct the Magnetic Field of an Active Region Before and After a Major Flare

    CERN Document Server

    Malanushenko, A; DeRosa, M L; Wheatland, M S

    2013-01-01

    The shapes of solar coronal loops are sensitive to the presence of electrical currents that are the carriers of the nonpotential energy available for impulsive activity. We use this information in a new method for modeling the coronal magnetic field of AR 11158 as a nonlinear force-free field (NLFFF). The observations used are coronal images around time of major flare activity on 2011/02/15, together with the surface line-of-sight magnetic field measurements. The data are from the Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly (HMI and AIA, respectively) onboard the Solar Dynamics Observatory (SDO). The model fields are constrained to approximate the coronal loop configurations as closely as possible, while also subject to the force-free constraints. The method does not use transverse photospheric magnetic field components as input, and is thereby distinct from methods for modeling NLFFFs based on photospheric vector magnetograms. We validate the method using observations of AR 11158 at a t...

  7. Coronal Holes

    Directory of Open Access Journals (Sweden)

    Steven R. Cranmer

    2009-09-01

    Full Text Available Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations, and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are established in the extended corona. For example, the importance of kinetic plasma physics and turbulence in coronal holes has been affirmed by surprising measurements from the UVCS instrument on SOHO that heavy ions are heated to hundreds of times the temperatures of protons and electrons. These observations point to specific kinds of collisionless Alfvén wave damping (i.e., ion cyclotron resonance, but complete theoretical models do not yet exist. Despite our incomplete knowledge of the complex multi-scale plasma physics, however, much progress has been made toward the goal of understanding the mechanisms ultimately responsible for producing the observed properties of coronal holes.

  8. Coronal lines and dust formation in SN 2005ip: Not the brightest, but the hottest Type IIn supernova

    CERN Document Server

    Smith, Nathan; Chornock, Ryan; Filippenko, Alexei V; Wang, Xiaofeng; Li, Weidong; Ganeshalingam, Mohan; Foley, Ryan J; Rex, Jacob; Steele, Thea N

    2008-01-01

    We present optical photometry and spectroscopy of SN2005ip for the first 3yr after discovery, showing an underlying Type II-L SN interacting with a steady wind to yield an unusual Type IIn spectrum. For the first 160d, it had a fast linear decline from a modest peak absolute magnitude of about -17.4 (unfiltered), followed by a plateau at roughly -14.8 mag for more than 2yr. Initially having a normal broad-lined spectrum superposed with sparse narrow lines from the photoionized circumstellar medium (CSM), it quickly developed signs of strong CSM interaction with a spectrum similar to that of SN1988Z. As the underlying SN II-L faded, SN2005ip exhibited a rich high-ionization spectrum with a dense forest of narrow coronal lines, unprecedented among SNe but reminiscent of some active galactic nuclei. The line-profile evolution of SN 2005ip confirms that dust formation caused its recently reported infrared excess, but these lines reveal that it is the first SN to show clear evidence for dust in both the fast SN ej...

  9. Supra-acetabular line is better than supra-iliac line for coronal balance referencing-a study of perioperative whole spine X-rays in degenerative lumbar scoliosis and ankylosing spondylitis patients.

    Science.gov (United States)

    Hey, Hwee Weng Dennis; Kim, Cheung-Kue; Lee, Won-Gyu; Juh, Hyung-Suk; Kim, Ki-Tack

    2017-06-20

    The aim of spinal deformity correction is to restore the spine's functional alignment by balancing it in both the sagittal and coronal planes. Regardless of posture, the ideal coronal profile is straight, and therefore readily assessable. This study compares two radiological methods to determine which better predicts postoperative standing coronal balance. We conducted a single-center, radiographic comparative study between 2011 and 2015. A total of 199 patients with a mean age of 55.1 years were studied. Ninety patients with degenerative lumbar scoliosis (DLS) and 109 ankylosing spondylitis (AS) were treated with posterior surgery during this period. Baseline clinical and radiographic parameters (sagittal and coronal) were recorded. Comparison was performed between the new supra-acetabular line (central sacral vertical line [CSVL1]) and conventional supra-iliac line (CSVL2) perpendicular methods of coronal balance assessment. These methods were also compared with the gold standard standing C7 plumb line. Each patient underwent standardized operative procedures and had perioperative spine X-rays obtained for assessment of spinal balance. Adjusted multivariate analysis was used to determine predictors of coronal balance. Significant differences in baseline characteristics (age, gender, and radiographic parameters) were found between patients with DLS and AS. CSVL1, CSVL2, and C7 plumb line differed in all the perioperative measurements. These three radiological methods showed a mean right coronal imbalance for both diagnoses in all pre-, intra-, and postoperative radiographs. The magnitude of imbalance was the greatest for CSVL2 followed by CSVL1 and subsequently the C7 plumb line. A larger discrepancy between CSVL and C7 plumb line measurements intraoperatively than those postoperatively suggests a postural effect on these parameters, which is greater for CSVL2. Multivariate analysis identified that in DLS, the preoperative C7 plumb line was predictive of its

  10. Coronal Holes

    CERN Document Server

    Cranmer, Steven R

    2009-01-01

    Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations), and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are establish...

  11. Relating magnetic reconnection to coronal heating.

    Science.gov (United States)

    Longcope, D W; Tarr, L A

    2015-05-28

    It is clear that the solar corona is being heated and that coronal magnetic fields undergo reconnection all the time. Here we attempt to show that these two facts are related--i.e. coronal reconnection generates heat. This attempt must address the fact that topological change of field lines does not automatically generate heat. We present one case of flux emergence where we have measured the rate of coronal magnetic reconnection and the rate of energy dissipation in the corona. The ratio of these two, [Formula: see text], is a current comparable to the amount of current expected to flow along the boundary separating the emerged flux from the pre-existing flux overlying it. We can generalize this relation to the overall corona in quiet Sun or in active regions. Doing so yields estimates for the contribution to coronal heating from magnetic reconnection. These estimated rates are comparable to the amount required to maintain the corona at its observed temperature.

  12. Segmentation of Coronal Holes Using Active Contours Without Edges

    Science.gov (United States)

    Boucheron, L. E.; Valluri, M.; McAteer, R. T. J.

    2016-10-01

    An application of active contours without edges is presented as an efficient and effective means of extracting and characterizing coronal holes. Coronal holes are regions of low-density plasma on the Sun with open magnetic field lines. The detection and characterization of these regions is important for testing theories of their formation and evolution, and also from a space weather perspective because they are the source of the fast solar wind. Coronal holes are detected in full-disk extreme ultraviolet (EUV) images of the corona obtained with the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA). The proposed method detects coronal boundaries without determining any fixed intensity value in the data. Instead, the active contour segmentation employs an energy-minimization in which coronal holes are assumed to have more homogeneous intensities than the surrounding active regions and quiet Sun. The segmented coronal holes tend to correspond to unipolar magnetic regions, are consistent with concurrent solar wind observations, and qualitatively match the coronal holes segmented by other methods. The means to identify a coronal hole without specifying a final intensity threshold may allow this algorithm to be more robust across multiple datasets, regardless of data type, resolution, and quality.

  13. Segmentation of Coronal Holes Using Active Contours Without Edges

    Science.gov (United States)

    Boucheron, L. E.; Valluri, M.; McAteer, R. T. J.

    2016-09-01

    An application of active contours without edges is presented as an efficient and effective means of extracting and characterizing coronal holes. Coronal holes are regions of low-density plasma on the Sun with open magnetic field lines. The detection and characterization of these regions is important for testing theories of their formation and evolution, and also from a space weather perspective because they are the source of the fast solar wind. Coronal holes are detected in full-disk extreme ultraviolet (EUV) images of the corona obtained with the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA). The proposed method detects coronal boundaries without determining any fixed intensity value in the data. Instead, the active contour segmentation employs an energy-minimization in which coronal holes are assumed to have more homogeneous intensities than the surrounding active regions and quiet Sun. The segmented coronal holes tend to correspond to unipolar magnetic regions, are consistent with concurrent solar wind observations, and qualitatively match the coronal holes segmented by other methods. The means to identify a coronal hole without specifying a final intensity threshold may allow this algorithm to be more robust across multiple datasets, regardless of data type, resolution, and quality.

  14. Transition-Region/Coronal Signatures and Magnetic Setting of Sunspot Penumbral Jets: {\\it Hinode} (SOT/FG), Hi-C and {\\it SDO}/AIA Observations

    CERN Document Server

    Tiwari, Sanjiv K; Winebarger, Amy R; Alpert, Shane E

    2015-01-01

    Penumbral microjets (PJs) are transient narrow bright features in the chromosphere of sunspot penumbrae, first characterized by Katsukawa et al (2007) using the \\CaII\\ H-line filter on {\\it Hinode}'s Solar Optical Telescope (SOT). It was proposed that the PJs form as a result of reconnection between two magnetic components of penumbra (spines and interspines), and that they could contribute to the transition region (TR) and coronal heating above sunspot penumbrae. We propose a modified picture of formation of PJs based on recent results on internal structure of sunspot penumbral filaments. Using data of a sunspot from {\\it Hinode}/SOT, High Resolution Coronal Imager, and different passbands of the Atmospheric Imaging Assembly (AIA) onboard the {\\it Solar Dynamics Observatory}, we examine whether PJs have signatures in the TR and corona. We find hardly any discernible signature of normal PJs in any AIA passbands, except a few of them showing up in the 1600 \\AA\\ images. However, we discovered exceptionally stro...

  15. Giant Broad Line Regions in Dwarf Seyferts

    CERN Document Server

    Devereux, Nick

    2015-01-01

    High angular resolution spectroscopy obtained with the Hubble Space Telescope (HST) has revealed a remarkable population of galaxies hosting dwarf Seyfert nuclei with an unusually large broad-line region (BLR). These objects are remarkable for two reasons. Firstly, the size of the BLR can, in some cases, rival those seen in the most luminous quasars. Secondly, the size of the BLR is not correlated with the central continuum luminosity, an observation that distinguishes them from their reverberating counterparts. Collectively, these early results suggest that non-reverberating dwarf Seyferts are a heterogeneous group and not simply scaled versions of each other. Careful inspection reveals broad H Balmer emission lines with single peaks, double peaks, and a combination of the two, suggesting that the broad emission lines are produced in kinematically distinct regions centered on the black hole (BH). Because the gravitational field strength is already known for these objects, by virtue of knowing their BH mass, ...

  16. On the Intermediate Line Region in AGNs

    Directory of Open Access Journals (Sweden)

    Tek P. Adhikari

    2017-09-01

    Full Text Available In this paper we explore the intermediate line region (ILR by using the photoionisation simulations of the gas clouds present at different radial distances from the center, corresponding to the locations from BLR out to NLR in four types of AGNs. We let for the presence of dust whenever conditions allow for dust existence. All spectral shapes are taken from the recent multi-wavelength campaigns. The cloud density decreases with distance as a power law. We found that the slope of the power law density profile does not affect the line emissivity radial profiles of major emission lines: Hβ, He II, Mg II, C III, and O III. When the density of the cloud at the sublimation radius is as high as 1011.5 cm−3, the ILR should clearly be seen in the observations independently of the shape of the illuminating radiation. Moreover, our result is valid for low ionization nuclear emission regions of active galaxies.

  17. Long Fading Mid-infrared Emission in Transient Coronal Line Emitters: Dust Echo of a Tidal Disruption Flare

    Science.gov (United States)

    Dou, Liming; Wang, Ting-gui; Jiang, Ning; Yang, Chenwei; Lyu, Jianwei; Zhou, Hongyan

    2016-12-01

    The sporadic accretion following the tidal disruption of a star by a super-massive black hole (TDE) leads to a bright UV and soft X-ray flare in the galactic nucleus. The gas and dust surrounding the black hole responses to such a flare with an echo in emission lines and infrared emission. In this paper, we report the detection of long fading mid-IR emission lasting up to 14 years after the flare in four TDE candidates with transient coronal lines using the WISE public data release. We estimate that the reprocessed mid-IR luminosities are in the range between 4× {10}42 and 2× {10}43 erg s-1 and dust temperature in the range of 570-800 K when WISE first detected these sources three to five years after the flare. Both luminosity and dust temperature decrease with time. We interpret the mid-IR emission as the infrared echo of the tidal disruption flare. We estimate the UV luminosity at the peak flare to be 1 to 30 times 1044 erg s-1 and that for warm dust masses to be in the range of 0.05-1.3 {M}⊙ within a few parsecs. Our results suggest that the mid-infrared echo is a general signature of TDE in the gas-rich environment.

  18. Long Fading Mid-Infrared Emission in Transient Coronal Line Emitters: Dust Echo of Tidal Disruption Flare

    CERN Document Server

    Dou, Liming; Jiang, Ning; Yang, Chenwei; Lyu, Jianwei; Zhou, Hongyan

    2016-01-01

    The sporadic accretion followed the tidal disruption of a star by a supermassive black hole leads to a bright UV and soft X-ray flare in the galactic nucleus. The gas and dust surrounding the black hole responses to such a flare with an echo in emission lines and infrared emission. In this paper, we report the detection of long fading mid-IR emission lasting up to 14 years after the flare in four TDE candidates with transient coronal lines using the WISE public data release. We estimate reprocessed mid-IR luminosities are in the range between $4\\times 10^{42}$ to $2\\times 10^{43}$ erg~s$^{-1}$ and dust temperature in the range of 570-800K when WISE first detected these sources 3-5 years after the flare. Both luminosity and dust temperature decreases with time. We interpret the mid-IR emission as the infrared echo of the tidal disruption flare. We estimate the UV luminosity at the peak flare to be one to thirty times of $10^{44}$ erg~s$^{-1}$ and warm dust mass in the range of 0.05 to 2.2 M_{\\sun} within a few...

  19. 2D cellular automaton model for the evolution of active region coronal plasmas

    CERN Document Server

    Fuentes, Marcelo López

    2016-01-01

    We study a 2D cellular automaton (CA) model for the evolution of coronal loop plasmas. The model is based on the idea that coronal loops are made of elementary magnetic strands that are tangled and stressed by the displacement of their footpoints by photospheric motions. The magnetic stress accumulated between neighbor strands is released in sudden reconnection events or nanoflares that heat the plasma. We combine the CA model with the Enthalpy Based Thermal Evolution of Loops (EBTEL) model to compute the response of the plasma to the heating events. Using the known response of the XRT telescope on board Hinode we also obtain synthetic data. The model obeys easy to understand scaling laws relating the output (nanoflare energy, temperature, density, intensity) to the input parameters (field strength, strand length, critical misalignment angle). The nanoflares have a power-law distribution with a universal slope of -2.5, independent of the input parameters. The repetition frequency of nanoflares, expressed in t...

  20. Coronal and Intraradicular Appearances Affect Radiographic Perception of the Periapical Region.

    Science.gov (United States)

    Strong, Julie W; Woodmansey, Karl F; Khademi, John A; Hatton, John F

    2017-05-01

    The influence of the radiographic appearances of the coronal and intraradicular areas on periapical radiographic interpretation has been minimally evaluated in dentistry and endodontics. The purpose of this study was to evaluate the effects that the coronal and intraradicular radiographic appearance has on endodontists' radiographic interpretations of periapical areas. In a split-group study design using an online survey format, 2 pairs of digital periapical radiographic images were evaluated by 2 groups (A and B) of endodontist readers for the presence of a periapical finding. The images in each pair were identical except that 1 image of each image pairs had coronal restorations and/or root canal fillings altered using Adobe Photoshop software (Adobe Systems, San Jose, CA). The periapical areas were not altered. Using a 5-point Likert scale, the endodontist readers were asked to "Please evaluate the periapical area(s)." A Mann-Whitney U test was used to statistically evaluate the difference between the groups. Significance was set at P < .01. There were 417 readers in group A and 442 readers in group B. The Mann-Whitney U test showed a significant difference in the responses between the groups for both image pairs (P < .01). Because the periapical areas of the image pairs were unaltered, the differing coronal and intraradicular areas of the radiographs appear to have influenced endodontists' interpretations of the periapical areas. This finding has implications for all radiographic outcome assessments. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Intrinsic Instability of Coronal Streamers

    CERN Document Server

    Chen, Y; Song, H Q; Shi, Q Q; Feng, S W; Xia, L D; 10.1088/0004-637X/691/2/1936

    2009-01-01

    Plasma blobs are observed to be weak density enhancements as radially stretched structures emerging from the cusps of quiescent coronal streamers. In this paper, it is suggested that the formation of blobs is a consequence of an intrinsic instability of coronal streamers occurring at a very localized region around the cusp. The evolutionary process of the instability, as revealed in our calculations, can be described as follows: (1) through the localized cusp region where the field is too weak to sustain the confinement, plasmas expand and stretch the closed field lines radially outward as a result of the freezing-in effect of plasma-magnetic field coupling; the expansion brings a strong velocity gradient into the slow wind regime providing the free energy necessary for the onset of a subsequent magnetohydrodynamic instability; (2) the instability manifests itself mainly as mixed streaming sausage-kink modes, the former results in pinches of elongated magnetic loops to provoke reconnections at one or many loc...

  2. Coronal dynamics

    Science.gov (United States)

    Nakariakov, V. M.

    2007-07-01

    The lectures present the foundation of solar coronal physics with the main emphasis on the MHD theory and on wave and oscillatory phenomena. We discuss major challenges of the modern coronal physics; the main plasma structures observed in the corona and the conditions for their equilibrium; phenomenology of large scale long period oscillatory coronal phenomena and their theoretical modelling as MHD waves. The possibility of the remote diagnostics of coronal plasmas with the use of MHD oscillations is demonstrated.

  3. Giant Broad Line Regions in Dwarf Seyferts

    Indian Academy of Sciences (India)

    Nick Devereux

    2015-12-01

    High angular resolution spectroscopy obtained with the Hubble Space Telescope (HST) has revealed a remarkable population of galaxies hosting dwarf Seyfert nuclei with an unusually large broad-line region (BLR). These objects are remarkable for two reasons. Firstly, the size of the BLR can, in some cases, rival those seen in the most luminous quasars. Secondly, the size of the BLR is not correlated with the central continuum luminosity, an observation that distinguishes them from their reverberating counterparts. Collectively, these early results suggest that non-reverberating dwarf Seyferts are a heterogeneous group, and not simply scaled versions of each other. Careful inspection reveals broad H Balmer emission lines with single peaks, double peaks, and a combination of the two, suggesting that the broad emission lines are produced in kinematically distinct regions centered on the black hole (BH). Because the gravitational field strength is already known for these objects, by virtue of knowing their BH mass, the relationship between velocity and radius may be established, given a kinematic model for the BLR gas. In this way, one can determine the inner and outer radii of the BLRs by modeling the shape of their broad emission line profiles. In the present contribution, high quality spectra obtained with the Space Telescope Imaging Spectrograph (STIS) are used to constrain the size of the BLR in the dwarf Seyfert nuclei of M81, NGC 3998, NGC 4203, NGC 3227, NGC 4051 and NGC 3516.

  4. Radio Recombination Lines in Galactic HII Regions

    CERN Document Server

    Quireza, C; Bania, T M; Rood, R T; Balser, Dana S.; Quireza, Cintia; Rood, Robert T.

    2006-01-01

    We report radio recombination line (RRL) and continuum observations of a sample of 106 Galactic HII regions made with the NRAO 140 Foot radio telescope in Green Bank, WV. We believe this to be the most sensitive RRL survey ever made for a sample this large. Most of our source integration times range between 6 and 90 hours which yield typical r.m.s. noise levels of 1.0--3.5 milliKelvins. Our data result from two different experiments performed, calibrated, and analyzed in similar ways. A CII survey was made at 3.5 cm wavelength to obtain accurate measurements of carbon radio recombination lines. When combined with atomic (CI) and molecular (CO) data, these measurements will constrain the composition, structure, kinematics, and physical properties of the photodissociation regions that lie on the edges of HII regions. A second survey was made at 3.5 cm wavelength to determine the abundance of 3He in the interstellar medium of the Milky Way. Together with measurements of the 3He+ hyperfine line we get high precis...

  5. Microbiological and serological monitoring in hooded crow (Corvus corone cornix in the Region Lombardia, Italy

    Directory of Open Access Journals (Sweden)

    Guido Grilli

    2010-01-01

    Full Text Available The health status of 276 hooded crows (Corvus corone cornix from various provinces of Lombardy was monitored for three years. Bacteriological examination detected E. coli (76%, Campylobacter jejuni (17%, Salmonella typhimurium (11.6%, Yersinia spp. (6.5%, Clamydophila abortus and C. psittaci (2.6%; from six birds showing severe prostration Pasteurella multocida was isolated. Virological and serological tests were negative for Avian Influenza virus (AIV, West Nile virus (WNV and only three samples were positive for Newcastle disease virus (NDV but only at serology (titre 1:16.

  6. CORONAL HEATING BY THE INTERACTION BETWEEN EMERGING ACTIVE REGIONS AND THE QUIET SUN OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun; Zhang, Bin; Li, Ting; Yang, Shuhong; Zhang, Yuzong; Li, Leping [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Chen, Feng; Peter, Hardi, E-mail: zjun@nao.cas.cn, E-mail: liting@nao.cas.cn, E-mail: shuhongyang@nao.cas.cn, E-mail: yuzong@nao.cas.cn, E-mail: lepingli@nao.cas.cn, E-mail: chen@mps.mpg.de, E-mail: peter@mps.mpg.de [Max-Planck Institute for Solar System Research (MPS), D-37077, Göttingen (Germany)

    2015-02-01

    The question of what heats the solar corona remains one of the most important puzzles in solar physics and astrophysics. Here we report Solar Dynamics Observatory Atmospheric Imaging Assembly observations of coronal heating by the interaction between emerging active regions (EARs) and the surrounding quiet Sun (QS). The EARs continuously interact with the surrounding QS, resulting in dark ribbons which appear at the boundary of the EARs and the QS. The dark ribbons visible in extreme-ultraviolet wavelengths propagate away from the EARs with speeds of a few km s{sup −1}. The regions swept by the dark ribbons are brightening afterward, with the mean temperature increasing by one quarter. The observational findings demonstrate that uninterrupted magnetic reconnection between EARs and the QS occurs. When the EARs develop, the reconnection continues. The dark ribbons may be the track of the interface between the reconnected magnetic fields and the undisturbed QS’s fields. The propagating speed of the dark ribbons reflects the reconnection rate and is consistent with our numerical simulation. A long-term coronal heating which occurs in turn from nearby the EARs to far away from the EARs is proposed.

  7. Magnetic Topology of Coronal Hole Linkages

    Science.gov (United States)

    Titov, V. S.; Mikic, Z.; Linker, J. A.; Lionello, R.; Antiochos, S. K.

    2010-01-01

    In recent work, Antiochos and coworkers argued that the boundary between the open and closed field regions on the Sun can be extremely complex with narrow corridors of open ux connecting seemingly disconnected coronal holes from the main polar holes, and that these corridors may be the sources of the slow solar wind. We examine, in detail, the topology of such magnetic configurations using an analytical source surface model that allows for analysis of the eld with arbitrary resolution. Our analysis reveals three important new results: First, a coronal hole boundary can join stably to the separatrix boundary of a parasitic polarity region. Second, a single parasitic polarity region can produce multiple null points in the corona and, more important, separator lines connecting these points. Such topologies are extremely favorable for magnetic reconnection, because it can now occur over the entire length of the separators rather than being con ned to a small region around the nulls. Finally, the coronal holes are not connected by an open- eld corridor of finite width, but instead are linked by a singular line that coincides with the separatrix footprint of the parasitic polarity. We investigate how the topological features described above evolve in response to motion of the parasitic polarity region. The implications of our results for the sources of the slow solar wind and for coronal and heliospheric observations are discussed.

  8. TIME DEPENDENT NONEQUILIBRIUM IONIZATION OF TRANSITION REGION LINES OBSERVED WITH IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Sykora, Juan; Pontieu, Bart De; Hansteen, Viggo H. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); Gudiksen, Boris, E-mail: j.m.sykora@astro.uio.no [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)

    2016-01-20

    The properties of nonstatistical equilibrium ionization of silicon and oxygen ions are analyzed in this work. We focus on five solar targets (quiet Sun; coronal hole; plage; quiescent active region, AR; and flaring AR) as observed with the Interface Region Imaging Spectrograph (IRIS). IRIS is best suited for this work owing to the high cadence (up to 0.5 s), high spatial resolution (up to 0.″32), and high signal-to-noise ratios for O iv λ1401 and Si iv λ1402. We find that the observed intensity ratio between lines of three times ionized silicon and oxygen ions depends on their total intensity and that this correlation varies depending on the region observed (quiet Sun, coronal holes, plage, or active regions) and on the specific observational objects present (spicules, dynamic loops, jets, microflares, or umbra). In order to interpret the observations, we compare them with synthetic profiles taken from 2D self-consistent radiative MHD simulations of the solar atmosphere, where the statistical equilibrium or nonequilibrium treatment of silicon and oxygen is applied. These synthetic observations show vaguely similar correlations to those in the observations, i.e., between the intensity ratios and their intensities, but only in the nonequilibrium case do we find that (some of) the observations can be reproduced. We conclude that these lines are formed out of statistical equilibrium. We use our time-dependent nonequilibrium ionization simulations to describe the physical mechanisms behind these observed properties.

  9. Photoionisation modelling of the broad line region

    Science.gov (United States)

    King, Anthea

    2016-08-01

    Two of the most fundamental questions regarding the broad line region (BLR) are "what is its structure?" and "how is it moving?" Baldwin et al. (1995) showed that by summing over an ensemble of clouds at differing densities and distances from the ionising source we can easily and naturally produce a spectrum similar to what is observed for AGN. This approach is called the `locally optimally emitting clouds' (LOC) model. This approach can also explain the well-observed stratification of emission lines in the BLR (e.g. Clavel et al. 1991, Peterson et al. 1991, Kollatschny et al. 2001) and `breathing' of BLR with changes in the continuum luminosity (Netzer & Mor 1990, Peterson et al. 2014) and is therefore a generally accepted model of the BLR. However, LOC predictions require some assumptions to be made about the distribution of the clouds within the BLR. By comparing photoionization predictions, for a distribution of cloud properties, with observed spectra we can infer something about the structure of the BLR and distribution of clouds. I use existing reverberation mapping data to constrain the structure of the BLR by observing how individual line strengths and ratios of different lines change in high and low luminosity states. I will present my initial constraints and discuss the challenges associated with the method.

  10. CORONAL MAGNETIC FIELDS DERIVED FROM SIMULTANEOUS MICROWAVE AND EUV OBSERVATIONS AND COMPARISON WITH THE POTENTIAL FIELD MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Miyawaki, Shun; Nozawa, Satoshi [Department of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Iwai, Kazumasa; Shibasaki, Kiyoto [Nobeyama Solar Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Nagano 384-1305 (Japan); Shiota, Daikou, E-mail: shunmi089@gmail.com [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601 (Japan)

    2016-02-10

    We estimated the accuracy of coronal magnetic fields derived from radio observations by comparing them to potential field calculations and the differential emission measure measurements using EUV observations. We derived line-of-sight components of the coronal magnetic field from polarization observations of the thermal bremsstrahlung in the NOAA active region 11150, observed around 3:00 UT on 2011 February 3 using the Nobeyama Radioheliograph at 17 GHz. Because the thermal bremsstrahlung intensity at 17 GHz includes both chromospheric and coronal components, we extracted only the coronal component by measuring the coronal emission measure in EUV observations. In addition, we derived only the radio polarization component of the corona by selecting the region of coronal loops and weak magnetic field strength in the chromosphere along the line of sight. The upper limits of the coronal longitudinal magnetic fields were determined as 100–210 G. We also calculated the coronal longitudinal magnetic fields from the potential field extrapolation using the photospheric magnetic field obtained from the Helioseismic and Magnetic Imager. However, the calculated potential fields were certainly smaller than the observed coronal longitudinal magnetic field. This discrepancy between the potential and the observed magnetic field strengths can be explained consistently by two reasons: (1) the underestimation of the coronal emission measure resulting from the limitation of the temperature range of the EUV observations, and (2) the underestimation of the coronal magnetic field resulting from the potential field assumption.

  11. Coronal Jet Plasma Properties and Acceleration Mechanisms

    Science.gov (United States)

    Farid, Samaiyah; Reeves, Kathy; Savcheva, Antonia; Soto, Natalia

    2017-08-01

    Coronal jets are transient eruptions of plasma typically characterized by aprominent long spire and a bright base, and sometimes accompanied by a small filament. Jets are thought to be produced by magnetic reconnection when small-scale bipolar magnetic fields emerge into an overlying coronal field or move into a locally unipolar region. Coronal jets are commonly divided into two categories: standard jets and blowout jets, and are found in both quiet and active regions. The plasma properties of jets vary across type and location, therefore understanding the underlying acceleration mechanisms are difficult to pin down. In this work, we examine both blow-out and standard jets using high resolution multi-wavelength data. Although reconnection is commonly accepted as the primary acceleration mechanism, we also consider the contribution chromospheric evaporation to jet formation. We use seven coronal channels from SDO/AIA , Hinode/XRT Be-thin and IRIS slit-jaw data. In addition, we separate the Fe-XVIII line from the SDO/94Å channel. We calculate plasma properties including velocity, Alfven speed, and density as a function of wavelength and Differential Emission Measure (DEM). Finally, we explore the magnetic topology of the jets using Coronal Modeling System (CMS) to construct potential and non-linear force free models based on the flux rope insertion method.

  12. Coronal Partings

    CERN Document Server

    Nikulin, Igor F

    2015-01-01

    The basic observational properties of the 'coronal partings'--the special type of the coronal magnetic structures, identified by a comparison of the coronal X-ray images and solar magnetograms--are considered. They represent channels inside the unipolar large-scale magnetic fields, formed by the rows of magnetic arcs directed to the neighboring fields of opposite polarity. The most important characteristics of the partings are revealed. It is found that--from the evolutionary and spatial point of view--the partings can transform to the coronal holes and visa versa. The classes of global, intersecting, and complex partings are identified.

  13. First High-resolution Spectroscopic Observations of an Erupting Prominence Within a Coronal Mass Ejection by the Interface Region Imaging Spectrograph (IRIS)

    CERN Document Server

    Liu, Wei; Vial, Jean-Claude; Title, Alan M; Carlsson, Mats; Uitenbroek, Han; Okamoto, Takenori J; Berger, Thomas E; Antolin, Patrick

    2015-01-01

    Spectroscopic observations of prominence eruptions associated with coronal mass ejections (CMEs), although relatively rare, can provide valuable plasma and 3D geometry diagnostics. We report the first observations by the Interface Region Imaging Spectrograph (IRIS) mission of a spectacular fast CME/prominence eruption associated with an equivalent X1.6 flare on 2014 May 9. The maximum plane-of-sky and Doppler velocities of the eruption are 1200 and 460 km/s, respectively. There are two eruption components separated by ~200 km/s in Doppler velocity: a primary, bright component and a secondary, faint component, suggesting a hollow, rather than solid, cone-shaped distribution of material. The eruption involves a left-handed helical structure undergoing counter-clockwise (viewed top-down) unwinding motion. There is a temporal evolution from upward eruption to downward fallback with less-than-free-fall speeds and decreasing nonthermal line widths. We find a wide range of Mg II k/h line intensity ratios (less than ...

  14. Using coronal seismology to estimate the magnetic field strength in a realistic coronal model

    CERN Document Server

    Chen, Feng

    2015-01-01

    Coronal seismology is extensively used to estimate properties of the corona, e.g. the coronal magnetic field strength are derived from oscillations observed in coronal loops. We present a three-dimensional coronal simulation including a realistic energy balance in which we observe oscillations of a loop in synthesised coronal emission. We use these results to test the inversions based on coronal seismology. From the simulation of the corona above an active region we synthesise extreme ultraviolet (EUV) emission from the model corona. From this we derive maps of line intensity and Doppler shift providing synthetic data in the same format as obtained from observations. We fit the (Doppler) oscillation of the loop in the same fashion as done for observations to derive the oscillation period and damping time. The loop oscillation seen in our model is similar to imaging and spectroscopic observations of the Sun. The velocity disturbance of the kink oscillation shows an oscillation period of 52.5s and a damping tim...

  15. Magnetohydrodynamic stability of broad line region clouds

    CERN Document Server

    Krause, Martin; Burkert, Andreas

    2012-01-01

    Hydrodynamic stability has been a longstanding issue for the cloud model of the broad line region in active galactic nuclei. We argue that the clouds may be gravitationally bound to the supermassive black hole. If true, stabilisation by thermal pressure alone becomes even more difficult. We further argue that if magnetic fields should be present in such clouds at a level that could affect the stability properties, they need to be strong enough to compete with the radiation pressure on the cloud. This would imply magnetic field values of a few Gauss for a sample of Active Galactic Nuclei we draw from the literature. We then investigate the effect of several magnetic configurations on cloud stability in axi-symmetric magnetohydrodynamic simulations. For a purely azimuthal magnetic field which provides the dominant pressure support, the cloud first gets compressed by the opposing radiative and gravitational forces. The pressure inside the cloud then increases, and it expands vertically. Kelvin-Helmholtz and colu...

  16. Twisting solar coronal jet launched at the boundary of an active region

    Science.gov (United States)

    Schmieder, B.; Guo, Y.; Moreno-Insertis, F.; Aulanier, G.; Yelles Chaouche, L.; Nishizuka, N.; Harra, L. K.; Thalmann, J. K.; Vargas Dominguez, S.; Liu, Y.

    2013-11-01

    Aims: A broad jet was observed in a weak magnetic field area at the edge of active region NOAA 11106 that also produced other nearby recurring and narrow jets. The peculiar shape and magnetic environment of the broad jet raised the question of whether it was created by the same physical processes of previously studied jets with reconnection occurring high in the corona. Methods: We carried out a multi-wavelength analysis using the EUV images from the Atmospheric Imaging Assembly (AIA) and magnetic fields from the Helioseismic and Magnetic Imager (HMI) both on-board the Solar Dynamics Observatory, which we coupled to a high-resolution, nonlinear force-free field extrapolation. Local correlation tracking was used to identify the photospheric motions that triggered the jet, and time-slices were extracted along and across the jet to unveil its complex nature. A topological analysis of the extrapolated field was performed and was related to the observed features. Results: The jet consisted of many different threads that expanded in around 10 minutes to about 100 Mm in length, with the bright features in later threads moving faster than in the early ones, reaching a maximum speed of about 200 km s-1. Time-slice analysis revealed a striped pattern of dark and bright strands propagating along the jet, along with apparent damped oscillations across the jet. This is suggestive of a (un)twisting motion in the jet, possibly an Alfvén wave. Bald patches in field lines, low-altitude flux ropes, diverging flow patterns, and a null point were identified at the basis of the jet. Conclusions: Unlike classical λ or Eiffel-tower-shaped jets that appear to be caused by reconnection in current sheets containing null points, reconnection in regions containing bald patches seems to be crucial in triggering the present jet. There is no observational evidence that the flux ropes detected in the topological analysis were actually being ejected themselves, as occurs in the violent phase of

  17. A flare observed in coronal, transition region, and helium I 10830 Å emissions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Zhicheng; Cao, Wenda [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102 (United States); Qiu, Jiong [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Judge, Philip G. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80307-3000 (United States)

    2014-10-01

    On 2012 June 17, we observed the evolution of a C-class flare associated with the eruption of a filament near a large sunspot in the active region NOAA 11504. We obtained high spatial resolution filtergrams using the 1.6 m New Solar Telescope at the Big Bear Solar Observatory in broadband TiO at 706 nm (bandpass: 10 Å) and He I 10830 Å narrow band (bandpass: 0.5 Å, centered 0.25 Å to the blue). We analyze the spatio-temporal behavior of the He I 10830 Å data, which were obtained over a 90''×90'' field of view with a cadence of 10 s. We also analyze simultaneous data from the Atmospheric Imaging Assembly and Extreme Ultraviolet Variability Experiment instruments on board the Solar Dynamics Observatory spacecraft, and data from the Reuven Ramaty High Energy Solar Spectroscopic Imager and GOES spacecrafts. Non-thermal effects are ignored in this analysis. Several quantitative aspects of the data, as well as models derived using the '0D' enthalpy-based thermal evolution of loops model code, indicate that the triplet states of the 10830 Å multiplet are populated by photoionization of chromospheric plasma followed by radiative recombination. Surprisingly, the He II 304 Å line is reasonably well matched by standard emission measure calculations, along with the C IV emission which dominates the Atmosphere Imaging Assembly 1600 Å channel during flares. This work lends support to some of our previous work combining X-ray, EUV, and UV data of flares to build models of energy transport from corona to chromosphere.

  18. Measurements of Non-thermal Line Widths in Solar Active Regions

    Science.gov (United States)

    Brooks, David H.; Warren, Harry P.

    2016-03-01

    Spectral line widths are often observed to be larger than can be accounted for by thermal and instrumental broadening alone. This excess broadening is a key observational constraint for both nanoflare and wave dissipation models of coronal heating. Here we present a survey of non-thermal velocities measured in the high temperature loops (1-4 MK) often found in the cores of solar active regions. This survey of Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) observations covers 15 non-flaring active regions that span a wide range of solar conditions. We find relatively small non-thermal velocities, with a mean value of 17.6 ± 5.3 km s-1, and no significant trend with temperature or active region magnetic flux. These measurements appear to be inconsistent with those expected from reconnection jets in the corona, chromospheric evaporation induced by coronal nanoflares, and Alfvén wave turbulence models. Furthermore, because the observed non-thermal widths are generally small, such measurements are difficult and susceptible to systematic effects.

  19. Measurements of Non-Thermal Line Widths in Solar Active Regions

    CERN Document Server

    Brooks, David H

    2015-01-01

    Spectral line widths are often observed to be larger than can be accounted for by thermal and instrumental broadening alone. This excess broadening is a key observational constraint for both nanoflare and wave dissipation models of coronal heating. Here we present a survey of non-thermal velocities measured in the high temperature loops (1--5MK) often found in the cores of solar active regions. This survey of $\\textit{Hinode}$ Extreme Ultraviolet Imaging Spectrometer (EIS) observations covers 15 non-flaring active regions that span a wide range of solar conditions. We find relatively small non-thermal velocities, with a mean value of 17km s$^{-1}$, and no significant trend with temperature or active region magnetic flux. These measurements appear to be inconsistent with those expected from reconnection jets in the corona, chromospheric evaporation induced by coronal nanoflares, and Alfv\\'en wave turbulence models. Furthermore, because the observed non-thermal widths are generally small their measurements are ...

  20. MEASUREMENTS OF NON-THERMAL LINE WIDTHS IN SOLAR ACTIVE REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, David H. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-03-20

    Spectral line widths are often observed to be larger than can be accounted for by thermal and instrumental broadening alone. This excess broadening is a key observational constraint for both nanoflare and wave dissipation models of coronal heating. Here we present a survey of non-thermal velocities measured in the high temperature loops (1–4 MK) often found in the cores of solar active regions. This survey of Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) observations covers 15 non-flaring active regions that span a wide range of solar conditions. We find relatively small non-thermal velocities, with a mean value of 17.6 ± 5.3 km s{sup −1}, and no significant trend with temperature or active region magnetic flux. These measurements appear to be inconsistent with those expected from reconnection jets in the corona, chromospheric evaporation induced by coronal nanoflares, and Alfvén wave turbulence models. Furthermore, because the observed non-thermal widths are generally small, such measurements are difficult and susceptible to systematic effects.

  1. Effect of coronal temperature on the scale of solar chromospheric jets

    CERN Document Server

    Iijima, H

    2015-01-01

    We investigate the effect of coronal temperature on the formation process of solar chromospheric jets using two-dimensional magnetohydrodynamic simulations of the region from the upper convection zone to the lower corona. We develop a new radiative magnetohydrodynamic code for the dynamic modeling of the solar atmosphere, employing a LTE equation of state, optically thick radiative loss in the photosphere, optically thin radiative loss in the chromosphere and the corona, and thermal conduction along the magnetic field lines. Many chromospheric jets are produced in the simulations by shock waves passing through the transition region. We find that these jets are projected farther outward when the coronal temperature is lower (similar to that in coronal holes) and shorter when the coronal temperature is higher (similar to that in active regions). When the coronal temperature is high, the deceleration of the chromospheric jets is consistent with the model in which deceleration is determined by the periodic chromo...

  2. Magnetic Topology of Coronal Hole Linkages

    CERN Document Server

    Titov, V S; Linker, J A; Lionello, R; Antiochos, S K

    2010-01-01

    In recent work, Antiochos and coworkers argued that the boundary between the open and closed field regions on the Sun can be extremely complex with narrow corridors of open flux connecting seemingly disconnected coronal holes from the main polar holes, and that these corridors may be the sources of the slow solar wind. We examine, in detail, the topology of such magnetic configurations using an analytical source surface model that allows for analysis of the field with arbitrary resolution. Our analysis reveals three important new results: First, a coronal hole boundary can join stably to the separatrix boundary of a parasitic polarity region. Second, a single parasitic polarity region can produce multiple null points in the corona and, more important, separator lines connecting these points. It is known that such topologies are extremely favorable for magnetic reconnection, because they allow this process to occur over the entire length of the separators rather than being confined to a small region around the...

  3. Coronal Mass Ejections: Observations

    Directory of Open Access Journals (Sweden)

    David F. Webb

    2012-06-01

    Full Text Available Solar eruptive phenomena embrace a variety of eruptions, including flares, solar energetic particles, and radio bursts. Since the vast majority of these are associated with the eruption, development, and evolution of coronal mass ejections (CMEs, we focus on CME observations in this review. CMEs are a key aspect of coronal and interplanetary dynamics. They inject large quantities of mass and magnetic flux into the heliosphere, causing major transient disturbances. CMEs can drive interplanetary shocks, a key source of solar energetic particles and are known to be the major contributor to severe space weather at the Earth. Studies over the past decade using the data sets from (among others the SOHO, TRACE, Wind, ACE, STEREO, and SDO spacecraft, along with ground-based instruments, have improved our knowledge of the origins and development of CMEs at the Sun and how they contribute to space weather at Earth. SOHO, launched in 1995, has provided us with almost continuous coverage of the solar corona over more than a complete solar cycle, and the heliospheric imagers SMEI (2003 – 2011 and the HIs (operating since early 2007 have provided us with the capability to image and track CMEs continually across the inner heliosphere. We review some key coronal properties of CMEs, their source regions and their propagation through the solar wind. The LASCO coronagraphs routinely observe CMEs launched along the Sun-Earth line as halo-like brightenings. STEREO also permits observing Earth-directed CMEs from three different viewpoints of increasing azimuthal separation, thereby enabling the estimation of their three-dimensional properties. These are important not only for space weather prediction purposes, but also for understanding the development and internal structure of CMEs since we view their source regions on the solar disk and can measure their in-situ characteristics along their axes. Included in our discussion of the recent developments in CME

  4. Study of the 3D Coronal Magnetic Field of Active Region 11117 Around the Time of a Confined Flare Using a Data-Driven CESE--MHD Model

    CERN Document Server

    Jiang, Chaowei; Wu, S T; Hu, Qiang

    2012-01-01

    We apply a data-driven MHD model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element (CESE) scheme, is designed to focus on the magnetic-field evolution and to consider a simplified solar atomsphere with finite plasma $\\beta$. Magnetic vector-field data derived from the observations at the photoshpere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria basing on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager (HMI) on board the {\\it Solar Dynamic Observatory (SDO)} around the time of flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and t...

  5. Coronal Holes and Open Magnetic Flux over Cycles 23 and 24

    Science.gov (United States)

    Lowder, Chris; Qiu, Jiong; Leamon, Robert

    2017-01-01

    As the observational signature of the footprints of solar magnetic field lines open into the heliosphere, coronal holes provide a critical measure of the structure and evolution of these lines. Using a combination of Solar and Heliospheric Observatory/Extreme ultraviolet Imaging Telescope (SOHO/EIT), Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA), and Solar Terrestrial Relations Observatory/Extreme Ultraviolet Imager (STEREO/EUVI A/B) extreme ultraviolet (EUV) observations spanning 1996 - 2015 (nearly two solar cycles), coronal holes are automatically detected and characterized. Coronal hole area distributions show distinct behavior in latitude, defining the domain of polar and low-latitude coronal holes. The northern and southern polar regions show a clear asymmetry, with a lag between hemispheres in the appearance and disappearance of polar coronal holes.

  6. Charge States and FIP Bias of the Solar Wind from Coronal Holes, Active Regions, and Quiet Sun

    Science.gov (United States)

    Fu, Hui; Madjarska, Maria S.; Xia, LiDong; Li, Bo; Huang, ZhengHua; Wangguan, Zhipeng

    2017-02-01

    Connecting in situ measured solar-wind plasma properties with typical regions on the Sun can provide an effective constraint and test to various solar wind models. We examine the statistical characteristics of the solar wind with an origin in different types of source regions. We find that the speed distribution of coronal-hole (CH) wind is bimodal with the slow wind peaking at ∼400 km s‑1 and the fast at ∼600 km s‑1. An anti-correlation between the solar wind speeds and the O7+/O6+ ion ratio remains valid in all three types of solar wind as well during the three studied solar cycle activity phases, i.e., solar maximum, decline, and minimum. The {N}{Fe}/{N}{{O}} range and its average values all decrease with the increasing solar wind speed in different types of solar wind. The {N}{Fe}/{N}{{O}} range (0.06–0.40, first ionization potential (FIP) bias range 1–7) for active region wind is wider than for CH wind (0.06–0.20, FIP bias range 1–3), while the minimum value of {N}{Fe}/{N}{{O}} (∼ 0.06) does not change with the variation of speed, and it is similar for all source regions. The two-peak distribution of CH wind and the anti-correlation between the speed and O7+/O6+ in all three types of solar wind can be explained qualitatively by both the wave-turbulence-driven and reconnection-loop-opening (RLO) models, whereas the distribution features of {N}{Fe}/{N}{{O}} in different source regions of solar wind can be explained more reasonably by the RLO models.

  7. Extraction of Active Regions and Coronal Holes from EUV Images Using the Unsupervised Segmentation Method in the Bayesian Framework

    CERN Document Server

    Arish, Saeid; Safari, Hossein; Amiri, Ali

    2016-01-01

    The solar corona is the origin of very dynamic events that are mostly produced in active regions (AR) and coronal holes (CH). The exact location of these large-scale features can be determined by applying image-processing approaches to extreme-ultraviolet (EUV) data. We here investigate the problem of segmentation of solar EUV images into ARs, CHs, and quiet-Sun (QS) images in a firm Bayesian way. On the basis of Bayes' rule, we need to obtain both prior and likelihood models. To find the prior model of an image, we used a Potts model in non-local mode. To construct the likelihood model, we combined a mixture of a Markov-Gauss model and non-local means. After estimating labels and hyperparameters with the Gibbs estimator, cellular learning automata were employed to determine the label of each pixel. We applied the proposed method to a Solar Dynamics Observatory/ Atmospheric Imaging Assembly (SDO/AIA) dataset recorded during 2011 and found that the mean value of the filling factor of ARs is 0.032 and 0.057 for...

  8. Inclination of Broad Line Region in Narrow Line and Broad Line Seyfert 1 Galaxies

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The sizes of the Broad Line Region (BLR) of some Seyfert 1 galax-ies and nearby quasars can be determined by the reverberation mapping method.Combining with the observed FWHM of Hβ emission line and assuming that themotion of BLR clouds is virialized, the black hole masses of these objects have beenestimated. However, this method strongly depends on the poorly-understood geom-etry and inclination of the BLR. On the other hand, a tight correlation between theblack hole mass and the bulge velocity dispersion was recently found for both activeand nearby inactive galaxies. This may provide another method, independent of theBLR geometry, for estimating the black hole mass. Using this method for estimatingthe black hole mass and combining with the measured BLR size and FWHM of Hβemission line, we derived the BLR inclination angles for 20 Seyfert I galaxies underthe assumption that the BLR is disk-like. The derived inclination angles agree wellwith those derived previously by fitting the UV continuum and Hβ emission lineprofiles. Adopting a relation between the FWHMs of [OⅢ]λ5007 forbidden line andthe stellar velocity dispersion, we also estimated the BLR inclinations for 50 nar-row line Seyfert 1 galaxies (NLSls). We found that the inclinations of broad LineSeyfert 1 galaxies (BLS1s) are systematically greater than those of NLS1s, whichseldom exceed 30. This may be an important factor that leads to the differencesbetween NLS1s and BLS1s if the BLR of NLS1s is really disk-like.

  9. The Lower Chromosphere in a Coronal Hole

    Science.gov (United States)

    Teplitskaya, R. B.; Turova, I. P.; Ozhogina, O. A.

    2007-07-01

    We study the Ca ii K, H, and λ 849.8 nm line profiles in two regions of the quiet Sun, one being located in the extensive low-latitude coronal hole observed on 3 through 5 August 2003, and the other being located outside the coronal hole. Comparison of the profiles was carried out separately for cells and cell boundaries of the chromospheric network. Our principal result is that space- and time-averaged profiles of the central self-reversal in the coronal hole sites differ from those outside of the hole: Intensities of the K3 and H3 central depressions are increased in the cells but are unchanged in the network; the height of the K2 peaks is reduced in the cells and particularly in the network; the central self-reversal asymmetry is intensified in the network. Distinctions appear at a high confidence level. Line wings as well as average characteristics of the infrared line remain practically unchanged. We discuss probable causes for this behavior of the lower chromosphere lines.

  10. Inferring the Coronal Density Irregularity from EUV Spectra

    CERN Document Server

    Hahn, Michael

    2016-01-01

    Understanding the density structure of the solar corona is important for modeling both coronal heating and the solar wind. Direct measurements are difficult because of line-of-sight integration and possible unresolved structures. We present a new method for quantifying such structure using density-sensitive EUV line intensities to derive a density irregularity parameter, a relative measure of the amount of structure along the line of sight. We also present a simple model to relate the inferred irregularities to physical quantities, such as the filling factor and density contrast. For quiet Sun regions and interplume regions of coronal holes, we find a density contrast of at least a factor of three to ten and corresponding filling factors of about 10-20%. Our results are in rough agreement with other estimates of the density structures in these regions. The irregularity diagnostic provides a useful relative measure of unresolved structure in various regions of the corona.

  11. Coronal magnetometry

    CERN Document Server

    Zhang, Jie; Bastian, Timothy

    2014-01-01

    This volume is a collection of research articles on the subject of the solar corona, and particularly, coronal magnetism. The book was motivated by the Workshop on Coronal Magnetism: Connecting Models to Data and the Corona to the Earth, which was held 21 - 23 May 2012 in Boulder, Colorado, USA. This workshop was attended by approximately 60 researchers. Articles from this meeting are contained in this topical issue, but the topical issue also contains contributions from researchers not present at the workshop. This volume is aimed at researchers and graduate students active in solar physics. Originally published in Solar Physics, Vol. 288, Issue 2, 2013 and Vol. 289, Issue 8, 2014.

  12. Are the Narrow Line Regions in Active Galaxies Dusty and Radiation Pressure Dominated?

    CERN Document Server

    Dopita, M A; Sutherland, R S; Binette, L; Cecil, G N

    2002-01-01

    The remarkable similarity between emission spectra of narrow line regions (NLR) in Seyfert Galaxies has long presented a mystery. In photoionization models, this similarity implies that the ionization parameter is nearly always the same, about U ~ 0.01. Here we present dusty, radiation-pressure dominated photoionization models that can provide natural physical insight into this problem. In these models, dust and the radiation pressure acting on it provide the controlling factor in moderating the density, excitation and surface brightness of photoionized NLR structures. Additionally, photoelectric heating by the dust is important in determining the temperature structure of the models. These models can also explain the coexistence of the low-, intermediate- and coronal ionization zones within a single self-consistent physical structure. The radiation pressure acting on dust may also be capable of driving the fast (~3000 km/s) outflows such as are seen in the HST observations of NGC 1068.

  13. A Flare Observed in Coronal, Transition Region and Helium I 10830 \\AA\\ Emissions

    CERN Document Server

    Zeng, Zhicheng; Cao, Wenda; Judge, Philip G

    2014-01-01

    On June 17, 2012, we observed the evolution of a C-class flare associated with the eruption of a filament near a large sunspot in the active region NOAA 11504. We obtained high spatial resolution filtergrams using the 1.6 m New Solar Telescope at the Big Bear Solar Observatory in broad-band TiO at 706 nm (bandpass:10 \\AA) and He I 10830 \\AA\\ narrow-band (bandpass: 0.5 \\AA, centered 0.25 \\AA\\ to the blue). We analyze the spatio-temporal behavior of the He I 10830 \\AA\\ data, which were obtained over a 90" X 90" field of view with a cadence of 10 sec. We also analyze simultaneous data from the Atmospheric Imaging Assembly and Extreme Ultraviolet Variability Experiment instruments on board the Solar Dynamics Observatory spacecraft, and data from Reuven Ramaty High Energy Solar Spectroscopic Imager and GOES spacecrafts. Non-thermal effects are ignored in this analysis. Several quantitative aspects of the data, as well as models derived using the "0D" Enthalpy-Based Thermal Evolution of Loops model (EBTEL: Klimchuk...

  14. Twisting solar coronal jet launched at the boundary of an active region

    CERN Document Server

    Schmieder, B; Moreno-Insertis, F; Aulanier, G; Chaouche, L Yelles; Nishizuka, N; Harra, L K; Thalmann, J K; Dominguez, S Vargas; Liu, Y

    2013-01-01

    A broad jet was observed in a weak magnetic field area at the edge of active region NOAA 11106. The peculiar shape and magnetic environment of the broad jet raised the question of whether it was created by the same physical processes of previously studied jets with reconnection occurring high in the corona. We carried out a multi-wavelength analysis using the EUV images from the Atmospheric Imaging Assembly (AIA) and magnetic fields from the Helioseismic and Magnetic Imager (HMI) both on-board the SDO satellite. The jet consisted of many different threads that expanded in around 10 minutes to about 100 Mm in length, with the bright features in later threads moving faster than in the early ones, reaching a maximum speed of about 200 km s^{-1}. Time-slice analysis revealed a striped pattern of dark and bright strands propagating along the jet, along with apparent damped oscillations across the jet. This is suggestive of a (un)twisting motion in the jet, possibly an Alfven wave. A topological analysis of an extr...

  15. AGN Broad Line Regions Scale with Bolometric Luminosity

    CERN Document Server

    Trippe, Sascha

    2015-01-01

    The masses of supermassive black holes in active galactic nuclei (AGN) can be derived spectroscopically via virial mass estimators based on selected broad optical/ultraviolet emission lines. These estimates commonly use the line width as a proxy for the gas speed and the monochromatic continuum luminosity as a proxy for the radius of the broad line region. However, if the size of the broad line region scales with bolometric rather than monochromatic AGN luminosity, mass estimates based on different emission lines will show a systematic discrepancy which is a function of the color of the AGN continuum. This has actually been observed in mass estimates based on H-alpha / H-beta and C IV lines, indicating that AGN broad line regions indeed scale with bolometric luminosity. Given that this effect seems to have been overlooked as yet, currently used single-epoch mass estimates are likely to be biased.

  16. Spectroscopy at the Solar Limb: II. Are Spicules Heated to Coronal Temperatures?

    Science.gov (United States)

    Beck, C.; Rezaei, R.; Puschmann, K. G.; Fabbian, D.

    2016-10-01

    Spicules of the so-called type II were suggested to be relevant for coronal heating because of their ubiquity on the solar surface and their eventual extension into the corona. We investigate whether solar spicules are heated to transition-region or coronal temperatures and reach coronal heights ({≫} 6 Mm) using multiwavelength observations of limb spicules in different chromospheric spectral lines (Ca ii H, Hɛ, Hα, Ca ii IR at 854.2 nm, He i at 1083 nm) taken with slit spectrographs and imaging spectrometers. We determine the line width of spectrally resolved line profiles in individual spicules and throughout the field of view, and estimate the maximal height that different types of off-limb features reach. We derive estimates of the kinetic temperature and the non-thermal velocity from the line width of spectral lines from different chemical elements. We find that most regular, i.e. thin and elongated, spicules reach a height of at most about 6 Mm above the solar limb. The majority of features found at larger heights are irregularly shaped with a significantly larger lateral extension, of up to a few Mm, than spicules. Both individual and average line profiles in all spectral lines show a decrease in their line width with height above the limb with very few exceptions. The kinetic temperature and the non-thermal velocity decrease with height above the limb. We find no indications that the spicules in our data reach coronal heights or transition-region or coronal temperatures.

  17. An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection

    Directory of Open Access Journals (Sweden)

    L. Rosenqvist

    2007-03-01

    Full Text Available The shock arrival of an Interplanetary Coronal Mass Ejection (ICME at ~09:50 UT on 22 November 1997 resulted in the development of an intense (Dst<−100 nT geomagnetic storm at Earth. In the early, quiet phase of the storm, in the sheath region of the ICME, an unusual large spiral structure (diameter of ~1000 km was observed at very high latitudes by the Polar UVI instrument. The evolution of this structure started as a polewardly displaced auroral bulge which further developed into the spiral structure spreading across a large part of the polar cap. This study attempts to examine the cause of the chain of events that resulted in the giant auroral spiral. During this period the interplanetary magnetic field (IMF was dominantly northward (Bz>25 nT with a strong duskward component (By>15 nT resulting in a highly twisted tail plasma sheet. Geotail was located at the equatorial dawnside magnetotail flank and observed accelerated plasma flows exceeding the solar wind bulk velocity by almost 60%. These flows are observed on the magnetosheath side of the magnetopause and the acceleration mechanism is proposed to be typical for strongly northward IMF. Identified candidates to the cause of the spiral structure include a By induced twisted magnetotail configuration, the development of magnetopause surface waves due to the enhanced pressure related to the accelerated magnetosheath flows aswell as the formation of additional magnetopause deformations due to external solar wind pressure changes. The uniqeness of the event indicate that most probably a combination of the above effects resulted in a very extreme tail topology. However, the data coverage is insufficient to fully investigate the physical mechanism behind the observations.

  18. A Mechanism for Coronal Hole Jets

    CERN Document Server

    Mueller, D A N

    2008-01-01

    Bald patches are magnetic topologies in which the magnetic field is concave up over part of a photospheric polarity inversion line. A bald patch topology is believed to be the essential ingredient for filament channels and is often found in extrapolations of the observed photospheric field. Using an analytic source-surface model to calculate the magnetic topology of a small bipolar region embedded in a global magnetic dipole field, we demonstrate that although common in closed-field regions close to the solar equator, bald patches are unlikely to occur in the open-field topology of a coronal hole. Our results give rise to the following question: What happens to a bald patch topology when the surrounding field lines open up? This would be the case when a bald patch moves into a coronal hole, or when a coronal hole forms in an area that encompasses a bald patch. Our magnetostatic models show that, in this case, the bald patch topology almost invariably transforms into a null point topology with a spine and a fa...

  19. Evolution of an equatorial coronal hole structure and the released coronal hole wind stream: Carrington rotations 2039 to 2050

    Science.gov (United States)

    Heidrich-Meisner, Verena; Peleikis, Thies; Kruse, Martin; Berger, Lars; Wimmer-Schweingruber, Robert F.

    2017-07-01

    Context. The Sun is a highly dynamic environment that exhibits dynamic behavior on many different timescales. Variability is observed both in closed and in open field line regions in the solar corona. In particular, coronal holes exhibit temporal and spatial variability. Signatures of these coronal dynamics are inherited by the coronal hole wind streams that originate in these regions and can effect the Earth's magnetosphere. Both the cause of the observed variabilities and how these translate to fluctuations in the in situ observed solar wind is not yet fully understood. Aims: During solar activity minimum the structure of the magnetic field typically remains stable over several Carrington rotations (CRs). But how stable is the solar magnetic field? Here, we address this question by analyzing the evolution of a coronal hole structure and the corresponding coronal hole wind stream emitted from this source region over 12 consecutive CRs in 2006. Methods: To this end, we link in situ observations of Solar Wind Ion Composition Spectrometer (SWICS) onboard the Advanced Composition Explorer (ACE) with synoptic maps of Michelson Doppler imager (MDI) on the Solar and Heliospheric Observatory (SOHO) at the photospheric level through a combination of ballistic back-mapping and a potential field source surface (PFSS) approach. Together, these track the evolution of the open field line region that is identified as the source region of a recurring coronal hole wind stream. Under the assumptions of the freeze-in scenario for charge states in the solar wind, we derive freeze-in temperatures and determine the order in which the different charge state ratios of ion pairs appear to freeze-in. We call the combination of freeze-in temperatures derived from in situ observed ion density ratios and freeze-in order a minimal electron temperature profile and investigate its variability. Results: The in situ properties and the PFSS model together probe the lateral magnetic field

  20. The intermediate line region in active galactic nuclei

    CERN Document Server

    Adhikari, T P; Czerny, B; Hryniewicz, K; Ferland, G J

    2016-01-01

    We show that the recently observed suppression of the gap between the broad line region (BLR) and the narrow line region (NLR) in some AGN can be fully explained by an increase of the gas density in the emitting region. Our model predicts the formation of the intermediate line region (ILR) that is observed in some Seyfert galaxies by the detection of emission lines with intermediate velocity full width half maximum (FWHM) $\\sim$ 700 - 1200 km s$^{-1}$. These lines are believed to be originating from an ILR located somewhere between the BLR and NLR. As it was previously proved, the apparent gap is assumed to be caused by the presence of dust beyond the sublimation radius. Our computations with the use of {\\sc cloudy} photoionization code, show that the differences in the shape of spectral energy distribution (SED) from the central region of AGN, do not diminish the apparent gap in the line emission in those objects. A strong discontinuity in the line emission vs radius exists for all lines at the dust sublimat...

  1. Improvements on coronal hole detection in SDO/AIA images using supervised classification

    CERN Document Server

    Reiss, Martin A; De Visscher, Ruben; Temmer, Manuela; Veronig, Astrid M; Delouille, Véronique; Mampaey, Benjamin; Ahammer, Helmut

    2015-01-01

    We demonstrate the use of machine learning algorithms in combination with segmentation techniques in order to distinguish coronal holes and filaments in SDO/AIA EUV images of the Sun. Based on two coronal hole detection techniques (intensity-based thresholding, SPoCA), we prepared data sets of manually labeled coronal hole and filament channel regions present on the Sun during the time range 2011 - 2013. By mapping the extracted regions from EUV observations onto HMI line-of-sight magnetograms we also include their magnetic characteristics. We computed shape measures from the segmented binary maps as well as first order and second order texture statistics from the segmented regions in the EUV images and magnetograms. These attributes were used for data mining investigations to identify the most performant rule to differentiate between coronal holes and filament channels. We applied several classifiers, namely Support Vector Machine, Linear Support Vector Machine, Decision Tree, and Random Forest and found tha...

  2. Pre-flare coronal dimmings

    CERN Document Server

    Zhang, Q M; Ji, H S

    2016-01-01

    In this paper, we focus on the pre-flare coronal dimmings. We report our multiwavelength observations of the GOES X1.6 solar flare and the accompanying halo CME produced by the eruption of a sigmoidal magnetic flux rope (MFR) in NOAA active region (AR) 12158 on 2014 September 10. The eruption was observed by the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamic Observatory (SDO). The photospheric line-of-sight magnetograms were observed by the Helioseismic and Magnetic Imager (HMI) aboard SDO. The soft X-ray (SXR) fluxes were recorded by the GOES spacecraft. The halo CME was observed by the white light coronagraphs of the Large Angle Spectroscopic Coronagraph (LASCO) aboard SOHO.} {About 96 minutes before the onset of flare/CME, narrow pre-flare coronal dimmings appeared at the two ends of the twisted MFR. They extended very slowly with their intensities decreasing with time, while their apparent widths (8$-$9 Mm) nearly kept constant. During the impulsive and decay phases of flare, typical fanlike ...

  3. Variability of a Stellar Corona on a Time Scale of Days: Evidence for Abundance Fractionation in an Emerging Coronal Active Region

    Science.gov (United States)

    Nordon, R.; Behar, E.; Drake, S. A.

    2013-01-01

    Elemental abundance effects in active coronae have eluded our understanding for almost three decades, since the discovery of the first ionization potential (FIP) effect on the sun. The goal of this paper is to monitor the same coronal structures over a time interval of six days and resolve active regions on a stellar corona through rotational modulation. We report on four iso-phase X-ray spectroscopic observations of the RS CVn binary EI Eri with XMM-Newton, carried out approximately every two days, to match the rotation period of EI Eri. We present an analysis of the thermal and chemical structure of the EI Eri corona as it evolves over the six days. Although the corona is rather steady in its temperature distribution, the emission measure and FIP bias both vary and seem to be correlated. An active region, predating the beginning of the campaign, repeatedly enters into our view at the same phase as it rotates from beyond the stellar limb. As a result, the abundances tend slightly, but consistently, to increase for high FIP elements (an inverse FIP effect) with phase. We estimate the abundance increase of high FIP elements in the active region to be of about 75% over the coronal mean. This observed fractionation of elements in an active region on time scales of days provides circumstantial clues regarding the element enrichment mechanism of non-flaring stellar coronae.

  4. Influence of coronal holes on CMEs in causing SEP events

    Institute of Scientific and Technical Information of China (English)

    Cheng-Long Shen; Jia Yao; Yu-Ming Wang; Pin-Zhong Ye; Xue-Pu Zhao; Shui Wang

    2010-01-01

    The issue of the influence of coronal holes(CHs)on coronal mass ejections(CMEs)in causing solar energetic particle(SEP)events is revisited.It is a continuation and extension of our previous work,in which no evident effects of CHs on CMEs in generating SEPs were found by statistically investigating 56 CME events.This result is consistent with the conclusion obtained by Kahler in 2004.We extrapolate the coronal magnetic field,define CHs as the regions consisting of only open magnetic field lines and perform a similar analysis on this issue for 76 events in total by extending the study interval to the end of 2008.Three key parameters,CH proximity,CH area and CH relative position,are involved in the analysis.The new result confirms the previous conclusion that CHs did not show any evident effect on CMEs in causing SEP events.

  5. The formation of an equatorial coronal hole

    Science.gov (United States)

    Yang, Liheng; Jiang, Yunchun; Zhang, Jun

    2010-02-01

    The formation of an equatorial coronal hole (CH) from 2006 January 9 to 12 was simultaneously observed by GOES-12/SXI, SOHO/EIT and SOHO/MDI instruments. The varieties of soft X-ray and EUV brightness, coronal temperature, and total magnetic flux in the CH were examined and compared with that of a quiet-sun (QS) region nearby. The following results are obtained. (1) A preexisting dark lane appeared on the location of the followed CH and was reinforced by three enhanced networks. (2) The CH gradually formed in about 81 hours and was predominated by positive magnetic flux. (3) During the formation, the soft X-ray and EUV brightness, coronal temperature, and total magnetic flux obviously decreased in the CH, but were almost no change in the QS region. The decrease of the total magnetic flux may be the result of magnetic reconnection between the open and closed magnetic lines, probably indicating the physical mechanism for the birth of the CH.

  6. The Coronal Global Evolutionary Model (CGEM)

    Science.gov (United States)

    Fisher, George H.; DeRosa, M. L.; Hoeksema, J. T.

    2013-07-01

    The Coronal Global Evolutionary Model, or CGEM, is a collaborative effort from the UC Berkeley Space Sciences Laboratory (SSL), Stanford University, and Lockheed-Martin. In work that led up to the selection of this project, the team demonstrated its capability to use sequences of vector magnetograms and Dopplergrams from the Helioseismic and Magnetic Imager (HMI) instrument aboard the SDO to drive a magnetofrictional (MF) model of the coronal magnetic field in AR 11158, which produced an X2.2 flare. We will implement this MF model in spherical coordinates to enable real-time, long-term modeling of the non-potential coronal magnetic field, both globally and for individual active region (ARs). The model's Earth-facing hemisphere will be driven using electric fields derived from the observed evolution of photospheric line-of-sight magnetic fields and electric currents. Far-side data inputs will be from an existing flux transport code, combined with HMI far-side observations of new active regions, with empirical parametrizations of orientation and flux. Because this model includes large-scale coronal electric currents, it is a substantial improvement over existing real-time global coronal models, which assume potential fields. Data products available from the model will include: 1) the evolving photospheric electric field, Poynting flux, and helicity flux; 2) estimates of coronal free energy and non-potential geometry and topology; 3) initial and time-dependent boundary conditions for MHD modeling of active regions; and 4) time-dependent boundary conditions and flux tube expansion factors for MHD and empirical solar wind models. Unstable configurations found from MF models will be dynamically evolved with local and global MHD codes. Modules used to derive surface electric fields from magnetic evolution will be incorporated into the SDO/HMI data pipeline, and data products will be distributed through the Joint Science Operations Center (JSOC) and directly to space

  7. A LINE SEARCH AND TRUST REGION ALGORITHM WITH TRUST REGION RADIUS CONVERGING TO ZERO

    Institute of Scientific and Technical Information of China (English)

    Jin-yan Fan; Wen-bao Ai; Qun-ying Zhang

    2004-01-01

    In this paper, we present a new line search and trust region algorithm for unconstrained optimization problem with the trust region radius converging to zero. The new trust region algorithm performs a backtracking line search from the failed. Point instead of resolving the subproblem when the trial step results in an increase in the objective function. We show that the algorithm preserves the convergence properties of the traditional trust region algorithms. Numerical results are also given.

  8. The extended narrow line region of NGC 4151. I. Emission line ratios and their implications

    OpenAIRE

    Penston, M. V.; Robinson, A.; Alloin, D.; Appenzeller, I.; Aretxaga, I.; Axon, D.J.; Baribaud, T.; Barthel, P.; Baum, S. A.; Boisson, C.; de Bruyn, A. G.; Clavel, J.; Colina, L.; Dennefeld, M.; Angeles I. Díaz

    1990-01-01

    This is an electronic version of an article published in Astronomy and Astrophysics. Penston, M.V. et al. The extended narrow line region of NGC 4151. I. Emission line ratios and their implications. Astronomy and Astrophysics 236 (1990): 53-62

  9. A Tool for Empirical Forecasting of Major Flares, Coronal Mass Ejections, and Solar Particle Events from a Proxy of Active-Region Free Magnetic Energy

    Science.gov (United States)

    Barghouty, A. F.; Falconer, D. A.; Adams, J. H., Jr.

    2010-01-01

    This presentation describes a new forecasting tool developed for and is currently being tested by NASA s Space Radiation Analysis Group (SRAG) at JSC, which is responsible for the monitoring and forecasting of radiation exposure levels of astronauts. The new software tool is designed for the empirical forecasting of M and X-class flares, coronal mass ejections, as well as solar energetic particle events. Its algorithm is based on an empirical relationship between the various types of events rates and a proxy of the active region s free magnetic energy, determined from a data set of approx.40,000 active-region magnetograms from approx.1,300 active regions observed by SOHO/MDI that have known histories of flare, coronal mass ejection, and solar energetic particle event production. The new tool automatically extracts each strong-field magnetic areas from an MDI full-disk magnetogram, identifies each as an NOAA active region, and measures a proxy of the active region s free magnetic energy from the extracted magnetogram. For each active region, the empirical relationship is then used to convert the free magnetic energy proxy into an expected event rate. The expected event rate in turn can be readily converted into the probability that the active region will produce such an event in a given forward time window. Descriptions of the datasets, algorithm, and software in addition to sample applications and a validation test are presented. Further development and transition of the new tool in anticipation of SDO/HMI is briefly discussed.

  10. A tool for empirical forecasting of major flares, coronal mass ejections, and solar particle events from a proxy of active-region free magnetic energy

    Science.gov (United States)

    Falconer, David; Barghouty, Abdulnasser F.; Khazanov, Igor; Moore, Ron

    2011-04-01

    This paper describes a new forecasting tool developed for and currently being tested by NASA's Space Radiation Analysis Group (SRAG) at Johnson Space Center, which is responsible for the monitoring and forecasting of radiation exposure levels of astronauts. The new software tool is designed for the empirical forecasting of M- and X-class flares, coronal mass ejections, and solar energetic particle events. For each type of event, the algorithm is based on the empirical relationship between the event rate and a proxy of the active region's free magnetic energy. Each empirical relationship is determined from a data set of ˜40,000 active-region magnetograms from ˜1300 active regions observed by SOHO/Michelson Doppler Imager (MDI) that have known histories of flare, coronal mass ejection, and solar energetic particle event production. The new tool automatically extracts each strong-field magnetic area from an MDI full-disk magnetogram, identifies each as a NOAA active region, and measures the proxy of the active region's free magnetic energy from the extracted magnetogram. For each active region, the empirical relationship is then used to convert the free-magnetic-energy proxy into an expected event rate. The expected event rate in turn can be readily converted into the probability that the active region will produce such an event in a given forward time window. Descriptions of the data sets, algorithm, and software in addition to sample applications and a validation test are presented. Further development and transition of the new tool in anticipation of SDO/HMI are briefly discussed.

  11. Two-Step Coronal Transport of Solar Flare Particles from Magnetic Multipolarity Sources in a Flare Region

    Institute of Scientific and Technical Information of China (English)

    HUANG Yong-Nian; WANG Shi-Jin

    2001-01-01

    The transport of solar flare particles in the corona is studied. Considering the problems in terms of the character istics of a sunspot group producing solar cosmic rays and solar flare processes, we find that formation of the fast propagation process is associated with annihilation of sunspots in the group with magnetic multipolarity. The slower propagation process depends on magnetic irregularities in the corona, and the evolution of the transport is related to the flare processes. Equations for the coronal transport are proposed and their initial and boundary conditions are given. The predicted results agree with the main observational features.

  12. Commentary on the Liquid Metallic Hydrogen Model of the Sun II. Insight Relative to Coronal Rain and Splashdown Events

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-04-01

    Full Text Available Coronal rain represents blobs of solar material with a width of ∼ 300 km and a length of ∼ 700 km which are falling from the active region of the corona towards the solar surface along loop-like paths. Conversely, coronal showers are com prised of much larger bulks of matter, or clumps of solar rain. Beyond coronal rain and showers, the expulsion of solar matter from the surface, whether through flares, pro minences, or coronal mass ejections, can result in massive disruptions which have bee n observed to rise far into the corona, return towards the Sun, and splashdown onto the phot osphere. The existence of coronal rain and the splashdown of mass ejections onto the so lar surface constitute the twenty-third and twenty-fourth lines of evidence that the S un is condensed matter.

  13. The HST view of the innermost narrow line region

    CERN Document Server

    Balmaverde, B; Moisio, D; Baldi, R D; Marconi, A

    2016-01-01

    We analyze the properties of the innermost narrow line region in a sample of low-luminosity AGN. We select 33 LINERs (bona fide AGN) and Seyfert galaxies from the optical spectroscopic Palomar survey observed by HST/STIS. We find that in LINERs the [NII] and [OI] lines are broader than the [SII] line and that the [NII]/[SII] flux ratio increases when moving from ground-based to HST spectra. This effect is more pronounced considering the wings of the lines. Our interpretation is that, as a result of superior HST spatial resolution, we isolate a compact region of dense ionized gas in LINERs, located at a typical distance of about 3 pc and with a gas density of about 10$^4$-10$^5$ cm$^{-3}$, which we identify with the outer portion of the intermediate line region (ILR). Instead, we do not observe these kinds of effects in Seyferts; this may be the result of a stronger dilution from the NLR emission, since the HST slit maps a larger region in these sources. Alternatively, we argue that the innermost, higher densi...

  14. The broad line region of narrow-line Seyfert 1 galaxies

    CERN Document Server

    Rodríguez-Pascual, P M; Santos-Lleó, M; Rodriguez-Pascual, Pedro M.; Santos-Lleo, Maria

    1997-01-01

    We have analyzed new and archival IUE observations of narrow-line Seyfert 1 galaxies (NLS1) in order to revise the ultraviolet (UV) properties of this sub-group of Active Galactic Nuclei (AGN). We have found broad wings in the strongest UV emission lines, ruling out the hypothesis that there is no broad line emission region in this type of objects. Since the similarities in spectral energy distributions from the far-infrared (FIR) to the soft X rays in both narrow-line and broad-line Seyfert 1 galaxies do not suggest that the nuclei of NLS1 are hidden from a direct view, we discuss the possibility that the line emitting material in NLS1 is optically thin.

  15. Relationship Between Solar Coronal X-Ray Brightness and Active Region Magnetic Fields: A Study Using High Resolution Observations

    CERN Document Server

    Hazra, Soumitra; Ravindra, B

    2014-01-01

    By utilizing high resolution observations of nearly co-temporal and co-spatial SOT spectropolarimeter and XRT coronal X-ray data onboard Hinode, we revisit the contentious issue of the relationship between global magnetic quantities and coronal X-ray intensity. Co-aligned vector magnetogram and X-ray data are used for this study. We find that there is no pixel-to-pixel correlation between the observed loop brightness and magnetic quantities. However, the X-ray brightness is well correlated with the integrated magnetic quantities such as total unsigned magnetic flux, total unsigned vertical current, area integrated square of the vertical magnetic field and horizontal magnetic fields. Comparing all these quantities we find that the total magnetic flux correlates well with the observed integrated X-ray brightness, though there is some differences in the strength of the correlation when we use the X-ray data from different filters. While we get a good correlation between X-ray brightness and total unsigned vertic...

  16. Intensity of the Fe XV emission line corona, the level of geomagnetic activity, and the velocity of the solar wind

    Science.gov (United States)

    Bell, B.; Noci, G.

    1976-01-01

    The method of superposed epochs is used to determine the average solar wind velocity and the Kp index following central meridian passage of coronal weak and bright features identified from OSO 7 isophotograms of the Fe XV (284 A) emission line. It is found that bright coronal regions possess magnetic fields of closed configuration, thus reducing particle escape, while coronal holes possess open magnetic field lines favorable to particle escape or enhanced outflow of the solar wind.

  17. First use of synoptic vector magnetograms for global nonlinear force free coronal magnetic field models

    CERN Document Server

    Tadesse, Tilaye; Gosain, S; MacNeice, P; Pevtsov, Alexei A

    2013-01-01

    The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently there are several modelling techniques being used to calculate three-dimension of the field lines into the solar atmosphere. For the first time, synoptic maps of photospheric vector magnetic field synthesized from Vector Spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. We solve the nonlinear force-free field equations using optimizatio...

  18. Coronal Magnetic Field Lines and Electrons Associated with Type III–V Radio Bursts in a Solar Flare

    Indian Academy of Sciences (India)

    P. Kishore; C. Kathiravan; R. Ramesh; E. Ebenezer

    2017-06-01

    We recently investigated some of the hitherto unreported observational characteristics of the low frequency (85–35 MHz) type III–V bursts from the Sun using radio spectropolarimeter observations. The quantitative estimates of the velocities of the electron streams associated with the above two types of bursts indicate that they are in the range ${\\gtrsim }0.13c–0.02c$ for the type V bursts, and nearly constant (${\\approx }0.4c$) for the type III bursts. We also find that the degree of circular polarization of the type V bursts vary gradually with frequency/heliocentric distance as compared to the relatively steeper variation exhibited by the preceding type III bursts. These imply that the longer duration of the type V bursts at any given frequency (as compared to the preceding type III bursts) which is its defining feature, is due to the combined effect of the lower velocities of the electron streams that generate type V bursts, spread in the velocity spectrum, and the curvature of the magnetic field lines along which they travel.

  19. EFFECT OF CORONAL TEMPERATURE ON THE SCALE OF SOLAR CHROMOSPHERIC JETS

    Energy Technology Data Exchange (ETDEWEB)

    Iijima; Yokoyama, T.H., E-mail: h.iijima@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-10-20

    We investigate the effect of coronal temperature on the formation process of solar chromospheric jets using two-dimensional magnetohydrodynamic simulations of the region from the upper convection zone to the lower corona. We develop a new radiative magnetohydrodynamic code for the dynamic modeling of the solar atmosphere, employing an LTE equation of state, optically thick radiative loss in the photosphere, optically thin radiative loss in the chromosphere and the corona, and thermal conduction along the magnetic field lines. Many chromospheric jets are produced in the simulations by shock waves passing through the transition region. We find that these jets are projected farther outward when the coronal temperature is lower (similar to that in coronal holes) and shorter when the coronal temperature is higher (similar to that in active regions). When the coronal temperature is high, the deceleration of the chromospheric jets is consistent with the model in which deceleration is determined by the periodic chromospheric shock waves. However, when the coronal temperature is low, the gravitational deceleration becomes more important and the chromospheric jets approach ballistic motion.

  20. Diverse Broad Line Region Kinematic Signatures From Reverberation Mapping

    CERN Document Server

    Denney, K D; Pogge, R W; Adair, A; Atlee, D W; Au-Yong, K; Bentz, M C; Bird, J C; Brokofsky, D J; Chisholm, E; Comins, M L; Dietrich, M; Doroshenko, V T; Eastman, J D; Efimov, Y S; Ewald, S; Ferbey, S; Gaskell, C M; Hedrick, C H; Jackson, K; Klimanov, S A; Klimek, E S; Kruse, A K; Ladéroute, A; Lamb, J B; Leighly, K; Minezaki, T; Nazarov, S V; Onken, C A; Petersen, E A; Peterson, P; Poindexter, S; Sakata, Y; Schlesinger, K J; Sergeev, S G; Skolski, N; Stieglitz, L; Tobin, J J; Unterborn, C; Vestergaard, M; Watkins, A E; Watson, L C; Yoshii, Y

    2009-01-01

    A detailed analysis of the data from a high sampling rate, multi-month reverberation mapping campaign, undertaken primarily at MDM Observatory with supporting observations from telescopes around the world, reveals that the Hbeta emission region within the broad line regions (BLRs) of several nearby AGNs exhibit a variety of kinematic behaviors. While the primary goal of this campaign was to obtain either new or improved Hbeta reverberation lag measurements for several relatively low luminosity AGNs (presented in a separate work), we were also able to unambiguously reconstruct velocity-resolved reverberation signals from a subset of our targets. Through high cadence spectroscopic monitoring of the optical continuum and broad Hbeta emission line variations observed in the nuclear regions of NGC 3227, NGC 3516, and NGC 5548, we clearly see evidence for outflowing, infalling, and virialized BLR gas motions, respectively.

  1. Huge Coronal Structure and Heating Constraints Determined from Serts Observations

    Science.gov (United States)

    Falconer, D. A.; Davila, J. M.

    2001-01-01

    Intensities of the extreme-ultraviolet (EUV) spectral lines were measured as a function of radius off the solar limb by two flights of the Goddard's Solar Extreme-Ultraviolet Rocket Telescope and Spectrograph (SERTS) for three quiet-Sun regions. Density scale heights were determined for the different spectral lines. Limits on the filling factor were determined. In the one case where an upper limit was determined it was much less than unity. coronal heating above 1.15 solar radii is required for all three regions studied. For reasonable filling factors, local heating is needed.

  2. Line Emission from Radiation-Pressurized HII Regions I: Internal Structure and Line Ratios

    CERN Document Server

    Yeh, Sherry C C; Krumholz, Mark R; Matzner, Christopher D; Tielens, Alexander G G M

    2013-01-01

    The emission line ratios [OIII]5007/H-beta and [NII]6584/H-alpha have been adopted as an empirical way to distinguish between the fundamentally different mechanisms of ionization in emission-line galaxies. However, detailed interpretation of these diagnostics requires calculations of the internal structure of the emitting HII regions, and these calculations depend on the assumptions one makes about the relative importance of radiation pressure and stellar winds. In this paper we construct a grid of quasi-static HII region models to explore how choices about these parameters alter HII regions' emission line ratios. We find that, when radiation pressure is included in our models, HII regions reach a saturation point beyond which further increases in the luminosity of the driving stars does not produce any further increase in effective ionization parameter, and thus does not yield any further alteration in an HII region's line ratio. We also show that, if stellar winds are assumed to be strong, the maximum possi...

  3. Formation and evolution of coronal rain observed by SDO/AIA on February 22, 2012

    CERN Document Server

    Vashalomidze, Z; Zaqarashvili, T V; Oliver, R; Shergelashvili, B; Ramishvili, G; Poedts, S; De Causmaecker, P

    2015-01-01

    The formation and dynamics of coronal rain are currently not fully understood. Coronal rain is the fall of cool and dense blobs formed by thermal instability in the solar corona towards the solar surface with acceleration smaller than gravitational free fall. We aim to study the observational evidence of the formation of coronal rain and to trace the detailed dynamics of individual blobs. We used time series of the 171 \\AA\\, and 304 \\AA\\, spectral lines obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) above active region AR 11420 on February 22, 2012. Observations show that a coronal loop disappeared in the 171 \\AA\\ channel and appeared in the 304 \\AA\\ line$\\text{}\\text{}$ more than one hour later, which indicates a rapid cooling of the coronal loop from 1 MK to 0.05 MK. An energy estimation shows that the radiation is higher than the heat input, which indicates so-called catastrophic cooling. The cooling was accompanied by the formation of coronal rain in the fo...

  4. Geometry of solar coronal rays

    Science.gov (United States)

    Filippov, B. P.; Martsenyuk, O. V.; Platov, Yu. V.; Den, O. E.

    2016-02-01

    Coronal helmet streamers are the most prominent large-scale elements of the solar corona observed in white light during total solar eclipses. The base of the streamer is an arcade of loops located above a global polarity inversion line. At an altitude of 1-2 solar radii above the limb, the apices of the arches sharpen, forming cusp structures, above which narrow coronal rays are observed. Lyot coronagraphs, especially those on-board spacecrafts flying beyond the Earth's atmosphere, enable us to observe the corona continuously and at large distances. At distances of several solar radii, the streamers take the form of fairly narrow spokes that diverge radially from the Sun. This radial direction displays a continuous expansion of the corona into the surrounding space, and the formation of the solar wind. However, the solar magnetic field and solar rotation complicate the situation. The rotation curves radial streams into spiral ones, similar to water streams flowing from rotating tubes. The influence of the magnetic field is more complex and multifarious. A thorough study of coronal ray geometries shows that rays are frequently not radial and not straight. Coronal streamers frequently display a curvature whose direction in the meridional plane depends on the phase of the solar cycle. It is evident that this curvature is related to the geometry of the global solar magnetic field, which depends on the cycle phase. Equatorward deviations of coronal streamers at solar minima and poleward deviations at solar maxima can be interpreted as the effects of changes in the general topology of the global solar magnetic field. There are sporadic temporal changes in the coronal rays shape caused by remote coronal mass ejections (CMEs) propagating through the corona. This is also a manifestation of the influence of the magnetic field on plasma flows. The motion of a large-scale flux rope associated with a CME away from the Sun creates changes in the structure of surrounding field

  5. Slipping magnetic reconnection in coronal loops.

    Science.gov (United States)

    Aulanier, Guillaume; Golub, Leon; Deluca, Edward E; Cirtain, Jonathan W; Kano, Ryouhei; Lundquist, Loraine L; Narukage, Noriyuki; Sakao, Taro; Weber, Mark A

    2007-12-07

    Magnetic reconnection of solar coronal loops is the main process that causes solar flares and possibly coronal heating. In the standard model, magnetic field lines break and reconnect instantaneously at places where the field mapping is discontinuous. However, another mode may operate where the magnetic field mapping is continuous but shows steep gradients: The field lines may slip across each other. Soft x-ray observations of fast bidirectional motions of coronal loops, observed by the Hinode spacecraft, support the existence of this slipping magnetic reconnection regime in the Sun's corona. This basic process should be considered when interpreting reconnection, both on the Sun and in laboratory-based plasma experiments.

  6. Coronal Fourier power spectra: implications for coronal seismology and coronal heating

    CERN Document Server

    Ireland, Jack; Inglis, Andrew R

    2014-01-01

    The dynamics of regions of the solar corona are investigated using Atmospheric Imaging Assembly (AIA) 171\\AA\\ and 193\\AA\\ data. The coronal emission from the quiet Sun, coronal loop footprints, coronal moss, and from above a sunspot is studied. It is shown that the mean Fourier power spectra in these regions can be described by a power law at lower frequencies that tails to flat spectrum at higher frequencies, plus a Gaussian-shaped contribution that varies depending on the region studied. This Fourier spectral shape is in contrast to the commonly-held assumption that coronal time-series are well described by the sum of a long time-scale background trend plus Gaussian-distributed noise, with some specific locations also showing an oscillatory signal. The implications of this discovery to the field of coronal seismology and the automated detections of oscillations are discussed. The power law contribution to the shape of the Fourier power spectrum is interpreted as being due to the summation of a distribution ...

  7. Measurements of outflow from the base of solar coronal holes

    Science.gov (United States)

    Rottman, G. J.; Orrall, F. Q.; Klimchuk, J. A.

    1982-01-01

    New evidence is presented that EUV emission lines formed at the levels of the base of the corona and the transition region are systematically shifted to shorter wavelengths within coronal holes relative to the rest of the solar disk, and that moreover this shift increases with height in the atmosphere. Measurements were made with a rocket-borne EUV spectrometer having high spectroscopic resolution and stability flown on July 15, 1980. Repeated measurements were made along a chord of the solar disk that crossed a compact coronal hole near sun center identified on gamma 10830 He I spectroheliograms. The maximum measured shift corresponded to a velocity of 12 km/sec in gamma 625 Mg X and 7 km/sec in gamma 629 O V. If these velocities correspond to a true mass flux, they provide important data on the acceleration of coronal plasma in open magnetic field regions. These observed Doppler displacements are a strong and significant signature of coronal holes, now measured on three rocket flights.

  8. Narrow line Seyfert 1 galaxies: where are the broad line regions?

    Science.gov (United States)

    Mao, Weiming; Hu, Chen; Wang, Jianmin; Bian, Weihao; Zhang, Shu; Zhao, Gang

    2010-12-01

    A sample consisting of 211 narrow line Seyfert 1 galaxies (NLS1s) with high quality spectra from the Sloan Digital Sky Survey (SDSS) is selected to explore where broad line regions are in these objects. We find that the H β profile can be fitted well by three (narrow, intermediate and broad) Gaussian components, and the FWHM ratios of the broad to the intermediate components hold a constant of 3.0 roughly for the entire sample. If the broad components originate from the region scaled by the well-determined H β reverberation mapping relation, we find that the intermediate components originate from the inner edge of the torus, which is scaled by dust K-band reverberation. We find that the IC and the BC are strongly linked dynamically, but the relation of their covering factors is much more relaxed, implying that both regions are clumpy.

  9. Narrow line Seyfert 1 galaxies: where are the broad line regions?

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A sample consisting of 211 narrow line Seyfert 1 galaxies (NLS1s) with high quality spectra from the Sloan Digital Sky Survey (SDSS) is selected to explore where broad line regions are in these objects. We find that the Hβ profile can be fitted well by three (narrow, intermediate and broad) Gaussian components, and the FWHM ratios of the broad to the intermediate components hold a constant of 3.0 roughly for the entire sample. If the broad components originate from the region scaled by the well-determined Hβ reverberation mapping relation, we find that the intermediate components originate from the inner edge of the torus, which is scaled by dust K-band reverberation. We find that the IC and the BC are strongly linked dynamically, but the relation of their covering factors is much more relaxed, implying that both regions are clumpy.

  10. The Structure of Narrow-Line Region in LINERs

    Institute of Scientific and Technical Information of China (English)

    Hai-Feng Dai; Ting-Gui Wang

    2008-01-01

    Low-ionization nuclear emission regions (LINERs) are present in a large fraction of local galaxies, while their connection to the more luminous active galactic nuclei (AGN) remains elusive. We analyze the narrow band images obtained by the Hubble Space Telescope (HST) in Hα+[NⅡ] and/or [OⅢ] band for 23 LINERs and low luminosity Seyfert galaxies in the sample of the Palomar Optical Spectroscopic Survey of nearby galaxies in an attempt to resolve the structure of Narrow Emission Line Regions (NLRs) of these objects. In all cases, NLRs are well resolved and their morphology differs from object to object. Clumps, linear structure, spiral arms or a ring are detected in a large fraction of the objects, while there is no significant difference between Seyfert galaxies and LINERs. We find that the NLR size and the narrow line luminosity are strongly correlated for both LINERs and low luminosity Seyfert galaxies, and that the size of Hα+[NⅡ] emission line region scales with Hα luminosity as RNLR∞L0.4±0.06Hα, consistent with an extension of the NLR size-luminosity relation defined for luminous Seyfert galaxies and quasars, to two orders of magnitude lower in luminosity and to lower activity levels. Our results suggest that NLRs in LINERs are similar to those of Seyfert galaxies, and they are powered by the central active galactic nucleus.

  11. The extended narrow line region of NGC 4151. I - Emission line ratios and their implications

    Science.gov (United States)

    Penston, M. V.; Robinson, A.; Alloin, D.; Appenzeller, I.; Aretxaga, I.; Axon, D. J.; Baribaud, T.; Barthel, P.; Baum, S. A.; Boisson, C.; de Bruyn, A. G.; Clavel, J.; Colina, L.; Dennefeld, M.; Diaz, A.; Dietrich, M.; Durret, F.; Dyson, J. E.; Gondhalekar, P.; van Groningen, E.; Jablonka, P.; Jackson, N.; Kollatschny, W.; Laurikainen, E.; Lawrence, A.; Masegosa, J.; McHardy, I.; Meurs, E. J. A.; Miley, G.; Moles, M.; O'Brien, P.; O'Dea, C.; del Olmo, A.; Pedlar, A.; Perea, J.; Perez, E.; Perez-Fournon, I.; Perry, J.; Pilbratt, G.; Rees, M.; Robson, I.; Rodriguez-Pascual, P.; Rodriguez Espinosa, J. M.; Santos-Lleo, M.; Schilizzi, R.; Stasińska, G.; Stirpe, G. M.; Tadhunter, C.; Terlevich, E.; Terlevich, R.; Unger, S.; Vila-Vilaro, V.; Vilchez, J.; Wagner, S. J.; Ward, M. J.; Yates, G. J.

    1990-09-01

    The paper presents the first results from long-slit spectra of the Seyfert galaxy NGC 4151 which give average diagnostic ratios of weak lines in the Extended Narrow Line Region (ENLR) of the galaxy and the first direct density measurement in an ENLR. These data confirm that the ENLR is kinematically undisturbed gas in the disk of the galaxy which is illuminated by an ionizing continuum stronger by a factor of 13 than a power law interpolated between recently observed ultraviolet and X-ray fluxes. Explanations of this apparent excess include a hot thermal continuum, time variations, and an anisotropic rotation field.

  12. The Narrow Line Region of Narrow-Line Seyfert 1 Galaxies

    CERN Document Server

    Rodríguez-Ardila, A; Pastoriza, M G; Donzelli, C J

    2000-01-01

    This work studies the optical emission line properties and physical conditions of the narrow line region (NLR) of seven narrow-line Seyfert 1 galaxies (NLS1). Our results show that the flux carried out by the narrow component of H-beta is, on average, 50% of the total line flux. As a result, the [OIII] 5007/H-beta ratio emitted in the NLR varies from 1 to 5, instead of the universally adopted value of 10. This has strong implications for the required spectral energy distribution that ionizes the NLR gas. Photoionization models that consider a NLR composed of a combination of matter-bounded and ionization-bounded clouds are successful at explaining the low [OIII] 5007/H-beta ratio and the weakness of low-ionization lines of NLS1s. Variation of the relative proportion of these two type of clouds nicely reproduce the dispersion of narrow line ratios found among the NLS1 sample. Assuming similar physical model parameters of both NLS1s and the normal Seyfert 1 galaxy NGC 5548, we show that the observed differences...

  13. Ponderomotive Acceleration in Coronal Loops

    Science.gov (United States)

    Dahlburg, R. B.; Laming, J. M.; Taylor, B. D.; Obenschain, K.

    2016-11-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  14. Microlensing of the broad line region in 17 lensed quasars

    CERN Document Server

    Sluse, D; Courbin, F; Meylan, G; Wambsganss, J

    2012-01-01

    When an image of a strongly lensed quasar is microlensed, the different components of its spectrum are expected to be differentially magnified owing to the different sizes of the corresponding emitting region. Chromatic changes are expected to be observed in the continuum while the emission lines should be deformed as a function of the size, geometry and kinematics of the regions from which they originate. Microlensing of the emission lines has been reported only in a handful of systems so far. In this paper we search for microlensing deformations of the optical spectra of pairs of images in 17 lensed quasars. This sample is composed of 13 pairs of previously unpublished spectra and four pairs of spectra from literature. Our analysis is based on a spectral decomposition technique which allows us to isolate the microlensed fraction of the flux independently of a detailed modeling of the quasar emission lines. Using this technique, we detect microlensing of the continuum in 85% of the systems. Among them, 80% s...

  15. Observational Analysis of Coronal Fans

    Science.gov (United States)

    Talpeanu, D.-C.; Rachmeler, L; Mierla, Marilena

    2017-01-01

    Coronal fans (see Figure 1) are bright observational structures that extend to large distances above the solar surface and can easily be seen in EUV (174 angstrom) above the limb. They have a very long lifetime and can live up to several Carrington rotations (CR), remaining relatively stationary for many months. Note that they are not off-limb manifestation of similarly-named active region fans. The solar conditions required to create coronal fans are not well understood. The goal of this research was to find as many associations as possible of coronal fans with other solar features and to gain a better understanding of these structures. Therefore, we analyzed many fans and created an overview of their properties. We present the results of this statistical analysis and also a case study on the longest living fan.

  16. Coronal Magnetic Field Models

    Science.gov (United States)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2017-09-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  17. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    Science.gov (United States)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.

    2017-03-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  18. Interpretation of the coronal magnetic field configuration of the Sun

    CERN Document Server

    Li, Bo; Yu, Hui

    2012-01-01

    The origin of the heliospheric magnetic flux on the Sun, and hence the origin of the solar wind, is a topic of hot debate.While the prevailing view is that the solar wind originates from outside coronal streamer helmets, there also exists the suggestion that the open magnetic field spans a far wider region.Without the definitive measurement of the coronal magnetic field, it is difficult to resolve the conflict between the two scenarios without doubt.We present two 2-dimensional, Alfv\\'enic-turbulence-based models of the solar corona and solar wind, one with and the other without a closed magnetic field region in the inner corona.The purpose of the latter model is to test whether it is possible to realize a picture suggested by polarimetric measurements of the corona using the FeXIII 10747\\AA\\ line, where open magnetic field lines seem to penetrate the streamer base.The boundary conditions at the coronal base are able to account for important observational constraints, especially those on the magnetic flux dis...

  19. Solar coronal plumes and the fast solar wind

    CERN Document Server

    Dwivedi, B N

    2015-01-01

    The spectral profiles of the coronal Ne viii line at 77 nm have different shapes in quiet-Sun regions and coronal holes (CHs). A single Gaussian fit of the line profile provides an adequate approximation in quiet-Sun areas, whereas a strong shoulder on the long-wavelength side is a systematic feature in CHs. Although this has been noticed since 1999, no physical reason for the peculiar shape could be given. In an attempt to identify the cause of this peculiarity, we address three problems that could not be conclusively resolved in a review article by a study team of the International Space Science Institute (ISSI; Wilhelm et al. 2011) : (1) The physical processes operating at the base and inside of plumes as well as their interaction with the solar wind (SW). (2) The possible contribution of plume plasma to the fast SW streams. (3) The signature of the first-ionization potential (FIP) effect between plumes and inter-plume regions (IPRs). Before the spectroscopic peculiarities in IPRs and plumes in polar coron...

  20. Current systems of coronal loops in 3D MHD simulations

    CERN Document Server

    Warnecke, Jörn; Bingert, Sven; Peter, Hardi

    2016-01-01

    We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down. We analyse a three-dimensional MHD model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux a coronal loop formes self-consistently. We investigate the current density along magnetic field lines inside (and outside) this loop and study the magnetic and plasma properties in and around this loop. The loop is defined as the bundle of field lines that coincides with enhanced emission in extreme UV. We find that the total current along the emerging loop changes its sign from being antiparallel to parallel to the magnetic field. Around the loop the currents form a complex non-force-free helical structure. This is directly related to a bipola...

  1. Coronal ``Wave'': Magnetic Footprint of a Coronal Mass Ejection?

    Science.gov (United States)

    Attrill, Gemma D. R.; Harra, Louise K.; van Driel-Gesztelyi, Lidia; Démoulin, Pascal

    2007-02-01

    We investigate the properties of two ``classical'' EUV Imaging Telescope (EIT) coronal waves. The two source regions of the associated coronal mass ejections (CMEs) possess opposite helicities, and the coronal waves display rotations in opposite senses. We observe deep core dimmings near the flare site and also widespread diffuse dimming, accompanying the expansion of the EIT wave. We also report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions and simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behavior is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME magnetic field and quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings and the widespread diffuse dimming are identified as innate characteristics of this process.

  2. A Solar Coronal Jet Event Triggers A Coronal Mass Ejection

    CERN Document Server

    Liu, Jiajia; Shen, Chenglong; Liu, Kai; Pan, Zonghao; Wang, S

    2015-01-01

    We present the multi-point and multi-wavelength observation and analysis on a solar coronal jet and coronal mass ejection (CME) event in this paper. Employing the GCS model, we obtained the real (three-dimensional) heliocentric distance and direction of the CME and found it propagate in a high speed over 1000 km/s . The jet erupted before and shared the same source region with the CME. The temporal and spacial relation- ship between them guide us the possibility that the jet triggered the CME and became its core. This scenario could promisingly enrich our understanding on the triggering mechanism of coronal mass ejections and their relations with coronal large-scale jets. On the other hand, the magnetic field configuration of the source region observed by the SDO/HMI instrument and the off- limb inverse Y-shaped configuration observed by SDO/AIA 171 A passband, together provide the first detailed observation on the three-dimensional reconnection process of large-scale jets as simulated in Pariat et al. 2009. ...

  3. Projection effects in coronal dimmings and associated EUV wave event

    CERN Document Server

    Dissauer, Karin; Veronig, Astrid M; Vanninathan, Kamalam; Magdalenić, Jasmina

    2016-01-01

    We investigate the high-speed ($v >$ 1000 km s$^{-1}$) extreme-ultraviolet (EUV) wave associated with an X1.2 flare and coronal mass ejection (CME) from NOAA active region 11283 on 2011 September 6 (SOL2011-09-06T22:12). This EUV wave features peculiar on-disk signatures, in particular we observe an intermittent "disappearance" of the front for 120 s in SDO/AIA 171, 193, 211 {\\AA} data, whereas the 335 {\\AA} filter, sensitive to hotter plasmas (T$\\sim$2.5 MK), shows a continuous evolution of the wave front. The eruption was also accompanied by localized coronal dimming regions. We exploit the multi-point quadrature position of SDO and STEREO-A, to make a thorough analysis of the EUV wave evolution, with respect to its kinematics and amplitude evolution and reconstruct the SDO line-of-sight (LOS) direction of the identified coronal dimming regions in STEREO-A. We show that the observed intensities of the dimming regions in SDO/AIA depend on the structures that are lying along their LOS and are the combination ...

  4. Coronal Magnetism and Forward Solarsoft Idl Package

    Science.gov (United States)

    Gibson, S. E.

    2014-12-01

    The FORWARD suite of Solar Soft IDL codes is a community resource for model-data comparison, with a particular emphasis on analyzing coronal magnetic fields. FORWARD may be used both to synthesize a broad range of coronal observables, and to access and compare to existing data. FORWARD works with numerical model datacubes, interfaces with the web-served Predictive Science Inc MAS simulation datacubes and the Solar Soft IDL Potential Field Source Surface (PFSS) package, and also includes several analytic models (more can be added). It connects to the Virtual Solar Observatory and other web-served observations to download data in a format directly comparable to model predictions. It utilizes the CHIANTI database in modeling UV/EUV lines, and links to the CLE polarimetry synthesis code for forbidden coronal lines. FORWARD enables "forward-fitting" of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties.

  5. The Inconvenient Truth About Coronal Dimmings

    CERN Document Server

    McIntosh, Scott W

    2008-01-01

    We investigate the occurrence of a coronal dimming using a combination of high resolution spectro-polarimetric, spectral and broadband images which span from the deep photosphere into the corona. These observations reinforce the belief that coronal dimmings, or transient coronal holes as they are also known, are indeed the locations of open magnetic flux in the corona resulting from the launch of a CME. We will see that, as open magnetic regions, they must act just as coronal holes and be sources of the fast solar wind, but only temporarily. An inescapable question therefore arises - what impact does this source of fast wind have on the propagation and in-flight characteristics of the CME that initiates the coronal dimming in the first place?

  6. Plasma simulations of emission line regions in high energy environments

    Science.gov (United States)

    Richardson, Chris T.

    This dissertation focuses on understanding two different, but in each case extreme, astrophysical environments: the Crab Nebula and emission line galaxies. These relatively local objects are well constrained by observations and are test cases of phenomena seen at high-z where detailed observations are rare. The tool used to study these objects is the plasma simulation code known as Cloudy. The introduction provides a brief summary of relevant physical concepts in nebular astrophysics and presents the basic features and assumptions of Cloudy. The first object investigated with Cloudy, the Crab Nebula, is a nearby supernova remnant that previously has been subject to photoionization modeling to reproduce the ionized emission seen in the nebula's filamentary structure. However, there are still several unanswered questions: (1) What excites the H2 emitting gas? (2) How much mass is in the molecular component? (3) How did the H2 form? (4) What is nature of the dust grains? A large suite of observations including long slit optical and NIR spectra over ionized, neutral and molecular gas in addition to HST and NIR ground based images constrain a particularly bright region of H2 emission, Knot 51, which exhibits a high excitation temperature of ˜3000 K. Simulations of K51 revealed that only a trace amount of H2 is needed to reproduce the observed emission and that H2 forms through an uncommon nebular process known as associative detachment. The final chapters of this dissertation focus on interpreting the narrow line region (NLR) in low-z emission line galaxies selected by a novel technique known as mean field independent component analysis (MFICA). A mixture of starlight and radiation from an AGN excites the gas present in galaxies. MFICA separates galaxies over a wide range of ionization into subsets of pure AGN and pure star forming galaxies allowing simulations to reveal the properties responsible for their observed variation in ionization. Emission line ratios can

  7. Deep coronal hole associated with quiescent filament

    Science.gov (United States)

    Kesumaningrum, Rasdewita; Herdiwidjaya, Dhani

    2014-03-01

    We present a study of the morphology of quiescent filament observed by H-alpha Solar Telescope at Bosscha Observatory in association with coronal hole observed by Atmospheric Imaging Assembly (AIA) instrument in 193 Å from Solar Dynamics Observatory. H-alpha images were processed by imaging softwares, namely Iris 5.59 and ImageJ, to enhance the signal to noise ratio and to identify the filament features associated with coronal hole. For images observed on October 12, 2011, November 14, 2011 and January 2, 2012, we identified distinct features of coronal holes above the quiescent filaments. This associated coronal holes have filament-like morphology with a thick long thread as it's `spine', defined as Deep Coronal Hole. Because of strong magnetic field of sunspot, these filaments and coronal holes emerged far from active region and lasted for several days. It is interesting as for segmented filament, deep coronal holes above the filaments lasted for a quite long period of time and merged. This association between filament and deep coronal hole can be explained by filament magnetic loop.

  8. 3D reconstruction methods of coronal structures by radio observations

    Science.gov (United States)

    Aschwanden, Markus J.; Bastian, T. S.; White, Stephen M.

    1992-01-01

    The ability to carry out the three dimensional (3D) reconstruction of structures in the solar corona would represent a major advance in the study of the physical properties in active regions and in flares. Methods which allow a geometric reconstruction of quasistationary coronal structures (for example active region loops) or dynamic structures (for example flaring loops) are described: stereoscopy of multi-day imaging observations by the VLA (Very Large Array); tomography of optically thin emission (in radio or soft x-rays); multifrequency band imaging by the VLA; and tracing of magnetic field lines by propagating electron beams.

  9. QUASI-PERIODIC OSCILLATION OF A CORONAL BRIGHT POINT

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Tanmoy; Banerjee, Dipankar [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Tian, Hui, E-mail: tsamanta@iiap.res.in, E-mail: hui.tian@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-06-20

    Coronal bright points (BPs) are small-scale luminous features seen in the solar corona. Quasi-periodic brightenings are frequently observed in the BPs and are generally linked with underlying magnetic flux changes. We study the dynamics of a BP seen in the coronal hole using the Atmospheric Imaging Assembly images, the Helioseismic and Magnetic Imager magnetogram on board the Solar Dynamics Observatory, and spectroscopic data from the newly launched Interface Region Imaging Spectrograph (IRIS). The detailed analysis shows that the BP evolves throughout our observing period along with changes in underlying photospheric magnetic flux and shows periodic brightenings in different EUV and far-UV images. With the highest possible spectral and spatial resolution of IRIS, we attempted to identify the sources of these oscillations. IRIS sit-and-stare observation provided a unique opportunity to study the time evolution of one footpoint of the BP as the slit position crossed it. We noticed enhanced line profile asymmetry, enhanced line width, intensity enhancements, and large deviation from the average Doppler shift in the line profiles at specific instances, which indicate the presence of sudden flows along the line-of-sight direction. We propose that transition region explosive events originating from small-scale reconnections and the reconnection outflows are affecting the line profiles. The correlation between all these parameters is consistent with the repetitive reconnection scenario and could explain the quasi-periodic nature of the brightening.

  10. Non-linear force-free field modeling of a solar active region around the time of a major flare and coronal mass ejection

    CERN Document Server

    Schrijver, C J; Metcalf, T; Barnes, G; Lites, B; Tarbell, T; McTiernan, J; Valori, G; Wiegelmann, T; Wheatland, M S; Amari, T; Aulanier, G; Demoulin, P; Fuhrmann, M; Kusano, K; Régnier, S; Thalmann, J K

    2007-01-01

    Solar flares and coronal mass ejections are associated with rapid changes in field connectivity and powered by the partial dissipation of electrical currents in the solar atmosphere. A critical unanswered question is whether the currents involved are induced by the motion of pre-existing atmospheric magnetic flux subject to surface plasma flows, or whether these currents are associated with the emergence of flux from within the solar convective zone. We address this problem by applying state-of-the-art nonlinear force-free field (NLFFF) modeling to the highest resolution and quality vector-magnetographic data observed by the recently launched Hinode satellite on NOAA Active Region 10930 around the time of a powerful X3.4 flare. We compute 14 NLFFF models with 4 different codes and a variety of boundary conditions. We find that the model fields differ markedly in geometry, energy content, and force-freeness. We discuss the relative merits of these models in a general critique of present abilities to model the ...

  11. PROBING THE PHYSICS OF NARROW LINE REGIONS IN ACTIVE GALAXIES. II. THE SIDING SPRING SOUTHERN SEYFERT SPECTROSCOPIC SNAPSHOT SURVEY (S7)

    Energy Technology Data Exchange (ETDEWEB)

    Dopita, Michael A.; Davies, Rebecca; Kewley, Lisa; Hampton, Elise; Sutherland, Ralph [RSAA, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Shastri, Prajval; Kharb, Preeti; Jose, Jessy; Bhatt, Harish; Ramya, S. [Indian Institute of Astrophysics, Koramangala 2 B Block, Bangalore 560034 (India); Scharwächter, Julia [LERMA, Observatoire de Paris, CNRS, UMR 8112, 61 Avenue de l’Observatoire, F-75014 Paris (France); Jin, Chichuan [Qian Xuesen Laboratory for Space Technology, Beijing (China); Banfield, Julie [CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW, 1710 Australia (Australia); Zaw, Ingyin [New York University (Abu Dhabi), 70 Washington Square South, New York, NY 10012 (United States); Juneau, Stéphanie [CEA-Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); James, Bethan [Institute of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA (United Kingdom); Srivastava, Shweta, E-mail: Michael.Dopita@anu.edu.au [Astronomy and Astrophysics Division, Physical Research Laboratory, Ahmedabad 380009 (India)

    2015-03-15

    Here we describe the Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) and present results on 64 galaxies drawn from the first data release. The S7 uses the Wide Field Spectrograph mounted on the ANU 2.3 m telescope located at the Siding Spring Observatory to deliver an integral field of 38 × 25 arcsec at a spectral resolution of R = 7000 in the red (530–710 nm), and R = 3000 in the blue (340–560 nm). From these data cubes we have extracted the narrow-line region spectra from a 4 arcsec aperture centered on the nucleus. We also determine the Hβ and [O iii] λ5007 fluxes in the narrow lines, the nuclear reddening, the reddening-corrected relative intensities of the observed emission lines, and the Hβ and [O iii] λ5007 luminosities determined from spectra for which the stellar continuum has been removed. We present a set of images of the galaxies in [O iii] λ5007, [N ii] λ6584, and Hα, which serve to delineate the spatial extent of the extended narrow-line region and also to reveal the structure and morphology of the surrounding H ii regions. Finally, we provide a preliminary discussion of those Seyfert 1 and Seyfert 2 galaxies that display coronal emission lines in order to explore the origin of these lines.

  12. Projection Effects in Coronal Dimmings and Associated EUV Wave Event

    Science.gov (United States)

    Dissauer, K.; Temmer, M.; Veronig, A. M.; Vanninathan, K.; Magdalenić, J.

    2016-10-01

    We investigate the high-speed (v > 1000 km s‑1) extreme-ultraviolet (EUV) wave associated with an X1.2 flare and coronal mass ejection (CME) from NOAA active region 11283 on 2011 September 6 (SOL2011-09-06T22:12). This EUV wave features peculiar on-disk signatures in particular, we observe an intermittent “disappearance” of the front for 120 s in Solar Dynamics Observatory (SDO)/AIA 171, 193, 211 Å data, whereas the 335 Å filter, sensitive to hotter plasmas (T ∼ 2.5 MK), shows a continuous evolution of the wave front. The eruption was also accompanied by localized coronal dimming regions. We exploit the multi-point quadrature position of SDO and STEREO-A, to make a thorough analysis of the EUV wave evolution, with respect to its kinematics and amplitude evolution and reconstruct the SDO line-of-sight (LOS) direction of the identified coronal dimming regions in STEREO-A. We show that the observed intensities of the dimming regions in SDO/AIA depend on the structures that are lying along their LOS and are the combination of their individual intensities, e.g., the expanding CME body, the enhanced EUV wave, and the CME front. In this context, we conclude that the intermittent disappearance of the EUV wave in the AIA 171, 193, and 211 Å filters, which are channels sensitive to plasma with temperatures below ∼2 MK is also caused by such LOS integration effects. These observations clearly demonstrate that single-view image data provide us with limited insight to correctly interpret coronal features.

  13. More of the Inconvenient Truth About Coronal Dimmings

    CERN Document Server

    McIntosh, Scott W; Leamon, Robert J

    2009-01-01

    We continue the investigation of a CME-driven coronal dimming from December 14 2006 using unique high resolution imaging of the chromosphere and corona from the Hinode spacecraft. Over the course of the dimming event we observe the dynamic increase of non-thermal line broadening of multiple emission lines as the CME is released and the corona opens; reaching levels seen in coronal holes. As the corona begins to close, refill and brighten, we see a reduction of the non-thermal broadening towards the pre-eruption level. The dynamic evolution of non-thermal broadening is consistent with the expected change of Alfven wave amplitudes in the magnetically open rarefied dimming region, compared to the dense closed corona prior to the CME. The presented data reinforce the belief that coronal dimmings must be temporary sources of the fast solar wind. It is unclear if such a rapid transition in the thermodynamics of the corona to a solar wind state has an effect on the CME itself.

  14. Molecular Lines of 13 Glactic Infrared Bubble Regions

    CERN Document Server

    Yan, Q Z; Zhang, B; Lu, D R; Chen, X; Tang, Z H

    2016-01-01

    We investigated the physical properties of molecular clouds and star formation processes around infrared bubbles which are essentially expanding HII regions. We performed observations of 13 galactic infrared bubble fields containing 18 bubbles. Five molecular lines, 12CO (J=1-0), 13CO (J=1-0), C18O(J=1-0), HCN (J=1-0), and HCO+ (J=1-0), were observed, and several publicly available surveys, GLIMPSE, MIPSGAL, ATLASGAL, BGPS, VGPS, MAGPIS, and NVSS, were used for comparison. We find that these bubbles are generally connected with molecular clouds, most of which are giant. Several bubble regions display velocity gradients and broad shifted profiles, which could be due to the expansion of bubbles. The masses of molecular clouds within bubbles range from 100 to 19,000 solar mass, and their dynamic ages are about 0.3-3.7 Myr, which takes into account the internal turbulence pressure of surrounding molecular clouds. Clumps are found in the vicinity of all 18 bubbles, and molecular clouds near four of these bubbles w...

  15. Coronal influence on dynamos

    CERN Document Server

    Warnecke, Jörn

    2013-01-01

    We report on turbulent dynamo simulations in a spherical wedge with an outer coronal layer. We apply a two-layer model where the lower layer represents the convection zone and the upper layer the solar corona. This setup is used to study the coronal influence on the dynamo action beneath the surface. Increasing the radial coronal extent gradually to three times the solar radius and changing the magnetic Reynolds number, we find that dynamo action benefits from the additional coronal extent in terms of higher magnetic energy in the saturated stage. The flux of magnetic helicity can play an important role in this context.

  16. Deriving the Properties of Coronal Pressure Fronts in 3D: Application to the 2012 May 17 Ground Level Enhancement

    Science.gov (United States)

    Rouillard, A. P.; Plotnikov, I.; Pinto, R. F.; Tirole, M.; Lavarra, M.; Zucca, P.; Vainio, R.; Tylka, A. J.; Vourlidas, A.; De Rosa, M. L.; Linker, J.; Warmuth, A.; Mann, G.; Cohen, C. M. S.; Mewaldt, R. A.

    2016-12-01

    We study the link between an expanding coronal shock and the energetic particles measured near Earth during the ground level enhancement of 2012 May 17. We developed a new technique based on multipoint imaging to triangulate the three-dimensional (3D) expansion of the shock forming in the corona. It uses images from three vantage points by mapping the outermost extent of the coronal region perturbed by the pressure front. We derive for the first time the 3D velocity vector and the distribution of Mach numbers, M FM, of the entire front as a function of time. Our approach uses magnetic field reconstructions of the coronal field, full magnetohydrodynamic simulations and imaging inversion techniques. We find that the highest M FM values appear near the coronal neutral line within a few minutes of the coronal mass ejection onset; this neutral line is usually associated with the source of the heliospheric current and plasma sheet. We illustrate the variability of the shock speed, shock geometry, and Mach number along different modeled magnetic field lines. Despite the level of uncertainty in deriving the shock Mach numbers, all employed reconstruction techniques show that the release time of GeV particles occurs when the coronal shock becomes super-critical (M FM > 3). Combining in situ measurements with heliospheric imagery, we also demonstrate that magnetic connectivity between the accelerator (the coronal shock of 2012 May 17) and the near-Earth environment is established via a magnetic cloud that erupted from the same active region roughly five days earlier.

  17. Observational features of equatorial coronal hole jets

    Directory of Open Access Journals (Sweden)

    G. Zimbardo

    2010-03-01

    Full Text Available Collimated ejections of plasma called "coronal hole jets" are commonly observed in polar coronal holes. However, such coronal jets are not only a specific features of polar coronal holes but they can also be found in coronal holes appearing at lower heliographic latitudes. In this paper we present some observations of "equatorial coronal hole jets" made up with data provided by the STEREO/SECCHI instruments during a period comprising March 2007 and December 2007. The jet events are selected by requiring at least some visibility in both COR1 and EUVI instruments. We report 15 jet events, and we discuss their main features. For one event, the uplift velocity has been determined as about 200 km s−1, while the deceleration rate appears to be about 0.11 km s−2, less than solar gravity. The average jet visibility time is about 30 min, consistent with jet observed in polar regions. On the basis of the present dataset, we provisionally conclude that there are not substantial physical differences between polar and equatorial coronal hole jets.

  18. Hydrogen Lyman-alpha and Lyman-beta radiances and profiles in polar coronal holes

    CERN Document Server

    Tian, Hui; Curdt, Werner; Vial, Jean-Claude

    2009-01-01

    The hydrogen Lyman-alpha plays a dominant role in the radiative energy transport in the lower transition region, and is important for the stud- ies of transition-region structure as well as solar wind origin. We investigate the Ly-alpha profiles obtained by SUMER in coronal holes and quiet Sun. In a subset of these observations, also the Hi Lyman-beta, Si iii, and O vi lines were (quasi-) simultaneously recorded. We find that the distances between the two peaks of Ly-alpha profiles are larger in coronal holes than in the quiet Sun, indicating a larger opacity in coronal holes. This difference might result from the different magnetic structures or the different radiation fields in the two regions. Most of the Ly-beta profiles in the coronal hole have a stronger blue peak, in contrast to those in quiet-Sun regions. Whilst in both regions the Ly-alpha profiles are stronger in the blue peak. Although the asymmetries are likely to be produced by differential flows in the solar atmosphere, their detailed formation ...

  19. The systematic radial downflow in the transition region of the quiet sun from limb-to-limb observations of the C IV resonance lines

    Science.gov (United States)

    Rottman, Gary J.; Hassler, Donald D.; Jones, Michael D.; Orrall, Frank Q.

    1990-08-01

    This paper presents absolute velocities of C IV 1548, 1550 nm measured as a function of position along the solar equator, which was free of both active regions and coronal holes, and uniformly representative of the quiet sun. These observations were made with moderate spatial resolution (18 arcsec) using an EUV spectrometer dedicated to measuring absolute wavelengths (velocities) by direct comparison with a platinum spectrum generated on board the sounding rocket. On the assumption that systematic horizontal motions cancel statistically so that the line-of-sight velocities approach zero at the limb, a net radial downflow of 7.5 + or - 1.0 km/sec was found. The assumption was tested using the wavelength reference and found to be valid within the absolute accuracy of the rest wavelengths of the C IV lines.

  20. Clues to Quasar Broad Line Region Geometry and Kinematics

    DEFF Research Database (Denmark)

    Vestergaard, Marianne; Wilkes, B. J.; Barthel, P. D.

    2000-01-01

    width to show significant inverse correlations with the fractional radio core-flux density, R, the radio axis inclination indicator. Highly inclined systems have broader line wings, consistent with a high-velocity field perpendicular to the radio axis. By contrast, the narrow line-core shows...... and with an accretion disk-wind emitting the broad lines. A spherical distribution of randomly orbiting broad-line clouds and a polar high-ionization outflow are ruled out....

  1. Analysis of a coronal mass ejection and corotating interaction region as they travel from the Sun passing Venus, Earth, Mars, and Saturn

    Science.gov (United States)

    Prise, A. J.; Harra, L. K.; Matthews, S. A.; Arridge, C. S.; Achilleos, N.

    2015-03-01

    During June 2010 a good alignment in the solar system between Venus, STEREO-B, Mars, and Saturn provided an excellent opportunity to study the propagation of a coronal mass ejection (CME) and closely occurring corotating interaction region (CIR) from the Sun to Saturn. The CME erupted from the Sun at 01:30 UT on 20 June 2010,with v≈ 600 km s-1, as observed by STEREO-B, Solar Dynamics Observatory, and SOHO/Large Angle and Spectrometric Coronagraph. It arrived at Venus over 2 days later, some 3.5 days after a CIR is also detected here. The CIR was also observed at STEREO-B and Mars, prior to the arrival of the CME. The CME is not directed earthward, but the CIR is detected here less than 2 days after its arrival at Mars. Around a month later, a strong compression of the Saturn magnetosphere is observed by Cassini, consistent with the scenario that the CME and CIR have merged into a single solar transient. The arrival times of both the CME and the CIR at different locations were predicted using the ENLIL solar wind model. The arrival time of the CME at Venus, STEREO-B, and Mars is predicted to within 20 h of its actual detection, but the predictions for the CIR showed greater differences from observations, all over 1.5 days early. More accurate predictions for the CIR were found by extrapolating the travel time between different locations using the arrival times and speeds detected by STEREO-B and ACE. We discuss the implications of these results for understanding the propagation of solar transients.

  2. Free Magnetic Energy and Coronal Heating

    Science.gov (United States)

    Winebarger, Amy; Moore, Ron; Falconer, David

    2012-01-01

    Previous work has shown that the coronal X-ray luminosity of an active region increases roughly in direct proportion to the total photospheric flux of the active region's magnetic field (Fisher et al. 1998). It is also observed, however, that the coronal luminosity of active regions of nearly the same flux content can differ by an order of magnitude. In this presentation, we analyze 10 active regions with roughly the same total magnetic flux. We first determine several coronal properties, such as X-ray luminosity (calculated using Hinode XRT), peak temperature (calculated using Hinode EIS), and total Fe XVIII emission (calculated using SDO AIA). We present the dependence of these properties on a proxy of the free magnetic energy of the active region

  3. Suppression of Heating of Coronal Loops Rooted in Opposite Polarity Sunspot Umbrae

    Science.gov (United States)

    Tiwari, Sanjiv K.; Thalmann, Julia K.; Moore, Ronald L.; Panesar, Navdeep K.; Winebarger, Amy R.

    2016-01-01

    EUV observations of active region (AR) coronae reveal the presence of loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 Å images we identify many clearly discernible coronal loops that connect plage or a sunspot of one polarity to an opposite-­polarity plage region. The AIA 94 Å images show dim regions in the umbrae of the spots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the Heliosesmic Magnetic Imager (HMI) onboard SDO. The NLFFF model, validated by comparison of calculated model field lines with observed loops in AIA 193 and 94 Å, specifies the photospheric roots of the model field lines. Some model coronal magnetic field lines arch from the dim umbral area of the positive-polarity sunspot to the dim umbral area of a negative-polarity sunspot. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed.

  4. Multidimensional modeling of coronal rain dynamics

    CERN Document Server

    Fang, X; Keppens, R

    2013-01-01

    We present the first multidimensional, magnetohydrodynamic simulations which capture the initial formation and the long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in-situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match with modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into $V$-shaped like features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views on blobs which evaporate in situ, or get siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys o...

  5. Solar coronal loops associated with small-scale mixed polarity surface magnetic fields

    CERN Document Server

    Chitta, L P; Solanki, S K; Barthol, P; Gandorfer, A; Gizon, L; Hirzberger, J; Riethmueller, T L; van Noort, M; Rodriguez, J Blanco; Iniesta, J C Del Toro; Suarez, D Orozco; Schmidt, W; Pillet, V Martinez; Knoelker, M

    2016-01-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment (IMaX) instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite polarity magnetic elements very close to the larger dominant polarity. These opposite polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca II H images obtained from the S...

  6. Coronal rain in magnetic bipolar weak fields

    Science.gov (United States)

    Xia, C.; Keppens, R.; Fang, X.

    2017-07-01

    Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org

  7. Coronal temperature profiles obtained from kinetic models and from coronal brightness measurements obtained during solar eclipses

    CERN Document Server

    Pierrard, V; Lemaire, J F

    2012-01-01

    Coronal density, temperature and heat flux distributions for the equatorial and polar corona have been deduced by Lemaire [2012] from Saito's model of averaged coronal white light (WL) brightness and polarization observations. They are compared with those determined from a kinetic collisionless/exospheric model of the solar corona. This comparison indicates rather similar distributions at large radial distances (> 7 Rs) in the collisionless region. However, rather important differences are found close to the Sun in the acceleration region of the solar wind. The exospheric heat flux is directed away from the Sun, while that inferred from all WL coronal observations is in the opposite direction, i.e., conducting heat from the inner corona toward the chromosphere. This could indicate that the source of coronal heating rate extends up into the inner corona where it maximizes at r > 1.5 Rs well above the transition region.

  8. Chromospheric and Transition region He lines during a flare

    Science.gov (United States)

    Falchi, A.; Mauas, P. J. D.; Andretta, V.; Teriaca, L.; Cauzzi, G.; Falciani, R.; Smaldone, L. A.

    An observing campaign (SOHO JOP 139), coordinated between ground based and SOHO instruments, has been planned to obtain simultaneous spectroheliograms of the same area in several spectral lines. The chromospheric lines Ca II K, Hα and Na I D as well as He I 10830, 5876, 584 and 304 Ålines have been observed. These observations allow us to build semi-empirical models of the atmosphere before and during a small flare. With these models, constructed to match the observed line profiles, we can test the He abundance value.

  9. Solar coronal jets

    Science.gov (United States)

    Dobrzyck, D.

    The solar jets were first observed by SOHO instruments (EIT, LASCO, UVCS) during the previous solar minimum. They were small, fast ejections originating from flaring UV bright points within large polar coronal holes. The obtained data provided us with estimates of the jet plasma conditions, dynamics, evolution of the electron temperature and heating rate required to reproduce the observed ionization state. To follow the polar jets through the solar cycle a special SOHO Joint Observing Program (JOP 155) was designed. It involves a number of SOHO instruments (EIT, CDS, UVCS, LASCO) as well as TRACE. The coordinated observations have been carried out since April 2002. The data enabled to identify counterparts of the 1996-1998 solar minimum jets. Their frequency of several events per day appear comparable to the frequency from the previous solar minimum. The jets are believed to be triggered by field line reconnection between emerging magnetic dipole and pre-existing unipolar field. Existing models predict that the hot jet is formed together with another jet of a cool material. The particular goal of the coordinated SOHO and TRACE observations was to look for possible association of the hot and cool plasma ejections. Currently there is observational evidence that supports these models.

  10. The Temperature-Dependent Nature of Coronal Dimmings

    CERN Document Server

    Robbrecht, Eva

    2010-01-01

    The opening-up of the magnetic field during solar eruptive events is often accompanied by a dimming of the local coronal emission. From observations of filament eruptions recorded with the Extreme-Ultraviolet Imager on STEREO during 2008-2009, it is evident that these dimmings are much more pronounced in 19.5 nm than in the lower-temperature line 17.1 nm, as viewed either on the disk or above the limb. We conclude that most of the cooler coronal plasma is not ejected but remains gravitationally bound when the loops open up. This result is consistent with Doppler measurements by Imada and coworkers, who found that the upflow speeds in a transient coronal hole increased dramatically above a temperature of 1 MK; it is also consistent with the quasistatic behavior of polar plumes, as compared with the hotter interplume regions that are the main source of the fast solar wind. When the open flux reconnects and closes down again, the trapped plasma is initially heated to such high temperatures that it is no longer v...

  11. Clues to Quasar Broad Line Region Geometry and Kinematics

    DEFF Research Database (Denmark)

    Vestergaard, Marianne; Wilkes, B. J.; Barthel, P. D.

    2000-01-01

    We present evidence that the high-velocity CIV lambda 1549 emission line gas of radio-loud quasars may originate in a disk-like configuration, in close proximity to the accretion disk often assumed to emit the low-ionization lines. For a sample of 36 radio-loud z~2 quasars we find the 20--30% peak...

  12. Are Coronal Loops Isothermal or Multithermal? Yes!

    CERN Document Server

    Schmelz, J T; Rightmire, L A; Kimble, J A; Del Zanna, G; Cirtain, J W; DeLuca, E E; Mason, H E

    2009-01-01

    Surprisingly few solar coronal loops have been observed simultaneously with TRACE and SOHO/CDS, and even fewer analyses of these loops have been conducted and published. The SOHO Joint Observing Program 146 was designed in part to provide the simultaneous observations required for in-depth temperature analysis of active region loops and determine whether these loops are isothermal or multithermal. The data analyzed in this paper were taken on 2003 January 17 of AR 10250. We used TRACE filter ratios, emission measure loci, and two methods of differential emission measure analysis to examine the temperature structure of three different loops. TRACE and CDS observations agree that Loop 1 is isothermal with Log T $=$ 5.85, both along the line of sight as well as along the length of the loop leg that is visible in the CDS field of view. Loop 2 is hotter than Loop 1. It is multithermal along the line of sight, with significant emission between 6.2 $<$ Log T $<$ 6.4, but the loop apex region is out of the CDS ...

  13. Magnetic shuffling of coronal downdrafts

    Science.gov (United States)

    Petralia, A.; Reale, F.; Orlando, S.

    2017-02-01

    Context. Channelled fragmented downflows are ubiquitous in magnetized atmospheres, and have recently been addressed based on an observation after a solar eruption. Aims: We study the possible back-effect of the magnetic field on the propagation of confined flows. Methods: We compared two 3D magnetohydrodynamic simulations of dense supersonic plasma blobs that fall down along a coronal magnetic flux tube. In one, the blobs move strictly along the field lines; in the other, the initial velocity of the blobs is not perfectly aligned with the magnetic field and the field is weaker. Results: The aligned blobs remain compact while flowing along the tube, with the generated shocks. The misaligned blobs are disrupted and merge through the chaotic shuffling of the field lines. They are structured into thinner filaments. Alfvén wave fronts are generated together with shocks ahead of the dense moving front. Conclusions: Downflowing plasma fragments can be chaotically and efficiently mixed if their motion is misaligned with field lines, with broad implications for disk accretion in protostars, coronal eruptions, and rain, for example. Movies associated to Figs. 2 and 3 are available at http://www.aanda.org

  14. Improvements on coronal hole detection in SDO/AIA images using supervised classification

    Science.gov (United States)

    Reiss, Martin A.; Hofmeister, Stefan J.; De Visscher, Ruben; Temmer, Manuela; Veronig, Astrid M.; Delouille, Véronique; Mampaey, Benjamin; Ahammer, Helmut

    2015-07-01

    We demonstrate the use of machine learning algorithms in combination with segmentation techniques in order to distinguish coronal holes and filaments in SDO/AIA EUV images of the Sun. Based on two coronal hole detection techniques (intensity-based thresholding, SPoCA), we prepared datasets of manually labeled coronal hole and filament channel regions present on the Sun during the time range 2011-2013. By mapping the extracted regions from EUV observations onto HMI line-of-sight magnetograms we also include their magnetic characteristics. We computed shape measures from the segmented binary maps as well as first order and second order texture statistics from the segmented regions in the EUV images and magnetograms. These attributes were used for data mining investigations to identify the most performant rule to differentiate between coronal holes and filament channels. We applied several classifiers, namely Support Vector Machine (SVM), Linear Support Vector Machine, Decision Tree, and Random Forest, and found that all classification rules achieve good results in general, with linear SVM providing the best performances (with a true skill statistic of ≈ 0.90). Additional information from magnetic field data systematically improves the performance across all four classifiers for the SPoCA detection. Since the calculation is inexpensive in computing time, this approach is well suited for applications on real-time data. This study demonstrates how a machine learning approach may help improve upon an unsupervised feature extraction method.

  15. MULTIDIMENSIONAL MODELING OF CORONAL RAIN DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, X.; Xia, C.; Keppens, R. [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, B-3001 Leuven (Belgium)

    2013-07-10

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.

  16. Observational features of equatorial coronal hole jets

    CERN Document Server

    Nistico', G; Patsourakos, S; Zimbardo, G

    2010-01-01

    Collimated ejections of plasma called "coronal hole jets" are commonly observed in polar coronal holes. However, such coronal jets are not only a specific features of polar coronal holes but they can also be found in coronal holes appearing at lower heliographic latitudes. In this paper we present some observations of "equatorial coronal hole jets" made up with data provided by the STEREO/SECCHI instruments during a period comprising March 2007 and December 2007. The jet events are selected by requiring at least some visibility in both COR1 and EUVI instruments. We report 15 jet events, and we discuss their main features. For one event, the uplift velocity has been determined as about 200 km/s, while the deceleration rate appears to be about 0.11 km/s2, less than solar gravity. The average jet visibility time is about 30 minutes, consistent with jet observed in polar regions. On the basis of the present dataset, we provisionally conclude that there are not substantial physical differences between polar and eq...

  17. Motion Magnification in Coronal Seismology

    Science.gov (United States)

    Anfinogentov, Sergey; Nakariakov, Valery M.

    2016-11-01

    We introduce a new method for the investigation of low-amplitude transverse oscillations of solar plasma non-uniformities, such as coronal loops, individual strands in coronal arcades, jets, prominence fibrils, polar plumes, and other contrast features that have been observed with imaging instruments. The method is based on the two-dimensional dual-tree complex wavelet transform (DTℂWT). It allows us to magnify transverse, in the plane-of-the-sky, quasi-periodic motions of contrast features in image sequences. The tests performed on the artificial data cubes that imitated exponentially decaying, multi-periodic and frequency-modulated kink oscillations of coronal loops showed the effectiveness, reliability, and robustness of this technique. The algorithm was found to give linear scaling of the magnified amplitudes with the original amplitudes, provided these are sufficiently small. In addition, the magnification is independent of the oscillation period in a broad range of the periods. The application of this technique to SDO/AIA EUV data cubes of a non-flaring active region allowed for the improved detection of low-amplitude decay-less oscillations in the majority of loops.

  18. Coronal Mass Ejections

    Science.gov (United States)

    Crooker, Nancy; Joselyn, Jo Ann; Feynman, Joan

    The early 1970's can be said to mark the beginning of The Enlightenment in the history of the Space Age, literally as well as by analogy to European history. Instruments blinded by Earth's atmosphere were lifted above and, for the first time, saw clearly and continuously the ethereal white light and sparkling x-rays from the solar corona. From these two bands of the light spectrum came images of coronal mass ejections and coronal holes, respectively. But whereas coronal holes were immediately identified as the source of high-speed solar wind streams, at first coronal mass ejections were greeted only by a sense of wonder. It took years of research to identify their signatures in the solar wind before the fastest ones could be identified with the well-known shock disturbances that cause the most violent space storms.

  19. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  20. Force-free field modeling of twist and braiding-induced magnetic energy in an active-region corona

    CERN Document Server

    Thalmann, J K; Wiegelmann, T

    2013-01-01

    The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region corona, has been substantiated by high-resolution observations only recently. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. 2013 (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on vector SDO/HMI magnetograms. We deliver estimates of the free magnetic energy associated to a braided coronal structure. Our model results suggest (~100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the active-region corona being heated by field line braiding. We were able to assess the coronal free energy appropriately by using vector field measurements and attribute the lower energy...

  1. Mechanisms of Coronal Heating

    Indian Academy of Sciences (India)

    S. R. Verma

    2006-06-01

    The Sun is a mysterious star. The high temperature of the chromosphere and corona present one of the most puzzling problems of solar physics. Observations show that the solar coronal heating problem is highly complex with many different facts. It is likely that different heating mechanisms are at work in solar corona. Recent observations show that Magnetic Carpet is a potential candidate for solar coronal heating.

  2. Solar Coronal Plumes

    Directory of Open Access Journals (Sweden)

    Giannina Poletto

    2015-12-01

    Full Text Available Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features.

  3. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    Science.gov (United States)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  4. THE COOLING OF CORONAL PLASMAS. IV. CATASTROPHIC COOLING OF LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Cargill, P. J. [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Bradshaw, S. J., E-mail: p.cargill@imperial.ac.uk [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)

    2013-07-20

    We examine the radiative cooling of coronal loops and demonstrate that the recently identified catastrophic cooling is due to the inability of a loop to sustain radiative/enthalpy cooling below a critical temperature, which can be >1 MK in flares, 0.5-1 MK in active regions, and 0.1 MK in long tenuous loops. Catastrophic cooling is characterized by a rapid fall in coronal temperature, while the coronal density changes by a small amount. Analytic expressions for the critical temperature are derived and show good agreement with numerical results. This effect considerably limits the lifetime of coronal plasmas below the critical temperature.

  5. In What Magnetic Environment Are Coronal Loop Plasmas Located?

    Science.gov (United States)

    Lim, Daye; Choe, Gwang-Son

    2017-08-01

    As for coronal loops, there is a conventional wisdom that the plasma is confined inside magnetic flux tubes. However, a plasma pressure profile, which decreases from the center of a flux rope to its periphery, can be ideal MHD interchange unstable if field line ends are freely movable. In the solar corona, the strong line-tying condition impedes the interchange of the positions of elementary flux tubes, but ubiquitous magnetic reconnection processes can change plasma distribution in such a way that the system moves to a more stable state with a lower energy. In this study, we investigate the plasma redistribution in the merging process of many small flux ropes possibly representing loop strands, by an MHD simulation. We have found that the redistributed plasma is more concentrated between flux ropes rather than near the center of individual flux ropes. When flux ropes initially have different amounts of twists, the plasma tends to accumulate in less twisted regions. As larger and larger flux ropes are formed by successive merging processes, the ratio of poloidal flux to toroidal flux in a merged flux rope becomes smaller and smaller, i.e., field lines are less and less twisted. Our study may explain why the observed coronal loops appear very little twisted and quite well ordered in spite of continuous entangling motions in the photosphere and below.

  6. Solar Transition-Region Lines Observed by the Interface Region Imaging Spectrograph: Diagnostics for the O IV and Si IV Lines

    CERN Document Server

    Dudík, Jaroslav; Dzifčáková, Elena; Mason, Helen E; Golub, Leon

    2013-01-01

    The formation of the transition-region O IV and Si IV lines observable by the Interface Region Imaging Spectrograph (IRIS) is investigated for both Maxwellian and non-Maxellian conditions characterized by a kappa-distribution exhibiting a high-energy tail. The \\ion{Si}{4} lines are formed at lower temperatures than the O IV lines for all kappa. In non-Maxwellian situations with lower kappa, the contribution functions are shifted to lower temperatures. Combined with the slope of the differential emission measure, it is possible for the Si IV lines to be formed at very different regions of solar transition region than the O IV lines; possibly close to solar chromosphere. Such situations might be discernible by IRIS. It is found that photoexcitation can be important for the Si IV lines, but is negligible for the O IV lines. The usefulness of the O IV ratios for density diagnostics independently of kappa is investigated and it is found that the O IV 1404.78A /1399.77A ratio provides a good density diagnostics exc...

  7. Magnetohydrodynamic Modeling of Coronal Evolution and Disruption

    Science.gov (United States)

    Linker, Jon

    2002-01-01

    Flux cancellation, defined observationally as the mutual disappearance of magnetic fields of opposite polarity at the neutral line separating them, has been found to occur frequently at the site of filaments (called prominences when observed on the limb of the Sun). During the second year of this project, we have studied theoretically the role that flux cancellation may play in prominence formation, prominence eruption, and the initiation of coronal mass ejections. This work has been in published in two papers: "Magnetic Field Topology in Prominences" by Lionello, Mikic, Linker, and Amari and "Flux Cancellation and Coronal Mass Ejections" by Linker, Mikic, Riley, Lionello, Amari, and Odstrcil.

  8. Interpretation of the coronal magnetic field configuration of the Sun

    Institute of Scientific and Technical Information of China (English)

    Bo Li; Xing Li; Hui Yu

    2012-01-01

    The origin of the heliospheric magnetic flux on the Sun,and hence the origin of the solar wind,is a topic of hot debate.While the prevailing view is that the solar wind originates from outside the coronal streamer helmets,there also exists the suggestion that the open magnetic field spans a far wider region.Without the definitive measurement of the coronal magnetic field,it is difficult to unambiguously resolve the conflict between the two scenarios.We present two 2-dimensional,Alfvénic-turbulence-based models of the solar corona and solar wind,one with and the other without a closed magnetic field region in the inner corona.The purpose of the latter model is to test whether it is possible to realize a picture suggested by polarimetric measurements of the corona using the Fe ⅩⅢ 10747(A) line,where open magnetic field lines seem to penetrate the streamer base.The boundary conditions at the coronal base are able to account for important observational constraints,especially those on the magnetic flux distribution.Interestingly,the two models provide similar polarized brightness (pB) distributions in the field of view (FOV) of SOHO/LASCO C2 and C3 coronagraphs.In particular,a dome-shaped feature is present in the C2 FOV even for the model without a closed magnetic field.Moreover,both models fit the Ulysses data scaled to 1 AU equally well.We suggest that:1) The pB observations cannot be safely taken as a proxy for the magnetic field topology,as is often implicitly assumed.2) The Ulysses measurements,especially the one showing a nearly uniform distribution with heliocentric latitude of the radial magnetic field,do not rule out the ubiquity of open magnetic fields on the Sun.

  9. Coronal "wave": Magnetic Footprint Of A Cme?

    Science.gov (United States)

    Attrill, Gemma; Harra, L. K.; van Driel-Gesztelyi, L.; Demoulin, P.; Wuelser, J.

    2007-05-01

    We propose a new mechanism for the generation of "EUV coronal waves". This work is based on new analysis of data from SOHO/EIT, SOHO/MDI & STEREO/EUVI. Although first observed in 1997, the interpretation of coronal waves as flare-induced or CME-driven remains a debated topic. We investigate the properties of two "classical" SOHO/EIT coronal waves in detail. The source regions of the associated CMEs possess opposite helicities & the coronal waves display rotations in opposite senses. We observe deep dimmings near the flare site & also widespread diffuse dimming, accompanying the expansion of the EIT wave. We report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions & simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behaviour is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME & quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings & widespread diffuse dimming are identified as innate characteristics of this process. In addition we present some of the first analysis of a STEREO/EUVI limb coronal wave. We show how the evolution of the diffuse bright front & dimmings can be understood in terms of the model described above. We show that an apparently stationary part of the bright front can be understood in terms of magnetic interchange reconnections between the expanding CME & the "open" magnetic field of a low-latitude coronal hole. We use both the SOHO/EIT & STEREO/EUVI events to demonstrate that through successive reconnections, this new model provides a natural mechanism via which CMEs can become large-scale in the lower corona.

  10. Numerical Simulation of DC Coronal Heating

    Science.gov (United States)

    Dahlburg, Russell B.; Einaudi, G.; Taylor, Brian D.; Ugarte-Urra, Ignacio; Warren, Harry; Rappazzo, A. F.; Velli, Marco

    2016-05-01

    Recent research on observational signatures of turbulent heating of a coronal loop will be discussed. The evolution of the loop is is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. HYPERION calculates the full energy cycle involving footpoint convection, magnetic reconnection, nonlinear thermal conduction and optically thin radiation. The footpoints of the loop magnetic field are convected by random photospheric motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of thecoronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of the simulated loop is multi thermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Typical simulated coronal loops are 50000 km length and have axial magnetic field intensities ranging from 0.01 to 0.04 Tesla. To connect these simulations to observations the computed number densities and temperatures are used to synthesize the intensities expected in emission lines typically observed with the Extreme ultraviolet Imaging Spectrometer (EIS) on Hinode. These intensities are then employed to compute differential emission measure distributions, which are found to be very similar to those derived from observations of solar active regions.

  11. Analysis of Coronal Rain Observed by IRIS, HINODE/SOT, and SDO/AIA: Transverse Oscillations, Kinematics, and Thermal Evolution

    Science.gov (United States)

    Kohutova, P.; Verwichte, E.

    2016-08-01

    Coronal rain composed of cool plasma condensations falling from coronal heights along magnetic field lines is a phenomenon occurring mainly in active region coronal loops. Recent high-resolution observations have shown that coronal rain is much more common than previously thought, suggesting its important role in the chromosphere-corona mass cycle. We present the analysis of MHD oscillations and kinematics of the coronal rain observed in chromospheric and transition region lines by the Interface Region Imaging Spectrograph (IRIS), the Hinode Solar Optical Telescope (SOT), and the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA). Two different regimes of transverse oscillations traced by the rain are detected: small-scale persistent oscillations driven by a continuously operating process and localized large-scale oscillations excited by a transient mechanism. The plasma condensations are found to move with speeds ranging from few km s-1 up to 180 km s-1 and with accelerations largely below the free-fall rate, likely explained by pressure effects and the ponderomotive force resulting from the loop oscillations. The observed evolution of the emission in individual SDO/AIA bandpasses is found to exhibit clear signatures of a gradual cooling of the plasma at the loop top. We determine the temperature evolution of the coronal loop plasma using regularized inversion to recover the differential emission measure (DEM) and by forward modeling the emission intensities in the SDO/AIA bandpasses using a two-component synthetic DEM model. The inferred evolution of the temperature and density of the plasma near the apex is consistent with the limit cycle model and suggests the loop is going through a sequence of periodically repeating heating-condensation cycles.

  12. Correlations between different line-forming regions in quasar environments

    Science.gov (United States)

    Chen, Chen; Hamann, Fred; Lundgren, Britt

    2017-01-01

    The early stage of massive galaxy evolution can involve outflows driven by a starburst or a central quasar plus cold mode accretion (infall) adding to the mass build-up in the galaxies. We are using SDSS-BOSS DR12 database to study the nature of infall and outflows in quasar environments by examining the relationships of their narrow absorption lines (NALs) at positive and negative velocity shifts to other quasar properties such as their broad absorption line (BAL) outflows, emission line characteristics, radio-loudness, and reddening by dust. We also test for extreme high-velocity NAL outflows (with speeds 0.1-0.2c) based on relationships to low-speed NALs and quasar properties, and we perform detailed analyses of particular cases of rich multi-component NAL complexes that might result from high-speed quasar outflows shredding and dispersing interstellar clouds in the host galaxies. Our results show that low-velocity NALs and rich NAL complexes correlate strongly with BALs, suggesting a physical relationship. Infalling systems are less common in quasars with BALs, suggesting that BAL outflows can halt or disrupt gas accretion. The extreme high-velocity NALs (at 0.1-0.2c) show a weak relationship to BALs and a strong dependence on low-velocity NALs, indicating that a significant fraction of these systems is ejected from the quasars (and are *not* unrelated intervening clouds). We find no correlations between radio flux and low-velocity NALs, infalling systems, or rich complexes, which indicates that none of these features are closely tied to quasar radio properties. We analyze the relationship of the N V/C IV line strengths (a possible abundance/metallicity probe) in emission versus absorption lines and find no correlation between them.

  13. A SOLAR CORONAL JET EVENT TRIGGERS A CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiajia; Wang, Yuming; Shen, Chenglong; Liu, Kai; Pan, Zonghao; Wang, S. [CAS Key Laboratory of Geospace Environment, Earh and Space Science School, University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026 (China)

    2015-11-10

    In this paper, we present multi-point, multi-wavelength observations and analysis of a solar coronal jet and coronal mass ejection (CME) event. Employing the GCS model, we obtained the real (three-dimensional) heliocentric distance and direction of the CME and found it to propagate at a high speed of over 1000 km s{sup −1}. The jet erupted before the CME and shared the same source region. The temporal and spacial relationship between these two events lead us to the possibility that the jet triggered the CME and became its core. This scenario hold the promise of enriching our understanding of the triggering mechanism of CMEs and their relations to coronal large-scale jets. On the other hand, the magnetic field configuration of the source region observed by the Solar Dynamics Observatory (SDO)/HMI instrument along with the off-limb inverse Y-shaped configuration observed by SDO/AIA in the 171 Å passband provide the first detailed observation of the three-dimensional reconnection process of a large-scale jet as simulated in Pariat et al. The eruption process of the jet highlights the importance of filament-like material during the eruption of not only small-scale X-ray jets, but likely also of large-scale EUV jets. Based on our observations and analysis, we propose the most probable mechanism for the whole event, with a blob structure overlaying the three-dimensional structure of the jet, to describe the interaction between the jet and the CME.

  14. Line profiles of the two-phase medium broad-line region in active galactic nuclei

    Institute of Scientific and Technical Information of China (English)

    薛随建; 林宣滨; 程福臻; John Kwan

    1996-01-01

    In the framework of BLR in AGNs, i.e. large number of small, cold and dense emission-line clouds immerging in an intercloud hot medium, a delicate radiation model for a typical emission cloud is established, in which the backside photoionization of the cloud against the central continuum source by the scattered diffuse continuum in the hot medium is considered. Under the assumption of the radial kinematics of the BLR clouds, the line profiles for the two important UV emission-lines, Lya and CIV/11549 are computed; and based on these calculations, various physical factors that affect the properties of the emission-line profiles are discussed. It is concluded that: (i) when the BLR clouds is inflow, there exists a confining hot medium with density around 2 x 105 cm-3. In this case, theoretical line profiles agree well with the observational; (ii) both symmetric Lya and nearly symmetric CIV line profiles show blue velocity shifts, the quantities of which are sensitive to the cutoff of the outer radius of t

  15. The Evolution and Space Weather Effects of Solar Coronal Holes

    Science.gov (United States)

    Krista, Larisza; Gallagher, P.

    2011-05-01

    As solar activity is the foremost important aspect of space weather, the forecasting of flare and CME related transient geomagnetic storms has become a primary initiative. Minor magnetic storms caused by coronal holes (CHs) have also proven to be important due to their long-lasting and recurrent geomagnetic effects. In order to forecast CH related geomagnetic storms, the author developed the Coronal Hole Automated Recognition and Monitoring (CHARM) algorithm to replace the user-dependent CH detection methods commonly used. CHARM uses an intensity thresholding method to identify low intensity regions in EUV or X-ray images. Since CHs are regions of "open” magnetic field and predominant polarity, magnetograms were used to differentiate CHs from other low intensity regions. The Coronal Hole Evolution (CHEVOL) algorithm was developed and used in conjunction with CHARM to study the boundary evolution of CHs. It is widely accepted that the short-term changes in CH boundaries are due to the interchange reconnection between the CH open field lines and small loops. We determined the magnetic reconnection rate and the diffusion coefficient at CH boundaries in order to test the interchange reconnection model. The author also developed the Minor Storm (MIST) package to link CHs to high-speed solar wind (HSSW) periods detected at Earth. Using the algorithm the relationship between CHs, the corresponding HSSW properties, and geomagnetic indices were studied between 2000-2009. The results showed a strong correlation between the velocity and HSSW proton plasma temperature, which indicates that the heating and acceleration of the solar wind plasma in CHs are closely related, and perhaps caused by the same mechanism. The research presented here includes analysis of CHs on small and large spatial/temporal scales, allowing us to further our understanding of CHs as a whole.

  16. Spectroscopy at the solar limb: II. Are spicules heated to coronal temperatures ?

    CERN Document Server

    Beck, C; Puschmann, K G; Fabbian, D

    2016-01-01

    Spicules of the so-called type II were suggested to be relevant for coronal heating because of their ubiquity on the solar surface and their eventual extension into the corona. We investigate whether solar spicules are heated to transition-region or coronal temperatures and reach coronal heights (>6 Mm) using multi-wavelength observations of limb spicules in different chromospheric spectral lines (Ca II H, Hepsilon, Halpha, Ca II IR at 854.2 nm, He I at 1083 nm). We determine the line width of individual spicules and throughout the field of view and estimate the maximal height that different types of off-limb features reach. We derive estimates of the kinetic temperature and the non-thermal velocity from the line width of spectral lines from different chemical elements. We find that most regular spicules reach a maximal height of about 6 Mm above the solar limb. The majority of features found at larger heights are irregularly shaped with a significantly larger lateral extension than spicules. Both individual ...

  17. Tracing the Chromospheric and Coronal Magnetic Field with AIA, IRIS, IBIS, and ROSA Data

    Science.gov (United States)

    Aschwanden, Markus J.; Reardon, Kevin; Jess, Dave B.

    2016-07-01

    The aim of this study is to explore the suitability of chromospheric images for magnetic modeling of active regions. We use high-resolution images (≈ 0\\buildrel{\\prime\\prime}\\over{.} 2{--}0\\buildrel{\\prime\\prime}\\over{.} 3), from the Interferometric Bidimensional Spectrometer in the Ca ii 8542 Å line, the Rapid Oscillations in the Solar Atmosphere instrument in the Hα 6563 Å line, the Interface Region Imaging Spectrograph in the 2796 Å line, and compare non-potential magnetic field models obtained from those chromospheric images with those obtained from images of the Atmospheric Imaging Assembly in coronal (171 Å, etc.) and in chromospheric (304 Å) wavelengths. Curvi-linear structures are automatically traced in those images with the OCCULT-2 code, to which we forward-fitted magnetic field lines computed with the Vertical-current Approximation Nonlinear Force Free Field code. We find that the chromospheric images: (1) reveal crisp curvi-linear structures (fibrils, loop segments, spicules) that are extremely well-suited for constraining magnetic modeling; (2) that these curvi-linear structures are field-aligned with the best-fit solution by a median misalignment angle of {μ }2≈ 4^\\circ -7° (3) the free energy computed from coronal data may underestimate that obtained from cromospheric data by a factor of ≈ 2-4, (4) the height range of chromospheric features is confined to h≲ 4000 km, while coronal features are detected up to h = 35,000 km; and (5) the plasma-β parameter is β ≈ {10}-5{--}{10}-1 for all traced features. We conclude that chromospheric images reveal important magnetic structures that are complementary to coronal images and need to be included in comprehensive magnetic field models, something that is currently not accomodated in standard NLFFF codes.

  18. Solar Wind Associated with Near Equatorial Coronal Hole

    Indian Academy of Sciences (India)

    M. Hegde; K. M. Hiremath; Vijayakumar H. Doddamani; Shashanka R. Gurumath

    2015-09-01

    Present study probes temporal changes in the area and radiative flux of near equatorial coronal hole associated with solar wind parameters such as wind speed, density, magnetic field and temperature. Using high temporal resolution data from SDO/AIA for the two wave-lengths 193 Å and 211 Å, area and radiative flux of coronal holes are extracted and are examined for the association with high speed solar wind parameters. We find a strong association between different parameters of coronal hole and solar wind. For both the wavelength bands, we also compute coronal hole radiative energy near the earth and it is found to be of similar order as that of solar wind energy. However, for the wavelength 193 Å, owing to almost similar magnitudes of energy emitted by coronal hole and energy due to solar wind, it is conjectured that solar wind might have originated around the same height where 193 Å line is formed in the corona.

  19. Forecasting Coronal Mass Ejections from Vector Magnetograms

    Science.gov (United States)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    In a 17 vector magnetogram study of 12 bipolar active regions (Falconer, Moore, & Gary, 2002, ApJ in press), we correlated four quantitative global magnetic measures with the Coronal Mass Ejections (CME) productivity of the active region. The global measures included a measure of active region size, the total magnetic flux phi and three measures of an active region global nonpotentiality 1) the net current (I (sub N)), 2) the length of the strong-shear, strong-field main neutral line (L(sub SS)) and 3) and the normalized twist (alpha = muIN/PHI). The CME productivity was determined from YOHKOH/SXT observations, Geostationary Operational Environmental Satellite (GOES), and when possible Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph Experiment (SOHO/LASCO) observations within 12 days of the day of the magnetogram. We found that the three measures of global nonpotentiality (I(sub N), L(sub SS), alpha) were all well correlated (greater than 99% confidence level) with an active region's CME productivity. The sample size was to small to confirm if there was a statistical significant correlation of the globally nonscientist measures with future CME activity (i.e. from the date of the magnetogram forward). We are doubling our sample, and will report on the statistical significance of global nonpotentiality as a predictor of future CME productivity. The new active regions are all from the first year of the upgraded MSFC vector magnetograms. This work, is funded by NSF through the Space Weather Program, by NASA through the Living with the Star, Targeted Research and Technology, and by NASA Solar Physics Supporting Research and Technology Program. The upgrade to the MSFC vector magnetograph was supported by the High Energy Solar Spectroscopic Imager (HESSI) mission.

  20. Global Coronal Waves

    CERN Document Server

    Chen, P F

    2016-01-01

    After the {\\em Solar and Heliospheric Observatory} ({\\em SOHO}) was launched in 1996, the aboard Extreme Ultraviolet Imaging Telescope (EIT) observed a global coronal wave phenomenon, which was initially named "EIT wave" after the telescope. The bright fronts are immediately followed by expanding dimmings. It has been shown that the brightenings and dimmings are mainly due to plasma density increase and depletion, respectively. Such a spectacular phenomenon sparked long-lasting interest and debates. The debates were concentrated on two topics, one is about the driving source, and the other is about the nature of this wavelike phenomenon. The controversies are most probably because there may exist two types of large-scale coronal waves that were not well resolved before the {\\em Solar Dynamics Observatory} ({\\em SDO}) was launched: one is a piston-driven shock wave straddling over the erupting coronal mass ejection (CME), and the other is an apparently propagating front, which may correspond to the CME frontal...

  1. NUMERICAL SIMULATIONS OF THE EMISSION-LINE REGIONS OF QUASARS

    Institute of Scientific and Technical Information of China (English)

    Gary J.Ferland

    2001-01-01

    The luninous quasars are the most distant objects we can directly observe. Once understood, their emission lines will measure the quasar's luminosity and the composition of the interstellar medium of the host galaxy. Unfortunately the emitting plasma is far from equilibrium, and its conditions are set by a host of microphysical processes. The equations of statistical and thermal equilibrium must be solved to determine the ionization distribution, level populations, and kinetic temperature as a function of depth. Simultaneously the line and continuum radiative transfer problems are solved to predict the observed spectrum.A complete simulation involves many hundreds of stages of ionization, many thousands of levels, with populations determined by a vast sea of atomic and molecular processes, many with accurate cross sections and rate coefficients only now becoming available. This is a problem at the very forefront of atomic and computational physics. Once complete, we will be able to map out the first generations of stellar processing in the cores of massive galaxies, and directly chart the expansion of the universe when it had an age under a billion years.

  2. Surface Flux Emergence and Coronal Eruption

    Science.gov (United States)

    Fang, Fang

    2016-05-01

    Among various active regions, delta-sunspots of aggregated spots of opposite polarities, are of particular interest due to their high productivity in energetic and recurrent eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact delta-sunspot with a sharp polarity inversion line (PIL). The formation of the delta-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g. the inverted polarity against Hale’s law, the curvilinear motion of the spot, strong transverse field with highly sheared magnetic and velocity fields at the PIL. Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the delta-spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  3. Molecular line tracers of high-mass star forming regions

    NARCIS (Netherlands)

    Nagy, Zsofia; Van der Tak, Floris; Ossenkopf, Volker; Bergin, Edwin; Black, John; Faure, Alexandre; Fuller, Gary; Gerin, Maryvonne; Goicoechea, Javier; Joblin, Christine; Le Bourlot, Jacques; Le Petit, Franck; Makai, Zoltan; Plume, Rene; Roellig, Markus; Spaans, Marco; Tolls, Volker

    2013-01-01

    High-mass stars influence their environment in different ways including feedback via their FUV radiation. The penetration of FUV photons into molecular clouds creates Photon Dominated Regions (PDRs) with different chemical layers where the mainly ionized medium changes into mainly molecular. Differe

  4. Prospection of genomic regions divergently selected in racing line of Quarter Horses in relation to cutting line.

    Science.gov (United States)

    Meira, C T; Curi, R A; Farah, M M; de Oliveira, H N; Béltran, N A R; Silva, J A V; Mota, M D S da

    2014-11-01

    Selection of Quarter Horses for different purposes has led to the formation of lines, including racing and cutting horses. The objective of this study was to identify genomic regions divergently selected in racing line of Quarter Horses in relation to cutting line applying relative extended haplotype homozygosity (REHH) analysis, an extension of extended haplotype homozygosity (EHH) analysis, and the fixation index (F ST) statistic. A total of 188 horses of both sexes, born between 1985 and 2009 and registered at the Brazilian Association of Quarter Horse Breeders, including 120 of the racing line and 68 of the cutting line, were genotyped using single nucleotide polymorphism arrays. On the basis of 27 genomic regions identified as selection signatures by REHH and F ST statistics, functional annotations of genes were made in order to identify those that could have been important during formation of the racing line and that could be used subsequently for the development of selection tools. Genes involved in muscle growth (n=8), skeletal growth (n=10), muscle energy metabolism (n=15), cardiovascular system (n=14) and nervous system (n=23) were identified, including the FKTN, INSR, GYS1, CLCN1, MYLK, SYK, ANG, CNTFR and HTR2B.

  5. Plasma Heating Suring a Coronal Mass Ejection Observed by SOHO

    CERN Document Server

    Murphy, N A; Korreck, K E

    2011-01-01

    We perform a time-dependent ionization analysis to constrain plasma heating requirements during a fast partial halo coronal mass ejection (CME) observed on 2000 June 28 by the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the Solar and Heliospheric Observatory (SOHO). We use two methods to derive densities from the UVCS measurements, including a density sensitive O V line ratio at 1213.85 and 1218.35 Angstroms, and radiative pumping of the O VI 1032,1038 doublet by chromospheric emission lines. The most strongly constrained feature shows cumulative plasma heating comparable to or greater than the kinetic energy, while features observed earlier during the event show cumulative plasma heating comparable to or less than the kinetic energy. SOHO Michelson Doppler Imager (MDI) observations are used to estimate the active region magnetic energy. We consider candidate plasma heating mechanisms and provide constraints when possible. Because this CME was associated with a relatively weak flare, the contribution b...

  6. Microflaring in Low-Lying Core Fields and Extended Coronal Heating in the Quiet Sun

    Science.gov (United States)

    Porter, Jason G.; Falconer, D. A.; Moore, Ronald L.

    1999-01-01

    We have previously reported analyses of Yohkoh SXT data examining the relationship between the heating of extended coronal loops (both within and stemming from active regions) and microflaring in core fields lying along neutral lines near their footpoints (J. G. Porter, D. A. Falconer, and R. L. Moore 1998, in Solar Jets and Coronal Plumes, ed. T. Guyenne, ESA SP-421, and references therein). We found a surprisingly poor correlation of intensity variations in the extended loops with individual microflares in the compact heated areas at their feet, despite considerable circumstancial evidence linking the heating processes in these regions. Now, a study of Fe XII image sequences from SOHO EIT show that similar associations of core field structures with the footpoints of very extended coronal features can be found in the quiet Sun. The morphology is consistent with the finding of Wang et al. (1997, ApJ 484, L75) that polar plumes are rooted at sites of mixed polarity in the magnetic network. We find that the upstairs/downstairs intensity variations often follow the trend, identified in the active region observations, of a weak correspondence. Apparently much of the coronal heating in the extended loops is driven by a type of core field magnetic activity that is "cooler" than the events having the coronal signature of microflares, i.e., activity that results in little heating within the core fields themselves. This work was funded by the Solar Physics Branch of NASA's Office of Space Science through the SR&T Program and the SEC Guest Investigator Program.

  7. A Revised Broad-line Region Radius and Black Hole Mass for the Narrow-line Seyfert 1 NGC 4051

    DEFF Research Database (Denmark)

    Denney, K. D.; Watson, L. C.; Peterson, B. M.

    2009-01-01

    measurements for several relatively low luminosity active galactic nuclei (AGNs). We feature results for NGC 4051 here because, until now, this object has been a significant outlier from AGN scaling relationships, e.g., it was previously a ~2-3s outlier on the relationship between the broad-line region (BLR...

  8. The Fine Structure Lines of Hydrogen in HII Regions

    CERN Document Server

    Dennison, B; Minter, A H; Dennison, Brian; Minter, Anthony H.

    2005-01-01

    The 2s_{1/2} state of hydrogen is metastable and overpopulated in HII regions. In addition, the 2p states may be pumped by ambient Lyman-alpha radiation. Fine structure transitions between these states may be observable in HII regions at 1.1 GHz (2s_{1/2}-2p_{1/2}) and/or 9.9 GHz (2s_{1/2}-2p_{3/2}), although the details of absorption versus emission are determined by the relative populations of the 2s and 2p states. The n=2 level populations are solved with a parameterization that allows for Lyman-alpha pumping of the 2p states. The density of Lyman-alpha photons is set by their creation rate, easily determined from the recombination rate, and their removal rate. Here we suggest that the dominant removal mechanism of Lyman-alpha radiation in HII regions is absorption by dust. This circumvents the need to solve the Lyman-alpha transfer problem, and provides an upper limit to the rate at which the 2p states are populated by Lyman-alpha photons. In virtually all cases of interest, the 2p states are predominantl...

  9. A unified theory of coronal heating

    Science.gov (United States)

    Ionson, J. A.

    1985-01-01

    Solar coronal heating mechanisms are analyzed within the framework of a unified theory of heating processes. The theory is based on the standing wave equation of Ionson (1982) for the global current driven by emfs from the convection Beta less than 1. The equation has the same form as a driven LRC equation in which the equivalent inductance is scaled with the coronal loop length. The theory is used to classify various heating mechanisms inside the coronal loops. It is shown that the total global current can be obtained from an integration of the local currents, the degree of coherency between local currents being the dominant factor governing the global current amplitude. Active region loops appear to be heated by electrodynamic coupling to p-mode oscillations in the convection Beta less than 1.

  10. NTT, Spitzer and Chandra spectroscopy of SDSSJ095209.56+214313.3: the most luminous coronal-line supernova ever observed, or a stellar tidal disruption event ?

    CERN Document Server

    Komossa, S; Rau, A; Dopita, M; Gal-Yam, A; Greiner, J; Zuther, J; Salvato, M; Xu, D; Lü, H; Saxton, R; Ajello, M

    2009-01-01

    The galaxy SDSSJ0952+2143 showed remarkable emission-line properties first reported in 2008 (paper I), which are the consequence of a powerful high-energy flare. Here we report follow-up observations of SDSSJ0952+2143, and discuss outburst scenarios in terms of stellar tidal disruption by a SMBH, peculiar variability of an AGN, and a supernova explosion. The optical spectrum of SDSSJ0952+2143 exhibits several peculiarities: an exceptional ratio of [FeVII] transitions over [OIII], a dramatic decrease by a factor of 10 of the highest-ionization lines, a very unusual and variable Balmer line profile including a triple-peaked narrow component with two unresolved horns, and a large Balmer decrement. The MIR emission measured with the Spitzer IRS in the narrow 10-20mu band is extraordinarily luminous (3.5 x 10^{43} erg\\s). The IRS spectrum shows a bump around ~11mu and an increase towards longer wavelengths, reminiscent of silicate emission. The strong MIR excess over the NIR implies the dominance of relatively col...

  11. Field Topology Analysis of a Long-lasting Coronal Sigmoid

    Science.gov (United States)

    Savcheva, A. S.; van Ballegooijen, A. A.; DeLuca, E. E.

    2012-01-01

    We present the first field topology analysis based on nonlinear force-free field (NLFFF) models of a long-lasting coronal sigmoid observed in 2007 February with the X-Ray Telescope on Hinode. The NLFFF models are built with the flux rope insertion method and give the three-dimensional coronal magnetic field as constrained by observed coronal loop structures and photospheric magnetograms. Based on these models, we have computed horizontal maps of the current and the squashing factor Q for 25 different heights in the corona for all six days of the evolution of the region. We use the squashing factor to quantify the degree of change of the field line linkage and to identify prominent quasi-separatrix layers (QSLs). We discuss the major properties of these QSL maps and devise a way to pick out important QSLs since our calculation cannot reach high values of Q. The complexity in the QSL maps reflects the high degree of fragmentation of the photospheric field. We find main QSLs and current concentrations that outline the flux rope cavity and that become characteristically S-shaped during the evolution of the sigmoid. We note that, although intermittent bald patches exist along the length of the sigmoid during its whole evolution, the flux rope remains stable for several days. However, shortly after the topology of the field exhibits hyperbolic flux tubes (HFT) on February 7 and February 12 the sigmoid loses equilibrium and produces two B-class flares and associated coronal mass ejections (CMEs). The location of the most elevated part of the HFT in our model coincides with the inferred locations of the two flares. Therefore, we suggest that the presence of an HFT in a coronal magnetic configuration may be an indication that the system is ready to erupt. We offer a scenario in which magnetic reconnection at the HFT drives the system toward the marginally stable state. Once this state is reached, loss of equilibrium occurs via the torus instability, producing a CME.

  12. Genesis Solar Wind Interstream, Coronal Hole and Coronal Mass Ejection Samples: Update on Availability and Condition

    Science.gov (United States)

    Allton, J. H.; Gonzalez, C. P.; Allums, K. K.

    2017-01-01

    Recent refinement of analysis of ACE/SWICS data (Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer) and of onboard data for Genesis Discovery Mission of 3 regimes of solar wind at Earth-Sun L1 make it an appropriate time to update the availability and condition of Genesis samples specifically collected in these three regimes and currently curated at Johnson Space Center. ACE/SWICS spacecraft data indicate that solar wind flow types emanating from the interstream regions, from coronal holes and from coronal mass ejections are elementally and isotopically fractionated in different ways from the solar photosphere, and that correction of solar wind values to photosphere values is non-trivial. Returned Genesis solar wind samples captured very different kinds of information about these three regimes than spacecraft data. Samples were collected from 11/30/2001 to 4/1/2004 on the declining phase of solar cycle 23. Meshik, et al is an example of precision attainable. Earlier high precision laboratory analyses of noble gases collected in the interstream, coronal hole and coronal mass ejection regimes speak to degree of fractionation in solar wind formation and models that laboratory data support. The current availability and condition of samples captured on collector plates during interstream slow solar wind, coronal hole high speed solar wind and coronal mass ejections are de-scribed here for potential users of these samples.

  13. Regional anaesthesia and analgesia on the front line.

    Science.gov (United States)

    Scott, D M

    2009-11-01

    Deployment to a combat zone with the military poses many challenges to the anaesthetist. One of these challenges is the safe, rapid and comfortable initial wound management and repatriation of wounded combat soldiers to their home country or tertiary treatment facility for definitive care and rehabilitation. The current conflict in Afghanistan is associated with injury patterns that differ from wars such as Vietnam or Korea. This report describes the experience of an Australian military anaesthetist and the value of regional anaesthesia and analgesia for the care of the wounded combat soldier

  14. Dynamics of coronal rain and descending plasma blobs in solar prominences. I. Fully ionized case

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, R.; Soler, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Zaqarashvili, T. V.; Khodachenko, M. L., E-mail: ramon.oliver@uib.es [Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz (Austria)

    2014-03-20

    Observations of active regions and limb prominences often show cold, dense blobs descending with an acceleration smaller than that of free fall. The dynamics of these condensations falling in the solar corona is investigated in this paper using a simple fully ionized plasma model. We find that the presence of a heavy condensation gives rise to a dynamical rearrangement of the coronal pressure that results in the formation of a large pressure gradient that opposes gravity. Eventually this pressure gradient becomes so large that the blob acceleration vanishes or even points upward. Then, the blob descent is characterized by an initial acceleration phase followed by an essentially constant velocity phase. These two stages can be identified in published time-distance diagrams of coronal rain events. Both the duration of the first stage and the velocity attained by the blob increase for larger values of the ratio of blob to coronal density, for larger blob mass, and for smaller coronal temperature. Dense blobs are characterized by a detectable density growth (up to 60% in our calculations) and by a steepening of the density in their lower part, that could lead to the formation of a shock. They also emit sound waves that could be detected as small intensity changes with periods of the order of 100 s and lasting between a few and about 10 periods. Finally, the curvature of falling paths with large radii is only relevant when a very dense blob falls along inclined magnetic field lines.

  15. Analysis of Two Coronal Loops with Combined TRACE and SOHO/CDS Data

    Science.gov (United States)

    Scott, J. T.; Martens, P. C. H.; Cirtain, J. W.

    2008-11-01

    We use an innovative research technique to analyze combined images from the Coronal Diagnostic Spectrometer (CDS) on the Solar and Heliospheric Observatory (SOHO) and the Transition Region and Coronal Explorer (TRACE). We produce a high spatial and temporal resolution simulated CDS raster or “composite” map from TRACE data and use this composite map to jointly analyze data from both instruments. We show some of the advantages of using the “composite” map method for coronal loop studies. We investigate two postflare loop structures. We find cool material (250 000 K) concentrated at the tips or apex of the loops. This material is found to be above its scale height and therefore not in hydrostatic equilibrium. The exposure times of the composite map and TRACE images are used to give an estimate of another loop’s cooling time. The contribution to the emission in the TRACE images for the spectral lines present in its narrow passband is estimated by using the CDS spectral data and CHIANTI to derive synthetic spectra. We obtain cospatial and cotemporal data collected by both instruments in SOHO Joint Observations Program (JOP) 146 and show how the combination of these data can be utilized to obtain more accurate measurements of coronal plasmas than if analyzed individually.

  16. Role of Magnetic Carpet in Coronal Heating

    Indian Academy of Sciences (India)

    S. R. Verma; Diksha Chaudhary

    2008-03-01

    One of the fundamental questions in solar physics is how the solar corona maintains its high temperature of several million Kelvin above photosphere with a temperature of 6000 K. Observations show that solar coronal heating problem is highly complex with many different facts. It is likely that different heating mechanisms are at work in the solar corona. The separate kinds of coronal loops may also be heated by different mechanisms. Using data from instruments onboard the Solar and Heliospheric Observatory (SOHO) and from the more recent Transition Region and Coronal Explorer (TRACE) scientists have identified small regions of mixed polarity, termed magnetic carpet contributing to solar activity on a short time scale. Magnetic loops of all sizes rise into the solar corona, arising from regions of opposite magnetic polarity in the photosphere. Energy released when oppositely directed magnetic fields meet in the corona is one likely cause for coronal heating. There is enough energy coming up from the loops of the “magnetic carpet” to heat the corona to its known temperature.

  17. Magnetic Properties of Metric Noise Storms Associated with Coronal Mass Ejections

    Institute of Scientific and Technical Information of China (English)

    Ya-Yuan Wen; Jing-Xiu Wang; Yu-Zong Zhang

    2007-01-01

    Using Nan(c)ay Radioheliograph (NRH) imaging observations, combined with SOHO/Michelson Doppler Imager (MDI) magnetogram observations and coronal magnetic field extrapolation, we studied the magnetic nature of metric noise storms that are associated with coronal mass ejections (CMEs). Four events are selected: the events of 2000 July 14,2001 April 26, 2002 August 16 and 2001 March 28. The identified noise storm sources cover or partially cover the active regions (ARs), but the centers of storm sources are offset from the ARs. Using extrapolated magnetic field lines, we find that the noise storm sources trace the boundary between the open and closed field lines. We demonstrate that the disappearance of noise storm source is followed by the appearance of the burst source. The burst sources spread on the solar disk and their distributions correspond to the extent of the CME in LASCO C2 field of view. All the SOHO/Extreme Ultraviolet Imaging Telescope (EIT) dimmings associated with noise storm sources are located at the periphery of noise storms where the magnetic lines of force were previously closed and low-lying. When the closed field becomes partially or fully open, the basic configurations of noise storm sources are changed, then the noise storm sources are no longer observed. These observations provide the information that the variations of noise storms manifest the restructuring or reconfiguring of the coronal magnetic field.

  18. Line Emission from Radiation-Pressurized HII Region II: Dynamics and Population Synthesis

    CERN Document Server

    Verdolini, Silvia; Krumholz, Mark R; Matzner, Christopher D; Tielens, Alexander G G M

    2013-01-01

    Optical and infrared emission lines from HII regions are an important diagnostic used to study galaxies, but interpretation of these lines requires significant modeling of both the internal structure and dynamical evolution of the emitting regions. Most of the models in common use today assume that HII region dynamics are dominated by the expansion of stellar wind bubbles, and have neglected the contribution of radiation pressure to the dynamics, and in some cases also to the internal structure. However, recent observations of nearby galaxies suggest that neither assumption is justified, motivating us to revisit the question of how HII region line emission depends on the physics of winds and radiation pressure. In a companion paper we construct models of single HII regions including and excluding radiation pressure and winds, and in this paper we describe a population synthesis code that uses these models to simulate galactic collections of HII regions with varying physical parameters. We show that the choice...

  19. On the emitting region of X-ray fluorescent lines around Compton-thick AGN

    CERN Document Server

    Liu, Jiren

    2016-01-01

    X-ray fluorescent lines are unique features of the reflection spectrum of the torus when irradiated by the central AGN. Their intrinsic line width can be used to probe the line-emitting region. Previous studies have focused on the Fe Ka line at 6.4 keV, which is the most prominent fluorescent line. These studies, however, are limited by the spectral resolution of currently available instruments, the best of which is $\\sim1860$ km s$^{-1}$ afforded by the Chandra High-Energy Grating (HEG). The HEG spectral resolution is improved by a factor of 4 at 1.74 keV, where the Si Ka line is located. We measured the FWHM of the Si Ka line for Circinus, Mrk 3, and NGC 1068, which are $570\\pm240$, $730\\pm320$, and $320\\pm280$ km s$^{-1}$, respectively. They are $3-5$ times smaller than those measured with the Fe Ka line previously. It shows that the intrinsic widths of the Fe Ka line are most likely to be over-estimated. The measured widths of the Si Ka line put the line-emitting region outside the dust sublimation radius...

  20. Revealing deuterium Balmer lines in HII regions with VLT-UVES

    CERN Document Server

    Hébrard, G; Walsh, J R; Vidal-Madjar, A; Ferlet, R

    2000-01-01

    The search for deuterium Balmer lines with VLT-UVES is reported in HII regions of the Galaxy and the Magellanic Clouds. The DI lines appear as faint, narrow emission features in the blue wings of the HI Balmer lines and can be distinguished from high-velocity HI emission. The previous identification to deuterium is re-inforced beyond doubt. The detection of D-alpha and D-beta in Orion (Hebrard et al. 2000) is confirmed and deuterium lines are now detected up to at least D-eta. The UVES observations provide the first detection of Balmer DI lines in four new HII regions (M 8, M 16, M 20, and DEM S 103 in SMC), demonstrating that these lines are of common occurence.

  1. Electroweak Hall Effect of Neutrino and Coronal Heating

    CERN Document Server

    Ishikawa, Kenzo

    2015-01-01

    The inversion of temperature at the solar corona is hard to understand from classical physics, and the coronal heating mechanism remains unclear. The heating in the quiet region seems contradicting with the thermodynamics and is a keen problem for physicists. A new mechanism for the coronal heating based on the neutrino radiative transition unique in the corona region is studied. The probability is enormously amplified by an electroweak Chern-Simons form and overlapping waves, and the sufficient energy is transfered. Thus the coronal heating is understood from the quantum effects of the solar neutrino.

  2. Observing Episodic Coronal Heating Events Rooted in Chromospheric Activity

    CERN Document Server

    McIntosh, Scott W

    2009-01-01

    We present results of a multi-wavelength study of episodic plasma injection into the corona of AR 10942. We exploit long-exposure images of the Hinode and Transition Region and Coronal Explorer (TRACE) spacecraft to study the properties of faint, episodic, "blobs" of plasma that are propelled upward along coronal loops that are rooted in the AR plage. We find that the source location and characteristic velocities of these episodic upflow events match those expected from recent spectroscopic observations of faint coronal upflows that are associated with upper chromospheric activity, in the form of highly dynamic spicules. The analysis presented ties together observations from coronal and chromospheric spectrographs and imagers, providing more evidence of the connection of discrete coronal mass heating and injection events with their source, dynamic spicules, in the chromosphere.

  3. Cloudy 94 and applications to quasar emission line regions

    Directory of Open Access Journals (Sweden)

    Gary J. Ferland

    2000-01-01

    Full Text Available Se describen los desarrollos recientes del c odigo Cloudy, en su versi on 94, realizados a partir de la versi on anterior C90 (Ferland et al. 1998, as como su aplicaci on a regiones de l neas de emisi on en cuasares. Este c odigo, desarrollado de la forma en que un observador contruir a un espectr ometro, es una herramienta poderosa para obtener la composici on qu mica del gas y la luminosidad de cualquier fuente de l neas de emisi on. El avance reciente m as importante es el modelo \\Lo- cally Optimally-emitting Cloud" (LOC para la regi on de l neas de emisi on en AGN (Baldwin et al. 1995. Se muestra que varios efectos de selecci on, junto con la am- plia gama de condiciones del gas, impiden obtener informaci on sobre los detalles de los emisores. Esto es un avance importante que permite concentrarnos en la infor- maci on relevante, como son la luminosidad y composici on qu mica de los cuasares.

  4. Reverberation Mapping of the Broad Line Region: Application to a Hydrodynamical Line-driven Disk Wind Solution

    Science.gov (United States)

    Waters, Tim; Kashi, Amit; Proga, Daniel; Eracleous, Michael; Barth, Aaron J.; Greene, Jenny

    2016-08-01

    The latest analysis efforts in reverberation mapping are beginning to allow reconstruction of echo images (or velocity-delay maps) that encode information about the structure and kinematics of the broad line region (BLR) in active galactic nuclei (AGNs). Such maps can constrain sophisticated physical models for the BLR. The physical picture of the BLR is often theorized to be a photoionized wind launched from the AGN accretion disk. Previously we showed that the line-driven disk wind solution found in an earlier simulation by Proga and Kallman is virialized over a large distance from the disk. This finding implies that, according to this model, black hole masses can be reliably estimated through reverberation mapping techniques. However, predictions of echo images expected from line-driven disk winds are not available. Here, after presenting the necessary radiative transfer methodology, we carry out the first calculations of such predictions. We find that the echo images are quite similar to other virialized BLR models such as randomly orbiting clouds and thin Keplerian disks. We conduct a parameter survey exploring how echo images, line profiles, and transfer functions depend on both the inclination angle and the line opacity. We find that the line profiles are almost always single peaked, while transfer functions tend to have tails extending to large time delays. The outflow, despite being primarily equatorially directed, causes an appreciable blueshifted excess on both the echo image and line profile when seen from lower inclinations (i≲ 45^\\circ ). This effect may be observable in low ionization lines such as {{H}}β .

  5. Reverberation Mapping of the Broad Line Region: application to a hydrodynamical line-driven disk wind solution

    CERN Document Server

    Waters, Tim; Proga, Daniel; Eracleous, Michael; Barth, Aaron J; Greene, Jenny

    2016-01-01

    The latest analysis efforts in reverberation mapping are beginning to allow reconstruction of echo images (or velocity-delay maps) that encode information about the structure and kinematics of the broad line region (BLR) in active galactic nuclei (AGNs). Such maps can constrain sophisticated physical models for the BLR. The physical picture of the BLR is often theorized to be a photoionized wind launched from the AGN accretion disk. Previously we showed that the line-driven disk wind solution found in an earlier simulation by Proga and Kallman is virialized over a large distance from the disk. This finding implies that, according to this model, black hole masses can be reliably estimated through reverberation mapping techniques. However, predictions of echo images expected from line-driven disk winds are not available. Here, after presenting the necessary radiative transfer methodology, we carry out the first calculations of such predictions. We find that the echo images are quite similar to other virialized ...

  6. Data-driven dissection of emission-line regions in Seyfert galaxies

    CERN Document Server

    Villarroel, Beatriz

    2016-01-01

    Indirectly resolving the line-emitting gas regions in distant Active Galactic Nuclei (AGN) requires both high-resolution photometry and spectroscopy (i.e. through reverberation mapping). Emission in AGN originates on widely different scales; the broad-line region (BLR) has a typical radius less than a few parsec, the narrow-line region (NLR) extends out to hundreds of parsecs. But emission also appears on large scales from heated nebulae in the host galaxies (tenths of kpc). We propose a novel, data-driven method based on correlations between emission-line fluxes to identify which of the emission lines are produced in the same kind of emission-line regions. We test the method on Seyfert galaxies from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) and Galaxy Zoo project. We demonstrate the usefulness of the method on Seyfert-1s and Seyfert-2 objects, showing similar narrow-line regions (NLRs). Preliminary results from comparing Seyfert-2s in spiral and elliptical galaxy hosts suggest that the presenc...

  7. New Constraints on Quasar Broad Absorption and Emission Line Regions from Gravitational Microlensing

    Directory of Open Access Journals (Sweden)

    Damien Hutsemékers

    2017-09-01

    Full Text Available Gravitational microlensing is a powerful tool allowing one to probe the structure of quasars on sub-parsec scale. We report recent results, focusing on the broad absorption and emission line regions. In particular microlensing reveals the intrinsic absorption hidden in the P Cygni-type line profiles observed in the broad absorption line quasar H1413+117, as well as the existence of an extended continuum source. In addition, polarization microlensing provides constraints on the scattering region. In the quasar Q2237+030, microlensing differently distorts the Hα and CIV broad emission line profiles, indicating that the low- and high-ionization broad emission lines must originate from regions with distinct kinematical properties. We also present simulations of the effect of microlensing on line profiles considering simple but representative models of the broad emission line region. Comparison of observations to simulations allows us to conclude that the Hα emitting region in Q2237+030 is best represented by a Keplerian disk.

  8. Technical design and system implementation of region-line primitive association framework

    Science.gov (United States)

    Wang, Min; Xing, Jinjin; Wang, Jie; Lv, Guonian

    2017-08-01

    Apart from regions, image edge lines are an important information source, and they deserve more attention in object-based image analysis (OBIA) than they currently receive. In the region-line primitive association framework (RLPAF), we promote straight-edge lines as line primitives to achieve powerful OBIAs. Along with regions, straight lines become basic units for subsequent extraction and analysis of OBIA features. This study develops a new software system called remote-sensing knowledge finder (RSFinder) to implement RLPAF for engineering application purposes. This paper introduces the extended technical framework, a comprehensively designed feature set, key technology, and software implementation. To our knowledge, RSFinder is the world's first OBIA system based on two types of primitives, namely, regions and lines. It is fundamentally different from other well-known region-only-based OBIA systems, such as eCogntion and ENVI feature extraction module. This paper has important reference values for the development of similarly structured OBIA systems and line-involved extraction algorithms of remote sensing information.

  9. Association of solar coronal loops to photospheric magnetic field

    Science.gov (United States)

    Pradeep Chitta, Lakshmi; Peter, Hardi; Solanki, Sami

    2017-08-01

    Magnetic connectivity and its evolution from the solar photosphere to the corona will play a crucial role in the energetics of the solar atmosphere. To explore this connectivity, we use high spatial resolution magnetic field observations of an active region from the balloon-borne SUNRISE telescope, in combination with the observations of coronal loops imaged in extreme ultraviolet by SDO/AIA. We show that photospheric magnetic field at the base of coronal loops is rapidly evolving through small-scale flux emergence and cancellation events with rates on the order of 10^15 Mx/s. When observed at high spatial resolution better than 0.5 arcsec, we find that basically all coronal loops considered so far are rooted in the photosphere above small-scale opposite polarity magnetic field patches. In the photosphere, the magnetic field threading coronal loops is interacting with opposite polarity parasitic magnetic concentrations leading to dynamic signatures in the upper atmosphere. Chromospheric small-scale jets aligned to coronal loops are observed at these locations. We will present preliminary results from 3D MHD simulations of coronal loops driven by realistic magneto-convection and discuss what role the magnetic interactions at coronal loop footpoints could play in the evolution of coronal loops and their heating.

  10. A unified theory of electrodynamic coupling in coronal magnetic loops - The coronal heating problem

    Science.gov (United States)

    Ionson, J. A.

    1984-01-01

    The coronal heating problem is studied, and it is demonstrated that Ionson's (1982) LRC approach results in a unified theory of coronal heating which unveils a variety of new heating mechanisms and which links together previously proposed mechanisms. Ionson's LRC equation is rederived, focusing on various aspects that were not clarified in the original article and incorporating new processes that were neglected. A parameterized heating rate is obtained. It is shown that Alfvenic surface wave heating, stochastic magnetic pumping, resonant electrodynamic heating, and dynamical dissipation emerge as special cases of a much more general formalism. This generalized theory is applied to solar coronal loops and it is found that active region and large scale loops are underdamped systems. Young active region loops and (possibly) bright points are found to be overdamped systems.

  11. Coronal bright points associated with minifilament eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Li, Haidong [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Yang, Bo; Yang, Dan, E-mail: hjcsolar@ynao.ac.cn [Also at Graduate School of Chinese Academy of Sciences, Beijing, China. (China)

    2014-12-01

    Coronal bright points (CBPs) are small-scale, long-lived coronal brightenings that always correspond to photospheric network magnetic features of opposite polarity. In this paper, we subjectively adopt 30 CBPs in a coronal hole to study their eruptive behavior using data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. About one-quarter to one-third of the CBPs in the coronal hole go through one or more minifilament eruption(s) (MFE(s)) throughout their lifetimes. The MFEs occur in temporal association with the brightness maxima of CBPs and possibly result from the convergence and cancellation of underlying magnetic dipoles. Two examples of CBPs with MFEs are analyzed in detail, where minifilaments appear as dark features of a cool channel that divide the CBPs along the neutral lines of the dipoles beneath. The MFEs show the typical rising movements of filaments and mass ejections with brightenings at CBPs, similar to large-scale filament eruptions. Via differential emission measure analysis, it is found that CBPs are heated dramatically by their MFEs and the ejected plasmas in the MFEs have average temperatures close to the pre-eruption BP plasmas and electron densities typically near 10{sup 9} cm{sup –3}. These new observational results indicate that CBPs are more complex in dynamical evolution and magnetic structure than previously thought.

  12. Weak-Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-Line Regions?

    CERN Document Server

    Shemmer, Ohad; Anderson, Scott F; Brandt, W N; Diamond-Stanic, Aleksandar M; Fan, Xiaohui; Lira, Paulina; Netzer, Hagai; Plotkin, Richard M; Richards, Gordon T; Schneider, Donald P; Strauss, Michael A

    2010-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z=3.55 and SDSS J123743.08+630144.9 at z=3.49. In both sources we detect an unusually weak broad H_beta line and we place tight upper limits on the strengths of their [O III] lines. Virial, H_beta-based black-hole mass determinations indicate normalized accretion rates of L/L_Edd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Gamma=1.91^{+0.24}_{-0.22} which supports the virial L/L_Edd determination in this source. Our results suggest that the weakness of the broad-emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad-emission line region proper...

  13. Bridging the Gap between Coronal and Non-Coronal Evolved Stars

    Science.gov (United States)

    Carpenter, Kenneth G.; Nielsen, Krister E.; Kober, Gladys V.

    2017-01-01

    The Hubble Space Telescope (HST) Treasury Program "Advanced Spectral Library (ASTRAL)" enables investigations of a broad range of problems including the character and dynamics of the wind and chromosphere of cool stars. This paper presents an investigation of the change in spectral characteristics when transitioning from the cool non-coronal objects with fluorescent emission spectra from the iron group elements, molecular hydrogen, and carbon monoxide to the warmer stars on the blue side of the Linsky-Haish dividing line in the HR diagram. These warmer objects exhibit chromospheric emission from significantly hotter environments in addition to coronal signatures, while the hybrid stars overlap in the HR-diagram with some of the non-coronal objects and share many spectral characteristics but show differences in the wind properties. We show how the wind, fluorescent features, and hot stellar signatures dramatically change with spectral class by comparing the already analyzed non-coronal objects (Alpha Ori, Gamma Cru) with the hybrid stars (Gamma Dra, Beta Gem and Alpha Aqr) and the coronal object Beta Dra. We aim to gain understanding of the physical processes in these objects' outer atmospheres and their evolutionary tracks.

  14. Relationship of EUV Irradiance Coronal Dimming Slope and Depth to Coronal Mass Ejection Speed and Mass

    CERN Document Server

    Mason, James Paul; Webb, David F; Thompson, Barbara J; Colaninno, Robin C; Vourlidas, Angelos

    2016-01-01

    Extreme ultraviolet (EUV) coronal dimmings are often observed in response to solar eruptive events. These phenomena can be generated via several different physical processes. For space weather, the most important of these is the temporary void left behind by a coronal mass ejection (CME). Massive, fast CMEs tend to leave behind a darker void that also usually corresponds to minimum irradiance for the cooler coronal emissions. If the dimming is associated with a solar flare, as is often the case, the flare component of the irradiance light curve in the cooler coronal emission can be isolated and removed using simultaneous measurements of warmer coronal lines. We apply this technique to 37 dimming events identified during two separate two-week periods in 2011, plus an event on 2010 August 7 analyzed in a previous paper, to parameterize dimming in terms of depth and slope. We provide statistics on which combination of wavelengths worked best for the flare-removal method, describe the fitting methods applied to t...

  15. Earth-Affecting Coronal Mass Ejections Without Obvious Low Coronal Signatures

    Science.gov (United States)

    Nitta, Nariaki V.; Mulligan, Tamitha

    2017-09-01

    We present a study of the origin of coronal mass ejections (CMEs) that were not accompanied by obvious low coronal signatures (LCSs) and yet were responsible for appreciable disturbances at 1 AU. These CMEs characteristically start slowly. In several examples, extreme ultraviolet (EUV) images taken by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory reveal coronal dimming and a post-eruption arcade when we make difference images with long enough temporal separations, which are commensurate with the slow initial development of the CME. Data from the EUV imager and COR coronagraphs of the Sun Earth Connection Coronal and Heliospheric Investigation onboard the Solar Terrestrial Relations Observatory, which provide limb views of Earth-bound CMEs, greatly help us limit the time interval in which the CME forms and undergoes initial acceleration. For other CMEs, we find similar dimming, although only with lower confidence as to its link to the CME. It is noted that even these unclear events result in unambiguous flux rope signatures in in situ data at 1 AU. There is a tendency that the CME source regions are located near coronal holes or open field regions. This may have implications for both the initiation of the stealthy CME in the corona and its outcome in the heliosphere.

  16. The Kinematics of Quasar Broad Emission Line Regions Using a Disk-Wind Model

    Science.gov (United States)

    Yong, Suk Yee; Webster, Rachel L.; King, Anthea L.; Bate, Nicholas F.; O'Dowd, Matthew J.; Labrie, Kathleen

    2017-09-01

    The structure and kinematics of the broad line region in quasars are still unknown. One popular model is the disk-wind model that offers a geometric unification of a quasar based on the viewing angle. We construct a simple kinematical disk-wind model with a narrow outflowing wind angle. The model is combined with radiative transfer in the Sobolev, or high velocity, limit. We examine how angle of viewing affects the observed characteristics of the emission line. The line profiles were found to exhibit distinct properties depending on the orientation, wind opening angle, and region of the wind where the emission arises.

  17. On the nature of transverse coronal waves revealed by wavefront dislocations

    CERN Document Server

    Ariste, A López; Arregui, I; Khomenko, E; Collados, M

    2015-01-01

    Coronal waves are an important aspect of the dynamics of the plasma in the corona. Wavefront dislocations are topological features of most waves in nature and also of magnetohydrodynamic waves. Are there dislocations in coronal waves? The finding and explanation of dislocations may shed light on the nature and characteristics of the propagating waves, their interaction in the corona and in general on the plasma dynamics. We positively identify dislocations in coronal waves observed by the Coronal Multi-channel Polarimeter (CoMP) as singularities in the Doppler shifts of emission coronal lines. We study the possible singularities that can be expected in coronal waves and try to reproduce the observed dislocations in terms of localization and frequency of appearance. The observed dislocations can only be explained by the interference of a kink and a sausage wave modes propagating with different frequencies along the coronal magnetic field. In the plane transverse to the propagation, the cross-section of the osc...

  18. Coronal Mass Ejections

    CERN Document Server

    Kunow, H; Linker, J. A; Schwenn, R; Steiger, R

    2006-01-01

    It is well known that the Sun gravitationally controls the orbits of planets and minor bodies. Much less known, however, is the domain of plasma fields and charged particles in which the Sun governs a heliosphere out to a distance of about 15 billion kilometers. What forces activates the Sun to maintain this power? Coronal Mass Ejections (CMEs) and their descendants are the troops serving the Sun during high solar activity periods. This volume offers a comprehensive and integrated overview of our present knowledge and understanding of Coronal Mass Ejections (CMEs) and their descendants, Interplanetary CMEs (ICMEs). It results from a series of workshops held between 2000 and 2004. An international team of about sixty experimenters involved e.g. in the SOHO, ULYSSES, VOYAGER, PIONEER, HELIOS, WIND, IMP, and ACE missions, ground observers, and theoreticians worked jointly on interpreting the observations and developing new models for CME initiations, development, and interplanetary propagation. The book provides...

  19. Broad-line region structure and kinematics in the radio galaxy 3C 120

    CERN Document Server

    Kollatschny, W; Zetzl, M; Kaspi, S; Haas, M

    2014-01-01

    Broad emission lines originate in the surroundings of supermassive black holes in the centers of active galactic nuclei (AGN). One method to investigate the extent, structure, and kinematics of the BLR is to study the continuum and line profile variability in AGN. We selected the radio-loud Seyfert 1 galaxy 3C 120 as a target for this study. We took spectra with a high signal-to-noise ratio of 3C 120 with the 9.2m Hobby-Eberly Telescope between Sept. 2008 and March 2009. In parallel, we photometrically monitored the continuum flux at the Wise observatory. We analyzed the continuum and line profile variations in detail (1D and 2D reverberation mapping) and modeled the geometry of the line-emitting regions based on the line profiles. We show that the BLR in 3C 120 is stratified with respect to the distance of the line-emitting regions from the center with respect to the line widths (FWHM) of the rms profiles and with respect to the variability amplitude of the emission lines. The emission line wings of H{\\alpha...

  20. VLBA Survey of OH Masers in Star-Forming Regions II: Satellite Lines

    CERN Document Server

    Ruiz-Velasco, A E; Migenes, V; Wiggins, B K

    2016-01-01

    Using the Very Long Baseline Array (VLBA) we performed a high resolution OH maser survey in Galactic star-forming regions (SFRs). We observed all the ground state spectral lines: the main lines at 1665 and 1667 MHz and the satellite lines at 1612 and 1720 MHz. Due to the exceptionality of finding satellite lines in SFRs, we will focus our discussion on those lines. In our sample of 41 OH maser sources, five (12%) showed the 1612 MHz line and ten (24%) showed the 1720 MHz line, with only one source showing both lines. We find that 1720 MHz emission is correlated with the presence of HII regions, suggesting that this emission could be used to diagnose or trace high-mass star formation. We include an analysis of the possible mechanisms that could be causing this correlation as well as assessing the possible relationships between lines in our sample. In particular, the presence of magnetic fields seems to play an important role, as we found Zeeman splitting in four of our sources (W75 N, W3(OH), W51 and NGC 7538)...

  1. Constraining Large-Scale Solar Magnetic Field Models with Optical Coronal Observations

    Science.gov (United States)

    Uritsky, V. M.; Davila, J. M.; Jones, S. I.

    2015-12-01

    Scientific success of the Solar Probe Plus (SPP) and Solar Orbiter (SO) missions will depend to a large extent on the accuracy of the available coronal magnetic field models describing the connectivity of plasma disturbances in the inner heliosphere with their source regions. We argue that ground based and satellite coronagraph images can provide robust geometric constraints for the next generation of improved coronal magnetic field extrapolation models. In contrast to the previously proposed loop segmentation codes designed for detecting compact closed-field structures above solar active regions, we focus on the large-scale geometry of the open-field coronal regions located at significant radial distances from the solar surface. Details on the new feature detection algorithms will be presented. By applying the developed image processing methodology to high-resolution Mauna Loa Solar Observatory images, we perform an optimized 3D B-line tracing for a full Carrington rotation using the magnetic field extrapolation code presented in a companion talk by S.Jones at al. Tracing results are shown to be in a good qualitative agreement with the large-scalie configuration of the optical corona. Subsequent phases of the project and the related data products for SSP and SO missions as wwll as the supporting global heliospheric simulations will be discussed.

  2. Deriving the properties of coronal pressure fronts in 3-D: application to the 17 May 2012 ground level enhancement

    CERN Document Server

    Rouillard, Alexis P; Pinto, Rui F; Tirole, Margot; Lavarra, Michael; Zucca, Pietro; Vainio, Rami; Tylka, Allan J; Vourlidas, Angelos; De Rosa, Marc; Linker, Jon; Warmuth, Alexander; Mann, Gottfried; Cohen, Christina M; Mewaldt, Robert A

    2016-01-01

    We study the link between an expanding coronal shock and the energetic particles measured near Earth during the Ground Level Enhancement (GLE) of 17 May 2012. We developed a new technique based on multipoint imaging to triangulate the 3-D expansion of the shock forming in the corona. It uses images from three vantage points by mapping the outermost extent of the coronal region perturbed by the pressure front. We derive for the first time the 3-D velocity vector and the distribution of Mach numbers, M_FM, of the entire front as a function of time. Our approach uses magnetic field reconstructions of the coronal field, full magneto-hydrodynamic simulations and imaging inversion techniques. We find that the highest M_FM values appear along the coronal neutral line within a few minutes of the CME eruption; this neutral line is usually associated with the source of the heliospheric and plasma sheet. We can also estimate the time evolution of the shock speed, shock geometry and Mach number along different modeled ma...

  3. Towards a Data-Optimized Coronal Magnetic Field Model (DOC-FM): Simulating Flux Ropes with the Flux Rope Insertion Method

    Science.gov (United States)

    Dalmasse, K.; DeLuca, E. E.; Savcheva, A. S.; Gibson, S. E.; Fan, Y.

    2015-12-01

    Knowledge of the 3D magnetic filed structure at the time of major solar eruptions is vital or understanding of the space weather effects of these eruptions. Multiple data-constrained techniques that reconstruct the 3D coronal field based on photospheric magnetograms have been used to achieve this goal. In particular, we have used the flux rope insertion method to obtain the coronal magnetic field of multiple regions containing flux ropes or sheared arcades based on line-of-sight magnetograms and X-ray and EUV observations of coronal loops. For the purpose of developing statistical measures of the goodness of fit of these models to the observations, here we present our modeling of flux ropes based on synthetic magnetograms obtained from Fan & Gibson emerging flux rope simulation. The goal is to reproduce the flux rope structure from a given time step of the MHD simulations based only on the photospheric magnetogram and synthetic forward modeled coronal emission obtained from the same step of the MHD simulation. For this purpose we create a large grid of models with the flux rope insertion method with different combinations of axial and poloidal flux, which give us different morphology of the flux rope. Then we compare the synthetic coronal emission with the shape of the current distribution and field lines from the models to come up with a best fit. This fit is then tested using the statistical methods developed by our team.

  4. Elemental Abundances in the Broad Emission Line Region of Quasars at Redshifts larger than 4

    DEFF Research Database (Denmark)

    Dietrich, M.; Appenzeller, I.; Hamann, F.

    2003-01-01

    We present observations of 11 high redshift quasars ($3.9 \\la z \\la 5.0$) observed with low spectral resolution in the restframe ultraviolet using FORS 1 at the VLT UT 1. The emission-line fluxes of strong permitted and intercombination ultraviolet emission lines are measured to estimate the chem......We present observations of 11 high redshift quasars ($3.9 \\la z \\la 5.0$) observed with low spectral resolution in the restframe ultraviolet using FORS 1 at the VLT UT 1. The emission-line fluxes of strong permitted and intercombination ultraviolet emission lines are measured to estimate...... the chemical composition of the line emitting gas. Comparisons to photoionization calculations indicate gas metallicities in the broad emission line region in the range of solar to several times solar. The average of the mean metallicity of each high-z quasar in this sample is $Z/Z_\\odot = 4.3 \\pm 0...

  5. OBSERVATIONAL SIGNATURES OF CORONAL LOOP HEATING AND COOLING DRIVEN BY FOOTPOINT SHUFFLING

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Taylor, B. D. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Einaudi, G. [Berkeley Research Associates, Inc., Beltsville, MD 20705 (United States); Ugarte-Urra, I. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Warren, H. P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Rappazzo, A. F. [Advanced Heliophysics, Pasadena, CA 91106 (United States); Velli, M., E-mail: rdahlbur@lcp.nrl.navy.mil [EPSS, UCLA, Los Angeles, CA 90095 (United States)

    2016-01-20

    The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions. As a consequence, the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is nonuniformly distributed so that only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scales that, in the solar corona, remain observationally unresolved: the plasma of our simulated loop is multithermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Numerical simulations of coronal loops of 50,000 km length and axial magnetic field intensities ranging from 0.01 to 0.04 T are presented. To connect these simulations to observations, we use the computed number densities and temperatures to synthesize the intensities expected in emission lines typically observed with the Extreme Ultraviolet Imaging Spectrometer on Hinode. These intensities are used to compute differential emission measure distributions using the Monte Carlo Markov Chain code, which are very similar to those derived from observations of solar active regions. We conclude that coronal heating is found to be strongly intermittent in space and time, with only small portions of the coronal loop being heated: in fact, at any given time, most of the corona is cooling down.

  6. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    Science.gov (United States)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  7. Coronal Heating Observed with Hi-C

    Science.gov (United States)

    Winebarger, Amy R.

    2013-01-01

    The recent launch of the High-Resolution Coronal Imager (Hi-C) as a sounding rocket has offered a new, different view of the Sun. With approx 0.3" resolution and 5 second cadence, Hi-C reveals dynamic, small-scale structure within a complicated active region, including coronal braiding, reconnection regions, Alfven waves, and flows along active region fans. By combining the Hi-C data with other available data, we have compiled a rich data set that can be used to address many outstanding questions in solar physics. Though the Hi-C rocket flight was short (only 5 minutes), the added insight of the small-scale structure gained from the Hi-C data allows us to look at this active region and other active regions with new understanding. In this talk, I will review the first results from the Hi-C sounding rocket and discuss the impact of these results on the coronal heating problem.

  8. A Two-Fluid, MHD Coronal Model

    Science.gov (United States)

    Suess, S. T.; Wang, A.-H.; Wu, S. T.; Poletto, G.; McComas, D. J.

    1999-01-01

    We describe first results from a numerical two-fluid MHD model of the global structure of the solar Corona. The model is two-fluid in the sense that it accounts for the collisional energy exchange between protons and electrons. As in our single-fluid model, volumetric heat and Momentum sources are required to produce high speed wind from Corona] holes, low speed wind above streamers, and mass fluxes similar to the empirical solar wind. By specifying different proton and electron heating functions we obtain a high proton temperature in the coronal hole and a relatively low proton temperature above the streamer (in comparison with the electron temperature). This is consistent with inferences from SOHO/UltraViolet Coronagraph Spectrometer instrument (UVCS), and with the Ulysses/Solar Wind Observations Over the Poles of the Sun instrument (SWOOPS) proton and electron temperature measurements which we show from the fast latitude scan. The density in the coronal hole between 2 and 5 solar radii (2 and 5 R(sub S)) is similar to the density reported from SPARTAN 201.-01 measurements by Fisher and Guhathakurta [19941. The proton mass flux scaled to 1 AU is 2.4 x 10(exp 8)/sq cm s, which is consistent with Ulysses observations. Inside the closed field region, the density is sufficiently high so that the simulation gives equal proton and electron temperatures due to the high collision rate. In open field regions (in the coronal hole and above the streamer) the proton and electron temperatures differ by varying amounts. In the streamer the temperature and density are similar to those reported empirically by Li et al. [1998], and the plasma beta is larger than unity everywhere above approx. 1.5 R(sub S), as it is in all other MHD coronal streamer models [e.g., Steinolfson et al., 1982; also G. A. Gary and D. Alexander, Constructing the coronal magnetic field, submitted to Solar Physics, 1998].

  9. Formation of the current sheet in a coronal streamer

    CERN Document Server

    Abbo, Lucia; Lionello, Roberto; Mikić, Zoran; Riley, Pete

    2011-01-01

    The present work is on the study of a coronal streamer observed in March 2008 at high spectral and spatial resolution by the Ultraviolet Coronagraph Spectrometer (UVCS) onboard SOHO. On the basis of a spectroscopic analysis of the O VI doublet, the solar wind plasma parameters are inferred in the extended corona. The analysis accounts for the coronal magnetic topology, extrapolated through a 3D magneto-hydrodynamic model. The results of the analysis show indications on the formation of the current sheet, one of the source regions of the slow coronal wind.

  10. Diagnostics for the structure of AGNs’broad line regions with reverberation mapping data:confirmation of the two-component broad line region model

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We re-examine the ten Reverberation Mapping(RM) sources with public data based on the two-component model of the Broad Line Region(BLR).In fitting their broad Hβ Mlines,six of them only need one Gaussian component,one of them has a double-peak profile,one has an irregular profile,and only two of them need two components,i.e.,a Very Broad Gaussian Component(VBGC) and an Inter-Mediate Gaussian Component(IMGC).The Gaussian components are assumed to come from two distinct regions in the two-component model;they are the Very Broad Line Region(VBLR) and the Inter-Mediate Line region(IMLR).The two sources with a two-component profile are Mrk 509 and NGC 4051.The time lags of the two components of both sources satisfy tIMLR/tVBLR=V 2VBLR/V 2IMLR,where tIMLR and tVBLR are the lags of the two components while VIMLR and VVBLR represent the mean gas velocities of the two regions,supporting the two-component model of the BLR of Active Galactic Nuclei(AGNs).The fact that most of these ten sources only have the VBGC confirms the assumption that RM mainly measures the radius of the VBLR;consequently,the radius obtained from the R-L relationship mainly represents the radius of VBLR.Moreover,NGC 4051,with a lag of about 5 days in the one component model,is an outlier on the R-L relationship as shown in Kaspi et al.(2005);however this problem disappears in our two-component model with lags of about 2 and 6 days for the VBGC and IMGC,respectively.

  11. Line profiles of water for the photon dominated region and embedded sources in the S140 region

    CERN Document Server

    Poelman, D R

    2006-01-01

    A radiative transfer method for the treatment of molecular lines is presented. We apply this method to previous SWAS and ISO observations of water vapor in the source S140 in order to make models to plan for, and to interpret, HIFI data. Level populations are calculated with the use of a three-dimensional (multi-zone) escape probability method and with a long characteristic code that uses Monte Carlo techniques with fixed directions. Homogeneous and inhomogeneous models are used to compute the differences between water line profiles across the S140 region. We find that when an outflow or infall velocity field with a gradient of a few kms^{-1} is adopted, line profiles with a FWHM of 6 kms^{-1} are found, in agreement with observations. Inhomogeneous models are favoured to produce a single-peaked line profile. When zooming in on smaller regions within the PDR, the shapes of the line profiles start to differ due to the different temperature and density distributions there. The embedded sources are traced by hig...

  12. Helioseismic Ring Analysis of CME Source Regions

    Indian Academy of Sciences (India)

    S. C. Tripathy; S. de Wet; K. Jain; R. Clark; F. Hill

    2008-03-01

    We apply the ring diagram technique to source regions of halo coronal mass ejections (CMEs) to study changes in acoustic mode parameters before, during, and after the onset of CMEs.We find that CME regions associated with a low value of magnetic flux have line widths smaller than the quiet regions, implying a longer life-time for the oscillation modes. We suggest that this criterion may be used to forecast the active regions which may trigger CMEs.

  13. The acceleration of electrons at a spherical coronal shock in a streamer-like coronal field

    Science.gov (United States)

    Kong, Xiangliang; Chen, Yao; Guo, Fan

    2016-03-01

    We study the effect of large-scale coronal magnetic field on the electron acceleration at a spherical coronal shock using a test-particle method. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. It shows that the closed field plays the role of a trapping agency of shock-accelerated electrons, allowing for repetitive reflection and acceleration, therefore can greatly enhance the shock-electron acceleration efficiency. It is found that, with an ad hoc pitch-angle scattering, electron injected in the open field at the shock flank can be accelerated to high energies as well. In addition, if the shock is faster or stronger, a relatively harder electron energy spectrum and a larger maximum energy can be achieved.

  14. Dynamics of Coronal-Hole Boundaries

    CERN Document Server

    Higginson, A K; DeVore, C R; Wyper, P F; Zurbuchen, T H

    2016-01-01

    Remote and in-situ observations suggest that the slow solar wind consists of plasma from the hot, closed-field corona that is released onto open magnetic field lines. The Separatrix-Web (S-Web) theory for the slow wind proposes that photospheric motions, at the scale of supergranules, are responsible for generating dynamics at coronal-hole boundaries, which result in the inferred necessary transfer of plasma from closed to open field lines. We use 3D magnetohydrodynamic (MHD) simulations to determine the effect of photospheric flows on the open and closed magnetic flux of a model corona with a dipole magnetic field and an isothermal solar wind. We find that a supergranular-scale photospheric motion at the boundary between the coronal hole and helmet streamer results in prolific and efficient interchange reconnection between open and closed flux. This reconnection acts to smooth the large- and small-scale structure introduced by the photospheric flows. Magnetic flux near the coronal-hole boundary experiences m...

  15. Untangling the Recombination Line Emission from HII Regions with Multiple Velocity Components

    CERN Document Server

    Anderson, L D; Wenger, T V; Bania, T M; Balser, Dana S

    2015-01-01

    HII regions are the ionized spheres surrounding high-mass stars. They are ideal targets for tracing Galactic structure because they are predominantly found in spiral arms and have high luminosities at infrared and radio wavelengths. In the Green Bank Telescope HII Region Discovery Survey (GBT HRDS) we found that >30% of first Galactic quadrant HII regions have multiple hydrogen radio recombination line (RRL) velocities, which makes determining their Galactic locations and physical properties impossible. Here we make additional GBT RRL observations to determine the discrete HII region velocity for all 117 multiple-velocity sources within 18deg. < l < 65deg. The multiple-velocity sources are concentrated in the zone 22deg. < l < 32deg., coinciding with the largest regions of massive star formation, which implies that the diffuse emission is caused by leaked ionizing photons. We combine our observations with analyses of the electron temperature, molecular gas, and carbon recombination lines to determ...

  16. First use of synoptic vector magnetograms for global nonlinear force free coronal magnetic field models

    OpenAIRE

    Tadesse, Tilaye; Wiegelmann, T.; Gosain, S.; Macneice, P.; Pevtsov, Alexei A.

    2013-01-01

    The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently there are several modelling techniques being used to calculate three-dimension of the field lines into the solar atmosphere. For the ...

  17. Self-Consistent MHD Modeling of a Coronal Mass Ejection, Coronal Dimming, and a Giant Cusp-Shaped Arcade Formation

    CERN Document Server

    Shiota, D; Chen, P F; Yamamoto, T T; Sakajiri, T; Shibata, K; Shiota, Daikou; Isobe, Hiroaki; Yamamoto, Tetsuya T.; Sakajiri, Takuma; Shibata, Kazunari

    2005-01-01

    We performed magnetohydrodynamic simulation of coronal mass ejections (CMEs) and associated giant arcade formations, and the results suggested new interpretations of observations of CMEs. We performed two cases of the simulation: with and without heat conduction. Comparing between the results of the two cases, we found that reconnection rate in the conductive case is a little higher than that in the adiabatic case and the temperature of the loop top is consistent with the theoretical value predicted by the Yokoyama-Shibata scaling law. The dynamical properties such as velocity and magnetic fields are similar in the two cases, whereas thermal properties such as temperature and density are very different.In both cases, slow shocks associated with magnetic reconnectionpropagate from the reconnection region along the magnetic field lines around the flux rope, and the shock fronts form spiral patterns. Just outside the slow shocks, the plasma density decreased a great deal. The soft X-ray images synthesized from t...

  18. Electron Acceleration at a Coronal Shock Propagating Through a Large-scale Streamer-like Magnetic Field

    CERN Document Server

    Kong, Xiangliang; Guo, Fan; Feng, Shiwei; Du, Guohui; Li, Gang

    2016-01-01

    With a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature is larger than that of magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of efficient electron acceleration region along the shock front dur...

  19. A search for non-hidden broad-line region Seyfert 2 galaxies

    CERN Document Server

    Petrov, Georgi P

    2016-01-01

    According to the unified model of active galactic nuclei, Seyfert 2 galaxies are physically the same as Seyfert 1 objects and they possess a broad-line region (BLR), but it is hidden from the observer due to their orientation. In the past few years, various authors reported that not all Seyfert 2 galaxies harbor a BLR. We compiled a sample of 38 Seyfert 2 galaxies to find non-hidden broad-line region (non-HBLR) objects. Using the theory of Nicastro et al. which suggests the existence of a critical value of the Eddington ratio below which BLR can't be formed, we found 26 non-HBLR Seyfert 2 candidates. We found also that 5 of these 26 non-HBLR objects could be low-ionization nuclear emission-line regions (LINERs).

  20. Solar coronal observations at high frequencies

    CERN Document Server

    Katsiyannis, A C; Phillips, K J H; Williams, D R; Keenan, F P

    2001-01-01

    The Solar Eclipse Coronal Imaging System (SECIS) is a simple and extremely fast, high-resolution imaging instrument designed for studies of the solar corona. Light from the corona (during, for example, a total solar eclipse) is reflected off a heliostat and passes via a Schmidt-Cassegrain telescope and beam splitter to two CCD cameras capable of imaging at 60 frames a second. The cameras are attached via SCSI connections to a purpose-built PC that acts as the data acquisition and storage system. Each optical channel has a different filter allowing observations of the same events in both white light and in the green line (Fe XIV at 5303 A). Wavelet analysis of the stabilized images has revealed high frequency oscillations which may make a significant contribution on the coronal heating process. In this presentation we give an outline of the instrument and its future development.

  1. Microflares as Possible Sources for Coronal Heating

    Indian Academy of Sciences (India)

    Meera Gupta; Rajmal Jain; Jayshree Trivedi; A. P. Mishra

    2008-03-01

    We present a preliminary study of 27 microflares observed by Solar X-ray Spectrometer (SOXS) mission during July 2003 to August 2006. We found that all 27 microflares show the Fe-line feature peaking around 6.7 keV, which is an indicator of the presence of coronal plasma temperature ≥ 9 MK. On the other hand, the spectra of microflares showhybrid model of thermal and non-thermal emission, which further supports them as possible sources of coronal heating. Our results based on the analysis show that the energy relapsed by the microflares is good enough for heating of the active corona. We discuss our results in the light of the hybrid model of microflares production.

  2. Detection of optical coronal emission from 10^6 K gas in the core of the Centaurus cluster

    CERN Document Server

    Canning, R E A; Johnstone, R M; Sanders, J S; Crawford, C S; Hatch, N A; Ferland, G J

    2010-01-01

    We report a detection (3.5x10^37 \\pm 5.6x10^36 ergps) of the optical coronal emission line [Fe X]6374 and upper limits of four other coronal lines using high resolution VIMOS spectra centred on NGC 4696, the brightest cluster galaxy in the Centaurus cluster. Emission from these lines is indicative of gas at temperatures between 1 and 5 million K so traces the interstellar gas in NGC 4696. The rate of cooling derived from the upper limits is consistent with the cooling rate from X-ray observations (~10 solar masses per year) however we detect twice the luminosity expected for [Fe X]6374 emission, at 1 million K, our lowest temperature probe. We suggest this emission is due to the gas being heated rather than cooling out of the intracluster medium. We detect no coronal lines from [Ca XV], which are expected from the 5 million K gas seen near the centre in X-rays with Chandra. Calcium is however likely to be depleted from the gas phase onto dust grains in the central regions of NGC 4696.

  3. Transverse Oscillations in a Coronal Loop Triggered by a Jet

    Science.gov (United States)

    Sarkar, S.; Pant, V.; Srivastava, A. K.; Banerjee, D.

    2016-11-01

    We detect and analyse transverse oscillations in a coronal loop, lying at the south-east limb of the Sun as seen from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The jet is believed to trigger transverse oscillations in the coronal loop. The jet originates from a region close to the coronal loop on 19 September 2014 at 02:01:35 UT. The length of the loop is estimated to be between 377 - 539 Mm. Only one complete oscillation is detected with an average period of about 32±5 min. Using magnetohydrodynamic (MHD) seismologic inversion techniques, we estimate the magnetic field inside the coronal loop to be between 2.68 - 4.5 G. The velocity of the hot and cool components of the jet is estimated to be 168 km s^{-1} and 43 km s^{-1}, respectively. The energy density of the jet is found to be greater than the energy density of the oscillating coronal loop. We therefore conclude that the jet triggered transverse oscillations in the coronal loop. To our knowledge, this is the first coronal loop seismology study using the properties of a jet propagation to trigger oscillations.

  4. Microlensing of the broad-line region in the quadruply imaged quasar HE0435-1223

    CERN Document Server

    Braibant, L; Sluse, D; Anguita, T; García-Vergara, C J

    2014-01-01

    Using infrared spectra of the z = 1.693 quadruply lensed quasar HE0435-1223 acquired in 2009 with the spectrograph SINFONI at the ESO Very Large Telescope, we have detected a clear microlensing effect in images A and D. While microlensing affects the blue and red wings of the H{\\alpha} line profile in image D very differently, it de-magnifies the line core in image A. The combination of these different effects sets constraints on the line-emitting region; these constraints suggest that a rotating ring is at the origin of the H{\\alpha} line. Visible spectra obtained in 2004 and 2012 indicate that the MgII line profile is microlensed in the same way as the H{\\alpha} line. Our results therefore favour flattened geometries for the low-ionization line-emitting region, for example, a Keplerian disk. Biconical models cannot be ruled out but require more fine-tuning. Flux ratios between the different images are also derived and confirm flux anomalies with respect to estimates from lens models with smooth mass distrib...

  5. Constraints on the outer radius of the broad emission line region of active galactic nuclei

    CERN Document Server

    Landt, Hermine; Elvis, Martin; Karovska, Margarita

    2014-01-01

    Here we present observational evidence that the broad emission line region (BELR) of active galactic nuclei (AGN) generally has an outer boundary. This was already clear for sources with an obvious transition between the broad and narrow components of their emission lines. We show that the narrow component of the higher-order Paschen lines is absent in all sources, revealing a broad emission line profile with a broad, flat top. This indicates that the BELR is kinematically separate from the narrow emission line region. We use the virial theorem to estimate the BELR outer radius from the flat top width of the unblended profiles of the strongest Paschen lines, Pa alpha and Pa beta, and find that it scales with the ionising continuum luminosity roughly as expected from photoionisation theory. The value of the incident continuum photon flux resulting from this relationship corresponds to that required for dust sublimation. A flat-topped broad emission line profile is produced by both a spherical gas distribution ...

  6. Coronal radiation belts

    CERN Document Server

    Hudson, H S; Frewen, S F N; DeRosa, M L

    2009-01-01

    The magnetic field of the solar corona has a large-scale dipole character, which maps into the bipolar field in the solar wind. Using standard representations of the coronal field, we show that high-energy ions can be trapped stably in these large-scale closed fields. The drift shells that describe the conservation of the third adiabatic invariant may have complicated geometries. Particles trapped in these zones would resemble the Van Allen Belts and could have detectable consequences. We discuss potential sources of trapped particles.

  7. Properties of Solar Polar Coronal Hole Plasmas Observed above the Limb

    Science.gov (United States)

    Doschek, G. A.; Feldman, U.; Laming, J. M.; Schühle, U.; Wilhelm, K.

    2001-01-01

    We determine the line-of-sight emission measure distribution and nonthermal motions as a function of height above the limb in the north and south polar coronal holes. These quantities are derived from extreme-ultraviolet (EUV) spectra obtained from the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer on the Solar and Heliospheric Observatory (SOHO) spacecraft. The SUMER slit was oriented along the north-south direction for all the observations, and the spatial resolution is about 1". The spectra were obtained from a number of different types of observations in 1996. We select a group of emission lines for analysis for which, under the usual assumption of ionization equilibrium, the maximum emissivities span the temperature range from about 3×105 K up to about 1.1×106 K. We compare our results with recently published similar observations of a west limb quiet-Sun streamer region, with other coronal hole results based on SUMER spectra, and with earlier observations of the quiet Sun and coronal holes obtained from Skylab and rocket spectra. We find that the electron temperature in the polar holes increases with height above the limb, that the emission measure distribution of plasma located at line-of-sight heights less than about 60" peaks at a temperature of about 9×105 K, and that nonthermal motions sometimes, but not always, increase slightly with height above the limb. When observed, these increases level off above the limb at about 120". We speculate that the increases with height above the limb may be a manifestation of the fast solar wind. They may also be due to the reduction in transition region structures with increasing limb height. We also discuss wave heating as a cause of the line width increases.

  8. The Sagittarius B2 star-forming region - Subarcsecond radio spectral line and continuum observations

    Energy Technology Data Exchange (ETDEWEB)

    Gaume, R.A.; Claussen, M.J. (E. O. Hulburt Center for Space Research, Washington, DC (USA))

    1990-03-01

    Results are reported of a subarcsecond spatial resolution RF line and continuum study of the Sgr B2 region, observed at the frequency of the 76-alpha hydrogen recombination line and at the (J,K = 3,2) transition of NH3. Also reported are new observations of the ground-state OH main line masers toward Sgr B2 in both left and right circular polarization. The continuum images showed no less than 19 separate H II regions in the Sgr B2 complex. Ammonia emission was observed in the Sgr B2 K and F regions. The emission toward K was found near the K1, K2, and K3 regions. The NH3 emission and absorption toward the F region, along with the OH maser emission, delineate a rotating disk or torus of molecular material surrounding the Sgr B2 F complex of H II regions. The mass interior to the NH3 and OH emission regions was calculated to be on the order of 1400 solar masses. 38 refs.

  9. Modelling Carbon Radio Recombination Line observation towards the Ultra-Compact HII region W48A

    CERN Document Server

    Jeyakumar, S

    2013-01-01

    We model Carbon Recombination Line (CRL) emission from the Photo Dissociation Region (PDR) surrounding the Ultra-Compact (UC) HII region W48A. Our modelling shows that the inner regions ($A_V \\sim 1$) of the CII layer in the PDR contribute significantly to the CRL emission. The dependence of line ratios of CRL emission with the density of the PDR and the far ultra-violet (FUV) radiation incident on the region is explored over a large range of these parameters that are typical for the environments of UCHII regions. We find that by observing a suitable set of CRLs it is possible to constrain the density of the PDR. If the neutral density in the PDR is high ($\\gtrsim 10^7$ \\cmthree) CRL emission is bright at high frequencies ($\\gtrsim 20$ GHz), and absorption lines from such regions can be detected at low frequencies ($\\lesssim 10$ GHz). Modelling CRL observations towards W48A shows that the UCHII region is embedded in a molecular cloud of density of about $4 \\times$ 10$^7$ \\cmthree.

  10. H2 infrared line emission from the ionized region of planetary nebulae

    CERN Document Server

    Aleman, Isabel

    2010-01-01

    The analysis and interpretation of the H2 line emission from planetary nebulae have been done in the literature assuming that the molecule survives only in regions where the hydrogen is neutral, as in photodissociation, neutral clumps or shocked regions. However, there is strong observational and theoretical evidence that at least part of the H2 emission is produced inside the ionized region of such objects. The aim of the present work is to calculate and analyze the infrared line emission of H2 produced inside the ionized region of planetary nebulae using a one-dimensional photoionization code. The photoionization code Aangaba was improved in order to calculate the statistical population of the H2 energy levels and the intensity of the H2 infrared emission lines in physical conditions typical of planetary nebulae. A grid of models was obtained and the results are analyzed and compared with the observational data. We show that the contribution of the ionized region to the H2 line emission can be important, pa...

  11. DETECTION OF THE INTERMEDIATE-WIDTH EMISSION LINE REGION IN QUASAR OI 287 WITH THE BROAD EMISSION LINE REGION OBSCURED BY THE DUSTY TORUS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhenzhen; Zhou, Hongyan; Wang, Huiyuan; Liu, Bo; Liu, Wen-Juan; Pan, Xiang; Jiang, Peng [Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hao, Lei [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Ji, Tuo; Shi, Xiheng; Zhang, Shaohua, E-mail: lizz08@mail.ustc.edu.cn, E-mail: zhouhongyan@pric.org.cn, E-mail: haol@shao.ac.cn [Polar Research Institute of China, Jinqiao Rd. 451, Shanghai, 200136 (China)

    2015-10-20

    The existence of intermediate-width emission line regions (IELRs) in active galactic nuclei has been discussed for over two decades. A consensus, however, is yet to be arrived at due to the lack of convincing evidence for their detection. We present a detailed analysis of the broadband spectrophotometry of the partially obscured quasar OI 287. The ultraviolet intermediate-width emission lines (IELs) are very prominent, in high contrast to the corresponding broad emission lines (BELs) which are heavily suppressed by dust reddening. Assuming that the IELR is virialized, we estimated its distance to the central black hole to be ∼2.9 pc, similar to the dust sublimation radius of ∼1.3 pc. Photo-ionization calculations suggest that the IELR has a hydrogen density of ∼10{sup 8.8}–10{sup 9.4} cm{sup −3}, within the range of values quoted for the dusty torus near the sublimation radius. Both its inferred location and physical conditions suggest that the IELR originates from the inner surface of the dusty torus. In the spectrum of this quasar, we identified only one narrow absorption-line system associated with the dusty material. With the aid of photo-ionization model calculations, we found that the obscuring material might originate from an outer region of the dusty torus. We speculate that the dusty torus, which is exposed to the central ionizing source, may produce IELs through photo-ionization processes, as well as obscure BELs as a natural “coronagraph.” Such a “coronagraph” could be found in a large number of partially obscured quasars and may be a useful tool to study IELRs.

  12. Propagating magnetohydrodynamics waves in coronal loops.

    Science.gov (United States)

    De Moortel, I

    2006-02-15

    High cadence Transition Region and Coronal Explorer (TRACE) observations show that outward propagating intensity disturbances are a common feature in large, quiescent coronal loops, close to active regions. An overview is given of measured parameters of such longitudinal oscillations in coronal loops. The observed oscillations are interpreted as propagating slow magnetoacoustic waves and are unlikely to be flare-driven. A strong correlation, between the loop position and the periodicity of the oscillations, provides evidence that the underlying oscillations can propagate through the transition region and into the corona. Both a one- and a two-dimensional theoretical model of slow magnetoacoustic waves are presented to explain the very short observed damping lengths. The results of these numerical simulations are compared with the TRACE observations and show that a combination of the area divergence and thermal conduction agrees well with the observed amplitude decay. Additionally, the usefulness of wavelet analysis is discussed, showing that care has to be taken when interpreting the results of wavelet analysis, and a good knowledge of all possible factors that might influence or distort the results is a necessity.

  13. Core and Wing Densities of Asymmetric Coronal Spectral Profiles: Implications for the Mass Supply of the Solar Corona

    Science.gov (United States)

    Patsourakos, S.; Klimchuk, J. A.; Young, P. R.

    2014-01-01

    Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding approximately equal to 50 km per sec. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe(sub XIV) lines at 264.78 and 274.20 Angstroms is used to determine wing and core densities.We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe(sub XIV) lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.

  14. The case for inflow of the broad-line region of active galactic nuclei

    CERN Document Server

    Gaskell, C Martin

    2015-01-01

    The high-ionization lines of the broad-line region (BLR) of thermal active galactic nuclei (AGNs) show blueshifts of a few hundred km/s to several thousand km/sec with respect to the low-ionization lines. This has long been thought to be due to the high-ionization lines of the BLR arising in a wind of which the far side of the outflow is blocked from our view by the accretion disc. Evidence for and against the disc-wind model is discussed. The biggest problem for the model is that velocity-resolved reverberation mapping repeatedly fails to show the expected kinematic signature of outflow of the BLR. The disc-wind model also cannot readily reproduce the red side of the line profiles of high-ionization lines. The rapidly falling density in an outflow makes it difficult to obtain high equivalent widths. We point out a number of major problems with associating the BLR with the outflows producing broad absorption lines. An explanation which avoids all these problems and satisfies the constraints of both the line p...

  15. Evidence for two spatially separated UV continuum emitting regions in the Cloverleaf broad absorption line quasar

    CERN Document Server

    Sluse, D; Anguita, T; Braibant, L; Riaud, P

    2015-01-01

    Testing the standard Shakura-Sunyaev model of accretion is a challenging task because the central region of quasars where accretion takes place is unresolved with telescopes. The analysis of microlensing in gravitationally lensed quasars is one of the few techniques which can test this model, yielding to the measurement of the size and of the temperature profile of the accretion disc. We present spectroscopic observations of the gravitationally lensed broad absorption line quasar H1413+117, which reveal partial microlensing of the continuum emission that appears to originate from two separated regions, a microlensed region corresponding the compact accretion disc, and a non-microlensed region, more extended and contributing to at least 30\\% of the total UV-continuum flux. Because this extended continuum is occulted by the broad absorption line clouds, it is not associated to the host galaxy, but rather to light scattered in the neighbourhood of the central engine. We measure the amplitude of microlensing of t...

  16. Modeling the water line emission from the high-mass star-forming region AFGL2591

    CERN Document Server

    Poelman, D R

    2007-01-01

    Context: observations of water lines are a sensitive probe of the geometry, dynamics and chemical structure of dense molecular gas. The launch of Herschel with on board HIFI and PACS allow to probe the behaviour of multiple water lines with unprecedented sensitivity and resolution. Aims: we investigate the diagnostic value of specific water transitions in high-mass star-forming regions. As a test case, we apply our models to the AFGL2591 region. Results: in general, for models with a constant water abundance, the ground state lines, i.e., 1_(10)-1_(01), 1_(11)-0_(00), and 2_(12)-1_(01), are predicted in absorption, all the others in emission. This behaviour changes for models with a water abundance jump profile in that the line profiles for jumps by a factor of ~10-100 are similar to the line shapes in the constant abundance models, whereas larger jumps lead to emission profiles. Asymmetric line profiles are found for models with a cavity outflow and depend on the inclination angle. Models with an outflow cav...

  17. Optical Recombination Lines of Heavy-elements in Giant Extragalactic HII Regions

    CERN Document Server

    Esteban, C; Torres-Peimbert, S; Rodríguez, M

    2002-01-01

    We present high resolution observations of the giant extragalactic H II regions NGC 604, NGC 2363, NGC 5461 and NGC 5471, based on observations taken with the ISIS spectrograph on the William Herschel Telescope. We have detected -by the first time- C II and O II recombination lines in these objects. We find that recombination lines give larger C^{++} and O^{++} abundances than collisionallly excited lines, suggesting that temperature variations can be present in the objects. We detect [Fe IV] lines in NGC 2363 and NGC 5471, the most confident detection of optical lines of this kind in H II regions. Considering the temperature structure we derive their H, He, C, N, O, Ne, S, Ar, and Fe abundances. From the recombination lines of NGC 5461 and NGC 5471 we determine the presence of C/H and O/H gradients in M101. We calculate the Delta Y/Delta O and Delta Y/Delta Z values considering the presence of temperature variations and under the assumption of constant temperature. We obtain a better agreement with models of...

  18. Kinetic signatures of the region surrounding the X line in asymmetric (magnetopause) reconnection

    Science.gov (United States)

    Shay, M. A.; Phan, T. D.; Haggerty, C. C.; Fujimoto, M.; Drake, J. F.; Malakit, K.; Cassak, P. A.; Swisdak, M.

    2016-05-01

    Kinetic particle-in-cell simulations are used to identify signatures of the electron diffusion region (EDR) and its surroundings during asymmetric magnetic reconnection. A "shoulder" in the sunward pointing normal electric field (EN > 0) at the reconnection magnetic field reversal is a good indicator of the EDR and is caused by magnetosheath electron meandering orbits in the vicinity of the X line. Earthward of the X line, electrons accelerated by EN form strong currents and crescent-shaped distribution functions in the plane perpendicular to B. Just downstream of the X line, parallel electric fields create field-aligned crescent electron distribution functions. In the immediate upstream magnetosheath, magnetic field strength, plasma density, and perpendicular electron temperatures are lower than the asymptotic state. In the magnetosphere inflow region, magnetosheath ions intrude resulting in an Earthward pointing electric field and parallel heating of magnetospheric particles. Many of the above properties persist with a guide field of at least unity.

  19. Kinetic signatures of the region surrounding the X-line in asymmetric (magnetopause) reconnection

    CERN Document Server

    Shay, M A; Haggerty, C C; Fujimoto, M; Drake, J F; Malakit, K; Cassak, P A; Swisdak, M

    2016-01-01

    Kinetic particle-in-cell simulations are used to identify signatures of the electron diffusion region (EDR) and its surroundings during asymmetric magnetic reconnection. A "shoulder" in the sunward pointing normal electric field (EN > 0) at the reconnection magnetic field reversal is a good indicator of the EDR, and is caused by magnetosheath electron meandering orbits in the vicinity of the x-line. Earthward of the X-line, electrons accelerated by EN form strong currents and crescent-shaped distribution functions in the plane perpendicular to B. Just downstream of the X-line, parallel electric fields create field-aligned crescent electron distribution functions. In the immediate upstream magnetosheath, magnetic field strength, plasma density, and perpendicular electron temperatures are lower than the asymptotic state. In the magnetosphere inflow region, magnetosheath ions intrude resulting in an Earthward pointing electric field and parallel heating of magnetospheric particles. Many of the above properties p...

  20. Solar jet-coronal hole collision and a related coronal mass ejection

    CERN Document Server

    Zheng, Ruisheng; Du, Guohui; Li, Chuanyang

    2016-01-01

    Jets are defined as impulsive, well-collimated upflows, occurring in different layers of the solar atmosphere with different scales. Their relationship with coronal mass ejections (CMEs), another type of solar impulsive events, remains elusive. Using the high-quality imaging data of AIA/SDO, here we show a well-observed coronal jet event, in which part of the jets, with the embedding coronal loops, runs into a nearby coronal hole (CH) and gets bounced towards the opposite direction. This is evidenced by the flat-shape of the jet front during its interaction with the CH and the V-shaped feature in the time-slice plot of the interaction region. About a half-hour later, a CME initially with a narrow and jet-like front is observed by the LASCO C2 coronagraph, propagating along the direction of the post-collision jet. We also observe some 304 A dark material flowing from the jet-CH interaction region towards the CME. We thus suggest that the jet and the CME are physically connected, with the jet-CH collision and t...

  1. SOLAR JET–CORONAL HOLE COLLISION AND A CLOSELY RELATED CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruisheng; Chen, Yao; Du, Guohui; Li, Chuanyang, E-mail: ruishengzheng@sdu.edu.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, 264209, Weihai (China)

    2016-03-10

    Jets are defined as impulsive, well-collimated upflows, occurring in different layers of the solar atmosphere with different scales. Their relationship with coronal mass ejections (CMEs), another type of solar impulsive events, remains elusive. Using high-quality imaging data from the Atmospheric Imaging Assembly/Solar Dynamics Observatory, we show a well-observed coronal jet event, in which the part of the jet with embedding coronal loops runs into a nearby coronal hole (CH) and gets bounced in the opposite direction. This is evidenced by the flat shape of the jet front during its interaction with the CH and the V-shaped feature in the time-slice plot of the interaction region. About a half-hour later, a CME with an initially narrow and jet-like front is observed by the LASCO C2 coronagraph propagating along the direction of the post-collision jet. We also observe some 304 Å dark material flowing from the jet–CH interaction region toward the CME. We thus suggest that the jet and the CME are physically connected, with the jet–CH collision and the large-scale magnetic topology of the CH being important in defining the eventual propagating direction of this particular jet–CME eruption.

  2. Heavy elements in Galactic and Magellanic Cloud HII regions recombination-line versus forbidden-line abundances

    CERN Document Server

    Tsamis, Y G; Liu, X W; Danziger, I J; Storey, P J; Tsamis, Yiannis G.

    2003-01-01

    We have obtained deep optical, long-slit spectrophotometry of the Galactic HII regions M 17, NGC 3576 and of the Magellanic Cloud HII regions 30 Doradus, LMC N11B and SMC N66, recording the optical recombination lines (ORLs) of CII, NII and OII. Temperature-insensitive ORL C2+/O2+ and N2+/O2 ratios are obtained for all nebulae except SMC N66. The ORL C2+/O2+ ratios show remarkable agreement within each galactic system, while also being in agreement with the corresponding CEL ratios. For all five nebulae, the O2+/H+ abundance derived from multiple OII ORLs is found to be higher than the corresponding value derived from the strong [OIII] 4959, 5007A CELs, by factors of 1.8--2.7 for four of the nebulae. The LMC N11B nebula exhibits a more extreme discrepancy factor for the O2+ ion, ~5. Thus these HII regions exhibit ORL/CEL abundance discrepancy factors that are similar to those previously encountered amongst planetary nebulae. Our optical CEL O2+/H+ abundances agree to within 20-30 per cent with published O2+/H...

  3. Detection of the Intermediate-width Emission Line Region in Quasar OI 287 with the Broad Emission Line Region Obscured by the Dusty Torus

    CERN Document Server

    Li, Zhenzhen; Hao, Lei; Wang, Huiyuan; Ji, Tuo; Shi, Xiheng; Liu, Bo; Zhang, Shaohua; Liu, Wen-Juan; Pan, Xiang; Jiang, Peng

    2015-01-01

    The existence of intermediate-width emission line regions (IELRs) in active galactic nuclei has been discussed for over two decades. A consensus, however, is yet to be arrived at due to the lack of convincing evidence for their detection. We present a detailed analysis of the broadband spectrophotometry of the partially obscured quasar OI 287. The ultraviolet intermediate-width emission lines (IELs) are very prominent, in high contrast to the corresponding broad emission lines (BELs) which are heavily suppressed by dust reddening. Assuming that the IELR is virialized, we estimated its distance to the central black hole of $\\sim 2.9$ pc, similar to the dust sublimation radius of $\\sim 1.3$ pc. Photo-ionization calculations suggest that the IELR has a hydrogen density of $\\sim 10^{8.8}-10^{9.4} ~ \\rm cm^{-3}$, within the range of values quoted for the dusty torus near the sublimation radius. Both its inferred location and physical conditions suggest that the IELR originates from the inner surface of the dusty t...

  4. Millimetre spectral line mapping observations towards four massive star-forming H II regions

    Science.gov (United States)

    Li, Shanghuo; Wang, Junzhi; Zhang, Zhi-Yu; Fang, Min; Li, Juan; Zhang, Jiangshui; Fan, Junhui; Zhu, Qingfeng; Li, Fei

    2017-04-01

    We present spectral line mapping observations towards four massive star-forming regions - Cepheus A, DR21S, S76E and G34.26+0.15 - with the IRAM 30-m telescope at the 2 and 3 mm bands. In total, 396 spectral lines from 51 molecules, one helium recombination line, 10 hydrogen recombination lines and 16 unidentified lines were detected in these four sources. An emission line of nitrosyl cyanide (ONCN, 140, 14-130, 13) was detected in G34.26+0.15, as the first detection in massive star-forming regions. We found that c-C3H2 and NH2D show enhancement in shocked regions, as suggested by the evidence of SiO and/or SO emission. The column density and rotational temperature of CH3CN were estimated with the rotational diagram method for all four sources. Isotope abundance ratios of 12C/13C were derived using HC3N and its 13C isotopologue, which were around 40 in all four massive star-forming regions and slightly lower than the local interstellar value (∼65). The 14N/15N and 16O/18O abundance ratios in these sources were also derived using the double isotopic method, which were slightly lower than in the local interstellar medium. Except for Cep A, the 33S/34S ratios in the other three targets were derived, which were similar to that in the local interstellar medium. The column density ratios of N(DCN)/N(HCN) and N(DCO+)/N(HCO+) in these sources were more than two orders of magnitude higher than the elemental [D]/[H] ratio, which is 1.5 × 10-5. Our results show that the later stage sources, G34.26+0.15 in particular, present more molecular species than earlier stage sources. Evidence of shock activity is seen in all stages studied.

  5. Problems and countermeasures in construction of transmission line projects in permafrost regions

    Institute of Scientific and Technical Information of China (English)

    GuoShang Wang; QiHao Yu; YanHui You; Ze Zhang; Lei Guo; ShiJun Wang; Yong Yu

    2014-01-01

    Construction of power transmission lines is becoming an important part of permafrost engineering in China. This paper reviews the construction status and problems of transmission lines in different countries, as well as corresponding solutions that would be of practical significance for sustainable engineering practices. Russia has the longest history of transmission line construction in permafrost areas, with transmission lines (mainly 220 kV and 500 kV) spanning approximately 100,000 km. However, all countries suffer from permafrost-related tower foundation stability problems caused by freez-ing-thawing hazards such as frost heave and thaw settlement, frost lifting, and harmful cryogenic phenomena. As point-line transmission line constructions, the lines, poles and towers should be reasonably selected and installed with a comprehensive consideration of frozen soil characteristics to effectively reduce the occurrence of freezing-thawing dis-asters. Reinforced concrete pile foundations are widely used in the permafrost regions, and construction in winter is also a universal practice. Moreover, facilitating engineering measures like thermosyphons are an effective way to reduce freez-ing-thawing hazards and to maintain the stability of tower foundations.

  6. What can we learn about solar coronal mass ejections, coronal dimmings, and Extreme-Ultraviolet jets through spectroscopic observations?

    CERN Document Server

    Tian, Hui; Xia, Lidong; He, Jiansen; Wang, Xin

    2012-01-01

    We analyze several data sets obtained by Hinode/EIS and find various types of flows during CMEs and EUV jet eruptions. CME-induced dimming regions are found to be characterized by significant blueshift and enhanced line width by using a single Gaussian fit. While a red-blue (RB) asymmetry analysis and a RB-guided double Gaussian fit of the coronal line profiles indicate that these are likely caused by the superposition of a strong background emission component and a relatively weak (~10%) high-speed (~100 km s-1) upflow component. This finding suggests that the outflow velocity in the dimming region is probably of the order of 100 km s-1, not ~20 km s-1 as reported previously. Density and temperature diagnostics suggest that dimming is primarily an effect of density decrease rather than temperature change. The mass losses in dimming regions as estimated from different methods are roughly consistent with each other and they are 20%-60% of the masses of the associated CMEs. With the guide of RB asymmetry analys...

  7. Damped transverse oscillations of interacting coronal loops

    CERN Document Server

    Soler, Roberto

    2015-01-01

    Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations compared to those of an isolated loop. Here we theoretically investigate resonantly damped transverse oscillations of interacting non-uniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. ...

  8. GRIS detection of Al-26 1809 keV line emission from the Galactic center region as a broad line

    Science.gov (United States)

    Naya, Juan E.; Barthelmy, Scott D.; Bartlett, Lyle M.; Gehrels, Neil; Leventhal, Marvin; Parsons, Ann; Teegarden, Bonnard J.; Tueller, Jack

    1997-01-01

    The gamma ray imaging spectrometer (GRIS) was used to observe the 1809 keV emission from the Galactic center region. The observed line is broader than the instrument resolution. The measured intrinsic width is 5.4 +/- 1.4 keV full width half medium, which is more than three times the maximum Doppler broadening expected due to Galactic rotation. The detection of such a wide feature, suggesting a high dispersion velocity has implications for the origin of Galactic Al-26. It suggests a supernova explosion origin or a Wolf-Rayet stellar wind origin of Al-26. The fact that the Al-26 has not come to rest after 10(exp 6) years presents a challenge to the current understanding of the Al-26 production and propagation in the Galaxy.

  9. A Revised Broad-Line Region Radius and Black Hole Mass for the Narrow-Line Seyfert 1 NGC 4051

    CERN Document Server

    Denney, K D; Peterson, B M; Pogge, R W; Atlee, D W; Bentz, M C; Bird, J C; Brokofsky, D J; Comins, M L; Dietrich, M; Doroshenko, V T; Eastman, J D; Efimov, Y S; Gaskell, C M; Hedrick, C H; Klimanov, S A; Klimek, E S; Kruse, A K; Lamb, J; Leighly, K; Minezaki, T; Nazarov, S V; Petersen, E A; Peterson, P; Poindexter, S; Sakata, Y; Schlesinger, K J; Sergeev, S G; Tobin, J J; Unterborn, C; Vestergaard, M; Watkins, A E; Yoshii, Y

    2009-01-01

    We present the first results from a high sampling rate, multi-month reverberation mapping campaign undertaken primarily at MDM Observatory with supporting observations from telescopes around the world. The primary goal of this campaign was to obtain either new or improved Hbeta reverberation lag measurements for several relatively low luminosity AGNs. We feature results for NGC 4051 here because, until now, this object has been a significant outlier from AGN scaling relationships, e.g., it was previously a ~2-3sigma outlier on the relationship between the broad-line region (BLR) radius and the optical continuum luminosity - the R_BLR-L relationship. Our new measurements of the lag time between variations in the continuum and Hbeta emission line made from spectroscopic monitoring of NGC 4051 lead to a measured BLR radius of R_BLR = 1.75 (+0.50 -0.68) light days and black hole mass of M_BH = 1.58 (+0.50 -0.65) x 10^6 M_sun. This radius is consistent with that expected from the R_BLR-L relationship, based on the...

  10. The coronal fricative problem

    Science.gov (United States)

    Dinnsen, Daniel A.; Dow, Michael C.; Gierut, Judith A.; Morrisette, Michele L.; Green, Christopher R.

    2013-01-01

    This paper examines a range of predicted versus attested error patterns involving coronal fricatives (e.g. [s, z, θ, ð]) as targets and repairs in the early sound systems of monolingual English-acquiring children. Typological results are reported from a cross-sectional study of 234 children with phonological delays (ages 3 years; 0 months to 7;9). Our analyses revealed different instantiations of a putative developmental conspiracy within and across children. Supplemental longitudinal evidence is also presented that replicates the cross-sectional results, offering further insight into the life-cycle of the conspiracy. Several of the observed typological anomalies are argued to follow from a modified version of Optimality Theory with Candidate Chains (McCarthy, 2007). PMID:24790247

  11. The Lick AGN Monitoring Project: Alternate Routes to a Broad-line Region Radius

    CERN Document Server

    Greene, Jenny E; Barth, Aaron J; Bennert, Vardha N; Bentz, Misty C; Filippenko, Alexei V; Gates, Elinor; Malkan, Matthew A; Treu, Tommaso; Walsh, Jonelle L; Woo, Jong-Hak

    2010-01-01

    It is now possible to estimate black hole masses across cosmic time, using broad emission lines in active galaxies. This technique informs our views of how galaxies and their central black holes coevolve. Unfortunately, there are many outstanding uncertainties associated with these "virial" mass estimates. One of these comes from using the accretion luminosity to infer a size for the broad-line region. Incorporating the new sample of low-luminosity active galaxies from our recent monitoring campaign at Lick Observatory, we recalibrate the radius-luminosity relation with tracers of the accretion luminosity other than the optical continuum. We find that the radius of the broad-line region scales as the square root of the X-ray and Hbeta luminosities, in agreement with recent optical studies. On the other hand, the scaling appears to be marginally steeper with narrow-line luminosities. This is consistent with a previously observed decrease in the ratio of narrow-line to X-ray luminosity with increasing total lum...

  12. A far-infrared molecular and atomic line survey of the Orion KL region

    CERN Document Server

    Lerate, M R; Swinyard, B M; Goicoechea, J R; Cernicharo, J; Grundy, T W; Lim, T L; Polehampton, E T; Baluteau, J P; Viti, S; Yates, J

    2006-01-01

    We have carried out a high spectral resolution line survey towards the Orion Kleinmann-Low (KL) cluster from 44-188 um. The observations were taken with the Long Wavelength Spectrometer (LWS) in Fabry-Perot mode, on board the Infrared Space Observatory (ISO). A total of 152 lines are clearly detected and a further 34 features are present as possible detections. The spectrum is dominated by the molecular species H2O, OH and CO, along with [OI] and [CII] lines from PDR or shocked gas and [OIII], [NIII] lines from the foreground M42 HII region. Several isotopic species, as well as NH3, are also detected. HDO and H3O+ are tentatively detected for the first time in the far-infrared range towards Orion-KL. A basic analysis of the line observations is carried out, by comparing with previous measurements and published models and deriving rotational temperatures and column densities in the case of the molecular species. The complexity of the region requires more sophisticated models for the interpretation of all the l...

  13. A closer look at a coronal loop rooted in a sunspot umbra

    CERN Document Server

    Chitta, L P; Young, P R

    2015-01-01

    Extreme UV (EUV) and X-ray loops in the solar corona connect regions of enhanced magnetic activity, but usually they are not rooted in the dark umbrae of sunspots. This is because there the strong magnetic field suppresses convection and thus the Poynting flux of magnetic energy into the upper atmosphere is not significant within the umbra, as long as there are no light bridges, umbral dots. Here we report a rare observation of a coronal loop rooted in the dark umbra of a sunspot without any traces of light bridges or umbral dots. We used the slit-jaw images and spectroscopic data from the IRIS and concentrate on the line profiles of O IV and Si IV that show persistent strong redshifted components in the loop rooted in the umbra. Using the ratios of O IV, we can estimate the density and thus investigate the mass flux. The coronal context and temperature diagnostics of these observations is provided through the EUV channels of the AIA. The coronal loop, embedded within cooler downflows, is hosting supersonic d...

  14. Discoveries of Diffuse Iron Line Sources from the Sgr B Region

    CERN Document Server

    Koyama, K; Hyodo, Y; Matsumoto, H; Tsuru, T G; Maeda, Y; Murakami, H; Yamauchi, S; Kissel, S E; Soong, C Y; Koyama, Katsuji; Inui, Tatsuya; Hyodo, Yoshiaki; Matsumoto, Hironori; Tsuru, Takeshi Go; Maeda, Yoshitomo; Murakami, Hiroshi; Yamauchi, Shigeo; Kissel, Steven E.; Soong, Chan Yang

    2006-01-01

    The radio complex Sgr B region is observed with the X-Ray Imaging Spectrometers (XIS) on board Suzaku. This region exhibits diffuse iron lines at 6.4, 6.7 and 6.9 keV, which are K$\\alpha$ lines of Fe \\emissiontype{I} (neutral iron), Fe\\emissiontype{XXV} (He-like iron) and Fe\\emissiontype{XXVI} (H-like iron), respectively. The high energy resolving power of the XIS provides the separate maps of the K-shell transition lines from Fe\\emissiontype{I} (6.4 keV) and Fe\\emissiontype{XXV} (6.7 keV). Although the 6.7 keV line is smoothly distributed over the Sgr B region, a local excess is found near at $(l, b) = (\\timeform {0D.61}, \\timeform{0D.01})$, possibly a new SNR. The plasma temperature is \\textit{kT} $\\sim$3 keV and the age is estimated to be around several$\\times10^{3}$ years. The 6.4 keV image is clumpy with local excesses nearby Sgr B2 and at $(l, b) = (\\timeform{0D.74}, -\\timeform{0D.09})$. Like Sgr B2, this excess may be another candidate of an X-ray reflection nebula (XRN).

  15. The Structure of the Broad-Line Region in Well-Studied AGNs

    Science.gov (United States)

    Peterson, Bradley M.; Ferland, Gary J.

    1997-01-01

    Large amounts of high quality UV and optical data have been obtained in massive multi-wavelength monitoring campaigns on a small number of active galactic nuclei, and these data are changing our understanding of the central engines in these sources in a fundamental way. Preliminary analyses have shown that more comprehensive approaches will be necessary to make full use of these data. We propose to undertake a complete set of photoionization equilibrium calculations with a state-of-the-art computer code in order to determine the radial structure of the broad-line region in a way that is consistent with the emission-line fluxes, profiles, and transfer functions.

  16. Broad Line Region Physical Conditions along the Quasar Eigenvector 1 Sequence

    CERN Document Server

    Marziani, P; Negrete, C A; Dultzin, D; Zamfir, S; Bachev, R

    2010-01-01

    [Abridged] We compare broad emission line profiles and estimate line ratios for all major emission lines between Ly-alpha and H-beta in a sample of six quasars. The sources were chosen with two criteria in mind: the existence of high quality optical and UV spectra as well as the possibility to sample the spectroscopic diversity in the 4D Eigenvector 1 context . In the latter sense each source occupies a region (bin) in the FWHM(H-beta) vs. optical FeII strength plane that is significantly different from the others. High S/N H-beta emission line profiles are used as templates for modeling the other lines (Ly-alpha, CIV 1549, HeII 1640, Al III 1860, Si III] 1892, and Mg II 2800). We can adequately model all broad lines assuming the existence of three components distinguished by blueshifted, unshifted and redshifted centroids (indicated as blue, broad and very broad component respectively). The broad component (high electron density, low ionization parameter; high column density) is present in almost all type-1 ...

  17. Relationship of EUV Irradiance Coronal Dimming Slope and Depth to Coronal Mass Ejection Speed and Mass

    Science.gov (United States)

    Mason, James Paul; Woods, Thomas N.; Webb, David F.; Thompson, Barbara J.; Colaninno, Robin C.; Vourlidas, Angelos

    2016-10-01

    Extreme ultraviolet (EUV) coronal dimmings are often observed in response to solar eruptive events. These phenomena can be generated via several different physical processes. For space weather, the most important of these is the temporary void left behind by a coronal mass ejection (CME). Massive, fast CMEs tend to leave behind a darker void that also usually corresponds to minimum irradiance for the cooler coronal emissions. If the dimming is associated with a solar flare, as is often the case, the flare component of the irradiance light curve in the cooler coronal emission can be isolated and removed using simultaneous measurements of warmer coronal lines. We apply this technique to 37 dimming events identified during two separate two-week periods in 2011 plus an event on 2010 August 7, analyzed in a previous paper to parameterize dimming in terms of depth and slope. We provide statistics on which combination of wavelengths worked best for the flare-removal method, describe the fitting methods applied to the dimming light curves, and compare the dimming parameters with corresponding CME parameters of mass and speed. The best linear relationships found are \\begin{eqnarray*}{v}{CME} ≤ft[\\displaystyle \\frac{{km}}{{{s}}}\\right] & ≈ & 2.36× {10}6 ≤ft[\\displaystyle \\frac{{km}}{ % }\\right]× {s}\\dim ≤ft[\\displaystyle \\frac{ % }{{{s}}}\\right]\\ {m}{CME} [{{g}}] & ≈ & 2.59× {10}15≤ft[\\displaystyle \\frac{g}{ % }\\right]× \\sqrt{{d}\\dim } [ % ].\\end{eqnarray*} These relationships could be used for space weather operations of estimating CME mass and speed using near-real-time irradiance dimming measurements.

  18. Narrow-line-width UV Bursts in the Transition Region above Sunspots Observed by IRIS

    Science.gov (United States)

    Hou, Zhenyong; Huang, Zhenghua; Xia, Lidong; Li, Bo; Madjarska, Maria S.; Fu, Hui; Mou, Chaozhou; Xie, Haixia

    2016-10-01

    Various small-scale structures abound in the solar atmosphere above active regions, playing an important role in the dynamics and evolution therein. We report on a new class of small-scale transition region structures in active regions, characterized by strong emissions but extremely narrow Si iv line profiles as found in observations taken with the Interface Region Imaging Spectrograph (IRIS). Tentatively named as narrow-line-width UV bursts (NUBs), these structures are located above sunspots and comprise one or multiple compact bright cores at sub-arcsecond scales. We found six NUBs in two data sets (a raster and a sit-and-stare data set). Among these, four events are short-lived with a duration of ∼10 minutes, while two last for more than 36 minutes. All NUBs have Doppler shifts of 15–18 km s‑1, while the NUB found in sit-and-stare data possesses an additional component at ∼50 km s‑1 found only in the C ii and Mg ii lines. Given that these events are found to play a role in the local dynamics, it is important to further investigate the physical mechanisms that generate these phenomena and their role in the mass transport in sunspots.

  19. Narrow-line-width UV bursts in the transition region above Sunspots observed by IRIS

    CERN Document Server

    Hou, Zhenyong; Xia, Lidong; Li, Bo; Madjarska, Maria S; Fu, Hui; Mou, Chaozhou; Xie, Haixia

    2016-01-01

    Various small-scale structures abound in the solar atmosphere above active regions, playing an important role in the dynamics and evolution therein. We report on a new class of small-scale transition region structures in active regions, characterized by strong emissions but extremely narrow Si IV line profiles as found in observations taken with the Interface Region Imaging Spectrograph (IRIS). Tentatively named as Narrow-line-width UV bursts (NUBs), these structures are located above sunspots and comprise of one or multiple compact bright cores at sub-arcsecond scales. We found six NUBs in two datasets (a raster and a sit-and-stare dataset). Among these, four events are short-living with a duration of $\\sim$10 mins while two last for more than 36 mins. All NUBs have Doppler shifts of 15--18 km/s, while the NUB found in sit-and-stare data possesses an additional component at $\\sim$50 km/s found only in the C II and Mg II lines. Given that these events are found to play a role in the local dynamics, it is impo...

  20. Lifecycle of a large-scale polar coronal pseudostreamer/cavity system

    Science.gov (United States)

    Guennou, Chloé; Auchere, Frederic; Seaton, Daniel; Rachmeler, Laurel

    2016-07-01

    Coronal cavities, tunnel-like areas of rarefied density, provide important information about the magnetic structures that support prominences. The magnetic energy is stored through the twisted or shared magnetic field, ultimately released through Coronal Mass Ejections (CME). To be able to forecast these energetic releases of material and prevent potential terrestrial consequences, the understanding of the cavity 3D morphology, magnetic and thermal properties are essential. The prominences embedded in the cavity only trace a small part of the magnetic field, whereas the much larger cavity provides more information about the magnetic field morphology. As a result, a clear understanding of the coronal volume of the cavity significantly advances our understanding of both the pre-eruption equilibrium and the triggers of such eruptions. Determining both morphological and thermodynamical coronal structures is difficult due to the optically thin nature of the plasma. Observations are subject to integration along the line-of-sight (LOS). This effect can strongly complicate both the derivation and the interpretation of important physical quantities. One way to deduce the 3D structure is with Solar Rotational Tomography (SRT). The 3D plasma emissivity is estimated from EUV/white light images taken from different viewpoints. Physical properties can be then derived using Differential Emission Measure analysis from multi-wavelength 3D reconstructions. We applied this technique to an exceptional large-scale coronal pseudostreamer/cavity system in the southern polar region of the solar corona that was visible for approximately a year starting in February 2014. It is unusual to see such a large closed-field structure embedded within the open polar coronal hole. We investigate this structure to document its formation, evolution and eventually its shrinking process using data from both the PROBA2/SWAP and SDO/AIA EUV imagers. We found that the cavity temperature is extremely stable

  1. Transverse oscillations in a coronal loop triggered by a jet

    CERN Document Server

    Sarkar, S; Srivastava, A K; Banerjee, D

    2016-01-01

    We detect and analyse transverse oscillations in a coronal loop, lying at the south east limb of the Sun as seen from the \\textit{{Atmospheric Imaging Assembly}} (AIA) onboard \\textit{{Solar Dynamics Observatory}} (SDO). The jet is believed to trigger transverse oscillations in the coronal loop. The jet originates from a region close to the coronal loop on 19$^{\\rm th}$ September 2014 at 02:01:35 UT. The length of the loop is estimated to be between 377-539~Mm. Only one complete oscillation is detected with an average period of about $32\\pm5$~min. Using MHD seismologic inversion techniques, we estimate the magnetic field inside the coronal loop to be between $2.68 -4.5$~G. The velocity of the hot and cool components of the jet is estimated to be 168~km~s$^{-1}$ and 43~km~s$^{-1}$, respectively. The energy density of the jet is found to be greater than the energy density of the oscillating coronal loop. Therefore, we conclude that the jet {triggered} transverse oscillations in the coronal loop. To our knowledg...

  2. Hanle Effect Diagnostics of the Coronal Magnetic Field - A Test Using Realistic Magnetic Field Configurations

    CERN Document Server

    Raouafi, N -E; Wiegelmann, T

    2008-01-01

    Our understanding of coronal phenomena, such as coronal plasma thermodynamics, faces a major handicap caused by missing coronal magnetic field measurements. Several lines in the UV wavelength range present suitable sensitivity to determine the coronal magnetic field via the Hanle effect. The latter is a largely unexplored diagnostic of coronal magnetic fields with a very high potential. Here we study the magnitude of the Hanle-effect signal to be expected outside the solar limb due to the Hanle effect in polarized radiation from the H {\\sc{i}} Ly$\\alpha$ and $\\beta$ lines, which are among the brightest lines in the off-limb coronal FUV spectrum. For this purpose we use a magnetic field structure obtained by extrapolating the magnetic field starting from photospheric magnetograms. The diagnostic potential of these lines for determining the coronal magnetic field, as well as their limitations are studied. We show that these lines, in particular H {\\sc{i}} Ly$\\beta$, are useful for such measurements.

  3. Imaging spectrophotometry of ionized gas in NGC 1068. I - Kinematics of the narrow-line region

    Science.gov (United States)

    Cecil, Gerald; Bland, Jonathan; Tully, R. Brent

    1990-01-01

    The kinematics of collisionally excited forbidden N II 6548, 6583 across the inner 1 arcmin diameter of the nearby Seyfert galaxy NGC 1068 is mapped using an imaging Fabry-Perot interferometer and low-noise CCD. The stack of monochromatic images, which spatially resolved the high-velocity gas, was analyzed for kinematic and photometric content. Profiles agree well with previous long-slit work, and their complete spatial coverage makes it possible to constrain the gas volume distribution. It is found that the narrow-line region is distributed in a thick center-darkened, line-emitting cylinder that envelopes the collimated radio jet. Three distinct kinematic subsystems, of which the cylinder is composed, are discussed in detail. Detailed behavior of the emission-line profiles, at the few points in the NE quadrant with simple kinematics, argues that the ionized gas develops a significant component of motion perpendicular to the jet axis.

  4. Characteristics of polar coronal hole jets

    CERN Document Server

    Chandrashekhar, K; Banerjee, D; Gupta, G R; Teriaca, L

    2013-01-01

    High spatial- and temporal-resolution images of coronal hole regions show a dynamical environment where mass flows and jets are frequently observed. These jets are believed to be important for the coronal heating and the acceleration of the fast solar wind. We studied the dynamics of two jets seen in a polar coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We observed drift motions related to the evolution and formation of these small-scale jets, which we tried to model as well. We found observational evidence that supports the idea that polar jets are very likely produced by multiple small-scale reconnections occurring at different times in different locations. These eject plasma blobs that flow up and down with a motion very similar to a simple ballistic motion. The associated drift speed of the first jet is estimated to be $\\approx$ 27 km s$^{-1}$. The average outward speed of the first jet is $\\approx 171$ km s$^{-1}$, well below the escape speed, hence if simple ballistic motio...

  5. A data driven kinetic approach to coronal heating

    CERN Document Server

    Toutountzi, A; Isliker, H; Moraitis, K; Georgoulis, M; Chintzoglou, G

    2016-01-01

    Coronal heating through the explosive release of magnetic energy remains an open problem in solar physics. Several one-dimensional hydrodynamical models have been developed over the last decade, using simple approaches for the way energy is deposited and transported in the coronal plasma, namely by inserting 'nanoflares' in the form of 'hot spots' at random sites and times. Our aim in this work is to investigate the problem from a different perspective. With the help of a nonlinear force-free extrapolation method we reconstruct the coronal magnetic field of a well-studied solar active region using an observed photospheric vector magnetogram of the region as the required boundary condition. We then determine the locations, energy contents, and volumes of unstable areas within the active-region corona. These areas include strong gradients in the magnetic field and are naturally connected to three-dimensional current sheets. The statistical distributions of these volumes, their fractal structure and correspondin...

  6. An estimate of solar wind velocity profiles in an coronal hole and a coronal streamer area (6-40 solar radius)

    Science.gov (United States)

    Paetzold, M.; Tsurutani, B. T.; Bird, M. K.

    1995-01-01

    Using the total electron content data obtained by the Ulysses Solar Corona Experiment during the superior solar conjunction in summer 1991, we selected two data sets, one associated with a coronal hole and the other one with coronal streamer crossings. By doing this data splitting, we find two entirely different density profiles varying as r(exp -2.7) and r(exp -2.3) for the coronal hole and coronal streamers, respectively. Assuming mass flux conservation from the inner corona to one AU, an estimate for the velocity profiles or acceleration in these two different regions can be determined. The more negative exponent of the coronal hole density profile indicates a more extended heating and acceleration region or more flaring, or both. Various possible explanations will be discussed.

  7. The Fading of the Narrow-Line Region in 3C 390.3: Erratum

    Science.gov (United States)

    Clavel, J.; Wamsteker, W.

    1988-07-01

    The Letter "The Fading of the Narrow-Line Region in 3C 390.3" by J. Clavel and W. Wamsteker (Ap. J. [Letters], 320, L9 [1987]) contains an error in the last two sentences of section IIIb: The density we compute for the broad line region (BLR) gas is wrong by a factor of 10 exactly and should read 10^11^ cm^-3^ instead of 10^10^. Such a density is about 30 times larger than the canonical 10^9.5^ cm^-3^ value generally used in model calculations but similar to the density inferred for the BLR in NGC 4151 by J. Clavel et al. (Ap. J., 321, 251 [1987]). The authors are grateful to Paolo Padovani from STScI for bringing this error to their attention.

  8. Constraints on the Broad Line Region Properties and Extinction in Local Seyferts

    CERN Document Server

    Schnorr-Müller, Allan; Korista, K T; Burtscher, L; Rosario, D; Storchi-Bergmann, T; Contursi, A; Genzel, R; Graciá-Carpio, J; Hicks, E K S; Janssen, A; Koss, M; Lin, M -Y; Lutz, D; Maciejewski, W; Müller-Sánchez, F; de Xivry, G Orban; Riffel, R; Riffel, R A; Schartmann, M; Sternberg, A; Sturm, E; Tacconi, L; Veilleux, S; Ulrich, O A

    2016-01-01

    We use high spectral resolution (R > 8000) data covering 3800-13000\\r{A} to study the physical conditions of the broad line region (BLR) of nine nearby Seyfert 1 galaxies. Up to six broad HI lines are present in each spectrum. A comparison - for the first time using simultaneous optical to near-infrared observations - to photoionisation calculations with our devised simple scheme yields the extinction to the BLR at the same time as determining the density and photon flux, and hence distance from the nucleus, of the emitting gas. This points to a typical density for the HI emitting gas of 10$^{11}$cm$^{-3}$ and shows that a significant amount of this gas lies at regions near the dust sublimation radius, consistent with theoretical predictions. We also confirm that in many objects the line ratios are far from case B, the best-fit intrinsic broad-line H$\\alpha$/H$\\beta$ ratios being in the range 2.5-6.6 as derived with our photoionization modeling scheme. The extinction to the BLR, based on independent estimates...

  9. The HST view of the broad line region in low luminosity AGN

    CERN Document Server

    Balmaverde, B; di Torino, INAF - Osservatorio Astrofisico

    2014-01-01

    We analyze the properties of the broad line region (BLR) in low luminosity AGN by using HST/STIS spectra. We consider a sample of 24 nearby galaxies in which the presence of a BLR has been reported from their Palomar ground-based spectra. Following a widely used strategy, we used the [SII] doublet to subtract the contribution of the narrow emission lines to the H-alpha+[NII] complex and to isolate the BLR emission. Significant residuals that suggest a BLR, are present. However, the results change substantially when the [OI] doublet is used. Furthermore, the spectra are also reproduced well by just including a wing in the narrow H-alpha and [NII] lines, thus not requiring the presence of a BLR. We conclude that complex structure of the narrow line region (NLR) is not captured with this approach and that it does not lead to general robust constraints on the properties of the BLR in these low luminosity AGN. Nonetheless, the existence of a BLR is firmly established in 5 Seyferts, and 5 LINERs. However, the measu...

  10. The Size of Narrow Line Region and [OIII] Luminosity Analyzed from SDSS DR7 Quasar Catalogue

    Indian Academy of Sciences (India)

    Zhi-Fu Chen; Y.-P. Qin; Z.-Y. Chen; L.-Z. Lü

    2011-03-01

    In this work, we constructed a sample of 4002 quasars from SDSS DR7 quasar catalogue to calculate the electron density and size of narrow line region. We find that the electron densities are ∼ 103/cm3, and the sizes are between 27 and 775 pc. We also find that, in the ionization cone, the sizes are tightly correlated with the luminosities of [OIII]5007.

  11. Region-specific versus country-specific poverty lines in analysis of poverty

    OpenAIRE

    Mogstad, Magne; Langørgen, Audun; Aaberge, Rolf

    2007-01-01

    Abstract: The standard practice in most OECD countries is to measure and evaluate poverty on the basis of a poverty line defined as a specific proportion of the median equivalent income within a country. However, this approach disregards regional differences in prices and needs within a country and may, therefore, provide an incomplete and even an incorrect picture of the extent as well as the geographical and demographical composition of the poor. To account for differences in...

  12. A Near-Infrared Imaging Study of Seyfert Galaxies with Extended Emission line Regions

    Science.gov (United States)

    Alonso-Herrero, Almudena; Simpson, Chris; Ward, Martin J.; Wilson, Andrew S.

    1997-01-01

    We present a near-infrared J,H,K and L' band (1.25 - 3.80 mue) imaging study of a sample of Seyfert galaxies, including some of the best studied examples of these with extended emission line regions (EELR). The observed near-IR nuclear colors are consistent with mixture of emmisions from an old stellar population and unredening hot dust.

  13. Magnetic Neutral Line-Associated Radio Sources and Evolution of the Active Region NOAA 7321

    Science.gov (United States)

    Uralov, A. M.; Nakajima, H.; Zandanov, V. G.; Grechnev, V. V.

    1999-12-01

    We report evolution of the active region NOAA~7321 in which radio sources associated with magnetic neutral lines (so-called Neutral Line Associated Source, NLS) were studied on the basis of data of Nobeyama Radioheliograph. We provide physical interpretation of the NLS in terms of topological magnetic reconnection model and discuss their relation to evolution of the active region. Two kinds of the NLS were observed at 17~GHz, i.e. rising and stationary sources. Their presence was associated with substantial expansion of the active region's magnetosphere and accompanied by gradual evolution of spine-like structures visible in soft X-rays before long-duration flares. We suggest that the rising 17~GHz source corresponded to a ``horizontal'' current sheet moving upward which was not bright in soft X-rays. Bright X-ray spine was a boundary of that current sheet. Formation of X-points are believed to be responsible for the presence of low-lying stationary sources arranged along the photospheric neutral line.

  14. Reverberation Mapping of the Broad-line Region in NGC 5548: Evidence for Radiation Pressure?

    CERN Document Server

    Lu, Kai-Xing; Hu, Chen; Li, Yan-Rong; Zhang, Zhi-Xiang; Wang, Kai; Huang, Ying-Ke; Bi, Shao-Lan; Bai, Jin-Ming; Ho, Luis C; Wang, Jian-Min

    2016-01-01

    NGC 5548 is the best-observed reverberation-mapped active galactic nucleus with long-term, intensive monitoring. Here we report results from a new observational campaign between January and July, 2015. We measure the centroid time lag of the broad H$\\beta$ emission line with respect to the 5100 \\AA continuum and obtain $\\tau_{\\rm cent} = 7.20^{+1.33}_{-0.35}$ days in the rest frame. This yields a black hole mass of $M_{\\bullet}=8.71^{+3.21}_{-2.61} $x$ 10^{7}M_{\\odot}$ using a broad H$\\beta$ line dispersion of $3124\\pm302$ km s$^{-1}$ and a virial factor of $f_{_{\\rm BLR}}=6.3\\pm1.5$ for the broad-line region (BLR), consistent with the mass measurements from previous H$\\beta$ campaigns. The high-quality data allow us to construct a velocity-binned delay map for the broad H$\\beta$ line, which shows a symmetric response pattern around the line center, a plausible kinematic signature of virialized motion of the BLR. Combining all the available measurements of H$\\beta$ time lags and the associated mean 5100 {\\AA}...

  15. Emission Lines of Fe XI - XIII in the Extreme Ultraviolet Region

    Science.gov (United States)

    Lepson, Jaan; Beiersdorfer, Peter; Liedahl, Duane; Desai, Priya; Brickhouse, Nancy; Dupree, Andrea; Kahn, Steven

    2009-05-01

    Iron is one of the most abundant heavy elements in extreme ultraviolet spectra of astrophysical and laboratory plasmas, and its various ions radiate profusely in the extreme ultraviolet (EUV) wavelength band. Iron emission in the EUV provides important d iagnostic tools for such properties as plasma temperature and density, and perhaps even magnetic field strength. Despite its importance to astrophysics and magnetic fusion, knowledge of the EUV spectrum of iron is incomplete. Identification of iron emis sion lines is hampered by the paucity of accurate laboratory measurements and the uncertainty of even the best atomic models. As part of a project to measure and compile emission line data in the EUV, we present here spectra and lines of Fe XI - XIII recorded on the Livermore EBIT-II electron beam ion trap in the 50 - 120 åregion. We measured line positions to 0.02 åand relative intensities with an accuracy of one part in twenty. Many new lines are identified and added to the available databa ses. Part of this work was performed under the auspices of the U S Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was supported by NASA's Astronomy and Physics Research and Analysis Program under Con t ract NNH07AF811.

  16. Ion–Cyclotron Resonance Frequency Interval Dependence on the O VI Ion Number Density in the North Polar Coronal Hole 1.5–3 Region

    Indian Academy of Sciences (India)

    Özgür Gültekin; Emine Rızaoǧlu; K. Gediz Akdeniz

    2013-12-01

    The frequency intervals in which O VI ions get in resonance with ion–cyclotron waves are calculated using the kinetic model, for the latest six values found in literature on O VI ion number densities in the 1.5–3 region of the NPCH. It is found that the common resonance interval is 1.5 kHz to 3 kHz. The -variations of wave numbers necessary for the above calculations are evaluated numerically, solving the cubic dispersion relation with the dielectric response derived from the quasi-linear Vlasov equation for the left-circularly polarized ion-cyclotron waves.

  17. Reverberation Modeling of the Broad Emission Line Region in NGC 5548

    Science.gov (United States)

    Bottorff, M. C.; Korista, K. T.; Shlosman, I.; Blandford, R. D.

    Long-term observations of broad-line region (BLR) in the Seyfert~1 galaxy NGC~5548 are analyzed and a critical comparison with the predictions of a hydromagnetically-driven outflow model of Emmering, Blandford and Shlosman is provided. This model is used to generate a time series of C~IV line profiles that have responded to a time varying continuum. We include cloud emission anisotropy, cloud obscuration, a CLOUDY-generated emissivity function and a narrow-line component which is added to the BLR component to generate the total line profiles. The model is driven with continuum input based on the monitoring campaigns of NGC~5548 reported in Clavel et al. and Korista et al., and the line strengths, profiles and lags are compared with the observations. The model is able to reproduce the basic features of CIV line variability in this active galactic nucleus, i.e., time evolution of the profile shape and strength of the C~IV emission line without varying the model parameters. The best fit model provides the effective size, the dominant geometry, the emissivity distribution and the 3D velocity field of the C~IV BLR and constrains the mass of the central black hole to about $3\\times 10^7\\ M_{\\odot}$. The inner part of the wind in NGC~5548 appears to be responsible for the anisotropically emitted CIV line, while its outer part remains dusty and molecular, thus having similar spectral characteristics to a molecular torus, although its dynamics is fundamentally different. The model predicts a differential response across the C~IV line profile, producing a red-side-first response in the relative velocity interval of $3,000-6,000 {\\rm km\\ s^{-1}}$ followed by the blue mid-wing and finally by the line core. Given that no adequate method in computing the errors for data lags and centroids exists in the literature, the {\\it data} cross-correlation function provides results which appear inconclusive, making any direct comparison with the model premature. Overall analysis

  18. Measurements of coronal Faraday rotation at 4.6 R {sub ☉}

    Energy Technology Data Exchange (ETDEWEB)

    Kooi, Jason E.; Fischer, Patrick D.; Buffo, Jacob J.; Spangler, Steven R., E-mail: jason-kooi@uiowa.edu [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52240 (United States)

    2014-03-20

    Many competing models for the coronal heating and acceleration mechanisms of the high-speed solar wind depend on the solar magnetic field and plasma structure in the corona within heliocentric distances of 5 R {sub ☉}. We report on sensitive Very Large Array (VLA) full-polarization observations made in 2011 August, at 5.0 and 6.1 GHz (each with a bandwidth of 128 MHz) of the radio galaxy 3C 228 through the solar corona at heliocentric distances of 4.6-5.0 R {sub ☉}. Observations at 5.0 GHz permit measurements deeper in the corona than previous VLA observations at 1.4 and 1.7 GHz. These Faraday rotation observations provide unique information on the magnetic field in this region of the corona. The measured Faraday rotation on this day was lower than our a priori expectations, but we have successfully modeled the measurement in terms of observed properties of the corona on the day of observation. Our data on 3C 228 provide two lines of sight (separated by 46'', 33,000 km in the corona). We detected three periods during which there appeared to be a difference in the Faraday rotation measure between these two closely spaced lines of sight. These measurements (termed differential Faraday rotation) yield an estimate of 2.6-4.1 GA for coronal currents. Our data also allow us to impose upper limits on rotation measure fluctuations caused by coronal waves; the observed upper limits were 3.3 and 6.4 rad m{sup –2} along the two lines of sight. The implications of these results for Joule heating and wave heating are briefly discussed.

  19. Spectroscopic Coronal Observations during the Total Solar Eclipse of 11 July 2010

    CERN Document Server

    Voulgaris, A G; Seiradakis, J H; Pasachoff, J M; Economou, T E

    2012-01-01

    The flash spectrum of the solar chromosphere and corona was measured with a slitless spectrograph before, after, and during the totality of the solar eclipse, of 11 July 2010, at Easter Island, Chile. This eclipse took place at the beginning of the Solar Cycle 24, after an extended minimum of solar activity. The spectra taken during the eclipse show a different intensity ratio of the red and green coronal lines compared with those taken during the total solar eclipse of 1 August 2008, which took place towards the end of the Solar Cycle 23. The characteristic coronal forbidden emission line of forbidden Fe XIV (5303 {\\AA}) was observed on the east and west solar limbs in four areas relatively symmetrically located with respect to the solar rotation axis. Subtraction of the continuum flash-spectrum background led to the identification of several extremely weak emission lines, including forbidden Ca XV (5694 {\\AA}), which is normally detected only in regions of very high excitation, e.g., during flares or above ...

  20. Rfp-Y region polymorphism and Marek's disease resistance in multitrait immunocompetence-selected chicken lines.

    Science.gov (United States)

    Lakshmanan, N; Lamont, S J

    1998-04-01

    Although the influence of the chicken classical MHC in resistance to many diseases is well established, the role of the recently identified, genetically independent, MHC-like region known as Rfp-Y is unclear. The objectives of this study were to analyze the frequencies of DNA polymorphisms of the Rfp-Y region in White Leghorn lines, which were divergently selected in replicate for multitrait immunocompetence, and to determine the association of these polymorphisms with Marek's disease (MD) resistance. Chicks, either with or without herpes virus of turkey (HVT) vaccination, were challenged with 500 ffu of a very virulent Marek's disease virus (Md5) at 2 d of age. The MD-related data were collected for 10 wk. PvuII-digested genomic DNA was hybridized with an Rfp-Y region-specific probe, 18.1. Three Rfp-Y polymorphisms were observed. The frequency of one Rfp-Y polymorphism was significantly different between divergently selected multitrait immunocompetence lines in one replicate only; therefore, the impact of multitrait immunocompetence selection on Rfp-Y polymorphisms is inconclusive. The PvuII defined Rfp-Y region polymorphisms had no association with either innate or vaccine-induced MD resistance to Md5 virus challenge.

  1. Three-Dimensional Morphology of a Coronal Prominence Cavity

    Science.gov (United States)

    Gibson, S. E.; Kucera, T. A.; Rastawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hill, S.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Rachmeler, L.; Reeves, K. K.; Schmieder, B.; Schmit, D. J.; Seaton, D. B.; Sterling, A. C.; Tripathi, D.; Williams, D. R.; Zhang, M.

    2010-01-01

    We present a three-dimensional density model of coronal prominence cavities, and a morphological fit that has been tightly constrained by a uniquely well-observed cavity. Observations were obtained as part of an International Heliophysical Year campaign by instruments from a variety of space- and ground-based observatories, spanning wavelengths from radio to soft-X-ray to integrated white light. From these data it is clear that the prominence cavity is the limb manifestation of a longitudinally-extended polar-crown filament channel, and that the cavity is a region of low density relative to the surrounding corona. As a first step towards quantifying density and temperature from campaign spectroscopic data, we establish the three-dimensional morphology of the cavity. This is critical for taking line-of-sight projection effects into account, since cavities are not localized in the plane of the sky and the corona is optically thin. We have augmented a global coronal streamer model to include a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. We have developed a semi-automated routine that fits ellipses to cross-sections of the cavity as it rotates past the solar limb, and have applied it to Extreme Ultraviolet Imager (EUVI) observations from the two Solar Terrestrial Relations Observatory (STEREO) spacecraft. This defines the morphological parameters of our model, from which we reproduce forward-modeled cavity observables. We find that cavity morphology and orientation, in combination with the viewpoints of the observing spacecraft, explains the observed variation in cavity visibility for the east vs. west limbs

  2. Modified Homogeneous Data Set of Coronal Intensities

    Science.gov (United States)

    Dorotovič, I.; Minarovjech, M.; Lorenc, M.; Rybanský, M.

    2014-07-01

    The Astronomical Institute of the Slovak Academy of Sciences has published the intensities, recalibrated with respect to a common intensity scale, of the 530.3 nm (Fe xiv) green coronal line observed at ground-based stations up to the year 2008. The name of this publication is Homogeneous Data Set (HDS). We have developed a method that allows one to successfully substitute the ground-based observations by satellite observations and, thus, continue with the publication of the HDS. For this purpose, the observations of the Extreme-ultraviolet Imaging Telescope (EIT), onboard the Solar and Heliospheric Observatory (SOHO) satellite, were exploited. Among other data the EIT instrument provides almost daily 28.4 nm (Fe xv) emission-line snapshots of the corona. The Fe xiv and Fe xv data (4051 observation days) taken in the period 1996 - 2008 have been compared and good agreement was found. The method to obtain the individual data for the HDS follows from the correlation analysis described in this article. The resulting data, now under the name of Modified Homogeneous Data Set (MHDS), are identical up to 1996 to those in the HDS. The MHDS can be used further for studies of the coronal solar activity and its cycle. These data are available at http://www.suh.sk.

  3. Investigation of solar wind source regions using Ulysses composition data and a PFSS model

    Science.gov (United States)

    Peleikis, Thies; Kruse, Martin; Berger, Lars; Drews, Christian; Wimmer-Schweingruber, Robert F.

    2016-03-01

    In this work we study the source regions for different solar wind types. While it is well known that the fast solar wind originates from inside Coronal Holes, the source regions for the slow solar wind are still under debate. For our study we use Ulysses compositional and plasma measurements and map them back to the solar corona. Here we use a potential field source surface model to model the coronal magnetic field. On the source surface we assign individual open field lines to the ballistic foot points of Ulysses. We do not only consider the photospheric origin of these field lines, but rather attempt to trace them across several height levels through the corona. We calculate the proximity of the field lines to the coronal hole border for every height level. The results are height profiles of these field lines. By applying velocity and charge state ratio filters to the height profiles, we can demonstrate that slow wind is produced close to the coronal hole border. In particular, we find that not only the proximity to the border matters, but also that the bending of the field lines with respect to the coronal hole border plays a crucial role in determining the solar wind type.

  4. Damping of Slow Magnetoacoustic Waves in an Inhomogeneous Coronal Plasma

    Indian Academy of Sciences (India)

    Nagendra Kumar; Pradeep Kumar; Shiv Singh; Anil Kumar

    2008-03-01

    We study the propagation and dissipation of slow magnetoacoustic waves in an inhomogeneous viscous coronal loop plasma permeated by uniform magnetic field. Only viscosity and thermal conductivity are taken into account as dissipative processes in the coronal loop. The damping length of slow-mode waves exhibit varying behaviour depending upon the physical parameters of the loop in an active region AR8270 observed by TRACE. The wave energy flux associated with slow magnetoacoustic waves turns out to be of the order of 106 erg cm-2 s-1 which is high enough to replace the energy lost through optically thin coronal emission and the thermal conduction belowto the transition region. It is also found that only those slow-mode waves which have periods more than 240 s provide the required heating rate to balance the energy losses in the solar corona. Our calculated wave periods for slow-mode waves nearly match with the oscillation periods of loop observed by TRACE.

  5. HIGH-VELOCITY LINE FORMING REGIONS IN THE TYPE Ia SUPERNOVA 2009ig

    Energy Technology Data Exchange (ETDEWEB)

    Marion, G. H.; Foley, Ryan J.; Challis, Peter; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Vinko, Jozsef; Wheeler, J. Craig; Silverman, Jeffrey M. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Brown, Peter J. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, 4242 AMU, College Station, TX 77843 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Garnavich, Peter [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Landsman, Wayne B. [Adnet Systems, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Parrent, Jerod T. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Pritchard, Tyler A.; Roming, Peter W. A. [Department of Astronomy and Astrophysics, Penn State University, 525 Davey Lab, University Park, PA 16802 (United States); Wang, Xiaofeng, E-mail: gmarion@cfa.harvard.edu [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 1,00084 (China)

    2013-11-01

    We report measurements and analysis of high-velocity (HVF) (>20,000 km s{sup –1}) and photospheric absorption features in a series of spectra of the Type Ia supernova (SN) 2009ig obtained between –14 days and +13 days with respect to the time of maximum B-band luminosity (B-max). We identify lines of Si II, Si III, S II, Ca II, and Fe II that produce both HVF and photospheric-velocity (PVF) absorption features. SN 2009ig is unusual for the large number of lines with detectable HVF in the spectra, but the light-curve parameters correspond to a slightly overluminous but unexceptional SN Ia (M{sub B} = –19.46 mag and Δm{sub 15}(B) = 0.90 mag). Similarly, the Si II λ6355 velocity at the time of B-max is greater than 'normal' for an SN Ia, but it is not extreme (v{sub Si} = 13,400 km s{sup –1}). The –14 days and –13 days spectra clearly resolve HVF from Si II λ6355 as separate absorptions from a detached line forming region. At these very early phases, detached HVF are prevalent in all lines. From –12 days to –6 days, HVF and PVF are detected simultaneously, and the two line forming regions maintain a constant separation of about 8000 km s{sup –1}. After –6 days all absorption features are PVF. The observations of SN 2009ig provide a complete picture of the transition from HVF to PVF. Most SNe Ia show evidence for HVF from multiple lines in spectra obtained before –10 days, and we compare the spectra of SN 2009ig to observations of other SNe. We show that each of the unusual line profiles for Si II λ6355 found in early-time spectra of SNe Ia correlate to a specific phase in a common development sequence from HVF to PVF.

  6. The Nuclear Region of Low Luminosity Flat Radio Spectrum Sources. II. Emission-Line Spectra

    CERN Document Server

    Gonçalves, A C

    2004-01-01

    We report on the spectroscopic study of 19 low luminosity Flat Radio Spectrum (LL FRS) sources selected from Marcha's et al. (1996) 200 mJy sample. In the optical, these objects are mainly dominated by the host galaxy starlight. After correcting the data for this effect, we obtain a new set of spectra clearly displaying weak emission lines; such features carry valuable information concerning the excitation mechanisms at work in the nuclear regions of LL FRS sources. We have used a special routine to model the spectra and assess the intensities and velocities of the emission lines; we have analyzed the results in terms of diagnostic diagrams. Our analysis shows that 79% of the studied objects harbour a Low Ionization Nuclear Emission-line Region (or LINER) whose contribution was swamped by the host galaxy starlight. The remaining objects display a higher ionization spectrum, more typical of Seyferts; due to the poor quality of the spectra, it was not possible to identify any possible large Balmer components. T...

  7. Physical Conditions in the Narrow-Line Region of Markarian 3. II. Photoionization Modeling Results

    CERN Document Server

    Collins, Nicholas R; Crenshaw, D Michael; Bruhweiler, Frederick C; Mélendez, Marcio

    2009-01-01

    We have examined the physical conditions in the narrow-line region (NLR) of the Seyfert 2 galaxy Markarian 3, using long-slit spectra obtained with the Hubble Space Telescope/Space Telescope Imaging Spectrograph and photoionization models. We find three components of photoionized gas in the NLR. Two of these components, characterized by emission lines such as [NeV] 3426 and [OIII] 5007, lie within the envelope of the bi-conical region described in our previous kinematic study. A component of lower ionization gas, in which lines such as [OII] 3727 arise, is found to lie outside the bi-cone. Each of these components is irradiated by a power-law continuum which is attenuated by intervening gas, presumably closer to the central source. The radiation incident upon the low ionization gas, external to the bi-cone, is much more heavily absorbed. These absorbers are similar to the intrinsic UV and X-ray absorbers detected in many Seyfert 1 galaxies, which suggests that the collimation of the ionizing radiation occurs ...

  8. Radiation pressure confinement - II. Application to the broad line region in active galactic nuclei

    CERN Document Server

    Baskin, Alexei; Stern, Jonathan

    2014-01-01

    Active galactic nuclei (AGN) are characterized by broad emission lines. The lines show similar properties from the lowest luminosity (10^39 erg/s) to the highest luminosity (10^47 erg/s) AGN. What produces this similarity over such a vast range of 10^8 in luminosity? Photoionization is inevitably associated with momentum transfer to the photoionized gas. Yet, most of the photoionized gas in the Broad Line Region (BLR) follows Keplerian orbits, which suggests that the BLR originates from gas clouds with a large enough column for gravity to dominate. The photoionized surface layer of these clouds must develop a pressure gradient which balances the incident radiation force. We present solutions for the structure of such a hydrostatic photoionized gas layer in the BLR. The gas is stratified, with a low-density highly-ionized surface layer, set by the ambient pressure, a density rise inwards, and a uniform density cooler inner region, where the gas pressure, 2n_ekT, reaches the incident radiation pressure n_gamma,...

  9. Fingerprinting of cell lines by directed amplification of minisatellite-region DNA (DAMD

    Directory of Open Access Journals (Sweden)

    Silva L.M.

    2001-01-01

    Full Text Available The development of in vitro propagation of cells has been an extraordinary technical advance for several biological studies. The correct identification of the cell line used, however, is crucial, as a mistaken identity or the presence of another contaminating cell may lead to invalid and/or erroneous conclusions. We report here the application of a DNA fingerprinting procedure (directed amplification of minisatellite-region DNA, developed by Heath et al. [Nucleic Acids Research (1993 21: 5782-5785], to the characterization of cell lines. Genomic DNA of cells in culture was extracted and amplified by PCR in the presence of VNTR core sequences, and the amplicons were separated by agarose gel electrophoresis. After image capture with a digital camera, the banding profiles obtained were analyzed using a software (AnaGel specially developed for the storage and analysis of electrophoretic fingerprints. The fingerprints are useful for construction of a data base for identification of cell lines by comparison to reference profiles as well as comparison of similar lines from different sources and periodic follow-up of cells in culture.

  10. Evidence of the Link between Broad Emission Line Regions and Accretion Disks in Active Galactic Nuclei

    Institute of Scientific and Technical Information of China (English)

    Yun Xu; Xin-Wu Cao

    2007-01-01

    There is observational evidence that broad-line regions (BLRs) exist in most active galactic nuclei (AGNs), but their origin is still unclear. One scenario is that the BLRs originate from winds accelerated from the hot coronae of the disks, and the winds are suppressed when the black hole is accreting at low rates. This model predicts a relation between (m) ((m) = (M)/(M)Edd) and the FWHM of broad emission lines. We estimate the central black hole masses for a sample of bright AGNs by using their broad Hβ line-widths and optical luminosities. The dimensionless accretion rates (m) = (M)/(M)Edd are derived from the optical continuum luminosities by using two different models: using an empirical relation between the bolometric luminosity Lbol and the optical luminosity ((m) = Lbol/LEdd, a fixed radiative efficiency is adopted); and calculating the optical spectra of accretion disks as a function of (m). We find a significant correlation between the derived (m) and the observed line width of Hβ,FWHM∝ (m)-0.37, which almost overlaps the disk-corona model calculations, if the viscosity α≈ 0.1 - 0.2 is adopted. Our results provide strong evidence for the physical link between the BLRs and accretion disks in AGNs.

  11. Elemental Abundances in the Broad Emission Line Region of Quasars at Redshifts larger than 4

    CERN Document Server

    Dietrich, M; Hamann, F; Heidt, J; Jäger, K; Vestergaard, M; Wagner, S J

    2003-01-01

    We present observations of 11 high redshift quasars ($3.9 \\la z \\la 5.0$) observed with low spectral resolution in the restframe ultraviolet using FORS 1 at the VLT UT 1. The emission-line fluxes of strong permitted and intercombination ultraviolet emission lines are measured to estimate the chemical composition of the line emitting gas. Comparisons to photoionization calculations indicate gas metallicities in the broad emission line region in the range of solar to several times solar. The average of the mean metallicity of each high-z quasar in this sample is $Z/Z_\\odot = 4.3 \\pm 0.3$. Assuming a chemical evolution time scale of $\\tau_{evol} \\simeq 0.5 - 0.8$ Gyrs, we derive a redshift of $z_f \\simeq 6 {\\rm to} 8$ for the onset of the first major star formation episode (H$_o = 65$ km s$^{-1}$ Mpc$^{-1}$, $\\Omega_M = 0.3$, $\\Omega_\\Lambda = 0.7$), corresponding to an age of the universe of several $10^8$ yrs at this epoch. We note that this epoch is also supposed to be the era of re-ionization of the universe...

  12. Height distribution of equipotential lines in a region confined by a rough conducting boundary

    CERN Document Server

    de Castro, C P; de Castilho, C M C; Andrade, R F S

    2014-01-01

    This work considers the behavior of the height distributions of the equipotential lines in a region confined by two interfaces: a cathode with an irregular interface and a distant flat anode. Both boundaries, which are maintained at distinct and constant potential values, are assumed to be conductors. The morphology of the cathode interface results from the deposit of $2 \\times 10^{4}$ monolayers that are produced using a single competitive growth model based on the rules of the Restricted Solid on Solid and Ballistic Deposition models, both of which belong to the Kadar-Parisi-Zhang (KPZ) universality class. At each time step, these rules are selected with probability $p$ and $q = 1 - p$. For several irregular profiles that depend on $p$, a family of equipotential lines is evaluated. The lines are characterized by the skewness and kurtosis of the height distribution. The results indicate that the skewness of the equipotential line increases when they approach the flat anode, and this increase has a non-trivia...

  13. The Fundamental Plane of the Broad-line Region in Active Galactic Nuclei

    CERN Document Server

    Du, Pu; Hu, Chen; Ho, Luis C; Li, Yan-Rong; Bai, Jin-Ming

    2016-01-01

    Broad emission lines in active galactic nuclei (AGNs) mainly arise from gas photoionized by continuum radiation from an accretion disk around a central black hole. The shape of the broad-line profile, described by ${\\cal D}_{_{\\rm H\\beta}}={\\rm FWHM}/\\sigma_{_{\\rm H\\beta}}$, the ratio of full width at half maximum to the dispersion of broad H$\\beta$, reflects the dynamics of the broad-line region (BLR) and correlates with the dimensionless accretion rate ($\\dot{\\mathscr{M}}$) or Eddington ratio ($L_{\\rm bol}/L_{\\rm Edd}$). At the same time, $\\dot{\\mathscr{M}}$ and $L_{\\rm bol}/L_{\\rm Edd}$ correlate with ${\\cal R}_{\\rm Fe}$, the ratio of optical Fe II to H$\\beta$ line flux emission. Assembling all AGNs with reverberation mapping measurements of broad H$\\beta$, both from the literature and from new observations reported here, we find a strong bivariate correlation of the form $\\log(\\dot{\\mathscr{M}},L_{\\rm bol}/L_{\\rm Edd})=\\alpha+\\beta{\\cal D}_{_{\\rm H\\beta}}+\\gamma{\\cal R}_{\\rm Fe},$ where $\\alpha=(2.47,0.31...

  14. The broad-line region and dust torus size of the Seyfert 1 galaxy PGC50427

    CERN Document Server

    Nuñez, F Pozo; Westhues, C; Haas, M; Chini, R; Steenbrugge, K; Domínguez, A Barr; Kaderhandt, L; Hackstein, M; Kollatschny, W; Zetzl, M; Hodapp, Klaus W; Murphy, M

    2015-01-01

    We present the results of a three years monitoring campaigns of the $z = 0.024$ type-1 active galactic nucleus (AGN) PGC50427. Through the use of Photometric Reverberation Mapping with broad and narrow band filters, we determine the size of the broad-line emitting region by measuring the time delay between the variability of the continuum and the H$\\alpha$ emission line. The H$\\alpha$ emission line responds to blue continuum variations with an average rest frame lag of $19.0 \\pm 1.23$ days. Using single epoch spectroscopy we determined a broad-line H$\\alpha$ velocity width of 1020 km s$^{-1}$ and in combination with the rest frame lag and adoption a geometric scaling factor $f = 5.5$, we calculate a black hole mass of $M_{BH} \\sim 17 \\times 10^{6} M_{\\odot}$. Using the flux variation gradient method, we separate the host galaxy contribution from that of the AGN to calculate the rest frame 5100\\AA~ luminosity at the time of our monitoring campaign. The rest frame lag and the host-subtracted luminosity permit u...

  15. Microlensing of the Broad Emission Line Region in the Quadruple Lens SDSS J1004+4112

    CERN Document Server

    Richards, G T; Pindor, B; Hennawi, J F; Hall, P B; Turner, E L; Inada, N; Oguri, M; Ichikawa, S I; Becker, R H; Gregg, M D; White, R L; Wyithe, J S B; Schneider, D P; Johnston, D E; Frieman, J A; Brinkmann, J; Richards, Gordon T.; Keeton, Charles R.; Pindor, Bartosz; Hennawi, Joseph F.; Hall, Patrick B.; Turner, Edwin L.; Inada, Naohisa; Oguri, Masamune; Ichikawa, Shin-Ichi; Becker, Robert H.; Gregg, Michael D.; White, Richard L.; Schneider, Donald P.; Johnston, David E.; Frieman, Joshua A.

    2004-01-01

    We present seven epochs of spectroscopy on the quadruply imaged quasar SDSS J1004+4112, spanning observed-frame time delays from 1 to 322 days. The spectra reveal differences in the emission lines between the lensed images. Specifically, component A showed a strong enhancement in the blue wings of several high-ionization lines relative to component B, which lasted at least 28 days (observed frame) then faded. Since the predicted time delay between A and B is <30 days, our time coverage suggests that the event was not intrinsic to the quasar. We attribute these variations to microlensing of part of the broad emission line region of the quasar, apparently resolving structure in the source plane on a scale of ~10^{16} cm at z=1.734. In addition, we observed smaller differences in the emission line profiles between components A and B that persisted throughout the time span, which may also be due to microlensing or millilensing. Further spectroscopic monitoring of this system holds considerable promise for reso...

  16. SIMULATIONS OF SOLAR JETS CONFINED BY CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Wyper, P. F. [Oak Ridge Associated Universities, Heliophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States); DeVore, C. R., E-mail: peter.f.wyper@nasa.gov, E-mail: c.richard.devore@nasa.gov [Heliophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States)

    2016-03-20

    Coronal jets are collimated, dynamic events that occur over a broad range of spatial scales in the solar corona. In the open magnetic field of coronal holes, jets form quasi-radial spires that can extend far out into the heliosphere, while in closed-field regions the jet outflows are confined to the corona. We explore the application of the embedded-bipole model to jets occurring in closed coronal loops. In this model, magnetic free energy is injected slowly by footpoint motions that introduce twist within the closed dome of the jet source region, and is released rapidly by the onset of an ideal kink-like instability. Two length scales characterize the system: the width (N) of the jet source region and the footpoint separation (L) of the coronal loop that envelops the jet source. We find that both the conditions for initiation and the subsequent dynamics are highly sensitive to the ratio L/N. The longest-lasting and most energetic jets occur along long coronal loops with large L/N ratios, and share many of the features of open-field jets, while smaller L/N ratios produce shorter-duration, less energetic jets that are affected by reflections from the far-loop footpoint. We quantify the transition between these behaviors and show that our model replicates key qualitative and quantitative aspects of both quiet Sun and active-region loop jets. We also find that the reconnection between the closed dome and surrounding coronal loop is very extensive: the cumulative reconnected flux at least matches the total flux beneath the dome for small L/N, and is more than double that value for large L/N.

  17. Determination of magnetic fields in broad line region of active galactic nuclei from polarimetric observations

    Science.gov (United States)

    Piotrovich, Mikhail; Silant'ev, Nikolai; Gnedin, Yuri; Natsvlishvili, Tinatin; Buliga, Stanislava

    2017-02-01

    Magnetic fields play an important role in confining gas clouds in the broad line region (BLR) of active galactic nuclei (AGN) and in maintaining the stability of these clouds. Without magnetic fields the clouds would not be stable, and soon after their formation they would expand and disperse. We show that the strength of the magnetic field can be derived from the polarimetric observations. Estimates of magnetic fields for a number of AGNs are based on the observed polarization degrees of broad Hα lines and nearby continuum. The difference between their values allows us to estimate the magnetic field strength in the BLR using the method developed by Silant'ev et al. (2013). Values of magnetic fields in BLR for a number of AGNs have been derived.

  18. Outflow and metallicity in the broad-line region of low-redshift active galactic nuclei

    CERN Document Server

    Shin, Jaejin; Woo, Jong-Hak

    2016-01-01

    Outflows in active galactic nuclei (AGNs) are crucial to understand in investigating the co-evolution of supermassive black holes (SMBHs) and their host galaxies since outflows may play an important role as an AGN feedback mechanism. Based on the archival UV spectra obtained with HST and IUE, we investigate outflows in the broad-line region (BLR) in low-redshift AGNs (z < 0.4) through the detailed analysis of the velocity profile of the CIV emission line. We find a dependence of the outflow strength on the Eddington ratio and the BLR metallicity in our low-redshift AGN sample, which is consistent with the earlier results obtained for high-redshift quasars. These results suggest that the BLR outflows, gas accretion onto SMBH, and past star-formation activity in the host galaxies are physically related in low-redshift AGNs as in powerful high-redshift quasars.

  19. Determining the Narrow-Line Region Geometry of Mrk 3 with Gemini/NIFS

    Science.gov (United States)

    Pope, Crystal L.; Fischer, Travis C.; Crenshaw, D. Michael

    2015-01-01

    We present a study of the narrow-line region (NLR) and inner disk of the Seyfert 2 Mrk 3, based on observations from the Gemini Near-Infrared Integral Field Spectrometer (NIFS). Mrk 3 exhibits emission-line knots within the NLR that are in the shape of a backward S, which is likely due to dust/gas spirals in the galaxy's disk that have been illuminated by the AGN's ionizing bicone. With our NIFS observations, we determine the kinematics of Mrk 3 using an automated Bayesian model selection algorithm. Comparing the NLR kinematics measured with NIFS to those previously measured with the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS), we are able to test the accuracy of our previous kinematic outflow model.

  20. The Relationship Between Luminosity and Broad-Line Region Size in Active Galactic Nuclei

    DEFF Research Database (Denmark)

    Kaspi, Shai; Maoz, Dan; Netzer, Hagai

    2005-01-01

    of analysis, our results are generally consistent. Assuming a power-law relation R_blr \\propto L^\\alpha, we find the mean best-fitting \\alpha is about 0.67+/-0.05 for the optical continuum and the broad H\\beta luminosity, about 0.56+/-0.05 for the UV continuum luminosity, and about 0.70+/-0.14 for the X......We reinvestigate the relationship between the characteristic broad-line region size (R_blr) and the Balmer emission-line, X-ray, UV, and optical continuum luminosities. Our study makes use of the best available determinations of R_blr for a large number of active galactic nuclei (AGNs) from...

  1. Test of the Formation mechanism of the Broad Line Region in Active Galactic Nuclei

    CERN Document Server

    Czerny, Bozena; Wang, Jian-Min; Karas, Vladimir

    2016-01-01

    The origin of the Broad Line Region (BLR) in active galaxies remains unknown. It seems to be related to the underlying accretion disk but an efficient mechanism is required to rise the material from the disk surface without giving too strong signatures of the outflow in the case of the low ionization lines. We discuss in detail two proposed mechanisms: (i) radiation pressure acting on dust in the disk atmosphere creating a failed wind (ii) the gravitational instability of the underlying disk. We compare the predicted location of the inner radius of the BLR in those two scenarios with the observed position obtained from the reverberation studies of several active galaxies. The failed dusty outflow model well represents the observational data while the predictions of the self-gravitational instability are not consistent with observations. The issue remains why actually we do not see any imprints of the underlying disk instability in the BLR properties.

  2. Coronal Seismology -- Achievements and Perspectives

    Science.gov (United States)

    Ruderman, Michael

    Coronal seismology is a new and fast developing branch of the solar physics. The main idea of coronal seismology is the same as of any branches of seismology: to determine basic properties of a medium using properties of waves propagating in this medium. The waves and oscillations in the solar corona are routinely observed in the late space missions. In our brief review we concentrate only on one of the most spectacular type of oscillations observed in the solar corona - the transverse oscillations of coronal magnetic loops. These oscillations were first observed by TRACE on 14 July 1998. At present there are a few dozens of similar observations. Shortly after the first observation of the coronal loop transverse oscillations they were interpreted as kink oscillations of magnetic tubes with the ends frozen in the dense photospheric plasma. The frequency of the kink oscillation is proportional to the magnetic field magnitude and inversely proportional to the tube length times the square root of the plasma density. This fact was used to estimate the magnetic field magnitude in the coronal loops. In 2004 the first simultaneous observation of the fundamental mode and first overtone of the coronal loop transverse oscillation was reported. If we model a coronal loop as a homogeneous magnetic tube, then the ratio of the frequencies of the first overtone and the fundamental mode should be equal to 2. However, the ratio of the observed frequencies was smaller than 2. This is related to the density variation along the loop. If we assume that the corona is isothermal and prescribe the loop shape (usually it is assumed that it has the shape of half-circle), then, using the ratio of the two frequencies, we can determine the temperature of the coronal plasma. The first observation of transverse oscillations of the coronal loops showed that they were strongly damped. This phenomenon was confirmed by the subsequent observations. At present, the most reliable candidate for the

  3. Effect of the drag force on the orbital motion of the broad-line region clouds

    CERN Document Server

    Khajenabi, Fazeleh

    2016-01-01

    We investigate orbital motion of cold clouds in the broad line region of active galactic nuclei subject to the gravity of a black hole and a force due to a nonisotropic central source and a drag force proportional to the velocity square. The intercloud is described using the standard solutions for the advection-dominated accretion flows. Orbit of a cloud decays because of the drag force, but the typical time scale of falling of clouds onto the central black hole is shorter comparing to the linear drag case. This time scale is calculated when a cloud is moving through a static or rotating intercloud. We show that when the drag force is a quadratic function of the velocity, irrespective of the initial conditions and other input parameters, clouds will generally fall onto the central region much faster than the age of whole system and since cold clouds present in most of the broad line regions, we suggest that mechanisms for continuous creation of the clouds must operate in these systems.

  4. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    Science.gov (United States)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  5. Aquisição dos fonemas fricativos coronais por crianças da região metropolitana do recife The acquisition of coronal fricatives by children of Recife's metropolitan region

    Directory of Open Access Journals (Sweden)

    Ana Augusta de Andrade Cordeiro

    2011-02-01

    Full Text Available OBJETIVO: investigar a aquisição das fricativas coronais por crianças de creches/escolas públicas da Região Metropolitana do Recife. MÉTODOS: 40 crianças frequentadoras de quatro creches/escolas, com idades entre 2 a 6 anos e 11 meses, sendo 20 do sexo masculino e 20 do sexo feminino. O instrumento utilizado foi constituído por figuras que visavam à nomeação de 83 palavras que possuíam os fonemas-alvos: /s/ (32, /z/ (11, /∫/ (21, /ℑ/ (19, selecionadas a partir das variáveis linguísticas tonicidade e estrutura silábica. As crianças foram divididas em 10 grupos, de acordo com a faixa etária. Considerou-se o percentual de 80% de produção como indicativo de aquisição do fonema-alvo. RESULTADOS: o início da produção das fricativas coronais deu-se na faixa etária de 2:0-2:5 anos. Observou-se que os fonemas /∫/, /ℑ/ e /z/ foram adquiridos aos 3:0-3:5 anos e o fonema /s/ aos 2:6-2:11 anos. Os processos fonológicos mais comumente encontrados foram substituição e omissão. Também foi observado com bastante frequência a troca semântica. CONCLUSÕES: a aquisição das fricativas coronais das crianças frequentadoras de escolas e creches públicas da Região Metropolitana do Recife ocorre mais tardiamente quando comparada à literatura nacional e sofre influência de variáveis linguísticas. É importante salientar que há uma diversidade linguística e sócio-cultural no território brasileiro, de forma que os dados observados em algumas regiões não são necessariamente correspondentes em todas as regiões do Brasil. Esse aspecto deve ser considerado em estudos que pretendem fixar parâmetros de avaliação fonológica, sobretudo se houver fins de diagnóstico de desvios fonológicos.PURPOSE: to investigate the acquisition of coronal fricatives by public county schools' children of Recife's metropolitan region. METHODS: 40 children from four schools with ages between 2 and 6 year and eleven month old, whereas 20

  6. THE GREEN BANK TELESCOPE H II REGION DISCOVERY SURVEY. IV. HELIUM AND CARBON RECOMBINATION LINES

    Energy Technology Data Exchange (ETDEWEB)

    Wenger, Trey V.; Bania, T. M. [Astronomy Department, 725 Commonwealth Avenue, Boston University, Boston, MA 02215 (United States); Balser, Dana S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA, 22903-2475 (United States); Anderson, L. D. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States)

    2013-02-10

    The Green Bank Telescope H II Region Discovery Survey (GBT HRDS) found hundreds of previously unknown Galactic regions of massive star formation by detecting hydrogen radio recombination line (RRL) emission from candidate H II region targets. Since the HRDS nebulae lie at large distances from the Sun, they are located in previously unprobed zones of the Galactic disk. Here, we derive the properties of helium and carbon RRL emission from HRDS nebulae. Our target sample is the subset of the HRDS that has visible helium or carbon RRLs. This criterion gives a total of 84 velocity components (14% of the HRDS) with helium emission and 52 (9%) with carbon emission. For our highest quality sources, the average {sup 4}He{sup +}/H{sup +} abundance ratio by number, (y {sup +}), is 0.068 {+-} 0.023(1{sigma}). This is the same ratio as that measured for the sample of previously known Galactic H II regions. Nebulae without detected helium emission give robust y {sup +} upper limits. There are 5 RRL emission components with y {sup +} less than 0.04 and another 12 with upper limits below this value. These H II regions must have either a very low {sup 4}He abundance or contain a significant amount of neutral helium. The HRDS has 20 nebulae with carbon RRL emission but no helium emission at its sensitivity level. There is no correlation between the carbon RRL parameters and the 8 {mu}m mid-infrared morphology of these nebulae.

  7. Virilization of the Broad Line Region in Active Galactic Nuclei - connection between shifts and widths of broad emission lines

    CERN Document Server

    Jonic, Sanja; Ilic, Dragana; Popovic, Luka C

    2016-01-01

    We investigate the virilization of the emission lines Hbeta and Mg II in the sample of 287 Type 1 Active Galactic Nuclei taken from the Sloan Digital Sky Survey database. We explore the connections between the intrinsic line shifts and full widths at different levels of maximal intensity. We found that: (i) Hbeta seems to be a good virial estimator of black hole masses, and an intrinsic redshift of Hbeta is dominantly caused by the gravitational effect, (ii) there is an anti-correlation between the redshift and width of the wings of the Mg II line, (iii) the broad Mg II line can be used as virial estimator only at 50% of the maximal intensity, while the widths and intrinsic shifts of the line wings can not be used for this purpose.

  8. Photoionization Models of the H_2 Emission of the Narrow Line Region of AGNs

    Science.gov (United States)

    Aleman, I.; Gruenwald, R.

    2011-05-01

    The excitation mechanism of the narrow line region (NLR) of AGNs is still an open question. Excitation by UV radiation from O and B stars, x-rays from the central black hole, shock from supernovae or jets, or a combination of these mechanisms have been suggested. In the present work, we use photoionization models to study the excitation mechanisms of the H_2 infrared emission lines in the NLR. In the literature, analyzes of the H_2 emission have been done assuming that the molecules is present only in neutral regions (photodissociation regions, x-ray-dominated regions, or shocks; Veilleux et al. 1997, Krabbe et al. 2000, Rigopoulou et al. 2002, Rodriguez-Ardila et al. 2004, 2005, and Davies et al. 2005). However, they are not conclusive. In previous work (Aleman & Gruenwald 2004, 2011), we show that the H_2 emission from the ionized region of PNe can be significant for planetary nebulae (PNe) with hot central stars (T⋆ > 150000 K). Such stars produce copious amounts of high energy photons, which create an extended partially ionized region that favors the H_2 survival. The conditions in the NLR are similar to those in PNe with hot central stars, so we can expect that the H_2 emission might also be important. We obtain and analyze a grid of photoionization models for different NRL parameters. We study the resulting H_2 density and emission, as well as, the formation, destruction, excitation, and de-excitation mechanisms. The higher values observed for the H_2 1-0 S(1)/Brγ ratio cannot be reproduced by our models. The calculated ratios are between 10^-8 and 10^-1, while the observational ration can be as high as 10. The calculated ratio is strongly anti-correlated with the ionization parameter (U) and only models with U<10-3 result in ratios inside the observational range. We show that the NLR is an environment more hostile to the H_2 molecule than the ionized region of PNe. Another interesting result of our calculations is that the H_2 formation on grain surfaces

  9. Railroad Lines, Railroads in 18 county region in South Georgia, Published in 1999, 1:7200 (1in=600ft) scale, Southern Georgia Regional Commission.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Railroad Lines dataset, published at 1:7200 (1in=600ft) scale as of 1999. It is described as 'Railroads in 18 county region in South Georgia'. Data by this...

  10. Coronal Mass Ejections An Introduction

    CERN Document Server

    Howard, Timothy

    2011-01-01

    In times of growing technological sophistication and of our dependence on electronic technology, we are all affected by space weather. In its most extreme form, space weather can disrupt communications, damage and destroy spacecraft and power stations, and increase radiation exposure to astronauts and airline passengers. Major space weather events, called geomagnetic storms, are large disruptions in the Earth’s magnetic field brought about by the arrival of enormous magnetized plasma clouds from the Sun. Coronal mass ejections (CMEs) contain billions of tons of plasma and hurtle through space at speeds of several million miles per hour. Understanding coronal mass ejections and their impact on the Earth is of great interest to both the scientific and technological communities. This book provides an introduction to coronal mass ejections, including a history of their observation and scientific revelations, instruments and theory behind their detection and measurement, and the status quo of theories describing...

  11. Motion magnification in coronal seismology

    CERN Document Server

    Anfinogentov, Sergey

    2016-01-01

    We introduce a new method for the investigation of low-amplitude transverse oscillations of solar plasma non-uniformities, such as coronal loops, individual strands in coronal arcades, jets, prominence fibrils, polar plumes, and other contrast features, observed with imaging instruments. The method is based on the two-dimensional dual tree complex wavelet transform (DT$\\mathbb{C}$WT). It allows us to magnify transverse, in the plane-of-the-sky, quasi-periodic motions of contrast features in image sequences. The tests performed on the artificial data cubes imitating exponentially decaying, multi-periodic and frequency-modulated kink oscillations of coronal loops showed the effectiveness, reliability and robustness of this technique. The algorithm was found to give linear scaling of the magnified amplitudes with the original amplitudes provided they are sufficiently small. Also, the magnification is independent of the oscillation period in a broad range of the periods. The application of this technique to SDO/A...

  12. LINES

    Directory of Open Access Journals (Sweden)

    Minas Bakalchev

    2015-10-01

    Full Text Available The perception of elements in a system often creates their interdependence, interconditionality, and suppression. The lines from a basic geometrical element have become the model of a reductive world based on isolation according to certain criteria such as function, structure, and social organization. Their traces are experienced in the contemporary world as fragments or ruins of a system of domination of an assumed hierarchical unity. How can one release oneself from such dependence or determinism? How can the lines become less “systematic” and forms more autonomous, and less reductive? How is a form released from modernistic determinism on the new controversial ground? How can these elements or forms of representation become forms of action in the present complex world? In this paper, the meaning of lines through the ideas of Le Corbusier, Leonidov, Picasso, and Hitchcock is presented. Spatial research was made through a series of examples arising from the projects of the architectural studio “Residential Transformations”, which was a backbone for mapping the possibilities ranging from playfulness to exactness, as tactics of transformation in the different contexts of the contemporary world.

  13. Temperature and Density Measurements in a Quiet Coronal Streamer

    Science.gov (United States)

    Warren, Harry P.; Warshall, Andrew D.

    2002-06-01

    Many previous studies have used emission line or broadband filter ratios to infer the presence of temperature gradients in the quiet solar corona. Recently it has been suggested that these temperature gradients are not real, but result from the superposition of isothermal loops with different temperatures and density scale heights along the line of sight. A model describing this hydrostatic weighting bias has been developed by Aschwanden & Acton. In this paper we present the application of the Aschwanden & Acton differential emission measure model to Solar and Heliospheric Observatory Solar Ultraviolet Measurement of Emitted Radiation (SUMER) observations of a quiet coronal streamer. Simultaneous Yohkoh soft X-ray telescope (SXT) observations show increases in the filter ratios with height above the limb, indicating an increase in temperature. The application of the Aschwanden & Acton model to these SUMER data, however, show that the temperature is constant with height and that the distribution of temperatures in the corona is much too narrow for the hydrostatic weighting bias to have any effect on the SXT filter ratios. We consider the possibility that there is a tenuous hot component (~3 MK) that accounts for the SXT observations. We find that a hot plasma with an emission measure sufficient to reproduce the observed SXT fluxes would also produce significant count rates in the high-temperature emission lines in the SUMER wavelength range. These lines are not observed, and we conclude that the SUMER spectra are not consistent with the SXT filter ratio temperatures. Calculations from a hydrodynamic loop model suggest that nonuniform footpoint heating may be consistent with the temperatures and densities observed at most heights, consistent with the recent analysis of relatively cool (~1 MK) active region loops. We also find, however, that at the lowest heights the observed densities are smaller than those predicted by uniform or footpoint heating.

  14. Ultraviolet observations of the structure and dynamics of an active region at the limb

    Science.gov (United States)

    Korendyke, C. M.; Dere, K. P.; Socker, D. G.; Brueckner, G. E.; Schmieder, B.

    1995-04-01

    The structure and dynamics of active region NOAA 7260 at the limb have been studied using ultraviolet spectra and spectroheliograms obtained during the eighth rocket flight of the Naval Research Laboratory's High Resolution Telescope an Spectrograph (HRTS). The instrument configuration included a narrow-bandpass spectroheliograph to observe the Sun in the lines of C IV lambda 550 and a tandem-Wadsworth mount spectrograph to record the profiles of chromospheric transition region and coronal lines in the 1850-2670 A region. The combination of high spatial resolution and high spectral purity C IV slit jaw images with ultraviolet emission-line spectra corresponding allows examination of a variety of active region phenomena. A time series of spectroheliograms shows large-scale loop systems composed of fine-scale threads with some extending up to 100 Mm above the limb. The proper motion of several supersonic features, including a surge were measured. The accelerated plasmas appear in several different geometries and environments. Spectrograph exposures were taken with the slit positioned at a range of altitudes above the limb and provide a direct comparison between coronal, transition region and chromospheric emission line profiles. The spectral profiles of chromospheric and transition region emission lines show line-of-sight velocities up to 70 km/s. These lower temperature, emission-line spectra show small-scale spatial and velocity variations which are correlated with the threadlike structures seen in C IV. Coronal lines of Fe XII show much lower velocities and no fine structure.

  15. Does the inner broad-line region dim down when the power turns up?. [Seyfert 1 galaxy NGC 5548

    Science.gov (United States)

    Sparke, Linda S.

    1993-01-01

    The temporal correlations of continuum and broad emission-line fluxes from the Seyfert galaxy NGC 5548 as measured during the 1989 monitoring campaign show two related peculiarities: first, some of the crosscorrelations of line and continuum flux appear steeper on the negative time lag side than the continuum autocorrelation itself; then, the autocorrelation of the line flux is sometimes more sharply peaked than the continuum autocorrelation function. These are here interpreted as evidence that conditions in the inner part of the broad-line region are such that some emission lines decrease in intensity as the continuum strengthens.

  16. The extended narrow-line region of two type-I quasi-stellar objects

    CERN Document Server

    Oh, Semyeong; Bennert, Vardha N; Jungwiert, Bruno; Haas, Martin; Leipski, Christian; Albrecht, Marcus

    2013-01-01

    We investigate the narrow-line region (NLR) of two radio-quiet QSOs, PG1012+008 and PG1307+085, using high signal-to-noise spatially resolved long-slit spectra obtained with FORS1 at the Very Large Telescope. Although the emission is dominated by the point-spread function of the nuclear source, we are able to detect extended NLR emission out to several kpc scales in both QSOs by subtracting the scaled central spectrum from outer spectra. In contrast to the nuclear spectrum, which shows a prominent blue wing and a broad line profile of the [O III] line, the extended emission reveals no clear signs of large scale outflows. Exploiting the wide wavelength range, we determine the radial change of the gas properties in the NLR, i.e., gas temperature, density, and ionization parameter, and compare them with those of Seyfert galaxies and type-II QSOs. The QSOs have higher nuclear temperature and lower electron density than Seyferts, but show no significant difference compared to type-II QSOs, while the ionization par...

  17. A sub-kpc-scale binary AGN with double narrow-line regions

    CERN Document Server

    Woo, Jong-Hak; Husemann, Bernd; Komossa, S; Park, Daeseong; Bennert, Vardha

    2014-01-01

    We present the kinematic properties of a type-2 QSO, SDSS J132323.33-015941.9 at z~0.35, based on the analysis of Very Large Telescope integral field spectroscopy and Hubble Space Telescope (HST) imaging, which suggest that the target is a binary active galactic nucleus (AGN) with double narrow-line regions. The QSO features double-peaked emission lines ([OIII] and Hb) which can be decomposed into two kinematic components. The flux-weighted centroids of the blue and red components are separated by ~0.2" (0.8 kpc in projection) and coincide with the location of the two stellar cores detected in the HST broad-band images, implying that both stellar cores host an active black hole. The line-of-sight velocity of the blue component is comparable to the luminosity-weighted velocity of stars in the host galaxy while the red component is redshifted by ~240 km/s, consistent with typical velocity offsets of two cores in a late stage of a galaxy merger. If confirmed, the target is one of the rare cases of sub-kpc scale ...

  18. Singular surfaces in the open field line region of a diverted tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, A.

    1995-05-01

    The structure of the open field lines of a slightly nonaxisymmetric, poloidally diverted tokamak is explored by numerical integration of the field line equations for a simple model field. In practice, the nonaxisymmetry could be produced self-consistently by the nonlinear evolution of a free-boundary MHD mode, or it could be produced by field errors, or it could be imposed externally by design. In the presence of a nonaxisymmetric perturbation, the tokamak is shown to develop open field line regions of differing topology separated by singular surfaces. It is argued that the singular surfaces can be expected to play a role analogous to that of rational toroidal flux surfaces, in terms of constraining ideal MHD perturbations and thus constraining the free-energy that can be tapped by ideal MHD instabilities. The possibility of active control of free-boundary instabilities by means of currents driven on the open singular surfaces, which are directly accessible from the divertor plates, is discussed. Also discussed is the possibility of early detection of imminent disruptions through localized measurement of the singular surface currents.

  19. The Density of Coronal Plasma in Active Stellar Coronae

    CERN Document Server

    Testa, P; Peres, G; Testa, Paola; Drake, Jeremy J.; Peres, Giovanni

    2004-01-01

    We have analyzed high-resolution X-ray spectra of a sample of 22 active stars observed with the High Energy Transmission Grating Spectrometer on {\\em Chandra} in order to investigate their coronal plasma density. Densities where investigated using the lines of the He-like ions O VII, Mg XI, and Si XIII. While Si XIII lines in all stars of the sample are compatible with the low-density limit, Mg XI lines betray the presence of high plasma densities ($> 10^{12}$ cm$^{-3}$) for most of the sources with higher X-ray luminosity ($> 10^{30}$ erg/s); stars with higher $L_X$ and $L_X/L_{bol}$ tend to have higher densities at high temperatures. Ratios of O VII lines yield much lower densities of a few $10^{10}$ cm$^{-3}$, indicating that the ``hot'' and ``cool'' plasma resides in physically different structures. Our findings imply remarkably compact coronal structures, especially for the hotter plasma emitting the Mg XI lines characterized by coronal surface filling factor, $f_{MgXI}$, ranging from $10^{-4}$ to $10^{-...

  20. Narrow-line region gas kinematics of 24 264 optically selected AGN: the radio connection

    Science.gov (United States)

    Mullaney, J. R.; Alexander, D. M.; Fine, S.; Goulding, A. D.; Harrison, C. M.; Hickox, R. C.

    2013-07-01

    lower L1.4 GHz AGNs, and the width of the [O III] λ5007 line peaks in moderate-radio-luminosity AGNs (L1.4 GHz ˜ 1024 W Hz-1). Our results are consistent with the most disturbed gas kinematics being induced by compact radio cores (rather than powerful radio jets), although broadened [O III] λ5007 lines are also present, but much rarer, in low-L1.4 GHz systems. Our catalogue of multicomponent fits is freely available as an online resource for statistical studies of the kinematics and luminosities of the narrow- and broad-line AGN regions and the identification of potential targets for follow-up observations at http://sites.google.com/site/sdssalpaka.

  1. First Detection of the [OIII] 88 micron Line at High Redshifts: Characterizing the Starburst and Narrow Line Regions in Extreme Luminosity Systems

    CERN Document Server

    Ferkinhoff, C; Nikola, T; Parshley, S C; Stacey, G J; Benford, D J; Staguhn, J G

    2010-01-01

    We have made the first detections of the 88 micron [OIII] line from galaxies in the early Universe, detecting the line from the lensed AGN/starburst composite systems APM 08279+5255 at z = 3.911 and SMM J02399-0136 at z = 2.8076. The line is exceptionally bright from both systems, with apparent (lensed) luminosities ~10^11 L_solar. For APM 08279, the [OIII] line flux can be modeled in a star formation paradigm, with the stellar radiation field dominated by stars with effective temperatures, Teff >36,000 K, similar to the starburst found in M82. The model implies ~35% of the total far-IR luminosity of the system is generated by the starburst, with the remainder arising from dust heated by the AGN. The 88 micron line can also be generated in the narrow line region of the AGN if gas densities are around a few 1000 cm-3. For SMM J02399 the [OIII] line likely arises from HII regions formed by hot (Teff >40,000 K) young stars in a massive starburst that dominates the far-IR luminosity of the system. The present wor...

  2. Application of artificial neural networks to a nanoflare model of active region emission line radiance

    CERN Document Server

    Bazarghan, M; Innes, D E; Karami, E; Solanki, S K

    2008-01-01

    Context. Nanoflares are small impulsive bursts of energy that blend with and possibly make up much of the solar background emission. Determining their frequency and energy input is central to understanding the heating of the solar corona. One method is to extrapolate the energy frequency distribution of larger individually observed flares to lower energies. Only if the power law exponent is greater than 2, is it considered possible that nanoflares contribute significantly to the energy input. Aims. Time sequences of ultraviolet line radiances observed in the corona of an active region are modelled with the aim of determining the power law exponent of the nanoflare energy distribution. Methods. A simple nanoflare model based on three key parameters (the flare rate, the flare duration time, and the power law exponent of the flare energy frequency distribution) is used to simulate emission line radiances from the ions Fe XIX, Ca XIII, and Si iii, observed by SUMER in the corona of an active region as it rotates ...

  3. Kinematics of the Narrow-Line Region in the Seyfert 2 Galaxy Mrk 3

    CERN Document Server

    Ruiz, J R; Krämer, S B; Bower, G A; Gull, T R; Hutchings, J B; Kaiser, M E; Weistrop, D; Ruiz, Jose R.

    2001-01-01

    We present measurements of radial velocities for the narrow-line region gas (NLR) in the Seyfert 2 galaxy Mrk 3 out to ~1 kpc from the nucleus. The observations consist of two datasets, both using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope: 1) An [O III] slitless spectrum with the G430M grating of the inner 3" around the nucleus, and 2) a long-slit observation centered on the nucleus (PA = 71 deg) using the G430L grating and the 52" x 0".1 aperture. Our results produce radial velocity maps of the emission-line gas. These maps indicate general trends in the gas motion, which include: blueshifts and redshifts on either side of the nucleus, steep velocity rises from systemic up to ~ +/-700 km/s taking place in the inner 0".3 (0.8 kpc) both east and west of the nucleus, gradual velocity descents back to near-systemic values from 0".3-1".0, slightly uneven velocity amplitudes on each side of the nucleus, and narrow velocity ranges over the entire observed region. When fitted to ki...

  4. Magnetically elevated accretion disks in active galactic nuclei: broad emission line regions and associated star formation

    Science.gov (United States)

    Begelman, Mitchell C.; Silk, Joseph

    2016-10-01

    We propose that the accretion disks fueling active galactic nuclei are supported vertically against gravity by a strong toroidal (φ -direction) magnetic field that develops naturally as the result of an accretion disk dynamo. The magnetic pressure elevates most of the gas carrying the accretion flow at R to large heights z ˜ 0.1 R and low densities, while leaving a thin dense layer containing most of the mass - but contributing very little accretion - around the equator. We show that such a disk model leads naturally to the formation of a broad emission line region through thermal instability. Extrapolating to larger radii, we demonstrate that local gravitational instability and associated star formation are strongly suppressed compared to standard disk models for AGN, although star formation in the equatorial zone is predicted for sufficiently high mass supply rates. This new class of accretion disk models thus appears capable of resolving two longstanding puzzles in the theory of AGN fueling: the formation of broad emission line regions and the suppression of fragmentation thought to inhibit accretion at the required rates. We show that the disk of stars that formed in the Galactic Center a few million years ago could have resulted from an episode of magnetically elevated accretion at ˜0.1 of the Eddington limit.

  5. On-line Education Initiatives to Galvanize Climate Mitigation in the Great Lakes Region

    Science.gov (United States)

    Mooney, M. E.; Ackerman, S. A.

    2014-12-01

    The Cooperative Institute for Meteorological Satellite Studies (CIMSS) is supporting two different on-line education initiatives that teach about climate change while emphasizing informed and effective responses. The first is an on-line introductory level course for undergraduate students (http://c3.ssec.wisc.edu/) offered through the University of Wisconsin-Madison Atmospheric and Oceanic Sciences (AOS) department. Along with a lighter carbon footprint and the convenience of web-based access, students interact via Drupal forums, Google hangouts and twitter. Activities include several pedagogical tools with sustainability-related content and a final project requiring a discussion of regionally relevant mitigation responses to achieve low emission scenarios for assigned locations. The other initiative is a MOOC (massive open online course) focusing on the changing weather and climate in the Great Lakes Region. This 4-week course is set to launch February 23 2015. One of the primary goals of this MOOC will be having participants change four habits, one per week. Each behavior change will provide a personal benefit to participating individuals while also helping to mitigate the collective impacts of climate change. This presentation will share strategies and insights from both projects.

  6. Gamma-Gamma Absorption in the Broad Line Region Radiation Fields of Gamma-Ray Blazars

    CERN Document Server

    Boettcher, Markus

    2016-01-01

    The expected level of gamma-gamma absorption in the Broad Line Region (BLR) radiation field of gamma-ray loud Flat Spectrum Radio Quasars (FSRQs)is evaluated as a function of the location of the gamma-ray emission region. This is done self-consistently with parameters inferred from the shape of the spectral energy distribution (SED) in a single-zone leptonic EC-BLR model scenario. We take into account all geometrical effects both in the calculation of the gamma-gamma opacity and the normalization of the BLR radiation energy density. As specific examples, we study the FSRQs 3C279 and PKS 1510-089, keeping the BLR radiation energy density at the location of the emission region fixed at the values inferred from the SED. We confirm previous findings that the optical depth due to $\\gamma\\gamma$ absorption in the BLR radiation field exceeds unity for both 3C279 and PKS 1510-089 for locations of the gamma-ray emission region inside the inner boundary of the BLR. It decreases monotonically, with distance from the cen...

  7. The Green Bank Telescope H II Region Discovery Survey: IV. Helium and Carbon Recombination Lines

    CERN Document Server

    Wenger, Trey V; Balser, Dana S; Anderson, L D

    2012-01-01

    The Green Bank Telescope H II Region Discovery Survey (GBT HRDS) found hundreds of previously unknown Galactic regions of massive star formation by detecting hydrogen radio recombination line (RRL) emission from candidate H II region targets. Since the HRDS nebulae lie at large distances from the Sun, they are located in previously unprobed zones of the Galactic disk. Here we derive the properties of helium and carbon RRL emission from HRDS nebulae. Our target sample is the subset of the HRDS that has visible helium or carbon RRLs. This criterion gives a total of 84 velocity components (14% of the HRDS) with helium emission and 52 (9%) with carbon emission. For our highest quality sources, the average ionic He-4+/H+ abundance ratio by number, , is 0.068 +/- 0.023 (1-sigma). This is the same ratio as that measured for the sample of previously known Galactic H II regions. Nebulae without detected helium emission give robust y+ upper limits. There are 5 RRL emission components with y+ less than 0.04 and another ...

  8. Coronal heating by resonant absorption: The effects of chromospheric coupling

    NARCIS (Netherlands)

    Belien, A. J. C.; Martens, P. C. H.; Keppens, R.

    1999-01-01

    We present the first 2.5 dimensional numerical model calculations of the nonlinear wave dynamics and heating by resonant absorption in coronal loops with thermal structuring of the transition region and higher chromosphere. The numerical calculations were done with the Versatile Advection Code. The

  9. Gamma-ray opacity of the anisotropic stratified broad-line regions in blazars

    Science.gov (United States)

    Abolmasov, Pavel; Poutanen, Juri

    2016-09-01

    The GeV-range spectra of blazars are shaped not only by non-thermal emission processes internal to the relativistic jet but also by external pair-production absorption on the thermal emission of the accretion disc and the broad-line region (BLR). For the first time, we compute here the pair-production opacities in the GeV range produced by a realistic BLR accounting for the radial stratification and radiation anisotropy. Using photoionization modelling with the CLOUDY code, we calculate a series of BLR models of different sizes, geometries, cloud densities, column densities and metallicities. The strongest emission features in the model BLR are Lyα and He II Lyα. Contribution of recombination continua is smaller, especially for hydrogen, because Ly continuum is efficiently trapped inside the large optical depth BLR clouds and converted to Lyman emission lines and higher-order recombination continua. The largest effects on the gamma-ray opacity are produced by the BLR geometry and localization of the gamma-ray source. We show that when the gamma-ray source moves further from the central source, all the absorption details move to higher energies and the overall level of absorption drops because of decreasing incidence angles between the gamma-rays and BLR photons. The observed positions of the spectral breaks can be used to measure the geometry and the location of the gamma-ray emitting region relative to the BLR. Strong dependence on geometry means that the soft photons dominating the pair-production opacity may be actually produced by a different population of BLR clouds than the bulk of the observed broad line emission.

  10. Gamma-ray opacity of the anisotropic stratified broad-line regions in blazars

    Science.gov (United States)

    Abolmasov, Pavel; Poutanen, Juri

    2017-01-01

    The GeV-range spectra of blazars are shaped not only by non-thermal emission processes internal to the relativistic jet but also by external pair-production absorption on the thermal emission of the accretion disc and the broad-line region (BLR). For the first time, we compute here the pair-production opacities in the GeV range produced by a realistic BLR accounting for the radial stratification and radiation anisotropy. Using photoionization modelling with the CLOUDY code, we calculate a series of BLR models of different sizes, geometries, cloud densities, column densities and metallicities. The strongest emission features in the model BLR are Ly α and He II Ly α. Contribution of recombination continua is smaller, especially for hydrogen, because Ly continuum is efficiently trapped inside the large optical depth BLR clouds and converted to Lyman emission lines and higher order recombination continua. The largest effects on the gamma-ray opacity are produced by the BLR geometry and localization of the gamma-ray source. We show that when the gamma-ray source moves further from the central source, all the absorption details move to higher energies and the overall level of absorption drops because of decreasing incidence angles between the gamma-rays and BLR photons. The observed positions of the spectral breaks can be used to measure the geometry and the location of the gamma-ray emitting region relative to the BLR. Strong dependence on geometry means that the soft photons dominating the pair-production opacity may be actually produced by a different population of BLR clouds than the bulk of the observed broad line emission.

  11. Ultraviolet Spectroscopic Observations of Coronal Streamers in the SOHO Era

    Indian Academy of Sciences (India)

    Leonard Strachan

    2008-03-01

    Measurements made with the Ultraviolet Coronagraph Spectrometer (UVCS) on the Solar and Heliospheric Observatory can be used to determine physical parameters in the solar corona such as hydrogen and ion kinetic temperatures, electron densities, and absolute elemental abundances. Hydrogen and ion outflow velocities can be determined by combining the UV spectroscopic measurements with white light polarized brightness measurements. These combined measurements can be used to reveal physical characteristics of coronal streamers. To date we have studied plasma properties, such as the variation of plasma outflows in quiescent streamers, primarily in classic helmet streamers at solar minimum. Outflows have not been observed in the centers of coronal streamers suggesting that these are closed magnetic field regions.We propose to study all of the coronal streamers in the UVCS synoptic dataset in order to investigate different types of streamers and their long-term evolution.

  12. Examining the Properties of Jets in Coronal Holes

    Science.gov (United States)

    Gaulle, Owen; Adams, Mitzi L.; Tennant, A. F.

    2012-01-01

    We examined both X-ray and Magnetic field data in order to determine if there is a correlation between emerging magnetic flux and the production of Coronal jets. It was proposed that emerging flux can be a trigger to a coronal jet. The jet is thought to be caused when local bipoles reconnect or when a region of magnetic polarity emerges through a uniform field. In total we studied 15 different jets that occurred over a two day period starting 2011-02-27 00:00:00 UTC and ending 2011-02-28 23:59:55 UTC. All of the jets were contained within a coronal hole that was centered on the disk. Of the 15 that we studied 6 were shown to have an increase of magnetic flux within one hour prior to the creation of the jet and 10 were within 3 hours before the event.

  13. Flux Rope Formation Preceding Coronal Mass Ejection Onset

    CERN Document Server

    Green, L M

    2009-01-01

    We analyse the evolution of a sigmoidal (S shaped) active region toward eruption, which includes a coronal mass ejection (CME) but leaves part of the filament in place. The X-ray sigmoid is found to trace out three different magnetic topologies in succession: a highly sheared arcade of coronal loops in its long-lived phase, a bald-patch separatrix surface (BPSS) in the hours before the CME, and the first flare loops in its major transient intensity enhancement. The coronal evolution is driven by photospheric changes which involve the convergence and cancellation of flux elements under the sigmoid and filament. The data yield unambiguous evidence for the existence of a BPSS, and hence a flux rope, in the corona prior to the onset of the CME.

  14. REVERBERATION AND PHOTOIONIZATION ESTIMATES OF THE BROAD-LINE REGION RADIUS IN LOW-z QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Negrete, C. Alenka [Instituto Nacional de Astrofisica, Optica y Electronica (Mexico); Dultzin, Deborah [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico (Mexico); Marziani, Paola [INAF, Astronomical Observatory of Padova, I-35122 Padova (Italy); Sulentic, Jack W., E-mail: cnegrete@inaoep.mx, E-mail: deborah@astro.unam.mx, E-mail: paola.marziani@oapd.inaf.it, E-mail: sulentic@iaa.es [Instituto de Astrofisica de Andalucia, E-18008 Granada (Spain)

    2013-07-01

    Black hole mass estimation in quasars, especially at high redshift, involves the use of single-epoch spectra with signal-to-noise ratio and resolution that permit accurate measurement of the width of a broad line assumed to be a reliable virial estimator. Coupled with an estimate of the radius of the broad-line region (BLR) this yields the black hole mass M{sub BH}. The radius of the BLR may be inferred from an extrapolation of the correlation between source luminosity and reverberation-derived r{sub BLR} measures (the so-called Kaspi relation involving about 60 low-z sources). We are exploring a different method for estimating r{sub BLR} directly from inferred physical conditions in the BLR of each source. We report here on a comparison of r{sub BLR} estimates that come from our method and from reverberation mapping. Our ''photoionization'' method employs diagnostic line intensity ratios in the rest-frame range 1400-2000 A (Al III {lambda}1860/Si III] {lambda}1892, C IV {lambda}1549/Al III {lambda}1860) that enable derivation of the product of density and ionization parameter with the BLR distance derived from the definition of the ionization parameter. We find good agreement between our estimates of the density, ionization parameter, and r{sub BLR} and those from reverberation mapping. We suggest empirical corrections to improve the agreement between individual photoionization-derived r{sub BLR} values and those obtained from reverberation mapping. The results in this paper can be exploited to estimate M{sub BH} for large samples of high-z quasars using an appropriate virial broadening estimator. We show that the width of the UV intermediate emission lines are consistent with the width of H{beta}, thereby providing a reliable virial broadening estimator that can be measured in large samples of high-z quasars.

  15. Line Shape Parameters of Water Vapor Transitions in the 3645-3975 cm^{-1} Region

    Science.gov (United States)

    Devi, V. Malathy; Benner, D. Chris; Gamache, Robert R.; Vispoel, Bastien; Renaud, Candice L.; Smith, Mary Ann H.; Sams, Robert L.; Blake, Thomas A.

    2017-06-01

    A Bruker IFS 120HR Fourier transform spectrometer (FTS) at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington was used to record a series of spectra in the regions of the ν_1 and ν_3 bands of H_2O. The samples included low pressures of pure H_2O as well as H_2O broadened by air at different pressures, temperatures and volume mixing ratios. We fit simultaneously 16 high-resolution (0.008 cm^{-1}), high S/N ratio absorption spectra recorded at 268, 296 and 353 K (L=19.95 cm), employing a multispectrum fitting technique to retrieve accurate line positions, relative intensities, Lorentz air-broadened half-width and pressure-shift coefficients and their temperature dependences for more than 220 H_2O transitions. Self-broadened half-width and self-shift coefficients were measured for over 100 transitions. For select sets of transition pairs for the H_2O-air system we determined collisional line mixing coefficients via the off-diagonal relaxation matrix element formalism, and we also measured speed dependence parameters for 85 transitions. Modified Complex Robert Bonamy (MCRB) calculations of the half-widths, line shifts, and temperature dependences were made for self-, N_2-, O_2-, and air-broadening. The measurements and calculations are compared with each other and with similar parameters reported in the literature. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith, D. Atkins, JQSRT 53 (1995) 705-721. A. Levy, N. Lacome, C. Chackerian, Collisional line mixing, in Spectroscopy of the Earth's Atmosphere and Interstellar Medium, Academic Press, Inc., Boston (1992) 261-337.

  16. Evidence for Steady Heating: Observations of an Active Region Core with Hinode and TRACE

    CERN Document Server

    Warren, Harry P; Brooks, David H

    2009-01-01

    The timescale for energy release is an important parameter for constraining the coronal heating mechanism. Observations of "warm" coronal loops (~1 MK) have indicated that the heating is impulsive and that coronal plasma is far from equilibrium. In contrast, observations at higher temperatures (~3 MK) have generally been consistent with steady heating models. Previous observations, however, have not been able to exclude the possibility that the high temperature loops are actually composed of many small scale threads that are in various stages of heating and cooling and only appear to be in equilibrium. With new observations from the EUV Imaging Spectrometer (EIS) and X-ray Telescope (XRT) on Hinode we have the ability to investigate the properties of high temperature coronal plasma in extraordinary detail. We examine the emission in the core of an active region and find three independent lines of evidence for steady heating. We find that the emission observed in XRT is generally steady for hours, with a fluct...

  17. Evolution of the polymorphism at molecular markers in QTL and non-QTL regions in selected chicken lines

    NARCIS (Netherlands)

    Loywyck, V.; Bed'hom, B.; Pinard-van der Laan, M.H.; Pitel, F.; Verrier, E.; Bijma, P.

    2008-01-01

    We investigated the joint evolution of neutral and selected genomic regions in three chicken lines selected for immune response and in one control line. We compared the evolution of polymorphism of 21 supposedly neutral microsatellite markers versus 30 microsatellite markers located in seven quantit

  18. Line and continuum emission from the outer regions of accretion discs in active galactic nuclei. V. Detailed computational results

    Energy Technology Data Exchange (ETDEWEB)

    Dumont, A.M. (Observatoire de Paris, Section de Meudon, 92 (FR)); Collin-Souffrin, S. (Centre National de la Recherche Scientifique, 75 - Paris (FR). Inst. d' Astrophysique)

    1990-04-01

    This paper completes the results concerning the structure of the outer regions of accretion discs in Active Galactic Nuclei, and of their line emission spectra (profiles and line intensities). The computational method has been described in a series of previous papers.

  19. Exploring Coronal Structures with SOHO

    Indian Academy of Sciences (India)

    Μ. Karovska; Β. Wood; J. Chen; J. Cook; R. Howard

    2000-09-01

    We applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.

  20. Regional estimates of glacier mass change from MODIS-derived equilibrium line altitudes

    Directory of Open Access Journals (Sweden)

    J. M. Shea

    2012-09-01

    Full Text Available We describe an automated method to extract regional snowline elevations and annual equilibrium line altitudes (ELAs from daily MODIS imagery (MOD02QKM on large glaciers and icefields in western North America. Regional MODIS-derived ELAs correlate significantly with observed net mass balance at six index glacier mass balance sites. Historical mass balance gradients were combined with MODIS-derived ELAs to estimate annual mass change at the Columbia, Lillooet, and Sittakanay icefields in British Columbia, Canada. Our approach yields estimates of mass change that are within 30% of traditional geodetic approaches over decadal time-scales, and reveals continued mass loss of glaciers in western North America. Between 2000 and 2009, mean annual rates of surface elevation change for the Columbia, Lillooet, and Sittakanay icefields are estimated to be −0.29 ± 0.15 m a−1, −0.57 ± 0.10 m a−1, and −0.90 ± 0.09 m a−1, respectively. This study provides a complementary approach to the development of regional estimates of glacier mass change, which are critical for studies of glacier contributions to both streamflow and global sea-level rise.

  1. Study of superdeformed state of nuclei in $Z=70-80$ drip-line region

    CERN Document Server

    Mahapatro, S; Kumar, Bharat; Patra, S K

    2015-01-01

    We study binding energy, root- mean square radius, quadrapole deformation parameter, two-neutron separation energy and single particle energy levels for various isotopes of Ytterbium (Yb), Hafnium(Hf), Tungsten(W), Osmium(Os), Platinum(Pt) and Mercury(Hg) in $Z = 70 - 80$ drip-line region starting from $N =80$ to $N=170$ within the formalism of relativistic mean field (RMF) theory. We compared our results with Finite Range Droplet Model(FRDM) and experimental data and found that the calculated results are in good agreement. The nuclei $^{168}$Yb,$^{172}$Hf, $^{176}$W, $^{184}$Os, $^{188}$Pt, $^{196}$Hg are found to be most stable isotope in the respective series in the neutron-deficient region. We also observe that there is a shape transition at about $A=190$ in $Z=70-80$ region. The shape changes from oblate to highly prolate shape in their intrinsic ground state. We have also studied probable decay mechanisms of these elements.

  2. The origin of the Narrow Line Region of Mrk 3 an overpressured jet cocoon

    CERN Document Server

    Capetti, A; Macchetto, F D; Marconi, A; Winge, C

    1999-01-01

    We have obtained HST FOC long-slit optical spectroscopy of the Narrow Line Region of the Seyfert 2 galaxy Mrk 3. In the region cospatial with the radio-jet the velocity field is highly perturbed and shows two velocity systems separated by as much as 1700 km/s. We interpret this to be the consequence of the rapid expansion of a cocoon of hot gas, shocked and heated by the radio-emitting outflow, which compresses and accelerates the ambient gas. The NLR itself is essentially a cylindrical shell expanding supersonically. From the size and velocity of the expanding region, we derive an upper limit to the radio-source age, ~ 2 E42 erg/s required to inflate the cocoon and estimate that the jet minimum advance speed is 3 E-3 pc per year. The total kinetic energy of the high velocity NLR gas can be estimated as ~6 E54 erg, comparable to the total energy carried by the jet over its lifetime and this quantitatively supports the idea that the NLR gas is accelerated by the jet. If the advance speed of Mrk 3 is representa...

  3. ELECTRON ACCELERATION AT A CORONAL SHOCK PROPAGATING THROUGH A LARGE-SCALE STREAMER-LIKE MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiangliang; Chen, Yao; Feng, Shiwei; Du, Guohui [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Guo, Fan [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, Gang, E-mail: yaochen@sdu.edu.cn [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2016-04-10

    Using a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featuring a partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature is larger than that of the magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of the efficient electron acceleration region along the shock front during its propagation. We also find that, in general, the electron acceleration at the shock flank is not as efficient as that at the top of the closed field because a collapsing magnetic trap can be formed at the top. In addition, we find that the energy spectra of electrons are power-law-like, first hardening then softening with the spectral index varying in a range of −3 to −6. Physical interpretations of the results and implications for the study of solar radio bursts are discussed.

  4. A Revised Broad-line Region Radius and Black Hole Mass for the Narrow-line Seyfert 1 NGC 4051

    DEFF Research Database (Denmark)

    Denney, K. D.; Watson, L. C.; Peterson, B. M.

    2009-01-01

    ) radius and the optical continuum luminosity—the R BLR-L relationship. Our new measurements of the lag time between variations in the continuum and Hß emission line made from spectroscopic monitoring of NGC 4051 lead to a measured BLR radius of R BLR = 1.87+0.54 -0.50 light days and black hole mass of M...

  5. Map of the Galactic center region in the 1. 8 MeV Al-26 gamma-ray line

    Energy Technology Data Exchange (ETDEWEB)

    Von ballmoos, P.; Diehl, R.; Schoenfelder, V.

    1987-07-01

    The mapping of the Galactic center region in the 1.8 MeV gamma-ray line based on observations made with the MPI Compton telescope during a balloon flight is reported. The measured gamma-ray line profile and the intensity map of the Galactic center region are presented, and the measured map is compared with maps expected from distributions of those objects that have been suggested as possible sources. The consistency of the results with a point source at the Galactic center raises questions about the validity of the generally assumed origin of the gamma-ray line in interstellar space. 26 references.

  6. Water vapor absorption line intensities in the 1900-6600 cm{sup -1} region

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailenko, S.N. [Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, Russian Academy of Sciences, 1, Akademicheskaya Avenue, 634055 Tomsk (Russian Federation)], E-mail: semen@lts.iao.ru; Keppler Albert, K.A. [Physikalisch-Chemisches Institut, Justus-Liebig-Universitaet Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen (Germany); Physical Chemistry, ETH Zuerich, Hoenggerberg, CH-8093 Zuerich (Switzerland); Mellau, G.; Klee, S. [Physikalisch-Chemisches Institut, Justus-Liebig-Universitaet Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen (Germany); Winnewisser, B.P.; Winnewisser, M. [Physikalisch-Chemisches Institut, Justus-Liebig-Universitaet Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen (Germany); Department of Physics, Ohio State University, Columbus, OH 43210 (United States); Tyuterev, Vl.G. [Groupe de Spectrometrie Moleculaire et Atmospherique, UMR CNRS 6089, Faculte des Sciences, Universite de Reims, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France)

    2008-11-15

    Water vapor infrared spectra have been measured using the Bruker IFS 120 HR Fourier transform spectrometer at the Physikalisch-Chemisches Institut of the Justus-Liebig-Universitaet Giessen. Spectra were recorded at pressure-broadening-limited resolution and at room temperature in the range of 1900-6600 cm{sup -1}. The use of fully evacuated transfer optics and a White-type multireflection cell made it possible to obtain pressurexpathlength products up to 31.27 mbarx288.5 m. These spectra have previously been used to determine experimental values of rovibrational line positions and upper energy levels of the 2{nu}{sub 2}, {nu}{sub 1}, and {nu}{sub 3} bands [Mikhailenko SN, Tyuterev VlG, Keppler KA, Winnewisser BP, Winnewisser M, Mellau G, et. al. The 2{nu}{sub 2} band of water: analysis of new FTS measurements and high-K{sub a} transitions and energy levels. J Mol Spectrosc 1997;184: 330-49] and of the 3{nu}{sub 2}, {nu}{sub 1}+{nu}{sub 2}, and {nu}{sub 2}+{nu}{sub 3} bands [Mikhailenko SN, Tyuterev VlG, Starikov VI, Albert KK, Winnewisser BP, Winnewisser M, et al. Water spectra in the region 4200-6250 cm{sup -1}, extended analysis of {nu}{sub 1}+{nu}{sub 2}, {nu}{sub 2}+{nu}{sub 3}, and 3{nu}{sub 2} bands and confirmation of highly excited states from flame spectra and from atmospheric long-path observations. J. Mol. Spectrosc. 2002; 213: 91-121]. This work presents the intensities of 3769 lines for the weak and medium transitions in the spectral range indicated. These data provide an independent source of experimental information which is complementary to intensity data available in the literature and can thus help to evaluate experimental errors and the reliability of these spectral line parameters.

  7. Absolute intensities of CO(2) lines in the 3140-3410-cm(-1) spectral region.

    Science.gov (United States)

    Benner, D C; Devi, V M; Rinsland, C P; Ferry-Leeper, P S

    1988-04-15

    Absolute intensities for 430 transitions belonging to eleven rotation-vibration bands of (12)C(16)O(2),(13)C(16)O(2) and(16)O(12)C(18)O in the 3140-3410-cm(-1) spectral region have been determined by analyzing spectra recorded at 0.01-cm(-1) resolution with the Fourier transform spectrometer in the McMath solar telescope complex at the National Solar Observatory on Kitt Peak. The data were recorded at room temperature and low pressures (Coriolis effect is large and the Q-branch line intensities were not determinate either because they were severely blended or absent from the spectra. Comparisons are made between the results obtained in this study and other published values.

  8. An Extended Look at the Narrow-Line Region of the Seyfert 2 Galaxy Mrk 573

    Science.gov (United States)

    Machuca, Camilo; Fischer, Travis C.; Crenshaw, D. Michael

    2017-01-01

    Active galactic nuclei (AGN) are supermassive black holes found in the centers of galaxies which accrete matter from their surroundings and subsequently produce AGN feedback in the form of ionized and molecular gas outflows. These outflows are largely contained within the Narrow-Line Region (NLR), a low density sector that extends froms tens to thousands of parsecs away from the nucleus. In order to clarify the relationship between the AGN and its host galaxy at these various distances, we present this study on Mrk 573, a Seyfert 2 AGN, based on long-slit spectroscopy from the Dual Imaging Spectrograph (DIS) on the ARC 3.5-meter telescope at Apache Point Observatory. We find that the dominant ionization mechanism of the gas up to a radius of 2 kpc can be attributed to the AGN and that the ionized gas kinematics are dominated by galactic rotation at distances larger than 750 pc.

  9. Magnetically elevated accretion disks in active galactic nuclei: broad emission line regions and associated star formation

    CERN Document Server

    Begelman, Mitchell C

    2016-01-01

    We propose that the accretion disks fueling active galactic nuclei are supported vertically against gravity by a strong toroidal ($\\phi-$direction) magnetic field that develops naturally as the result of an accretion disk dynamo. The magnetic pressure elevates most of the gas carrying the accretion flow at $R$ to large heights $z > 0.1 R$ and low densities, while leaving a thin dense layer containing most of the mass --- but contributing very little accretion --- around the equator. We show that such a disk model leads naturally to the formation of a broad emission line region through thermal instability. Extrapolating to larger radii, we demonstrate that local gravitational instability and associated star formation are strongly suppressed compared to standard disk models for AGN, although star formation in the equatorial zone is predicted for sufficiently high mass supply rates. This new class of accretion disk models thus appears capable of resolving two longstanding puzzles in the theory of AGN fueling: th...

  10. A magnetohydrodynamic theory of coronal loop transients

    Science.gov (United States)

    Yeh, T.

    1982-01-01

    The physical and geometrical characteristics of solar coronal loop transients are described in an MHD model based on Archimedes' MHD buoyancy force. The theory was developed from interpretation of coronagraphic data, particularly from Skylab. The brightness of a loop is taken to indicate the electron density, and successive pictures reveal the electron enhancement in different columns. The forces which lift the loop off the sun surface are analyzed as an MHD buoyancy force affecting every mass element by imparting an inertial force necessary for heliocentrifugal motion. Thermal forces are responsible for transferring the ambient stress to the interior of the loop to begin the process. The kinematic and hydrostatic buoyancy overcome the gravitational force, and a flux rope can then curve upward, spiralling like a corkscrew with varying cross section around the unwinding solar magnetic field lines.

  11. The Role of Radiation Pressure in the Narrow Line Regions of Seyfert Host Galaxies

    CERN Document Server

    Davies, Rebecca L; Kewley, Lisa J; Groves, Brent; Sutherland, Ralph; Hampton, Elise J; Shastri, Prajval; Kharb, Preeti; Bhatt, Harish; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-01-01

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-AGN mixing curves on standard emission line diagnostic diagrams which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ~ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ~ 0 to -3.4 <= log U <= -3.2. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kpc scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales fa...

  12. The Role of Radiation Pressure in the Narrow Line Regions of Seyfert Host Galaxies

    Science.gov (United States)

    Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Shastri, Prajval; Kharb, Preeti; Bhatt, Harish; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-06-01

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ˜ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ˜ 0 to -3.2 ≲ log U ≲ -3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.

  13. X-ray narrow emission lines from the nuclear region of NGC 1365

    CERN Document Server

    Whewell, M; Page, M J

    2016-01-01

    NGC 1365 is a Seyfert 2 galaxy with a starburst ring in its nuclear region. In this work we look at the XMM Reflection Grating Spectrometer (RGS) data from four 2012-13, three 2007 and two 2004 observations of NGC 1365. We characterise the narrow-line emitting gas visible by XMM RGS and make comparisons between the 2012-13 spectra and those from 2004-07, already published. This source is usually absorbed within the soft X-ray band, with a typical neutral column density of >1.5 x 10$^{23}$ cm$^{-2}$, and only 1 observation of the 9 we investigate shows low enough absorption for the continuum to emerge in the soft X-rays. We stack all observations from 2004-07, and separately three of the four observations from 2012-13, analysing the less absorbed observation separately. We first model the spectra using gaussian profiles representing the narrow line emission. We fit physically motivated models to the 2012-13 stacked spectra, with collisionally ionised components representing the starburst emission and photoioni...

  14. Gamma-ray opacity of the anisotropic stratified broad-line regions in blazars

    CERN Document Server

    Abolmasov, Pavel

    2016-01-01

    The GeV-range spectra of blazars are shaped not only by non-thermal emission processes internal to the relativistic jet but also by external pair-production absorption on the thermal emission of the accretion disc and the broad-line region (BLR). For the first time, we compute here the pair-production opacities in the GeV range produced by a realistic BLR accounting for the radial stratification and radiation anisotropy. Using photoionization modelling with the CLOUDY code, we calculate a series of BLR models of different sizes, geometries, cloud densities, column densities and metallicities. The strongest emission features in the model BLR are Ly$\\alpha$ and HeII Ly$\\alpha$. Contribution of recombination continua is smaller, especially for hydrogen, because Ly continuum is efficiently trapped inside the large optical depth BLR clouds and converted to Lyman emission lines and higher-order recombination continua. The largest effects on the gamma-ray opacity are produced by the BLR geometry and localization of ...

  15. Spatially Resolving the Kinematics of the <100 {\\mu}as Quasar Broad Line Region using Spectroastrometry

    CERN Document Server

    Stern, Jonathan; Pott, Jörg-Uwe

    2015-01-01

    The broad line region (BLR) of luminous active galactic nuclei (AGN) is a prominent observational signature of the accretion flow around supermassive black holes, which can be used to measure their masses (M_BH) over cosmic history. Due to the <100 {\\mu}as angular size of the BLR, current direct constraints on BLR kinematics are limited to those provided by reverberation mapping studies, which are most efficiently carried out on low-luminosity L and low-redshift z AGN. We analyze the possibility to measure the BLR size and study its kinematic structure using spectroastrometry, whereby one measures the spatial position centroid of emission line photons as a function of velocity. We calculate the expected spectroastrometric signal of a rotation-dominated BLR for various assumptions about the ratio of random to rotational motions, and the radial distribution of the BLR gas. We show that for hyper-luminous quasars at z < 2.5, the size of the low-ionization BLR can already be constrained with existing telesc...

  16. Active Longitude and Coronal Mass Ejection Occurrences

    Science.gov (United States)

    Gyenge, N.; Singh, T.; Kiss, T. S.; Srivastava, A. K.; Erdélyi, R.

    2017-03-01

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  17. 输电线路区域管控线格化管理实践%Line-grid Management Practice for Regional Transmission Line Control

    Institute of Scientific and Technical Information of China (English)

    关利平; 关华平

    2015-01-01

    指出线路保护区内超高树木、违章建筑、施工等因素的影响已成为线路安全运行的重大隐患,通道清理是运行维护难点和重点。提出线路区域管控线格化的工作思路,通过地方人力资源的利用,传递护线责任,建立地(市)、县(区)、乡(镇)三级护线制度;聘请当地有责任心的村民护线,从线路基本运行情况、通道清障和运检管理等方面分析线路区域管理特色;建议充分发挥属地管理的优势,实施分级护线和群众护线制度,确保区域管控线格化管理实用高效。%The safe operation of transmission lines is threatened by many factors, including high trees and unauthorized construction in the protected zone so that channel clearing is the focus for line maintenance. The scheme of line-grid management is put forward for transmission line maintenance. Three-level line protection system (the municipal level, county-level and township-level) is established. Local villagers with strong responsibility are employed to protect transmission lines. Regional management of transmission lines is analysed from the aspects of the basic operation condition, channel clearing and inspection management etc.. It is suggested to promote localized management and three-level line protection system to ensure the efficiency of regional management.

  18. Nonlinear Dynamics of the Parker Scenario for Coronal Heating

    CERN Document Server

    Rappazzo, A F; Einaudi, G; Dahlburg, R B

    2007-01-01

    The Parker or field line tangling model of coronal heating is studied comprehensively via long-time high-resolution simulations of the dynamics of a coronal loop in cartesian geometry within the framework of reduced magnetohydrodynamics (RMHD). Slow photospheric motions induce a Poynting flux which saturates by driving an anisotropic turbulent cascade dominated by magnetic energy. In physical space this corresponds to a magnetic topology where magnetic field lines are barely entangled, nevertheless current sheets (corresponding to the original tangential discontinuities hypothesized by Parker) are continuously formed and dissipated. Current sheets are the result of the nonlinear cascade that transfers energy from the scale of convective motions ($\\sim 1,000 km$) down to the dissipative scales, where it is finally converted to heat and/or particle acceleration. Current sheets constitute the dissipative structure of the system, and the associated magnetic reconnection gives rise to impulsive ``bursty'' heating ...

  19. The Fate of Cool Material in the Hot Corona: Solar Prominences and Coronal Rain

    Science.gov (United States)

    Liu, Wei; Antolin, Patrick; Sun, Xudong; Vial, Jean-Claude; Berger, Thomas

    2017-08-01

    As an important chain of the chromosphere-corona mass cycle, some of the million-degree hot coronal mass undergoes a radiative cooling instability and condenses into material at chromospheric or transition-region temperatures in two distinct forms - prominences and coronal rain (some of which eventually falls back to the chromosphere). A quiescent prominence usually consists of numerous long-lasting, filamentary downflow threads, while coronal rain consists of transient mass blobs falling at comparably higher speeds along well-defined paths. It remains puzzling why such material of similar temperatures exhibit contrasting morphologies and behaviors. We report recent SDO/AIA and IRIS observations that suggest different magnetic environments being responsible for such distinctions. Specifically, in a hybrid prominence-coronal rain complex structure, we found that the prominence material is formed and resides near magnetic null points that favor the radiative cooling process and provide possibly a high plasma-beta environment suitable for the existence of meandering prominence threads. As the cool material descends, it turns into coronal rain tied onto low-lying coronal loops in a likely low-beta environment. Such structures resemble to certain extent the so-called coronal spiders or cloud prominences, but the observations reported here provide critical new insights. We will discuss the broad physical implications of these observations for fundamental questions, such as coronal heating and beyond (e.g., in astrophysical and/or laboratory plasma environments).

  20. Unresolved Fine-scale Structure in Solar Coronal Loop-tops

    Science.gov (United States)

    Scullion, E.; Rouppe van der Voort, L.; Wedemeyer, S.; Antolin, P.

    2014-12-01

    New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer substructures within coronal loop cross-sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop substructures, through taking advantage of the resolving power of the Swedish 1 m Solar Telescope/CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory/Atmospheric Image Assembly (AIA). High-resolution imaging of the chromospheric Hα 656.28 nm spectral line core and wings can, under certain circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in Hα) known as a coronal rain, to investigate their fine-scale structure. We identify, through analysis of three data sets, large-scale catastrophic cooling in coronal loop-tops and the existence of multi-thermal, multi-stranded substructures. Many cool strands even extend fully intact from loop-top to footpoint. We discover that coronal loop fine-scale strands can appear bunched with as many as eight parallel strands within an AIA coronal loop cross-section. The strand number density versus cross-sectional width distribution, as detected by CRISP within AIA-defined coronal loops, most likely peaks at well below 100 km, and currently, 69% of the substructure strands are statistically unresolved in AIA coronal loops.

  1. Observations and Numerical Models of Solar Coronal Heating Associated with Spicules

    Science.gov (United States)

    De Pontieu, B.; De Moortel, I.; Martinez-Sykora, J.; McIntosh, S. W.

    2017-08-01

    Spicules have been proposed as significant contributors to the mass and energy balance of the corona. While previous observations have provided a glimpse of short-lived transient brightenings in the corona that are associated with spicules, these observations have been contested and are the subject of a vigorous debate both on the modeling and the observational side. Therefore, it remains unclear whether plasma is heated to coronal temperatures in association with spicules. We use high-resolution observations of the chromosphere and transition region (TR) with the Interface Region Imaging Spectrograph and of the corona with the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory to show evidence of the formation of coronal structures associated with spicular mass ejections and heating of plasma to TR and coronal temperatures. Our observations suggest that a significant fraction of the highly dynamic loop fan environment associated with plage regions may be the result of the formation of such new coronal strands, a process that previously had been interpreted as the propagation of transient propagating coronal disturbances. Our observations are supported by 2.5D radiative MHD simulations that show heating to coronal temperatures in association with spicules. Our results suggest that heating and strong flows play an important role in maintaining the substructure of loop fans, in addition to the waves that permeate this low coronal environment.

  2. Target hepatic artery regional chemotherapy and bevacizumab perfusion in liver metastatic colorectal cancer after failure of first-line or second-line systemic chemotherapy.

    Science.gov (United States)

    Chen, Hui; Zhang, Ji; Cao, Guang; Liu, Peng; Xu, Haifeng; Wang, Xiaodong; Zhu, Xu; Gao, Song; Guo, Jianhai; Zhu, Linzhong; Zhang, Pengjun

    2016-02-01

    Colorectal cancer liver metastasis (CRLM) is a refractory disease after failure of first-line or second-line chemotherapy. Bevacizumab is recommended as first-line therapy for advanced colorectal cancer, but is unproven in CRLM through the hepatic artery. We report favorable outcomes with targeted vessel regional chemotherapy (TVRC) for liver metastatic gastric cancer. TVRC with FOLFOX and bevacizumab perfusion through the hepatic artery was attempted for CRLM for efficacy and safety evaluation. In a single-institution retrospective observational study, 246 patients with CRLM after at least first-line or second-line failure of systemic chemotherapy received TVRC with FOLFOX (i.e. oxaliplatin, leucovorin, and 5-fluorouracil). Of 246 patients, 63 were enrolled into two groups: group 1 (n=30) received bevacizumab and TVRC following tumor progression during previous TVRC treatments; group 2 (n=33) received TVRC plus bevacizumab for CRLM on initiating TVRC. There were no significant differences in the median survival time (14.7 vs. 13.2 months, P=0.367), although the median time to progression was significant (3.3 vs. 5.5 months, P=0.026) between groups. No severe adverse events related to TVRC plus bevacizumab perfusion occurred. Target vessel regional chemotherapy with FOLFOX plus bevacizumab perfusion through the hepatic artery was effective and safe in CRLM. The optimal combination of TVRC and bevacizumab needs further confirmation in future phase II-III clinical trials.

  3. On the orbital motion of cold clouds in broad-line regions

    Science.gov (United States)

    Shadmehri, Mohsen

    2015-08-01

    We study the orbit of a pressure-confined cloud in the broad-line region (BLR) of active galactic nuclei when the combined effects of the central gravity and anisotropic radiation pressure and the drag force are considered. The physical properties of the intercloud gas, such as its pressure and dynamic viscosity, are defined as power-law functions of the radial distance. For a drag force proportional to the relative velocity of a cloud and the background gas, a detailed analysis of the orbits is performed for different values of the input parameters. We also present analytical solutions for when the intercloud pressure is uniform and the viscosity is proportional to the inverse square of the radial distance. Our analytical and numerical solutions demonstrate decay of the orbits due to the drag force, so that a cloud will eventually fall on to the central region after the so-called time-of-flight. We found that the time-of-flight of a BLR cloud is proportional to the inverse of the dimensionless drag coefficient. If the time-of-flight becomes shorter than the lifetime of the whole system, then mechanisms for continually forming BLR clouds are needed.

  4. Quantifying the Significance of Substructure in Coronal Loops

    Science.gov (United States)

    McKeough, K. B. D.; Kashyap, V.; McKillop, S.

    2014-12-01

    A method to infer the presence of small-scale substructure in SDO/AIA (Atmospheric Imaging Assembly on the Solar Dynamics Observatory) images of coronal loops is developed. We can classify visible loop structure based on this propensity to show substructure which puts constraints on contemporary solutions to the coronal heating problem. The method uses the Bayesian algorithm Low-count Image Reconstruction and Analysis (LIRA) to infer the multi-scale component of the loops which describes deviations from a smooth model. The increase in contrast of features in this multi-scale component is determined using a statistic that estimates the sharpness across the image. Regions with significant substructure are determined using p-value upper bounds. We are able to locate substructure visible in Hi-C (High-Resolution Coronal Imager) data that are not salient features in the corresponding AIA image. Looking at coronal loops at different regions of the Sun (e.g., low-lying structure and loops in the upper corona) we are able to map where detectable substructure exists and thus the influence of the nanoflare heating process. We acknowledge support from AIA under contract SP02H1701R from Lockheed-Martin to SAO.

  5. Investigation of Coronal Large Scale Structures Utilizing Spartan 201 Data

    Science.gov (United States)

    Guhathakurta, Madhulika

    1998-01-01

    Two telescopes aboard Spartan 201, a small satellite has been launched from the Space Shuttles, on April 8th, 1993, September 8th, 1994, September 7th, 1995 and November 20th, 1997. The main objective of the mission was to answer some of the most fundamental unanswered questions of solar physics-What accelerates the solar wind and what heats the corona? The two telescopes are 1) Ultraviolet Coronal Spectrometer (UVCS) provided by the Smithsonian Astrophysical Observatory which uses ultraviolet emissions from neutral hydrogen and ions in the corona to determine velocities of the coronal plasma within the solar wind source region, and the temperature and density distributions of protons and 2) White Light Coronagraph (WLC) provided by NASA's Goddard Space Flight Center which measures visible light to determine the density distribution of coronal electrons within the same region. The PI has had the primary responsibility in the development and application of computer codes necessary for scientific data analysis activities, end instrument calibration for the white-light coronagraph for the entire Spartan mission. The PI was responsible for the science output from the WLC instrument. PI has also been involved in the investigation of coronal density distributions in large-scale structures by use of numerical models which are (mathematically) sufficient to reproduce the details of the observed brightness and polarized brightness distributions found in SPARTAN 201 data.

  6. Analysis of radiographic parameters relevant to the lowest instrumented vertebrae and postoperative coronal balance in Lenke 5C patients.

    Science.gov (United States)

    Li, Jingfeng; Hwang, Steven W; Shi, Zhicai; Yan, Ning; Yang, Changwei; Wang, Chuanfeng; Zhu, Xiaodong; Hou, Tiesheng; Li, Ming

    2011-09-15

    A retrospective radiographic study. To investigate which preoperative radiographic parameters best correlate with the angulation and translation of the lowest instrumented vertebra (LIV) and global coronal balance after posterior spinal pedicle screw fixation for thoracolumbar/lumbar (TL/L) adolescent idiopathic scoliosis. Lenke 5C patients with a single, structural TL/L curve can be treated by either an anterior or posterior approach. One of the operative goals when treating Lenke 5C patients is to level and center the LIV, thereby achieving a better global coronal balance. To our knowledge, no study has investigated which specific radiographic parameters correlate with these surgical outcomes after posterior pedicle screw fixation. Twenty-seven patients with TL/L adolescent idiopathic scoliosis were identified in this study, and they underwent posterior fixation and fusion by pedicle screws with a minimum 2-year follow-up. Preoperative and postoperative radiographs were reviewed measuring various radiographic parameters as well as specific measurements related to the LIV. Correlation of these parameters to LIV translation and global and regional coronal balance (C7-central sacral vertical line [CSVL], LIV-CSVL distance) were then evaluated. Four patients demonstrated global coronal imbalance postoperatively by radiographic and clinical evaluation. Regression analysis identified three radiographic parameters that correlated significantly with the postoperative global coronal balance (C7-CSVL): preoperative C7-CSVL (r = 0.44, P = 0.023), preoperative LIV tilt (r = 0.60, P = 0.001), and postoperative LIV tilt (r = 0.65, P = 0.0002). The radiographic parameters that correlated with postoperative LIV-CSVL were: preoperative LIV-CSVL (r = 0.57, P = 0.017), preoperative LIV tilt (r = 0.40, P = 0.04), and postoperative LIV tilt (r = 0.46, P = 0.015). The radiographic parameters correlating to LIV translation were preoperative LIV-CSVL (r = 0.88, P balance. In patients

  7. A Multi-line Study of Atomic Carbon and Carbon Monoxide in the Galactic Star- forming Region W3

    Science.gov (United States)

    Jakob, H.; Kramer, C.; Mookerjea, B.; Jeyakumar, S.; Stutzki, J.

    We present results from simultaneous observations of the fine structure line emissions of neutral carbon (C I) at 492 and 809 GHz from selected Galactic star forming regions. These observations include the first results using the the newly installed SMART (SubmilliMeter Array Receiver at Two wavelengths) on KOSMA. The regions observed were selected in order to cover a range of strengths of the incident UV radiation from the exciting star/stars and also densities of the interstellar medium. Extended maps of C I emission from massive star forming regions including W3, S106 and Orion BN/KL have been observed. Simultaneous observation of the two C I lines ensures better relative calibration. The results from these observations will be combined with observed intensities of low-J and mid-J CO and C+ lines and analyzed using radiation transfer based models for Photon Dominated Regions (PDRs).

  8. The Foggy EUV Corona and Coronal Heating by MHD Waves From Explosive Reconnection Events

    Science.gov (United States)

    Moore, R. L.; Cirtain, J. W.; Falconer, D. A.

    2008-05-01

    In 0.5 arcsec/pixel TRACE coronal EUV images, the corona rooted in active regions that are at the limb and are not flaring is seen to consist of (1) a complex array of discrete loops and plumes embedded in (2) a diffuse ambient component that shows no fine structure and gradually fades with height. For each of two not-flaring active regions, Cirtain et al (2006, Sol. Phys., 239, 295) found that the diffuse component is (1) approximately isothermal and hydrostatic and (2) emits well over half of the total EUV luminosity of the active-region corona. Here, from a TRACE Fe XII coronal image of another not-flaring active region, the large sunspot active region AR 10652 when it was at the west limb on 30 July 2004, we separate the diffuse component from the discrete-loop component by spatial filtering, and find that the diffuse component has about 60% of the total luminosity. If under much higher spatial resolution than that of TRACE (e.g., the 0.1 arcsec/pixel resolution of the Hi-C sounding- rocket experiment proposed by J. W. Cirtain et al), most of the diffuse component remains diffuse rather being resolved into very narrow loops and plumes, this will raise the possibility that the EUV corona in active regions consists of two basically different but comparably luminous components: one being the set of discrete bright loops and plumes and the other being a truly diffuse component filling the space between the discrete loops and plumes. This dichotomy would imply that there are two different but comparably powerful coronal heating mechanisms operating in active regions, one for the distinct loops and plumes and another for the diffuse component. We present a scenario in which (1) each discrete bright loop or plume is a flux tube that was recently reconnected in a burst of reconnection, and (2) the diffuse component is heated by MHD waves that are generated by these reconnection events and by other fine-scale explosive reconnection events, most of which occur in and

  9. The Foggy EUV Corona and Coronal Heating by MHD Waves from Explosive Reconnection Events

    Science.gov (United States)

    Moore, Ron L.; Cirtain, Jonathan W.; Falconer, David A.

    2008-01-01

    In 0.5 arcsec/pixel TRACE coronal EUV images, the corona rooted in active regions that are at the limb and are not flaring is seen to consist of (1) a complex array of discrete loops and plumes embedded in (2) a diffuse ambient component that shows no fine structure and gradually fades with height. For each of two not-flaring active regions, found that the diffuse component is (1) approximately isothermal and hydrostatic and (2) emits well over half of the total EUV luminosity of the active-region corona. Here, from a TRACE Fe XII coronal image of another not-flaring active region, the large sunspot active region AR 10652 when it was at the west limb on 30 July 2004, we separate the diffuse component from the discrete loop component by spatial filtering, and find that the diffuse component has about 60% of the total luminosity. If under much higher spatial resolution than that of TRACE (e. g., the 0.1 arcsec/pixel resolution of the Hi-C sounding-rocket experiment proposed by J. W. Cirtain et al), most of the diffuse component remains diffuse rather being resolved into very narrow loops and plumes, this will raise the possibility that the EUV corona in active regions consists of two basically different but comparably luminous components: one being the set of discrete bright loops and plumes and the other being a truly diffuse component filling the space between the discrete loops and plumes. This dichotomy would imply that there are two different but comparably powerful coronal heating mechanisms operating in active regions, one for the distinct loops and plumes and another for the diffuse component. We present a scenario in which (1) each discrete bright loop or plume is a flux tube that was recently reconnected in a burst of reconnection, and (2) the diffuse component is heated by MHD waves that are generated by these reconnection events and by other fine-scale explosive reconnection events, most of which occur in and below the base of the corona where they are

  10. Application of a data-driven simulation method to the reconstruction of the coronal magnetic field

    Institute of Scientific and Technical Information of China (English)

    Yu-Liang Fan; Hua-Ning Wang; Han He; Xiao-Shuai Zhu

    2012-01-01

    Ever since the magnetohydrodynamic (MHD) method for extrapolation of the solar coronal magnetic field was first developed to study the dynamic evolution of twisted magnetic flux tubes,it has proven to be efficient in the reconstruction of the solar coronal magnetic field.A recent example is the so-called data-driven simulation method (DDSM),which has been demonstrated to be valid by an application to model analytic solutions such as a force-free equilibrium given by Low and Lou.We use DDSM for the observed magnetograms to reconstruct the magnetic field above an active region.To avoid an unnecessary sensitivity to boundary conditions,we use a classical total variation diminishing Lax-Friedrichs formulation to iteratively compute the full MHD equations.In order to incorporate a magnetogram consistently and stably,the bottom boundary conditions are derived from the characteristic method.In our simulation,we change the tangential fields continually from an initial potential field to the vector magnetogram.In the relaxation,the initial potential field is changed to a nonlinear magnetic field until the MHD equilibrium state is reached.Such a stable equilibrium is expected to be able to represent the solar atmosphere at a specified time.By inputting the magnetograms before and after the X3.4 flare that occurred on 2006 December 13,we find a topological change after comparing the magnetic field before and after the flare.Some discussions are given regarding the change of magnetic configuration and current distribution.Furthermore,we compare the reconstructed field line configuration with the coronal loop observations by XRT onboard Hinode.The comparison shows a relatively good correlation.

  11. The study of Equatorial coronal hole during maximum phase of Solar Cycle 21, 22, 23 and 24

    Science.gov (United States)

    Karna, Mahendra; Karna, Nishu

    2017-08-01

    The 11-year Solar Cycle (SC) is characterized by the periodic change in the solar activity like sunspot numbers, coronal holes, active regions, eruptions such as flares and coronal mass ejections. We study the relationship between equatorial coronal holes (ECH) and the active regions (AR) as coronal whole positions and sizes change with the solar cycle. We made a detailed study of equatorial coronal hole for four solar maximum: Solar Cycle 21 (1979,1980,1981 and 1982), Solar Cycle 22 (1989, 1990, 1991 and 1992), Solar Cycle 23 (1999, 2000, 2001 and 2002) and Solar Cycle 24 (2012, 2013, 2014 and 2015). We used publically available NOAA solar coronal hole data for cycle 21 and 22. We measured the ECH region using the EIT and AIA synoptic map for cycle 23 and 24. We noted that in two complete 22-year cycle of solar activity, the equatorial coronal hole numbers in SC 22 is greater than SC 21 and similarly, SC 24 equatorial coronal hole numbers are greater than SC 23. Moreover, we also compared the position of AR and ECH during SC 23 and 24. We used daily Solar Region Summary (SRS) data from SWPC/NOAA website. Our goal is to examine the correlation between equatorial holes, active regions, and flares.

  12. Tracing the Chromospheric and Coronal Magnetic Field with AIA, IRIS, IBIS, and ROSA Data

    CERN Document Server

    Aschwanden, M J; Jess, D

    2016-01-01

    The aim of this study is to explore the suitability of chromospheric images for magnetic modeling of active regions. We use high-resolution images (0.1") from the Interferometric Bidimensional Spectrometer (IBIS) in the Ca II 8542 A line, the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument in the H-alpha 6563 A line, the Interface Region Imaging Spectrograph (IRIS) in the 2796 A line, and compare non-potential magnetic field models obtained from those chromospheric images with those obtained from images of the Atmospheric Imaging Assembly (AIA) in coronal (171 A, etc.) and in chromospheric (304 A) wavelengths. Curvi-linear structures are automatically traced in those images with the OCCULT-2 code, to which we forward-fitted magnetic field lines computed with the Vertical-Current Approximation Non-Linear Force Free Field (VCA-NLFFF) code. We find that the chromospheric images: (1) reveal crisp curvi-linear structures (fibrils, loop segments, spicules) that are extremely well-suited for constrainin...

  13. Ponderomotive Acceleration in Coronal Loops

    CERN Document Server

    Dahlburg, R B; Taylor, B D; Obenschain, K

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the First Ionization Potential (FIP) effect, the by now well known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a "byproduct" of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of a coronal loops with an axial magnetic field from 0.005 Teslas to 0.02 Teslas and lengths from 25000 km to 75000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets...

  14. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers.

    Science.gov (United States)

    Han, Doug Hyun; Lyoo, In Kyoon; Renshaw, Perry F

    2012-04-01

    Patients with on-line game addiction (POGA) and professional video game players play video games for extended periods of time, but experience very different consequences for their on-line game play. Brain regions consisting of anterior cingulate, thalamus and occpito-temporal areas may increase the likelihood of becoming a pro-gamer or POGA. Twenty POGA, seventeen pro-gamers, and eighteen healthy comparison subjects (HC) were recruited. All magnetic resonance imaging (MRI) was performed on a 1.5 Tesla Espree MRI scanner (SIEMENS, Erlangen, Germany). Voxel-wise comparisons of gray matter volume were performed between the groups using the two-sample t-test with statistical parametric mapping (SPM5). Compared to HC, the POGA group showed increased impulsiveness and perseverative errors, and volume in left thalamus gray matter, but decreased gray matter volume in both inferior temporal gyri, right middle occipital gyrus, and left inferior occipital gyrus, compared with HC. Pro-gamers showed increased gray matter volume in left cingulate gyrus, but decreased gray matter volume in left middle occipital gyrus and right inferior temporal gyrus compared with HC. Additionally, the pro-gamer group showed increased gray matter volume in left cingulate gyrus and decreased left thalamus gray matter volume compared with the POGA group. The current study suggests that increased gray matter volumes of the left cingulate gyrus in pro-gamers and of the left thalamus in POGA may contribute to the different clinical characteristics of pro-gamers and POGA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Coronal Mass Ejections and Dimmings: A Comparative Study using MHD Simulations and SDO Observations

    Science.gov (United States)

    Jin, Meng; Cheung, Mark; DeRosa, Marc L.; Nitta, Nariaki; Schrijver, Karel

    2017-08-01

    Solar coronal dimmings have been observed extensively in the past two decades. Due to their close association with coronal mass ejections (CMEs), there is a critical need to improve our understanding of the physical processes that cause dimmings and determine their relationship with CMEs. In this study, we investigate coronal dimmings by combining simulation and observational efforts. By utilizing a data-driven global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model), we simulate coronal dimmings resulting from different CME energetics and flux rope configurations. We synthesize the emissions of different EUV spectral bands/lines and compare with SDO/AIA and EVE observations. A detailed analysis of simulation and observation data suggests that the “core” dimming is mainly caused by the mass loss from the CME, while the “remote” dimming could have a different origin (e.g., plasma heating). Moreover, the interaction between the erupting flux rope with different orientations and the global solar corona could significantly influence the coronal dimming patterns. Using metrics such as dimming depth, dimming slope, and recovery time, we investigate the relationship between dimmings and CME properties (e.g., CME mass, CME speed) in the simulation. Our result suggests that coronal dimmings encode important information about CMEs. We also discuss how our knowledge about solar coronal dimmings could be extended to the study of stellar CMEs.

  16. VECTOR TOMOGRAPHY FOR THE CORONAL MAGNETIC FIELD. II. HANLE EFFECT MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Kramar, M. [Physics Department, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Inhester, B. [Max-Planck-Institut fuer Sonnensystemforschung, Max-Plank-Str. 2, D-37191 Katlenburg-Lindau (Germany); Lin, H. [Institute for Astronomy, University of Hawaii at Manoa, 34 Ohia Ku Street, Pukalani, Maui, HI 96768 (United States); Davila, J., E-mail: maxim.i.kramar@nasa.gov, E-mail: Joseph.M.Davila@nasa.gov, E-mail: inhester@mps.mpg.de, E-mail: lin@ifa.hawaii.edu [NASA-GSFC, Code 671, Greenbelt, MD 20771 (United States)

    2013-09-20

    In this paper, we investigate the feasibility of saturated coronal Hanle effect vector tomography or the application of vector tomographic inversion techniques to reconstruct the three-dimensional magnetic field configuration of the solar corona using linear polarization measurements of coronal emission lines. We applied Hanle effect vector tomographic inversion to artificial data produced from analytical coronal magnetic field models with equatorial and meridional currents and global coronal magnetic field models constructed by extrapolation of real photospheric magnetic field measurements. We tested tomographic inversion with only Stokes Q, U, electron density, and temperature inputs to simulate observations over large limb distances where the Stokes I parameters are difficult to obtain with ground-based coronagraphs. We synthesized the coronal linear polarization maps by inputting realistic noise appropriate for ground-based observations over a period of two weeks into the inversion algorithm. We found that our Hanle effect vector tomographic inversion can partially recover the coronal field with a poloidal field configuration, but that it is insensitive to a corona with a toroidal field. This result demonstrates that Hanle effect vector tomography is an effective tool for studying the solar corona and that it is complementary to Zeeman effect vector tomography for the reconstruction of the coronal magnetic field.

  17. A Non-radial Eruption in a Quadrupolar Magnetic Configuration with a Coronal Null

    Science.gov (United States)

    Sun, Xudong; Hoeksema, J. Todd; Liu, Yang; Chen, Qingrong; Hayashi, Keiji

    2012-10-01

    We report one of the several homologous non-radial eruptions from NOAA active region (AR) 11158 that are strongly modulated by the local magnetic field as observed with the Solar Dynamic Observatory. A small bipole emerged in the sunspot complex and subsequently created a quadrupolar flux system. Nonlinear force-free field extrapolation from vector magnetograms reveals its energetic nature: the fast-shearing bipole accumulated ~2 × 1031 erg free energy (10% of AR total) over just one day despite its relatively small magnetic flux (5% of AR total). During the eruption, the ejected plasma followed a highly inclined trajectory, over 60° with respect to the radial direction, forming a jet-like, inverted-Y-shaped structure in its wake. Field extrapolation suggests complicated magnetic connectivity with a coronal null point, which is favorable of reconnection between different flux components in the quadrupolar system. Indeed, multiple pairs of flare ribbons brightened simultaneously, and coronal reconnection signatures appeared near the inferred null. Part of the magnetic setting resembles that of a blowout-type jet; the observed inverted-Y structure likely outlines the open field lines along the separatrix surface. Owing to the asymmetrical photospheric flux distribution, the confining magnetic pressure decreases much faster horizontally than upward. This special field geometry likely guided the non-radial eruption during its initial stage.

  18. A NON-RADIAL ERUPTION IN A QUADRUPOLAR MAGNETIC CONFIGURATION WITH A CORONAL NULL

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xudong; Hoeksema, J. Todd; Liu Yang; Hayashi, Keiji [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Chen Qingrong, E-mail: xudong@sun.stanford.edu [Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2012-10-01

    We report one of the several homologous non-radial eruptions from NOAA active region (AR) 11158 that are strongly modulated by the local magnetic field as observed with the Solar Dynamic Observatory. A small bipole emerged in the sunspot complex and subsequently created a quadrupolar flux system. Nonlinear force-free field extrapolation from vector magnetograms reveals its energetic nature: the fast-shearing bipole accumulated {approx}2 Multiplication-Sign 10{sup 31} erg free energy (10% of AR total) over just one day despite its relatively small magnetic flux (5% of AR total). During the eruption, the ejected plasma followed a highly inclined trajectory, over 60 Degree-Sign with respect to the radial direction, forming a jet-like, inverted-Y-shaped structure in its wake. Field extrapolation suggests complicated magnetic connectivity with a coronal null point, which is favorable of reconnection between different flux components in the quadrupolar system. Indeed, multiple pairs of flare ribbons brightened simultaneously, and coronal reconnection signatures appeared near the inferred null. Part of the magnetic setting resembles that of a blowout-type jet; the observed inverted-Y structure likely outlines the open field lines along the separatrix surface. Owing to the asymmetrical photospheric flux distribution, the confining magnetic pressure decreases much faster horizontally than upward. This special field geometry likely guided the non-radial eruption during its initial stage.

  19. Temporal and spatial relationship of flare signatures and the force-free coronal magnetic field

    CERN Document Server

    Thalmann, Julia K; Su, Yang

    2016-01-01

    We investigate the plasma and magnetic environment of active region NOAA 11261 on 2 August 2011 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths, in order to pin down the intersection of previously reconnected flaring loops at the lower solar atmosphere. These locations are used to calculate field lines from 3D nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. With this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet's lower tip during an on-disk observed flare, as a few kilometers per second. Comparison to pos...

  20. Modelling photometric reverberation data -- a disk-like broad line region and larger black hole mass for 3C120

    CERN Document Server

    Nuñez, F Pozo; Ramolla, M; Westhues, C; Haas, M; Chini, R; Steenbrugge, K; Lemke, R; Murphy, M

    2013-01-01

    We consider photometric reverberation mapping, where the nuclear continuum variations are monitored via a broad band filter and the echo of emission line clouds of the broad line region (BLR) is measured with a suitable narrow band (NB) filter. We investigate how an incomplete emission line coverage by the NB filter influences the BLR size determination. This includes two basic cases: 1) a symmetric cut of the blue and red part of the line wings, and 2) the filter positioned asymmetrically to the line center so that essentially a complete half of the emission line is contained in the NB filter. We find that symmetric cutting of line wings may lead to an overestimate of the BLR size which is less than 5%. The case of asymmetric line coverage, as for our data of the Seyfert-1 galaxy 3C120, yields the BLR size with less than 1% bias. Our results suggest that any BLR size bias due to narrow-band line cut in photometric reverberation mapping is small and in most cases negligible. We use well sampled photometric re...

  1. Line Intensities of (12)C(16)O(2) in the 1.2-1.4 µm Spectral Region.

    Science.gov (United States)

    Teffo; Claveau; Kou; Guelachvili; Ubelmann; Perevalov; Tashkun

    2000-06-01

    The 7000-8500 cm(-1) spectral region of (12)C(16)O(2) has been investigated using the high-resolution FT spectrometer of LPPM in Orsay. The two strongest bands in this region are the 10031 <-- 00001 and 10032 <-- 00001 bands centered at 8294 and 8192 cm(-1). Line intensities in these two bands and in the 40013 <-- 00001 and 40014 <-- 00001 bands have been measured. Using the method of effective operators, these line intensities have been included in a new fit of effective dipole-moment parameters to all available experimental data in the same spectral region of (12)C(16)O(2). The corresponding calculated line intensities of the 10031 <-- 00001 and 10032 <-- 00001 bands are compared with the experimental ones. Copyright 2000 Academic Press.

  2. Line Intensities of 12C 16O 2 in the 1.2-1.4 μm Spectral Region

    Science.gov (United States)

    Teffo, J.-L.; Claveau, C.; Kou, Q.; Guelachvili, G.; Ubelmann, A.; Perevalov, V. I.; Tashkun, S. A.

    2000-06-01

    The 7000-8500 cm-1 spectral region of 12C16O2 has been investigated using the high-resolution FT spectrometer of LPPM in Orsay. The two strongest bands in this region are the 10031 ← 00001 and 10032 ← 00001 bands centered at 8294 and 8192 cm-1. Line intensities in these two bands and in the 40013 ← 00001 and 40014 ← 00001 bands have been measured. Using the method of effective operators, these line intensities have been included in a new fit of effective dipole-moment parameters to all available experimental data in the same spectral region of 12C16O2. The corresponding calculated line intensities of the 10031 ← 00001 and 10032 ← 00001 bands are compared with the experimental ones.

  3. Coronal holes near the equatorial plane and the solar wind abundance of iron

    Science.gov (United States)

    Ogilvie, K. W.; Coplan, M. A.; Yellin, K. A.

    1996-03-01

    Composition analysis of the solar wind from two equatorial coronal holes has been carried out with the Ion Composition Instrument on the ISEE-3 spacecraft. The abundances of oxygen, neon and iron were determined as coronal hole-related material flowed past the spacecraft. The results show that the edges of the hole-related flow are sharply defined with abundances closer to the abundances in the photosphere than in the slower solar wind. These results are similar to those found in flows from the southern polar coronal hole and suggest an underlying unity between the polar and equatorial regions of the sun.

  4. Stealthy but Geoeffective Coronal Mass Ejections

    Science.gov (United States)

    Nitta, Nariaki; Mulligan, Tamitha

    2017-08-01

    We have long known about the existence of "problem" geomagnetic storms whose origins are elusive. In more general terms, not all the 1 AU disturbances can be clearly attributed to coronal mass ejections (CMEs), high speed streams (HSSs) or corotation interaction regions (CIRs.) When interplanetary CME (ICME) signatures are found in in situ data, there is not always a flare or filament eruption on the Sun or even an obvious CME observed close to the Sun that correlates with the ICME within a reasonable time range. These ICMEs sometimes result in intense storms. Furthermore, there is a possibility that some of the more severe storms could be partly contributed by such ICMEs of unclear origin. Therefore space weather prediction will remain incomplete without properly understanding these ICMEs. Even if the ICME is paired with a CME, it is sometimes difficult to find where the latter comes from. This is often called the “stealth CME” that apparently lacks low coronal signatures (LCSs). STEREO's second and third view points have tremendously helped us determine its front-side origin and find when and where it forms and accelerates, which is important for isolating possible LCSs. Although SDO/AIA has been continuously taking full-disk EUV images in a wide temperature range since 2010, there are still a number of stealthy CMEs whose LCSs are unclear or ambiguous. It is assumed that they start at high altitudes, leaving weak or negligible LCSs. Some of them seem to involve multiple magnetic domains, and weak or open field regions. We present AIA observations of several stealthy CMEs, including recent ones, that were responsible for geomagnetic storms, emphasizing the need to compare images with long time differences and to find the periods at which the CME forms and accelerates. We also discuss uncertainties in interpreting in situ data as to whether a CME is present when data are dominated by other solar wind features, such as HSS and CIR.

  5. A Methodology for Long-Term Analysis of Innovative Signalling Systems on Regional Rail Lines

    Directory of Open Access Journals (Sweden)

    Luca D'Acierno

    2016-10-01

    Full Text Available A rail system may be considered a useful tool for reducing vehicular flows on a road system (i.e. cars and trucks, especially in high-density contexts such as urban and metropolitan areas where greenhouse gas emissions need to be abated. In particular, since travellers maximise their own utility, variations in mobility choices can be induced only by significantly improving the level-of-service of public transport. Our specific proposal is to identify the economic and environmental effects of implementing an innovative signalling system (which would reduce passenger waiting times by performing a cost-benefit analysis based on a feasibility threshold approach. Hence, it is necessary to calculate long-term benefits and compare them with intervention costs. In this context, a key factor to be considered is travel demand estimation in current and future conditions. This approach was tested on a regional rail line in southern Italy to show the feasibility and utility of the proposed methodology.

  6. Correlations among Jet, Accretion Disk, and Broad Line Region of Flat Spectrum Radio Quasars

    CERN Document Server

    Zhang, Jin; He, Jian-Jian; Liang, En-Wei; Zhang, Shuang-Nan

    2015-01-01

    The SEDs of 18 GeV FSRQs are collected and compiled from literature, in which both the jet emission and the accretion disk radiation can be observed, in order to investigate the correlations among their jet power (P_jet), accretion disk luminosity (L_disk), and luminosity of broad line region (BLR, L_BLR). On the basis of the SED fits with the jet radiation and accretion disk radiation models, we calculate P_jet and L_disk. No correlation between P_jet with either L_disk or L_BLR is found. With a sub-sample of L_BLR for 13 GeV FSRQs, it is observed that L_BLR is strongly correlated with their L_disk. We also study the BLR covering factors of the GeV FSRQs in our sample, averagely which are smaller than that of the large samples of radio-loud and radio-quiet quasars. P_jet of some GeV FSRQs is higher than L_disk, but P_jet of all the GeV FSRQs is lower than the accretion power of black hole (BH), which is estimated by \\dot{M}c^2=L_disk/0.1, indicating that the total accretion power of BH is sufficient to drive...

  7. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    Science.gov (United States)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei

    2017-07-01

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  8. Mapping the Kinematics of the Narrow-Line Region in the Seyfert Galaxy NGC 4151

    CERN Document Server

    Das, V; Hutchings, J B; Deo, R P; Krämer, S B; Gull, T R; Kaiser, M E; Nelson, C H; Weistrop, D

    2005-01-01

    Using The Hubble Space Telescope's Space Telescope Imaging Spectrograph HST's STIS, observations of the OIII emission from the narrow-line region (NLR) of NGC 4151 were obtained and radial velocities determined. Five orbits of HST time were used to obtain spectra at five parallel slit configurations, at a position angle of 58 degrees, with spatial resolution 0.2 arcseconds across and 0.1 arcseconds along each slit. A spectral resolving power of ~ 9,000 with the G430M grating gave velocity measurements accurate to ~ 34 km/s. A kinematic model was generated to match the radial velocities, for comparison to previous kinematic models of biconical radial outflow developed for low-dispersion spectra at two slit positions. The new high-resolution spectra permit the measurement of accurate velocity dispersions for each radial-velocity component. The full-width at half-maximum (FWHM) reaches a maximum of 1000 km/s near the nucleus, and generally decreases with increasing distance to about 100 km/s in the extended narr...

  9. Gravitational Microlensing of a Reverberating Quasar Broad Line Region - I. Method and Qualitative Results

    CERN Document Server

    Garsden, H; Lewis, G F

    2011-01-01

    The kinematics and morphology of the broad emission line region (BELR) of quasars are the subject of significant debate. The two leading methods for constraining BELR properties are microlensing and reverberation mapping. Here we combine these two methods with a study of the microlensing behaviour of the BELR in Q2237+0305, as a change in continuum emission (a "flare") passes through it. Beginning with some generic models of the BELR - sphere, bicones, disk - we slice in velocity and time to produce brightness profiles of the BELR over the duration of the flare. These are numerically microlensed to determine whether microlensing of reverberation mapping provides new information about the properties of BELRs. We describe our method and show images of the models as they are flaring, and the unlensed and lensed spectra that are produced. Qualitative results and a discussion of the spectra are given in this paper, highlighting some effects that could be observed. Our conclusion is that the influence of microlensi...

  10. ISO observations and models of galaxies with Hidden Broad Line Regions

    CERN Document Server

    Efstathiou, A

    2005-01-01

    In this paper we present ISO mid-infrared spectrophotometry and far-infrared photometry of galaxies with Hidden Broad Line Regions (HBLR). We also present radiative transfer models of their spectral energy distributions which enable us to separate the contributions from the dusty disc of the AGN and the dusty starbursts. We find that the combination of tapered discs (discs whose thickness increases with distance from the central source in the inner part but stays constant in the outer part) and starbursts provide good fits to the data. The tapered discs dominate in the mid-infrared part of the spectrum and the starbursts in the far-infrared. After correcting the AGN luminosity for anisotropic emission we find that the ratio of the AGN luminosity to the starburst luminosity, L(AGN)/L(SB), ranges from about unity for IRAS14454-4343 to about 13 for IRAS01475-0740. Our results suggest that the warm IRAS colours of HBLR are due to the relatively high L(AGN)/L(SB). Our fits are consistent with the unified model and...

  11. Quasar cartography: From black hole to broad-line region scales

    Energy Technology Data Exchange (ETDEWEB)

    Chelouche, Doron [Department of Physics, Faculty of Natural Sciences, University of Haifa, Haifa 31905 (Israel); Zucker, Shay, E-mail: doron@sci.haifa.ac.il, E-mail: shayz@post.tau.ac.il [Department of Geophysical, Atmospheric, and Planetary Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2013-06-01

    A generalized approach to reverberation mapping (RM) is presented, which is applicable to broad- and narrowband photometric data, as well as to spectroscopic observations. It is based on multivariate correlation analysis techniques and, in its present implementation, is able to identify reverberating signals across the accretion disk and the broad-line region (BLR) of active galactic nuclei (AGNs). Statistical tests are defined to assess the significance of time-delay measurements using this approach, and the limitations of the adopted formalism are discussed. It is shown how additional constraints on some of the parameters of the problem may be incorporated into the analysis thereby leading to improved results. When applied to a sample of 14 Seyfert 1 galaxies having good-quality high-cadence photometric data, accretion disk scales and BLR sizes are simultaneously determined, on a case-by-case basis, in most objects. The BLR scales deduced here are in good agreement with the findings of independent spectroscopic RM campaigns. Implications for the photometric RM of AGN interiors in the era of large surveys are discussed.

  12. A Bayesian Approach to Period Searching in Solar Coronal Loops

    Science.gov (United States)

    Scherrer, Bryan; McKenzie, David

    2017-03-01

    We have applied a Bayesian generalized Lomb–Scargle period searching algorithm to movies of coronal loop images obtained with the Hinode X-ray Telescope (XRT) to search for evidence of periodicities that would indicate resonant heating of the loops. The algorithm makes as its only assumption that there is a single sinusoidal signal within each light curve of the data. Both the amplitudes and noise are taken as free parameters. It is argued that this procedure should be used alongside Fourier and wavelet analyses to more accurately extract periodic intensity modulations in coronal loops. The data analyzed are from XRT Observation Program #129C: “MHD Wave Heating (Thin Filters),” which occurred during 2006 November 13 and focused on active region 10293, which included coronal loops. The first data set spans approximately 10 min with an average cadence of 2 s, 2″ per pixel resolution, and used the Al-mesh analysis filter. The second data set spans approximately 4 min with a 3 s average cadence, 1″ per pixel resolution, and used the Al-poly analysis filter. The final data set spans approximately 22 min at a 6 s average cadence, and used the Al-poly analysis filter. In total, 55 periods of sinusoidal coronal loop oscillations between 5.5 and 59.6 s are discussed, supporting proposals in the literature that resonant absorption of magnetic waves is a viable mechanism for depositing energy in the corona.

  13. Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region

    Science.gov (United States)

    Grossmann, Benoist E.; Browell, Edward V.

    1989-01-01

    High-resolution spectroscopic measurements of H2O vapor in the 720-nm wavelength region were conducted to investigate the broadening and shifting of H2O lines by air, nitrogen, oxygen, and argon over a wide range of pressures and temperatures. For each of the buffer gases under study, a linear relationship was found between the widths and the shifts, with the broader lines having the smaller pressure shifts. The pressure shifts measured compared favorably with theoretical values reported by Bykov et al. (1988). The temperature-dependence exponents for air-broadening were found to be J-dependent, with the lower-J lines having the higher exponents.

  14. ESSEA On-Line Courses and the WestEd Eisenhower Regional Consortium (WERC)

    Science.gov (United States)

    Rognier, E.

    2001-12-01

    The WestEd Eisenhower Regional Consortium (WERC) is in its second year of offering two Earth Systems Science On-line Graduate courses from IGES - one for High School teachers, and one for Middle School teachers. These high-quality courses support WERC's commitment to "supporting increased scientific and mathematical literacy among our nation's youth through services and other support aimed at enhancing the efforts of those who provide K-12 science and mathematics education." WERC has been able to use its EdGateway online community network to offer these courses to environmental education and science teachers nationwide. Through partnerships with the North American Association for Environmental Education (NAAEE), the National Environmental Education Advancement Project (NEEAP), and other regional, state and local science and environmental education organizations, WERC has a broad reach in connecting with science educators nationwide. WERC manages several state and national listservs, which enable us to reach thousands of educators with information about the courses. EdGateway also provides a private online community in which we offer the courses. WERC partners with two Master Teachers from Utah, who facilitate the courses, and with the Center for Science and Mathematics Education at Weber State University, who provides low-cost graduate credit for the courses. Our students have included classroom teachers from upper elementary through high school, community college science teachers, and environmental science center staff who provide inservice for teachers. Educators from Hawaii to New Jersey have provided diverse personal experiences of Earth Systems Science events, and add richness to the online discussions. Two Earth Science Experts, Dr. Rick Ford from Weber State University, and Dr. Art Sussman from WestEd also contribute to the high caliber of learning the students experience in the courses. (Dr. Sussman's book, Dr. Art's Guide to Planet Earth, is used as one of

  15. ON THE RELATIONSHIP BETWEEN THE CORONAL MAGNETIC DECAY INDEX AND CORONAL MASS EJECTION SPEED

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yan; Liu Chang; Jing Ju; Wang Haimin, E-mail: yx2@njit.edu [Space Weather Research Lab, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102-1982 (United States)

    2012-12-10

    Numerical simulations suggest that kink and torus instabilities are two potential contributors to the initiation and prorogation of eruptive events. A magnetic parameter called the decay index (i.e., the coronal magnetic gradient of the overlying fields above the eruptive flux ropes) could play an important role in controlling the kinematics of eruptions. Previous studies have identified a threshold range of the decay index that distinguishes between eruptive and confined configurations. Here we advance the study by investigating if there is a clear correlation between the decay index and coronal mass ejection (CME) speed. Thirty-eight CMEs associated with filament eruptions and/or two-ribbon flares are selected using the H{alpha} data from the Global H{alpha} Network. The filaments and flare ribbons observed in H{alpha} associated with the CMEs help to locate the magnetic polarity inversion line, along which the decay index is calculated based on the potential field extrapolation using Michelson Doppler Imager magnetograms as boundary conditions. The speeds of CMEs are obtained from the LASCO C2 CME catalog available online. We find that the mean decay index increases with CME speed for those CMEs with a speed below 1000 km s{sup -1} and stays flat around 2.2 for the CMEs with higher speeds. In addition, we present a case study of a partial filament eruption, in which the decay indices show different values above the erupted/non-erupted part.

  16. First in situ evidence of electron pitch angle scattering due to magnetic field line curvature in the Ion diffusion region

    Science.gov (United States)

    Zhang, Y. C.; Shen, C.; Marchaudon, A.; Rong, Z. J.; Lavraud, B.; Fazakerley, A.; Yao, Z.; Mihaljcic, B.; Ji, Y.; Ma, Y. H.; Liu, Z. X.

    2016-05-01

    Theory predicts that the first adiabatic invariant of a charged particle may be violated in a region of highly curved field lines, leading to significant pitch angle scattering for particles whose gyroradius are comparable to the radius of the magnetic field line curvature. This scattering generates more isotropic particle distribution functions, with important impacts on the presence or absence of plasma instabilities. Using magnetic curvature analysis based on multipoint Cluster spacecraft observations, we present the first investigation of magnetic curvature in the vicinity of an ion diffusion region where reconnected field lines are highly curved. Electrons at energies > 8 keV show a clear pitch angle ordering between bidirectional and trapped distribution in surrounding regions, while we show that in the more central part of the ion diffusion region electrons above such energies become isotropic. By contrast, colder electrons (~1 keV) retain their bidirectional character throughout the diffusion regions. The calculated adiabatic parameter K2 for these electrons is in agreement with theory. This study provides the first observational evidence for particle pitch angle scattering due to magnetic field lines with well characterized curvature in a space plasma.

  17. MAGNETOHYDRODYNAMIC WAVES AND CORONAL HEATING: UNIFYING EMPIRICAL AND MHD TURBULENCE MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Igor V.; Van der Holst, Bart; Oran, Rona; Jin, Meng; Manchester, Ward B. IV; Gombosi, Tamas I. [Department of AOSS, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Downs, Cooper [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Roussev, Ilia I. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Evans, Rebekah M., E-mail: igorsok@umich.edu [NASA Goddard Space Flight Center, Space Weather Lab, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2013-02-10

    We present a new global model of the solar corona, including the low corona, the transition region, and the top of the chromosphere. The realistic three-dimensional magnetic field is simulated using the data from the photospheric magnetic field measurements. The distinctive feature of the new model is incorporating MHD Alfven wave turbulence. We assume this turbulence and its nonlinear dissipation to be the only momentum and energy source for heating the coronal plasma and driving the solar wind. The difference between the turbulence dissipation efficiency in coronal holes and that in closed field regions is because the nonlinear cascade rate degrades in strongly anisotropic (imbalanced) turbulence in coronal holes (no inward propagating wave), thus resulting in colder coronal holes, from which the fast solar wind originates. The detailed presentation of the theoretical model is illustrated with the synthetic images for multi-wavelength EUV emission compared with the observations from SDO AIA and STEREO EUVI instruments for the Carrington rotation 2107.

  18. Deriving Potential Coronal Magnetic Fields from Vector Magnetograms

    Science.gov (United States)

    Welsch, Brian T.; Fisher, George H.

    2016-08-01

    The minimum-energy configuration for the magnetic field above the solar photosphere is curl-free (hence, by Ampère's law, also current-free), so can be represented as the gradient of a scalar potential. Since magnetic fields are divergence free, this scalar potential obeys Laplace's equation, given an appropriate boundary condition (BC). With measurements of the full magnetic vector at the photosphere, it is possible to employ either Neumann or Dirichlet BCs there. Historically, the Neumann BC was used with available line-of-sight magnetic field measurements, which approximate the radial field needed for the Neumann BC. Since each BC fully determines the 3D vector magnetic field, either choice will, in general, be inconsistent with some aspect of the observed field on the boundary, due to the presence of both currents and noise in the observed field. We present a method to combine solutions from both Dirichlet and Neumann BCs to determine a hybrid, "least-squares" potential field, which minimizes the integrated square of the residual between the potential and actual fields. We also explore weighting the residuals in the fit by spatially uniform measurement uncertainties. This has advantages both in not overfitting the radial field used for the Neumann BC, and in maximizing consistency with the observations. We demonstrate our methods with SDO/HMI vector magnetic field observations of active region 11158, and find that residual discrepancies between the observed and potential fields are significant, and they are consistent with nonzero horizontal photospheric currents. We also analyze potential fields for two other active regions observed with two different vector magnetographs, and find that hybrid-potential fields have significantly less energy than the Neumann fields in every case - by more than 10^{32} erg in some cases. This has major implications for estimates of free magnetic energy in coronal field models, e.g., non-linear force-free field extrapolations.

  19. Coronal heating by the partial relaxation of twisted loops

    CERN Document Server

    Bareford, Michael; Browning, Philippa

    2012-01-01

    Context: Relaxation theory offers a straightforward method for estimating the energy that is released when a magnetic field becomes unstable, as a result of continual convective driving. Aims: We present new results obtained from nonlinear magnetohydrodynamic (MHD) simulations of idealised coronal loops. The purpose of this work is to determine whether or not the simulation results agree with Taylor relaxation, which will require a modified version of relaxation theory applicable to unbounded field configurations. Methods: A three-dimensional (3D) MHD Lagrangian-remap code is used to simulate the evolution of a line-tied cylindrical coronal loop model. This model comprises three concentric layers surrounded by a potential envelope; hence, being twisted locally, each loop configuration is distinguished by a piecewise-constant current profile. Initially, all configurations carry zero-net-current fields and are in ideally unstable equilibrium. The simulation results are compared with the predictions of helicity ...

  20. Formation of the helium EUV resonance lines

    CERN Document Server

    Golding, Thomas Peter; Carlsson, Mats

    2016-01-01

    Context: While classical models successfully reproduce intensities of many transition region lines, they predict helium EUV line intensities roughly an order of magnitude lower than the observed value. Aims: To determine the relevant formation mechanism(s) of the helium EUV resonance lines, capable of explaining the high intensities under quiet sun conditions. Methods: We synthesise and study the emergent spectra from a 3D radiation-magnetohydrodynamics simulation model. The effects of coronal illumination and non-equilibrium ionisation of hydrogen and helium are included self-consistently in the numerical simulation. Results: Radiative transfer calculations result in helium EUV line intensities that are an order of magnitude larger than the intensities calculated under the classical assumptions. The enhanced intensity of He I 584 is primarily caused by He II recombination cascades. The enhanced intensity of He II 304 and He II 256 is caused primarily by non-equilibrium helium ionisation. Conclusion: The anal...

  1. The Evolution of Transition Region Loops Using IRIS and AIA

    Science.gov (United States)

    Winebarger, Amy R.; DePontieu, Bart

    2014-01-01

    Over the past 50 years, the model for the structure of the solar transition region has evolved from a simple transition layer between the cooler chromosphere to the hotter corona to a complex and diverse region that is dominated by complete loops that never reach coronal temperatures. The IRIS slitjaw images show many complete transition region loops. Several of the "coronal" channels in the SDO AIA instrument include contributions from weak transition region lines. In this work, we combine slitjaw images from IRIS with these channels to determine the evolution of the loops. We develop a simple model for the temperature and density evolution of the loops that can explain the simultaneous observations. Finally, we estimate the percentage of AIA emission that originates in the transition region.

  2. Contrasted study between thin coronal sectional anatomy of the pineal region and MRI image%松果体区的薄层冠状断层解剖与MRI的对照研究

    Institute of Scientific and Technical Information of China (English)

    孙博; 刘树伟; 汤煜春; 樊令仲; 林祥涛; 李振平; 亓恒涛

    2009-01-01

    Objective To investigate the morphology and relationships with the adjacent structures in the pineal region on the thin sections and to provide anatomic data for imaging diagnosis and surgical treatment of diseases in this region. Methods By CT and MRI examination, one normal head specimen was selected for this study. Using the computerized freezing milling technique, the specimen was sliced from anterior to posterior. The in vivo MR images were obtained from ten normal Chinese male adult volunteers using a 3.0 T GE scanner. The base lines of the sectioning and the MR scan were perpendicular to the AC-PC line. Then primary sections were contrasted with the corresponding MR images. Results By the appearance of the pineal peduncle and the disappearance of the pineal gland, the pineal region could be divided into three parts from anterior to posterior, and the shape changed from an inverted triangle to a trapezoid and a triangle gradually. The first interspace was getting wider in the anterior and middle parts of the pineal region, while in the posterior part of the pineal region, it was getting narrower and disappeared finally. From anterior to posterior, the bilateral internal cerebral veins were always in the midline of the pineal region and descended gradually.Conclusion By the computerized freezing milling technique, the anatomic details and adjacent relationships of the pineal region could be exhibited clearly in the thin serial sections, which could help the imaging diagnosis and surgical treatments for minute diseases in this region.%目的 探讨松果体区结构在连续薄层冠状断面上形态结构的变化规律,为该区病变的影像学诊断和外科治疗提供解剖学依据. 方法 选择1例成人头部标本,应用冷冻数控铣削技术由前向后垂直于连合间线(AC-PC线)进行铣削.另选择健康成年男性10名,应用3D SPGR序列行与标本基线一致的3.0 T MR扫描.选取典型的断面标本图像与相应活体的MRI图

  3. The host galaxies and narrow-line regions of four double-peaked [OIII] AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Villforth, Carolin; Hamann, Fred [Department of Astronomy, University of Florida, 32611 Gainesville, FL (United States)

    2015-03-01

    Major gas-rich mergers of galaxies are expected to play an important role in triggering and fueling luminous active galactic nuclei (AGNs). The mechanism of AGN fueling during mergers, however, remains poorly understood. We present deep multi-band (u/r/z) imaging and long-slit spectroscopy of four double-peaked [OIII] emitting AGNs. This class of object is likely associated with either kiloparsec-separated binary AGNs or final stage major mergers, although AGNs with complex narrow-line regions (NLRs) are known contaminants. Such objects are of interest since they represent the onset of AGN activity during the merger process. Three of the four double-peaked [OIII] emitters studied have been confirmed as major mergers using near-infrared imaging and one is a confirmed X-ray binary AGN. All AGNs are luminous, radio-quiet to radio-intermediate, and have redshifts of 0.1regions showing considerable reddening, consistent with enhanced star formation. One source shows an offset between gas and stellar kinematics, consistent with either a bipolar flow or a counter-rotating gas disk. In all other sources, the ionized gas

  4. Quasar Rain: The Broad Emission Line Region as Condensations in the Warm Accretion Disk Wind

    Science.gov (United States)

    Elvis, Martin

    2017-09-01

    The origin of the broad emission line region (BELR) in quasars and active galactic nuclei is still unclear. I propose that condensations form in the warm, radiation-pressure-driven, accretion disk wind of quasars creating the BEL clouds and uniting them with the other two manifestations of cool (∼104 K) gas in quasars, the low ionization phase of the warm absorbers (WAs) and the clouds causing X-ray eclipses. The cool clouds will condense quickly (days to years), before the WA outflows reach escape velocity (which takes months to centuries). Cool clouds form in equilibrium with the warm phase of the wind because the rapidly varying X-ray quasar continuum changes the force multiplier, causing pressure waves to move gas into stable locations in pressure–temperature space. The narrow range of two-phase equilibrium densities may explain the (luminosity){}1/2 scaling of the BELR size, while the scaling of cloud formation timescales could produce the Baldwin effect. These dense clouds have force multipliers of order unity and so cannot be accelerated to escape velocity. They fall back on a dynamical timescale (months to centuries), producing an inflow that rains down toward the central black hole. As they soon move at Mach ∼10–100 with respect to the WA outflow, these “raindrops” will be rapidly destroyed within months. This rain of clouds may produce the elliptical BELR orbits implied by velocity-resolved reverberation mapping in some objects and can explain the opening angle and destruction timescale of the narrow “cometary” tails of the clouds seen in X-ray eclipse observations. Some consequences and challenges of this “quasar rain” model are presented, along with several avenues for theoretical investigation.

  5. Kinematics and structure of clumps in broad-line regions in active galactic nuclei

    Science.gov (United States)

    Ghayuri, Mohammad

    2016-10-01

    We use the Jeans equations for an ensemble of collisionless particles to describe the distribution of broad-line region (BLR) cloud in three classes: (A) non-disc (B) disc-wind (C) pure disc structure. We propose that clumpy structures in the brightest quasars belong to class A, fainter quasars and brighter Seyferts belong to class B, and dimmer Seyfert galaxies and all low-luminosity AGNs (LLAGNs) belong to class C. We derive the virial factor, f, for disc-like structures and find a negative correlation between the inclination angle, θ0, and f. We find similar behaviour for f as a function of the FWHM and σz, the z component of velocity dispersion. For different values of θ0 we find that 1.0 ≲ f ≲ 9.0 in type1 AGNs and 0.5 ≲ f ≲ 1.0 in type2 AGNs. Moreover we have 0.5 ≲ f ≲ 6.5 for different values of FWHM and 1.4 ≲ f ≲ 1.8 for different values of σz. We also find that f is relatively insensitive to the variations of bolometric luminosity and column density of each cloud and the range of variation of f is in order of 0.01. Considering wide range of f we see the use of average virial factor is not very safe. Therefore we propose AGN community to divide a sample into a few subsamples based on the value of θ0 and FWHM of members and calculate for each group separately to reduce uncertainty in black hole mass estimation.

  6. Constraining UV continuum slopes of active galactic nuclei with cloudy models of broad-line region extreme-ultraviolet emission lines

    Energy Technology Data Exchange (ETDEWEB)

    Moloney, Joshua [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Michael Shull, J., E-mail: joshua.moloney@colorado.edu, E-mail: michael.shull@colorado.edu [Also at Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK. (United Kingdom)

    2014-10-01

    Understanding the composition and structure of the broad-line region (BLR) of active galactic nuclei (AGNs) is important for answering many outstanding questions in supermassive black hole evolution, galaxy evolution, and ionization of the intergalactic medium. We used single-epoch UV spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to measure EUV emission-line fluxes from four individual AGNs with 0.49 ≤ z ≤ 0.64, two AGNs with 0.32 ≤ z ≤ 0.40, and a composite of 159 AGNs. With the CLOUDY photoionization code, we calculated emission-line fluxes from BLR clouds with a range of density, hydrogen ionizing flux, and incident continuum spectral indices. The photoionization grids were fit to the observations using single-component and locally optimally emitting cloud (LOC) models. The LOC models provide good fits to the measured fluxes, while the single-component models do not. The UV spectral indices preferred by our LOC models are consistent with those measured from COS spectra. EUV emission lines such as N IV λ765, O II λ833, and O III λ834 originate primarily from gas with electron temperatures between 37,000 K and 55,000 K. This gas is found in BLR clouds with high hydrogen densities (n {sub H} ≥ 10{sup 12} cm{sup –3}) and hydrogen ionizing photon fluxes (Φ{sub H} ≥ 10{sup 22} cm{sup –2} s{sup –1}).

  7. Future space missions and ground observatory for measurements of coronal magnetic fields

    Science.gov (United States)

    Fineschi, Silvano; Gibson, Sarah; Bemporad, Alessandro; Zhukov, Andrei; Damé, Luc; Susino, Roberto; Larruquert, Juan

    2016-07-01

    This presentation gives an overview of the near-future perspectives for probing coronal magnetism from space missions (i.e., SCORE and ASPIICS) and ground-based observatory (ESCAPE). Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter. The CorMag filter is part of the ESCAPE experiment to be based at the French-Italian Concordia base in Antarctica. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include new generation, high-efficiency UV polarizer with the capability of imaging polarimetry of the HI Lyman-α, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. The second lauch is scheduled in 2016. Proba-3 is the other future solar mission that would provide the opportunity of diagnosing the coronal magnetic field. Proba-3 is the first precision formation-flying mission to launched in 2019). A pair of satellites will fly together maintaining a fixed configuration as a 'large rigid

  8. The Dynamics of Coronal-Hole Boundaries

    Science.gov (United States)

    Higginson, A. K.; Antiochos, S. K.; DeVore, C. R.; Wyper, P. F.; Zurbuchen, T.

    2015-12-01

    The source of the slow solar wind at the Sun is the subject of intense debate in solar and heliospheric physics. Because the majority of the solar wind observed at Earth is slow wind, understanding its origin is essential for understanding and predicting Earth's space weather environment. In-situ and remote observations show that, compared to the fast wind, the slow solar wind corresponds to higher freeze-in temperatures, as indicated by charge-state ratios, and more corona-like elemental abundances. These results indicate that the most likely source for the slow wind is the hot plasma in the closed-field corona; however, the release mechanism for the wind from the closed-field regions is far from understood. Here we present the first fully dynamic, 3D MHD simulations of a coronal-hole boundary driven by photospheric convective flows. We determine in detail the opening and closing of coronal flux due to photospheric motions at the base of a helmet streamer. These changes should lead to the release of plasma from the closed magnetic field at the edge of the streamer. Our analysis demonstrates that the bulk of the release is due to interchange reconnection. We calculate the effective of numerical Lundquist number on the dynamics and discuss the implications of our results for theories of slow-wind origin, in particular the S-Web model. We also discuss the implications of our results for observations, in particular from the upcoming Solar Orbiter and Solar Probe Plus missions. This work was supported by the NASA SR&T and TR&T Programs.

  9. PROMINENCE ACTIVATION BY CORONAL FAST MODE SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya [Department of Astronomy, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan); Asai, Ayumi [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Shibata, Kazunari, E-mail: takahashi@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)

    2015-03-01

    An X5.4 class flare occurred in active region NOAA11429 on 2012 March 7. The flare was associated with a very fast coronal mass ejection (CME) with a velocity of over 2500 km s{sup −1}. In the images taken with the Solar Terrestrial Relations Observatory-B/COR1, a dome-like disturbance was seen to detach from an expanding CME bubble and propagated further. A Type-II radio burst was also observed at the same time. On the other hand, in extreme ultraviolet images obtained by the Solar Dynamic Observatory/Atmospheric Imaging Assembly (AIA), the expanding dome-like structure and its footprint propagating to the north were observed. The footprint propagated with an average speed of about 670 km s{sup −1} and hit a prominence located at the north pole and activated it. During the activation, the prominence was strongly brightened. On the basis of some observational evidence, we concluded that the footprint in AIA images and the ones in COR1 images are the same, that is, the MHD fast mode shock front. With the help of a linear theory, the fast mode Mach number of the coronal shock is estimated to be between 1.11 and 1.29 using the initial velocity of the activated prominence. Also, the plasma compression ratio of the shock is enhanced to be between 1.18 and 2.11 in the prominence material, which we consider to be the reason for the strong brightening of the activated prominence. The applicability of linear theory to the shock problem is tested with a nonlinear MHD simulation.

  10. Professionalism in practice: the Coroner's Court.

    Science.gov (United States)

    Griffith, Richard

    2017-01-02

    A coroner recently declared a district nursing service as unfit for purpose following the death of a patient and held the care given by district nurses was unprofessional and contributed to the patient's decline and death. In this article Richard Griffith considers the coroners concerns in relation to the professional standards imposed on district nurses.

  11. Energy dissipation of Alfven wave packets deformed by irregular magnetic fields in solar-coronal arches

    Science.gov (United States)

    Similon, Philippe L.; Sudan, R. N.

    1989-01-01

    The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.

  12. Radio-quiet Fast Coronal Mass Ejections

    Science.gov (United States)

    Gopalswamy, N.; Aguilar-Rodriguez, E.; Kaiser, M. L.; Howard, R. A.

    2004-12-01

    Coronal mass ejections (CMEs) drive shocks in the interplanetary medium that produce type II radio emission. These CMEs are faster and wider on the average, than the general population of CMEs. However, when we start from fast (speed > 900 km/s) and wide (angular width > 60 degrees), more than half of them are not associated with radio bursts. In order to understand why these CMEs are radio quiet, we collected all the fast and wide (FW) CMEs detected by the Solar and Heliospheric Observatory (SOHO) mission's Large Angle and Spectrometric Coronagraph (LASCO) and isolated those without associated type II radio bursts. The radio bursts were identified in the dynamic spectra of the Radio and Plasma Wave (WAVES) Experiment on board the Wind spacecraft. We also checked the list against metric type II radio bursts reported in Solar Geophysical Data and isolated those without any radio emission. This exercise resulted in about 140 radio-quiet FW CMEs. We identified the source regions of these CMEs using the Solar Geophysical Data listings, cross-checked against the eruption regions in the SOHO/EIT movies. We explored a number of possibilities for the radio-quietness: (i) Source region being too far behind the limb, (ii) flare size, (iii) brightness of the CME, and (iv) the density of the ambient medium. We suggest that a combination of CME energy and the Alfven speed profile of the ambient medium is primarily responsible for the radio-quietness of these FW CMEs.

  13. Anatomy of Depleted Interplanetary Coronal Mass Ejections

    Science.gov (United States)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B., IV

    2017-01-01

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE/SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C6+/C5+ and O7+/O6+ depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  14. Signatures of the slow solar wind streams from active regions in the inner corona

    CERN Document Server

    Slemzin, V; Urnov, A; Kuzin, S; Goryaev, F; Berghmans, D

    2012-01-01

    Some of local sources of the slow solar wind can be associated with spectroscopically detected plasma outflows at edges of active regions accompanied with specific signatures in the inner corona. The EUV telescopes (e.g. SPIRIT/CORONAS-F, TESIS/CORONAS-Photon and SWAP/PROBA2) sometimes observed extended ray-like structures seen at the limb above active regions in 1MK iron emission lines and described as "coronal rays". To verify the relationship between coronal rays and plasma outflows, we analyze an isolated active region (AR) adjacent to small coronal hole (CH) observed by different EUV instruments in the end of July - beginning of August 2009. On August 1 EIS revealed in the AR two compact outflows with the Doppler velocities V =10-30 km/s accompanied with fan loops diverging from their regions. At the limb the ARCH interface region produced coronal rays observed by EUVI/STEREO-A on July 31 as well as by TESIS on August 7. The rays were co-aligned with open magnetic field lines expanded to the streamer sta...

  15. Line parameters including temperature dependences of air- and self-broadened line shapes of 12C16O2: 2.06-μm region

    Science.gov (United States)

    Benner, D. Chris; Devi, V. Malathy; Sung, Keeyoon; Brown, Linda R.; Miller, Charles E.; Payne, Vivienne H.; Drouin, Brian J.; Yu, Shanshan; Crawford, Timothy J.; Mantz, Arlan W.; Smith, Mary Ann H.; Gamache, Robert R.

    2016-08-01

    This study reports the results from analyzing a number of high resolution, high signal-to-noise ratio (S/N) spectra in the 2.06-μm spectral region for pure CO2 and mixtures of CO2 in dry air. A multispectrum nonlinear least squares curve fitting technique has been used to retrieve the various spectral line parameters. The dataset includes 27 spectra: ten pure CO2, two 99% 13C-enriched CO2 and fifteen spectra of mixtures of 12C-enriched CO2 in dry air. The spectra were recorded at various gas sample temperatures between 170 and 297 K. The absorption path lengths range from 0.347 to 49 m. The sample pressures for the pure CO2 spectra varied from 1.1 to 594 Torr; for the two 13CO2 spectra the pressures were ∼10 and 146 Torr. For the air-broadened spectra, the pressures of the gas mixtures varied between 200 and 711 Torr with CO2 volume mixing ratios ranging from 0.014% to 0.203%. The multispectrum fitting technique was applied to fit simultaneously all these spectra to retrieve consistent set of line positions, intensities, and line shape parameters including their temperature dependences; for this, the Voigt line shape was modified to include line mixing (via the relaxation matrix formalism) and quadratic speed dependence. The new results are compared to select published values, including recent ab initio calculations. These results are required to retrieve the column averaged dry air mole fraction (XCO2) from space-based observations, such as the Orbiting Carbon Observatory-2 (OCO-2) satellite mission that NASA launched in July 2014.

  16. The influence of the stray-light component in determining coronal temperature structures

    Institute of Scientific and Technical Information of China (English)

    HAO Juan; ZHANG Mei

    2009-01-01

    We use a few solar partial eclipse observations made by XRT/Hinode to estimate the influence of stray-light component in determining coronal temperature structures. Our analysis shows that the stray light will largely affect the estimation of coronal temperature and change the estimated temperature structure in one coronal hole region. The stray lights mildly influence the estimated temperatures in one quiet Sun region and do not change the estimated temperature structure. This implies that the influence of stray lights differs from one region to another, and definitely needs to be considered in some regions. Whereas a carefully estimated point-spread-function Is needed to remove the stray light component, our study shows that by a simple approach such as subtracting the average intensity of distant (e.g. >1.4 solar radius) points from the data values, the influence of stray light can be largely removed, at least for the two regions we study here.

  17. The influence of the stray-light component in determining coronal temperature structures

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We use a few solar partial eclipse observations made by XRT/Hinode to estimate the influence of stray-light component in determining coronal temperature structures. Our analysis shows that the stray light will largely affect the estimation of coronal temperature and change the estimated temperature structure in one coronal hole region. The stray lights mildly influence the estimated temperatures in one quiet Sun region and do not change the estimated temperature structure. This implies that the influence of stray lights differs from one region to another, and definitely needs to be considered in some regions. Whereas a carefully estimated point-spread-function is needed to remove the stray light component, our study shows that by a simple approach such as subtracting the average intensity of distant (e.g. >1.4 solar radius) points from the data values, the influence of stray light can be largely removed, at least for the two regions we study here.

  18. Chromospheric polarimetry through multi-line observations of the 850 nm spectral region

    CERN Document Server

    Noda, C Quintero; Katsukawa, Y; Rodriguez, J de la Cruz; Carlsson, M; Anan, T; Oba, T; Ichimoto, K; Suematsu, Y

    2016-01-01

    Future solar missions and ground-based telescopes aim to understand the magnetism of the solar chromosphere. We performed a supporting study in Quintero Noda et al. (2016) focused on the infrared Ca II 8542 A line and we concluded that is one of the best candidates because it is sensitive to a large range of atmospheric heights, from the photosphere to the middle chromosphere. However, we believe that it is worth to try improving the results produced by this line observing additional spectral lines. In that regard, we examined the neighbour solar spectrum looking for spectral lines that could increase the sensitivity to